
Hardness of KT Characterizes Parallel Cryptography

Hanlin Ren∗

University of Oxford
Rahul Santhanam†

University of Oxford

August 21, 2021

Abstract

A recent breakthrough of Liu and Pass (FOCS’20) shows that one-way functions exist
if and only if the (polynomial-)time-bounded Kolmogorov complexity, Kt, is bounded-error
hard on average to compute. In this paper, we strengthen this result and extend it to other
complexity measures:

• We show, perhaps surprisingly, that the KT complexity is bounded-error average-case
hard if and only if there exist one-way functions in constant parallel time (i.e. NC0).
This result crucially relies on the idea of randomized encodings. Previously, a seminal
work of Applebaum, Ishai, and Kushilevitz (FOCS’04; SICOMP’06) used the same
idea to show that NC0-computable one-way functions exist if and only if logspace-
computable one-way functions exist.

• Inspired by the above result, we present randomized average-case reductions among
the NC1-versions and logspace-versions of Kt complexity, and the KT complexity. Our
reductions preserve both bounded-error average-case hardness and zero-error average-
case hardness. To the best of our knowledge, this is the first reduction between the
KT complexity and a variant of Kt complexity.

• We prove tight connections between the hardness of Kt complexity and the hardness
of (the hardest) one-way functions. In analogy with the Exponential-Time Hypothesis
and its variants, we define and motivate the Perebor Hypotheses for complexity mea-
sures such as Kt and KT. We show that a Strong Perebor Hypothesis for Kt implies the
existence of (weak) one-way functions of near-optimal hardness 2n−o(n). To the best
of our knowledge, this is the first construction of one-way functions of near-optimal
hardness based on a natural complexity assumption about a search problem.

• We show that a Weak Perebor Hypothesis for MCSP implies the existence of one-way
functions, and establish a partial converse. This is the first unconditional construction
of one-way functions from the hardness of MCSP over a natural distribution.

• Finally, we study the average-case hardness of MKtP. We show that it characterizes
cryptographic pseudorandomness in one natural regime of parameters, and complexity-
theoretic pseudorandomness in another natural regime.

∗h4n1in.r3n@gmail.com
†rahul.santhanam@cs.ox.ac.uk

i

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 57 (2021)

mailto:h4n1in.r3n@gmail.com
mailto:rahul.santhanam@cs.ox.ac.uk

Contents

1 Introduction 1
1.1 Backgrounds and Motivation . 1
1.2 Our Contributions . 2
1.3 Related Work . 6
1.4 Organization . 7

2 Intuitions and Techniques 7
2.1 Parallel Cryptography and the Hardness of KT 7
2.2 Applebaum-Ishai-Kushilevitz as a Reduction . 9
2.3 Tighter Connections . 10
2.4 MCSP-Related Results . 11
2.5 Using Hardness of Kt to Capture Cryptographic and Complexity-Theoretic Pseu-

dorandomness . 11

3 Preliminaries 12

4 KT Complexity and Parallel Cryptography 18
4.1 One-Way Functions in NC0 from Hardness of MKTP 18
4.2 Hardness of MKTP from One-Way Functions in ⊕L 20
4.3 Bounded-Error Average-Case Robustness of Meta-Complexity 23
4.4 Zero-Error Average-Case Reductions . 24

5 Tighter Connections between Meta-Complexity and One-Way Functions 27
5.1 Technical Building Blocks . 28
5.2 CondEP-PRGs from Weak One-Way Functions 28
5.3 Proof of Theorem 5.2 . 30
5.4 Proof of Theorem 5.3 . 31
5.5 The Perebor Hypotheses . 33

6 MCSP-Related Results 34
6.1 Preliminaries . 35
6.2 One-Way Functions from Hardness of MCSP . 36
6.3 Hardness of MCSP from DLOGTIME One-Way Functions 38

7 The Average-Case Complexity of MKtP 40
7.1 Characterizing One-Way Functions Using MKtP 40
7.2 A Complexity Theoretic Analogue . 41

8 Open Problems 43

References 44

A Proof of Theorem 5.9 51

B Proof of Theorem 5.14 55

ii

1 Introduction

1.1 Background and Motivation

1.1.1 Meta-Complexity

Let µ be a complexity measure, such as the circuit size of a Boolean function or the time-bounded
Kolmogorov complexity of a string. Traditional complexity theory studies the complexity mea-
sure on fixed functions, e.g. the AC0 complexity of the Parity function. In contrast, we study
the meta-complexity problem associated with µ: given an input function, what is its µ value?

Meta-complexity problems are fundamental to theoretical computer science and have been
studied since the very beginning of the discipline [Tra84]. They have connections to several areas
of theoretical computer science, including circuit lower bounds, learning, meta-mathematics,
average-case complexity, and cryptography. However, our knowledge about them is still very
limited compared to our knowledge of other fundamental problems such as the Satisfiability
problem.

Some of the basic complexity questions about meta-complexity include:

• Is computing a given measure µ complete for some natural complexity class? For example,
is the Minimum Circuit Size Problem (MCSP, [KC00]) NP-complete?

• Can we show unconditional circuit lower bounds for computing µ, at least for weak circuit
classes? Can we distinguish truth tables with 2o(n)-size circuits from random truth tables
by a small AC0[2] circuit?

• Is deciding whether µ is at least some parameter k robust to the choice of the param-
eter k? Let MCSP[s(n)] denote the problem of whether an input function (represented
as a truth table) has circuit complexity at most s(n); are MCSP[2n/2] and MCSP[2n/3]
computationally equivalent?

• How do low-level definitional issues affect the complexity of µ? Does the complexity of the
time-bounded version of Kolmogorov complexity (“Kt”) depend on the universal Turing
machine that defines it?

• For which pairs of measures µ and µ′ can we show that the problem of computing µ reduces
to the problem of computing µ′? Can we reduce computing the time-bounded version of
Kolmogorov complexity to computing circuit complexity?

There has been much interest in recent years in these questions. While there has been some
progress on answering these questions affirmatively for specific measures [ABK+06,ILO20,All01,
AH19,OS17,HS17,GII+19,Hir18, Ila20a, Ila20b], there are also barriers to understanding these
questions better, such as our inability to prove circuit lower bounds [KC00, MW17] and the
magnification phenomenon [OS18,OPS19,MMW19,CJW19]. Many of the above questions such
as the NP-completeness of MCSP remain wide open.

1.1.2 Cryptography

A fundamental question in cryptography is whether one-way functions exist. We have been quite
successful at basing one-way functions on the hardness of specific problems, such as factoring
[RSA78], discrete logarithm [DH76], and some lattice problems [Ajt96]. One problem with this
approach, however, is that we have little complexity-theoretic evidence for the hardness of these
problems (for example, they are unlikely to be NP-hard). The most compelling evidence for
their hardness so far is simply that we have not been able to find efficient algorithms for them.

Can we base the existence of one-way functions on firm complexity-theoretic assumptions? A
“holy-grail” in this direction would be to construct one-way functions assuming (only) NP 6⊆ BPP
[DH76]. This goal remains elusive, and there are several obstacles to its resolution:

1

• Unless PH collapses, non-adaptive “black-box” reductions cannot transform worst-case
hardness of NP into average-case hardness of NP [BT06]. As the latter is necessary for
one-way functions, this barrier result demonstrates limits of such “black-box” reductions
on basing one-way function from worst-case assumptions such as NP 6⊆ BPP. For the
task of constructing one-way functions (instead of just a hard-on-average problem in NP),
stronger barrier results are known [AGGM06,Nan21].

• Even the seemingly easier task of basing one-way functions from average-case hardness
of NP remains elusive. Indeed, Impagliazzo [Imp95b] called a world “Pessiland” where
NP is hard on average but one-way functions do not exist. It is not hard to construct a
relativized Pessiland [Wee06], therefore a relativization barrier exists even for this “easier”
task.

1.1.3 The Liu-Pass Result

Very recently, in a breakthrough result, Liu and Pass [LP20] showed an equivalence between the
existence of one-way functions and the bounded-error average-case hardness of computing the
Kt complexity (the Kolmogorov complexity of a string with respect to a given polynomial time
bound t) over the uniform distribution. This result is significant for several reasons.

• From the perspective of cryptography, it establishes the first equivalence between the
existence of one-way functions and the average-case complexity of a natural problem over
a natural distribution. Such an equivalence result bases cryptography on firmer complexity-
theoretic foundations.

• From the perspective of meta-complexity, it enables robustness results for the complexity
of Kt in the average-case setting. Indeed, [LP20] proved that approximating the Kt com-
plexity of a string or finding an optimal description for a string are both equivalent to the
problem of computing the Kt complexity.

• More generally, such connections suggest the possibility of new and non-trivial average-
case reductions between natural problems on natural distributions, which is by itself an
important goal in average-case complexity theory. Several of the most basic questions in
this area remain open: Is random 3-SAT as hard as random 4-SAT (or vice versa)? Is the
decision version of Planted Clique as hard as its search version?1

Given these motivations, it is natural to ask if the main result of [LP20] can be extended
to other meta-complexity problems. For example, is the average-case hardness of MCSP also
equivalent to the existence of one-way functions? There is a “Kolmogorov-version” of circuit
complexity, named KT, which is more “fine-grained” than circuit complexity [All01,ABK+06].
Maybe this problem is also closely related to the existence of one-way functions? What about
Levin’s Kt complexity [Lev84]?2

1.2 Our Contributions

We give strong positive answers to the above questions. We show somewhat surprisingly that
the average-case hardness of KT complexity is equivalent to the existence of one-way functions
computable in fast parallel time.3 For MCSP, we obtain weaker results: exponential hardness of

1The decision version of Planted Clique is to distinguish Erdős-Rényi random graphs from graphs with a
planted clique; the search version is to find the planted clique.

2See Definition 3.3 for the precise definitions of Kt, KT, and Kt.
3Due to a result in [AIK06], the “fast parallel time” here can be interpreted as either NC0 or NC1. We also

point the reader to Benny Applebaum’s book Cryptography in Constant Parallel Time [App14], which inspired
the title of the current paper.

2

computing circuit size over the uniform distribution implies the existence of one-way functions,
and there is a partial converse. Bounded-error average-case complexity of Kt complexity turns
out to be equivalent to the existence of one-way functions in one natural setting of parameters
(despite the fact that computing Kt in the worst case is EXP-hard [ABK+06]), and equivalent
to the existence of complexity-theoretic pseudorandom generators in another natural setting of
parameters.

We also extend the connection between the hardness of Kt complexity and one-way functions
to the high end of the parametric regime — this yields one-way functions of almost optimal hard-
ness from plausible assumptions about the hardness of Kt complexity. We define and motivate
the Perebor Hypotheses4, which are average-case analogues of the Exponential-Time Hypothe-
sis and its variants for meta-complexity problems, stating that there is no better way to solve
meta-complexity problems than brute force search. This is a conceptual contribution of this
work, and we expect these hypotheses to have further applications to cryptography, average-
case complexity, and fine-grained complexity.

We now describe our results in more detail.

1.2.1 Connections between Meta-Complexity and One-Way Functions

Our main result is an equivalence between “parallel cryptography” and the average-case hardness
of MKTP:

Theorem 1.1 (Main Result; Informal). There is a one-way function computable in uniform
NC1 if and only if KT is bounded-error hard on average.

The class “uniform NC1” in the above theorem is somewhat arbitrary and can be replaced by
any class between NC0 and ⊕L.5 This is because [AIK06] proved that the existence of one-way
functions in ⊕L implies the existence of one-way functions in NC0.

For comparison, Liu and Pass [LP20] showed an equivalence between (“sequential”) cryptog-
raphy and the average-case hardness of time-bounded Kolmogorov complexity (Kt).

Theorem 1.2 (Main Result of [LP20]). There is a one-way function if and only if for some
polynomial t, Kt is bounded-error hard on average.

Theorem 1.2 shows that the one-way function defined based on hardness of Kt is a natural
universal one-way function.6 Similarly, Theorem 1.1 shows that the one-way function we define
based on the hardness of KT is a natural universal one-way function in NC1.

As a corollary, the classical open question of whether polynomial-time computable one-way
functions imply one-way functions in NC0 is equivalent to the question of whether average-case
hardness of Kt implies average-case hardness of KT.

Results for MCSP. The KT complexity was defined as a variant of Kolmogorov-complexity
that resembles circuit complexity [All01,ABK+06]. Therefore, it is natural to ask whether our
equivalence also holds for circuit complexity.

It turns out that circuit complexity is less convenient to deal with. Nevertheless, we still
proved non-trivial analogues of Theorem 1.1 as follows:

Theorem 1.3 (Informal). The following are true:
4Our terminology is inspired by Trakhtenbrot’s survey [Tra84] on work in the former Soviet Union aiming to

show that various meta-complexity problems require brute force search to solve. “Perebor” roughly means “by
exhaustive search” in Russian.

5⊕L is the class of problems solvable by a parity Turing machine with O(logn) space. This class contains
both NC1 and L (log-space).

6A universal one-way function is a polynomial-time computable function f such that if any one-way function
exists, then f is a one-way function. An artificial universal one-way function can be defined by enumerating
uniform algorithms and concatenating their outputs [Lev03,Gol01].

3

• If MCSP is exponentially7 hard on average, then there is a (super-polynomially hard) one-
way function.

• If there is an exponentially hard weak one-way function in NC0, then MCSP is (exponen-
tially) hard on average.

For the technical difficulties of handling circuit complexity, the reader is referred to Section 6
(and in particular Remark 6.9).

Results for MKtP. We also observe that the existence of (polynomial-time computable) one-
way functions can be characterized by the bounded-error average-case complexity of Kt.

Theorem 1.4. There is a one-way function if and only if Kt is bounded-error hard on average.

This result may seem surprising as computing Kt is EXP-hard under polynomial-size reduc-
tions [ABK+06]. This is true even for any oracle that is a zero-error heuristic for computing
Kt. In contrast, we show that the bounded-error average-case complexity of Kt is captured by
one-way functions, a notion that seems much “easier” than EXP.

The harder direction in Theorem 1.4 is to construct a one-way function from hardness of Kt.
How could we construct a one-way function from merely a hard problem in exponential time?
The crucial insight is as follows: For most strings x ∈ {0, 1}n whose optimal Kt complexity is
witnessed by a machine d and a time bound t where Kt(x) = |d| + log t, we have t ≤ poly(n).
We refer the reader to Section 2.1.2 and Section 7 for more details.

Note that Theorem 1.4 can also be seen as a characterization of cryptographic pseudorandom-
ness, by the known equivalence between one-way functions and cryptographic pseudorandomness
[HILL99]. In a different regime of parameters, average-case hardness of Kt turns out to cap-
ture the existence of complexity-theoretic pseudorandom generators, which are pseudorandom
generators with non-trivial seed length computable in exponential time. Thus the average-case
complexity of a single problem (Kt) can be used to capture both cryptographic pseudorandom-
ness and complexity-theoretic pseudorandomness!

Theorem 1.5 (Informal). For each ε > 0, there is a pseudo-random generator from nε bits to n
bits computable in time 2n

ε
poly(n) secure against poly(n) size circuits iff for each c > 1/2 there

are no polynomial-size circuits solving Kt on more than 1− 2−cn fraction of inputs of length n.

1.2.2 Application in Meta-Complexity: Robustness Theorems

We exploit the connection between MKTP and parallel cryptography to establish more robust-
ness results for meta-complexity. It is known that parallel cryptography is extremely robust:
L-computable one-way functions exist, if and only if NC1-computable one-way functions exist, if
and only if NC0-computable one-way functions exist [AIK06]. We define L- and NC1-variants of
Kt complexity, and translate the result in [AIK06] to the following robustness theorem:

Theorem 1.6 (Bounded-Error Robustness of Meta-Complexity; Informal). The following state-
ments are equivalent:

• KT is bounded-error hard on average.

• For t1(n) := n10, the search version of NC1-Kt1 is bounded-error hard on average.

• For t2(n) := 5n, L-Kt2 is bounded-error hard on average to approximate, within an additive
error of 100 log n.

7In this paper, exponential hardness always means hardness 2Ω(n).

4

It turns out that the above theorem can be interpreted as a reduction! In particular, we
discover the following average-case reduction from L-Kt to MKTP:

Theorem 1.7 (Informal). Let n, t be parameters, m := poly(n, t). There is a randomized
reduction Red(x) that maps a length-n input to a length-m input, and satisfies the following
property:

• Given a uniform random input x of length n, Red(x) produces a uniform random string of
length m.

• Given a string x such that L-Kt(x) is small, for every possible randomness used in Red,
the KT complexity of Red(x) is also small.

To the best of our knowledge, this is the first reduction from a variant of Kt complexity to
a variant of KT complexity. The only special property of L that we use is that L-computable
functions have perfect randomized encodings [AIK06]. If polynomial-time computable functions
have such perfect randomized encodings, then our techniques imply an average-case reduction
from the (standard) Kt complexity to the KT complexity.

We have focused on the bounded-error average-case complexity of meta-complexity prob-
lems so far. However, Theorem 1.7 also implies robustness in the zero-error regime. Here, let
MKTP[s] be the problem of determining whether the input x satisfies KT(x) ≤ s(|x|), and let
MINKt[s] be the problem of determining whether the input x satisfies Kt(x) ≤ s(|x|).

Theorem 1.8 (Zero-Error Robustness of Meta-Complexity; Informal). Among the following
items, we have (1) ⇐⇒ (2), and both items are implied by (3).

1. There is a constant c > 0 such that NC1-MINKt1 [n− c log n] is zero-error easy on average.

2. There is a constant c > 0 such that L-MINKt2 [n− c log n] is zero-error easy on average.

3. There is a constant c > 0 such that MKTP[n− c log n] is zero-error easy on average.

1.2.3 Application in Cryptography: Maximally Hard One-Way Functions

How hard can a one-way function be? The standard definition of one-way functions only requires
that no polynomial-time adversary inverts a random output except with negligible probability.
However, it is conceivable that some one-way function requires 2n/poly(n) time to invert (say,
on a constant fraction of inputs)!

When studying the fine-grained complexity of inverting one-way functions, it is useful to draw
an analogy to the theory of Satisfiability, where the Exponential Time Hypothesis (ETH) and
Strong Exponential Time Hypothesis (SETH) [IP01, IPZ01,CIP09] have gained prominence re-
cently. ETH states that CNF-SAT requires time 2Ω(n) to solve, and SETH states that CNF-SAT
requires time 2n−o(n) to solve. Analogously, we define the Weak and Strong Perebor Hypotheses
for any given complexity measure µ. The Weak Perebor Hypothesis for µ states that µ requires
time 2Ω(n) to compute on average, and the Strong Perebor Hypothesis for µ states that µ requires
time 2n−o(n) to compute on average. Note that the Strong Perebor Hypothesis for µ essentially
states that brute-force search is close to optimal for computing µ on average. While the Perebor
Hypotheses refer by default to hardness against uniform algorithms, we can define non-uniform
analogues in a natural way.

We suggest that the Perebor Hypotheses might find similar applicability to ETH and SETH
in the theory of fine-grained complexity.

In this work, we tighten the connection between weak one-way functions (for which it is hard
to invert a random instance w.p. 1−1/poly(n)) and the hardness of Kt complexity. We managed
to show a very tight result:

5

Theorem 1.9 (Informal). For every constant α > 0, there exists a weak one-way function with
hardness 2(1−o(1))αn if and only if Kt complexity is hard on average for (non-uniform) algorithms
of size 2(1−o(1))αn.

Note that the two α’s in the exponent (1 − o(1))αn are the same. That is, we essentially
construct the best (weak) one-way functions from the hardness of Kt complexity. In particular,
almost maximally hard one-way functions exist if the (non-uniform version of the) Strong Perebor
Hypothesis holds for Kt.

We also attempted to strengthen the relationship between one-way functions in NC0 and the
hardness of KT complexity. Our result is that exponentially-hard weak one-way functions in
NC0 imply exponential hardness of KT.

Theorem 1.10 (Informal). If there is a weak one-way function in NC0 with hardness 2Ω(n),
then KT requires 2Ω(n) size to solve on average.

In other words, the existence of an exponentially hard weak one-way function in NC0 implies
the non-uniform version of the Weak Perebor Hypothesis for KT.

1.3 Related Work

There have been several previous works connecting meta-complexity to cryptography. Impagli-
azzo and Levin [IL90] show that the existence of one-way functions is equivalent to the hardness
of a certain learning task related to time-bounded Kolmogorov complexity. Oliveira and San-
thanam [OS17] show a dichotomy between learnability and cryptographic pseudorandomness in
the non-uniform setting: there is a non-trivial non-uniform learner for polynomial-size Boolean
circuits iff there is no exponentially secure distribution on functions computable by polynomial-
size circuits. Santhanam [San20] proves an equivalence between the existence of one-way func-
tions and the non-existence of natural proofs under a certain universality assumption about
succinct pseudorandom distributions. We note here that the non-existence of natural proofs is
equivalent to the zero-error average-case hardness of MCSP.

None of the above results gives an unconditional equivalence between the average-case hard-
ness of a natural decision problem and the existence of one-way functions. This was finally
achieved by Liu and Pass [LP20], who showed that the weak hardness of Kpoly over the uniform
distribution is equivalent to the existence of one-way functions. [LP20] leaves open whether there
are similar connections between one-way functions and the hardness of other meta-complexity
problems such as KT and MCSP over the uniform distribution. In this work, we show such
connections to parallel cryptography, i.e., to the existence of one-way functions in NC1, which
by [AIK06] is equivalent to the existence of one-way functions in NC0.

There is an extensive literature on parallel cryptography, beginning with the work of [AIK06].
We refer to [App14] and [App16] for further information.

Our work also relates to average-case meta-complexity, which was first studied explicitly
in [HS17]. [HS17] essentially observe that the identity reduction trivially reduces µ to µ′ over
the uniform distribution in a zero-error average-case sense, where µ and µ′ are any two meta-
complexity measures such that µ′(x) ≤ µ(x) ≤ |x|+O(log(|x|)) for all x. In this work (particu-
larly Sections 4.3 and 4.4), we give several non-trivial examples of zero-error and bounded-error
average-case reductions between meta-complexity problems.

Concurrent works of [LP21] and [ACM+21]. We now discuss the relationship of our work
with the concurrent works of [LP21] and [ACM+21], which overlap in some respects with ours.

Liu and Pass [LP21] show an equivalence between the bounded-error weak average-case
hardness of Kt over the uniform distribution and the existence of one-way functions - this is
essentially the same as our Theorem 1.4. They also show that the zero-error average-case
hardness of Kt over the uniform distribution is equivalent to EXP 6= BPP. In contrast, our

6

Theorem 1.5 gives an equivalence between the bounded-error average-case hardness of Kt over
the uniform distribution in a different parametric regime and the worst-case hardness of EXP,
where the hardness in each case is with respect to non-uniform adversaries. The somewhat
surprising message of both sets of results is the same: a minor variation on an average-case
complexity assumption that is equivalent to the worst-case hardness of EXP implies the existence
of one-way functions.

[LP21] also give characterizations of parallel cryptography but they do this using space-
bounded Kolmogorov complexity and the conditional version thereof. Their work does not
contain any results relating to the hardness of KT or MCSP.

Allender, Cheraghchi, Myrisiotis, Tirumala, and Volkovich [ACM+21] relate the average-
case hardness of the conditional version of KT complexity over the uniform distribution to the
existence of one-way functions. They show that if the conditional version is hard on a polynomial
fraction of instances, then one-way functions exist. They also give a weak converse: if one-way
functions exist, then the conditional version of KT is hard on an exponential fraction of instances.
In contrast, we characterize parallel cryptography by the average-case hardness of KT.

1.4 Organization

Section 2 presents some of our main ideas and techniques. Section 3 provides basic definitions
and preliminaries.

The equivalence between the existence of NC0-computable one-way functions and the hard-
ness of KT complexity is proved in Section 4. We prove our robustness results in Section 4.3
and 4.4. In Section 5, we present the tight connection between the hardness of Kt complexity
and maximally hard one-way functions. To motivate future study, we put forward a few Perebor
Hypotheses in Section 5.5, which are closely related to the existence of maximally-hard one-way
functions. The results related to MCSP are proved in Section 6, and the results related to MKtP
are proved in Section 7. Finally, we leave a few open questions in Section 8.

2 Intuitions and Techniques

For strings s1, s2, . . . , sn, we use s1 ◦ s2 ◦ · · · ◦ sn to denote their concatenation.

2.1 Parallel Cryptography and the Hardness of KT

Our proof of Theorem 1.1 builds on [LP20]. However, it turns out that we need new ideas for
both directions of the equivalence.

2.1.1 Hardness of KT from One-Way Functions in NC0

We first review how Liu and Pass [LP20] proved that one-way functions imply average-case
hardness of Kt.

Any cryptographically-secure PRGG implies zero-error hardness of Kt [RR97,KC00,ABK+06].
Roughly speaking, the outputs of G have “non-trivial” Kt complexity, but random strings are
likely to have “trivial” Kt complexity.8 If there is a polynomial-time (zero-error) heuristic for
Kt, this heuristic will recognize most random strings as “trivial”, but recognize every output of
G as “non-trivial”. Thus, we can use it as a distinguisher for G, contradicting the security of G.

It is crucial in the above argument that our heuristic does not make mistakes. If the outputs
of G are “sparse” and our heuristic has two-sided error, our heuristic could also recognize the
outputs of G as “non-trivial”. (Here, a PRG G with output length n is sparse if the number

8Here, the Kt (or KT) complexity of a length-n string is “non-trivial”, if it is at most n − Ω(logn). Most
length-n strings have complexity at least n−Ω(logn); every length-n string has complexity at most n+O(logn)
(justifying the word “trivial”).

7

of possible outputs of G is significantly smaller than 2n.) In this case, the heuristic may still
be correct on most length-n strings, but fail to distinguish the outputs of G from true random
strings.

