
Average-Case Hardness of NP from

Exponential Worst-Case Hardness Assumptions

Shuichi Hirahara
National Institute of Informatics

s hirahara@nii.ac.jp

April 21, 2021

Abstract

A long-standing and central open question in the theory of average-case complexity is to base
average-case hardness of NP on worst-case hardness of NP. A frontier question along this line
is to prove that PH is hard on average if UP requires (sub-)exponential worst-case complexity.
The difficulty of resolving this question has been discussed from various perspectives based on
technical barrier results, such as the limits of black-box reductions and the non-existence of
worst-case hardness amplification procedures in PH.

In this paper, we overcome these barriers and resolve the open question by presenting the
following main results:

1. UP 6⊆ DTIME
(
2O(n/ logn)

)
implies DistNP 6⊆ AvgP.

2. PH 6⊆ DTIME
(
2O(n/ logn)

)
implies DistPH 6⊆ AvgP.

3. NP 6⊆ DTIME
(
2O(n/ logn)

)
implies DistNP 6⊆ AvgPP. Here, AvgPP denotes P-computable

average-case polynomial time, which interpolates average-case polynomial-time and worst-
case polynomial-time. We complement this result by showing that DistPH 6⊆ AvgP if and
only if DistPH 6⊆ AvgPP.

At the core of all of our results is a new notion of universal heuristic scheme, whose run-
ning time is P-computable average-case polynomial time under every polynomial-time samplable
distribution. Our proofs are based on the meta-complexity of time-bounded Kolmogorov com-
plexity: We analyze average-case complexity through the lens of worst-case meta-complexity
using a new “algorithmic” proof of language compression and weak symmetry of information
for time-bounded Kolmogorov complexity.

Contents

1 Introduction 3
1.1 Average-Case Complexity . 3
1.2 Obstacles to Worst-Case-to-Average-Case Connections 5

1.2.1 “Non-Existence” of Worst-Case Hardness Amplification Procedures in PH . . 5
1.2.2 Limits of Black-Box Reductions . 5
1.2.3 Relativization Barrier . 6

1.3 Our Results . 7

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 58 (2021)

mailto:s_hirahara@nii.ac.jp

2 Techniques: Meta-Computational Average-Case Complexity 10
2.1 Universal Heuristic Scheme . 11
2.2 Universal Heuristic Scheme from Meta-Complexity 13
2.3 Universal Heuristic Scheme for UP . 15

2.3.1 Algorithmic Language Compression . 16
2.3.2 Universal Heuristic Scheme Using Algorithmic Language Compression 16

2.4 Hardness for P-Computable Average-Case Polynomial Time 18
2.5 Organization . 19

3 Preliminaries 19
3.1 Average-Case Complexity Theory . 19
3.2 Kolmogorov Complexity and Its Meta-Complexity 22
3.3 k-Wise Direct Product Generator . 22

4 Algorithmic Language Compression 26

5 Weak Symmetry of Information 29

6 Fast Algorithms from Universal Heuristic Schemes 30

7 Universal Heuristic Scheme for PH 32

8 Approximately Size-Verifiable One-Way Function 37
8.1 Size-Verifiable NP . 37
8.2 Universal Heuristic Scheme for NPsv . 40
8.3 Approximately Size-Verifiable One-Way Function . 43

9 P-Computable Average-Case Polynomial Time 43
9.1 P-Bounded Failure Heuristic Scheme . 44
9.2 Universality of AvgPP-Universal Heuristic Schemes 45

10 Uniform Hard Distribution for AvgPP 48

11 Proofs of Main Results 51

12 Concluding Remarks and Open Questions 53

A NP-Completeness of NPsv Under NP ⊆ coAM 59

B Hamiltonian Path Admits P-Computable Average-Case Polynomial-Time Algo-
rithms 60

2

1 Introduction

Understanding the average-case complexity of NP is fundamental in the theory of computation.
The average-case complexity reflects the performance of an algorithm in practice better than the
worst-case complexity does. The theory of NP-completeness [Coo71, Kar72, Lev73] has identified
many natural problems as NP-complete problems, which are considered to be “intractable” prob-
lems. However, NP-completeness is defined in terms of worst-case complexity. The difficulty of
NP-complete problems is measured on contrived instances that are produced from reductions of
NP-completeness proofs; such instances may differ significantly from real-world instances. Exploit-
ing this disparity, researchers have developed efficient algorithms for several NP-complete problems
that run in expected polynomial time with respect to natural distributions on instances. For ex-
ample, the Hamiltonian path problem can be solved in expected linear time with respect to the
Erdős-Rényi random graph (see, e.g., [GS87, Tho89, AK20]). Another motivation to study the
average-case complexity of NP stems from cryptography: The security of complexity-theory-based
cryptographic primitives is based on the average-case hardness of NP [IL89]. The question of
whether there is a public-key cryptosystem whose security is based on the worst-case hardness of
NP-complete problems dates back to as early as 1970s when Diffie and Hellman [DH76] introduced
the notion of public-key cryptography. These studies motivate the following question:

Question. Can the average-case hardness of NP be based on the worst-case hardness of NP?

Average-case complexity theory, whose foundation was laid by Levin [Lev86] and other re-
searchers [BCGL92, IL90, Imp95, BT06a], enables formalizing the question. Following the notations
standardized by Bogdanov and Trevisan [BT06a], we briefly review the basic concepts.

1.1 Average-Case Complexity

In average-case complexity theory, we are concerned with a distributional problem, which is a
pair (L,D) of a decision problem1 L : {0, 1}∗ → {0, 1} and a family D = {Dn}n∈N of distributions
on instances. Here, the subscript n means the “instance size” (which may not be equal to the length
of an instance). We say that a distributional problem (L,D) is solvable in average-case polynomial
time if there exists an algorithm A such that A solves L on every instance in the support of D, and
there exists a constant ε > 0 such that, for every n ∈ N, it holds that Ex∼Dn [t(x)ε] ≤ nO(1), where
t : {0, 1}∗ → N is an upper bound of the running time of A on input x.2 We denote by AvgP the
class of distributional problems that admit average-case polynomial-time algorithms.

In practice, it is highly desirable that an upper bound t(x) of the running time is efficiently
computable for every instance x. Knowing the upper bound t(x) of the running time of a heuristic
algorithm beforehand enables one to save computational resources by avoiding the computation of a
solution for an instance x if t(x) is too large. A trivial way to estimate the running time of a heuristic
algorithm is to simply run the algorithm and wait until it halts; however, it is tedious to wait for
a heuristic algorithm that may take an exponential time to halt. This motivates us to introduce
a class AvgPP (⊆ AvgP) of heuristic algorithms whose running time can be efficiently estimated.
Specifically, a distributional problem is said to be solvable in P-computable average-case polynomial

1We identify a language L ⊆ {0, 1}∗ with a decision problem L : {0, 1}∗ → {0, 1}.
2The presence of ε in the definition is highly non-trivial but is required to make the notion of average-case

polynomial time robust and broad. There is an equivalent and more intuitive definition of AvgP, which is called an
errorless heuristic scheme [Imp95, BT06a].

3

time if, in addition to the above definition of AvgP, the function t : {0, 1}∗ → N is computable
in polynomial time. The class of distributional problems that admit P-computable average-case
polynomial-time algorithms is denoted by AvgPP. (Equivalent definitions of AvgP and AvgPP are
errorless heuristic scheme and P-bounded failure heuristic scheme, respectively; see Section 9.) For
example, for the HamiltonianPath problem and the Erdős-Rényi random graph G(n, 1/2), it is
not difficult to observe that the distributional problem (HamiltonianPath, {G(n, 1/2)}n∈N) is in
AvgPP using the heuristic algorithms of [Tho89] (see Appendix B).

An average-case analogue of NP is denoted by DistNP, which consists of distributional problems
(L,D) such that L ∈ NP and D ∈ PSamp, where PSamp is the class of polynomial-time samplable
distributions. In other words, we focus on analyzing the average-case complexity of NP with respect
to the distributions from which a random instance can be efficiently generated. More generally, we
define Dist(C) to be C×PSamp for any complexity class C.

A central open question in average-case complexity theory is to connect the average-case hard-
ness of NP to the worst-case hardness of NP:

Open Question 1.1. Does P 6= NP imply DistNP 6⊆ AvgP?

This is arguably one of the four central questions3 in complexity theory and cryptography. In his
influential work, Impagliazzo [Imp95] classified the ultimate consequences of complexity theory into
five possible scenarios. Excluding any one of the scenarios is considered an important milestone.
Open Question 1.1 and its variants correspond to excluding Heuristica (i.e., a world where NP is
hard in the worst case but easy on average) from the five possible worlds.

Currently, a question much weaker than Open Question 1.1 is open. A frontier question along
the lines of Open Question 1.1 is to prove the average-case hardness of the polynomial-time hierarchy
(PH) assuming the existence of an exponentially hard problem in UP.

Frontier Question 1.2. Does UP 6⊆ DTIME
(
2o(n)

)
imply DistPH 6⊆ AvgP?

Recall that UP (⊆ NP) is the class of languages L for which there exists a polynomial-time
verifier that accepts at most one certificate for every input. The worst-case complexity of UP is
known to characterize the existence of a one-to-one one-way function that is hard to invert in the
worst case [Ko85, GS88], and there are candidate one-to-one one-way functions conjectured to be
exponentially hard to invert even on average (see, e.g., [GS88, GLN11]); thus, the assumption of
Frontier Question 1.2 is plausible. (In fact, it is plausible that UP 6⊆ DTIME(2n

2
) because the

current best deterministic upper bound on UP is EXP :=
⋃
c∈N DTIME(2n

c
).)

Because of the inability to resolve Frontier Question 1.2, researchers have pursued formal ex-
planations of the difficulty of this question, and a large body of research (e.g., [FF93, BT06b,
AGGM06, BB15, MX10, HMX10, HW20, Vio05b, Vio05a, Imp11, Wat12]) has been devoted to un-
derstanding which proof techniques are insufficient for resolving Frontier Question 1.2. We review
three lines of research in Section 1.2.

3Is P 6= NP? Does P 6= NP imply DistNP 6⊆ AvgP? Does DistNP 6⊆ AvgP imply the existence of a one-way
function? Does the existence of a one-way function imply the existence of a public-key cryptosystem? Each question
corresponds to excluding one possible world.

4

1.2 Obstacles to Worst-Case-to-Average-Case Connections

1.2.1 “Non-Existence” of Worst-Case Hardness Amplification Procedures in PH

A general approach for establishing a worst-case-to-average-case connection is to construct
a worst-case hardness amplification procedure. A (worst-case) hardness amplification procedure
Amp(-) takes a worst-case hard function f : {0, 1}n → {0, 1} and returns an average-case hard

function Ampf : {0, 1}nO(1) → {0, 1}. It was shown in a line of study that there exists a PSPACE-
computable oracle procedure Amp(-) that realizes the worst-case hardness amplification procedure
(see, e.g., [STV01, TV07] and references therein). Such a procedure enables connecting worst-
and average-case complexity for large complexity classes, such as PSPACE and EXP; for example,
Dist(PSPACE) 6⊆ AvgP is known to be equivalent to PSPACE 6= P [KS04].

Given the general proof techniques described above, it is natural to hope to resolve Fron-
tier Question 1.2 by constructing a worst-case hardness amplification procedure Amp(-) such that
Ampf ∈ PH holds for every f ∈ UP, which can be ensured if Amp(-) is a PH-computable oracle
procedure. However, this hope has been strongly dashed by Viola [Vio05b, Vio05a], who presented
two barriers. The first barrier [Vio05b] rules out the existence of a PH-computable hardness am-
plification procedure Amp(-) such that the relationship between the worst-case complexity of f
and the average-case complexity of Ampf is proved by a black-box reduction. The second barrier
[Vio05a] shows that the existence of a PH-computable hardness amplification procedure Amp(-)

(without any additional assumption) implies the existence of an average-case hard function in PH
unconditionally, in which case Amp(-) is ineffective.

Theorem 1.3 (Viola [Vio05a]; informal). Assume that there exists a PH-computable oracle machine
Amp(-) such that, for every f : {0, 1}n → {0, 1} that is worst-case hard for circuits of size 20.99n,

Ampf : {0, 1}nO(1) → {0, 1} is average-case hard for polynomial-size circuits. Then, there exists a

function f : {0, 1}nO(1) → {0, 1} in PH that is average-case hard for polynomial-size circuits.

Another interpretation of Theorem 1.3 is that proving that UP 6⊆ DTIME(20.99n) implies
DistPH 6⊆ AvgP via a hardness amplification procedure in PH is at least as hard as resolving
the grand challenge of complexity theory, i.e., P 6= NP.

1.2.2 Limits of Black-Box Reductions

Another natural approach for establishing a worst-case-to-average-case connection such as Open
Question 1.1 is to construct (black-box) reductions. Specifically, the approach is to construct a
reduction that takes an oracle that can solve some distributional problem in DistNP on average and
solves NP in the worst case. Usually, the correctness of a reduction can be established for every
oracle that solves a problem in DistNP regardless of how inefficient the oracle is; such a reduction
is referred to as black-box. The approach based on black-box reductions has been quite successful
for reducing problems in NP/poly ∩ coNP/poly to DistNP. For example, a line of research (e.g.,
[Ost91, HILL99, RR97, ABK+06, AD17, AH19, Hir18]) revealed that SZK 6= P implies DistNP 6⊆
AvgP, which can be proved by a black-box reduction.4 Here, SZK denotes statistical zero knowledge
and is a class contained in AM∩ coAM ⊆ NP/poly∩ coNP/poly. A natural hope would be to extend
these black-box reduction techniques to NP-complete problems. However, this hope was dashed

4Specifically, there is a randomized polynomial-time reduction from every problem in SZK to DistNP. The
reduction can be “derandomized” using [BFP05].

5

by Feigenbaum and Fortnow [FF93] and more strongly by Bogdanov and Trevisan [BT06b]. The
latter showed that there exists no black-box randomized polynomial-time nonadaptive reduction
from any problem outside NP/poly ∩ coNP/poly to DistNP. Using a standard padding argument,
their results can be generalized to t(n)-time reductions.

Theorem 1.4 (Bogdanov and Trevisan [BT06b]). There exists no black-box randomized t(n)-time
nonadaptive reduction from UP to DistNP unless UP ⊆ coNTIME

(
t(n)O(1)

)
/t(n)O(1).

This barrier suggests that we cannot hope to use black-box randomized 2o(n)-time nonadaptive
reductions to prove that UP 6⊆ DTIME

(
2o(n)

)
implies DistNP 6⊆ AvgP.

We note that it is not difficult to prove that NP 6⊆ E := DTIME
(
2O(n)

)
implies DistNP 6⊆ AvgP,5

which can be proved using a 2O(n)-time black-box reduction. This does not contradict Theorem 1.4
because NP ⊆ coNE/2O(n).6 The challenge is to achieve a time bound below 2o(n), in which case it
is unlikely that NP ⊆ coNTIME(2o(n))/2o(n).

There are two loopholes in the barrier of Theorem 1.4. The first is to use adaptive reductions.
There are adaptive reductions in the literature (e.g., [HILL99]); however, no known adaptive re-
duction can cross the barrier of NP/poly ∩ coNP/poly. Moreover, Bogdanov and Brzuska [BB15]
extended the barrier result to adaptive reductions in a special case: They showed that there exists
no black-box randomized adaptive reduction from any problem outside AM ∩ coAM to the task
of inverting size-verifiable one-way functions f on average. Here, we say that f is size-verifiable
[AGGM06] if the statement

∣∣f−1(x)
∣∣ ≤ ` can be verified in AM given x ∈ {0, 1}∗ and ` ∈ N as

input. The second loophole is to use non-black-box reductions. The first non-black-box reduc-
tion that crosses the barrier (under a plausible assumption) was given in [Hir18] by exploiting the
efficiency of an oracle. This is the approach we take herein.

1.2.3 Relativization Barrier

Yet another type of barriers was presented in [Imp11, Wat12]. A relativization barrier is a
versatile tool for showing the difficulty of resolving open questions in complexity theory. Most
statements in complexity theory can be relativized, which means that a statement remains valid
in the presence of an arbitrary oracle. An oracle under which a given statement is not valid
indicates the difficulty of proving the statement. Watson [Wat12] constructed an oracle under
which there exists no black-box reduction from UP to DistNP, suggesting a need for either non-
black-box reductions or non-relativizing proof techniques. Impagliazzo [Imp11] constructed an
oracle relative to which there exists no connection between the worst-case hardness of UP ∩ coUP
and the average-case hardness of NP.

Theorem 1.5 (Impagliazzo [Imp11]). There exists an oracle A such that DistNPA ⊆ AvgPA and

UPA ∩ coUPA 6⊆ DTIME
(
2n

α)A
for some constant α > 0.

This barrier indicates that a non-relativizing proof technique is required to achieve a time bound
below 2n

α
.

5An even stronger statement that NE 6= E implies DistNP 6⊆ AvgP holds [BCGL92]. This is because NE 6= E is
equivalent to the existence of a hard tally language L ⊆ {1}∗ in NP, which can be solved by making queries to an
arbitrary oracle that solves (L, T) ∈ DistNP, where T is the tally distribution.

6coNE/2O(n) contains every language. We note that NP ⊆ NE ⊆ coNE/O(n) also holds [BFS09].

6

1.3 Our Results

In this work, bypassing all the technical barriers presented above, we prove the following.

Theorem 1.6 (Main).

1. UP 6⊆ DTIME
(
2O(n/ logn)

)
implies DistNP 6⊆ AvgP.

2. PH 6⊆ DTIME
(
2O(n/ logn)

)
implies DistPH 6⊆ AvgP.

3. NP 6⊆ DTIME
(
2O(n/ logn)

)
implies DistNP 6⊆ AvgPP.

Item 3 bases a natural variant of the average-case hardness of NP on the worst-case hardness of
NP: DistNP does not admit P-computable average-case polynomial-time algorithms (i.e., heuristic
algorithms whose running time can be efficiently estimated) under the worst-case hardness assump-
tion on NP. This is an important step toward Open Question 1.1 in that the notion of P-computable
average-case polynomial time naturally interpolates average-case polynomial time and worst-case
polynomial time. In terms of Impagliazzo’s five worlds, Item 3 excludes a variant of Heuristica,
i.e., a world in which DistNP ⊆ AvgPP and NP 6⊆ DTIME

(
2O(n/ logn)

)
.

Items 1 and 2 of Theorem 1.6 resolve Frontier Question 1.2. Any proof for these results must
circumvent all the technical barriers. It is unlikely that Item 2 can be proved using a worst-case
hardness amplification procedure in light of the barrier of Theorem 1.3. Item 1 is quantitatively
in the regime to which the barriers of Theorems 1.3 and 1.4 apply (while Theorem 1.5 does not).
Therefore, any proof for Item 1 must overcome the barriers of Theorems 1.3 and 1.4, while the
relativization barrier of Theorem 1.5 can be bypassed. A brief explanation of why our proofs are
not subject to these barriers is given below:

Non-Black-Box Our worst-case-to-average-case connections are proved by non-black-box reduc-
tion techniques that exploit the efficiency of an oracle (i.e., a hypothetical algorithm that
solves DistNP). To briefly explain the non-black-box techniques, let p(n) = nO(1) denote the
running time of an oracle that solves DistNP problems. The time bound 2O(n/ logn) of Theo-
rem 1.6 comes from the fact that p is a “(1/ε log n)-exponential function”7 for a small constant
ε > 0, indicating that the ε log n-iterated composition pε logn(n) of p is at most 2n/ logn. This
running time suggests that we compose the hypothetical algorithm with itself ε log n times,
thereby exploiting the efficiency of the oracle in an essential manner.

Hardness Amplification Procedure We do not use any standard form of a hardness amplifica-
tion procedure. However, this is a superficial explanation that our proofs are not subject to
the barrier of Theorem 1.3. Viola’s proof techniques are applicable beyond the mere statement
of Theorem 1.3. In order to truly overcome the barrier, we need to use a proof technique that
is not ruled out by any extension of Theorem 1.3. Indeed, Viola’s proof techniques can be
extended to a non-standard form of a hardness amplification procedure on which our proofs
are implicitly based.8

7The name is an analogue of the notion of a half-exponential function.
8Specifically, to prove NP 6⊆ DTIME(2o(n)) =⇒ DistPH 6⊆ AvgP, we implicitly consider a procedure Ampf :=

MINKTNPf

∈ PHf for every function f , and show that the existence of an average-case polynomial-time algorithm

for MINKTNPf

implies NPf ⊆ DTIMEf
(

2o(n)
)

.

7

We overcome the barrier by exploiting the fact that the proof technique of Theorem 1.3 makes
crucial use of the fact that Ampf : {0, 1}m → {0, 1} is a function defined on inputs of a fixed
length m. On the other hand, our proofs rely on a procedure Ampf : {0, 1}∗ → {0, 1} that is
defined on all inputs.

Relativization Theorem 1.6 is not subject to the relativization barrier of Theorem 1.5 because
of the following two reasons.

1. Our proofs do not relativize because we rely on a pseudorandom generator constructed
by Buhrman, Fortnow, and Pavan [BFP05] under the assumption that DistNP ⊆ AvgP.
Their proof uses a version of the PCP theorem, which is known to be a non-relativizing
proof technique.

2. The time bound 2n
α

given in the relativization barrier is less than our time bound
2O(n/ logn).

Investigating which reason is more essential remains an interesting research question.9

What is a candidate problem in NP that witnesses NP 6⊆ DTIME(2o(n))? Note that n denotes the
length of a binary encoding of inputs. The canonical NP-complete problem SAT is not a candidate
because an instance of SAT is a binary string of length n = Θ(m logm) that encodes an m-clause
3CNF formula on O(m) variables and can be solved in time 2O(m) = 2o(n) by an exhaustive search.
The Minimum Circuit Size Problem (MCSP [KC00]) is the problem of deciding, given a function
f : {0, 1}n → {0, 1} encoded as the truth table of length 2n and a size parameter s ∈ N, whether
f can be computed by a circuit of size s. More generally, for a circuit class C, C-MCSP asks
to determine whether f can be computed by a C-circuit of size s. It is known that C-MCSP is
NP-complete for C ∈

{
DNF,DNF ◦ XOR,AC0 formulas

}
[Mas79, AHM+08, HOS18, Ila20b]. Using

an exhaustive search, C-MCSP can be solved in time 2O(N) on inputs of length N = 2n; however,
no algorithm that runs in time 2o(N) is known (for any class C ⊇ DNF). Ilango [Ila20a] presented
an exponential-time reduction from the search version of Formula-MCSP to its decision version,
providing some evidence that Formula-MCSP 6∈ DTIME(2o(N)). Theorem 1.6 bases the AvgPP-type
average-case hardness of NP on such plausible assumptions.

Corollary 1.7. For every circuit class C, if C-MCSP cannot be solved in time 2O(N/ logN) on inputs
of length N , then DistNP 6⊆ AvgPP and DistPH 6⊆ AvgP.

Previously, it was shown in [Hir18] that the non-existence of polynomial-time algorithms that
solve an approximation version of MCSP implies DistNP 6⊆ AvgP; however, it is a long-standing
open question whether MCSP is NP-complete or not. Corollary 1.7 is the first result that shows
some average-case hardness of NP under plausible worst-case hardness assumptions on NP-complete
problems, such as DNF-MCSP.10

Our actual results are much stronger than the statements of Theorem 1.6. Let U = {Un}n∈N
denote the family of the uniform distributions Un on {0, 1}n. Let T = {Tn}n∈N denote the tally

9We mention that Item 2 of Theorem 1.6 can be relativized by replacing the pseudorandom generator construction
of [BFP05] with a relativizing proof under the assumption that DistPH ⊆ AvgP. Whether Items 1 and 3 relativize
remains an open question.

10The results of [Hir18] do not generalize to C-MCSP for any class C that cannot simulate polynomial-time algo-
rithms because the proof uses a non-black-box reduction that transforms the efficiency of a hypothetical polynomial-
time algorithm for DistNP into No instances of MCSP.

8

distribution, i.e., the family of the distributions Tn whose support is {1n}. We prove that the
existence of an approximately size-verifiable (e.g., one-to-one or regular) one-way function that is
exponentially hard to invert in the worst case implies that NP does not admit any one-sided-error
heuristic algorithm that correctly computes a 1/poly(n)-fraction of inputs without any error on
Yes instances with respect to either U or T .

Theorem 1.8. The following hold for every constant δ > 0 and every constant c.

1’. If there exists a 2n
1−δ

-time approximately size-verifiable11 function that cannot be inverted in
time 2O(n/ logn) in the worst case, then coNP× {U , T } 6⊆ Avg1

1−n−cP.

2’. If PHTIME
(

2n
1−δ
)
6⊆ DTIME

(
2O(n/ logn)

)
, then PH× {U , T } 6⊆ Avg1

1−n−cP.

3’. If AMTIME
(

2n
1−δ
)
6⊆ DTIME

(
2O(n/ logn)

)
, then NP× {U , T } 6⊆ AvgPP.

Here, Avg1
1−n−cP denotes the class of distributional problems (L,D) for which there exists

a polynomial-time algorithm A such that Prx∼Dn [A(x; 1n) = L(x)] ≥ n−c for every n ∈ N and
A(x; 1n) = 0 for every x 6∈ L. Using the characterization of AvgP by an errorless heuristic notion
(cf. [BT06b] or Section 9), it is easy to see that AvgPP ⊆ AvgP ⊆ Avg1

1−n−cP. The complexity
classes PHTIME(t(n)) and AMTIME(t(n)) denote t(n)-time versions of PH and AM, respectively;
the assumptions of Theorem 1.8 are quite plausible because the current best deterministic upper
bound on these classes is DTIME(2O(t(n))).

It is natural to investigate the situations in which there is a difference between AvgPP and AvgP.
In the case of PH, we demonstrate that DistPH ⊆ AvgPP if and only if DistPH ⊆ AvgP, suggesting
that AvgPP may be somewhat “close” to AvgP.

Theorem 1.9. DistPH 6⊆ AvgPP ⇐⇒ DistPH 6⊆ AvgP ⇐⇒ PH × {U , T } 6⊆ Avg1
1−n−cP for every

constant c.

Another interpretation of this result is an important step toward establishing the equivalence
between DistPH 6⊆ AvgP and PH 6= P: It is evident that DistPH 6⊆ AvgP =⇒ DistPH 6⊆ AvgPP =⇒
PH 6= P. Theorem 1.9 establishes the converse of the first implication.

We also prove that a heuristic algorithm for NP that succeeds on a small fraction of instances
can be converted into a heuristic algorithm for UP whose running time can be efficiently estimated.

Theorem 1.10. If coNP× {U , T } ⊆ Avg1
1−n−cP for some constant c, then DistUP ⊆ AvgPP.

It is often reported that modern SAT solvers work well in practice. Theorem 1.10 suggests
that such heuristic algorithms for NP could be used to construct a P-computable average-case
polynomial-time algorithm for UP. Taking the contrapositive of Theorem 1.10, we can also regard
it as an (average-case-to-average-case) hardness amplification theorem. Bogdanov and Safra [BS07]
showed that DistNP 6⊆ AvgP implies DistNP 6⊆ Avg1−(logn)−1/10+o(1)P. Theorem 1.10 provides a much

stronger conclusion (coNP × {U , T } 6⊆ Avg1
1−n−cP) under an incomparable assumption (DistUP 6⊆

AvgPP).

11We say that a function f is t(n)-time approximately size-verifiable if f is computable in time O(t(n)), where n
is the output length of f , and the size of f−1(f(x)) can be approximated by an AM protocol on input f(x) within a
factor of t(n).

9

2 Techniques: Meta-Computational Average-Case Complexity

Our proofs are based on the meta-complexity of the time-bounded Kolmogorov complexity. In
general, meta-complexity refers to the complexity of computing a problem for determining com-
plexity (e.g., the time-bounded Kolmogorov complexity). The approach of analyzing average-case
complexity via meta-complexity was recently proposed in [Hir20a] and inspired the present work.
Specifically, in [Hir20a], the average-case complexity of PH was exactly characterized by the worst-
case meta-complexity of GapMINKTPH, which is the problem of approximating the PH-oracle
time-bounded Kolmogorov complexity (the precise definition is given in Section 2.2). An average-
case hardness amplification theorem showing that DistPH ⊆ Avg1

1−n−cP ⇐⇒ DistPH ⊆ AvgP for
every constant c was proved as a corollary of the characterization.

Fig. 1 depicts the proof strategy of [Hir20a], which analyzes the average-case complexity of PH
through the lens of the worst-case meta-complexity of GapMINKTPH. In the left-half of the figure
are statements on the average-case complexity of PH; in the right-half of the figure are statements
on the worst-case meta-complexity of GapMINKTPH. The average-case hardness amplification
theorem is proved by connecting these statements.

average-case complexity worst-case meta-complexity

DistPH ⊆ Avg1
1−n−cP Gap(KPH vs K) ∈ P

GapMINKTPH ∈ PDistPH ⊆ AvgP

[Hir18, Hir20b, Hir20a]

trivial

[Hir20d, Hir20c, Hir20a]

trivial

Figure 1: The proof strategy of characterizing the average-case complexity of PH by the worst-case
meta-complexity of GapMINKTPH.

We follow an approach similar to [Hir20a]. Fig. 2 depicts an overview of our proof for DistPH ⊆
AvgP =⇒ PH ⊆ DTIME(2o(n)). In Section 2.1, we present the key notion of universal heuristic

DistPH ⊆ Avg1
1−n−cP Gap(KPH vs K) ∈ P

∀L ∈ PH admits

universal heuristic schemes
PH ⊆ DTIME

(
2O(n/ logn)

)

[Hir18, Hir20b, Hir20a]

Lemma 2.6

Lemma 2.3

Goal

Figure 2: A proof strategy for Item 2 of Theorem 1.6.

scheme and prove Lemma 2.3. In Section 2.2, we present the definition of the meta-computational
problem Gap(KPH vs K) and explain a proof idea of Lemma 2.6.

10

2.1 Universal Heuristic Scheme

At the core of all of our results is the new concept of a universal heuristic scheme. Before pre-
senting the definition of this scheme, let us justify the name. A universal heuristic scheme is shown
to be a P-computable average-case polynomial-time algorithm under every PSamp distribution in
the following sense:

Theorem 9.5 (Universality of the Universal Heuristic Scheme). Assume that DistNP ⊆ AvgP for
some constant c. Then, the following are equivalent for any language L.

1. There exists a universal heuristic scheme for L.

2. {L} ×PSamp ⊆ AvgPP.

Toward the definition of a universal heuristic scheme, we review the notion of the time-bounded
Kolmogorov complexity. The t-time-bounded Kolmogorov complexity of a string x ∈ {0, 1}∗ is the
shortest “size” of a program d that prints x in time t. A formal definition is given by fixing an
efficient universal Turing machine U .

Definition 2.1 (Time-bounded Kolmogorov complexity). For strings x, y ∈ {0, 1}∗, an oracle
A ⊆ {0, 1}∗, and a time bound t ∈ N ∪ {∞}, the A-oracle t-time-bounded Kolmogorov complexity
of x given y is defined as

Kt,A(x | y) := min
{
|d|
∣∣ UA outputs x on input (d, y) in time t

}
.

We omit the superscript A if A = ∅, the superscript t if t =∞, and “ | y” if y is the empty string.

The notion of computational depth was introduced by Antunes, Fortnow, van Melkebeek, and
Vinodchandran [AFvMV06]. The computational depth cdt(x) of a string x is defined as Kt(x) −
K(x) for a time bound t. This is not computable because of the uncomputability of Kolmogorov
complexity K(-). We generalize the notion to (s, t)-time-bounded computational depth, which is
simply defined as cds,t(x) = Ks(x)−Kt(x) for a string x ∈ {0, 1}∗.

A universal heuristic scheme is a heuristic algorithm that runs in time poly
(
n, t, 2cdt,p(t)(x)

)
on

input x of length n and a parameter t, where p is some polynomial. A formal definition follows.

Definition 6.2 (Universal Heuristic Scheme). A universal heuristic scheme for a language L is a
pair (S,C) of polynomial-time algorithms such that, for some polynomial p, for any n ∈ N, any
t ≥ p(n), and any x ∈ {0, 1}n,

1. if cdt,p(t)(x) ≤ k, then C(x, 1t, 1k) = 1, and

2. if C(x, 1t, 1k) = 1, then S(x, 1t, 12k) = L(x).

S and C are referred to as a solver and a checker, respectively.

The parameter k determines how long we would like to run the heuristic algorithm. The checker
C tests, in time poly(|x|, t), that the time-bounded computational depth cdt,p(t)(x) is sufficiently
small. If this test is passed, the solver S is guaranteed to compute the correct answer L(x) in time
poly(|x|, t, 2k).

Now, we state the main lemmas for Theorem 1.6.

11

Lemma 2.2. The following hold.

1. If DistNP ⊆ AvgP, then every language in UP admits a universal heuristic scheme.

2. If DistPH ⊆ AvgP, then every language in PH admits a universal heuristic scheme.

3. If DistNP ⊆ AvgPP, then every language in NP admits a universal heuristic scheme.

Lemma 2.3. If there exists a universal heuristic scheme for L, then L ∈ DTIME
(
2O(n/ logn)

)
.

Observe that Theorem 1.6 immediately follows from Lemmas 2.2 and 2.3. It is not difficult to
verify Lemma 2.3, which we outline below.

Proof Sketch of Lemma 2.3. The idea is to find a parameter t so that an input x of length n is
“computationally shallow” in the sense that cdt,p(t)(x) ≤ O(n/ log n). Details follow.

Let (S,C) be a universal heuristic scheme for L, and let p be the polynomial of Definition 6.2.
Fix any input x ∈ {0, 1}∗ of length n ∈ N. The key is the following telescoping sum:

Kp(n)(x)−KpI+1(n)(x) = cdp
1(n),p2(n)(x) + cdp

2(n),p3(n)(x) + · · ·+ cdp
I(n),pI+1(n)(x),

where I is a parameter to be chosen later. The left-hand side is clearly bounded above by n+O(1).
(Indeed, 0 ≤ Kt(x) ≤ n + O(1) holds for every string x of length n and for all sufficiently large t,
as there is an O(1)-size program that prints x given x as input.) This means that

I ·min
{

cdp
i(n),pi+1(n)(x)

∣∣∣ i ∈ [I]
}
≤ Kp(n)(x)−KpI+1(n)(x) ≤ n+O(1),

which implies that there exists i ∈ [I] such that cdp
i(n),pi+1(n)(x) ≤ (n + O(1))/I =: k.12 This

naturally motivates the following algorithm: Given an input x of length n, find i ∈ [I] such that

C(x, 1p
i(n), 1k) = 1, and simulate and output S(x, 1p

i(n), 12k). The correctness of the algorithm
immediately follows from Item 2 of Definition 6.2. The running time is at most

poly
(
pI(n), 2k

)
≤ 2O(n/ logn),

where the last inequality holds by choosing I := ε log n for a small constant ε > 0.

A formal proof of Lemma 2.3 and its extension are presented in Section 6.
The main innovation of this work is demonstrating the existence of a universal heuristic scheme

from heuristic algorithms, i.e., Lemma 2.2. We present two different proof strategies for constructing
universal heuristic schemes. One is based on [Hir20a], while the other is based on the work of
Antunes and Fortnow [AF09]. The former is used to prove Items 1 and 2 of Lemma 2.2 and is
explained in Sections 2.2 and 2.3. The latter is used to prove Item 3 of Lemma 2.2 and is explained
in Section 2.4.

12[n] denotes {1, . . . , n}.

12

2.2 Universal Heuristic Scheme from Meta-Complexity

We present a proof technique of the following special case of Item 2 of Lemma 2.2.

Theorem 2.4. DistPH ⊆ AvgP implies that every language L ∈ NP admits a universal heuristic
scheme.

We use the assumption that DistPH ⊆ AvgP to obtain an algorithm that solves GapMINKTNP in
the worst case. Here, GapMINKTNP is the problem of approximating the NP-oracle time-bounded
Kolmogorov complexity. The complexity of GapMINKTNP is referred to as meta-complexity be-
cause the time-bounded Kolmogorov complexity of a string x itself asks for the complexity of
printing a string x. A formal definition of GapMINKTNP is as follows:

Definition 2.5 ([Ko91, Hir20b]). For a polynomial τ : N→ N and an oracle A ⊆ {0, 1}∗, define

ΠA
Yes :=

{
(x, 1t, 1s)

∣∣ Kt,A(x) ≤ s
}
,

ΠA
No :=

{
(x, 1t, 1s)

∣∣∣ Kτ(|x|+t),A(x) > s+ log τ(|x|+ t)
}
.

We define GapτMINKTA as the promise problem (ΠA
Yes,Π

A
No), and Gapτ (KA vs K) as (ΠA

Yes,Π
∅
No).

We say that GapMINKTA ∈ P if there exists some polynomial τ such that GapτMINKTA ∈ P.
For a complexity class C, we say that GapMINKTC ∈ P if GapMINKTA ∈ P for any A ∈ C. We
omit the superscript A if A = ∅.

Using non-black-box reduction techniques, it was shown in [Hir18, Hir20b, Hir20a] that
GapMINKTNP (and the harder problem Gap(KNP vs K)) can be solved in the worst case under
the assumption that DistPH ⊆ AvgP.

Lemma 5.1 ([Hir18, Hir20b, Hir20a]). If DistPH ⊆ AvgP for some constant c, then Gap(KNP vs K) ∈
P.

At the core of Theorem 2.4 is the following lemma.

Lemma 2.6. If Gap(KNP vs K) ∈ P, then every language L ∈ NP admits a universal heuristic
scheme.

Lemma 2.6 is based on the DistNP-hardness results of GapMINKTNP [Hir20d, Hir20c, Hir20a],
which show that GapMINKTNP ∈ P implies DistNP ⊆ AvgP. We prove that this AvgP algorithm
for DistNP, in fact, realizes a universal heuristic scheme by using a new technical result which we
call weak symmetry of information.

Symmetry of information, established by Kolmogorov and Levin [ZL70, Theorem 5.2], is the
following fundamental inequality of the Kolmogorov complexity: For every x ∈ {0, 1}∗ and w ∈
{0, 1}∗,

K(x,w) ≥ K(x) + K(w | x)−O(log K(x,w)).

In particular, this implies that, with high probability over a random choice of w ∼ {0, 1}m,

K(x,w) ≥ K(x) + |w| −O(log K(x,w)). (1)

We call Eq. (1) weak symmetry of information. A time-bounded analogue of symmetry of informa-
tion was proved by Longpré and Watanabe [LW95] under the assumption that P = NP. We prove

13

a time-bounded analogue of the weak symmetry of information under the much weaker assumption
that NP is easy on average.

Theorem 5.2 (Weak Symmetry of Information). If DistNP ⊆ AvgP, then there exists a polynomial
pw such that, for every x ∈ {0, 1}∗ and every m ∈ N, for every ε > 0, for all sufficiently large t,

Pr
w∼{0,1}m

[
Kt(xw) ≥ Kpw(t/ε)(x) +m− log pw(t/ε)

]
≥ 1− ε.

Our proof of weak symmetry of information is “meta-computational” and fundamentally dif-
ferent from that of [LW95]. On the one hand, the proof of [LW95] is given by translating the
original Kolmogorov–Levin proof of symmetry of information to the time-bounded case. On the
other hand, our proof relies on a variant of Lemma 5.1, i.e., an efficient algorithm that solves
GapMINKT ∈ P. Our proof is specific to the time-bounded case, and must completely deviate from
the Kolmogorov–Levin proof, as there is no algorithm that can compute the resource-unbounded
Kolmogorov complexity.

We now sketch the idea of Lemma 2.6. Let L ∈ NP and V be a verifier for L; that is, x ∈ L
if and only if V (x, y) = 1 for some certificate y. Fix any input x of length n. Let yx denote the
lexicographically first certificate yx ∈ {0, 1}p(n) such that V (x, yx) = 1 (if any), where p is some
polynomial. Our proof strategy is to enumerate a list of strings that contains yx.

A fundamental tool for analyzing the Kolmogorov complexity, identified by [Hir20c], is the
notion of k-wise direct product generator. A k-wise direct product generator DPk : {0, 1}p(n) ×
{0, 1}d → {0, 1}d+k is defined as

DPk(yx; z1, . . . , zk) := (z1, . . . , zk,Enc(yx)z1 , . . . ,Enc(yx)zk),

where Enc is an arbitrary list-decodable error-correcting code, and Enc(yx)zi denotes the zi-th bit
of Enc(yx). This is a standard and simple construction of a pseudorandom generator based on
the truth table yx of a hard function. The key insight of [Hir20c] is that DPk achieves the nearly
optimal13 advice complexity of k + O(log n), which turned out to be of fundamental importance.
To be more specific, we have the following property:

Theorem 3.12 (Reconstruction Property of DPk [Hir20c]; Informal). There exists a randomized
polynomial-time oracle algorithm R(-) (referred to as a reconstruction algorithm) satisfying the
following. Let D : {0, 1}d+k → {0, 1} be an oracle such that D distinguishes the output distribution
DPk(yx; -) from the uniform distribution; that is,∣∣∣∣ Pr

z∼{0,1}d
[D(DPk(yx; z)) = 1]− Pr

w∼{0,1}d+k
[D(w) = 1]

∣∣∣∣ ≥ 1

2
.

Then, with high probability over an internal coin flip of RD, there exists an advice string α ∈
{0, 1}k+O(logn) such that RD outputs yx on input α.

The reconstruction procedure stated above is randomized, whereas we need a deterministic
algorithm in the end. However, this is not a problem, as Buhrman, Fortnow, and Pavan [BFP05]
showed that DistNP ⊆ AvgP implies the existence of a nearly optimal pseudorandom generator that

13A lower bound on the advice complexity is proved in [TV07].

14

enables us to derandomize any randomized algorithms (in particular, pr-BPP = P).14 Thus, we
may assume that the reconstruction procedure R is deterministic, and it is sufficient to design a
randomized universal heuristic scheme.