Why not make G dense? This is the core idea of Liu and Pass. In particular, from an
arbitrary one-way function f , they constructed a dense PRG G,9 and used G to argue that Kt

is bounded-error average-case hard. Roughly speaking, if the outputs of G occupy a 1/poly(n)
fraction of {0, 1}n, then any bounded-error heuristic for Kt with error probability 1/nω(1) is a
distinguisher for G. It follows from the security of G that Kt is bounded-error hard on average.

What about KT? Recall that the KT complexity of a string x is the minimum of |d|+ t over
programs d and integers t such that x can be generated implicitly from d in at most t steps,
i.e., the universal machine computes the i-th bit xi of x correctly in at most t steps with oracle
access to d. When we use the above framework to analyze the hardness of KT complexity, there
is a problem: the outputs of G might have “trivial” KT complexity.

Let t be the running time of G (which is a large polynomial). Let out := G(seed) be any
output of G, we can see that Kt(out) is indeed non-trivial, as we can describe seed and the
code of G with |seed|+O(1) < n bits. Given this description, we can “decompress” out in t(n)
steps by computing G on seed. However, KT(out) is the sum of the description length and
the running time, which is |seed| + O(log n) + t(n) � n. This is even worse than the trivial
description for out whose complexity is n+O(log n).

One naïve attempt is to pad both the seed and the output by a random string of length
poly(t(n)), so that G becomes sublinear -time computable. That is, G′(seed ◦ r) = out ◦ r where
r is a long string. Still, we only have KT(out ◦ r) ≤ |seed| + |r| + t(n), but the trivial upper
bound for KT(out◦r) is only |out|+ |r|. If t(n) is larger than the stretch of G (i.e., |out|−|seed|),
then we do not have non-trivial KT-complexity upper bounds on outputs of G.

This problem is inherent as we need G to be dense. Suppose that the number of possible
outputs of G is 2n/poly(n), then there must be an output of G whose Kolmogorov complexity
is at least n − O(log n). That is, the seed length of G has to be n − O(log n), even if we place
no restrictions on the complexity of G! Now, if we want the outputs of G to have non-trivial
KT complexity, we only have O(log n) time to compute each output bit of G. Therefore, G is a
PRG in constant parallel time.10

We discovered that the (bounded-error) average-case complexity of KT is related to cryp-
tography in NC0. Now it is easy to see that NC0-computable dense PRGs imply bounded-error
hardness of KT complexity. We can construct such a PRG from NC0-computable one-way func-
tions, as follows.11 We first use [LP20] to construct a dense PRG G. This PRG is not necessarily
in NC0, as [LP20] needs some more complex primitives (e.g. extractors). Nevertheless, we can
apply the randomized encodings in [AIK06] to compile G into a PRG in NC0.

2.1.2 One-Way Functions in NC0 from Hardness of KT

It is straightforward to construct a one-way function from hardness of KT, using techniques of
[LP20, Section 4]. Roughly speaking, the one-way function f receives two inputs d, t, where d
is the description of a machine, and t is a time bound. Let x be the string such that for each
i ∈ [n], xi is equal to the output bit of d(i) for t steps. We define f(d, t) := (|d| + t, x). An
inverter, on input (`, x), is required to find a description of x with complexity at most `, thus it

9The input distribution of their PRG is not the uniform distribution, which is different from standard PRGs;
see Definition 3.13. We ignore this difference in the informal exposition.

10Due to low-level issues in the computational models, the “constant time” in [App14] actually corresponds to
O(logn) time in this paper. See Section 3.1 for details.

11Note that this is different from [HILL99,HRV13]. The PRG we construct is dense, but its input distribution
is not uniform. In contrast, [HILL99,HRV13] constructs a PRG (on uniformly random inputs) from an arbitrary
one-way function, but the PRG is not necessarily dense.

8

needs to solve MKTP. (All one-way functions in this section are weak, meaning they cannot be
inverted efficiently on a 1− 1/poly(n) fraction of inputs.)

There is one problem: f is not in NC0. By [AIK06], it suffices to construct a one-way function
in ⊕L, but f is also not in ⊕L (unless ⊕L = P).

Our idea is to only consider typical inputs, and throw away the atypical ones. In particular,
for most strings x, the values of t in the optimal description of KT(x) = |d|+ t are small. (We
have t = O(log n) for every string x with Kolmogorov complexity at least n−O(log n).) We call
an input typical if its value of t is at most O(log n). If KT is (bounded-error) hard on average,
then it is also hard on average conditioned on the input being typical.

Therefore, we place the restriction that t ≤ c log n in our one-way function f , where c is a
constant depending on the hardness of KT. We can still base the hardness of f on the hardness
of KT. More importantly, f is computable in space complexity O(c log n), and we obtain a
one-way function in NC0 by [AIK06].

2.2 Applebaum-Ishai-Kushilevitz as a Reduction

For any “reasonable” circuit class C , we can use [LP20] to show that the existence of one-way
functions computable in C is equivalent to the hardness of C -Kt. (The precise definition of C -Kt

is beyond the scope of this paper, but NC1-Kt and L-Kt are defined in Definition 3.4.) Now,
let us review the main results of [AIK06]: ⊕L-computable one-way functions exist if and only if
NC0-computable one-way functions exist. In other words, ⊕L-Kt is hard on average if and only
if NC0-Kt is hard on average!12

It is natural to ask whether there is a reduction between ⊕L-Kt and NC0-Kt. It turns out
that the answer is yes! In this section, we describe this reduction without using the language
of one-way functions. This reduction is randomized, reduces any string with non-trivial ⊕L-Kt

complexity to a string with non-trivial NC0-Kt complexity, and reduces a random string to
a random string. Although it may not be a worst-case reduction, it establishes non-trivial
equivalence results between average-case complexities of ⊕L-Kt and NC0-Kt.

The property that enables our reduction is resamplability [FSUV13]. For now, think of “easy”
as being NC0-computable and “hard” as otherwise. A hard function f is resamplable, if given
an input x and random coins r, there is an easy procedure (the “resampler”) that produces a
uniform random input of f whose answer is the same as x.

Example 2.1. The parity function PARITY(x) = x1⊕x2⊕· · ·⊕xn is hard (i.e., not computable
in NC0). Given n input bits x1, x2, . . . , xn and n−1 random bits r1, r2, . . . , rn−1, we can produce
a uniform random input whose answer is the same as x, as follows:

(x1 ⊕ r1, x2 ⊕ r1 ⊕ r2, x3 ⊕ r2 ⊕ r3, x4 ⊕ r3 ⊕ r4, . . . , xn−1 ⊕ rn−2 ⊕ rn−1, xn ⊕ rn−1).

Note that the resampler is easy (i.e., in NC0), thus parity is resamplable.

The reduction. We will use a ⊕L-complete problem named DCMD that is resamplable (see
Section 3.7). Our reduction is very simple: given an input x ∈ {0, 1}n, we choose a large enough
N = poly(n), and replace every bit xi by a random length-N instance of DCMD whose answer
is xi. Our reduction outputs the concatenation of these n instances.

Since DCMD is balanced (i.e., the number of 0-instances and 1-instances are the same), our
reduction maps a random instance to a random instance.

Now assume that ⊕L-Kt(x) = n−γ is non-trivial, and d is a ⊕L machine of description length
n− γ that “computes” x. Since DCMD is ⊕L-complete (under NC0-reductions), for each i, the
computation of xi can be reduced to a DCMD-instance si of length N such that DCMD(si) = xi.
Moreover, given the description d, we can produce s1 ◦ s2 ◦ · · · ◦ sn in NC0.

12NC0 may not be reasonable in the above sense, but the reduction we present in this section is correct.

9

We use the resamplability of DCMD. The resampler for DCMD only uses N −1 random bits
(which is optimal). Consider the following NC0 circuit. It receives d and r1, r2, . . . , rn as inputs,
where each ri is a random string of length N −1. It computes s1, s2, . . . , sn from d, and for each
i, feeds si and ri to the resampler to obtain a uniform random DCMD instance whose answer is
the same as si. When ri are random bits, the output distribution of this NC0 circuit is identical
to the distribution of NC0-Kt instances we reduced x to. Moreover, the NC0-Kt complexity of
every string in this distribution is at most (n− γ) + (N − 1)n+O(log n) = Nn− γ +O(log n),
which is non-trivial.13

As a consequence, we also obtain an (average-case) reduction from ⊕L-Kt to KT.

2.3 Tighter Connections

To obtain a tight relationship between hardness of Kt and hardness of weak one-way functions,
we optimize the construction from one-way functions to PRGs in [LP20]. Suppose that given
a one-way function f with input length n, we could construct a PRG with output length m′.
Then solving Kt on length m′ is (roughly) as hard as inverting f on length n. Therefore, we
need m′ to be as close to n as possible. As the PRG is dense, its output length m′ is close to its
input length m, thus we only need m to be close to n.

It turns out that the input of the PRG consists of the input of f and the seeds of a few
pseudorandom objects.

• One object is an extractor Ext(X , r) [NZ93, Nis96], which given a “somewhat random”
distribution X and a truly random seed r, outputs a distribution that is statistically close
to the uniform random distribution.

We use the near-optimal explicit extractors with O(log2 n) seed length [GUV09].

• Another object is a hardcore function HC(x, r) [GL89]. Let f be a one-way function, x
be a random input, and r be a random seed. Given f(x) ◦ r, it should be infeasible to
distinguish between HC(x, r) and a uniformly random string. Note that HC(x, r) needs to
have multiple output bits; in contrast, a hardcore predicate (also defined in [GL89]) only
has one output bit.

We use the observation, implicit in [Tre01, TZ04], that any seed-extending “black-box”
pseudorandom generator is a good hardcore function. We use the direct product generator
[Hir20b,Hir20a] as our hardcore function, which has O(log2 n) seed length, and very small
“advice complexity.” The advice complexity turns out to be related to the overhead of our
reduction.

There is another problem: [LP20] needs a strong one-way function to start with, but we
only have a weak one-way function. (A strong one-way function is infeasible to invert on almost
every input, but a weak one-way function is only infeasible to invert on a non-trivial fraction
of inputs.) Yao [Yao82] showed how to “amplify” a weak one-way function to a strong one-
way function, but the overhead of this procedure is too large. In particular, Yao’s hardness
amplification does not preserve exponential hardness, and it is open whether exponentially-hard
weak one-way functions imply exponentially-hard strong one-way functions.

Our idea is to use Impagliazzo’s hardcore lemma [Imp95a] instead. The hardcore lemma states
that for any weak one-way function f , there is a “hardcore” distribution on which f becomes a
strong one-way function. We (and [LP20]; see Footnote 9) allow the input distribution of our
PRG to be arbitrary, as long as the output distribution is pseudorandom. Such “PRGs” still
imply hardness of Kt. The hardcore lemma has small complexity overhead, which allows us to
prove tight results.

13The additive factor here is O(logn) since in our computational model, each memory access requires Θ(logn)
time. See Section 3.1 for details.

10

Now, from a weak one-way function of input length n, we can construct a PRG with output
length n+O(log2 n). This construction allows us to transform the hardness of one-way function
to the hardness of Kt at almost no cost.

Tighter connections between MKTP and one-way functions in NC0. Here, the problem
becomes to construct NC0-computable PRGs from NC0-computable one-way functions. We use
a construction of universal hash functions in NC0 with linear seed length by Applebaum [App17].
Such hash functions are both good extractors (by the leftover hash lemma) and good hardcore
functions (proved in [BIO14,HMS04]). As the hash functions require linear seed length, from an
NC0-computable one-way function with input length n, we obtain an NC0-computable PRG with
output length O(n). It follows that if the one-way function is hard against 2Ω(n)-size adversaries,
then MKTP is also hard against 2Ω(n)-size algorithms.

2.4 MCSP-Related Results

One-way functions from hardness of MCSP. We use the straightforward construction:
our one-way function receives a circuit C, and outputs |C| and tt(C), where |C| is the size of
C and tt(C) is the truth table of C. The inverter, on input (s, tt), is required to find a size-s
circuit whose truth table is tt, thus needs to solve MCSP.

One problem with this construction is that if we sample a uniform circuit (according to some
distribution), the induced distribution over truth tables may not be uniform. In the case of
Kt (and KT), we can show that for every string of length n, its optimal description is sampled
(in the one-way function experiment) w.p. at least 2−n/poly(n), therefore we can “transfer” the
hardness of Kt over a random truth table to the hardness of inverting the one-way function over
a random description.

Using the best bounds on the maximum circuit complexity of n-bit Boolean functions [FM05],
we can still prove that for every truth table of length N , its optimal circuit is sampled w.p. at
least 2−N/2η, where η < o(N). This means that starting from exponential hardness of MCSP,
we can still obtain non-trivial one-way functions.

We conjecture that hardness of MCSP actually implies one-way functions in NC0; see Re-
mark 6.9 for details.

Hardness of MCSP from one-way functions in NC0. To argue about the hardness of
MCSP, we need a PRG whose outputs have non-trivial circuit complexity. As before, we use
the hash functions in [App17] to construct an exponentially-hard PRG. We would like to argue
that all outputs of the PRG have non-trivial circuit complexity. In order to do this, we use the
mass production theorem of Uhlig [Uhl74,Uhl84] to generate a circuit of size (1+o(1))2n/n that
evaluates a given function on multiple inputs. (If our PRG has locality d, i.e., each output bit
depends on d input bits, then we need a size-(1 + o(1))2n/n circuit that evaluates d inputs in
parallel.) However, Uhlig’s theorem only gives us non-trivial circuit size if our PRG has linear
stretch, i.e., stretch εn for some constant ε > 0. This is why we need the hardness of the one-way
function in our assumption to be at least poly(2εn).

2.5 Using Hardness of Kt to Capture Cryptographic and Complexity-Theoretic
Pseudorandomness

To show Theorem 1.4, we use ideas similar to those in Section 2.1.2. Suppose we try to define a
one-way function by computing the string corresponding to an optimal description with respect
to Kt complexity. An obvious issue is that such strings might require exponential time to
compute, while the one-way function needs to be evaluated efficiently. However, we observe
that typical inputs only require polynomial time to generate from their optimal descriptions.
Here, the typical inputs are those with Kolmogorov complexity n − O(log n). In their optimal

11

descriptions Kt(x) = |d|+ log t, we have t ≤ poly(n). Our one-way function receives two inputs
d, t, where d is the description of a machine, and t ≤ poly(n) is a time bound. We simply
simulate the machine d for t steps and output what it outputs. The proof that this gives a
one-way function is closely analogous to the proof of the reverse implication in Theorem 1.1.
The proof that one-way functions imply the average-case hardness of Kt complexity mimics the
proof of the corresponding implication in Theorem 1.2, since the outputs of a cryptographic
PRG with stretch λ log n have non-trivial Kt complexity when λ is large enough compared to
the time required to compute the PRG.

To show Theorem 1.5, we use the Nisan-Wigderson generator [NW94] in a way similar to how
it is used by [ABK+06] to show that Kt is complete for exponential time under polynomial-size
reductions. The interesting direction is to show that the Nisan-Wigderson generator implies the
average-case hardness of Kt for the range of parameters in the statement of Theorem 1.5. We
use the fact that the Nisan-Wigderson generator can be made seed-extending without loss of
generality. We truncate the output of the generator so that the stretch is (1 + ε)n for some
small ε > 0 — this implies that the outputs of the generator on all seeds have non-trivial Kt
complexity. Since the generator is seed-extending, the output has high entropy, hence a strong
enough average-case algorithm for Kt can distinguish random strings (which have trivial Kt
complexity) from the outputs of the PRG. Here we take advantage of the stretch being small
rather than large: this gives us better parameters for our average-case hardness result.

3 Preliminaries

We use Un to denote the uniform distribution over length-n binary strings. For a distribution D,
we use x← D to denote that x is a random variable drawn from D. A function negl : N→ [0, 1]
is negligible if for every constant c, negl(n) ≤ 1/nc for large enough integers n.

Let D : {0, 1}n → {0, 1} be a function, X and Y be two random variables over {0, 1}n. For
ε > 0, we say D ε-distinguishes X from Y if

|Pr[D(X) = 1]− Pr[D(Y) = 1]| ≥ ε.

Otherwise we say X and Y are ε-indistinguishable by D.
We often consider ensemble of functions in this paper. For example, a function f : {0, 1}? to

{0, 1}? can be interpreted as an ensemble f = {fn : {0, 1}n → {0, 1}?}, and each fn is the n-th
slice of f . Similarly, we also consider ensemble of distributions D = {Dn} as input distributions
for a function f , where each Dn is a distribution over {0, 1}n.

3.1 Computational Model and Uniformity

We need a computational model with random access to inputs. We consider a Turing machine
that accesses the length-n input x via an “address” tape and a length-O(1) “answer” tape.
Whenever the machine enters a particular “address” state, let i be the binary number written in
the address tape. After one step, the content of the answer tape becomes xi, and the address
tape is cleared. (In other words, the Turing machine treats x as the truth table of an oracle.)

We also assume that the address tape has length dlog ne. In particular, there are two special
markers at the address tape, and there are dlog ne cells strictly between them. The machine can
only modify this portion of dlog ne cells; the rest of the address tape is read-only. For sub-linear
time Turing machines, this can be viewed as a mechanism to provide information about n (i.e.,
the length of x; up to a factor of 2). We also require that whenever the machine enters the
“address” state, all the dlog ne cells between the two markers are non-empty, so we can interpret
the concatenation of these cells as a (binary) address.

Every bit operation takes one step. Therefore, it takes Θ(log n) time to write down an
address. Note that we clear the address tape after each access, which means when we access

12

another input bit, we have to spend another Θ(log n) time to write down the address from
scratch. This definition ensures that in O(log n) time we can only access a constant number of
input bits, so DLOGTIME becomes a natural uniform analog of NC0.

In addition to the address tape and the answer tape, we also have a constant number of work
tapes. In the case that our Turing machine computes a multi-output function f , we also provide
an input tape that contains an index i (note that our real input is the “oracle” x), which means
our Turing machine outputs the i-th bit of f(x). We use Mx(i) to denote the output of the
machine M on input i, given oracle access to the string x. To measure the space complexity of
our Turing machine, we assume the input tape is read-only and we only count the total length
of work tapes.

Definition 3.1. Let c > 0 be a constant, p(·) be a polynomial, and F = {Fn : {0, 1}n →
{0, 1}p(n)} be an ensemble of functions. We say F ∈ TIME[c log n] if there is a Turing machine
M with running time c log n such that, for every x ∈ {0, 1}n and 1 ≤ i ≤ p(n), Mx(n, i) outputs
the i-th bit of Fn(x).

Let DLOGTIME =
⋃
c≥1 TIME[c log n].

Definition 3.2. Let c > 0 be a constant, p(·) be a polynomial, and F = {Fn : {0, 1}n →
{0, 1}p(n)} be an ensemble of functions.

We say F is in ATIME[c log n], if there is an alternating Turing machine M of O(log n)
running time such that, for every x ∈ {0, 1}n, 1 ≤ i ≤ p(n), and b ∈ {0, 1, ?}, Mx(n, i, b) = 1 if
the i-th bit of Fn(x) is b.

We say F is in SPACE[c log n], if there is a Turing machine M of space complexity c log n
that satisfies the above requirement. We say F is in uniform ⊕SPACE[c log n], if there is a parity
Turing machine M of space complexity c log n that satisfies the above requirement.

Let ALOGTIME = NC1 =
⋃
c≥1 ATIME[c log n]. (That is, in this paper, we use ALOGTIME

and NC1 interchangeably.) We also define L =
⋃
c≥1 SPACE[c log n] and⊕L =

⋃
c≥1⊕SPACE[c log n].

For the readers not familiar with parity Turing machines, we provide an alternative definition
of ⊕L by its complete problems; see Section 3.7.

3.2 Resource-Bounded Kolmogorov Complexity

We define some variants of resource-bounded Kolmogorov complexity. In particular, we define
the plain Kolmogorov complexity K, the KT complexity [All01], the time-bounded Kolmogorov
complexity Kt [Ko91], and Levin’s Kt complexity [Lev84]. Then we define the NC1- and L-
versions of Kt.

Definition 3.3. Let U be a Turing machine, x be a string. Artificially let x|x|+1 = ?.

• KU (x) is the minimum |d| over the description d ∈ {0, 1}?, such that for every 1 ≤ i ≤
|x|+ 1 and b ∈ {0, 1, ?}, Ud(i, b) accepts if and only if xi = b.

• KTU (x) is the minimum value of |d| + t over the pairs (d, t), such that for every 1 ≤ i ≤
|x|+ 1 and b ∈ {0, 1, ?}, Ud(i, b) accepts in t steps if and only if xi = b.

• KtU (x) is the minimum value of |d| + log t over the pairs (d, t), such that for every 1 ≤
i ≤ |x|+ 1 and b ∈ {0, 1, ?}, Ud(i, b) accepts in t steps if and only if xi = b.

• Let t : N→ N be a resource bound. Kt
U (x) is the minimum value of |d| such that for every

1 ≤ i ≤ |x|+ 1 and b ∈ {0, 1, ?}, Ud(i, b) accepts in t(|x|) steps if and only if xi = b.

Definition 3.4. Let Ua be an alternating Turing machine, and Us be a (space-bounded) Turing
machine. Let x be a string and artificially let x|x|+1 = ?.

13

• Let t : N→ N be a resource bound. NC1-Kt
Ua

(x) is the minimum value of |d| such that for
every 1 ≤ i ≤ |x|+ 1 and b ∈ {0, 1, ?}, Uda (i, b) accepts in alternating time log t(|x|) if and
only if xi = b.

• Let t : N → N be a resource bound. L-Kt
Us

(x) is the minimum value of |d| such that for
every 1 ≤ i ≤ |x| + 1 and b ∈ {0, 1, ?}, Uds (i, b) accepts in space log t(|x|) if and only if
xi = b.

Fix the number of tapes k ≥ 2, then there is a universal k-tape Turing machine U that simu-
lates every k-tape Turing machine with only a constant factor blow-up in both time complexity
and space complexity [Für82]. Our results hold for this efficient universal Turing machine,
therefore in what follows we drop the subscript U and simply write KT, Kt, etc.

We also define the circuit complexity of a truth table:

Definition 3.5. Let N = 2n, tt ∈ {0, 1}N be a truth table that corresponds to a function
f : {0, 1}n → {0, 1}. We define Size(tt) as the size (number of gates) of the smallest circuit that
computes f .

Given a complexity measure µ, the Minimum µ Problem is the language {(x, 1k) : µ(x) ≤ k}.
In particular:

Definition 3.6. We define the following problems:

(Minimum KT Problem) MKTP := {(x, 1k) : KT(x) ≤ k}.

(Minimum Time-Bounded Kolmogorov Complexity Problem) MINKT := {(x, 1t, 1s) : Kt(x) ≤
s}.

(Minimum Circuit Size Problem) MCSP := {(tt, 1s) : Size(tt) ≤ s}.

There are natural search versions for the problems above. The search version for MKTP is
to find an optimal description d for x, such that x can be generated from d implicitly in time at
most k − |d|. The search version for MINKT is to find an optimal description d of size at most
s for x such that x can be generated from d in time at most t. The search version for MCSP is
to find a circuit of size at most s for the Boolean function whose truth table is tt.

We need a “trivial” upper bound on these complexity measures. We only state the upper
bound for KT complexity.

Fact 3.7 ([ABK+06, Proposition 13]). There is an absolute constant c′ > 0 such that KT(x) ≤
|x|+ c′ log |x| for every string x.

We need the fact that most strings have large Kolmogorov complexity.

Fact 3.8. Let n be an integer, s ≤ n− 1, then

Pr
x←Un

[K(x) ≤ s] ≤ 2−(n−s−1).

Proof Sketch. The number of strings x such that K(x) ≤ s is at most
∑s

i=0 2i = 2s+1 − 1.

3.3 Basic Information Theory

We also need some basic concepts in information theory. The Shannon entropy of a random
variable X, denoted as H(X), is defined as

H(X) := E
x←X

[− log Pr[X = x]].

14

The min-entropy of a random variable X, denoted as H∞(X), is the largest real number k
such that for every x in the support of X,

Pr[X = x] ≤ 2−k.

Let X,Y be two random variables defined over a set S. The statistical distance between X
and Y , denoted as SD(X,Y), is defined as

SD(X,Y) :=
1

2

∑
s∈S
|Pr[X = s]− Pr[Y = s]|.

An equivalent definition is as follows: SD(X,Y) is the maximum value of ε such that there is a
(possibly unbounded) distinguisher D that ε-distinguishes X from Y :

SD(X,Y) := max
D:S→{0,1}

|Pr[D(X) = 1]− Pr[D(Y) = 1]|.

3.4 Bounded-Error Average-Case Hardness

We define the (bounded-error) average-case hardness of a function f . (Think of f = KT or Kt.)
In the cryptographic setting, we require that any algorithm with an arbitrary polynomial run
time fails to solve a fixed-polynomial fraction of inputs.

Definition 3.9. Let f : {0, 1}? → N be a function.

• We say that f is (bounded-error) hard on average if the following is true. There is a
constant c > 0 such that for every PPT14 machine A and every large enough input length
n,

Pr
x←Un

[A(x) = f(x)] ≤ 1− 1

nc
.

• Let d be a constant. We say that f is (bounded-error) hard on average to (d log n)-
approximate if the following is true. There is a constant c > 0 such that for every PPT
machine A and every large enough input length n,

Pr
x←Un

[f(x) ≤ A(x) ≤ f(x) + d log n] ≤ 1− 1

nc
.

3.5 One-Way Functions

We recall the standard definition of one-way functions and weak one-way functions.

Definition 3.10 (One-Way Functions). Let f : {0, 1}? → {0, 1}? be a polynomial-time com-
putable function. We say f is a one-way function if for every PPT adversary A, it inverts a
random output of f with negligible probability. That is, for every n ∈ N,

Pr
x←Un

[A(f(x)) ∈ f−1(f(x))] ≤ negl(n).