Now, we present the idea behind the universal heuristic scheme for L ∈ NP. The idea is
to construct a distinguisher D using an algorithm for Gap(KNP vs K), and then try all possible
advice strings α ∈ {0, 1}k+O(logn) (of Theorem 3.12) to find the certificate yx. Let MK denote the
polynomial-time algorithm that solves Gapτ (KNP vs K) for some polynomial τ , and let pK(n) :=
τ(2n). On the one hand, observe that for all sufficiently large t and for every z ∈ {0, 1}d,15

K2t,NP(x,DPk(yx; z)) ≤ Kt(x) + d+O(log n) (2)

because yx can be computed in polynomial time given x and oracle access to NP. On the other hand,
by the weak symmetry of information, with high probability over a random choice of w ∼ {0, 1}d+k,

KpK(2t)(x,w) > Kpw(pK(2t))(x) + d+ k −O(log t). (3)

In particular, if k ≥ cdt,pw(pK(2t))(x) + O(log t), the right-hand side of Eq. (2) is smaller than that
of Eq. (3). This suggests that we can define D so that

D(w) := 1 ⇐⇒ MK

(
(x,w), 12t, 1s

)
= 1,

where s := Kt(x) + d + O(log n). With this choice of the parameter, Eq. (2) implies that
(x,DPk(yx; z)) is a Yes instance of Gapτ (KNP vs K) for every z, whereas Eq. (3) implies that
(x,w) is a No instance of Gapτ (KNP vs K) with high probability over the random choice of w. We
conclude that D distinguishes DPk(yx; -) from the uniform distribution.

Now, we can describe a universal heuristic scheme (S,C) for L ∈ NP. The checker takes
(x, 1t, 1k) as input and approximately verifies that Prw [D(w) = 1] ≤ 1

4 by random sampling. The

solver takes (x, 1t, 12k) as input, exhaustively searches all the advice strings α ∈ {0, 1}k+O(logn),
and accepts if and only if V (x, y) = 1 for some string y that is produced by RD on some advice
string α.

The actual proof is more complicated than that presented above because the parameter s =
Kt(x) + d + O(log n) is not necessarily computable in polynomial time; the exact value of Kt(x)
may be infeasible to compute. This problem can be addressed by approximating the value of Kt(x)
using MK. Extending the proof to all levels of PH makes a formal proof more involved. The formal
proof is presented in Section 7.

2.3 Universal Heuristic Scheme for UP

An additional idea is necessary to apply the proof strategy of Section 2.2 to show the average-
case hardness of NP. We present a proof idea to show the following:

Theorem 2.7. DistNP ⊆ AvgP implies that every language in UP admits a universal heuristic
scheme.

14While Lemma 2.6 does not assume DistNP ⊆ AvgP, a nearly optimal pseudorandom generator can be constructed
under the assumption that Gap(KNP vs K) ∈ P [Hir20a].

15Kt,NP(x) is an informal notation that should be interpreted as Kt,SAT(x).

15

2.3.1 Algorithmic Language Compression

The language compression theorem for the resource-unbounded Kolmogorov complexity refers
to the following simple and fundamental fact:

Fact 2.8 (Language Compression). Let L be a decidable language. Then, for every n ∈ N and
every x ∈ {0, 1}n ∩ L,

K(x) ≤ log|L ∩ {0, 1}n|+O(log n).

The language compression theorem for the time-bounded Kolmogorov complexity has been pre-
viously studied (e.g., [Sip83, BFL01, BLvM05]). However, few studies have achieved nearly optimal
compression. We present a new “algorithmic” proof of language compression that optimally com-
presses any language in NP under the assumption that NP is easy on average.

Theorem 4.2 (Algorithmic Language Compression). Let L be a language in NP. Assume that
DistNP ⊆ AvgP. Then, there exists a polynomial p such that a promise problem Π = (ΠYes,ΠNo)
defined as

ΠYes := L,

ΠNo :=
{
x ∈ {0, 1}n

∣∣∣ Kp(n)(x) > log|L ∩ {0, 1}n|+ log p(n)
}

is in pr-P.

Why do we call Theorem 4.2 algorithmic language compression? A language compression theo-
rem can be equivalently stated as follows: The promise problem defined in Theorem 4.2 is disjoint
(i.e., ΠYes ∩ ΠNo = ∅). Theorem 4.2 shows not only that ΠYes and ΠNo can be separated but
also that ΠYes and ΠNo can be separated by an efficient algorithm and immediately implies the
following:

Corollary 4.4 (Language Compression). Under the same assumptions of Theorem 4.2, there exists
a polynomial p such that Kp(n)(x) ≤ log |L ∩ {0, 1}n|+ log p(n) for every string x of length n.

Moreover, Theorem 4.2 is a generalization of Lemma 5.1: The worst-case-to-average-case reduc-
tion of Lemma 5.1 follows by algorithmically compressing a language L :=

{
(x, 1t, 1s)

∣∣ Kt(x) ≤ s
}

.
The proof of Theorem 4.2 is based on two lines of research:

1. Buhrman, Lee, and van Melkebeek [BLvM05] identified the relationship between language
compression and pseudorandom generators.

2. The k-wise direct pseudorandom generator DPk was used in [Hir18, Hir20b] in a “meta-
computational” way to present a non-black-box worst-case-to-average-case reduction for
GapMINKT.

At a very high level, the algorithmic language compression theorem is proved by viewing the idea
of [BLvM05] from a meta-computational perspective, as in [Hir18, Hir20b].

2.3.2 Universal Heuristic Scheme Using Algorithmic Language Compression

Using algorithmic language compression, we present an idea for constructing a universal heuris-
tic scheme for every language L ∈ UP. Let V be a UP-type verifier for L. For parameters k, s, and

16

t, consider the following language.16

L′ :=
{

(x,DPk(y; z))
∣∣ Kt(x) ≤ s and ∃y, V (x, y) = 1

}
.

It is easy to see that L′ ∈ NP. Since V is a UP-type verifier, for every x, the number of certificates
y satisfying V (x, y) = 1 is at most 1; thus we have |L′| ≤ 2s+1 · 2d, where d is the length of z.
Applying Theorem 4.2, we obtain a polynomial-time algorithm M that solves the promise problem

ΠYes := L′,

ΠNo :=
{

(x,w)
∣∣∣ Kp(t)(x,w) > s+ 1 + d+ log p(t)

}
.

The remainder of the proof is almost identical to the proof presented in Section 2.2. Given an
input x ∈ {0, 1}∗ and parameters t and k ∈ N, the goal is to define an oracle D that distinguishes
DPk(yx; -) from the uniform distribution, where yx is the unique certificate for x (if any). We define
D so that D(w) = 1 if and only if M(x,w) = 1. On the one hand, by choosing s := Kt(x), the
definition of L′ implies that (x,DPk(yx; z)) ∈ L′ and thus D(DPk(yx; z)) = 1 for every z. On the
other hand, weak symmetry of information (Theorem 5.2) implies that, with high probability over
a random choice of w ∼ {0, 1}d+k,

Kp(t)(x,w) > Kpw(p(t))(x) + d+ k −O(log t),

which is larger than s+ 1 +d+ log p(n) if k ≥ cdt,pw(p(t))(x) +O(log t). These two arguments imply
that D distinguishes DPk(yx; -) from the uniform distribution, which enables the reconstruction
procedure of DPk to enumerate a list of strings that contains the unique certificate yx, if any.

We make two remarks on the proof presented above.

1. Why is the proof not applicable to NP or pr-UP? A natural approach is to attempt to
use the Valiant–Vazirani theorem [VV86], which shows NP-completeness of pr-UP via a
randomized reduction that, given a fixed input x ∈ {0, 1}n, reduces the number of cer-
tificates to 1 with probability 1/poly(n). However, this is not sufficient for our purpose.
What we need in the proof above is that the set L′ should be small; for example, we need
{ (x, y) | V (x, y) = 1, |x| = n } ≤ 2n · poly(n). The notion of approximately size-verifiable
functions captures the class of search problems for which the number of solutions can be
reduced to poly(n) using AM-type algorithms simultaneously for every input x, which enables
extending the aforementioned proof idea to the task of inverting approximating size-verifiable
functions.

2. What is the average-case hard problem in DistNP constructed from an exponentially worst-
case hard problem in UP? It is implicit in the proof of the algorithmic language compression
theorem that the average-case hard problem is to decide whether a given string u sampled
from the uniform distribution U is in the image L′′ of L′ under the k′-wise direct product
generator. Specifically, let L′′ := {DPk′(w; z′) | w ∈ L′ } for k′ = s + d + O(log n); we show
in Theorem 4.2 that L′ can be algorithmically compressed if, among other conditions,17

(L′′,U) ∈ AvgP holds.

16More formally, L′ is defined as an ensemble of languages L′〈n,k,s,t〉 that are parameterized by n, k, s and t such
that n = |x|. See Definition 4.1 for the definition of an ensemble of languages.

17For example, in Lemma 3.4, we use a tally language in NP as one of the average-case hard problems in DistNP.

17

2.4 Hardness for P-Computable Average-Case Polynomial Time

The proof idea of Item 3 of Lemma 2.2 is explained below.

Theorem 10.1. If DistNP ⊆ AvgPP, then every language in NP admits a universal heuristic
scheme.

This corresponds to the direction from Item 2 to Item 1 of Theorem 9.5, which refers to the
universality of the universal heuristic scheme; thus, we present the proof idea of Theorem 9.5.

The proof is based on ideas developed by Antunes and Fortnow [AF09], who showed the “univer-

sality” of an algorithm that runs in time 2cdp(|x|)(x)+O(log |x|) on input x, where p is some polynomial.
In order to compare their results with ours, we define a variant of the universal heuristic scheme,
which we call the AvgP-universal heuristic scheme.

Definition 2.9 (AvgP-Universal Heuristic Scheme; Implicit in [AF09]). An AvgP-universal heuris-
tic scheme for a language L is a polynomial-time algorithm S such that, for some polynomial p, for
any n ∈ N, any t ≥ p(n), and any x ∈ {0, 1}n,

1. if cdt(x) ≤ k, then S(x, 1t, 12k) = L(x), and

2. S(x, 1t, 12k) ∈ {L(x),⊥}.

The notion of AvgP-universal heuristic scheme allows us to encapsulate the theorem of Antunes
and Fortnow [AF09] as follows:

Theorem 2.10 (Antunes and Fortnow [AF09]). If E 6⊆ i.o.DSPACE(2εn) for some constant ε > 0,
then the following are equivalent for every language L:

1. There exists an AvgP-universal heuristic scheme for L.

2. {L} ×PSamp ⊆ AvgP.

The proof of Theorem 2.10 is based on the fundamental relationship between language com-
pression and average-case complexity, which is conceptually simple: Consider an average-case
polynomial-time algorithm A with time bound t : {0, 1}∗ → N. Let H be the set of “hard” instances
x such that t(x) ≥ 2k for an arbitrary parameter k. Since A is average-case polynomial-time, the
size of H is exponentially small in k. Applying the language compression theorem (for the resource-
unbounded Kolmogorov complexity), any hard instance x in H has low Kolmogorov complexity.
This indicates that A can solve any instance x of high Kolmogorov complexity (which, in particular,
has small computational depth).

We apply the proof idea of Theorem 2.10 to AvgPP algorithms. An essential difference is that we
need to use the language compression theorem for the time-bounded Kolmogorov complexity (i.e.,
Corollary 4.4): A universal heuristic scheme must run in time proportional to the exponential of
the time-bounded computational depth, which indicates that it is inappropriate to use the language
compression theorem for the resource-unbounded Kolmogorov complexity. Another new ingredient
in the proof is Lemma 5.1, which enables estimating the time-bounded Kolmogorov complexity.
Details can be found in Section 9.

The hard distribution obtained using the proof idea above is far from the uniform distribution.
(The distribution is one that dominates the “time-bounded universal distribution.”) In order to
make the distribution uniform, we present a different proof that is based on a nearly optimal

18

compression algorithm whose existence we show under the assumption that NP is easy on average.
Details can be found in Section 10.

A natural approach to make the distribution uniform is to appeal to the theorem of Impagliazzo
and Levin [IL90], who showed that DistNP ⊆ AvgZPP if and only if NP×{U} ⊆ AvgZPP. However,
it is unclear whether their proofs are applicable to AvgPP. Our proof provides an analogue of [IL90]
in the setting of AvgPP.

2.5 Organization

The remainder of this paper is organized as follows. In Section 3, we present definitions of
Avg1P, DPk, and basic properties of Kolmogorov complexity. We present an algorithmic proof
of language compression in Section 4 and prove weak symmetry of information in Section 5. We
show that the existence of a universal heuristic scheme implies a fast algorithm in Section 6 and
construct a universal heuristic scheme for PH and UP in Section 7 and Section 8, respectively. In
Section 9, we characterize the notion of P-computable average-case polynomial time using that of P-
bounded failure heuristic scheme, and then prove the universality of universal heuristic schemes. In
Section 10, we show that the uniform distribution or the tally distribution is the hardest distribution
for AvgPP to solve DistNP. Section 11 provides the proofs of the main theorems. Finally, Section 12
presents open questions.

3 Preliminaries

Notation Throughout this paper, we often identify N×N with N using a bijection 〈-, -〉 : N×N→
N defined as, for example, 〈a, b〉 :=

∑a+b
i=0 i + a. Similarly, for any k ≥ 3, we identify Nk with N

using a bijection recursively defined as 〈a1, a2, . . . , ak〉 := 〈a1, 〈a2, . . . , ak〉〉. For a distribution D,
let supp(D) denote the support of D; for x ∈ supp(D), let D(x) denote PrX∼D [X = x]. For a
family D = {Dn}n∈N of distributions, let supp(D) denote

⋃
n∈N supp(Dn). The bijection is used to

regard {Dn}n∈N as
{
D〈a,b〉

}
a,b∈N.

3.1 Average-Case Complexity Theory

In this subsection, we review the basic concepts of average-case complexity theory and present
useful lemmas. Additional details can be found in the survey by Bogdanov and Trevisan [BT06a].

A formal definition of PSamp and DistC is provided below.

Definition 3.1 (Polynomial-Time Samplable). We say that a family D = {D}n∈N of distributions
is polynomial-time samplable if there exist a polynomial-time algorithm M and a polynomial p such
that, for every n ∈ N and every x ∈ {0, 1}∗,

Pr
r∼{0,1}p(n)

[M(1n, r) = x] = Dn(x).

Let PSamp denote the class of polynomial-time samplable families of distributions.

Definition 3.2. For a complexity class C, let DistC denote the class of distributional problems
(L,D) such that L ∈ C and D ∈ PSamp.

One-sided-error heuristics are formally defined as follows.

19

Definition 3.3 (One-Sided-Error Heuristics). For a distributional problem (L,D) and a function
δ : N → (0, 1), an algorithm A is said to be a one-sided-error heuristic algorithm for (L,D) with
failure probability δ if

1. L(x) = 0 implies A(x, 1n) = 0 for every n ∈ N and every x ∈ supp(Dn), and

2. Prx∼Dn [A(x, 1n) = L(x)] ≥ 1− δ(n) for every n ∈ N.

Avg1
δP denotes the class of distributional problems for which there exists a polynomial-time one-

sided-error heuristic scheme with failure probability δ. The success probability refers to 1− δ.

We will use the pseudorandom generator constructed by Buhrman, Fortnow, and Pavan [BFP05]
to derandomize randomized algorithms. For a function G : {0, 1}s → {0, 1}n and ε > 0, we say that
a circuit D ε-distinguishes the output distribution of G(-) from the uniform distribution if∣∣∣∣ Pr

z∼{0,1}s
[D(G(z)) = 1]− Pr

w∼{0,1}n
[D(w) = 1]

∣∣∣∣ ≥ ε.
A family G =

{
Gn : {0, 1}s(n) → {0, 1}n

}
n∈N is said to be a pseudorandom generator secure against

a class C if, for every C ∈ C, for all large n, C cannot 1/n-distinguish Gn(-) from the uniform
distribution.

Lemma 3.4 (Buhrman, Fortnow, and Pavan [BFP05]; see also [Hir20a]). If coNP × {U , T } ⊆
Avg1

1−n−cP for some constant c, then there exists a pseudorandom generator

G =
{
Gn : {0, 1}O(logn) → {0, 1}n

}
n∈N

computable in time nO(1) and secure against linear-sized circuits.

Proof Sketch. Lemma 3.4 is based on the following four results.

1. coNP× {T } ⊆ Avg1
1−n−cP implies NE = E [BCGL92].

2. coNP× {U} ⊆ Avg1
1−n−cP implies pr-MA = pr-NP [KS04].

3. If NE = E and pr-MA = pr-NP, then E 6⊆ i.o.SIZE(2εn) for some constant ε > 0 [BFP05] (see
also [Hir20a]).

4. If E 6⊆ i.o.SIZE(2εn) for some constant ε > 0, then there exists a polynomial-time-computable
pseudorandom generator secure against linear-sized circuits [IW97].

The reason why we consider the tally distribution T to be one of the hard distributions solely
comes from Lemma 3.4. In the remainder of this paper, we primarily consider the uniform distri-
bution. It is convenient to slightly generalize the uniform distribution U = {Un}n∈N as follows.

Definition 3.5 (Parameterized Uniform Distribution). A family D = {Dn}n∈N of distributions is
said to be a parameterized uniform distribution if there exist efficiently computable functions18 p
and q : N→ N such that Dn is identical to the distribution that samples r ∼ {0, 1}p(n) and outputs
(r, 1q(n)).

18We say that a function p : N→ N is efficiently computable if p(n) is computable on input 1n in polynomial time.

20

Lemma 3.6. Let A be an oracle. Assume that coNPA × {U , T } ⊆ Avg1
1−n−cP for some constant

c. Then, for every L ∈ coNPA and for every parameterized uniform distribution D, there exists a
constant c′ such that (L,D) ∈ Avg1

1−n−c′P.

Proof. The idea is to encode the information of integers p and q ∈ N as the length of instances.
Specifically, define a language L′ so that x ∈ L′ if and only if 〈p, q〉 := |x| and (r, 1q) ∈ L, where r
denotes the first p bits of x. Observe that L′ ∈ coNPA. Let M ′ be a polynomial-time one-sided-error
heuristic algorithm that witnesses (L′,U) ∈ Avg1

1−n−cP.
Let p and q be the efficiently computable functions of Definition 3.5. We define a polynomial-

time algorithm M so that M
(
(r, 1q(n)), 1n

)
:= 1 if and only if M ′

(
rr′, 1〈p(n),q(n)〉) = 1 for some

string r′ := Gm(z) in the image of Gm, where Gm : {0, 1}O(logm) → {0, 1}|r′| is the pseudorandom
generator of Lemma 3.4 whose output is truncated to |r′| = 〈p(n), q(n)〉−p(n) bits, and m ≤ poly(n)
is a sufficiently large parameter.

Below, we show that M is a one-sided-error heuristic algorithm for (L,D). We first claim
that M does not err on No instances. Fix any n ∈ N. Let (r, 1q(n)) ∈ supp(Dn) \ L be a No
instance of L. By the definition of L′, we have L′(rr′) = 0 for every r′ ∈ {0, 1}〈p(n),q(n)〉−p(n); thus,
M ′(rr′, 1〈p(n),q(n)〉) = 0, which implies M

(
(r, 1q(n)), 1n

)
= 0.

It remains to claim that the success probability of M is at least n−c
′

for some constant c′. Let
ε denote the success probability of M ′; that is,

Pr
r,r′

[
M ′
(
rr′, 1〈p(n),q(n)〉

)
= L(r)

]
≥ ε := 〈p(n), q(n)〉−c,

where r ∼ {0, 1}p(n) and r′ ∼ {0, 1}〈p(n),q(n)〉−p(n). We analyze the following two cases:

1. Assume that Prr,r′
[
M ′
(
rr′, 1〈p(n),q(n)〉) = 1

]
≥ ε/2. By an averaging argument, with proba-

bility at least ε/4 over the choice of r, Prr′
[
M ′
(
rr′, 1〈p(n),q(n)〉) = 1

]
≥ ε/4, in which case

M
(
(r, 1q(n)), 1n

)
= 1 follows from the security of the pseudorandom generator Gm. Since M

does not err on No instances, it follows that

Pr
r

[
M
(

(r, 1q(n)), 1n
)

= L
(
r, 1q(n)

)
= 1
]
≥ ε/4.

2. Next, assume that Prr,r′
[
M ′
(
rr′, 1〈p(n),q(n)〉) = 1

]
< ε/2. In this case, we have

Pr
r

[
L
(
r, 1〈q(n)〉

)
= 0
]

≥ Pr
r,r′

[
M ′
(
rr′, 1〈p(n),q(n)〉

)
= 0
]
− Pr
r,r′

[
M ′
(
rr′, 1〈p(n),q(n)〉

)
6= L

(
r, 1q(n)

)]
≥ 1− ε/2− (1− ε) ≥ ε/2.

Since M does not err on No instances, we obtain

Pr
r

[
M
(

(r, 1q(n)), 1n
)

= L
(
r, 1q(n)

)
= 0
]
≥ ε/2.

21

3.2 Kolmogorov Complexity and Its Meta-Complexity

We observe two simple facts about Kolmogorov complexity and Gap(KA vs K).

Fact 3.7. For any s ≥ 1, the number of strings x ∈ {0, 1}∗ such that K(x) < s is less than 2s.