One-way functions are also called strong one-way functions, as no PPT adversary could
invert it non-trivially. We also consider weak one-way functions, where no PPT adversary could
invert it on a 1− negl(n) fraction of inputs.

Definition 3.11 (Weak One-Way Functions). Let f : {0, 1}? → {0, 1}? be a polynomial-time
computable function. We say f is a weak one-way function if there is a polynomial p(·) such
that the following holds. For every PPT adversary A, it inverts a random output of f with
probability at most 1− 1/p(n). That is, for every n ∈ N,

Pr
x←Un

[A(f(x)) ∈ f−1(f(x))] ≤ 1− 1

p(n)
.

14PPT stands for probabilistic polynomial-time.

15

By a standard padding trick (see e.g., [Gol01]), we can assume that (weak or strong) one-way
functions are length-preserving, i.e. for every input x ∈ {0, 1}?, |f(x)| = |x|. In this paper, we
will implicitly assume that every one-way function is length-preserving.

Yao showed that every weak one-way function can be amplified into a strong one-way func-
tion.

Theorem 3.12 ([Yao82,Gol01]). If there exists a weak one-way function, then there exists a
strong one-way function.

In particular, let f be a weak one-way function. Then there is a polynomial k(·), such that
the following function fk is a strong one-way function.

fk(x1, x2, . . . , xk(n)) = f(x1) ◦ f(x2) ◦ · · · ◦ f(xk(n)),

where x1, x2, . . . , xk(n) are length-n inputs.

3.6 Conditionally Secure Entropy-Preserving PRGs

Here we define conditionally secure entropy-preserving PRGs (condEP-PRGs), introduced in
[LP20].

A pseudorandom generator, according to the standard definition, is a polynomial-time com-
putable function G : {0, 1}n → {0, 1}m (where m > n), such that G(Un) and Um are compu-
tationally indistinguishable. Compared with standard PRGs, a condEP-PRG G : {0, 1}n →
{0, 1}m has three differences:

• The input distribution of G is not Un. Instead, it is the uniform distribution over a subset
of inputs En, called the condition. (We will use En to denote both the subset and the
uniform distribution over this subset.)

• G is entropy-preserving, meaning that G(En) has large (information-theoretic) entropy.
(Note that log |En| ≤ n ≤ m. As a consequence, log |En| cannot be too small compared to
m.)

• Finally, G only (1/p(n))-fools PPT adversaries for a fixed polynomial p(·). For comparison,
a standard PRG is required to (1/p(n))-fool PPT adversaries for every polynomial p(·).
This difference is mostly technical.

Definition 3.13 (Conditionally Secure Entropy-Preserving PRG, abbr. condEP-PRG, [LP20]).
Let γ > 0 be a constant, and p(·) be a polynomial. Consider a polynomial-time computable
ensemble of functions G = {Gn : {0, 1}n → {0, 1}n+γ logn}. We say G is a condEP-PRG, if there
is a family of subsets E = {En ⊆ {0, 1}n} (called the “events” or “conditions”), such that the
following are true.

(Pseudorandomness) Gn(En) is (1/p(n))-indistinguishable from Un+γ logn by PPT adversaries.
That is, for every PPT A and every integer n,∣∣∣∣ Pr

x←Un+γ logn

[A(x) = 1]− Pr
x←Gn(En)

[A(x) = 1]

∣∣∣∣ < 1/p(n).

(Entropy-Preservation) There is a constant d such that for every large enough n, H(Gn(En)) ≥
n− d log n.

We say the stretch of G is γ log n, and the security of G is 1/p(n).

Theorem 3.14 ([LP20]). There is a function EP-PRG computable in ALOGTIME, such that
the following holds. For any one-way function f : {0, 1}? → {0, 1}? and any constant γ > 0,
let G(x, z) = EP-PRG(γ, x, f(x), z), then G is a condEP-PRG with stretch γ log n and security
1/nγ.

16

Remark 3.15. It is important that the machine EP-PRG is fixed and does not depend on the
constant γ. Suppose there is an absolute constant c > 0 such that for every γ > 0, there is a
PRG Gγ that runs in TIME[c log n] and stretches n bits into n + γ log n bits. The outputs of
Gγ will always have KT complexity at most n+ c log n+ O(1) < n+ γ log n, hence a heuristic
for MKTP can always distinguish the outputs of Gγ from truly random strings. It follows that
we can use such Gγ to argue about the hardness of MKTP. On the other hand, if the time
complexity of Gγ depends on γ, it does not necessarily imply any hardness of MKTP.

3.7 Complete Problems for ⊕L

We introduce the ⊕L-complete problems, called Connected Matrix Determinant (CMD) and
Decomposed Connected Matrix Determinant (DCMD), that will be crucial to us. Originally
motivated by secure multi-party computation [IK00, IK02], these problems have found surpris-
ingly many applications in cryptography and complexity theory [AIK06, GGH+07, FSUV13,
HS17,CR20].

Let n be any integer, define `CMD(n) := n(n+ 1)/2 and `DCMD(n) := n3(n+ 1)/2.

Definition 3.16 (See e.g., [CR20]). An instance of CMD is an n× n matrix over GF(2) where
the main diagonal and above may contain either 0 or 1, the second diagonal (i.e., the one below
the main diagonal) contains 1, and other entries are 0. In other words, the matrix is of the
following form (where ∗ represents any element in GF(2)):

∗ ∗ ∗ · · · ∗ ∗
1 ∗ ∗ · · · ∗ ∗
0 1 ∗ · · · ∗ ∗
0 0 1 · · · ∗ ∗
...

...
...

. . .
...

...
0 0 0 · · · 1 ∗


.

The instance is an (n(n+ 1)/2)-bit string specifying elements on and above the main diagonal.
We define x ∈ CMD if and only if the determinant (over GF(2)) of the matrix corresponding to
x is 1.

An instance of DCMD is a string of length n3(n + 1)/2. For an input x, DCMD(x) is
computed as follows: we partition x into blocks of length n2, let yi(1 ≤ i ≤ n(n+ 1)/2) be the
parity of the i-th block, and define DCMD(x) := CMD(y1 ◦ y2 ◦ · · · ◦ yn(n+1)/2).

The precise definitions of CMD and DCMD are not important here, but we need the following
important facts about them.

Theorem 3.17 ([AIK06]). Let n be an integer. There is a function PCMD : {0, 1}`CMD(n) ×
{0, 1}`DCMD(n)−1 → {0, 1}`DCMD(n), computable in DLOGTIME, such that the following hold. For
any input x ∈ {0, 1}`CMD(n), the distribution of PCMD(x,U`DCMD(n)−1) is equal to the uniform
distribution over {y : y ∈ {0, 1}`DCMD(n) : DCMD(y) = CMD(x)}.

Note that PCMD only uses `DCMD(n)− 1 random bits, which is optimal. It also implies:

Corollary 3.18. DCMD is balanced. In other words, for every integer n, the number of Yes
instances and No instances of DCMD on input length `DCMD(n) are the same.

Proof. Fix any Yes instance x ∈ {0, 1}n of CMD, then {PCMD(x, r) : r ∈ {0, 1}`DCMD(n)−1} con-
tains every Yes instance of DCMD. It follows that there are at most 2`DCMD(n)−1 Yes instances
of DCMD on input length `DCMD(n). The same upper bound can also be obtained for No in-
stances. Since there are 2`DCMD(n) strings of length `DCMD(n), there must be exactly 2`DCMD(n)−1

Yes instances and exactly 2`DCMD(n)−1 No instances of length `DCMD(n).

17

Theorem 3.19 ([IK00, IK02]). CMD is ⊕L-complete under projections.15

In other words, a language L is in ⊕L if and only if there is a polynomial t(·) and a
DLOGTIME-computable projection p : {0, 1}n → {0, 1}`CMD(t(n)), such that for every input
x ∈ {0, 1}n, x ∈ L if and only if CMD(p(x)) = 1.

Remark 3.20. A proof of Theorem 3.19 can be found in [CR20, Section B.1]. However, the
proof in [CR20] does not show that the projections are DLOGTIME-uniform. In particular, the
reduction needs to calculate the topological order of the underlying (parity) branching program
(σ1, σ2, . . . , σm in [CR20, Section B.1]), which may not be computable in DLOGTIME.

We can fix this issue by adding a clock to the log-space Turing machine; a state of the Turing
machine appears earlier in the topological order if its clock value is smaller. Equivalently, let
G = (V,E) be the old branching program. The new branching program Gnew has a vertex (i, v)
for every 0 ≤ i ≤ |V | and v ∈ V , and has edges from (i, u) to (i+ 1, v) for every edge (u, v) ∈ G
and every 0 ≤ i < |V |. Let V = {v1, . . . , vn}, then

(0, v1), . . . , (0, vn), (1, v1), . . . , (1, vn), . . . , (|V |, v1), . . . , (|V |, vn)

is a valid topological ordering of Gnew. Now we can use [CR20, Section B.1] to reduce the
computation of Gnew to CMD by a DLOGTIME-uniform projection.

We would like to thank Yanyi Liu for pointing out this issue.

Theorem 3.17 and 3.19 implies the following beautiful result in [AIK06].

Theorem 3.21 ([AIK06]). Suppose there is a one-way function computable in ⊕L. Then there
is a one-way function computable in DLOGTIME.

Proof Sketch. Let f be a one-way function in ⊕L. There is a DLOGTIME-computable function
p(·, i) that maps n input bits to poly(n) output bits, such that for every integer i and every
string x, the i-th output bit of f(x) is CMD(p(x, i)). Consider the following function:

g(x, y, i) := PCMD(p(x, i), y).

It turns out that the function g(x, y) = g(x, y, 1) ◦ · · · ◦ g(x, y, n) is still one-way.

4 KT Complexity and Parallel Cryptography

In this section, we characterize the existence of one-way functions in DLOGTIME by the average-
case hardness of MKTP. Recall that the seminal work of [AIK06] showed that the existence
of one-way functions in DLOGTIME is also equivalent to the existence of one-way functions in
uniform NC1, L, or ⊕L.

Theorem 1.1 (Main Result; Informal). There is a one-way function computable in uniform
NC1 if and only if KT is bounded-error hard on average.

4.1 One-Way Functions in NC0 from Hardness of MKTP

Theorem 4.1. Suppose that the search version of KT is bounded-error hard on average. Then
there is a one-way function computable in DLOGTIME.

Proof. We show that there is a weak one-way function computable in logarithmic space. Then
by Theorem 3.12, there is a one-way function in logarithmic space, and by Theorem 3.21, there
is a one-way function in DLOGTIME.

15A projection is a (multi-output) function where each output bit either is a constant, or only depends on one
input bit.

18

Suppose KT is bounded-error hard on average. By Definition 3.9, there is a constant c > 0
such that for every PPT algorithm A and every large enough n, the probability that A solves
the search version of KT on a random length-n input is at most 1− 1/nc.

For a string x, we define t(x) to be the parameter t in the definition of KT(x) (Definition 3.3).
Formally, t(x) is the smallest integer t such that there is a description d of length KT(x) − t,
such that for every 1 ≤ i ≤ |x| and b ∈ {0, 1, ?}, Ud(i, b) accepts in t steps if and only if xi = b.
We can see that most strings have small t(x). In what follows, let c1 be the absolute constant
in Fact 3.7, such that for every x ∈ {0, 1}n, KT(x) ≤ |x|+ c1 log |x|.

Claim 4.2. For all but an 1/nc+1 fraction of strings x ∈ {0, 1}n, we have t(x) ≤ (c+c1+2) log n.

Proof of Claim 4.2. By Fact 3.7, for every x ∈ {0, 1}n, KT(x) ≤ n + c1 log n. By Fact 3.8, all
but a 1/nc+1 fraction of strings x ∈ {0, 1}n satisfies that K(x) > n− (c+ 1) log n− 1. For such
strings x, we have t(x) ≤ KT(x)−K(x) ≤ (c+ c1 + 2) log n. �

For convenience, we say a pair (d, t) outputs the string x, if (d, t) is a valid “witness” for
KT(x), i.e. for every 1 ≤ i ≤ |x| + 1 and b ∈ {0, 1, ?}, Ud(i, b) accepts in time t if and only if
xi = b. Let Output(d, t) be the (unique) string that (d, t) outputs; if (d, t) does not output any
(finite) string, let Output(d, t) = ⊥.

We define a weak one-way function f as follows.

Algorithm 1 Weak OWF in L from Average-Case Hardness of MKTP

1: function f(`, t,M)
2: The input consists of integers ` ∈ [n + c1 log n], t ∈ [(c + c1 + 2) log n], and a string
M ∈ {0, 1}n+c1 logn.

3: M ′ ← the first ` bits of M
4: out← Output(M ′, t)
5: if |out| = n then
6: return the concatenation of `, t, and out
7: else
8: return ⊥

Since t ≤ O(log n), we can always compute Output(M ′, t) in logarithmic space. It follows
that f is computable in logarithmic space.

Let Dowf be the output distribution of f on uniform inputs. In other words, to sample from
Dowf , we sample two integers ` ← [n + c1 log n], t ← [(c + c1 + 2) log n] and a string M of
length n + c1 log n, and output f(`, t,M). We prove that Dowf almost dominates the uniform
distribution over {0, 1}n, in the following sense.

Claim 4.3. Let n be a large enough integer. For every string x such that t(x) ≤ (c+c1 +2) log n,
the probability that a random sample from Dowf is equal to (KT(x) − t(x), t(x), x) is at least

1
2nn2+c1

.

Proof of Claim 4.3. For a large enough n, with probability at least 1
n2 , the sampler for Dowf

samples t = t(x) and ` = KT(x)− t(x). Then, with probability 1
2`
≥ 1

2nnc1 , the sampler samples
a description M ′ such that Output(M ′, t) = x. It follows that w.p. at least 1

2nn2+c1
the sampler

outputs (KT(x)− t(x), t(x), x). �

Now, we can prove the security of the weak OWF f . Let Aowf be a candidate PPT adversary
trying to invert f . We construct a polynomial-time algorithm AKT that attempts to solve (the
search version of) MKTP as follows.

19

Algorithm 2 Bounded-Error Heuristic AKT for MKTP from Inverter Aowf for f
1: function AKT(x)
2: n← |x|; Opt← +∞; Witness← ⊥
3: for ` ∈ [n+ c1 log n] and t ∈ [(c+ c1) log n] do
4: (`′, t′,M)← Aowf(`, t, x)
5: M ′ ← the first `′ bits of M
6: if Output(M ′, t′) = x and Opt > |M ′|+ t′ then
7: Opt← |M ′|+ t′

8: Witness← (M ′, t′)

9: return (Opt,Witness)

Note that for a fixed input x, AKT(x) fails to output a valid witness for KT(x) only if Aowf

fails to invert the output (KT(x)− t(x), t(x), x). Let pfail(x) be the probability (over the internal
randomness of Aowf) that Aowf fails to invert (KT(x)− t(x), t(x), x), then we have

E
x←Un

[pfail(x)] ≥ Pr
x←Un

[AKT(x) fails on input x] ≥ 1

nc
. (1)

Let p be the probability that Aowf fails to invert a random input of f . Then

p ≥
∑

x∈{0,1}n
t(x)≤(c+c1+2) logn

Pr
y←Dowf

[y = (KT(x)− t(x), t(x), x)] · pfail(x)

≥
∑

x∈{0,1}n
t(x)≤(c+c1+2) logn

1

2nn2+c1
· pfail(x) (Claim 4.3)

≥ 1

2nn2+c1

 ∑
x∈{0,1}n

pfail(x)− 2n

nc+1

 (Claim 4.2)

≥ 1

n2+c1

(
E

x←Un
pfail(x)

)
− 1

nc+c1+3

≥ 1

n2+c1+c
− 1

nc+c1+3
. By (1)

Let c′ = c+c1 +4, then every PPT adversary Aowf fails to invert a random input of f w.p. at
least 1

nc′
. It follows that f is a weak OWF.

4.2 Hardness of MKTP from One-Way Functions in ⊕L

In this section, we prove the following theorem.

Theorem 4.4. Suppose there is a one-way function computable in ⊕L. Then for every constant
λ > 0, KT is bounded-error hard on average to approximate within an additive factor of λ log n.

Let f be a one-way function in ⊕L. The proof consists of three steps:

• First, we use f to build a condEP-PRG G. If f is computable in ⊕L, then G is also com-
putable in ⊕L. This step is the same as in [LP20], and follows directly from Theorem 3.14.

• Second, we construct the randomized encoding G̃ of G. We argue that G̃ is also a condEP-
PRG. Moreover, G̃ is computable in DLOGTIME. This step is implemented in Lemma 4.5.

• Last, as every output of G̃ has small KT complexity, we use the security of G̃ to show that
MKTP is bounded-error hard on average. This step is implemented in Lemma 4.7.

20

4.2.1 CondEP-PRG in DLOGTIME

In this section, we prove the following lemma that constructs a DLOGTIME-computable condEP-
PRG from a ⊕L-computable condEP-PRG.

Lemma 4.5. Suppose there is a constant c > 0 such that for every constant λ > 0, there is a
condEP-PRG G with stretch λ log n and security 1/nλ that is computable in ⊕SPACE[c log n].

Then there is a constant c′ > 0 such that for every constant λ > 0, there is a condEP-PRG
G̃ with stretch λ log n and security 1/nλ that is computable in TIME[c′ log n].

Proof. Fix an input length n. Let λ′ be a constant that depends on λ, we will fix λ′ later. Let G
be a condEP-PRG with stretch λ′ log n and security 1/nλ

′ that is computable in ⊕SPACE[c log n].
We denote the n-th slice of G as Gn : {0, 1}n → {0, 1}`, where ` := n+ λ′ log n.

Let N := nc. Since G ∈ ⊕SPACE[logN], there are projections

Gproj
1 , Gproj

2 , . . . , Gproj
` : {0, 1}n → {0, 1}`CMD(N),

such that the i-th output bit of G(x) is equal to CMD(Gproj
i (x)). Let r1, r2, . . . , r` be random

strings of length `DCMD(N) − 1. Let PCMD be the DLOGTIME-computable function defined in
Theorem 3.17, then the i-th output bit of G(x) is equal to DCMD(PCMD(Gproj

i (x), ri)). We
define

G̃(x, r1, . . . , r`) = PCMD(Gproj
1 (x), r1) ◦ PCMD(Gproj

2 (x), r2) ◦ · · · ◦ PCMD(Gproj
` (x), r`).

(G̃ is the “randomized encoding” of G in the sense of [AIK06].)
It is easy to see that there is a constant cg depending only on c, such that G̃ ∈ TIME[cg log n].

Note that the input length of G̃ is nin := n + ` · (`DCMD(N) − 1), the output length of G̃ is
nout := ` · `DCMD(N), and nout = nin + (`−n) = nin +λ′ log n. Here, we fix λ′ large enough such
that λ′ ≥ λ lognin

logn .

Claim 4.6. G̃ is a condEP-PRG with stretch λ log nin and security 1/(nin)λ.

Proof. Clearly, the stretch of G̃ is λ′ log n ≥ λ log nin.
Suppose E = {En ⊆ {0, 1}n} is a sequence of events such that G and E satisfy Defini-

tion 3.13. Let Ẽ := {Ẽnin} where Ẽnin := En×{0, 1}`·(`DCMD(N)−1). We verify that G̃ and Ẽ satisfy
Definition 3.13.

Pseudorandomness. Suppose, for the sake of contradiction, that there is a PPT adversary
A′ such that

Pr[A′(G̃(Ẽnin))]− Pr[A′(Unout)] ≥ 1/(nin)λ.

Consider an adversary A that distinguishes G(En) from U` as follows. On input y, for
every 1 ≤ i ≤ `, let ri be a uniformly random length-`DCMD(N) input of DCMD such that
DCMD(ri) = yi. We concatenate them as r = r1 ◦ r2 ◦ · · · ◦ r`, and let A(y) = A′(r).

Suppose y ← G(En), then the distribution of r is exactly G̃(Ẽnin). On the other hand,
suppose y ∼ U`, then the distribution of r is exactly Unout . As A′ distinguishes G̃(Ẽnin) from
Unout with advantage ≥ 1/(nin)λ, we can see that A also distinguishes G(En) from U` with
advantage ≥ 1/(nin)λ ≥ 1/nλ

′ , contradicting the security of G.

Entropy-preservation. Consider the above experiment, where we first sample y← G(En),
then sample a uniform string ri of length `DCMD(N) such that DCMD(ri) = yi for every
1 ≤ i ≤ `, and finally concatenate them as r = r1 ◦ r2 ◦ · · · ◦ r`. The distribution of r is exactly
G̃(Ẽnin). Therefore,

H(G̃(Ẽnin)) = H(G(En)) + ` · (`DCMD(N)− 1)

≥ n− Ω(log n) + ` · (`DCMD(N)− 1)

≥ nin − Ω(log nin). �

21

We have only defined G̃ and Ẽ on input lengths of the form nin(n) = n+(n+λ′ log n)(`DCMD(nc)+
1). However, it is straightforward to define G̃ and Ẽ on every input length. Let m be an input
length, m′ = nin(n) be the largest number of the form nin(n) such that m′ ≤ m. On input
x ∈ {0, 1}m, let x1 be the length-m′ prefix of x and x2 be the rest of x (i.e., x = x1 ◦ x2), and
we can define G̃(x) = G̃(x1) ◦ x2. Similarly, we could define Ẽm = Ẽm′ × {0, 1}m−m′ .

4.2.2 Hardness of MKTP

Lemma 4.7. Suppose there is a constant c > 0 such that for every constant λ > 0, there is a
condEP-PRG G with stretch λ log n and security 1/nλ that is computable in TIME[c log n].

Then for every constant λ > 0, KT is bounded-error hard on average to approximate within
an additive error of λ log n.

Proof. Let λ′ := λ+ c1 +2 for a constant c1 defined later, and G be a condEP-PRG with stretch
λ′ log n and security 1/nλ

′ that is computable in TIME[c log n]. Fix an input length n, and let
` := n+ λ′ log n.

We note that the KT complexity of every output of G is nontrivial. Let c1 be a large enough
constant that only depends on c. Since G ∈ TIME[c log n], there is a description d of constant
length such that the following holds: For every input x ∈ {0, 1}n, every 1 ≤ i ≤ `+ 1, and every
b ∈ {0, 1, ?}, Ud,x(i, b) accepts in (c1 − 1) log n time if and only if the i-th bit of G(x) is equal
to b. It follows that for every x ∈ {0, 1}n,

KT(G(x)) ≤ n+ (c1 − 1) log n+O(1) < `− (λ′ − c1) log n.

Suppose, for the sake of contradiction, that KT is bounded-error easy on average to approx-
imate, within an additive factor of λ log n. For a large constant ckt that we fix later, there is a
PPT machine A such that

Pr
y←U`

[KT(y) ≤ A(y) ≤ KT(y) + λ log n] ≥ 1− 1

nckt
. (2)

It is natural to consider the following adversary A′: On input y ∈ {0, 1}`, A′ outputs 1 if
A(y) ≥ ` − 2 log n, and outputs 0 otherwise. We will prove the following two lemmas, showing
that A′ distinguishes G(En) from U` with good advantage.

Lemma 4.8. Pry←U` [A′(y) = 1] ≥ 1− 1
n2 − 1

nckt .

Proof. By Fact 3.8, all but a 1
n2 fraction of strings y ∈ {0, 1}` satisfies that K(y) ≥ `− 2 log n.

Therefore, for all but a
(

1
n2 + 1

nckt

)
fraction of strings y ∈ {0, 1}`, we have A(y) ≥ KT(y) ≥

K(y) ≥ `− 2 log n. On these strings y we have A′(y) = 1. �

Lemma 4.9. Pry←G(En)[A′(y) = 1] ≤ 1− 1
n .

Proof. Let H := H(G(En)). Let d be the constant such that ` − H ≤ d log n. The constant d
does not depend on ckt, which means we can set ckt := d+ 15.

Consider the set of outputs of G that is outputted with probability at most 21−H . We say
these inputs are good. Let Good be the set of good inputs, i.e.,

Good :=
{
y ∈ {0, 1}` : 0 < Pr[G(En) = y] ≤ 21−H

}
.

We can see that there are many good strings. Actually, let p := Pry←G(En)[y ∈ Good], then

H = H(G(En)) ≤ p · n+ (1− p) · (H − 1),

which implies that p ≥ 1
n−H+1 .

22

Let Err be the subset of Good on which A fails to produce a good approximation of KT. (In
case that A is a randomized algorithm, it fails w.p. at least 1/n4.) That is,

Err :=
{
y ∈ Good : Pr[KT(y) ≤ A(y) ≤ KT(y) + λ log n] ≤ 1− 1/n4

}
.

By Eq. (2), |Err| ≤ 2`/nckt−4. Therefore,

Pr
y←G(En)

[y ∈ Err] ≤ (2`/nckt−4) · 21−H ≤ 2 · nd+4−ckt ≤ 1/n4.

Note that for every y in the range of G(En), if A is correct on y, we have A(y) < `− (λ′ −
c1) log n + λ log n = ` − 2 log n. Therefore for every y ∈ Good \ Err, we have A′(y) = 0 w.p. at
least 1− 1/n4 over the internal randomness of A′. It follows that

Pr
y←G(En)

[A′(y) = 1] ≤ (1− p) + Pr
y←G(En)

[y ∈ Err] +
1

n4

≤ 1− 1

n−H + 1
+

1

n4
+

1

n4

≤ 1− 1

n
. �

From the pseudorandomness of the condEP-PRG G, we conclude that KT is hard on average
to approximate within an additive error of λ log n.

Note that we have only proved the hardness of MKTP on input lengths of the form n+λ′ log n,
but it is straightforward to extend the argument to every input length m. Let m′ be the largest
number of the form m′ = n + λ′ log n such that m′ ≤ m, then m − m′ ≤ O(1). For every
x ∈ {0, 1}m, let x1 be the length-m′ prefix of x. There is an absolute constant d such that
KT(x1) − d logm ≤ KT(x) ≤ KT(x1) + d logm. It follows that if we can approximate MKTP
on input length m′, then we can also approximate MKTP on input length m.

4.2.3 Proof of Theorem 4.4

Theorem 4.4. Suppose there is a one-way function computable in ⊕L. Then for every constant
λ > 0, KT is bounded-error hard on average to approximate within an additive factor of λ log n.

Proof. Let c be a constant such that there is a one-way function f computable in⊕SPACE[c log n].
Let EP-PRG be the Turing machine guaranteed in Theorem 3.14. For every constant λ > 0,
let G(x, z) = EP-PRG(λ, x, f(x), z). Then there is a constant c1 only depending on c (not on
λ) such that G is computable in ⊕SPACE[c1 log n]. Moreover, G is a condEP-PRG with stretch
λ log n and security 1/nλ.

By Lemma 4.5, there is a constant c2 only depending on c such that for every constant
λ > 0, there is a condEP-PRG with stretch λ log n and security 1/nλ that is computable in
TIME[c2 log n]. By Lemma 4.7, for every constant λ > 0, KT is bounded-error hard on average
to approximate within an additive error of λ log n.

4.3 Bounded-Error Average-Case Robustness of Meta-Complexity

Our techniques also show that the meta-complexity of (resource-bounded) Kolmogorov complex-
ity is “robust”, i.e. a slight change in the underlying computation model has little effect on their
hardness. Actually, for many resource-bounded variants of Kolmogorov complexity, such as KT,
NC1-Kt, and L-Kt, either all of them admit bounded-error polynomial-time heuristics, or none
of them do. (See Section 3.2 for their definition.)

Theorem 4.10. The following are equivalent:

1. There is a one-way function computable in ⊕L.

23

2. There is a one-way function computable in DLOGTIME.

3. The search version of KT is hard on average.

4. For every constant λ > 0, KT is hard on average to approximate within an additive error
of λ log n.

5. There is a polynomial t(·) such that the search version of NC1-Kt is hard on average.

6. For every constant λ > 0 and polynomial t(·) such that t(n) > 2n, NC1-Kt is hard on
average to approximate within an additive error of λ log n.

7. There is a polynomial t(·) such that the search version of L-Kt is hard on average.

8. For every constant λ > 0 and polynomial t(·) such that t(n) > 2n, L-Kt is hard on average
to approximate within an additive error of λ log n.

Proof Sketch. (2) =⇒ (1), (4) =⇒ (3), (6) =⇒ (5), and (8) =⇒ (7) are trivial.
(3) =⇒ (2): Directly from Theorem 4.1.
(5) =⇒ (2) and (7) =⇒ (2): The construction from [LP20, Section 4] gives a one-way

function computable in ALOGTIME (i.e., uniform NC1), based on the hardness of NC1-Kt. By
Theorem 3.21, there is a one-way function computable in DLOGTIME. The same argument
works for L-Kt.

(1) =⇒ (4): Directly from Theorem 4.4.
(1) =⇒ (6): Consider the condEP-PRG G computable in TIME[c log n] that we constructed

in the proof of Theorem 4.4, where c is some constant. Let t′(n) := nO(c), for every x ∈ {0, 1}n
that in the range of G, NC1-Kt′(x) ≤ n−Θ(log n). It follows that there is a polynomial t′ such
that NC1-Kt′ is hard on average to approximate.

To prove that NC1-Kt is hard on average to approximate for every polynomial t, we use a
padding trick. (See also [LP20, Theorem 5.6].) Let ε > 0 be a small enough constant, and
n1 = nε. Consider the generator G′(x, r) = G(x) ◦ r, where |x| = n1 and |r| = n− n1. It is easy
to see that if G is a condEP-PRG, then G′ is also a condEP-PRG. For every x ∈ {0, 1}n that is
in the range of G′, if we take ε to be a small enough constant, we have NC1-Kt(x) ≤ n−Θ(log n).
Since G′ is pseudorandom, NC1-Kt is hard on average to approximate.

(1) =⇒ (8): The same argument as in (1) =⇒ (6) also works for L-Kt.

4.4 Zero-Error Average-Case Reductions

Our techniques actually imply reductions among MKTP, NC1-MINKT, and L-MINKT. A closer
look at these reductions reveals that they are not only two-sided error average-case reductions,
but also zero-error ones! This allows us to prove new relations between the zero-error average-
case complexity of variants of MINKT and MKTP.

The standard definition of an average-case complexity class, such as AvgZPP, is a class of
pairs (L,D) where L is a language, and D is a distribution ensemble over inputs. (See, e.g.,
[AB09, Chapter 18].) In this section, we only deal with the uniform distribution as the input
distribution. Therefore, for simplicity, we define AvgZPP as a class of languages rather than
(language, distribution) pairs.

Definition 4.11. Let L be a language and δ > 0 be a constant. We say L ∈ AvgδZPP if there
is a zero-error PPT heuristic H, such that the following are true: (To emphasize that H is a
randomized heuristic, we use H(x; r) to denote the output of H on input x and randomness r.)

• For every input x ∈ {0, 1}? and r ∈ {0, 1}poly(|x|), H(x; r) ∈ {L(x),⊥}.

• For every integer n, Prx←Un,r←Upoly(n)
[H(x; r) 6= ⊥] ≥ δ.

24

Let AvgΩ(1)ZPP :=
⋃
δ>0 AvgδZPP.

We consider the parameterized versions of MKTP and MINKT in this section. Let t(n) ≤
poly(n) be a time bound, and s(n) ≤ n be a size parameter. We define MKTP[s] := {x :
KT(x) ≤ s(|x|)}, and MINKt[s] := {x : Kt(|x|)(x) ≤ s(|x|)}. The problems NC1-MINKt[s] and
L-MINKt[s] are defined similarly.

A language L is ε-sparse if for every integer n, Prx←Un [x ∈ L] ≤ ε. From Fact 3.8, for every
unbounded function f(n) = ω(1), MKTP[n− f(n)] and MINKpoly(n)[n− f(n)] are o(1)-sparse.
In general, to solve an o(1)-sparse problem L on average, it suffices to design a heuristic that
distinguishes every instance in L from the random instances. Therefore, the following notion
of reductions will be convenient for studying the zero-error average-case complexity of sparse
problems:

Definition 4.12. Let L1, L2 be two problems. We say there is a one-sided mapping reduction
from L1 to L2, if there are polynomials p(·), m(·), and a randomized polynomial-time mapping
Red : {0, 1}n × {0, 1}p(n) → {0, 1}m(n), such that the following holds.

• For every x ∈ L1 ∩ {0, 1}n and r ∈ {0, 1}p(n), it holds that Red(x; r) ∈ L2.

• The distribution of Red(Un;Up(n)) is equal to Um(n).

Remark 4.13. Here we require that the reduction maps the uniform distribution to the uniform
distribution exactly. In some cases, this requirement is too strong, and we only need that Um(n)

dominates Red(Un;Up(n)). (See [AB09, Definition 18.6].) Nevertheless, thanks to the perfect
randomized encodings [AIK06], we are able to design reductions as strong as Definition 4.12.

In short, a one-sided mapping reduction (among sparse problems) maps a Yes instance to
a Yes instance and maps a random instance to a random instance. It is easy to see that such
reductions preserve the property of being in AvgΩ(1)ZPP.

Fact 4.14. Let L1, L2 be two o(1)-sparse problems. Suppose that there is a one-sided mapping
reduction Red from L1 to L2. If there is a constant δ2 > 0 such that L2 ∈ Avgδ2ZPP, then there
is a constant δ1 > 0 such that L1 ∈ Avgδ1ZPP.

For every s1(n) ≤ s2(n), there is a one-sided mapping reduction from MKTP[s1(n)] to
MKTP[s2(n)]. (The identity mapping is a valid reduction [HS17].) Similarly, for every s1, t1, s2, t2
such that an alternating machine of description length s1 and (alternating) time log t1 can be
compiled into a deterministic machine of description length s2 and space log t2, there is a one-
sided mapping reduction from NC1-MINKt1 [s1] to L-MINKt2 [s2]. (Again, the identity mapping
is a valid reduction.)

Now we present a one-sided mapping reduction from L-MINKT to MKTP. Actually, the
reduction we present is from L-MINKT to MINKt′ , where t′(n) = λ log n for some absolute
constant λ > 0.

Theorem 4.15. For every polynomial t(·) and integer c > 0, there is a constant c′ > 0 such that
there is a one-sided mapping reduction Red from L-MINKt[n− c′ log n] to MINKt′ [n− c log n].

Proof. For convenience, denote s(n) := n− c′ log n. Let x ∈ {0, 1}n be an input to L-MINKt[s].
The reduction is simple. It fixes N := poly(t(n)), and reduces a length-n input to a length-

Ñ input, where Ñ := n · `DCMD(N). For every bit xi (1 ≤ i ≤ n), it samples a uniformly
random string si ∈ {0, 1}`DCMD(N), conditioned on that DCMD(si) = xi. Finally, it outputs the
concatenation of s1, s2, . . . , sn.

Since DCMD is balanced (Corollary 3.18), the reduction maps a random instance to a random
instance. Now it remains to show that it maps a Yes instance to a Yes instance.

Suppose x is a Yes instance. Denote Red(x; r) := s1 ◦s2 ◦· · ·◦sn, where r is the random coins
that our reduction uses. For t′(n) = λ log n, we want to prove that Kt′(Red(x; r)) ≤ Ñ −c log Ñ .

25

Let U be the universal Turing machine we consider, then there is a description d of length
at most s(n), such that for every 1 ≤ i ≤ n + 1 and every b ∈ {0, 1, ?}, Ud(i, b) accepts in
space log t(n) if and only if xi = b. Since CMD is L-hard under projections (Theorem 3.19), for
N = poly(t(n)), there is a DLOGTIME-computable projection

px : {0, 1}s(n) × [n+ 1]× {0, 1, ?} → {0, 1}`CMD(N),

such that for every 1 ≤ i ≤ n+ 1 and b ∈ {0, 1, ?}, xi = b if and only if CMD(px(d, i, b)) = 1.
The description of Red(x; r) contains the string d, and n strings s′1, s′2, . . . , s′n of length

`DCMD(N) − 1 each. Let PCMD be the DLOGTIME-computable projection in Theorem 3.17.
The string s′i is chosen such that PCMD(px(d, i, 1), s′i) = si. (Note that CMD(px(d, i, 1)) =
DCMD(si), so each s′i exists and is unique.)

Let 1 ≤ i ≤ |Red(x; r)|. To compute the i-th bit of Red(x; r), we first “locate” i by computing
k := b i−1

`DCMD(N)c + 1, and j := i − `DCMD(N)(k − 1). Now, the i-th bit of Red(x; r) is the j-th
bit of sk. We can simply calculate the j-th bit of PCMD(p(d, i, 1), s′i), which takes λ log Ñ time
for some absolute constant λ > 0.

It follows that whenever L-Kt(x) ≤ n − c′ log n, regardless of the random bits r we choose,
there is a description that allows us to quickly retrieve each bit of Red(x; r). Moreover, the
description has length n − c′ log n + n(`DCMD(N) − 1) = Ñ − c′ log n. If the constant c′ is big
enough compared with c, then Red(x; r) is a Yes instance of MINKt′ [Ñ − c log Ñ].

Note that for c > λ, MINKt′ [n− c log n] reduces to MKTP[n− (c− λ) log n] via the identity
mapping. (See the proof of Theorem 4.16.) Therefore, Theorem 4.15 shows a one-sided mapping
reduction from some version of MINKT to some version of MKTP. To the best of our knowledge,
this reduction is the first result of its kind.

Moreover, Theorem 4.15 demonstrates the robustness of meta-complexity w.r.t. the zero-error
average-case complexity. In particular:

Theorem 4.16. Let t(·) be a fixed polynomial such that t(n) > 2n. The following are equivalent:

1. There is a constant c > 0 such that NC1-MINKt[n− c log n] ∈ AvgΩ(1)ZPP.

2. There is a constant c > 0 such that L-MINKt[n− c log n] ∈ AvgΩ(1)ZPP.

3. There is a constant c > 0 such that MINKt′ [n−c log n] ∈ AvgΩ(1)ZPP, where t′(n) = λ log n
is defined above.

Moreover, the above items are implied by the following items:

4. There is a constant c > 0 such that MKTP[n− c log n] ∈ AvgΩ(1)ZPP.

Proof. (4) =⇒ (3): It suffices to show that for every c > 0, the identity mapping reduces
MINKt′ [n−c′ log n] to MKTP[n−c log n], where c′ = c+λ. Let x ∈ MINKt′ [n−c′ log n]∩{0, 1}n,
and d be a description of length n− c′ log n witnessing the fact that Kt′(x) ≤ n− c′ log n. Since
(d, t′(n)) is also a witness that KT(x) ≤ n− c log n. we have x ∈ NC1-MKTP[n− c log n].

(3) =⇒ (2): By Theorem 4.15 and Fact 4.14.
(3) =⇒ (1): Note that the only property of L used in the proof of Theorem 4.15 is that

CMD is hard for L. (In other words, L ⊆ ⊕L.) As CMD is also hard for NC1, the proof of
Theorem 4.15 is also true for L-MINKT replaced by NC1-MINKT.

(2) =⇒ (3): Every machine that runs in t′(n) time also runs in t′(n) space. Therefore,
for every c > 0, the identity mapping reduces MINKt′ [n − c′ log n] to L-MINKt1 [n − c log n],
where t1(n) = 2O(t′(n)). We can use a padding trick [LP20, Theorem 5.6] to reduce L-MINKt1

to L-MINKt.
(1) =⇒ (3): The same argument as (2) =⇒ (3) also works for NC1-Kt.

26

5 Tighter Connections between Meta-Complexity and One-Way
Functions

In this section, we present a tighter connection between the hardness of MINKT (or MKTP) and
the maximum security of weak one-way functions. We first define the security of weak one-way
functions.

Definition 5.1. Let f : {0, 1}n → {0, 1}n be a polynomial-time computable function. We say
f is a weak one-way function with security S(n), if there is a polynomial p(·) such that for every
circuit C of size S(n),

Pr
x←Un

[C(f(x)) ∈ f−1(f(x))] ≤ 1− 1

p(n)
.

Our main results are as follows.

Theorem 5.2. Let S(n) be any monotone function such that S(n+O(log2 n)) ≤ S(n) ·nO(logn).
The following are equivalent:

(a) There is a weak one-way function with security S(n) · nΘ(logn).

(b) There are polynomials p, t such that the search version of Kt requires S(n) · nΘ(logn) size to
compute on a 1− 1/p(n) fraction of inputs.

(c) For every constant λ > 0, there are polynomials p, t, such that Kt requires S(n) · nΘ(logn)

size to (λ log n)-approximate on a 1− 1/p(n) fraction of inputs.

Theorem 5.3. Suppose there is a weak one-way function f with security 2Ω(n) computable in
DLOGTIME. Then there is a polynomial p such that KT requires 2Ω(n) size to compute on a
1− 1/p(n) fraction of inputs.

Remark 5.4. A few remarks are in order.

• In this section, we only consider non-uniform adversaries. The reason is that we will use
Impagliazzo’s hardcore lemma (Lemma A.1) in the proof of Theorem 5.9, which only works
for non-uniform adversaries. We remark that there are hardcore lemmas that also work for
uniform adversaries: if there is no time-t′ algorithm that inverts a weak one-way function
on a 1−o(1) fraction of inputs, then there is no time-t algorithm that non-trivially inverts
every hardcore of the same one-way function. However, we do not know whether the
dependence of t′ on t is tight. Theorem 4.5 of [VZ13] achieves t′ = poly(t), but we need
t′ = t · polylog(t). We leave this issue for future work.

• Our equivalence only holds for weak one-way functions. Indeed, it is an open problem
whether the existence of exponentially-hard weak one-way functions is equivalent to the
existence of exponentially-hard strong one-way functions [GIL+90]. Yao’s hardness am-
plification theorem (Theorem 3.12) blows up the input length by a polynomial factor,
therefore given a 2Ω(n)-hard weak one-way function, it only produces a 2n

Ω(1)-hard strong
one-way function.

• Our result for KT (Theorem 5.3) is weaker than our result for Kt. In particular, suppose
the one-way function has security 2αn, we can only show that KT requires 2βn size on
average, for some constant β that is much smaller than α.

• The best seed length of known explicit extractors that extract all min-entropy is O(log2 n)
[GUV09]. This is why we see an nΘ(logn) factor in Theorem 5.2.

27

We rely on the construction of condEP-PRGs from weak one-way functions in [YLW15,LP20],
thus we structure this section as follows. In Section 5.1, we define extractors and hardcore
functions, which are technical building blocks of the construction. In Section 5.2, we describe the
construction in [YLW15,LP20]. (The correctness of this construction is proved in Appendix A.)
The proofs of Theorem 5.2 and 5.3 appear in Section 5.3 and 5.4 respectively.

5.1 Technical Building Blocks

5.1.1 Extractors

Definition 5.5. A function Ext : {0, 1}n×{0, 1}d → {0, 1}m is a (k, ε)-extractor if for every ran-
dom variable X over {0, 1}n such that H∞(X) ≥ k, the statistical distance between Ext(X,Ud)
and Um is at most ε.

Moreover, Ext is a strong (k, ε)-extractor if for every random variable X as above, the sta-
tistical distance between Ext(X,Ud) and Um is at most ε, even conditioned on the seed. That is,
the statistical distance between the following two distributions is at most ε:

D1 := (r ◦ Ext(x, r) | r← Ud,x← X), and D2 := Ud+m.

5.1.2 Hardcore Functions

Definition 5.6. Let ε = ε(n) > 0, L = L(n) ≤ poly(n), HC : {0, 1}n × {0, 1}d → {0, 1}m be
a function, and R be a probabilistic oracle algorithm. We say HC is a hardcore function with
reconstruction algorithm R, distinguishing probability ε, and list size L, if the following holds.

• On every oracle O, RO outputs a list of L strings of length n.

• For every string x and every oracle O that ε-distinguishes Ud ◦ HC(x,Ud) from Ud+m, x is
in the list output by RO w.p. ≥ 1/2.

Our definition of hardcore functions indeed implies the standard definition in [GL89]:

Fact 5.7. Let HC : {0, 1}n × {0, 1}d → {0, 1}m be a hardcore function with a poly(n)-time
reconstruction algorithm, distinguishing probability ε = 1/poly(n), and list size L ≤ poly(n).

Let f be any one-way function, x ← Un, and r ← Ud. No polynomial-size adversary can
2ε-distinguish the distribution f(x) ◦ r ◦ HC(x, r) from the distribution f(x) ◦ r ◦ Um.

Proof. Let A be an adversary of size poly(n) that 2ε-distinguishes the distribution f(x) ◦ r ◦
HC(x, r) from f(x) ◦ r ◦ Um. Say x ∈ {0, 1}n is good if A can ε-distinguish f(x) ◦ r ◦ HC(x, r)
from f(x) ◦ r ◦ Um. Then by a Markov bound, at least an ε fraction of inputs x are good. We
will use A to invert f(x) on every good input x in probabilistic polynomial time. Our inversion
algorithm will have success probability 1/2 on a good x; as (ε/2) > 1/poly(n), this contradicts
the one-wayness of f .

On input y = f(x), where x is good, define the oracle

O(z) := A(y, z).

Then O can ε-distinguish Ud ◦HC(x,Ud) from Ud+m. The reconstruction algorithm RO outputs
a list of size poly(n) which contains x. We could easily find any element x′ in this list such that
f(x′) = y, and output x′. With probability 1/2 over the internal randomness of R, we invert y
successfully.

5.2 CondEP-PRGs from Weak One-Way Functions

In this section, we present the following construction from weak one-way functions to condEP-
PRGs.

28

Construction 5.8 ([YLW15,LP20]). Let 0 < ε < 1
10n2 be the desired security parameter of

the condEP-PRG (i.e., it should be O(ε)-indistinguishable from uniformly random strings).
Let δ > 0, and f be a weak one-way function that is hard to invert on a (1− δ) fraction of
inputs. Let α > 0 be the desired stretch of our condEP-PRG. Suppose we have the following
objects:

• For every k, a strong (k, ε)-extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m with optimal
output length, where d := dExt(n, ε) and m := k − 2 log(1/ε) − O(1). We write the
extractor as Ext(k) if we need to emphasize the min-entropy parameter k.

• For kHC := α + log(n/δ) + 4 log(1/ε) + O(1), a hardcore function HC : {0, 1}n ×
{0, 1}d′ → {0, 1}kHC with poly(n/ε)-time reconstruction algorithm R, distinguishing
probability ε, and list size L ≤ poly(n/ε), where d′ := dHC(n, kHC, ε).

Let Gn,r : {0, 1}n × {0, 1}d × {0, 1}d × {0, 1}d′ → {0, 1}n+2d+d′+α be the following
construction:

Gn,r(x, z1, z2, z3) := z1 ◦ Ext(r−1)(x, z1) ◦ z2 ◦ Ext(bn−r−log(2n/δ)c)(f(x), z2) ◦ z3 ◦ HC(x, z3).

Theorem 5.9. Let ε, δ, α, f be defined as in Construction 5.8. If ε ≥ 1/poly(n) and L ≤ poly(n),
then there is a function r : N→ N such that G = {Gn,r(n)}n∈N is a condEP-PRG with stretch α
and security 4ε.

More precisely, let ñ = n + 2d + d′. Suppose that for every subset D ⊆ {0, 1}ñ such that
H(G(D)) ≥ ñ − Ω(log(nδε)) and every k, there is an adversary of size s that 4ε-distinguishes
Gn,k(D) from the uniform random distribution. Then there is an adversary of size s ·poly(nL/ε)
that inverts f on a 1− δ fraction of inputs.

The proof basically follows from [LP20], and we present a self-contained proof in Appendix A.
However, there are two major differences between our proof and the proof in [LP20]:

• We replace the extractors and hardcore functions with better constructions. In particular,
our extractors and hardcore functions in Section 5.3 requires only O(log2 n) random bits.

• More importantly, in the very beginning, we need to transform the weak one-way function
into a strong one. [LP20] uses hardness amplification (Theorem 3.12) to implement this
step. However, Theorem 3.12 does not preserve exponential security, therefore we use
Impagliazzo’s hardcore lemma [Imp95a] instead. We only obtain a strong one-way function
on a “hardcore” distribution of inputs (instead of the uniform distribution), but this already
suffices for our purpose.

5.2.1 Warm-Up: Proof of Theorem 3.14

Theorem 5.9 immediately implies Theorem 3.14.

Theorem 3.14 ([LP20]). There is a function EP-PRG computable in ALOGTIME, such that
the following holds. For any one-way function f : {0, 1}? → {0, 1}? and any constant γ > 0,
let G(x, z) = EP-PRG(γ, x, f(x), z), then G is a condEP-PRG with stretch γ log n and security
1/nγ.

We first introduce the (very simple) extractors and hardcore functions used in [YLW15,LP20].

• The extractors are derived from the leftover hash lemma [HILL99]. (See also [Vad12,
Theorem 6.18].) Let h : {0, 1}n × {0, 1}d → {0, 1}m be a pairwise independent family of

29

hash functions, where d = O(n + m), then for every k, ε such that m = k − 2 log(1/ε), h
is also a strong (k, ε)-extractor.

We instantiate the pairwise independent hash family by Toeplitz matrices.16 More pre-
cisely, our keys will have length d := n+m− 1, and every key ∈ {0, 1}n+m−1 corresponds
to a Toeplitz matrix. For every 1 ≤ i ≤ m and every input x ∈ {0, 1}n, the i-th output of
H(x, key) is the inner product of x and keyi∼(i+n−1) (the substring of key from the i-th
bit to the (i+ n− 1)-th bit) in GF(2). In other words, Ext(x, key) is the concatenation of
〈x, keyi∼(i+n−1)〉 for each i, where 〈·, ·〉 denotes inner product.

• Let GL : {0, 1}n × {0, 1}d → {0, 1}k be the Goldreich-Levin hardcore function.

In [GL89], GL is defined in terms of Toeplitz matrices (again). Let d := n + k − 1. For
every x ∈ {0, 1}n, r ∈ {0, 1}d and 1 ≤ i ≤ k, the i-th output bit of GL(x, r) is the inner
product of x and ri∼(i+n−1) in GF(2). Also, it is shown in [GL89] that for every ε > 0, GL
is a hardcore function with distinguishing probability ε and list size poly(n · 2k/ε).

Proof Sketch of Theorem 3.14. We can plug the parameters ε := 1
4nγ , α := γ log n, δ := 1/2 into

Theorem 5.9. The list size of GL is L ≤ poly(n). Theorem 5.9 gives us a function r : N→ N such
that {Gn,r(n)} is a condEP-PRG with stretch γ log n and security 1/nγ . We can easily construct
a uniform condEP-PRG with essentially the same stretch and security: We parse the input as
an integer r ≤ n, a string x of length n, and some garbage w. Then we output Gn,r(x) ◦ w.

Now we implement EP-PRG in alternating time c log n, for some absolute constant c > 0
independent of γ. On input (γ, x, f(x), z, i), we want to compute the i-th output bit of our
condEP-PRG. This bit is either equal to some input bit, or the inner product of two length-n
sub-strings of the input. It is easy to implement either case in alternating O(log n) time.

5.3 Proof of Theorem 5.2

To prove Theorem 5.2, we replace the leftover hash lemma and GL by extractors and hardcore
functions with very short seed length:

Theorem 5.10 ([GUV09, Theorem 5.14]). Let dExt(n, ε) := O(log n · log(n/ε)), then for every
1 ≤ k ≤ n and ε > 0, there is a strong (k, ε)-extractor Ext : {0, 1}n × {0, 1}dExt(n,ε) → {0, 1}m,
where m = k − 2 log(1/ε)−O(1) is optimal.