Proof. The number of programs of length less than s is at most
∑s−1

i=0 2i < 2s.

Fact 3.8. For every oracle A, the following are equivalent.

1. Gap(KA vs K) ∈ P.

2. There exist a polynomial-time algorithm M and a polynomial pK such that, on input (x, 1t)
with t ≥ |x|, M outputs an integer v such that

KpK(t),A(x)− log pK(t) ≤ v ≤ Kt(x).

Proof. (Item 1⇒ 2) Assume that there exists a polynomial-time algorithmM that solves Gapτ (KA vs K)
for some (monotonically increasing) polynomial τ . Define a polynomial-time algorithm M ′ so that

M ′(x, 1t) := min
{
s ∈ N

∣∣M(x, 1t, 1s) = 1
}
.

Fix any x ∈ {0, 1}∗ and t ≤ |x|, and let v denote the output of M ′(x, 1t). On one hand, since
M(x, 1t, 1Kt(x)) = 1, we have v ≤ Kt(x). On the other hand, since M(x, 1t, 1s) = 0 holds for every
s ∈ N such that Kτ(|x|+t),A(x) > s + log τ(|x| + t), we obtain v ≥ Kτ(|x|+t),A(x) − log τ(|x| + t) ≥
KpK(t),A(x)− log pK(x), where pK(t) is defined as τ(2t).

(Item 2 ⇒ 1) Conversely, given an algorithm M ′ that satisfies Item 2, we define an algorithm
M so that M(x, 1t, 1s) = 1 if and only if M ′(x, 1t

′
) ≤ s for t′ := |x| + t. If Kt(x) ≤ s, then

M ′(x, 1t
′
) ≤ Kt′(x) ≤ Kt(x) ≤ s; thus, M accepts. If KpK(|x|+t),A(x) > s + log pK(|x| + t), then

M ′(x, 1t
′
) ≥ KpK(t′),A(x)− log pK(t′) = KpK(|x|+t),A(x)− log pK(|x|+ t) > s; thus, M rejects. This

indicates that M ′ solves GappK (KA vs K).

3.3 k-Wise Direct Product Generator

To simplify later proofs, we construct a k-wise direct generator different from that in [Hir20c].
Specifically, we instantiate a k-wise direct product generator using the Hadamard code.

Definition 3.9 (Hadamard code). A function Had takes a string x ∈ {0, 1}∗ and maps it to a

function Had(x) : {0, 1}|x| → {0, 1} defined as Had(x)(y) :=
(∑|x|

i=1 xiyi

)
mod 2 for every y ∈

{0, 1}|x|, where xi denotes the ith bit of x.

Definition 3.10 (k-Wise Direct Product Generator). For every n, k ∈ N, we define the k-wise
direct product generator to be a function

DPk : {0, 1}n × {0, 1}nk → {0, 1}nk+k

such that
DPk(x; z1, . . . , zk) := (z1, . . . , zk,Had(x)(z1), . . . ,Had(x)(zk)).

Goldreich and Levin [GL89] showed that the Hadamard code is locally list-decodable.

22

Lemma 3.11 (Local list-decoding algorithm for the Hadamard code [GL89]; see also [GRS00]).
There exists a randomized oracle algorithm M such that M takes n and ε−1 ∈ N as input and
random access to a function f : {0, 1}n → {0, 1}, and for every x ∈ {0, 1}n such that

Pr
y∼{0,1}n

[f(y) = Had(x)(y)] ≥ 1

2
+ ε,

Mf outputs x with probability at least 1/poly(n/ε) in time poly(n/ε).

A formal statement of the reconstruction property of DPk is given below.

Theorem 3.12 (Deterministic Reconstruction for DPk [Hir20c, Hir20b, Hir20a]). Assume that
there exists a pseudorandom generator G =

{
Gn : {0, 1}O(logn) → {0, 1}n

}
n∈N computable in time

nO(1) and secure against linear-sized circuits. Then, there exist a polynomial-time oracle algorithm
C(-) and a polynomial p such that, for every n ∈ N, x ∈ {0, 1}n, parameters k, ε−1, s ∈ N, and for
every randomized circuit D of size s such that∣∣∣∣Pr

z,r
[D(DPk(x; z); r) = 1]− Pr

w,r
[D(w; r) = 1]

∣∣∣∣ ≥ ε,
where z ∼ {0, 1}nk, w ∼ {0, 1}nk+k, and r ∼ {0, 1}s, the algorithm CD takes (x, 1k, 1ε

−1
, 1s) as

input and outputs a program of size at most k+ log p(ns/ε) that prints x given D in time p(ns/ε).
In particular,

Kp(ns/ε)(x | D) ≤ k + log p(ns/ε).

Since all strings with low time-bounded Kolmogorov complexity can be enumerated by an
exhaustive search, the conclusion of Theorem 3.12 means that, in time poly(ns2k/ε), given a de-
scription of the circuit D, one can enumerate a list of strings that contains x.

Remark 3.13. The advantage of the k-wise direct product generator DPk instantiated with the
Hadamard code is that DPk does not depend on the advantage ε, where ε is the parameter in
Theorem 3.12. This will simply our proofs slightly. The construction given in [Hir20c, Hir20b]
depends on ε because of the choice of an error-correcting code. The disadvantage of DPk instantiated
with Had is that it requires many random bits, which is inappropriate for the purpose of [Hir20c].
This is not a problem for our purpose because of Lemma 3.4.

For completeness, we include a proof of Theorem 3.12. The proof is based on the following.19

Lemma 3.14. For any parameters n, k ∈ N, and ε > 0 with k ≤ 2n, there exists a pair of algorithms
A and R(-) (associated with DPk) satisfying the following.

• RD takes oracle access to a function D : {0, 1}d+k → {0, 1}, where d := nk.

• A : {0, 1}n×{0, 1}r → {0, 1}k is called an advice function and is computable in time poly(n/ε).

• RD : {0, 1}k × {0, 1}r → {0, 1}n is called a reconstruction procedure and is computable in
time poly(n/ε).

• The randomness complexity r is at most poly(n/ε).

19The formalization of Lemma 3.14 is inspired by [TUZ07].

23

• For any string x ∈ {0, 1}n and any function D that ε-distinguishes the output distribution of
DPk(x, -) from the uniform distribution, it holds that

Pr
w∼{0,1}r

[
RD(A(x,w), w) = x

]
≥ 1/poly(n/ε).

Proof. We use a standard hybrid argument (as in [NW94, Vad12]). Fix any string x ∈ {0, 1}n. Let
x̂ denote Had(x) : {0, 1}n → {0, 1}. Assume that D : {0, 1}d+k → {0, 1} satisfies

Pr
z̄

[
D(z1, . . . , zk, x̂(z1), . . . , x̂(zk)) = 1

]
− Pr

z̄,b

[
D(z1, . . . , zk, b1, . . . , bk) = 1

]
≥ ε,

where z̄ = (z1, . . . , zk) ∼ ({0, 1}n)k and b ∼ {0, 1}k. For every i ∈ {0, . . . , k}, define the i-th hybrid
distribution Hi as the distribution of

(z1, . . . , zk, x̂(z1), . . . , x̂(zi), bi+1, . . . , bk),

where z̄ = (z1, . . . , zk) ∼ ({0, 1}n)k and bi+1, . . . , bk ∼ {0, 1}. By this definition, H0 is identically
distributed with the uniform distribution, andHk is a distribution identical to DPk(x, z̄). Therefore,

E
i∼[k]
z̄,b

[D(Hi)−D(Hi−1)] ≥ ε

k
.

By an averaging argument, we obtain

Pr
i∼[k],b

z1,...,zi−1,zi+1,...,zk

[
E

zi∼{0,1}n
[D(Hi)−D(Hi−1)] ≥ ε

2k

]
≥ ε

2k
. (4)

Define the advice function A as A(x,w) := (x̂(z1), . . . , x̂(zi−1), bi, . . . , bk) ∈ {0, 1}k, where w is a
coin flip sequence that contains the random choice of i ∼ [k], z1, . . . , zi−1 ∼ {0, 1}n, and b ∼ {0, 1}k.
By a standard calculation (see, e.g., [Vad12, Proposition 7.16]), it follows from Eq. (4) that

Pr
zi∼{0,1}n

[
D(z̄, A(x,w))⊕ 1⊕ bi = x̂(zi)

]
≥ 1

2
+

ε

2k
(5)

with probability at least ε/2k over the random choice of (i, z[k]\{i}, b).
Now we describe the reconstruction procedure RD(α,w). Given an advice string α ∈ {0, 1}k

and a coin flip w, we regard the random bits w as i ∼ [k], z1, . . . , zi−1, zi+1, . . . , zk ∼ {0, 1}n,
b ∼ {0, 1}k, and r0 ∼ {0, 1}poly(n/ε). Define a function f : {0, 1}n → {0, 1} as

f(zi) := D(z̄, α)⊕ 1⊕ bi

for every zi ∈ {0, 1}n. The reconstruction procedure runs the list-decoding algorithm of Lemma 3.11
using r0 as a coin flip sequence, and outputs the output of the list-decoding algorithm.

We claim that Prw
[
RD(A(x,w), w) = x

]
≥ ε/2kL for some L = poly(n/ε). By Eq. (5), with

probability at least ε/2k over the random choice of (i, z[k]\{i}, b), f(zi) and x̂(zi) agree on at least
a (1/2 + ε/2k)-fraction of all the strings zi ∈ {0, 1}n, in which case the list-decoding algorithm
outputs x with probability at least 1/poly(n/ε) over the random choice of r0. Therefore, we obtain

Pr
w

[
RD(A(x,w), w) = x

]
≥ ε

2k
· 1

poly(n/ε)
.

24

Proof of Theorem 3.12. We may assume without loss of generality that k ≤ 2n. Let D be a
randomized circuit D of size s such that∣∣∣∣Pr

z,r
[D(DPk(x; z); r) = 1]− Pr

w,r
[D(w; r) = 1]

∣∣∣∣ ≥ ε.
By the security property of the pseudorandom generator Gs, we have the following two inequalities:∣∣∣∣Pr

z,σ
[D(DPk(x; z);Gs(σ)) = 1]− Pr

z,r
[D(DPk(x; z); r) = 1]

∣∣∣∣ ≤ ε

4
,

∣∣∣∣Pr
w,σ

[D(w;Gs(σ)) = 1]− Pr
w,r

[D(w; r) = 1]

∣∣∣∣ ≤ ε

4
.

It follows from the three inequalities above that∣∣∣∣Pr
z,σ

[D(DPk(x; z);Gs(σ)) = 1]− Pr
w,σ

[D(w;Gs(σ)) = 1]

∣∣∣∣ ≥ ε

2
.

We define a function Dσ : {0, 1}nk+k → {0, 1} so that Dσ(w) := D(w;Gs(σ)). Then, there exists a
seed σ ∈ {0, 1}O(log s) such that∣∣∣Pr

z
[D(DPk(x; z);Gs(σ)) = 1]− Pr

w
[D(w;Gs(σ)) = 1]

∣∣∣ ≥ ε

2
.

Applying Lemma 3.14 to Dσ, there exists a polynomial p such that

Pr
w∼{0,1}r

[
RDσ(A(x,w), w) = x

]
≥ 1

p(n/ε)
,

where r ≤ p(n/ε). Observe that the condition that RDσ(A(x,w), w) = x can be checked by a circuit
of size s′ given w as input, where 2p(n/ε) ≤ s′ ≤ q(ns/ε) for some polynomial q. We thus obtain

Pr
σ′

[
RDσ(A(x,Gs′(σ

′)), Gs′(σ
′)) = x

]
≥ 1

2p(n/ε)
.

In particular, there exists a seed σ′ ∈ {0, 1}O(log s′) such that RDσ(A(x,Gs′(σ
′)), Gs′(σ

′)) = x.
We are now ready to describe a program M that prints x efficiently given the description of

the randomized circuit D: Given an advice string α := A(x,Gs′(σ
′)) ∈ {0, 1}k and seeds σ ∈

{0, 1}O(log s) and σ′ ∈ {0, 1}O(log s′), the program M computes and outputs RDσ(α,Gs′(σ
′)) in time

poly(ns/ε); we thus obtain

Kpoly(ns/ε)(x | D) ≤ k +O(log s) +O(log s′).

The algorithm CD that prints M can be naturally defined as follows: Given (x, 1k, 1ε
−1
, 1s) as

input, the algorithm finds seeds σ ∈ {0, 1}O(log s) and σ′ ∈ {0, 1}O(log s′) such that

RDσ(A(x,Gs′(σ
′)), Gs′(σ

′)) = x

by an exhaustive search and outputs M .

25

4 Algorithmic Language Compression

In this section, we present an algorithmic proof of the language compression theorem. To state
the language compression theorem formally, it is useful to regard a language L as a family {Lt}t∈N
of languages that are indexed by a unary 1t. We call such a family an ensemble of languages:

Definition 4.1 (Ensemble of Languages). For every language L ⊆ {0, 1}∗ and every t ∈ N, let Lt
denote

{
x ∈ {0, 1}∗

∣∣ (x, 1t) ∈ L
}

. We say that a language L ⊆ {0, 1}∗ is an ensemble of languages
if there exists a polynomial pL such that |x| ≤ pL(t) for any t ∈ N and any x ∈ Lt. We identify an
ensemble L ⊆ {0, 1}∗ of languages with a family {Lt}t∈N.

The following is the main result of this section.

Theorem 4.2 (Algorithmic Language Compression). Let A be an oracle and L = {Lt}t∈N ∈ NPA

be an ensemble of languages. Assume that coNPA × {U , T } ⊆ Avg1
1−n−cP for some constant c.

Then, there exists a polynomial p such that a promise problem Π = (ΠYes,ΠNo) defined as

ΠYes :=
{

(x, 1t)
∣∣ x ∈ Lt } = L,

ΠNo :=
{

(x, 1t)
∣∣∣ Kp(t)(x) > log |Lt|+ log p(t)

}
is in pr-P.

Remark 4.3. If |Lt| = 0, we have (ΠNo)t = {0, 1}∗ because Kp(t)(x) > log |Lt| + log p(t) = −∞
holds for any x.

We call Theorem 4.2 an “algorithmic” proof of language compression because of the following.

Corollary 4.4 (Language Compression). Under the same assumptions of Theorem 4.2, there exists
a polynomial p such that Kp(t)(x) ≤ log |Lt|+ log p(t) for every t ∈ N and every x ∈ Lt.

Proof. For any x ∈ Lt, we have (x, 1t) ∈ L = ΠYes. Since Π ∈ pr-P, we must have ΠYes∩ΠNo = ∅;
we thus obtain (x, 1t) 6∈ ΠNo, from which the result follows.

The remainder of this section is devoted to proving Theorem 4.2. We start with a lemma that
enables us to estimate log |Lt|.

Lemma 4.5. Under the same assumptions of Theorem 4.2, there exists a polynomial-time algorithm
that, on input 1t, outputs a value v ∈ N such that |Lt| ≤ v ≤ 4|Lt|.

The proof idea of Lemma 4.5 is that any problem in pr-AM can be solved on unary inputs
under the assumption that NP is easy on average. The lower bound protocol of Goldwasser and
Sipser [GS86] enables us to estimate the size of Lt in pr-AM.

Lemma 4.6 (Lower Bound Protocol; Goldwasser and Sipser [GS86]; see also [BT06b, Lemma 2.6]).
Let L ∈ NPA and let p be a polynomial. Define s(x) :=

∣∣{ y ∈ {0, 1}p(|x|) ∣∣ (y, x) ∈ L
}∣∣ for each

x ∈ {0, 1}∗. Then, a promise problem Π = (ΠYes,ΠNo) defined as

ΠYes := { (x, `) | s(x) ≥ ` } ,
ΠNo := { (x, `) | s(x) < (1− ε)` }

is in pr-AMA for any constant ε > 0.

26

Proof Sketch. A pr-AMA protocol operates roughly as follows. A verifier picks a pairwise-
independent hash h randomly. A prover sends a string y such that h(y) = 0 and (y, x) ∈ L
together with a certificate for (y, x) ∈ L.

Proof of Lemma 4.5. Let s(1t) := |Lt| ≤ 2pL(t) for every t ∈ N. Applying Lemma 4.6 to L, there
exist an A-oracle polynomial-time algorithm V A and a polynomial p such that, for every K > 0,

1. if s(1t) ≥ K, then Pr
r∼{0,1}p(t)

[
∃y ∈ {0, 1}p(t), V A

(
(1t,K), y, r

)
= 1
]
≥ 1− 2−t, and

2. if s(1t) ≤ K/2, then Pr
r∼{0,1}p(t)

[
∃y ∈ {0, 1}p(t), V A

(
(1t,K), y, r

)
= 1
]
< 2−t.

Define a language L′ so that L′ :=
{

(r, 1〈t,k〉)
∣∣ ∃y ∈ {0, 1}p(t), V A

(
(1t, 2k), y, r

)
= 1

}
∈ NPA.

Consider a family D =
{
D〈t,k〉

}
t,k∈N of distributions, where D〈t,k〉 is a distribution that samples

r ∼ {0, 1}p(t) and outputs (r, 1〈t,k〉). Observe that this is a parameterized uniform distribution. It
follows from the assumption and Lemma 3.6 that (coL′,D) ∈ Avg1

1−n−c′P for some constant c′. Let

¬A be a polynomial-time one-sided-error heuristic algorithm for (coL′,D) with success probability

〈t, k〉−c
′
. Then, for all sufficiently large t ∈ N and all k ≤ pL(t), we have the following.

1. If s(1t) ≥ 2k, then20

Pr
r

[
A(r, 1〈t,k〉) = 1

]
≥ Pr

r

[
L′(r, 1〈t,k〉) = 1

]
≥ 1− 2−t.

2. If s(1t) ≤ 2k−1, then

Pr
r

[
A(r, 1〈t,k〉) = 1

]
≤ Pr

r

[
L′(r, 1〈t,k〉) = 1

]
+ Pr

r

[
L′(r, 1〈t,k〉) 6= A(r, 1〈t,k〉)

]
≤ 2−t + 1− 〈t, k〉−c

′
≤ 1− t−d,

where d is some constant independent of t.

The gap between the probabilities 1 − 2−t and 1 − t−d can be amplified by running A poly(t)
times; thus, there exists a randomized polynomial-time algorithm that solves the following promise
problem Π = (ΠYes,ΠNo):

ΠYes :=
{

1〈t,k〉
∣∣∣ s(1t) ≥ 2k

}
,

ΠNo :=
{

1〈t,k〉
∣∣∣ s(1t) ≤ 2k−1

}
.

Since Π ∈ pr-BPP = pr-P by Lemma 3.4, there exists a deterministic polynomial-time algorithm
A′ that solves Π.

Now we are ready to present a polynomial-time algorithm B that computes an approximation
value v of |Lt|. Define B so that B(1t) := max

(
{0} ∪

{
2k+1

∣∣ A′(1〈t,k〉) = 1
})

for every t ∈ N.

20More precisely, A takes ((r, 1〈t,k〉), 1〈t,k〉) as input. Since the last input is clearly redundant, we omit it for
simplicity.

27

We claim the correctness of the algorithm B. Fix any t ∈ N, and let v := B(1t) and s := s(1t).
If s = 0, it is easy to observe that v = 0, in which case we have s ≤ v ≤ 4s, as desired. Consider
the case where s > 0. Let k ∈ N denote max

{
k
∣∣ 2k ≤ 2s

}
. Since s ≤ 2k, we have 1〈t,k+1〉 ∈ ΠNo;

thus, v ≤ 2k+1 ≤ 4s. Since 2k ≤ 2s, we also obtain 1〈t,k−1〉 ∈ ΠYes; thus, v ≥ 2k ≥ s. We conclude
that s ≤ v ≤ 4s for every s ∈ N.

We are ready to present an algorithmic proof of language compression.

Proof of Theorem 4.2. Let A be the algorithm of Lemma 4.5. Let k(t) := logA(1t) + d log t for
some constant d chosen later. Let L′ =

{
(DPk(x; z), 1〈n,t〉)

∣∣ x ∈ Lt ∩ {0, 1}n, k = k(t)
}

. Since

L ∈ NPA, one can observe that L′ ∈ NPA. (Indeed, (w, 1〈n,t〉) ∈ L′ if and only if there exist
x ∈ {0, 1}n, a certificate y for x ∈ Lt, and z ∈ {0, 1}n·k(t) such that w = DPk(t)(x; z).) Consider

a parameterized uniform distribution D =
{
D〈n,t〉

}
n,t∈N such that D〈n,t〉 picks w ∼ {0, 1}nk(t)+k(t)

and outputs (w, 1〈n,t〉). It follows from Lemma 3.6 that (coL′,D) ∈ Avg1
1−n−c′P for some constant

c′. Let ¬B be a polynomial-time one-sided-error heuristic algorithm for (coL′,D) with success

probability 〈n, t〉−c
′
.