We observe that the “k-wise direct product generator” used in [Hir20b, Hir20a] is a good
hardcore function:

Theorem 5.11. Let dHC(n, k, ε) := O(k log(n/ε)), then there is a hardcore function HC :
{0, 1}n × {0, 1}dHC(n,k,ε) → {0, 1}k with a poly(n2k/ε)-time reconstruction algorithm R, dis-
tinguishing probability ε, and list size L ≤ 2k · poly(k/ε).

Proof Sketch. Consider the function DP : {0, 1}n × {0, 1}d → {0, 1}d+k defined in [Hir20a,
Theorem 7.1]. The first d bits of DP(x, z) is always equal to z, and we let HC(x, z) be the
remaining k bits of DP(x, z).

In [Hir20a], the reconstruction algorithm is stated as RO : {0, 1}a×{0, 1}r → {0, 1}n. Here,
a ≤ k + O(log(k/ε)) is the “advice complexity” of DP, the first a input bits correspond to the
advice, and the remaining r = poly(n/ε) input bits are random coins used by R. For every
x ∈ {0, 1}n and every oracle O that ε-distinguishes DP(x,Ud) from Ud+k, we have

Pr
w←Ur

[∃α ∈ {0, 1}a, RO(α,w) = x] ≥ 3/4.

Our reconstruction algorithm simply samples a random w← Ur, and outputs RO(α,w) for
every α ∈ {0, 1}a. It follows that the list size is L(n, k, ε) ≤ 2a ≤ 2kpoly(k/ε).

16An n×m matrix M is Toeplitz if Mi,j = Mi+1,j+1 holds for every 1 ≤ i < n, 1 ≤ j < m. We can represent
a Toeplitz matrix by n+m− 1 elements, namely the elements in the first row and the first column.

30

Now we use Construction 5.8 to prove Theorem 5.2.

Theorem 5.2. Let S(n) be any monotone function such that S(n+O(log2 n)) ≤ S(n) ·nO(logn).
The following are equivalent:

(a) There is a weak one-way function with security S(n) · nΘ(logn).

(b) There are polynomials p, t such that the search version of Kt requires S(n) · nΘ(logn) size to
compute on a 1− 1/p(n) fraction of inputs.

(c) For every constant λ > 0, there are polynomials p, t, such that Kt requires S(n) · nΘ(logn)

size to (λ log n)-approximate on a 1− 1/p(n) fraction of inputs.

Proof Sketch. (c) =⇒ (b) is trivial.
(b) =⇒ (a): Suppose that the search version of Kt requires S(n) ·nΘ(logn) size to solve on a

1/p(n) fraction of inputs, where p is a polynomial. The construction in [LP20, Section 4] shows
that there is a weak one-way function f , such that every adversary of size S(n) · nΘ(logn) only
inverts an 1− 1/q(n) fraction of inputs, where q(n) := O(n · p(n)2).

(a) =⇒ (c): Suppose there is a constant λ > 0 such that, for every polynomial p, there
is an algorithm of size S(n) · nΘ(logn) that approximates Kt on a 1− 1/p(n) fraction of inputs,
within an additive error of λ log n. Let f be a candidate weak one-way function, δ := 1/q(n) for
any polynomial q, and ε := 1/n2. Let α := (λ+ C) log n be the stretch of the condEP-PRG we
construct, where C is a large absolute constant. Let r : N → N be any function. Consider the
function Gn,r(n) in Construction 5.8, where the input length of Gn,r(n) is

ñ := n+ 2dExt(n, ε) + dHC(n,O(log(n/(δε))), ε) = n+O(log2 n).

Suppose G runs in t(ñ) time, then every output y of G satisfies Kt(|y|)(y) ≤ ñ− (λ+ 2) log ñ.
Consider any sequence of subsets E = {En ⊆ {0, 1}n} such that H(Gn,r(n)(En)) ≥ ñ−Ω(log n).

The same argument as in Lemma 4.7 shows that there is an adversary of size

S(ñ) · ñΘ(log ñ) ≤ S(n) · nΘ(logn)

that 4ε-distinguishes Gn,r(n)(En) from the uniform distribution. It follows from Theorem 5.9
that there is an adversary of size S(n) · nΘ(logn) that inverts f on a 1 − δ fraction of inputs.
Therefore, there is no weak one-way function with hardness S(n) · nΘ(logn).

5.4 Proof of Theorem 5.3

To prove Theorem 5.3, we need a family of universal hash functions that admit very efficient
randomized encodings, constructed in [IKOS08,App17]. In [App17], it was also proved that such
hash functions are good extractors (by the leftover hash lemma) and hardcore functions (based
on previous works [HMS04,BIO14]).

In the construction of [AIK06], for a (Boolean) function computable by a parity branching
program of size S, its randomized encoding needs at least Ω(S2) additional random input bits.
Even worse, if such a function has m output bits, the randomized encoding requires Ω(mS2)
random input bits. However, to prove Theorem 5.3, we need to preserve exponential hardness of
our one-way function, which means our extractors and hardcore functions can only have O(n)
random input bits. This is exactly what [App17] does. In particular, for a “skew” circuit C
of size S and possibly many outputs, the randomized encoding of C in [App17] only requires
O(S) additional random inputs. Such circuits of linear size can already compute many powerful
objects, e.g. universal hash functions [IKOS08].

31

5.4.1 Randomized Encodings for Skew Circuits

We introduce the randomized encodings in [App17] in more detail.
We consider circuits that consist of AND and XOR gates of fan-in 2, with multiple output

gates. Let C be such a circuit, X be a subset of input variables. (For example, let C : {0, 1}n×
{0, 1}d → {0, 1}m, we may think of X as the last d input variables.) We say C is skew with
respect to X, if every AND gate in C has at least one child labeled by a constant or a variable in
X. In particular, this implies that if we substitute the variables in X by (arbitrary) constants,
the function that C computes is a linear function on variables not in X — each output bit is
simply the XOR of a subset of these variables.

Let C : {0, 1}n × {0, 1}d → {0, 1}d+m be a skew circuit w.r.t. the last d inputs, such that
the first d outputs of C is always equal to the last d inputs of C.17 Let s be the number of
internal (i.e. non-input, non-output) gates of C. The randomized encoding of C, denoted as C̃,
is a function C̃ : {0, 1}n × {0, 1}d+s → {0, 1}d+m+s defined as follows:

• The inputs of C̃ are x ∈ {0, 1}n, w ∈ {0, 1}d, and r ∈ {0, 1}s.

• For each (input, internal, or output) gate g ∈ C, we associate a bit r(g) with it. Each
input gate is associated with its input value (i.e. r(g) = xi or wi), the i-th internal gate is
associated with r(g) = ri, and every output gate is associated with r(g) = 0.

• The first d outputs of C̃ are simply w. The remaining m + s outputs correspond to
the internal gates and output gates of C. Let the i-th such gate be gi = gjOgk (where
O ∈ {AND,XOR}), then the i-th output is r(gi) XOR (r(gj)Or(gk)).

5.4.2 Highly-Uniform Linear-Size Hash Functions

As we are dealing with KT complexity, we will need the randomized encoding to be computable
in DLOGTIME. Therefore, our skew circuits need to be very uniform. We state our definition
of uniform skew circuits as follows; it is easy to see that if a family of skew circuits {Cn} is
uniform, then their randomized encodings can indeed be computed in DLOGTIME.

Definition 5.12 (Uniform Skew Circuits). Let C = {Cn : {0, 1}n×{0, 1}d(n) → {0, 1}s(n)} be a
family of skew circuits, where d(n) and s(n) are computable in time O(log n). Moreover, assume
that the fan-out of every gate is at most 2, and the last s(n) gates (i.e., gates with the largest
indices) are output gates.

We say that C is a uniform family of skew circuits, if there is an algorithm A with time
complexity linear in its input length, that on inputs n, i (in binary), outputs the information
about the i-th gate in Cn. This includes the gate type (input, AND, or XOR), indices of its input
gates (if they exist), and indices of the (at most 2) gates it feeds to.

Remark 5.13. It may seem strange that we need to output not only predecessors but also
successors of each gate. The reason is that in [IKOS08], we will need to reverse each wire
when we transform an encoding circuit to an “exposure resilient function”. In particular, after
that construction, the predecessors of each gate will become their previous successors. See
Appendix B.4 for details.

We need a family of universal hash functions H = {hn,m : {0, 1}n × {0, 1}k → {0, 1}m} in
[IKOS08], where k = O(n + m). This family has the following important property: H can be
computed by a family of linear-size uniform circuits that are skew w.r.t. the second argument
(i.e. the last k bits).

17That is, we pad the last d inputs at the beginning of our outputs, and the remaining m output bits are the
“real” outputs of C. This is a technical restriction on C to ensure its randomized encoding exists.

32

Theorem 5.14. For every integer n,m where m = O(n), there exists an integer k = O(n), and
a family of universal hash functions {hn,m : {0, 1}n × {0, 1}k → {0, 1}m}, such that hn,m can be
computed by a uniform family of linear-size circuits that are skew w.r.t. the second argument.

In [IKOS08], the authors showed that H can be computed by a family of linear-size skew
circuits, but they did not show that the circuits are uniform. Therefore, we include a proof
sketch of Theorem 5.14 in Appendix B, with an emphasis on the uniformity of these circuits.

By the leftover hash lemma of [HILL99], {hn,m} is a strong (k, ε)-extractor whenever m =
k − 2 log(1/ε). It was proved by [BIO14] (based on [HMS04]) that {hn,m} are good hardcore
functions:

Lemma 5.15. For every ε > 0, hn,m is a hardcore function with distinguishing probability ε and
a reconstruction algorithm of poly(2m ·n/ε) time. (As a result, the list size is also poly(2m ·n/ε).)

5.4.3 Proof of Theorem 5.3

Theorem 5.3. Suppose there is a weak one-way function f with security 2Ω(n) computable in
DLOGTIME. Then there is a polynomial p such that KT requires 2Ω(n) size to compute on a
1− 1/p(n) fraction of inputs.

Proof Sketch. Let δ = 1/poly(n) such that f is hard to invert on a (1 − δ) fraction of inputs.
We plug the hash functions h (which are also extractors and hardcore functions) into Construc-
tion 5.8, to build a condEP-PRG G : {0, 1}n1 → {0, 1}n1+α with stretch α := O(log n) and
security 4ε ≤ 1/n10. Here, since the seed length of h is O(n), we have n1 = O(n). More-
over, by Theorem 5.9, the condEP-PRG is 4ε-indistinguishable from the uniform distribution by
2Ω(n)-size adversaries.

As the hash functions admit a uniform family of skew circuits, the following is true: There
is a (uniform) circuit C such that G(x, z) = C(x, f(x), z), and C is a size-O(n) skew circuit
w.r.t. the z argument. We replace C by its randomized encoding to obtain another condEP-
PRG G̃ : {0, 1}n2 → {0, 1}n2+α, which is computable in DLOGTIME. Here, since the size of C
is O(n), we have n2 = O(n). As every output of G̃ has non-trivial KT complexity, and G̃ is
4ε-indistinguishable from the uniform distribution by 2Ω(n)-size adversaries, we can see that KT
is hard on average.

5.5 The Perebor Hypotheses

We mention some Perebor hypotheses as further research directions. Each hypothesis states
that to some extent, “Perebor,” or brute-force search, is unavoidable to solve a certain meta-
complexity problem. In this paper, we only consider the (bounded-error) average-case complexity
of these problems, but similar hypotheses for the worst-case or zero-error average-case complexity
can also be made. We only state these hypotheses against (uniform) randomized algorithms;
the corresponding hypotheses against non-uniform algorithms (i.e., circuits) will be called “non-
uniform Perebor hypotheses” accordingly.

These hypotheses are inspired by, and parallel to, the “exponential time hypotheses” for
satisfiability [IP01, IPZ01,CIP09]. The exponential time hypothesis (ETH) asserts that 3-SAT
requires 2εn time to solve, where ε > 0 is some absolute constant and n is the number of variables.
The strong exponential time hypothesis (SETH) asserts that for any constant ε > 0, CNF-SAT
requires 2(1−ε)n time to solve. There is a large body of work on these two hypotheses and their
variants; in particular, SETH has been a central hypothesis in fine-grained complexity [Wil18].

We believe that the future study of these Perebor hypotheses will bring us more insights into
complexity theory, similar to what the study of ETH and SETH has brought us.

33

The weak Perebor hypotheses. We introduce the following two hypotheses for Kt and KT:

Hypothesis 5.16 (Weak Perebor Hypothesis for Kt). There is a polynomial t(n) ≥ 2n and an
absolute constant c ≥ 1 such that the following holds. Every randomized algorithm that runs in
2n/c time and attempts to solve Kt fails w.p. at least 1/nc over a uniformly random input.

Hypothesis 5.17 (Weak Perebor Hypothesis for KT). There is an absolute constant c ≥ 1
such that the following holds. Every randomized algorithm that runs in 2n/c time and attempts
to solve KT fails w.p. at least 1/nc over a uniformly random input.

Theorem 5.2 shows that the non-uniform version of Hypothesis 5.16 is equivalent to the
existence of exponentially-hard weak one-way functions (against non-uniform adversaries). The-
orem 5.3 shows that the non-uniform version of Hypothesis 5.17 is implied by the existence of
exponentially-hard weak one-way function computable in DLOGTIME (also against non-uniform
adversaries).

The strong Perebor hypotheses. We start with the following hypothesis:

Hypothesis 5.18 (Strong Perebor Hypothesis for Kt). There are polynomials t(n) ≥ 2n and
p(n), such that for every constant ε > 0, every probabilistic algorithm that runs in 2(1−ε)n time
and attempts to solve Kt fails w.p. at least 1/p(n) over a uniformly random input.

By Theorem 5.2, the non-uniform version of Hypothesis 5.18 is equivalent to the existence
of weak one-way functions with hardness 2(1−o(1))n (against non-uniform adversaries).

However, Building on Hellman [Hel80], Fiat and Naor [FN99] showed that no such one-way
function exists in the non-uniform RAM model. In particular, for any function f : {0, 1}n →
{0, 1}n, there is an algorithm that runs in 23n/4 time, with random access to an advice tape of
length 23n/4, and inverts f at any point. It is conceivable that a similar attack could also be
implemented in circuits, i.e. every function f could be inverted by a circuit of size 299n/100 in
the worst-case. This gives strong evidence that the non-uniform version of Hypothesis 5.18 is
false. To the best of our knowledge, (the uniform version of) Hypothesis 5.18 seems secure.

Following [BGI08, Section 1.1], if we still want (non-uniform) maximum hardness, we can
consider collections of one-way functions, which corresponds to the conditional (time-bounded)
Kolmogorov complexity.

Fix a universal Turing machine U , let x, y be two strings and t be a time bound. Define
cKt(x | y) as the length of the smallest description d, such that for every 1 ≤ i ≤ |x| + 1 and
b ∈ {0, 1, ?}, Ud,y(i, b) accepts in time t if and only if xi = b. Note that the universal Turing
machine is given random access to y (for free), hence d is a description of x conditioned on
y. We assume that the default input distribution of cKt consists of a random string x and a
random string y, both of input length n. Hence in the hypothesis below, we actually state that
no non-uniform algorithm of 2(1−ε)n size can solve cKt on input length 2n.

Hypothesis 5.19 (Strong Perebor Hypothesis for cKt; Non-uniform Version). There are poly-
nomials t(n) ≥ 2n and p(n), such that for every constant ε > 0, the following holds. Every
non-uniform algorithm of 2(1−ε)n size that attempts to solve cKt fails on a 1/p(n) fraction of
inputs.

6 MCSP-Related Results

In this section, we generalize Theorem 1.1 to the case of MCSP. Throughout this section, we
maintain the convention that our input is the truth table of a function f : {0, 1}n → {0, 1}, and
N = 2n is the input length. We use tt to denote an input truth table. Recall that Size(tt) is the
circuit complexity of tt. The size of a circuit is always measured in gates. We consider circuits
over the B2 basis, i.e., a gate can compute any function over its 2 inputs.

34

Theorem 1.3 (Informal). The following are true:

• If MCSP is exponentially hard on average, then there is a (super-polynomially hard) one-
way function.

• If there is an exponentially hard weak one-way function in NC0, then MCSP is (exponen-
tially) hard on average.

Ideally, we would like to prove that MCSP is bounded-error hard on average if and only if
there is a one-way function in DLOGTIME. However, we could only prove weaker results, since
we do not have good understandings of the circuit complexity of a random Boolean function.

For KT complexity, we know that a random string x of length N is likely to satisfy that
KT(x) ∈ [N −O(logN), N +O(logN)]. That is, N is a good estimate of the KT complexity of
a random string, within additive error η := O(logN). It turns out that the overhead of [LP20]
is 2O(η), which is polynomial in N .

What about MCSP? For the maximum circuit complexity function, we only know that:

Theorem 6.1 ([FM05]). There is a constant c such that the following is true. Let C(n) be the
maximum circuit complexity of any function f : {0, 1}n → {0, 1}, then Clb(n) ≤ C(n) ≤ Cub(n),
where

Clb(n) =
2n

n

(
1 +

log n

n
− c

n

)
, and Cub(n) =

2n

n

(
1 +

3 log n

n
+
c

n

)
.

Therefore, given a random truth table tt of length N = 2n, we could use any value between
Clb(n) and Cub(n) as an estimate of Size(tt). However, we could only prove that our additive
error is η := (Cub(n)− Clb(n)) ·O(n) = O(2n log n/n).18 The overhead in [LP20] would be

2O(η) = 2
O
(
N log logN

logN

)
.

Nevertheless, as η = o(N) is non-trivial, we can still achieve non-trivial results for MCSP.

Remark 6.2. Ilango encountered a similar issue in his search-to-decision reduction for MFSP
(Minimum Formula Size Problem) [Ila20a]. The additive error for formula complexity is η :=
O(N/ log logN), thus Ilango only managed to show an (average-case) reduction with time com-
plexity 2O(η) unconditionally.

Comparing [Ila20a] and our work, the 2O(η) factor comes from different reasons. Ilango’s
algorithm runs in time poly(t) where t is the number of “near-optimal” formulas for the input
truth table; the current best upper bound of t for a random truth table is 2O(η). In our paper, we
need to sample a uniformly random circuit (w.r.t. some encoding), and let p be the probability
that the truth table of a sampled circuit is equal to a given one; the current best lower bound of
p is 2−N−O(η). (See Section 6.2.) It is an interesting open problem to improve either estimate.

6.1 Preliminaries

6.1.1 Extreme Hardness Amplification for One-Way Functions

We will construct a one-way function fMCSP based on the assumption that MCSP is exponentially
hard on average. However, we are only able to prove that fMCSP is hard to invert on an inverse-
sub-exponential fraction (2−o(N)) of inputs. We will need the following variant of Theorem 3.12,
that constructs a strong one-way function (of super-polynomial hardness) from such a one-way
function that is “exponentially hard” but also “(sub-)exponentially weak”.

18The extra O(n) factor is because we measure η by bit-complexity instead of gate-complexity, and every gate
in the (maximum) circuit needs O(n) bits to describe.

35

Theorem 6.3. Let p(n) = 2o(n), f be a length-preserving function that is exponentially hard to
invert on a 1/p(n) fraction of inputs. In other words, there is a constant ε > 0 such that for
every integer n and every randomized algorithm A that runs in 2εn time,

Pr
x←Un

[
A(f(x)) ∈ f−1(f(x))

]
≤ 1− 1/p(n).

Then there exists a one-way function.

Proof Sketch. We verify that the standard proof for Theorem 3.12 also works in our setting.
We use notations in [Gol01, Theorem 2.3.2]. Let f be a candidate weak one-way function, and
m(n) := n2 · p(n) < 2o(n). By [Gol01, Theorem 2.3.2], we can construct a function g on m(n)
inputs bits, such that the following holds. Given any adversary B that inverts g w.p. 1/q(m),
we can construct an adversary that makes a(n) := 2n2p(n)q(m(n)) calls to B on input length
m(n), and inverts f w.p. 1− 1/p(n).

Suppose that g is not a one-way function. Then there is a polynomial q and an adversary
B that runs in q(m) time and inverts g w.p. 1/q(m). We can invert f w.p. 1 − 1/p(n) by an
adversary of time complexity

O(a(n) · q(m(n))) < 2o(n),

contradicting the hardness of f .

6.1.2 Maximum Circuit Complexity

It will be convenient to fix an encoding of circuits into binary strings so that we can sample
a uniformly random circuit with a certain description length. Fortunately, such an encoding
scheme naturally occurs in the lower bound proofs for the maximum circuit complexity, which
usually use a counting argument [Sha49,FM05]: If every circuit of size LB(n) can be encoded
as a string of length 2n− 1, then there must exist an n-bit Boolean function without size-LB(n)
circuits.

In particular, in the lower bound proof of [FM05], the authors represented a circuit as a
stack program. For a detailed description of stack programs, the reader is referred to [FM05].
We only need the following property of them:

Theorem 6.4. There is a constant c such that every size-s circuit on n inputs can be encoded
into a stack program of bit-length (s+ 1)(c+ log(n+ s)).

We also need the fact that given the description of a stack program, we can compute its
truth table (the truth table of the circuit corresponding to it) in polynomial time.

We define

C ′ub(n) := (Cub(n) + 1)(log(n+ Cub(n)) +O(1)) ≤ 2n
(

1 +
2 log n

n
+
O(1)

n

)
.

By Theorem 6.4, every Boolean function over n inputs has a stack program of bit-length C ′ub(n).
We also need the following theorem, which says that for any Boolean function f on n input

bits, there is a circuit of size roughly 2n/n that computes f simultaneously on multiple inputs.

Theorem 6.5 ([Uhl74,Uhl84]; see also [Weg87, p. 304]). Let f : {0, 1}n → {0, 1} be any Boolean
function, r be a constant. There is a circuit C of size at most (1 + o(1))2n/n such that for every
x1, x2, . . . , xr ∈ {0, 1}n, C(x1, x2, . . . , xr) = f(x1) ◦ f(x2) ◦ · · · ◦ f(xr).

6.2 One-Way Functions from Hardness of MCSP

In this section, we construct a one-way function assuming MCSP is (exponentially) hard on
average.

36

Theorem 6.6. Suppose that MCSP is exponentially hard on average. In particular, there is
a constant ε > 0 and a function q(N) = 2o(N), such that for every randomized algorithm A
running in 2εN time,

Pr
tt←UN

[A(tt) = Size(tt)] ≤ 1− 1/q(N).

Then there exists a one-way function.

Proof. By Theorem 6.3, it suffices to construct a length-preserving function f that satisfies the
following one-wayness property: There is a function p(Ñ) = 2o(Ñ), such that for every integer
Ñ and every randomized algorithm A that runs in 2εÑ/10 time,

Pr
x←UÑ

[A(f(x)) ∈ f−1(f(x))] ≤ 1− 1/p(Ñ). (3)

Let Ñ be the input length of f , n be the largest integer such that n+ C ′ub(n) ≤ Ñ . (Recall
that every Boolean function over n inputs can be represented by a circuit, or stack program,
of bit-length C ′ub(n).) The first n bits of the input denote an integer s ≤ Cub(n), and the next
C ′ub(n) bits denote a circuit C of size at most s. If the input is invalid (e.g., if s > Cub(n)
or the size of C is strictly larger than s), our function outputs ⊥. Otherwise it outputs s
and tt(C), where tt(C) is the length-2n truth table of C. Then we pad the output to make f
length-preserving.

In other words, our weak one-way function is defined as follows:

f(s, C) = s ◦ tt(C).

Let Aowf be any candidate adversary that tries to invert f . We will construct an algorithm
AMCSP based on Aowf as in Algorithm 3. In particular, AMCSP attempts to solve MCSP on truth
tables of length N := 2n, using Aowf that attempts to invert f on input length Ñ . For large
enough n, we have Ñ ≤ 2N , thus if Aowf runs in 2εÑ/10 time, then AMCSP runs in 2εN time.
Then, by the hardness of MCSP, AMCSP does not compute the circuit complexity correctly on
a significant fraction of truth tables. Based on that, we can show that Aowf satisfies Eq. (3).

Algorithm 3 Bounded-Error Heuristic AMCSP for MCSP from Inverter Aowf for f
1: function AMCSP(tt)
2: opt← +∞
3: for s ∈ [Cub(n)] do
4: (s′, C)← Aowf(s, tt)
5: if tt(C) = tt then
6: opt← min{opt, |C|}
7: return opt

Let Err be the set of truth tables tt ∈ {0, 1}N on which AMCSP fails to output the correct
answer w.p. ≥ 1/2q(N). By the hardness of MCSP and a Markov bound, we have

|Err|/2N ≥ 1− 1− 1/q(N)

1− 1/2q(N)
≥ 1

2q(N)− 1
.

We can see that Aowf fails on every input of the form (Size(tt), tt) where tt ∈ Err, also w.p. ≥
1/2q(N). Every such input is generated in the OWF experiment w.p. at least 1/2C

′
ub(n)+n. That

is:
Pr[f(UÑ) = (Size(tt), tt)] ≥ 1/2C

′
ub(n)+n.

37

It follows that

Pr
x←UÑ

[Aowf(f(x)) 6∈ f−1(f(x))] ≥ (|Err|/2C′
ub(n)+n) · (1/2q(N))

≥ (|Err|/2N+O
(
N log logN

logN

)
) · (1/2q(N))

≥ 1

(2q(N)− 1)2q(N)2
O
(
N log logN

logN

) .

Let p(Ñ) := (2q(N) − 1)2q(N)2
O
(
N log logN

logN

)
. It is indeed the case that p(Ñ) = 2o(Ñ), since

N = 2n ≥ Ω(Ñ), and q(N) = 2o(N). We can see that every adversary Aowf that runs in 2εÑ/10

time fails to invert a random output of f w.p. ≥ p(Ñ).

6.3 Hardness of MCSP from DLOGTIME One-Way Functions

We establish a weak converse of Theorem 6.6, namely that if there is a weak one-way function
in DLOGTIME with exponential security, then MCSP is (exponentially) hard on average. The
first step is to build a condEP-PRG from the one-way function.

Lemma 6.7. Suppose that there is a weak one-way function f computable in DLOGTIME with
security 2Ω(N). Then for every small enough constant κ > 0, the following holds.

Let n be an integer and N := 2n. There is a DLOGTIME-computable condEP-PRG G̃
mapping (1− κ)N bits to N bits, such that for some distribution E:

• no adversary of size 2o(N) could 1/N10-distinguish G̃(E) from the uniform distribution;

• the Shannon entropy of G̃(E) is at least (1− κ− o(1))N ;

• the outputs of G̃, when viewed as truth tables, have circuit complexity ≤ (1−κ+o(1))N/n.

Proof. We start by building a condEP-PRG G with linear-size skew circuits. Let K be a large
enough universal constant that we fix later, κ1 := Kκ

1−κ . Let M := b N
K+κ1

c be an input length
(of f). Let δ := 1/poly(M) and κ2 > 0 be a constant such that every adversary of size
2κ2M fails to invert f on a 1 − δ fraction of length-M inputs. Let α := κ1M be the stretch
of G. For ε := 1/4N10, the outputs of G should be 4ε-indistinguishable from true random
strings. We use the hash functions in Section 5.4 as the extractors and hardcore functions.
Plugging in Construction 5.8, for some absolute constant K1 > 0, we obtain a condEP-PRG
G : {0, 1}M × {0, 1}K1M → {0, 1}(1+K1+κ1)M with the following properties.

• For some absolute constant K2 > 0, G admits a circuit of size K2M that is skew w.r.t. the
last K1M inputs. Moreover, the first K1M outputs of G is equal to the last K1M inputs of
G. (We can achieve this property by rearranging the output bits of G in Construction 5.8.)

• No adversary of size 2Ω(M) could 4ε-distinguish the outputs of G from the uniform distri-
bution. (Note that the list size of the hardcore function is 2O(α) = 2O(κ1M). So this is true
as long as κ2 > O(κ1) ≥ O(κ).)

• The entropy of the outputs of G is at least M − Ω(logM).

Let G̃ denote the randomized encoding of G (as in Section 5.4.1). Then G̃ is a DLOGTIME-
computable condEP-PRG that maps KM input bits to (K + κ1)M input bits. We pad N −
(K + κ1)M “useless” random bits to both the inputs and the outputs of G̃, so its output length
is indeed N . The entropy of the outputs of G̃ is at least N−κ1M−O(logM) ≥ (1−κ−o(1))N .
Again, no adversary of size 2o(M) could 4ε-distinguish the outputs of G̃ from random strings.

38

Next, we prove that the outputs of G̃, when viewed as truth tables, have non-trivial circuit
complexity. Let ttin ∈ {0, 1}(1−κ)N be an input, ttout := G̃(ttin). Let r be a constant such that G̃
is a non-adaptive function that makes r queries to its input. That is, on input i, G̃(ttin) computes
the indices q(i, 1), q(i, 2), . . . , q(i, r), queries (ttin)q(i,j) for each 1 ≤ j ≤ r, and computes (ttout)i
based on these answers. Note that every DLOGTIME machine making r adaptive queries is
equivalent to a DLOGTIME machine making 2r non-adaptive queries, thus it is without loss of
generality to assume G̃ is non-adaptive.

By Theorem 6.5, there is a circuit C of size (1−κ+ o(1))N/n that on input (x1, x2, . . . , xr),
outputs the concatenation of (ttin)x1 , (ttin)x2 , . . . , (ttin)xr . We design a circuit for ttout as follows.

• On input i, simulate G̃(i) to obtain the indices q(i, j) for every 1 ≤ j ≤ r. This step takes
O(n) time, and thus can be implemented in size poly(n).

• Use the circuit C of size (1− κ+ o(1))N/n to obtain (ttin)q(i,j) for every 1 ≤ j ≤ r.

• Finally, we can simulate G̃(i) to obtain (ttout)i. Again, this step can be implemented in
size poly(n).

It follows that the circuit complexity of ttout is at most (1− κ+ o(1))N/n.

Now we prove the hardness of MCSP using the condEP-PRG constructed above.

Theorem 6.8. Suppose that there is a weak one-way function f computable in DLOGTIME with
security 2Ω(N). (See Definition 5.1.) Then, no non-uniform algorithm of size 2o(N) can solve
MCSP on a 1− 2−o(N) fraction of inputs.

Proof. Suppose there is a constant ε > 0 and a non-uniform algorithm AMCSP that solves
MCSP on a 1 − 2−εN fraction of inputs. Let G̃ be the condEP-PRG in the conclusion of
Lemma 6.7 with parameter κ := ε/2, and E be the corresponding distribution of inputs. We
will use AMCSP to construct a distinguisher A for G̃(E) as follows: On input truth table tt, if
AMCSP(tt) ≥ (1− κ/2)N/n, then A(tt) = 1; otherwise A(tt) = 0.

For a uniformly random truth table tt← UN , we have that

Pr
tt←UN

[A(tt) = 1]

≥ 1− 2−εN − Pr
tt←UN

[Size(tt) < (1− κ/2)N/n]

≥ 1− 2−εN − 2(s+1)(O(1)+log(n+s))/2N for s = (1− κ/2)N/n By Theorem 6.4

≥ 1− 2−εN − 2−(κ/2−o(1))N .

On the other hand, consider a pseudorandom truth table tt ← G̃(E). Let H := H(G̃(E)),
Good be the set of outputs of G̃ that are outputted w.p. at most 21−H . Then

Pr
tt←G̃(E)

[tt ∈ Good] ≥ 1

(1− κ)N −H + 1
≥ 1

o(N)
. (See also the proof of Lemma 4.7.)

Let Err be the subset of Good for which AMCSP outputs a wrong answer, then |Err| ≤ 2(1−ε)N ,
which means

Pr
tt←G̃(E)

[tt ∈ Err] ≤ 21−H · |Err| ≤ 2(κ−ε+o(1))N .

It follows that
Pr

tt←G̃(E)
[A(tt) = 1] ≤ 1− 1

o(N)
+ 2(κ−ε+o(1))N .

39

Therefore, A is a non-uniform algorithm of size 2o(N) such that∣∣∣∣∣ Pr
tt←UN

[A(tt) = 1]− Pr
tt←G̃(E)

[A(tt) = 1]

∣∣∣∣∣ > 1/N2,

contradicting the security of G̃.

Remark 6.9. Theorem 6.6 and 6.8 are not exactly converses of each other, as there are two gaps.

First, there is a loss of 2
O
(
N log logN

logN

)
. Second, Theorem 6.6 only produces a (polynomial-time

computable) one-way function, but Theorem 6.8 requires a DLOGTIME-computable one-way
function to start with.

The first gap seems unavoidable given current knowledge about the maximum circuit com-
plexity. However, we believe that the second gap can be eliminated. In particular, exponential
average-case hardness of MCSP should imply a one-way function in DLOGTIME.

If there is a ⊕L heuristic algorithm for evaluating the truth table of a stack program, then
it is indeed true that exponential hardness of MCSP implies a one-way function in DLOGTIME.
Note that this heuristic only needs to succeed on most stack programs.19 For example, if the
circuit that corresponds to a uniformly random description has depth at most O(log n) with
high probability, then a ⊕L heuristic can evaluate the circuit up to a particular depth, and still
be correct on most inputs. We believe that a random stack program should represent a shallow
circuit (w.h.p.), but we are unable to prove it.
Remark 6.10 (Results for MFSP). It is possible to extend Theorem 6.6 to the case of MFSP
(Minimum Formula Size Problem). In particular, suppose that MFSP is exponentially hard on
average, then there is a (super-polynomially hard) one-way function. Moreover, we only need
to compute truth tables of formulas to evaluate this one-way function, which is in ALOGTIME
[Bus87], hence this one-way function is in ALOGTIME, and we obtain DLOGTIME-computable
one-way functions from Theorem 3.21. We omit the proof here, as it is essentially the same as
Theorem 6.6 except that it uses the best bounds for maximum formula complexity (see [Juk12]
and references therein).

However, we are not aware of any “mass production theorem” (Theorem 6.5) for formulas.
Therefore we are not able to prove an MFSP-version of Theorem 6.8.

7 The Average-Case Complexity of MKtP

7.1 Characterizing One-Way Functions Using MKtP

We recall the main result of [LP20] showing an equivalence between the average-case hardness
of Kp for some polynomial p and the existence of one-way functions.

Theorem 7.1 ([LP20]). The following are equivalent:

1. There is a polynomial p such that Kp is bounded-error hard on average.

2. One-way functions exist.

3. For every polynomial p(n) ≥ 2n and constant λ > 0, Kp is bounded-error hard on average
to approximate within an additive factor of λ log n.

Somewhat counter-intuitively, we show that a similar equivalence between the average-case
hardness of Kt and the existence of one-way functions. (Note that Kt is known to be EXP-hard in
the worst case under polynomial-size reductions [ABK+06].) The proof is very closely analogous
to the proofs in Section 4, exploiting the fact that “typical” strings of high Kt complexity can be
generated from their optimal descriptions in polynomial time. Hence we just provide a sketch.

19If this heuristic is always true (i.e. it is a worst-case algorithm), then ⊕L = P.

40

Theorem 7.2. The following are equivalent:

1. Kt is bounded-error hard on average.

2. One-way functions exist.

3. For every constant λ > 0, Kt is bounded-error hard on average to approximate within an
additive factor of λ log n.

Proof Sketch. (3) =⇒ (1) is trivial.
(1) =⇒ (2): the proof closely follows the proof of Theorem 4.1.
Suppose that there is a constant c such that every PPT algorithm computes Kt complexity

correctly on at most a 1− 1/nc fraction of inputs. We observe that for all but a 1/n2c fraction
of inputs x ∈ {0, 1}n, optimal pairs (d, t) such that d + log t = Kt(x) have the property that
t ≤ O(n2c+1). Actually, for all but a 1/n2c fraction of inputs, K(x) ≥ n−2c log n−1, while for all
inputs x we have Kt(x) ≤ n+ log n+O(1). Hence for all strings x with K(x) ≥ n− 2c log n− 1,
x can be generated from its optimal description in time O(n2c+1).

We define a weak one-way function f as follows. It takes as input a triple (`, k,M), where
` ∈ [n + log n], k ∈ [(2c + 1) log n], and M ∈ {0, 1}n+logn, and outputs (`, k, out). Here out
is the result of running UM ′ for at most 2k steps, where M ′ is the `-bit prefix of M . Just as
in Claim 4.3, the output distribution of f on a uniformly chosen input “almost dominates” the
uniform distribution. Assume there is an inverter for f , a heuristic algorithm for the search
version of Kt(x) can cycle over all possible ` and k, and find the optimal description of x. As
Kt is bounded-error hard on average, our candidate one-way function f is secure.

(2) =⇒ (3): We use Theorem 3.14 to construct a condEP-PRG G with stretch γ log n and
security 1/nγ from the presumed one-way function. Here, let c be a constant such that G is
computable in time nc, we choose γ = λ+ c+ 2.

We use an argument closely analogous to that of Lemma 4.7 to show that Kt is bounded-
error hard on average to approximate within an additive factor of λ log n. The idea is simple:
every output of the condEP-PRG has Kt complexity at most n+ c log n+O(1), while a random
string of length n + γ log n is likely to have Kt complexity close to n + γ log n. Hence, for our
choice of parameters, an efficient heuristic algorithm that approximates Kt complexity within
an additive factor of λ log n can distinguish the outputs of G from random.

Theorem 7.1 and Theorem 7.2 yield the following corollary.

Corollary 7.3. Kt is bounded-error hard on average iff there is a polynomial p such that Kp is
bounded-error hard on average.

Corollary 7.3 gives a new non-trivial connection between meta-complexity problems that
seems hard to argue without using one-way functions as an intermediate notion.

7.2 A Complexity Theoretic Analogue

Theorem 7.2 shows that the weak average-case hardness of Kt is equivalent to the existence of
cryptographic pseudo-random generators. We next show that for a slightly different setting of
parameters, the average-case hardness of Kt is equivalent to the existence of complexity-theoretic
pseudo-random generators against non-uniform adversaries. Thus average-case complexity of a
single natural problem, namely Kt, can be used to characterize both cryptographic pseudoran-
domness and complexity-theoretic pseudorandomness.

Recall that cryptographic PRGs are required to be computable in fixed polynomial time but
to be secure against adversaries that can run within any polynomial time bound. In contrast,
complexity-theoretic PRGs are allowed to use more resources than the adversary.

41

Definition 7.4. Given functions t : N → N, ` : N → N (satisfying `(n) ≤ n for each n) and
s : N → N, we say that a family of functions {Gn}, where Gn : {0, 1}`(n) → {0, 1}n is a time t
pseudo-random generator (PRG) with seed length ` against size s if G(z) is computable in time
t(|z|) and for each n, Gn(U`(n)) is 1/s(n)-indistinguishable from Un by size s(n) circuits. The
PRG is said to be seed-extending if z is a prefix of G(z) for each seed z.

Nisan and Wigderson [NW94, BFNW93] showed how to base seed-extending complexity-
theoretic PRGs on the hardness of E (exponential-time). The parameters in the following theo-
rem statement are implicit in their main result.

Theorem 7.5 ([NW94, BFNW93]). If DTIME[2npoly(n)] 6⊆ P/poly, then for each ` such that
`(n) = nΩ(1), there is a seed-extending time 2`poly(`) PRG with seed length ` against polynomial
size.

We use Theorem 7.5 to derive an equivalence between the worst-case hardness of Kt, the
existence of complexity-theoretic PRGs with non-trivial seed length, and very mild average-
case hardness of Kt, where the hardness is against non-uniform adversaries. The idea of the
proof is similar to that of [ABK+06], who showed that computing Kt complexity is hard for
exponential-time under polynomial-size reductions.

Theorem 7.6. The following are equivalent:

1. EXP 6⊆ P/poly.

2. For each ε > 0, there is a time 2`poly(`) PRG with seed length nε against polynomial size.

3. There are no polynomial size circuits for Kt.

4. For each ε > 0, there is a seed-extending time 2`poly(`) PRG with seed length nε against
polynomial size.

5. For any constant δ > 1/2, there are no polynomial size circuits computing Kt on a 1−1/2δn

fraction of inputs.

Proof. (1) ⇐⇒ (3) is shown in [ABK+06].
(1) ⇐⇒ (2) is shown in [NW94,BFNW93].
(5) =⇒ (3) is trivial.
(3) =⇒ (4): We use Theorem 7.5. Kt can be computed in time O(2npoly(n)), and we can

define a decision version of Kt that is equivalent to the search version and computable in time
2npoly(n) as follows: For x ∈ {0, 1}n and k ∈ [n+ log n], (x, k) is a Yes instance of the decision
version of Kt iff Kt(x) ≤ k. By Theorem 7.5, the hardness of the decision version implies that
for each ε > 0, there is a seed-extending time 2mpoly(m) PRG with seed length nε against
polynomial size.

(4) =⇒ (5): Consider a seed-extending 2mpoly(m) time PRG G = {Gn} with seed length
γn, where 1/2 > γ > 1− δ. Such a PRG is implied by a PRG with smaller seed length, simply
by truncating the output. Since the seed length is γn and the PRG is computable in time
2γnpoly(n), we have that each output of the PRG has Kt complexity at most 2γn+O(log n) <
n− log n. On the other hand, a uniformly chosen input of length n has Kt complexity very close
to n, with high probability.

Suppose that there are polynomial size circuits {Cn} computing Kt on a 1−1/2δn fraction of
inputs. By our choice of δ, this means that they are correct on at least a 2/3 fraction of strings
Gn(z) for seed z of length γn. Now we can define a distinguisher D as follows: D computes
Cn(x) and accepts iff Cn(x) ≤ n−log(n). D accepts with probability 2/3 on Gn(z) for uniformly
chosen z, but with probability at most 1/3 on x for uniformly chosen x of length n, since all but
a o(1) fraction of strings have Kt(x) > n − log(n) and Cn answers correctly on all but a o(1)
fraction of these strings with high Kt complexity. Therefore D is a distinguisher of polynomial
size, contradicting the assumption that G is a PRG.

42

8 Open Problems

We conclude this paper with a few open questions.

Perebor hypotheses. How plausible are the Perebor hypotheses in Section 5.5? We believe
it is within reach to refute the non-uniform version of Hypothesis 5.18, by e.g. implementing the
inverter in [FN99] as circuits.

It would be exciting to refute the other Strong Perebor Hypotheses. Let t(n) be a polynomial
(say t(n) = 10n for simplicity). Is there a (probabilistic) algorithm running in 2n/nω(1) time
that computes Kt in the worst case? What about the average case? Does such an algorithm
imply new circuit lower bounds, as in the case of SAT algorithms [Wil13] and learning algorithms
[OS17]? Is there a circuit family of 2n/nω(1) size that computes cKt (on input length 2n = n+n)?

The Strong Exponential Time Hypothesis is used extensively in fine-grained complexity.
Conditioning on SETH, we can prove many polynomial lower bounds for problems in P (e.g. the
Orthogonal Vectors problem requires n2−o(1) time [Wil05]). Do the Strong Perebor Hypotheses
imply non-trivial conditional lower bounds for natural problems in P?

Random circuits. Due to our limited knowledge about circuit complexity, the relations pre-
sented in Section 6 are not tight. We point out a few questions whose resolution would tighten
the relationship between MCSP and one-way functions.

First, is there an efficiently samplable distribution over circuits, such that for most truth table
tt ∈ {0, 1}N , the probability that the optimal circuit for tt is sampled is at least 2−N/poly(N)?
Such a distribution would imply a one-way function from super-polynomial hardness of MCSP.
The trivial solution as presented in Section 6.2 is to sample a uniformly random circuit according

to some encoding. The probability that the optimal circuit is sampled is 2−N/2
O
(
N log logN

logN

)
.

Second, is there a ⊕L heuristic algorithm for evaluating a random circuit that succeeds
on most circuits? Of course, this depends on the exact definition of “random” circuits. Such
a heuristic implies a DLOGTIME-computable one-way function from the hardness of MCSP,
establishing a tighter converse of Theorem 6.8.

Last, does the existence of DLOGTIME-computable one-way functions imply the hardness of
MFSP? The main technical difficulty is that we do not have a formula version of Theorem 6.5.

Other cryptographic primitives? Meta-complexity can characterize the existence of one-
way functions [LP20] and one-way functions in NC0 (this paper). Is there a similar charac-
terization for other cryptographic primitives, such as public-key encryption [RSA78,DH76], or
indistinguishability obfuscation [BGI+12]?

Is there a meta-complexity characterization of exponentially-hard strong one-way functions?
This would bring new insights to the old question of hardness amplification for one-way functions
that preserve exponential security [GIL+90].

Acknowledgments

The first author is grateful to Lijie Chen, Mahdi Cheraghchi, and Yanyi Liu for helpful discus-
sions. The second author thanks Yuval Ishai for a useful e-mail discussion. We would like to
thank anonymous CCC reviewers for helpful comments that improve the presentation of this
paper.

43

References

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach.
Cambridge University Press, 2009. (cit. on p. 24, 25, 51)

[ABK+06] Eric Allender, Harry Buhrman, Michal Koucký, Dieter van Melkebeek, and Detlef
Ronneburger. Power from random strings. SIAM Journal of Computing, 35(6):1467–
1493, 2006. doi:10.1137/050628994. (cit. on p. 1, 2, 3, 4, 7, 12, 14, 40, 42)

[ABN+92] Noga Alon, Jehoshua Bruck, Joseph Naor, Moni Naor, and Ron M. Roth. Con-
struction of asymptotically good low-rate error-correcting codes through pseudo-
random graphs. IEEE Transactions on Information Theory, 38(2):509–516, 1992.
doi:10.1109/18.119713. (cit. on p. 57)

[ACM+21] Eric Allender, Mahdi Cheraghchi, Dimitrios Myrisiotis, Harsha Tirumala, and
Ilya Volkovich. One-way functions and a conditional variant of MKTP. Elec-
tronic Colloquium on Computational Complexity (ECCC), 2021. URL: https:
//eccc.weizmann.ac.il/report/2021/009/. (cit. on p. 6, 7)

[AGGM06] Adi Akavia, Oded Goldreich, Shafi Goldwasser, and Dana Moshkovitz. On basing
one-way functions on NP-hardness. In Proc. 38th Annual ACM Symposium on The-
ory of Computing (STOC), pages 701–710, 2006. doi:10.1145/1132516.1132614.
(cit. on p. 2)

[AH19] Eric Allender and Shuichi Hirahara. New insights on the (non-)hardness of circuit
minimization and related problems. ACM Transactions on Computation Theory,
11(4):27:1–27:27, 2019. doi:10.1145/3349616. (cit. on p. 1)

[AIK06] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Cryptography in NC0. SIAM
Journal of Computing, 36(4):845–888, 2006. doi:10.1137/S0097539705446950.
(cit. on p. 2, 3, 4, 5, 6, 8, 9, 17, 18, 21, 25, 31)

[Ajt96] Miklós Ajtai. Generating hard instances of lattice problems (extended abstract).
In Proc. 28th Annual ACM Symposium on Theory of Computing (STOC), pages
99–108, 1996. doi:10.1145/237814.237838. (cit. on p. 1)

[All01] Eric Allender. When worlds collide: Derandomization, lower bounds, and Kol-
mogorov complexity. In Proc. 21st Foundations of Software Technology and The-
oretical Computer Science (FSTTCS), volume 2245 of Lecture Notes in Computer
Science, pages 1–15, 2001. doi:10.1007/3-540-45294-X_1. (cit. on p. 1, 2, 3, 13)

[App14] Benny Applebaum. Cryptography in Constant Parallel Time. Information Security
and Cryptography. Springer, 2014. doi:10.1007/978-3-642-17367-7. (cit. on p.
2, 6, 8)

[App16] Benny Applebaum. Cryptographic hardness of random local functions - survey.
Computational Complexity, 25(3):667–722, 2016. (cit. on p. 6)

[App17] Benny Applebaum. Exponentially-hard Gap-CSP and local PRG via local hardcore
functions. In Proc. 58th Annual IEEE Symposium on Foundations of Computer
Science (FOCS), pages 836–847, 2017. doi:10.1109/FOCS.2017.82. (cit. on p. 11,
31, 32)

[BFNW93] László Babai, Lance Fortnow, Noam Nisan, and Avi Wigderson. BPP has subex-
ponential time simulations unless EXPTIME has publishable proofs. Computatioanl
Complexity, 3:307–318, 1993. doi:10.1007/BF01275486. (cit. on p. 42)

44

https://doi.org/10.1137/050628994
https://doi.org/10.1109/18.119713
https://eccc.weizmann.ac.il/report/2021/009/
https://eccc.weizmann.ac.il/report/2021/009/
https://doi.org/10.1145/1132516.1132614
https://doi.org/10.1145/3349616
https://doi.org/10.1137/S0097539705446950
https://doi.org/10.1145/237814.237838
https://doi.org/10.1007/3-540-45294-X_1
https://doi.org/10.1007/978-3-642-17367-7
https://doi.org/10.1109/FOCS.2017.82
https://doi.org/10.1007/BF01275486

[BGI08] Eli Biham, Yaron J. Goren, and Yuval Ishai. Basing weak public-key cryptogra-
phy on strong one-way functions. In Proc. 5th Theory of Cryptography Conference
(TCC), volume 4948 of Lecture Notes in Computer Science, pages 55–72, 2008.
doi:10.1007/978-3-540-78524-8_4. (cit. on p. 34)

[BGI+12] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai,
Salil P. Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs.
Journal of the ACM, 59(2):6:1–6:48, 2012. doi:10.1145/2160158.2160159. (cit. on
p. 43)

[BIO14] Joshua Baron, Yuval Ishai, and Rafail Ostrovsky. On linear-size pseudorandom
generators and hardcore functions. Theoretical Computer Science, 554:50–63, 2014.
doi:10.1016/j.tcs.2014.06.013. (cit. on p. 11, 31, 33)

[Bor57] J. L. Bordewijk. Inter-reciprocity applied to electrical networks. Applied Scientific
Research, Section A, pages 1–74, 1957. doi:10.1007/BF02410413. (cit. on p. 58)

[BT06] Andrej Bogdanov and Luca Trevisan. On worst-case to average-case reductions for
NP problems. SIAM Journal of Computing, 36(4):1119–1159, 2006. doi:10.1137/
S0097539705446974. (cit. on p. 2)

[Bus87] Samuel R. Buss. The Boolean formula value problem is in ALOGTIME. In Proc.
19th Annual ACM Symposium on Theory of Computing (STOC), pages 123–131,
1987. doi:10.1145/28395.28409. (cit. on p. 40)

[CDH+00] Ran Canetti, Yevgeniy Dodis, Shai Halevi, Eyal Kushilevitz, and Amit Sahai.
Exposure-resilient functions and all-or-nothing transforms. In Advances in Cryptol-
ogy - EUROCRYPT 2000, International Conference on the Theory and Application
of Cryptographic Techniques, volume 1807 of Lecture Notes in Computer Science,
pages 453–469, 2000. doi:10.1007/3-540-45539-6_33. (cit. on p. 58)

[CGH+85] Benny Chor, Oded Goldreich, Johan Håstad, Joel Friedman, Steven Rudich, and
Roman Smolensky. The bit extraction problem or t-resilient functions (preliminary
version). In Proc. 26th Annual IEEE Symposium on Foundations of Computer Sci-
ence (FOCS), pages 396–407, 1985. doi:10.1109/SFCS.1985.55. (cit. on p. 58)