We first claim that the number of Yes instances in L′ is relatively small. For each n, t ∈ N, by
a union bound, we have

Pr
w∼{0,1}nk(t)+k(t)

[
(w, 1〈n,t〉) ∈ L′

]
= Pr
w∼{0,1}nk(t)+k(t)

[
∃x ∈ Lt ∩ {0, 1}n, ∃z ∈ {0, 1}nk(t), w = DPk(t)(x; z)

]
≤ |Lt ∩ {0, 1}n| · 2nk(t) · 2−nk(t)−k(t) ≤ A(1t) · 2−k(t) = 2−d log t = t−d. (6)

We present a randomized algorithm B′ that solves the promise problem Π defined in Theo-
rem 4.2. On input (x, 1t), the algorithm B′ lets n := |x| and picks z ∼ {0, 1}nk(t) randomly, and
accepts if and only if B(DPk(t)(x; z), 1〈n,t〉) = 1. Let B′(x, 1t; z) denote the output of this algorithm;

that is, B′(x, 1t; z) = B(DPk(t)(x; z), 1〈n,t〉). We claim the correctness of B′ below. Let pL be the
polynomial of Definition 4.1.

Claim 4.7. For all large t ∈ N and every n ≤ pL(t), the following hold for every x ∈ {0, 1}n.

1. If x ∈ Lt (⇔ (x, 1t) ∈ ΠYes), then Prz[B
′(x, 1t; z) = 1] = 1.

2. If (x, 1t) ∈ ΠNo, then Prz[B
′(x, 1t; z) = 1] < 1− 〈n, t〉−c

′
/4.

Proof. Assume that x ∈ Lt. By the definition of L′, we have (DPk(t)(x; z), 1〈n,t〉) ∈ L′ for every
z. Since B is a one-sided-error algorithm that does not err on Yes instances, we obtain 1 =
B(DPk(t)(x; z), 1〈n,t〉) = B′(x, 1t; z). This completes the proof of Item 1.

To prove the contrapositive of Item 2, assume that Prz[B
′(x, 1t; z) = 1] ≥ 1 − 〈n, t〉−c

′
/4; that

is,

Pr
z

[
B
(

DPk(t)(x; z), 1〈n,t〉
)

= 1
]
≥ 1− 〈n, t〉−c

′
/4. (7)

28

On the other hand,

Pr
w

[
B(w, 1〈n,t〉) = 1

]
≤ Pr

w

[
L′(w, 1〈n,t〉) = 1

]
+ Pr

w

[
B(w, 1〈n,t〉) 6= L′(w, 1〈n,t〉)

]
≤ t−d + 1− 〈n, t〉−c

′
, (8)

where the last inequality uses Eq. (6). Choosing the constant d large enough (depending on pL and

c′), we have t−d + 1− 〈n, t〉−c
′
≤ 1− 〈n, t〉−c

′
/2 for all large t. By Eqs. (7) and (8), we obtain

Pr
z

[
B
(

DPk(t)(x; z), 1〈n,t〉
)

= 1
]
− Pr

w

[
B(w, 1〈n,t〉) = 1

]
≥ 〈n, t〉−c

′
/4.

This means that B(-, 1〈n,t〉) ε-distinguishes the output distribution of DPk(t)(x; -) from the uniform

distribution for ε := 〈n, t〉−c
′
/4. By Theorem 3.12, we obtain Kq(t)(x) ≤ k(t) + log q(t) for some

polynomial q. Since k(t) = logA(1t) + d log t ≤ log |Lt| + 2 + d log t, letting p(t) := 4q(t)td, we
obtain

Kp(t)(x) ≤ Kq(t)(x) ≤ log |Lt|+ 2 + d log t+ log q(t) = log |Lt|+ log p(t),

which means that (x, 1t) 6∈ ΠNo. �
It follows from Claim 4.7 that Π ∈ pr-coRP. Using Lemma 3.4, we conclude that Π ∈ pr-BPP =

pr-P.

5 Weak Symmetry of Information

In this section, we prove the weak symmetry of information for time-bounded Kolmogorov com-
plexity. The proof relies on the following worst-case-to-average-case connection of Gap(KA vs K).

Lemma 5.1 ([Hir20b, Hir20a]). For any oracle A, if coNPA × {U , T } ⊆ Avg1
1−n−cP for some

constant c, then Gap(KA vs K) ∈ pr-P.

Proof. For completeness, we present a simple proof based on the algorithmic language compression
theorem.21 Consider an ensemble L =

{
L〈t,s〉

}
t,s∈N of languages defined as

L〈t,s〉 :=
{
x ∈ {0, 1}∗

∣∣ Kt,A(x) ≤ s
}
.

Observe that |L〈t,s〉| ≤ 2s+1 by Fact 3.7 and L ∈ NPA. Applying Theorem 4.2 to L, we obtain a
polynomial-time algorithm that solves the promise problem (ΠYes,ΠNo) defined as

ΠYes := L =
{

(x, 1〈t,s〉)
∣∣∣ Kt,A(x) ≤ s

}
,

ΠNo :=
{

(x, 1〈t,s〉)
∣∣∣ Kp(t+s)(x) > s+ 1 + log p(t+ s)

}
for some polynomial p. Gapτ (KA vs K) is reducible to this promise problem via the identity map
for some polynomial τ .

21To compare this proof with that of [Hir20a], the proof of [Hir20a] uses a padding argument specific to
Gap(KA vs K) in order to make a reduction error-tolerant; the proof presented here bypasses the padding argu-
ment using the notion of parameterized uniform distribution (Definition 3.5).

29

We are now ready to prove the weak symmetry of information.

Theorem 5.2 (Weak Symmetry of Information). If coNP×{U , T } ⊆ Avg1
1−n−cP for some constant

c, then there exist polynomials p0 and pw such that, for any n,m ∈ N, any t ≥ p0(nm), any ε > 0,
and any x ∈ {0, 1}n,

Pr
w∼{0,1}m

[
Kt(xw) ≥ Kpw(t/ε)(x) +m− log pw(t/ε)

]
≥ 1− ε.

Proof. Using Lemma 5.1, we take a polynomial-time algorithm A that solves GapτMINKT for
some polynomial τ . Let k be a parameter chosen later. Take the k-wise direct product generator
DPk : {0, 1}n × {0, 1}d → {0, 1}d+k, where d = nk. Let s := d + k + m − log τ(d + k + m + 2t) −
log(2/ε)−1. We prove the theorem by analyzing the behavior of A(DPk(x; z) ·w, 12t, 1s) for random
choices of w ∼ {0, 1}m and z ∼ {0, 1}d.

If A outputs 1, then the input is not a No instance of GapτMINKT; thus,

Pr
ω∼{0,1}d+k
w∼{0,1}m

[
A(ω · w, 12t, 1s) = 1

]
≤ Pr

ω,w
[K(ω · w) ≤ s+ log τ(d+ k +m+ 2t)] ≤ ε/2,

where the last inequality follows from Fact 3.7.
Assume that Prz,w

[
A(DPk(x; z) · w, 12t, 1s) = 1

]
≥ ε. These two inequalities mean that a ran-

domized circuit D defined as D(ω;w) := A(ω · w, 12t, 1s) can ε/2-distinguish DPk(x; -) from the
uniform distribution. By Theorem 3.12, there exists a polynomial pDP such that KpDP(t/ε)(x) ≤
k + log pDP(t/ε).

We now choose k := KpDP(t/ε)(x) − log pDP(t/ε) − 1 so that this inequality does not hold. By
the contrapositive of the argument above, we obtain Prz,w

[
A(DPk(x; z) · w, 12t, 1s) = 1

]
< ε.

This means that, with probability at least 1 − ε over the choice of z and w, A(DPk(x; z) ·
w, 12t, 1s) = 0 holds. Under this event, (DPk(x; z) ·w, 12t, 1s) is not a Yes instance of GapτMINKT;
that is,

K2t(DPk(x; z) · w) > s.

Observe that DPk(x; z) · w can be described using m, d ∈ N, z ∈ {0, 1}d, and Kt(xw) bits for
describing xw; thus,

K2t(DPk(x; z) · w) ≤ Kt(xw) + d+O(log dm)

for a sufficiently large t ≥ p0(nm). Combining these two inequalities, we obtain

Kt(xw) > s− d−O(log dm)

≥ k +m−O(log(τ(d+ k +m+ 2t)dm/ε))

≥ Kpw(t/ε)(x) +m− log pw(t/ε),

where pw is some large polynomial.

6 Fast Algorithms from Universal Heuristic Schemes

Recall the notion of time-bounded computational depth and universal heuristic scheme.

30

Definition 6.1 (Time-Bounded Computational Depth). For an oracle A, time bounds s ∈ N and
t ∈ N ∪ {∞}, and a string x ∈ {0, 1}∗, the A-oracle (s, t)-time-bounded computational depth of x
is defined as

cds,t,A(x) := Ks,A(x)−Kt(x).

We omit the superscript A if A = ∅, and the superscript t if t =∞.

Definition 6.2 (Universal Heuristic Scheme). A (AvgPP-)universal heuristic scheme for a language
L is a pair (S,C) of polynomial-time algorithms such that, for some polynomial p, for any n ∈ N,
any t ≥ p(n), and any x ∈ {0, 1}n,

1. if cdt,p(t)(x) ≤ k, then C(x, 1t, 1k) = 1, and

2. if C(x, 1t, 1k) = 1, then S(x, 1t, 12k) = L(x).

S and C are referred to as a solver and a checker, respectively.

An important property of a universal heuristic scheme is that the existence of a universal
heuristic scheme for a language L implies a fast worst-case algorithm for L. Any language L with
low time-bounded Kolmogorov complexity admits a faster worst-case algorithm.

Theorem 6.3. Let s : N → N be an efficiently computable function such that log n < s(n) <
O(n), and let p0 be a polynomial. Let L be a language such that Kp0(|x|)(x) ≤ s(|x|) for ev-
ery x ∈ L. If there exists a universal heuristic scheme (S,C) for a language L, then L ∈
DTIME

(
2O(s(n)/ log(s(n)/ logn))

)
.

Proof. Let p ≥ p0 be a sufficiently large polynomial that satisfies the definition of a universal
heuristic scheme (S,C) (i.e., Definition 6.2). We recursively define pi(n) so that p0(n) = n and
pi+1(n) = p(pi(n)) for every n ∈ N.

We present an algorithm A that solves L on inputs of length n. Let I be a parameter chosen
later, and let k := s(n)/I. The algorithm A finds i ∈ [I] such that C(x, 1p

i(n), 1k) = 1; if such an i

is not found, A rejects and halts. A accepts if and only if S(x, 1p
i(n), 12k) = 1.

We claim the correctness of the algorithm A. Note that A rejects every x 6∈ L because of the
correctness of (S,C). Thus, it suffices to prove that, for every x ∈ L, there exists i ∈ [I] such that
C(x, 1p

i(n), 1k) = 1. Consider the following telescoping sum:

Kp(n)(x)−KpI+1(n)(x) = cdp
1(n),p2(n)(x) + cdp

2(n),p3(n)(x) + · · ·+ cdp
I(n),pI+1(n)(x).

This sum is at most Kp(n)(x) ≤ s(n). We thus obtain

I ·min
{

cdp
i(n),pi+1(n)(x)

∣∣∣ i ∈ [I]
}
≤ Kp(n)(x)−KpI+1(n)(x) ≤ s(n),

from which it follows that there exists i ∈ [I] such that cdp
i(n),pi+1(n)(x) ≤ s(n)/I = k; we conclude

that C(x, 1p
i(n), 1k) = 1 using the property of the checker C.

We claim that the running time of A is bounded by 2O(s(n)/ log(s(n)/ logn)). Let c > 1 be a
constant such that p(n) ≤ nc for all large n. By induction, pi(n) ≤ nc

i
for all large n and every i.

We define I to be max {1, logc (s(n)/ log n)− logc log (s(n)/ log n)− 1}; we then obtain pI+1(n) ≤
2O(s(n)/ log (s(n)/ logn)) for all large n. For every i ∈ [I + 1], the running time of S(x, 1p

i(n), 12k) is
bounded by poly

(
n, 2s(n)/ log (s(n)/ logn), 2s(n)/I

)
= 2O(s(n)/ log(s(n)/ logn)).

31

We present a couple of corollaries of Theorem 6.3. Using the trivial upper bound of Kolmogorov
complexity, we obtain the following corollary.

Corollary 6.4. If there exists a universal heuristic scheme (S,C) for a language L, then L ∈
DTIME

(
2O(n/ logn)

)
.

Proof. For some polynomial p0, for every string x of length n, we have Kp0(n)(x) ≤ n+O(1) because
any string x ∈ {0, 1}n can be described by x itself. Applying Theorem 6.3 to s(n) := n+O(1), we
obtain L ∈ DTIME

(
2O(n/ log(n/ logn))

)
= DTIME

(
2O(n/ logn)

)
.

A padding argument produces a language with small Kolmogorov complexity:

Corollary 6.5. Let t : N→ N be a time-constructible function such that n ≤ t(n) < 2n. Let C be a
complexity class and let C-TIME(t(n)) denote its t(n)-time version.22 If every language in C admits
a universal heuristic scheme, then C-TIME(t(n)) ⊆ DTIME

(
2O(n/ log(n/ log t(n)))

)
.

Proof. Take any language L ∈ C-TIME(t(n)). Let L′ :=
{
x01t(|x|)

∣∣ x ∈ L}. Since L′ ∈ C, L′

admits a universal heuristic scheme. Moreover, for every n ∈ N and every y ∈ L′ ∩ {0, 1}n+1+t(n),
we have Kp(t(n))(y) ≤ n+O(1), where p(n) is some polynomial. Using Theorem 6.3, we obtain an
algorithm that solves L′ on inputs of length n+ 1 + t(n) in time 2O(n/ log(n/ log t(n))).

More generally, any sparse language has small Kolmogorov complexity. For a function s : N→ N,
we say that a language L is s-sparse if |L ∩ {0, 1}n| ≤ 2s(n) for every n ∈ N.

Corollary 6.6. Let s : N→ N be an efficiently computable function such that log n < s(n) < O(n).
Assume that coNPA × {U , T } ⊆ Avg1

1−n−cP for some constant c and some oracle A. Let L ∈ NPA

be an s-sparse language. If there exists a universal heuristic scheme (S,C) for a language L, then
L ∈ DTIME

(
2O(s(n)/ log(s(n)/ logn))

)
.

Proof. By Corollary 4.4, there exists a polynomial p such that Kp(n)(x) ≤ log |L ∩ {0, 1}n| +
log p(n) ≤ s(n) + log p(n). The result readily follows from Theorem 6.3.

7 Universal Heuristic Scheme for PH

In this section, we construct a universal heuristic scheme for PH under the assumption that PH
is easy on average. The whole section is devoted to proving the following.

Theorem 7.1. For every constant ` ∈ N, if coΣp
`+1 × {U , T } ⊆ Avg1

1−n−cP for some constant c,

then every language in BPPΣp
` admits a universal heuristic scheme.

In fact, the following stronger result holds.

Lemma 7.2. For every constant ` ∈ N, if Gap(KΣp
` vs K) ∈ pr-P, then every language in BPPΣp

`

admits a universal heuristic scheme.

22We can define C-TIME(t(n)) as the class of languages L such that L′ :=
{
x01t(|x|)

∣∣∣ x ∈ L} ∈ C. This is

essentially consistent with the standard definition of, for example, NTIME(t(n)) in the sense that NP-TIME(t(n)O(1)) =
NTIME(t(n)O(1)).

32

Proof of (Lemma 7.2 ⇒ Theorem 7.1). Under the assumption that coΣp
`+1×{U , T } ⊆ Avg1

1−n−cP,

Lemma 5.1 implies that Gap(KΣp
` vs K) ∈ pr-P.

Recall that the complexity of PNP is characterized as the complexity of finding the lexicograph-
ically maximum certificate.

Lemma 7.3 (Implicit in [Kre88]). Let A be an oracle. For every language L ∈ PNPA, there exist an
A-oracle polynomial-time algorithm V A and polynomials py,m such that, for every x ∈ {0, 1}∗, L(x)
is equal to the m(|x|)-th bit of yx, where yx is the lexicographically maximum string y ∈ {0, 1}py(|x|)

such that V A(x, y) = 1. The algorithm V A is referred to as a PNPA-type verifier.

Proof Sketch. Let B ∈ NPA and M be a polynomial-time oracle machine such that MB(x) = L(x)
for every x ∈ {0, 1}∗. Let m be a polynomial such that the number of queries M makes on inputs
of length n is exactly m(n). We define an A-oracle polynomial-time algorithm V A as follows. Fix
any input x of length n, and let m := m(n). V A takes (x, y) as input and regard y as a string
(a1, . . . , am, b, w1, . . . , wm), where ai ∈ {0, 1} for every i ∈ [m] and b ∈ {0, 1}. For every i ∈ [m],
V A computes the i-th query qi assuming that the j-th answer from the oracle B is aj for every
j < i. V A accepts if and only if b is equal to the output of M (-)(x) given the answers (a1, . . . , am)
from the oracle, and for every i ∈ [m], ai = 1 implies that wi is an NPA-certificate for qi ∈ B. It is
easy to see that the lexicographically maximum string yx is well defined and that the first m bits
of yx are equal to B(q1) · · ·B(qm), in which case the (m+ 1)-th bit is equal to L(x).

Proof of Lemma 7.2. We show that every language L ∈ PΣp
` admits a universal heuristic scheme.

This is sufficient, as we will show in Lemma 7.10 that a universal heuristic scheme for PΣp
` can be

converted into a universal heuristic scheme for BPPΣp
` .

Claim 7.4. For every constant ` ∈ N, if Gap(KΣp
` vs K) ∈ pr-P, then every language L ∈ PΣp

`

admits a universal heuristic scheme.

We prove this claim by induction on `. If ` = 0, the claim is trivial; thus, we assume ` ≥ 1. We fix
a canonical Σp

`−1-complete problem A. Applying Lemma 7.3 to the language L ∈ PNPA = PΣp
` , let

V A be a PNPA-type verifier for L ∈ PNPA . For each x ∈ {0, 1}∗, let yx denote the lexicographically
maximum string y ∈ {0, 1}py(|x|) such that V A(x, y) = 1.

Let LV :=
{

(x, y)
∣∣ V A(x, y) = 1

}
∈ PA denote the language accepted by V A. By the induction

hypothesis, there exists a universal heuristic scheme (S0, C0) for LV ∈ PA = PΣp
`−1 . In particular,

there exists a polynomial p such that, for every n ∈ N, every x ∈ {0, 1}n, every t ≥ p(n), if

cdt,p(t)(x) ≤ k, then C0(x, y, 1t) = 1 and S0(x, y, 1t, 12k) = LV (x, y) = V A(x, y).
Take a canonical Σp

` -complete problem B.23 Using a standard search-to-decision procedure,
given x ∈ {0, 1}∗ as input and oracle access to B, one can compute yx in polynomial time. In
particular, there exists a polynomial p0 ≥ p such that, for every x ∈ {0, 1}∗ and every t ≥ p0(|x|),

K2t,B(x, yx) ≤ Kt(x) +O(log n). (9)

Using the assumption, let MK be a polynomial-time algorithm that solves Gapτ (KB vs K) for
some polynomial τ . Let pK(t) := τ(2t). Below, we define a universal heuristic scheme (S,C) for L.

23Alternatively, B ∈ Σp
` can be defined as the set of strings (x, y0) such that V A(x, y) = 1 for some y that has y0

as prefix. This simplifies the proof of Eq. (9).

33

We define a checker C. Let q be a large polynomial chosen later. Fix any input (x, 1t, 1k) such
that t ≥ p0(|x|). Using MK and Fact 3.8, the checker C computes values s and v such that

KpK(t)(x) ≤ s ≤ Kt,B(x) + log pK(t),

KpK(q(t))(x) ≤ v ≤ Kq(t),B(x) + log pK(q(t)).

The checker C accepts if and only if s− v ≤ k + log pK(t).
We prove two properties of the checker C in the following two claims.

Claim 7.5. If cdt,pK(q(t)),B(x) ≤ k, then C(x, 1t, 1k) = 1.

Proof. By the definition of s and v, we obtain

s− v ≤ Kt,B(x) + log pK(t)−KpK(q(t))(x) = cdt,pK(q(t)),B(x) + log pK(t) ≤ k + log pK(t).

�

Claim 7.6. There exists a polynomial pC such that

C(x, 1t, 1k) = 1 =⇒ cdpK(t),q(t)(x) ≤ k + log pC(t).

Proof. Observe that

k + log pK(t) ≥ s− v ≥ KpK(t)(x)−Kq(t),B(x)− log pK(q(t)) ≥ cdpK(t),q(t)(x)− log pK(q(t)).

Choosing log pC(t) := log pK(t) + log pK(q(t)), we obtain the claim. �
Now, we define a solver S. Fix an input (x, 1t, 12k), and let n := |x|. We assume that t ≥ p0(n)

and C(x, 1t, 1k) = 1. Using MK and Fact 3.8, the solver S computes a value s′ such that

Kp2
K(2t)(x) ≤ s′ ≤ KpK(2t),B(x) + log pK(2t). (10)

Let s′′, t′, k′, k0, and t0 be some parameters chosen later. The solver S defines a functionD : {0, 1}d →
{0, 1}d+k′ so that D(w) := MK

(
(x,w), 1t

′
, 1s
′′
)

, where d := k′ · py(n). Applying Theorem 3.12 to

D, the solver S computes the set Y of all the strings y ∈ {0, 1}py(n) such that KpDP(t)(y | D) ≤
k′ + log pDP(t), and then computes

y∗ := max
{
y ∈ Y

∣∣∣ C0(x, y, 1t0 , 1k0) = S0(x, y, 1t0 , 12k0
) = 1

}
.

The solver S accepts if and only if the m(n)-th bit of y∗ is equal to 1, where m is the polynomial
of Lemma 7.3.

We prove the correctness of S by the two claims given below.

Claim 7.7. If C(x, 1t, 1k) = 1, then yx ∈ Y .

Proof. It suffices to claim that D 1
2 -distinguishes the output distribution of DPk′(yx; -) from the

uniform distribution.
On one hand, observe that

Kp2
K(2t),B(x,DPk′(yx; z)) ≤ Kp2

K(t)(x) + |z|+O(log n)

≤ s′ + d+ log p1(t)

34

for some large polynomial p1, where the first inequality is from Eq. (9). This means that(
(x,DPk′(yx; z)), 1t

′
, 1s
′′
)

is a Yes instance of Gapτ (KB vs K) for t′ := p2
K(2t) and s′′ := s′ + d + log p1(t). Thus,

D(DPk′(yx; z)) = 1 for every z ∈ {0, 1}d.
On the other hand, observe that

k ≥ cdpK(t),q(t)(x)− log pC(t) (by Claim 7.6)

≥ s′ − log pK(2t)−Kq(t)(x)− log pC(t) (by Eq. (10)).

By Theorem 5.2, with probability at least 1
2 over a random choice of w ∼ {0, 1}d+k′ ,

Kp3
K(2t)(x,w) ≥ Kpw(p3

K(2t))(x) + d+ k′ − log pw(p3
K(2t))

> s′ + d+ log p1(t) + log p3
K(2t),

where the last inequality holds by letting q(t) ≥ pw(p3
K(2t)) and choosing

k′ := k + log pK(2t) + log pC(t) + log p1(t) + log p3
K(2t) + log pw(p3

K(2t)) + 1

> s′ −Kq(t)(x) + log p1(t) + log p3
K(2t) + log pw(p3

K(2t)).

Under the event,
(

(x,w), 1t
′
, 1s
′′
)

is a No instance of Gapτ (KB vs K); thus, Prw [D(w) = 1] ≤ 1
2 .

We conclude thatD 1
2 -distinguishes DPk′(yx; -) from the uniform distribution. By Theorem 3.12,

we obtain yx ∈ Y . �

Claim 7.8. If C(x, 1t, 1k) = 1, then y∗ = yx.

Proof. We first claim that y∗ ≤ yx. By the definition, we have C0(x, y∗, 1t0 , 1k0) = S0(x, y∗, 1t0 , 12k0) =
1. By the property of the universal heuristic scheme (S0, C0), we have LV (x, y∗) = V A(x, y∗) = 1
and thus y∗ ≤ yx.

In order to prove y∗ ≥ yx, it suffices to prove cdt0,p(t0)(x, yx) ≤ k0. Indeed, by the defini-

tion of yx, V A(x, yx) = 1; thus, S0(x, yx, 1
t0 , 12k0) = V A(x, yx) = 1 under the assumption that

C0(x, yx, 1
t0 , 1k0) = 1, which is true if cdt0,p(t0)(x, yx) ≤ k0.

We prove cdt0,p(t0)(x, yx) ≤ k0. Since yx ∈ Y can be described using a self-delimiting encoding
of D and KpDP(t)(yx | D) ≤ k′ + log pDP(t) bits of information, we have

K2pK(t)+2pDP(t)(x, yx) ≤ KpK(t)(x) + k′ + log pDP(t) +O(log t).

Let t0 := 2pK(t) + 2pDP(t). Then we obtain

cdt0,p(t0)(x, yx) ≤ KpK(t)(x) + k′ +O(log t)−K2p(t0)(x) (since Kp(t0)(x, yx) ≥ K2p(t0)(x))

≤ k′ + cdpK(t),q(t)(x) +O(log t) (by letting q(t) ≥ 2p(t0))

≤ k′ + k + log pC(t) +O(log t) (by Claim 7.6)

=: k0.

�
The correctness of the solver S follows from the claims above: If C(x, 1t, 1k) = 1, then the

solver S computes y∗ = yx; thus, S(x, 1t, 12k) = L(x) by Lemma 7.3. Finally, we note that
k0 = 2k +O(log t); thus, the solver S runs in time poly(n, t, 2k).

35

It remains to convert a universal heuristic scheme for PΣp
` to that for BPPΣp

` = BP ·PΣp
` . Recall

the notion of BP-operator.

Definition 7.9 (BP-operator). For a complexity class C, let BP · C denote the class of languages
L such that there exist L′ ∈ C and a polynomial p such that, for every x ∈ {0, 1}∗,

Pr
r∼{0,1}p(|x|)

[
L′(x, r) = L(x)

]
≥ 8

9
.

Lemma 7.10. Let C be any complexity class. Assume that coNP× {U , T } ⊆ Avg1
1−n−cP for some

constant c. If any language in C admits a universal heuristic scheme, then any language in BP · C
admits a universal heuristic scheme.

Proof. Let ε := 1
9 . Take an arbitrary language L ∈ BP · C, and let L′ ∈ C be a language such that,

for every input x of length n,

Pr
r∼{0,1}p(n)

[
L′(x, r) 6= L(x)

]
≤ ε. (11)

By the assumption, there exists a universal heuristic scheme (S,C) for L′.
By Theorem 5.2, there exist polynomials p0 and pw such that, for every n ∈ N, t ≥ p0(n), and

x ∈ {0, 1}n, with probability at least 1− ε over a random choice of r ∼ {0, 1}p(n),

cd2t,p(2t)(x, r) = K2t(x, r)−Kp(2t)(x, r)

≤
(
Kt(x) + |r|+O(log n)

)
−
(

Kpw(p(2t))(x) + |r| − log pw(p(2t))
)

≤ cdt,pw(p(2t))(x) +O(log t)

≤ cdt,p1(t)(x) + log p1(t),

where p1 is some large polynomial. We define a checker C ′ so that C ′(x, 1t, 1k) = 1 if and only if

Pr
z∼{0,1}O(logm)

[
C
(

(x,Gm(z)), 12t, 1k
′
)

= 1
]
≥ 1− 2ε,

where k′ := k+ log p1(t) and Gm is a pseudorandom generator of Lemma 3.4 for a sufficiently large
m ≤ poly(n, t, k). It follows from the argument above that, if cdt,p1(t)(x) ≤ k, then C ′(x, 1t, 1k) = 1.

We define a solver S′ so that S′(x, 1t, 12k) is equal to the majority of S
(

(x,Gm′(z)), 1
2t, 12k

′)
over a choice of z ∈ {0, 1}O(logm′) for a sufficiently large m′ ≤ poly(n, t, 2k). We claim that

C ′(x, 1t, 1k) = 1 implies S′(x, 1t, 12k) = L(x). If C ′(x, 1t, 1k) = 1, then by the property of the
pseudorandom generator Gm, with probability at least 1 − 3ε over a random choice of r, we have

C
(

(x, r), 12t, 1k
′
)

= 1, in which case S
(

(x, r), 12t, 12k
′)

= L′(x, r). Using Eq. (11) and a union

bound, we obtain

Pr
r

[
S
(

(x, r), 12t, 12k
′)

= L(x)
]
≥ 1− 4ε.

It follows from the security of the pseudorandom generator Gm′ that S′(x, 1t, 12k) = L(x).
We conclude that (S′, C ′) is a universal heuristic scheme for L.

36

8 Approximately Size-Verifiable One-Way Function

The goal of this section is to construct a universal heuristic scheme for inverting an approx-
imately size-verifiable one-way function in the worst case under the assumption that NP is easy
on average. In Section 8.1, we introduce “size-verifiable NP”, denoted by NPsv, which is a deci-
sion version of inverting size-verifiable one-way functions. In Section 8.2, we construct a universal
heuristic scheme for the search version of NPsv. The definition of approximately size-verifiable
one-way functions is given in Section 8.3.

8.1 Size-Verifiable NP

We introduce a notation for the size of certificates.

Definition 8.1 (NP-type verifier and the size of certificates). An algorithm V is said to be an NP-
type verifier for a language L if there exists a function t : N → N such that, for every x ∈ {0, 1}∗,
x ∈ L if and only if there exists y ∈ {0, 1}t(|x|) such that V (x, y) = 1. For an NP-type verifier V ,
define σV : {0, 1}∗ → N ∪ {−∞} as

σV (x) := log #
{
y ∈ {0, 1}p(|x|)

∣∣∣ V (x, y) = 1
}
.

The notion of size-verifiability was introduced in the work of Akavia, Goldreich, Goldwasser, and
Moshkovitz [AGGM06] in the context of one-way functions. Using the notion of size-verifiability,
we introduce the subclass NPsv of NP.

Definition 8.2 (NPsv; Size-Verifiable NP). For a function t : N→ N, we define NTIMEsv(t(n)) as
the class of languages L such that there exists an algorithm V (referred to as an NPsv-type verifier)
satisfying the following.

1. V is an NP-type verifier for L; that is, for every x ∈ {0, 1}∗, x ∈ L if and only if there exists
y ∈ {0, 1}t(|x|) such that V (x, y) = 1.

2. V halts in time O(t(n)) on input (x, y) ∈ {0, 1}n × {0, 1}t(n) for every n ∈ N.

3. Define a promise problem ΠV = (ΠV
Yes,Π

V
No) as follows:

ΠV
Yes := { (x, `) ∈ {0, 1}∗ × N | 0 ≤ σV (x) ≤ ` } ,

ΠV
No := { (x, `) ∈ {0, 1}∗ × N | σV (x) > `+ log t(|x|) } .

Then, ΠV ∈ pr-AMTIME(t(n)).

We define NPsv :=
⋃
c∈N NTIMEsv(nc).

Remark 8.3. The promise problem ΠV of Definition 8.2 asks to approximate the number of
certificates for x within a factor of t(|x|) for every x ∈ L. Note that any input x 6∈ L is not in the
promise of ΠV ; indeed, (x, `) 6∈ ΠV

Yes ∪ΠV
No holds for every ` ∈ N because σV (x) = −∞.

Fact 8.4. UP ⊆ FewP ⊆ NPsv ⊆ NP.

37

Proof. We prove FewP ⊆ NPsv. Consider a language L ∈ FewP. By the definition of FewP
[AR88], there exist a polynomial p and an NP-type verifier V for L such that σV (x) ≤ log p(|x|)
for any x ∈ {0, 1}∗. Since σV (x) ≤ log p(|x|) holds for any x, the promise problem ΠV defined in
Definition 8.2 satisfies ΠV

No = ∅, and hence ΠV can be solved by a trivial algorithm that always
outputs 1; thus, we obtain L ∈ NPsv.

To construct a universal heuristic scheme for NPsv, we will exploit the property that NPsv admits
an AM procedure W that reduces the number of certificates.

Lemma 8.5. For every language L ∈ NPsv, there exist polynomial-time algorithms V and W and
a polynomial p such that, for every string x of length n, the following hold.

1. x ∈ L if and only if V (x, y) = 1 for some y ∈ {0, 1}p(n).

2. If W (x, y; y′, r) = 1 holds for some y′ and some r ∈ {0, 1}p(n), then V (x, y) = 1.

3. If x ∈ L, then with probability at least 1
2 over the choice of r ∼ {0, 1}p(n), there exist strings

y, y′ ∈ {0, 1}p(n) such that W (x, y; y′, r) = 1.

4. With probability at least 1− 2−2n over the choice of r ∼ {0, 1}p(n),

#
{
y ∈ {0, 1}p(n)

∣∣∣ ∃y′ ∈ {0, 1}p(n),W (x, y; y′, r) = 1
}
≤ p(n).

The proof idea of Lemma 8.5 is to pick a k-wise independent hash h randomly and restrict the
certificate that h maps to the all-0 string. Recall the standard construction of a k-wise independent
hash family.

Lemma 8.6 (k-wise independent hash; cf. [Vad12, Corollary 3.34]). For every n,m, k ∈ N, there is
a family of k-wise independent hash functions Hn,m,k = {h : {0, 1}n → {0, 1}m} such that choosing
a random function from Hn,m,k takes k ·max {n,m} random bits, and evaluating a function from
Hn,m,k takes time poly(n,m, k).

We use the following concentration inequality for k-wise independent variables.

Lemma 8.7 ([SSS95]). Let X1, · · · , Xn be k-wise independent variables, and let X :=
∑n

i=1Xi,
µ := E[X]. For any δ ≥ 1,

Pr [|X − µ| ≥ δµ] ≤ exp(−min {bk/2c, bδµ/3c}).

Now, we present the proof of Lemma 8.5.

Proof of Lemma 8.5. Since L ∈ NPsv, there exist an NP-type verifier V for L, a verifier W0 for an
AM protocol, and a polynomial t such that, for every string x of length n and any ` ∈ N,

1. if 0 ≤ σV (x) ≤ `, then for every r, there exists y′ such that W0(x, `; y′, r) = 1, and

2. if σV (x) > ` + log t(n), then with probability at most 2−3n over the choice of r ∼ {0, 1}t(n),
there exists y′ ∈ {0, 1}t(n) such that W0(x, `; y′, r) = 1.

38

We define an algorithm W as follows. Fix any string x of length n. The algorithm W takes an in-
put (x, y) together with nondeterministic bits y′ = (y′1, . . . , y

′
t(n)) and random bits r = (r1, . . . , rt(n))

as well as a random 4n-wise independent hash h ∼ Ht(n),t(n),4n. The algorithm W computes

`y′,r := min
{
` ∈ {0, 1, . . . , t(n)}

∣∣W0(x, `; y′`, r`) = 1
}
,

and accepts if and only if V (x, y) = 1 and h(y)�`y′,r−1 ∈ {0}
∗. Here, z�` denotes the first ` bits of z

for every string z ∈ {0, 1}∗ and every integer ` ≥ 0; if ` < 0, h(y)�` is defined as the empty string.
Let W (x, y; y′, r, h) denote the output of the algorithm W .

It is easy to see Items 1 and 2 by the definitions of V and W . We prove Items 3 and 4 below.
We prepare several notations. Fix any input x and any r. Let Yx :=

{
y ∈ {0, 1}p(n)

∣∣ V (x, y) = 1
}

be the set of certificates. For every y ∈ Yx, define Iy ∈ {0, 1} to be the random variable that takes
1 if and only if there exists a string y′ such that h(y)�`y′,r−1 ∈ {0}

∗. (Note that Iy is a random

variable that is determined by the random choice of h.) Let I :=
∑

y∈Yx Iy, and let µ := E [I].
We prove Item 3. Fix any input x ∈ L of length n and random bits r. By the property of

W0, for ` := σV (x) ≥ 0, there exists some y′` such that W0(x, `; y′`, r`) = 1, which implies that
`y′,r ≤ σV (x) for some y′. In particular, if h(y)�σV (x)−1 ∈ {0}

∗, then h(y)�`y′,r−1 ∈ {0}
∗. This

implies that, for every y ∈ Yx,

E
h

[Iy] ≥ Pr
h

[
h(y)�σV (x)−1 ∈ {0}

∗
]

= 2−max{0,σV (x)−1}.

We claim that I > 0 with probability at least 1
2 by analyzing two cases: If σV (x) = 0, then we have

Iy = 1 for the unique y ∈ Yx and thus I > 0. If σV (x) ≥ 1, then µ ≥ |Yx| · 2−(σV (x)−1) = 2. By
Chebyshev’s inequality, we obtain

Pr
h

[I = 0] ≤ Pr
h

[|I − µ| ≥ µ] ≤ Var[I]

µ2
≤ 1

µ
≤ 1

2
,

and thus, with probability at least 1
2 over the choice of h, we have I > 0, which implies that

W (x, y; y′, r, h) = 1 for some y and y′. This completes the proof of Item 3.
It remains to prove Item 4. Fix any input x of length n. Observe that, for every r and h,

#
{
y ∈ {0, 1}p(n)

∣∣∣ ∃y′ ∈ {0, 1}p(n),W (x, y; y′, r, h) = 1
}

= #
{
y ∈ Yx

∣∣∣ ∃y′ ∈ {0, 1}p(n), h(y)�`y′,r−1 ∈ {0}
∗
}

= I.

Thus, it suffices to upper-bound I with high probability. We may assume without loss of generality
that σV (x) ≥ 0, as otherwise I ≤ 0. By a union bound over all ` ∈ {0, . . . , t(n)}, with probability
at least 1− 2−3n · (t(n) + 1) over a random choice of r, for every ` < σV (x)− log t(n) and every y′,
it holds that W0(x, `; y′`, r`) = 0, in which case we have `y′,r ≥ σV (x)− log t(n) for every y′. Under
this event, we have

E
h

[Iy] = Pr
h

[
∃y′, h(y)�`y′,r−1 ∈ {0}

∗
]
≤ Pr

h

[
h(y)�σV (x)−log t(n)−1 ∈ {0}

∗
]
≤ 2−(σV (x)−log t(n)−1),

and thus µ ≤ |Yx| · 2−σV (x)+log t(n)+1 = 2t(n). In this case, by Lemma 8.7, we obtain

Pr
h

[I ≥ 4t(n) + 6n] ≤ Pr
h

[I ≥ 2µ+ 6n] ≤ Pr
h

[|I − µ| ≥ µ+ 6n] ≤ exp(−2n).

Overall, choosing a polynomial p(n) larger than 4t(n) + 6n, with probability at least 1− 2−2n over
the choice of r and h, we have I ≤ p(n), which completes the proof of Item 4.

39

8.2 Universal Heuristic Scheme for NPsv

We are now ready to present a universal heuristic scheme for NPsv. In fact, we construct a
universal heuristic scheme for the “search version” of NPsv, which is defined as follows.

Definition 8.8. Let V be an NP-type verifier. An algorithm A is said to solve the search problem
associated with V if V (x,A(x)) = 1 for every x such that V (x, y) = 1 for some y. The search
version of NPsv is said to admit a universal heuristic scheme if, for every L ∈ NPsv and every
NPsv-type verifier V for L, there exists a pair (S,C) of polynomial-time algorithms such that, for
some polynomial p, for any n ∈ N, any t ≥ p(n), and any x ∈ {0, 1}n,

1. if cdt,p(t)(x) ≤ k, then C(x, 1t, 1k) = 1, and

2. if C(x, 1t, 1k) = 1 and x ∈ L, then V (x, S(x, 1t, 12k)) = 1.

Theorem 8.9. If coNP × {U , T } ⊆ Avg1
1−n−cP for some constant c, then the search version of

NPsv admits a universal heuristic scheme.

Proof. Let L ∈ NPsv, and let V be an NPsv-type verifier for L. Let W and p be the polynomial-
time algorithm and the polynomial of Lemma 8.5, respectively. We define an ensemble L′ ={
L′〈n,k,t,s〉

}
n,k,t,s∈N

of languages so that (x,w, r) ∈ L′〈n,k,t,s〉 if and only if there exist strings y, y′,

and z such that |x| = n, |r| = p(n), |y| = |y′| = p(n), k ≤ 2n, Kt(x) ≤ s, w = DPk(y; z), and
W (x, y; y′, r) = 1. It is easy to see that L′ ∈ NP.

We claim that the size of L′〈n,k,t,s〉 is small. Fix any x ∈ {0, 1}n. Let d := p(n)k. Pick

w ∼ {0, 1}d+k and r ∼ {0, 1}p(n) randomly. We first upper-bound the probability that (x,w, r) ∈
L′〈n,k,t,s〉. Let R denote the set of r ∈ {0, 1}p(n) such that the event of Item 4 of Lemma 8.5 is
satisfied. Then,

Pr
w,r

[
(x,w, r) ∈ L′〈n,k,t,s〉

]
≤ Pr

w,r

[
∃y, y′ ∈ {0, 1}p(n), ∃z ∈ {0, 1}d, w = DPk(y; z),W (x, y; y′, r) = 1

]
≤ Pr

r
[r 6∈ R] + Pr

w,r

[
∃y, y′ ∈ {0, 1}p(n),∃z ∈ {0, 1}d, w = DPk(y; z),W (x, y; y′, r) = 1

∣∣∣ r ∈ R]
≤ 2−2n + max

r∈R

∑
z

∑
y∈Yr

Pr
w

[w = DPk(y; z)],

where Yr :=
{
y ∈ {0, 1}p(n)

∣∣ ∃y′ ∈ {0, 1}p(n),W (x, y; y′, r) = 1
}

. By Item 4 of Lemma 8.5, we have
|Yr| ≤ p(n). We thus obtain

Pr
w,r

[
(x,w, r) ∈ L′〈n,k,t,s〉

]
≤ 2−2n + 2d · p(n) · 2−d−k ≤ 2−k+log p(n)+1.

Summing over all strings x ∈ {0, 1}n such that Kt(x) ≤ s, we have∣∣∣L′〈n,k,t,s〉∣∣∣ ≤ 2s+1 · 2|w|+|r| · 2−k+log p(n)+1,

40

where |w| := d+ k and |r| := p(n); thus, we obtain

log
∣∣∣L′〈n,k,t,s〉∣∣∣ ≤ s+ |w|+ |r| − k + log p(n) + 2.