[CIP09] Chris Calabro, Russell Impagliazzo, and Ramamohan Paturi. The complexity of
satisfiability of small depth circuits. In Parameterized and Exact Computation, 4th
International Workshop, (IWPEC) 2009, volume 5917 of Lecture Notes in Computer
Science, pages 75–85. Springer, 2009. doi:10.1007/978-3-642-11269-0_6. (cit.
on p. 5, 33)

[CJW19] Lijie Chen, Ce Jin, and R. Ryan Williams. Hardness magnification for all sparse
NP languages. In Proc. 60th Annual IEEE Symposium on Foundations of Computer
Science (FOCS), pages 1240–1255, 2019. doi:10.1109/FOCS.2019.00077. (cit. on
p. 1)

[CR20] Lijie Chen and Hanlin Ren. Strong average-case lower bounds from non-trivial
derandomization. In Proc. 52nd Annual ACM Symposium on Theory of Computing
(STOC), pages 1327–1334, 2020. doi:10.1145/3357713.3384279. (cit. on p. 17,
18)

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE
Transactions on Information Theory, 22(6):644–654, 1976. doi:10.1109/TIT.1976.
1055638. (cit. on p. 1, 43)

45

https://doi.org/10.1007/978-3-540-78524-8_4
https://doi.org/10.1145/2160158.2160159
https://doi.org/10.1016/j.tcs.2014.06.013
https://doi.org/10.1007/BF02410413
https://doi.org/10.1137/S0097539705446974
https://doi.org/10.1137/S0097539705446974
https://doi.org/10.1145/28395.28409
https://doi.org/10.1007/3-540-45539-6_33
https://doi.org/10.1109/SFCS.1985.55
https://doi.org/10.1007/978-3-642-11269-0_6
https://doi.org/10.1109/FOCS.2019.00077
https://doi.org/10.1145/3357713.3384279
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1109/TIT.1976.1055638

[FM05] Gudmund Skovbjerg Frandsen and Peter Bro Miltersen. Reviewing bounds on the
circuit size of the hardest functions. Information Processing Letters, 95(2):354–357,
2005. doi:10.1016/j.ipl.2005.03.009. (cit. on p. 11, 35, 36)

[FN99] Amos Fiat and Moni Naor. Rigorous time/space trade-offs for inverting func-
tions. SIAM Journal of Computing, 29(3):790–803, 1999. doi:10.1137/
S0097539795280512. (cit. on p. 34, 43)

[FSUV13] Bill Fefferman, Ronen Shaltiel, Christopher Umans, and Emanuele Viola. On
beating the hybrid argument. Theory of Computing, 9:809–843, 2013. doi:
10.4086/toc.2013.v009a026. (cit. on p. 9, 17)

[Für82] Martin Fürer. The tight deterministic time hierarchy. In Proc. 14th Annual ACM
Symposium on Theory of Computing (STOC), pages 8–16, 1982. doi:10.1145/
800070.802172. (cit. on p. 14)

[GG81] Ofer Gabber and Zvi Galil. Explicit constructions of linear-sized superconcentrators.
Journal of Computer and System Sciences, 22(3):407–420, 1981. doi:10.1016/
0022-0000(81)90040-4. (cit. on p. 55)

[GGH+07] Shafi Goldwasser, Dan Gutfreund, Alexander Healy, Tali Kaufman, and Guy N.
Rothblum. Verifying and decoding in constant depth. In Proc. 39th Annual ACM
Symposium on Theory of Computing (STOC), pages 440–449, 2007. doi:10.1145/
1250790.1250855. (cit. on p. 17)

[GI01] Venkatesan Guruswami and Piotr Indyk. Expander-based constructions of efficiently
decodable codes. In Proc. 42nd Annual IEEE Symposium on Foundations of Com-
puter Science (FOCS), pages 658–667, 2001. doi:10.1109/SFCS.2001.959942. (cit.
on p. 57)

[GII+19] Alexander Golovnev, Rahul Ilango, Russell Impagliazzo, Valentine Kabanets, An-
tonina Kolokolova, and Avishay Tal. AC0[p] lower bounds against MCSP via
the coin problem. In Proc. 46th International Colloquium on Automata, Lan-
guages and Programming (ICALP), volume 132 of LIPIcs, pages 66:1–66:15, 2019.
doi:10.4230/LIPIcs.ICALP.2019.66. (cit. on p. 1)

[GIL+90] Oded Goldreich, Russell Impagliazzo, Leonid A. Levin, Ramarathnam Venkatesan,
and David Zuckerman. Security preserving amplification of hardness. In Proc. 31st
Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 318–
326, 1990. doi:10.1109/FSCS.1990.89550. (cit. on p. 27, 43)

[GL89] Oded Goldreich and Leonid A. Levin. A hard-core predicate for all one-way func-
tions. In Proc. 21st Annual ACM Symposium on Theory of Computing (STOC),
pages 25–32, 1989. doi:10.1145/73007.73010. (cit. on p. 10, 28, 30)

[Gol01] Oded Goldreich. The Foundations of Cryptography - Volume 1: Basic Techniques.
Cambridge University Press, 2001. doi:10.1017/CBO9780511546891. (cit. on p. 3,
16, 36)

[GUV09] Venkatesan Guruswami, Christopher Umans, and Salil P. Vadhan. Unbalanced ex-
panders and randomness extractors from Parvaresh-Vardy codes. Journal of the
ACM, 56(4):20:1–20:34, 2009. doi:10.1145/1538902.1538904. (cit. on p. 10, 27,
30)

[Hel80] Martin E. Hellman. A cryptanalytic time-memory trade-off. IEEE Transactions on
Information Theory, 26(4):401–406, 1980. doi:10.1109/TIT.1980.1056220. (cit.
on p. 34)

46

https://doi.org/10.1016/j.ipl.2005.03.009
https://doi.org/10.1137/S0097539795280512
https://doi.org/10.1137/S0097539795280512
https://doi.org/10.4086/toc.2013.v009a026
https://doi.org/10.4086/toc.2013.v009a026
https://doi.org/10.1145/800070.802172
https://doi.org/10.1145/800070.802172
https://doi.org/10.1016/0022-0000(81)90040-4
https://doi.org/10.1016/0022-0000(81)90040-4
https://doi.org/10.1145/1250790.1250855
https://doi.org/10.1145/1250790.1250855
https://doi.org/10.1109/SFCS.2001.959942
https://doi.org/10.4230/LIPIcs.ICALP.2019.66
https://doi.org/10.1109/FSCS.1990.89550
https://doi.org/10.1145/73007.73010
https://doi.org/10.1017/CBO9780511546891
https://doi.org/10.1145/1538902.1538904
https://doi.org/10.1109/TIT.1980.1056220

[HILL99] Johan Håstad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseu-
dorandom generator from any one-way function. SIAM Journal of Computing,
28(4):1364–1396, 1999. doi:10.1137/S0097539793244708. (cit. on p. 4, 8, 29,
33)

[Hir18] Shuichi Hirahara. Non-black-box worst-case to average-case reductions within NP. In
Proc. 59th Annual IEEE Symposium on Foundations of Computer Science (FOCS),
pages 247–258, 2018. doi:10.1109/FOCS.2018.00032. (cit. on p. 1)

[Hir20a] Shuichi Hirahara. Characterizing average-case complexity of PH by worst-case meta-
complexity. In Proc. 61st Annual IEEE Symposium on Foundations of Computer
Science (FOCS), pages 50–60, 2020. doi:10.1109/FOCS46700.2020.00014. (cit. on
p. 10, 30)

[Hir20b] Shuichi Hirahara. Unexpected hardness results for Kolmogorov complexity under
uniform reductions. In Proc. 52nd Annual ACM Symposium on Theory of Computing
(STOC), pages 1038–1051, 2020. doi:10.1145/3357713.3384251. (cit. on p. 10,
30)

[HLW06] Shlomo Hoory, Nathan Linial, and Avi Wigderson. Expander graphs and their
applications. Bulletin of the American Mathematical Society, pages 439–561, 2006.
doi:10.1090/S0273-0979-06-01126-8. (cit. on p. 55)

[HMS04] Thomas Holenstein, Ueli M. Maurer, and Johan Sjödin. Complete classification of
bilinear hard-core functions. In Proc. 24th Annual International Cryptology Confer-
ence (CRYPTO), volume 3152 of Lecture Notes in Computer Science, pages 73–91.
Springer, 2004. doi:10.1007/978-3-540-28628-8_5. (cit. on p. 11, 31, 33)

[HRV13] Iftach Haitner, Omer Reingold, and Salil P. Vadhan. Efficiency improvements in
constructing pseudorandom generators from one-way functions. SIAM Journal of
Computing, 42(3):1405–1430, 2013. doi:10.1137/100814421. (cit. on p. 8)

[HS17] Shuichi Hirahara and Rahul Santhanam. On the average-case complexity of MCSP
and its variants. In Proc. 32nd Computational Complexity Conference (CCC), vol-
ume 79 of LIPIcs, pages 7:1–7:20, 2017. doi:10.4230/LIPIcs.CCC.2017.7. (cit. on
p. 1, 6, 17, 25)

[IK00] Yuval Ishai and Eyal Kushilevitz. Randomizing polynomials: A new representation
with applications to round-efficient secure computation. In Proc. 41st Annual IEEE
Symposium on Foundations of Computer Science (FOCS), pages 294–304, 2000.
doi:10.1109/SFCS.2000.892118. (cit. on p. 17, 18)

[IK02] Yuval Ishai and Eyal Kushilevitz. Perfect constant-round secure computation
via perfect randomizing polynomials. In Proc. 29th International Colloquium on
Automata, Languages and Programming (ICALP), pages 244–256, 2002. doi:
10.1007/3-540-45465-9_22. (cit. on p. 17, 18)

[IKOS08] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Cryptography with
constant computational overhead. In Proc. 40th Annual ACM Symposium on Theory
of Computing (STOC), pages 433–442, 2008. doi:10.1145/1374376.1374438. (cit.
on p. 31, 32, 33, 55, 57, 58)

[IL90] Russell Impagliazzo and Leonid A. Levin. No better ways to generate hard NP
instances than picking uniformly at random. In Proc. 31st Annual IEEE Symposium
on Foundations of Computer Science (FOCS), pages 812–821, 1990. doi:10.1109/
FSCS.1990.89604. (cit. on p. 6)

47

https://doi.org/10.1137/S0097539793244708
https://doi.org/10.1109/FOCS.2018.00032
https://doi.org/10.1109/FOCS46700.2020.00014
https://doi.org/10.1145/3357713.3384251
https://doi.org/10.1090/S0273-0979-06-01126-8
https://doi.org/10.1007/978-3-540-28628-8_5
https://doi.org/10.1137/100814421
https://doi.org/10.4230/LIPIcs.CCC.2017.7
https://doi.org/10.1109/SFCS.2000.892118
https://doi.org/10.1007/3-540-45465-9_22
https://doi.org/10.1007/3-540-45465-9_22
https://doi.org/10.1145/1374376.1374438
https://doi.org/10.1109/FSCS.1990.89604
https://doi.org/10.1109/FSCS.1990.89604

[Ila20a] Rahul Ilango. Connecting perebor conjectures: Towards a search to decision reduc-
tion for minimizing formulas. In Proc. 35th Computational Complexity Conference
(CCC), volume 169 of LIPIcs, pages 31:1–31:35, 2020. doi:10.4230/LIPIcs.CCC.
2020.31. (cit. on p. 1, 35)

[Ila20b] Rahul Ilango. Constant depth formula and partial function versions of MCSP are
hard. In Proc. 61st Annual IEEE Symposium on Foundations of Computer Science
(FOCS), pages 424–433, 2020. doi:10.1109/FOCS46700.2020.00047. (cit. on p. 1)

[ILO20] Rahul Ilango, Bruno Loff, and Igor Carboni Oliveira. NP-hardness of circuit min-
imization for multi-output functions. In Proc. 35th Computational Complexity
Conference (CCC), volume 169 of LIPIcs, pages 22:1–22:36, 2020. doi:10.4230/
LIPIcs.CCC.2020.22. (cit. on p. 1)

[Imp95a] Russell Impagliazzo. Hard-core distributions for somewhat hard problems. In Proc.
36th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages
538–545, 1995. doi:10.1109/SFCS.1995.492584. (cit. on p. 10, 29, 51)

[Imp95b] Russell Impagliazzo. A personal view of average-case complexity. In Proc. 10th
Annual Structure in Complexity Theory Conference, pages 134–147, 1995. doi:
10.1109/SCT.1995.514853. (cit. on p. 2)

[IP01] Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. Journal
of Computer and System Sciences, 62(2):367–375, 2001. doi:10.1006/jcss.2000.
1727. (cit. on p. 5, 33)

[IPZ01] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have
strongly exponential complexity? Journal of Computer and System Sciences,
63(4):512–530, 2001. doi:10.1006/jcss.2001.1774. (cit. on p. 5, 33)

[Juk12] Stasys Jukna. Boolean Function Complexity - Advances and Frontiers, volume 27 of
Algorithms and combinatorics. Springer, 2012. doi:10.1007/978-3-642-24508-4.
(cit. on p. 40)

[KC00] Valentine Kabanets and Jin-Yi Cai. Circuit minimization problem. In Proc. 32nd
Annual ACM Symposium on Theory of Computing (STOC), pages 73–79, 2000.
doi:10.1145/335305.335314. (cit. on p. 1, 7)

[Ko91] Ker-I Ko. On the complexity of learning minimum time-bounded Turing machines.
SIAM Journal of Computing, 20(5):962–986, 1991. doi:10.1137/0220059. (cit. on
p. 13)

[Lev84] Leonid A. Levin. Randomness conservation inequalities; information and inde-
pendence in mathematical theories. Information and Control, 61(1):15–37, 1984.
doi:10.1016/S0019-9958(84)80060-1. (cit. on p. 2, 13)

[Lev03] Leonid A. Levin. The tale of one-way functions. Problems of Information Trans-
mission, 39(1):92–103, 2003. (cit. on p. 3)

[LP20] Yanyi Liu and Rafael Pass. On one-way functions and Kolmogorov complexity. In
Proc. 61st Annual IEEE Symposium on Foundations of Computer Science (FOCS),
pages 1243–1254, 2020. doi:10.1109/FOCS46700.2020.00118. (cit. on p. 2, 3, 6, 7,
8, 9, 10, 16, 20, 24, 26, 28, 29, 31, 35, 40, 43, 54)

48

https://doi.org/10.4230/LIPIcs.CCC.2020.31
https://doi.org/10.4230/LIPIcs.CCC.2020.31
https://doi.org/10.1109/FOCS46700.2020.00047
https://doi.org/10.4230/LIPIcs.CCC.2020.22
https://doi.org/10.4230/LIPIcs.CCC.2020.22
https://doi.org/10.1109/SFCS.1995.492584
https://doi.org/10.1109/SCT.1995.514853
https://doi.org/10.1109/SCT.1995.514853
https://doi.org/10.1006/jcss.2000.1727
https://doi.org/10.1006/jcss.2000.1727
https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.1007/978-3-642-24508-4
https://doi.org/10.1145/335305.335314
https://doi.org/10.1137/0220059
https://doi.org/10.1016/S0019-9958(84)80060-1
https://doi.org/10.1109/FOCS46700.2020.00118

[LP21] Yanyi Liu and Rafael Pass. On the possibility of basing cryptography on EXP 6=
BPP. In Proc. 41st Annual International Cryptology Conference (CRYPTO), volume
12825 of Lecture Notes in Computer Science, pages 11–40. Springer, 2021. doi:
10.1007/978-3-030-84242-0_2. (cit. on p. 6, 7)

[Mar73] G. A. Margulis. Explicit constructions of concentrators. Probl. Peredachi Inf., pages
71–80, 1973. (cit. on p. 55)

[MMW19] Dylan M. McKay, Cody D. Murray, and R. Ryan Williams. Weak lower bounds
on resource-bounded compression imply strong separations of complexity classes.
In Proc. 51st Annual ACM Symposium on Theory of Computing (STOC), pages
1215–1225, 2019. doi:10.1145/3313276.3316396. (cit. on p. 1)

[MW17] Cody D. Murray and R. Ryan Williams. On the (non) NP-hardness of computing
circuit complexity. Theory of Computing, 13(1):1–22, 2017. doi:10.4086/toc.
2017.v013a004. (cit. on p. 1)

[Nan21] Mikito Nanashima. On basing auxiliary-input cryptography on NP-hardness via
nonadaptive black-box reductions. In Proc. 12th Conference on Innovations in The-
oretical Computer Science (ITCS), volume 185 of LIPIcs, pages 29:1–29:15, 2021.
doi:10.4230/LIPIcs.ITCS.2021.29. (cit. on p. 2)

[Nis96] Noam Nisan. Extracting randomness: How and why. A survey. In Proc. 11th
Annual IEEE Conference on Computational Complexity (CCC), pages 44–58, 1996.
doi:10.1109/CCC.1996.507667. (cit. on p. 10)

[NW94] Noam Nisan and Avi Wigderson. Hardness vs randomness. Journal of Computer
and System Sciences, 49(2):149–167, 1994. doi:10.1016/S0022-0000(05)80043-1.
(cit. on p. 12, 42)

[NZ93] Noam Nisan and David Zuckerman. More deterministic simulation in logspace. In
Proc. 25th Annual ACM Symposium on Theory of Computing (STOC), pages 235–
244, 1993. doi:10.1145/167088.167162. (cit. on p. 10)

[OPS19] Igor Carboni Oliveira, Ján Pich, and Rahul Santhanam. Hardness magnification near
state-of-the-art lower bounds. In Proc. 34th Computational Complexity Conference
(CCC), volume 137 of LIPIcs, pages 27:1–27:29, 2019. doi:10.4230/LIPIcs.CCC.
2019.27. (cit. on p. 1)

[OS17] Igor Carboni Oliveira and Rahul Santhanam. Conspiracies between learning al-
gorithms, circuit lower bounds, and pseudorandomness. In Proc. 32nd Computa-
tional Complexity Conference (CCC), volume 79 of LIPIcs, pages 18:1–18:49, 2017.
doi:10.4230/LIPIcs.CCC.2017.18. (cit. on p. 1, 6, 43)

[OS18] Igor Carboni Oliveira and Rahul Santhanam. Hardness magnification for natural
problems. In Proc. 59th Annual IEEE Symposium on Foundations of Computer
Science (FOCS), pages 65–76, 2018. doi:10.1109/FOCS.2018.00016. (cit. on p. 1)

[RR97] Alexander A. Razborov and Steven Rudich. Natural proofs. Journal of Computer
and System Sciences, 55(1):24–35, 1997. doi:10.1006/jcss.1997.1494. (cit. on p.
7)

[RSA78] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for obtain-
ing digital signatures and public-key cryptosystems. Communications of the ACM,
21(2):120–126, 1978. doi:10.1145/359340.359342. (cit. on p. 1, 43)

49

https://doi.org/10.1007/978-3-030-84242-0_2
https://doi.org/10.1007/978-3-030-84242-0_2
https://doi.org/10.1145/3313276.3316396
https://doi.org/10.4086/toc.2017.v013a004
https://doi.org/10.4086/toc.2017.v013a004
https://doi.org/10.4230/LIPIcs.ITCS.2021.29
https://doi.org/10.1109/CCC.1996.507667
https://doi.org/10.1016/S0022-0000(05)80043-1
https://doi.org/10.1145/167088.167162
https://doi.org/10.4230/LIPIcs.CCC.2019.27
https://doi.org/10.4230/LIPIcs.CCC.2019.27
https://doi.org/10.4230/LIPIcs.CCC.2017.18
https://doi.org/10.1109/FOCS.2018.00016
https://doi.org/10.1006/jcss.1997.1494
https://doi.org/10.1145/359340.359342

[San20] Rahul Santhanam. Pseudorandomness and the minimum circuit size problem. In
Proc. 11th Conference on Innovations in Theoretical Computer Science (ITCS), vol-
ume 151 of LIPIcs, pages 68:1–68:26, 2020. doi:10.4230/LIPIcs.ITCS.2020.68.
(cit. on p. 6)

[Sha49] Claude E. Shannon. The synthesis of two-terminal switching circuits. Bell System
technical journal, 28(1):59–98, 1949. doi:10.1002/j.1538-7305.1949.tb03624.x.
(cit. on p. 36)

[Spi96] Daniel A. Spielman. Linear-time encodable and decodable error-correcting codes.
IEEE Transactions on Information Theory, 42(6):1723–1731, 1996. doi:10.1109/
18.556668. (cit. on p. 55, 56)

[Tel18] Roei Tell. Quantified derandomization of linear threshold circuits. In Proc. 50th
Annual ACM Symposium on Theory of Computing (STOC), pages 855–865, 2018.
doi:10.1145/3188745.3188822. (cit. on p. 57)

[Tra84] Boris A. Trakhtenbrot. A survey of Russian approaches to perebor (brute-force
searches) algorithms. IEEE Annals of the History of Computing, 6(4):384–400, 1984.
doi:10.1109/MAHC.1984.10036. (cit. on p. 1, 3)

[Tre01] Luca Trevisan. Extractors and pseudorandom generators. Journal of the ACM,
48(4):860–879, 2001. doi:10.1145/502090.502099. (cit. on p. 10)

[TZ04] Amnon Ta-Shma and David Zuckerman. Extractor codes. IEEE Transactions on
Information Theory, 50(12):3015–3025, 2004. doi:10.1109/TIT.2004.838377. (cit.
on p. 10)

[Uhl74] D. Uhlig. On the synthesis of self-correcting schemes from functional elements with
a small number of reliable elements. Mathematical notes of the Academy of Sciences
of the USSR, 15:558–562, 1974. doi:10.1007/BF01152835. (cit. on p. 11, 36)

[Uhl84] D. Uhlig. Zur parallelberechnung boolescher funktionen. TR Ing.hochsch. Mittweida,
1984. (cit. on p. 11, 36)

[Vad12] Salil P. Vadhan. Pseudorandomness. Foundations and Trends in Theoretical Com-
puter Science, 7(1-3):1–336, 2012. doi:10.1561/0400000010. (cit. on p. 29)

[VZ13] Salil P. Vadhan and Colin Jia Zheng. A uniform min-max theorem with applica-
tions in cryptography. In Proc. 33rd Annual International Cryptology Conference
(CRYPTO), volume 8042 of Lecture Notes in Computer Science, pages 93–110, 2013.
doi:10.1007/978-3-642-40041-4_6. (cit. on p. 27)

[Wee06] Hoeteck Wee. Finding Pessiland. In Proc. 3rd Theory of Cryptography Conference
(TCC), volume 3876 of Lecture Notes in Computer Science, pages 429–442, 2006.
doi:10.1007/11681878_22. (cit. on p. 2)

[Weg87] Ingo Wegener. The complexity of Boolean functions. Wiley-Teubner, 1987. URL:
http://ls2-www.cs.uni-dortmund.de/monographs/bluebook/. (cit. on p. 36)

[Wil05] Ryan Williams. A new algorithm for optimal 2-constraint satisfaction and its im-
plications. Theoretical Computer Science, 348(2-3):357–365, 2005. doi:10.1016/j.
tcs.2005.09.023. (cit. on p. 43)

[Wil13] Ryan Williams. Improving exhaustive search implies superpolynomial lower bounds.
SIAM Journal of Computing, 42(3):1218–1244, 2013. doi:10.1137/10080703X. (cit.
on p. 43)

50

https://doi.org/10.4230/LIPIcs.ITCS.2020.68
https://doi.org/10.1002/j.1538-7305.1949.tb03624.x
https://doi.org/10.1109/18.556668
https://doi.org/10.1109/18.556668
https://doi.org/10.1145/3188745.3188822
https://doi.org/10.1109/MAHC.1984.10036
https://doi.org/10.1145/502090.502099
https://doi.org/10.1109/TIT.2004.838377
https://doi.org/10.1007/BF01152835
https://doi.org/10.1561/0400000010
https://doi.org/10.1007/978-3-642-40041-4_6
https://doi.org/10.1007/11681878_22
http://ls2-www.cs.uni-dortmund.de/monographs/bluebook/
https://doi.org/10.1016/j.tcs.2005.09.023
https://doi.org/10.1016/j.tcs.2005.09.023
https://doi.org/10.1137/10080703X

[Wil18] Virginia Vassilevska Williams. On some fine-grained questions in algorithms and
complexity. In Proc. of the ICM, volume 3, pages 3431–3472, 2018. (cit. on p. 33)

[Yao82] Andrew Chi-Chih Yao. Theory and applications of trapdoor functions (extended
abstract). In Proc. 23rd Annual IEEE Symposium on Foundations of Computer
Science (FOCS), pages 80–91, 1982. doi:10.1109/SFCS.1982.45. (cit. on p. 10,
16)

[YLW15] Yu Yu, Xiangxue Li, and Jian Weng. Pseudorandom generators from regular one-
way functions: New constructions with improved parameters. Theoretical Computer
Science, 569:58–69, 2015. doi:10.1016/j.tcs.2014.12.013. (cit. on p. 28, 29)

A Proof of Theorem 5.9

Theorem 5.9. Let ε, δ, α, f be defined as in Construction 5.8. If ε ≥ 1/poly(n) and L ≤ poly(n),
then there is a function r : N→ N such that G = {Gn,r(n)}n∈N is a condEP-PRG with stretch α
and security 4ε.

More precisely, let ñ = n + 2d + d′. Suppose that for every subset D ⊆ {0, 1}ñ such that
H(G(D)) ≥ ñ − Ω(log(nδε)) and every k, there is an adversary of size s that 4ε-distinguishes
Gn,k(D) from the uniform random distribution. Then there is an adversary of size s ·poly(nL/ε)
that inverts f on a 1− δ fraction of inputs.