By Theorem 4.2, there exist a polynomial pΠ and a polynomial-time algorithm M that solves the
promise problem Π = (L′,ΠNo), where ΠNo consists of (x,w, r; 1〈n,k,t,s〉) such that KpΠ(t)(x,w, r) >
s + |w| + |r| − k + log pΠ(t) and n + k + s ≤ t.24 By Lemma 5.1, there exists a polynomial-time
algorithm MK that solves GapτMINKT for some polynomial τ . Let pK(n) := τ(2n). Using M and
MK, we define a checker C and a solver S below.

The checker C takes (x, 1t, 1k) as input. Let n := |x|. Using MK and Fact 3.8, the checker C
computes a value s such that

KpK(t)(x) ≤ s ≤ Kt(x) + log pK(t). (12)

Let t′ := pK(t), and let k′ = k + O(log t) be a parameter chosen later. Using the pseudorandom
generator of Lemma 3.4, we compute a value v such that∣∣∣∣v − Pr

w,r

[
M(x,w, r; 1〈n,k

′,t′,s〉) = 1
]∣∣∣∣ ≤ ε, (13)

where ε := 1
24 . (Specifically, v is defined as Prz

[
M(x,Gm(z); 1〈n,k

′,t′,s〉) = 1
]

for a sufficiently large

m, where Gm denotes the pseudorandom generator of Lemma 3.4.) The checker C accepts if and
only if v ≤ 2ε.

We first describe a randomized solver S. The solver S takes (x, 1t, 12k) and random bits r
as input, and computes k′, s, and t′ in the same way as C. We define a deterministic circuit Dr

so that Dr(w) := M(x,w, r; 1〈n,k
′,t′,s〉) for every w. Applying Theorem 3.12 to Dr, the solver S

computes the set Yr of all the strings y such that KpDP(t)(y | Dr) ≤ k′ + log pDP(t), where pDP is
some polynomial. If there exists some y ∈ Yr such that V (x, y) = 1, then the solver S outputs y;
otherwise, S outputs ⊥. Note that S can be implemented as a polynomial-time algorithm, since
the number of the strings y ∈ Yr with conditional small time-bounded Kolmogorov complexity is
at most poly(n, t, 2k

′
), which can be enumerated in time poly(n, t, 2k).

The following two claims ensure that (S,C) is a universal heuristic scheme.

Claim 8.10. There exists a polynomial q such that, if cdt,q(t)(x) ≤ k, then C(x, 1t, 1k) = 1.

Proof. Let t′′ := pΠ(t′) = pΠ(pK(t)). By Theorem 5.2, there exists a polynomial pw such that, with
probability at least 1− ε over the random choice of w and r, it holds that

Kt′′(x,w, r) ≥ Kpw(t′′)(x) + |w|+ |r| − log pw(t′′).

Choosing q(t) := pw(t′′), we obtain

Kt′′(x,w, r) ≥ Kt(x)−
(

Kt(x)−Kq(t)(x)
)

+ |w|+ |r| − log pw(t′′)

≥ s− log pK(t)− cdt,q(t)(x) + |w|+ |r| − log pw(t′′) (by Eq. (12))

≥ s+ |w|+ |r| − k − log pK(t)− log pw(t′′)

> s+ |w|+ |r| − k′ + log pΠ(t′),

24We add this condition so that t is the largest parameter and the bound pΠ(t) depends only on t.

41

where we choose k′ := k + log pΠ(t′) + log pK(t) + log pw(t′′) + 1 in the last inequality. This means
that (x,w, r; 1〈n,k

′,t′,s〉) ∈ ΠNo.
By Eq. (13), we obtain

v ≤ Pr
w,r

[
M
(
x,w, r; 1〈n,k

′,t′,s〉
)

= 1
]

+ ε ≤ Pr
w,r

[(
x,w, r; 1n,k

′,t′,s
)
6∈ ΠNo

]
+ ε ≤ 2ε,

which implies that C(x, 1t, 1k) = 1. �

Claim 8.11. If C(x, 1t, 1k) = 1 and x ∈ L, then V (x, S(x, 1t, 12k ; r)) = 1 holds with probability at
least 1

4 over the random choice of r.

Proof. It suffices to claim that, with probability at least 1
4 over the choice of r, the deterministic

circuit Dr
1
2 -distinguishes DPk′(yr; -) from the uniform distribution for some certificate yr such that

V (x, yr) = 1.
On the one hand, the assumption of the claim implies that v ≤ 2ε; thus, by Eq. (12),

Pr
w,r

[Dr(w) = 1] ≤ 3ε.

By Markov’s inequality, with probability at least 3
4 over r,

Pr
w

[Dr(w) = 1] ≤ 12ε ≤ 1

2
.

On the other hand, by Items 2 and 3 of Lemma 8.5, with probability at least 1
2 over the random

choice of r, there exist strings yr, y
′
r such that W (x, yr; y

′
r, r) = 1 and V (x, yr) = 1. Under this

event, we have (x,DPk′(yr; z), r) ∈ L′〈n,k′,t′,s〉 for every z since Kt′(x) ≤ s by Eq. (12); thus, we also

have Dr(DPk′(yr; z)) = 1.
By a union bound, with probability at least 1− 1

4 −
1
2 over the choice of r, there exists yr such

that V (x, yr) = 1 and

Pr
z

[Dr(DPk′(yr; z)) = 1]− Pr
w

[Dr(w) = 1] ≥ 1

2
.

�
Finally, the solver S can be derandomized using Lemma 3.4: Let S′ be an algorithm that

takes (x, 1t, 12k) as input and outputs y = S(x, 1t, 12k ;Gm(σ)) such that V (x, y) = 1 (if any) using
an exhaustive search over all seeds σ ∈ {0, 1}O(logm), where Gm is the pseudorandom generator of
Lemma 3.4 and m = poly(n, t, 2k). Then, S′ is a polynomial-time algorithm such that C(x, 1t, 1k) =

1 implies V (x, S′(x, 1t, 12k)) = 1 for every x ∈ L. (Otherwise, there exists a small circuit A

defined as A(r) := V (x, S(x, 1t, 12k ; r)) that distinguishes Gm(-) from the uniform distribution.)
We conclude that (S,C ′) is a (deterministic) universal heuristic scheme for the search problem.

Since a decision problem reduces to its search version, we obtain the following corollary:

Corollary 8.12. If coNP×{U , T } ⊆ Avg1
1−n−cP for some constant c, then every L ∈ NPsv admits

a universal heuristic scheme.

42

8.3 Approximately Size-Verifiable One-Way Function

In this subsection, we relate the search version of NPsv to the task of inverting an approximately
size-verifiable one-way function in the worst case. The definition of inverting a function in the worst
case is given below.

Definition 8.13. Let f =
{
fn : {0, 1}m(n) → {0, 1}n

}
n∈N be a family of functions. An algorithm

A is said to invert f (in the worst case) if A(fn(x)) ∈ f−1
n (fn(x)) for every n ∈ N and every

x ∈ {0, 1}m(n). If there is no polynomial-time algorithm that inverts f , then f is said to be (worst-
case) one-way.

We now define an approximately size-verifiable one-way function.

Definition 8.14. For a function t : N→ N, a family f =
{
fn : {0, 1}t(n) → {0, 1}n

}
n∈N of functions

is said to be t(n)-time approximately size-verifiable if the following conditions hold.

1. There exists an algorithm that takes n ∈ N and y ∈ {0, 1}t(n) as input and outputs fn(y) in
time O(t(n)).

2. The promise problem ΠV defined in Definition 8.2 is in pr-AMTIME(t(n)), where V is the
algorithm that takes x ∈ {0, 1}∗ and y ∈ {0, 1}t(|x|) as input and accepts if and only if
f|x|(y) = x.

We observe that inverting an approximately size-verifiable one-way function reduces to solving
the search version of NPsv.

Proposition 8.15. For every polynomial-time approximately size-verifiable function f , there exists
an NPsv-type verifier V such that inverting f in the worst case is polynomial-time-reducible to
solving the search problem associated with V .25

Proof Sketch. We define V so that V (x, y) := 1 if and only if f|x|(y) = x. It is immediate that
V is an NPsv-type verifier. Suppose that an algorithm A solves the search problem associated
with V . Fix any n ∈ N and consider any y in the domain of fn. Let x := fn(y). We have
V (x, y) = 1; thus, A(x) finds y′ such that V (x, y′) = 1, which implies that fn(y′) = x. It follows
that A(fn(y)) = A(x) = y′ ∈ f−1

n (fn(y)).

Theorem 8.9 and Proposition 8.15 imply that there exists a universal heuristic scheme for
inverting any polynomial-time approximately size-verifiable function under the assumption that
NP is easy on average.

9 P-Computable Average-Case Polynomial Time

In this section, we study the notion of P-computable average-case polynomial time.

Definition 9.1 (AvgPP; P-Computable Average-Case Polynomial Time). We say that an algorithm
A has P-computable average-case polynomial running time with respect to a family D = {Dn}n∈N
of distributions if there exist a polynomial-time computable function t : {0, 1}∗ → N and a constant
ε > 0 such that, for every n ∈ N,

25We mention that a partial converse of Proposition 8.15 holds: For every NPsv-type verifier V , there exists a
polynomial-time approximately size-verifiable function f computable with advice strings of O(logn) bits such that
the search version associated with V is reducible to inverting f in the worst case.

43

1. Ex∼Dn [t(x, 1n)ε] ≤ O(n) and

2. A(x, 1n) halts in time t(x, 1n) for every x ∈ supp(Dn).

Let AvgPP denote the class of distributional problems (L,D) such that there exists an algorithm
A such that A(x, 1n) = L(x) for every n ∈ N and every x ∈ supp(Dn), and A has P-computable
average-case polynomial running time.

Using Markov’s inequality, it is easy to see the following equivalent conditions of Item 1.

Fact 9.2 (cf. [BT06a]). For any function t : {0, 1}∗ → N and a family D = {Dn}n∈N of distributions,
the following are equivalent:

1. There exists a constant ε > 0 such that Ex∼Dn [t(x, 1n)ε] ≤ O(n) for every n ∈ N.

2. There exists a constant ε > 0 such that Ex∼Dn [t(x, 1n)ε] ≤ nO(1) for every n ∈ N.

3. There exist a constant ε > 0 and a polynomial p such that

Pr
x∼Dn

[t(x, 1n) ≥ t] ≤ p(n)

tε

for every n ∈ N and every t ∈ N.

9.1 P-Bounded Failure Heuristic Scheme

We introduce the notion of P-bounded failure heuristic scheme.

Definition 9.3 (P-Bounded Failure Heuristic Scheme). A P-bounded failure heuristic scheme for a
distributional problem (L,D) is a pair (S,C) of polynomial-time algorithms (referred to as a solver
and a checker, respectively) such that, for every n and k ∈ N,

1. for every x ∈ supp(Dn), if C(x, 1n, 1k) = 1, then S(x, 1n, 12k) = L(x), and

2. Prx∼Dn
[
C(x, 1n, 1k) = 1

]
≥ 1− 2−k.

We show the equivalence between a P-computable average-case polynomial-time algorithm and
a P-bounded failure heuristic scheme.

Proposition 9.4. The following are equivalent for every language L and every polynomial-time
samplable family D = {Dn}n∈N of distributions.

1. There exists a P-bounded failure heuristic scheme for (L,D).

2. (L,D) ∈ AvgPP.

Proof. (Item 1 ⇒ 2) Assume that there exist an algorithm A and a polynomial-time computable
function t : {0, 1}∗ → N that satisfy Definition 9.1. We define a P-bounded failure heuristic scheme
(S,C) as follows. Fix any n ∈ N, x ∈ supp(Dn), and k ∈ N. Let s ≤ poly(n, 2k) be some parameter
chosen later. The checker C accepts an input (x, 1n, 1k) if and only if t(x, 1n) ≤ s. The solver S

accepts an input (x, 1n, 12k) if and only if A halts and outputs 1 on input (x, 1n) in time s.
We claim that (S,C) is a P-bounded failure heuristic scheme for (L,D).

44

1. Since s ≤ poly(n, 2k), S and C are polynomial-time algorithms.

2. If C(x, 1n, 1k) = 1, then t(x, 1n) ≤ s; thus, A halts in time s, in which case S(x, 1n, 1k) =
A(x, 1n) = L(x).

3. By the property of (A, t), there exist a constant ε > 0 and a polynomial p such that

Pr
x∼Dn

[
C(x, 1n, 1k) = 0

]
= Pr

x∼Dn
[t(x, 1n) > s] ≤ p(n)

sε
= 2−k,

where, in the last inequality, we choose s := 2(k+log p(n))/ε.

(Item 2 ⇒ 1) Let (S,C) be a P-bounded failure heuristic scheme for (L,D). Since D is
polynomial-time samplable, there exists a polynomial p such that, for every n ∈ N and every
x ∈ supp(Dn), Dn(x) > 2−p(n).

We define an algorithm A as follows. On input (x, 1n), the algorithm A finds the minimum

integer k ∈ [p(n)] such that C(x, 1n, 1k) = 1. Then A outputs S(x, 1n, 12k) and halts. Clearly,
A(x, 1n) outputs L(x) correctly for every n ∈ N and every x ∈ supp(Dn).

We first claim that A is well defined in the sense that there exists an integer k ∈ [p(n)] such that
C(x, 1n, 1k) = 1. Fix any n ∈ N and x ∈ Dn and let k := p(n). Assume, toward a contradiction, that
C(x, 1n, 1k) = 0. Then we have 2−p(n) < Prx∼Dn

[
C(x, 1n, 1k) = 0

]
≤ 2−k, which is a contradiction.

We conclude that C(x, 1n, 1p(n)) = 1.
Next, we define a function t : {0, 1}∗ → N. Since S and C are polynomial-time algorithms, there

exists a polynomial such that, for every n ∈ N and every x ∈ supp(Dn), A halts on input (x, 1n) in
time p(n, 2k

∗
), where k∗ = min

{
k ∈ [p(n)]

∣∣ C(x, 1n, 1k) = 1
}

. We define t(x, 1n) to be p(n, 2k
∗
).

By the definition, it is clear that A(x, 1n) halts in time t(x, 1n) for every n ∈ N and x ∈ supp(Dn).
Observe that t is computable in polynomial time.

We claim that E [t(x, 1n)ε] ≤ nO(1) for some constant ε > 0. Take a constant c such that
p(n, 2k) ≤ 2ck+c logn for all large k, n ∈ N, and let ε := 1/c. Then, for any n ∈ N,

E
x∼Dn

[t(x, 1n)ε] ≤
p(n)∑
k=1

p(n, 2k)ε Pr
x

[
C(x, 1n, 1k−1) = 0

]

≤
p(n)∑
k=1

(
2ck+c logn

)ε
2−(k−1) +O(1) ≤ O(p(n)n).

9.2 Universality of AvgPP-Universal Heuristic Schemes

We justify the name of “universal” heuristic scheme by presenting the following characterization
of a universal heuristic scheme.

Theorem 9.5 (Universality of AvgPP-Universal Heuristic Scheme). Assume that coNP×{U , T } ⊆
Avg1

1−n−cP for some constant c. Then, the following are equivalent for any language L:

1. There exists a universal heuristic scheme for L.

2. {L} ×PSamp ⊆ AvgPP.

45

The implication from Item 1 to Item 2 is provided below.

Theorem 9.6. Assume that coNP × {U , T } ⊆ Avg1
1−n−cP for some constant c. If there exists a

universal heuristic scheme for a language L, then {L} ×PSamp ⊆ AvgPP.

Lemma 9.7 ([AF09, AGvM+18]). Let D be any polynomial-time samplable family of distributions.
Then, there exist polynomials p and q such that, for every n, s ∈ N and every x ∈ supp(Dn) with
Dn(x) ≥ 2−s,

Pr
r∼{0,1}q(n)

[
Kp(n)(x, r) ≤ s+ |r|+ log p(n)

]
≥ 1

4
.

There are at least two proofs of Lemma 9.7. Antunes and Fortnow [AF09] used the Nisan–
Wigderson generator for AC0 [NW94]. We present a proof based on a pairwise-independent hash
family [AGvM+18].

Proof of Lemma 9.7. Let R be a polynomial-time algorithm such that, for every n ∈ N, the distri-
bution of R(1n, r) for r ∼ {0, 1}p(n) is identical to Dn, where p is some polynomial. Let ` := p(n)
and m := `− s− 2.

We define a pairwise-independent hash family H =
{
h : {0, 1}` → {0, 1}m

}
so that h(σ) :=

U · σ + v, where U ∼ GF(2)m×` is a binary matrix and v ∼ GF(2)m is a binary vector.
Let S :=

{
σ ∈ {0, 1}p(n)

∣∣ R(1n, σ) = x
}

. Using Chebyshev’s inequality, with probability at
least 1

4 , we have 1 ≤
∣∣S ∩ h−1(0m)

∣∣ and
∣∣h−1(0m)

∣∣ ≤ 2s+3 (cf. [AGvM+18, Claim 4.2.1]). Using
Gaussian elimination, every x ∈ h−1(0m) can be described by h and log

∣∣h−1(0m)
∣∣ ≤ s + 3 bits of

information (cf. [AGvM+18, Claim 4.2.2]). In particular, by choosing σ ∈ S ∩ h−1(0m), x can be
described by (U, v) and s+ 3 bits; thus, Kpoly(n)(x, U, v) ≤ s+ 3 +m`+m+O(log n).

Corollary 9.8. Assume that coNP × {U , T } ⊆ Avg1
1−n−cP for some constant c. Let D be any

polynomial-time samplable family of distributions. Then there exists a polynomial p such that, for
every n, s ∈ N and every x ∈ supp(Dn), if Dn(x) ≥ 2−s, then Kp(n)(x) ≤ s+ log p(n).

Proof. By Lemma 9.7, with probability at least 1
4 over a random choice of r, Kp(n)(x, r) ≤ s +

|r|+ log p(n). By Theorem 5.2, there exists a polynomial pw such that with probability at least 7
8

over a random choice of r, Kp(n)(x, r) ≥ Kpw(p(n))(x) + |r| − log pw(p(n)). By a union bound, there
exists r that satisfies both inequalities, from which it follows that Kpw(p(n))(x) ≤ s + log p(n) +
log pw(p(n)).

Proof of Theorem 9.6. Take anyD ∈ PSamp. Fix any n ∈ N. We claim that Prx∼Dn

[
cdp(n)(x) > k

]
is exponentially small in k for some polynomial p. For every s ∈ N, let

As :=
{
x ∈ supp(Dn)

∣∣ 2−s−1 < D(x) ≤ 2−s
}
.

Since D ∈ PSamp, there exists a polynomial q such that D(x) ≥ 2−q(n) holds for every x ∈ Dn.
Thus, supp(Dn) =

⋃
s≤q(n)As.

By Corollary 9.8, there exists a polynomial p such that Kp(n)(x) ≤ s + 1 + log p(n) for every
x ∈ As. Let

B :=
{
x ∈ supp(Dn)

∣∣∣ cdp(n)(x) > k
}
.

46

Consider any x ∈ As ∩ B. Since Kp(n)(x) − K(x) > k, we obtain K(x) < s − k + 1 + log p(n). By
Fact 3.7, |As ∩B| ≤ 2s−k+1+log p(n). Therefore,

Pr
x∈Dn

[x ∈ As ∩B] ≤ 2−s · |As ∩B|. ≤ 2−k+1+log p(n).

By taking a union bound over all s ≤ q(n),

Pr
x∈Dn

[x ∈ B] ≤ q(n) · 2−k+1+log p(n).

Let κ(k, n) := k + 1 + log p(n)q(n).
Let (S,C) be a universal heuristic scheme for L. We define a pair (S′, C ′) of polynomial-time

algorithms so that, for every x of length n and every k,

C ′(x, 1n, 1k) := C(x, 1p(n), 1κ(k,n)),

S′(x, 1n, 12k) := S(x, 1p(n), 12κ(k,n)
).

We claim that (S′, C ′) is a P-bounded failure average-case heuristic scheme for (L,D). The cor-
rectness of S′ is obvious. Since cdp(n),poly(p(n)) ≤ cdp(n)(x), we also have

Pr
x∼Dn

[
C ′(x, 1n, 1k) = 0

]
≤ Pr

x∼Dn

[
cdp(n),poly(p(n))(x) > k

]
≤ 2−κ(k,n)+1+log p(n)q(n) = 2−k.

Next, we prove the converse. The following theorem establishes the implication from Item 2 to
Item 1 of Theorem 9.5.

Theorem 9.9. There exists a polynomial-time samplable family M of distributions such that, for
every language L, if (L,M) ∈ AvgPP and coNP × {U , T } ⊆ Avg1

1−n−cP for some constant c, then
L admits a universal heuristic scheme.

The following corollary is an immediate consequence of Theorem 9.9.

Corollary 9.10. If DistNP ⊆ AvgPP, then every L ∈ NP admits a universal heuristic scheme.

Proof. Observe that DistNP ⊆ AvgPP implies (L,M) ∈ AvgPP for every L ∈ NP and Dist(coNP) ⊆
Avg1P.