For convenience, we only consider non-uniform adversaries in this section. (See also Re-
mark 5.4.) Recall that we sometimes use a (multi-)set S to represent the uniform distribution
over S, and we assume that every one-way function is length-preserving.

A.1 Impagliazzo’s Hardcore Lemma

Lemma A.1 ([Imp95a]; see e.g., [AB09]). Let f be a candidate (weak) one-way function, ε, δ > 0.
Suppose for every E ⊆ {0, 1}n with |E| ≥ δ

2 · 2
n, there is a circuit C of size s(n) such that

Pr
x←E

[C(f(x)) ∈ f−1(f(x))] ≥ ε.

Then there is a circuit of size O(s(n) · nε−2) that inverts f on a 1− δ fraction of inputs.

A.2 Step I: Making f Strong and Regular

Let f be a weak one-way function. The first step is to transform f into a strong and regular
one-way function, but only under a certain input distribution. In particular, we will define a
sequence of subsets X = {Xn} (that is not necessarily easy to sample), such that on the uniform
distribution over Xn, f is both strong and regular. Here:

• We say f is strong on X , if every polynomial-size adversary A fails to invert f(X) except
with negligible probability. (For comparison, we are only given that f is a weak one-way
function on a uniform random input: No PPT adversary inverts f on a (1−1/nc) fraction
of inputs, for some fixed constant c > 0.)

• For a function r : N → N, we say f is r-regular on X , if for every n ∈ N and every
y ∈ fn(Xn), we have |f−1

X (y)| ∈ [2r(n)−1, 2r(n)]. Here, f−1
X (y) = {x ∈ X : f(x) = y}, and

|f−1
X (y)| denotes the size of the above set.

As discussed in Section 5.2, we use the hardcore lemma to find a subset of inputs on which
f is strong. In particular, applying Lemma A.1, we have:

51

https://doi.org/10.1109/SFCS.1982.45
https://doi.org/10.1016/j.tcs.2014.12.013

Claim A.2. There is a sequence of subsets X ′ = {X ′n ⊆ {0, 1}n} with |X ′n| ≥ 2n/poly(n), such
that for every polynomial-size adversary A,

Pr
x←X ′

n

[A(f(x)) ∈ f−1(f(x))] < negl(n).

More precisely, suppose that for every subset X ′n ⊆ {0, 1}n with |X ′n| ≥ δ
2 · 2n, there is

an adversary of size s that inverts fn(X ′n) w.p. at least ε. Then there is an adversary of size
O(s · nε−2) that inverts f on a 1− δ fraction of inputs.

Now, for every string y ∈ {0, 1}n, let |f−1
X ′ (y)| denote the number of inputs x ∈ X ′n such that

f(x) = y. Let r ∈ [1, n], Wr be the number of strings x ∈ X ′n such that |f−1
X ′ (f(x))| ∈ [2r−1, 2r].

Then we have
∑n

r=1Wr ≥ |X ′n|. By averaging, there is an integer r ∈ [1, n] such that Wr ≥
|X ′n|/n. We denote r(n) to be this integer r, and

Xn := {x ∈ X ′n : |f−1
X ′ (f(x))| ∈ [2r−1, 2r]}.

By definition, f is r-regular on X := {Xn}. Since |Xn| ≥ |X ′n|/n, any adversary that inverts
Xn on an ε fraction of inputs also inverts X ′n on an ε/n fraction of inputs. To summarize:

Claim A.3. There is a function r(n) ≤ n and a sequence of subsets X = {Xn} with |Xn| ≥
2n/poly(n), such that f is r-regular on X , and for every polynomial-size adversary A,

Pr
x←Xn

[A(f(x)) ∈ f−1(f(x))] < negl(n).

More precisely, suppose that for every function r : N→ N and sequence of subsets X = {Xn}
such that |Xn| ≥ δ

2n · 2
n and f is r-regular on X , there is an adversary of size s that inverts

fn(Xn) w.p. at least ε. Then there is an adversary of size s · poly(n/ε) that inverts f on a 1− δ
fraction of inputs.

A.3 Step II: An Intermediate Function

We define another function ensemble f̃ = {f̃n}n∈N. Let k1 = r − 1, k2 = bn − r − log(2n/δ)c,
and d = dExt(n, ε). We need the following two extractors:

• a strong (k1, ε)-extractor Ext1 : {0, 1}n×{0, 1}d → {0, 1}m1 , where m1 := k1−2 log(1/ε)−
O(1);

• a strong (k2, ε)-extractor Ext2 : {0, 1}n×{0, 1}d → {0, 1}m2 , where m2 := k2−2 log(1/ε)−
O(1).

The function f̃n : {0, 1}n × {0, 1}2d → {0, 1}m1+m2+2d is defined as follows.

f̃n(x, z1, z2) := z1 ◦ Ext1(x, z1) ◦ z2 ◦ Ext2(x, z2).

Denote `(n) := m1 + m2 + 2d. The following lemma summarizes the properties of f̃n we
need:

Lemma A.4. For every integer n, the function f̃n satisfies the following properties:

(Uniformity) For every integer n, SD(f̃n(Xn,U2d),U`(n)) ≤ 2ε.

(Hiding) For every polynomial-size adversary A and every integer n,

Pr
x←Xn

[
A(f̃n(x,U2d)) = x

]
≤ negl(n).

More precisely, if there is an adversary A of size s that on input f̃n(Xn,U2d), guesses Xn
with success probability γ, then there is an adversary A′ of size O(s) that inverts fn(Xn)
w.p. at least O(γ/ε2).

52

Proof. (Uniformity) A sample from Xn can be obtained from two steps. First, we sample a string
y0 with probability p(y0) := Prx←Xn [fn(x) = y0]. Then we sample a string x0 with probability
p(x0 | y0) := Prx←Xn [x = x0 | fn(x) = y0].

Suppose y0 is fixed. Since f is r-regular, we have |f−1
X (y0)| ≥ 2r−1. Therefore, conditioned

on y0, the min-entropy of the distribution of x0 is at least r − 1 ≥ k1.
Let x← Xn and z1 ← Ud. Since Ext1 is a strong (k1, ε)-extractor, we have

SD(z1 ◦ Ext1(x, z1),Ud+m1 | f(x)) ≤ ε.

Now, for every y0 ∈ fn(Xn), since |f−1
X (y0)| ≤ 2r, the probability that a sample of fn(Xn) is

equal to the particular y0 is at most 2r/|Xn|. It follows that the min-entropy of the distribution
of y0 is at least log(|Xn|/2r) ≥ n− r + log(δ/2n) ≥ k2. Since Ext2 is a strong (k2, ε)-extractor,
we have

SD(z2 ◦ Ext2(f(x), z2),Ud+m2) ≤ ε.

It follows that

SD(z1 ◦ Ext1(x, z1) ◦ z2 ◦ Ext2(f(x), z2),U`(n))

≤SD(z1 ◦ Ext1(x, z1) ◦ z2 ◦ Ext2(f(x), z2),Ud+m1 ◦ z2 ◦ Ext2(f(x), z2))

+SD(Ud+m1 ◦ z2 ◦ Ext2(f(x), z2),U`(n))

≤ ε+ ε = 2ε.

(Hiding) Let A be any adversary that violates the Hiding property. Suppose that

Pr
x←Xn

[A(f̃n(x,U2d)) = x] ≥ γ.

We will use A to build an algorithm A′ that inverts f(Xn) w.p. O(γ/ε2).
Let x← Xn be a hidden string, and y = fn(x) be the input of A′. We sample z1, z2 ← Ud.

We also “guess” a string z ← Um1 , with the hope that Ext1(x, z1) = z. Then we output
A′(y) := A(z1 ◦ z ◦ z2 ◦ Ext2(y, z2)).

Conditioned on Ext1(x, z1) = z, the distribution of z1 ◦ z ◦ z2 ◦ Ext2(y, z2) is exactly
f̃n(Xn,U2d). Therefore,

Pr[A′(y) = x] ≥ γ · Pr[Ext1(x, z1) = z] = γ · 2−m1 .

Note that besides y = f(x), A′ does not know any information about x. Therefore, for every
x′ ∈ f−1(y), the probability that A′(y) = x′ should also be at least γ · 2−m1 . We have

Pr
y=f(Xn)

[A′(y) ∈ f−1(y)] ≥ γ · 2−m1 · |f−1
X (y)|

≥ γ · 2r−1−m1 = O(γ/ε2).

A.4 Step III: Appending a Hardcore Function

Note that the output length of f̃n is τ := log(n/δ) + 4 log 1
ε + O(1) bits shorter than the input

length of f̃n. In this section, we append a hardcore function at the end of f̃n, making it a
pseudorandom generator with stretch α > 0. In particular, we need:

• a hardcore function HC : {0, 1}n × {0, 1}d′ → {0, 1}k with distinguishing probability ε,
where k := τ + α, and d′ := dHC(n, k, ε). Let R be the reconstruction algorithm of this
hardcore function, and L := L(n, k, ε) be the list size.

53

Let ñ := n+ 2d+ d′. Recall that Gn,r : {0, 1}ñ → {0, 1}ñ+α is defined as

Gn,r(x, z1, z2, z3) := z1 ◦ Ext1(x, z1) ◦ z2 ◦ Ext2(f(x), z2) ◦ z3 ◦ HC(x, z3).

Let Eñ := Xn × {0, 1}2d+d′ . In other words, a uniform random string from Eñ can be
sampled as x ◦ z, where x ← Xn and z ← U2d+d′ . We will show that Gn,r is a condEP-PRG
whose “condition” is Eñ. In particular, Lemma A.5 shows that Gn,r(Eñ) is pseudorandom, and
Lemma A.6 shows that Gn,r(Eñ) is entropy-preserving.

Lemma A.5. Every polynomial-size adversary A fails to 4ε-distinguish Gn,r(Eñ) from U`(n)+d′+k.
More precisely, if there is an adversary A of size s that 4ε-distinguishes Gn,r(Eñ) from

U`(n)+d′+k, then there is an adversary A′ of size s · poly(n/ε) that on input f̃n(Xn,U2d), guesses
Xn with success probability ε/2L.

Proof. Suppose A is an adversary that 4ε-distinguishes Gn,r(Eñ) from U`(n)+d′+k.
Since SD(f̃n(Xn,U2d),U`(n)) ≤ 2ε, it must be the case that A could 2ε-distinguish Gn,r(Eñ)

from f̃n(Xn,U2d) ◦ Ud′+k. Equivalently, let x ← Xn, then given the information of f̃(x,U2d), A
could 2ε-distinguish Ud′ ◦ HC(x,Ud′) from Ud′+k. We say a string w := (x, z1, z2) is good if A
could ε-distinguish f̃n(w) ◦ Ud′ ◦ HC(x,Ud′) from f̃n(w) ◦ Ud′+k. Then by a Markov bound, a
random w← Xn ◦ U2d is good w.p. at least ε.

The adversary A′ that violates the (Hiding) property of f̃n simply follows from the recon-
struction algorithm R. In particular, on input f̃n(w) = f̃n(x, z1, z2), A′ constructs the following
oracle:

O(r) := A(f̃n(w) ◦ r),

runs the algorithm RO to obtain a list of size L, and outputs a random element in the list.
We analyze A′. Suppose A′ is given f̃n(w) for a good w, then O indeed ε-distinguishes

Ud′ ◦ HC(x,Ud′) from Ud′+k. Therefore, w.p. ≥ 1/2, x is in the list outputted by RO. If this
is the case, we will correctly output x w.p. ≥ 1/L. It follows that on input f̃n(x,U2d) where
x← Xn, A′ outputs x w.p. ≥ ε/2L. Finally, as R is a polynomial-size oracle circuit (actually a
PPT oracle machine), the size of A′ is s(n) · poly(n/ε).

Lemma A.6. Suppose that ε < 1
10n2 . Then H(Gn,r(Eñ)) ≥ ñ− τ − 2.

Proof. Since SD(f̃n(Xn,U2d),U`(n)) ≤ 2ε < 1
`(n)2 , by [LP20, Lemma 2.2], we have H(f̃n(Xn,U2d)) ≥

`(n)− 2. It follows that H(Gn,r(Eñ)) ≥ (`(n)− 2) + d′ ≥ ñ− τ − 2.

A.5 Putting It Together

Proof of Theorem 5.9. Suppose that for every X = {Xn} that satisfies the premise of Claim A.3,
and Eñ defined above, there is an adversary of size s(n) that 4ε-distinguishes Gn,r(Eñ) from the
uniform distribution. Then:

• By Lemma A.5, there is an adversary of size s(n) · poly(n/ε) that on input f̃(Xn,Ud1+d2),
guesses Xn w.p. ≥ ε/2L.

• By Lemma A.4, there is an adversary of size s(n)·poly(n/ε) that inverts fn(Xn) w.p. ≥ 1
2εL .

It follows from Claim A.3 that there is an adversary of size s · poly(nL/ε) that inverts f on
a 1− δ fraction of inputs.

54

B Proof of Theorem 5.14

In this section, we briefly review the universal hash functions in [IKOS08] that are computable
by linear-size circuits, with an emphasis on the uniformity of these circuits. Throughout this
section, a circuit family is uniform if it satisfies Definition 5.12. An XOR-circuit is a (multi-
output) circuit that only uses XOR gates of fan-in 2. To match Definition 5.12, we also require
that every gate in an XOR-circuit has fan-out at most 2.

For convenience, we denote [n] = {0, 1, . . . , n− 1}, and (n) = {0, 1}n.

Outline. Our start point is the strongly explicit family of expanders by [Mar73,GG81]. Spiel-
man [Spi96] showed that these expanders imply asymptotically optimal error-correcting codes
(i.e., with constant rate and constant relative distance). Using an expander walk trick, for any
constant ε > 0, one could construct error-correcting codes with relative distance 1− ε, constant
rate, and constant alphabet size. By the construction of [IKOS08], such codes imply universal
hash functions.

B.1 Strongly Explicit Expanders

We use the following construction due to [Mar73,GG81]. (See also [HLW06, Construction 8.1].)
For every integer n, we have a graph Gn with n2 vertices such that every vertex has degree 8.
The vertex set of Gn is Zn × Zn. Each vertex v = (x, y) is adjacent to the following vertices

γ1(v) = (x+ 2y, y), γ2(v) = (x+ 2y + 1, y), γ3(v) = (x, y + 2x), γ4(v) = (x, y + 2x+ 1).

Here the additions are modulo n. Note that γ1, . . . , γ4 are bijections, and the other four neighbors
of v are simply γ−1

1 (v), . . . , γ−1
4 (v). The graph might contain self-loops or parallel edges.

Theorem B.1 ([GG81]). For every integer n ≥ 1, the second largest eigenvalue of the adjacency
matrix of Gn is at most 5

√
2 < 8.

In our construction, we need the degree of the expanders to be a large enough constant. We
can simply pick a large enough constant k and take the k-th power of Gn. Let Gkn be the k-th
power of Gn, i.e., for every u, v ∈ V (Gn), the number of (parallel) edges between u and v in Gkn is
equal to the number of length-k paths between u and v in Gn. Then the degree of Gkn is d := 8k,
and the second largest eigenvalue of the adjacency matrix of Gkn is at most (5

√
2)k < d.

Remark B.2. It will be convenient to define an explicit mapping (bijection) between E(Gkn)
and [dn2/2]. Note that each edge (u, v) ∈ Gkn can be represented by a start vertex u and a
string σ1σ2 . . . σk where each σi ∈ Σ := {γ1, γ2, γ3, γ4, γ

−1
1 , γ−1

2 , γ−1
3 , γ−1

4 }. The meaning of
this representation is that (σ1 ◦ σ2 ◦ · · · ◦ σk)(u) = v. Each edge has two representations:
(u, σ1σ2 . . . σk) or (v, σ−1

k σ−1
k−1 . . . σ

−1
1). We arbitrarily choose a size-(d/2) subset S of Σk such

that for each σ1, σ2, . . . , σk ∈ Σ, exactly one of σ1σ2 . . . σk and σ−1
k σ−1

k−1 . . . σ
−1
1 is in S. We fix

and hardcode a bijection between [d/2] and S. Given an integer i ∈ [dn2/2], we interpret i
as a pair of v ∈ V (Gkn) and σ1σ2 . . . σk ∈ S, and the edge corresponding to i is represented as
(v, σ1σ2 . . . σk). This bijection and its inverse are computable in time O(log n).

B.2 Error-Reduction Codes

An intermediate step in [Spi96] is to construct error-reduction codes, which are weaker primitives
compared to error-correcting codes.

Let r, δ, ε > 0 be constants. Recall that we defined (n) = {0, 1}n for convenience. An error-
reduction code of rate r, error reduction ε and reducible distance δ is a function C : (rn) →
((1− r)n) mapping rn “message” bits into (1− r)n “check” bits, such that the following holds.
The codeword of a message x is x ◦ C(x). For any message x, if we are given a corrupted

55

codeword that differs from x ◦ C(x) with at most v ≤ δn message bits and at most t ≤ δn check
bits, then we can recover a codeword that differs from x ◦ C(x) in at most εt bits. (We will not
be particularly interested in the complexity of recovery or decoding algorithms.)

Lemma B.3. For some absolute constants ε < 1 and δ > 0, there is a family of error-reduction
codes R = {Rn : (n)→ (bn/2c)} with error-reduction ε and reducible distance δ. Moreover, the
sequence of functions {Rn} can be computed by a uniform family of linear-size XOR-circuits.

Proof Sketch. First, let m be the smallest integer such that dm2/2 ≥ n. Note that m can be
computed in O(log n) time. Let r = 9/10, then for large enough n, dm2(1 − r)/r ≤ n/2. It
suffices to construct an error-reduction code with dm2/2 message bits and dm2(1 − r)/r check
bits.

We use [Spi96, Definition 16], where B is the edge-vertex incidence graph of Gkm, and S is a
good (linear) error-correcting code on d-bit messages that has rate r. (Since d is a constant, we
can hardcode S in our algorithm. on the other hand, since d is large enough, S exists.)

An equivalent formulation is as follows. We assign a message bit to every edge of Gkm. For
each vertex v ∈ V (Gkm), let b1b2 . . . bd be the bits on the d incident edges of v. This vertex outputs
d(1 − r)/r check bits which are the check bits of S on message b1b2 . . . bd. Concatenating the
outputs of each vertex, we obtain an error-reduction code of dm2/2 message bits and dm2(1−r)/r
check bits. By [Spi96, Lemma 18], for some absolute constants ε < 1 and δ > 0, this error-
reduction code has error-reduction ε and reducible distance δ.

Computing the i-th gate of the encoding circuit reduces to computing the indices of the
incident edges of a vertex v ∈ V (Gkm). By Remark B.2, this is computable in O(log n) time.

We actually need error-reduction codes with error-reduction ε = 1/2. We can simply iterate
the code in Lemma B.3 for O(1) times. The encoding circuit is still uniform. Therefore, we
have:

Corollary B.4. Lemma B.3 holds for ε = 1/2.

B.3 Error-Correcting Codes

The construction in [Spi96, Section II] transforms an error-reduction code into an error-correcting
code. Here we only review its encoding algorithm and check that they can be implemented by
uniform XOR circuits. The correctness of this error-correcting code is proved in [Spi96].

Lemma B.5. There is a constant n0 > 1 and a family C =
{
Ck : (n02k−2)→ (n02k)

}
of error-

correcting codes with constant relative distance. Moreover, C can be encoded by a uniform family
of linear-size XOR circuits.

Proof Sketch. We recursively define Ck as follows. First, C0 : (n0/4)→ (n0) is any good enough
error-correcting code. Since n0 is a constant, our algorithm can hardcode C0.

Now, let k ≥ 1, we define Ck as follows. Let x ∈ (n02k−2) be the inputs of Ck.

• The first n02k−2 outputs of Ck will always be x itself.20 Note that we require the fan-out
of gates to be at most 2, therefore we need to make a copy of x. Similarly, we may need
to copy the Ak, Bk, Ck defined below. The circuit size is still linear in 2k.

• We pick an error-reduction code Rk−2 : (n02k−2)→ (n02k−3), and output Ak := Rk−2(x).

• Let Ck−1 : (n02k−3) → (n02k−1) be the error-correcting code we recursively defined. Let
Ak ◦ Bk := Ck−1(Ak), and we output Bk. (Recall that the first n02k−3 outputs of Ck−1 is
equal to its inputs, i.e., Ak.)

20We can assume this is also true for C0.

56

• We pick an error-reduction codeRk−1 : (n02k−1)→ (n02k−2), and output Ck := Rk−1(Ak◦
Bk).

The required error-reduction codes are constructed in Corollary B.4. The total number of output
bits of Ck is |x|+ |Ak|+ |Bk|+ |Ck| which is indeed n02k.

The i-th gate of the encoding circuit of Ck−1 can be computed as follows. Let c2k be the
circuit complexity of the first, second, and fourth bullet. (That is, circuit complexity of Ck not
counting the recursive part for Ck−1.) We may assume c is a power of 2. The encoding circuit for
Ck has |C0|+

∑k
i=1 c2

i = |C0|+ c(2k+1 − 1) gates. Taking the (base-2) logarithm of (i− |C0|)/c,
we can find the “level of recursion” that the i-th gate is constructed. Then the problem reduces
to computing the encoding circuit of Rj for some integer j, which is computable in O(log n)
time.

For every constant ε > 0, the construction of [IKOS08] needs a code with relative distance
1−ε and constant alphabet size. As in [ABN+92,GI01], we can “amplify” the code in Lemma B.5
by an expander:

Lemma B.6. For every constant ε > 0, there is a constant D > 0 and a family of error-
correcting codes {C′k : (n02k−2) → [2D]O(2k)} that has relative distance 1 − ε. Moreover, if we
interpret [2D] as length-D strings, then C′k can be encoded by a uniform family of linear-size XOR
circuits.

Proof Sketch. Recall that {Gn} is the expander family constructed in Theorem B.1, and {Ck :
(n02k−2) → (n02k)} is the family of error-correcting codes constructed in Lemma B.5. Let m
be the smallest integer such that m2 ≥ n02k. We pad zeros to the outputs of Ck, thus Ck can be
regarded as a code that outputs m2 bits. We assign an output bit of Ck to each vertex in Gm.
The relative distance of Ck is still lower bounded by an absolute constant δ > 0.

We will pick a large enough constant p, such that Gpm has good expansion property: Every
subset of V (Gpm) with size at least δ ·m2 has at least (1− ε)m2 neighbors. (See e.g. [ABN+92,
Corollary 1].) Let D := 8p, so every vertex in Gpm has degree D. On input x ∈ (n02k−2), recall
that we assigned each vertex in V (Gpm) a bit of the codeword Ck(x). For every v ∈ V (Gpm),
the vertex v will output the concatenation of the bits assigned to its neighbor, which can be
interpreted as an element in [2D]. The code C′k(x) simply concatenates the outputs of each vertex
v ∈ V (Gpm) together.

Consider the encoding circuits of C′k. As we need each gate to have fanout at most 2, we
make D copies of the encoding circuit of Ck. For every σ = σ1σ2 . . . σk ∈ Σk, we have a copy
of Ck denoted as Cσk . For each vertex v, and each σ ∈ Σk, let u be the σ-th neighbor of v. The
σ-th bit of the output of v is the u-th output of the circuit Cσk . We can see this encoding circuit
is uniform.

Remark B.7. Lijie Chen (personal communication) suggested a similar approach based on ex-
pander random walks [Tel18, Proposition 6.6]. As the p-th power of an expander graph G
consists of length-p walks in G, the two approaches are essentially the same.

B.4 Universal Hash Functions

Finally, we are ready to verify that the universal hash functions in [IKOS08] are uniform.

Theorem 5.14. For every integer n,m where m = O(n), there exists an integer k = O(n), and
a family of universal hash functions {hn,m : {0, 1}n × {0, 1}k → {0, 1}m}, such that hn,m can be
computed by a uniform family of linear-size circuits that are skew w.r.t. the second argument.

Proof Sketch. Let n1 := cn for a large enough constant c, ε be a small enough constant, and D
be the constant in Lemma B.6 depending on ε. We need three ingredients:

57

• An `-exposure resilient function (ERF) ERF : {0, 1}n1D → {0, 1}m [CDH+00]. It is shown
in [CGH+85] that for any (linear) error-correcting code C : {0, 1}m → {0, 1}n with gener-
ator matrix G and minimum distance d, the transpose matrix GT mapping n input bits
to m output bits is a perfect `-ERF where ` := n− d+ 1.

For an XOR-circuit C that computes the linear transform G over GF(2), we can obtain
a circuit computing the linear transform GT, by exchanging the input gates and output
gates and reversing the directions of every wire [Bor57, IKOS08]. In particular, every gate
g ∈ C whose output feeds to the gates g1, g2, . . . , gk becomes, in the new circuit, an XOR
gate g whose inputs are g1, g2, . . . , gk.

Therefore, Lemma B.5 shows that an `-ERF ERF : {0, 1}n1D → {0, 1}m is computable by
a uniform family of linear-size XOR circuits.

• An error-correcting code C′k : {0, 1}n → [2D]n1 with relative distance 1−ε, as in Lemma B.6.

• A hash family H : {0, 1}D×{0, 1}2D−1 → {0, 1}D, computable by a skew circuit w.r.t. the
second argument. As D is a constant, we can simply hardcode this hash family. (See
e.g. Section 5.2.1 for an instantiation based on Toeplitz matrices.)

The construction of [IKOS08] goes as follows. On input x ∈ {0, 1}n, we first compute
C′(x) ∈ [2h+1]n1 . Next, we receive n1 keys k1, k2, . . . , kn1 ∈ {0, 1}2h+1 which are the keys for our
hash function. Let t ∈ [2h+1]n1 be the following message: ti := H(C′(x)i, ki). We treat t as a
string of length m(h+ 1), and the output of our hash function is ERF(t).

It is easy to see that this family is uniform.

58
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