Proof of Theorem 9.9. The idea of the proof is as follows. We take a polynomial-time samplable
familyM that “dominates the time-bounded universal distribution”. We then consider a P-bounded
failure heuristic scheme (S,C) with respect to M. Since the number of inputs on which S fails is
small, using the language compression theorem, we conclude that any input on which S fails has
small time-bounded Kolmogorov complexity. Details follow.

We define a polynomial-time samplable family M =
{
M〈n,t〉

}
n,t∈N of distributions by the

following randomized algorithm: On input 1〈n,t〉, let n′ := 2dlogne.26 Pick s ∼ [2n′] and d ∼ {0, 1}s
randomly, and simulate the universal Turing machine U on input d. If U halts on input d in
time t and outputs a string x of length n, then output x; otherwise, output 1n. Observe that
M〈n,t〉(x) ≥ 1

4n · 2
−Kt(x) because x is sampled when s = Kt(x) (which happens with probability

≥ 1
4n) and d is a description of x (which happens with probability ≥ 2−s).
Let (S,C) be a P-bounded failure heuristic scheme for (L,M).

26We make n′ a power of 2 in order to ensure that M is polynomial-time samplable according to Definition 3.1.

47

Claim 9.11. There exists a polynomial p such that, for every n ∈ N, every x ∈ {0, 1}n, every t ≥ n
and k ≤ t, C(x, 1〈n,t〉, 1k) = 0 implies cdt,p(t)(x) > k − log p(t).

Proof. Using Lemma 5.1, let MK be a polynomial-time algorithm for GapτMINKT, where τ is
some polynomial. Define F to be an ensemble of languages such that

F〈n,t,k,s〉 :=
{
x ∈ {0, 1}n

∣∣∣MK(x, 1t, 1s) = 1 and C(x, 1〈n,τ(n+t)〉, 1k) = 0
}
.

Fix any n, t, k, s ∈ N, and let t′ := τ(n+ t). By the property of the checker C,

2−k ≥ Pr
x∼M〈n,t′〉

[
C(x, 1〈n,t

′〉, 1k) = 0
]

≥
∑

x∈F〈n,t,k,s〉

M〈n,t′〉(x)

≥
∑

x∈F〈n,t,k,s〉

1

4n
· 2−Kt

′
(x)

≥
∑

x∈F〈n,t,k,s〉

2−s−log(4nt′),

where, in the last inequality, we used the fact that Kτ(n+t)(x) ≤ s+log τ(n+t) for every x ∈ F〈n,t,k,s〉.
Thus, we obtain |F〈n,t,k,s〉| ≤ 2s−k+log(4nt′). By applying Corollary 4.4 to F〈n,t,k,s〉, there exists a

polynomial qF such that KqF (n+t+k+s)(x) ≤ s − k + log(4nt′) + log qF (n + t + k + s) for every
x ∈ F〈n,t,k,s〉. Since t is the largest parameter among n, t, and s, there exists a polynomial p such
that, for every x ∈ F〈n,t,k,s〉,

Kp(t)(x) < s− k + log p(t).

Now, fix any string x of length n, and let s := Kt(x) ≤ O(n). Since MK(x, 1t, 1s) = 1, we have
x ∈ F〈n,t,k,s〉; thus, Kp(t)(x) < Kt(x)− k + log p(t), which is equivalent to k − log p(t) < cdt,p(t)(x).
�

Now we define a pair (S′, C ′) of polynomial-time algorithms as follows.

C ′(x, 1t, 1k) := C(x, 1〈|x|,t〉, 1k+log p(t)),

S′(x, 1t, 1k) := S(x, 1〈|x|,t〉, 12k+log p(t)
).

By Claim 9.11, cdt,p(t)(x) ≤ k implies C ′(x, 1t, 1k) = 1. It is easy to see that (S′, C ′) is a universal
heuristic scheme.27

10 Uniform Hard Distribution for AvgPP

In this section, we present the result that improves Corollary 9.10.

Theorem 10.1. If NP×{U , T } ⊆ AvgPP, then every language L ∈ NP admits a universal heuristic
scheme.

27Note that we may assume without loss of generality that k ≤ O(n), since cdt,p(t)(x) ≤ O(n) for a sufficiently
large t.

48

The proof is based on an efficient compression algorithm: We show that if NP is easy on average,
then there is an efficient algorithm that compresses a string nearly optimally. (This corresponds to
a search version of GapMINKT.)

Theorem 10.2. Assume that coNP× {U , T } ⊆ Avg1
1−n−cP for some constant c. Then, there exist

polynomial-time algorithms E and U and a polynomial p such that

1. for every t ∈ N and for every string x ∈ {0, 1}∗ with p(|x|) ≤ t, it holds that U(E(x, 1t), 1t) =
x, and

2. |E(x, 1t)| ≤ Kt(x) + log p(t).

Proof. We define the polynomial-time algorithm U so that U(d, 1t) is equal to the output of a
universal Turing machine on input d if it halts in time poly(t), where poly is some large polynomial.

Using Lemma 5.1, let MK be a polynomial-time algorithm that solves GapτMINKT for some
polynomial τ .

We define the polynomial-time algorithm E as follows. Fix any input (x, 1t), and let n := |x|.
Let ε := 1/2, and let t′ be a parameter chosen later. For each k ∈ [2n] in increasing order, E
operates as follows. Define an oracle D so that D(w) = 1 if and only if MK(w, 12t, 1θ) = 1, where
w ∈ {0, 1}nk+k and θ := nk + k − log τ(4t) − 2. Note that D can be computed using a circuit
of size at most s, where s ≤ poly(t). Run the oracle procedure CD of Theorem 3.12 on input
(x, 1k, 1ε

−1
, 1s), and let M denote the output (which means that (M,D) is a candidate description

for x). If U((M,D), 1t
′
) = x, the algorithm E outputs the following program M0 and halts: The

program M0 takes (n, k, t, θ) as input, computes the circuit D, and outputs U((M,D), 1t
′
). Observe

that |M0| ≤ |M |+O(log t) and U(M0, 1
t′′) = x for some large t′′.

We claim the correctness of the algorithm while choosing the parameters. We assume that
t ≥ p0(n) for some large polynomial p0. Observe that, for every string z,

K2t(DPk(x; z)) ≤ Kt(x) + d+O(log n) ≤ θ,

where d := |z| = nk and the last inequality holds for every k such that Kt(x)+O(log n)+log τ(4t) ≤
k; we choose the minimum integer k = Kt(x) + O(log n) + log τ(4t) that satisfies this inequality.
This implies that D(DPk(x; z)) = 1 for every z. On the other hand, we have Prw [D(w) = 0] ≥
1
2 because any input (w, 12t, 1θ) with K(w) > θ + log τ(4t) is a No instance of GapτMINKT.
These properties of D indicate that D 1

2 -distinguishes the output distribution of DPk(x; -) from

the uniform distribution, from which we conclude that the procedure CD(x, 1k, 1ε
−1
, 1s) outputs

some program M such that |M | ≤ k + log t′ = Kt(x) + O(log t) and U((M,D), 1t
′
) = x, where

t′ ≤ poly(t).

Proof of Theorem 10.1. Let (E,U) be the pair of polynomial-time algorithms given in Theorem 10.2.
We define a language L′ so that α ∈ L′ if and only if 〈s, t〉 := |α| and U(β, 1t) ∈ L, where β is the
first s bits of α. Observe that L′ ∈ NP. Let (S′, C ′) be a P-bounded failure heuristic scheme for
(L′,U) ∈ AvgPP.

We define a universal heuristic scheme (S,C) for L. The checker C takes (x, 1t, 1k) as input and
accepts if and only if there exists a seed z ∈ {0, 1}O(logm) such that C ′(E(x, 1t)Gm(z), 1k

′
) = 1,28

where m and k′ are parameters chosen later, and Gm is the pseudorandom generator of Lemma 3.4

28More precisely, C′(E(x, 1t)Gm(z), 1|E(x,1t)Gm(z)|, 1k
′
) = 1; however, the second argument is clearly redundant.

49

whose output is truncated to a string of length
〈
|E(x, 1t)|, t

〉
− |E(x, 1t)|. The solver S takes

(x, 1t, 12k) as input, and outputs S′(E(x, 1t)Gm(z), 12k
′
), where z is the seed found by the checker.

We claim the correctness of S. Assume that C(x, 1t, 1k) = 1. Then, for some z, we have

C ′(E(x, 1t)Gm(z), 1k
′
) = 1,

which implies that

S(x, 1t, 12k) = S′(E(x, 1t)Gm(z), 12k
′
)

= L′(E(x, 1t)Gm(z))

= L(U(E(x, 1t), 1t)) = L(x).

This establishes the correctness of the solver S.
It remains to prove the correctness of the checker C. By the property of (S′, C ′), for every

s, t ∈ N,

Pr
d,r

[
C ′(dr, 1k

′
) = 0

]
≤ 2−k

′
,

where d ∼ {0, 1}s and r ∼ {0, 1}〈s,t〉−s. In particular, the number of strings dr ∈ {0, 1}〈s,t〉 such
that C ′(dr, 1k

′
) = 0 is at most 2〈s,t〉−k

′
. By Corollary 4.4, there exists a polynomial p such that, for

every string dr ∈ {0, 1}〈s,t〉 with C ′(dr, 1k
′
) = 0, it holds that

Kp(t)(dr) ≤ 〈s, t〉 − k′ + log p(t). (14)

Now fix any string x and r such that C ′(E(x, 1t)r, 1k
′
) = 0, and let d := E(x, 1t) and s := |d|.

By Eq. (14), we have Kp(t)(dr) ≤ |r|+ s− k′+ log p(t), where |r| = 〈s, t〉 − s. By Theorem 10.2, we
also have s ≤ Kt(x) + log p(t) by choosing a sufficiently large p. Combining these two inequalities,
we obtain

Kp(t)(dr) ≤ Kt(x) + |r| − k′ + 2 log p(t).

By Theorem 5.2, for some polynomial pw, with high probability over a random choice of r ∼
{0, 1}〈s,t〉−s, it holds that

Kp(t)(dr) ≥ Kpw(p(t))(d) + |r| − log pw(t).

Since U(d, 1t) = x, we also have Kq(t)(x) ≤ Kpw(p(t))(d)+log p(t) for some polynomial q. Combining
the three inequalities above, we obtain

k′ ≤ cdt,q(t)(x) + log pw(t) + 3 log p(t).

By choosing k′ := k+log pw(t)+3 log p(t)+1, the last inequality is equivalent to k+1 ≤ cdt,q(t)(x).
Now, assume that cdt,q(t)(x) ≤ k. By the contrapositive of the argument above,

Pr
r∼{0,1}〈s,t〉−s

[
C ′(E(x, 1t)r, 1k

′
) = 1

]
≈ 1.

By the security of the pseudorandom generator Gm (and choosing a sufficiently large m), there
exists a seed z such that

C ′(E(x, 1t)Gm(z), 1k
′
) = 1,

which implies that C(x, 1t, 1k) = 1. This establishes the correctness of the checker C.

50

As a corollary, we obtain an analogue of Impagliazzo and Levin’s results [IL90] in the setting
of AvgPP.

Corollary 10.3. DistNP ⊆ AvgPP⇐⇒ NP× {U , T } ⊆ AvgPP.

Proof. This follows from Theorems 9.6 and 10.1.

11 Proofs of Main Results

We combine the results presented thus far and prove the main theorems stated in Section 1.
We start with a “decision version” of Item 1 of Theorem 1.8.

Theorem 11.1. For every time-constructible function t : N→ N with n ≤ t(n) < 2n and for every
constant c,

BP · NTIMEsv(t(n)) 6⊆ DTIME
(

2O(n/ log(n/ log t(n)))
)

=⇒ coNP× {U , T } 6⊆ Avg1
1−n−cP.

Proof. We prove the contrapositive. Assume that coNP×{U , T } ⊆ Avg1
1−n−cP. By Corollary 8.12,

every language in NPsv admits a universal heuristic scheme. By Lemma 7.10, every language in
BP · NPsv admits a universal heuristic scheme. By Corollary 6.5, we obtain

BP · NTIMEsv(t(n)) ⊆ DTIME
(

2O(n/ log(n/ log t(n)))
)
.

Since UP ⊆ NPsv, Item 1 of Theorem 1.6 is a special case of Theorem 11.1. Theorem 11.1
suggests that the exponential worst-case hardness of any problem that reduces to NPsv via a ran-
domized reduction implies the average-case hardness of NP. A “search version” of Theorem 11.1
can be proved in a similar way.

Reminder of Item 1 of Theorem 1.8. If there exists a 2n
1−δ

-time approximately size-verifiable
function that cannot be inverted in time 2O(n/ logn) in the worst case for some constant δ > 0, then
coNP× {U , T } 6⊆ Avg1

1−n−cP for every constant c.

Proof Sketch. We define t(n) := 2n
1−δ

and replace Corollary 8.12 with Theorem 8.9 and Proposi-
tion 8.15 in the proof of Theorem 11.1.

Restatement of Item 2 of Theorem 1.8. For any constants δ > 0, k ∈ N, and c,

BPTIME
(

2n
1−δ
)Σp

k 6⊆ DTIME
(

2O(n/ logn)
)

=⇒ Πp
k+1 × {U , T } 6⊆ Avg1

1−n−cP.

Proof. Assume that Πp
k+1 × {U , T } ⊆ Avg1

1−n−cP for some constant c. By Theorem 7.1, every

language in BPPΣp
k admits a universal heuristic scheme. By Corollary 6.5, we obtain

BPTIME
(

2n
1−δ
)Σp

k ⊆ DTIME
(

2O(n/ logn)
)
.

51

Reminder of Item 3 of Theorem 1.8. For every constant δ > 0,

AMTIME
(

2n
1−δ
)
6⊆ DTIME

(
2O(n/ logn)

)
=⇒ NP× {U , T } 6⊆ AvgPP.

Proof. Assume that NP × {U , T } ⊆ AvgPP. By Theorem 10.1, every language L ∈ NP admits a
universal heuristic scheme. By Lemma 7.10, every language in BP · NP = AM admits a universal
heuristic scheme. By Corollary 6.5, we obtain

AMTIME
(

2n
1−δ
)
⊆ DTIME

(
2O(n/ logn)

)

Reminder of Theorem 1.9. The following are equivalent:

1. DistPH ⊆ AvgPP.

2. DistPH ⊆ AvgP.

3. PH× {U , T } ⊆ Avg1
1−n−cP for some constant c.

Proof. It is evident that 1 =⇒ 2 =⇒ 3. To prove the converse, assume that PH × {U , T } ⊆
Avg1

1−n−cP for some constant c. By Theorems 7.1 and 9.6, we obtain DistΣp
k ⊆ Dist(BPPΣp

k) ⊆
AvgPP for every constant k ∈ N, from which it follows that DistPH =

⋃
k DistΣp

k ⊆ AvgPP.

Restatement of Theorem 1.10. If coNP × {U , T } ⊆ Avg1
1−n−cP for some constant c, then

DistNPsv ⊆ AvgPP.

Proof. Under the assumption of the theorem, by Corollary 8.12, every language in NPsv admits a
universal heuristic scheme. By Theorem 9.6, we obtain DistNPsv = NPsv ×PSamp ⊆ AvgPP.

We demonstrate that a sparse language yields better worst-case-to-average-case connections.
As a concrete example, consider the parameterized version MCSP[s] of MCSP for a parameter
s : N→ N. MCSP[s] is the language of the truth tables of f : {0, 1}n → {0, 1} such that there is a
circuit of size s(n) that computes f . The following result strengthens29 Corollary 1.7.

Theorem 11.2. Let s : N→ N be an efficiently computable function such that n1.1 ≤ s(n) ≤ 2n/n.
If MCSP[s] 6∈ DTIME

(
2O(s(logN))

)
, then DistNP 6⊆ AvgPP and DistΣp

2 6⊆ AvgP.

A trivial brute-force algorithm for MCSP[s] runs in time s(logN)O(s(logN)) on inputs of length
N = 2n, and no better algorithm is known; thus, the hypothesis of Theorem 11.2 is plausible.

29Similar results hold for C-MCSP.

52

Proof of Theorem 11.2. Since circuits of size s can be encoded by O(s log s) bits, the number of
Yes instances of length N = 2n in MCSP[s] is bounded by 2O(s(n) log s(n)) =: 2s

′(N). Applying
either Corollary 9.10 or Theorem 7.1, we obtain a universal heuristic scheme for MCSP[s] ∈ NP. It
follows from Corollary 6.6 that

MCSP[s] ∈ DTIME
(

2O(s′(N)/ log(s′(N)/ logN))
)
⊆ DTIME

(
2O(s(logN))

)
.

Finally, we mention that our results provide “NP-hardness” of GapMINKTNP.

Theorem 11.3. For any constants δ > 0,

BPTIME
(

2n
1−δ
)NP
6⊆ DTIME

(
2O(n/ logn)

)
=⇒ GapMINKTNP 6∈ P

Proof. The proof of [Hir20a, Theorem III.7] shows that GapMINKTNP ∈ P if and only if
Gap(KNP vs K) ∈ P. Combining this with Lemma 7.2, we obtain that GapMINKTNP ∈ P im-
plies that every language in BPPNP admits a universal heuristic scheme, which implies

BPTIME
(

2n
1−δ
)Σp

k ⊆ DTIME
(

2O(n/ logn)
)

by Corollary 6.5.

12 Concluding Remarks and Open Questions

In this paper, we developed the theory of “meta-computational average-case complexity”, which
was initiated in [Hir20a], and demonstrated the power of the theory using several new concepts,
such as P-computable average-case polynomial time and universal heuristic scheme. We believe
that these concepts deserve further study. Several open questions are presented below.

The main open question is to prove that NP 6⊆ DTIME(2o(n)) implies DistNP 6⊆ AvgP. Our
results come close to resolving this question and suggest the following approaches:

1. Can we prove that NP is reducible to the task of inverting approximately size-verifiable one-
way functions in the worst case? It is not difficult to show this under the assumption that
NP ⊆ coAM (see Appendix A); however, it remains an open problem to prove the NP-hardness
of inverting approximately size-verifiable one-way function under a plausible assumption.

2. Does DistNP ⊆ AvgP imply DistNP ⊆ AvgPP?

3. Does DistNP ⊆ AvgP imply DistΣp
2 ⊆ AvgP?

A positive answer to either one of these questions can be combined with our results to establish
the implication from NP 6⊆ DTIME(2o(n)) to DistNP 6⊆ AvgP.

Another important open question is to prove an “infinitely often” version of our results. For
example, can we prove that PH 6⊆ i.o.DTIME(2o(n)) implies DistPH 6⊆ i.o.AvgP? In this setting,
Viola’s barrier comes into play. Recall that we overcome the barrier of Theorem 1.3 by exploiting

53

the fact that a hardness amplification procedure is defined on all input lengths; in other words, it
is crucial in our proofs that a hypothetical algorithm solves DistPH almost everywhere. Extending
our results to the infinitely-often setting would require significantly new ideas to overcome Viola’s
barrier in a different way.

Another question is whether the exponential-time hypothesis (ETH; [IPZ01]) implies DistPH 6⊆
AvgP. ETH implies that NP 6⊆ DTIME(2o(n/ logn)),30 but falls slightly short of the time bound
2O(n/ logn) of Theorem 1.6.

Can we extend our one-sided-error hardness results to two-sided-error versions? Can we base
the existence of (average-case) one-way functions on the worst-case hardness of UP? Recent results
of Liu and Pass [LP20] characterized the two-sided-error hardness of MINKT by the existence of
one-way functions, which may be useful for investigating these questions.

Finally, the last question is whether we can apply meta-computational proof techniques to small
complexity classes, such as DistP 6⊆ AvgL. The question of whether DistP is easy on average for
log-space algorithms was investigated in [BCGL92]; however, no non-trivial relationship between
DistP 6⊆ AvgL and the worst-case hardness of P is known. A new insight is required to apply our
proof techniques to DistP, as we exploit the power of DistNP or DistPH in an essential manner.

Acknowledgement

We thank Rahul Santhanam and Hanlin Ren for helpful discussion and thank anonymous re-
viewers for helpful comments. This work was supported by JST, ACT-I and PRESTO Grant
Number JPMJPR2024, Japan.

References

[ABK+06] Eric Allender, Harry Buhrman, Michal Koucký, Dieter van Melkebeek, and Detlef
Ronneburger. Power from Random Strings. SIAM J. Comput., 35(6):1467–1493,
2006.

[AD17] Eric Allender and Bireswar Das. Zero knowledge and circuit minimization. Inf. Com-
put., 256:2–8, 2017.

[AF09] Luis Filipe Coelho Antunes and Lance Fortnow. Worst-Case Running Times for
Average-Case Algorithms. In Proceedings of the Conference on Computational Com-
plexity (CCC), pages 298–303, 2009.

[AFvMV06] Luis Antunes, Lance Fortnow, Dieter van Melkebeek, and N. V. Vinodchandran. Com-
putational depth: Concept and applications. Theor. Comput. Sci., 354(3):391–404,
2006.

[AGGM06] Adi Akavia, Oded Goldreich, Shafi Goldwasser, and Dana Moshkovitz. On basing
one-way functions on NP-hardness. In Proceedings of the Symposium on Theory of
Computing (STOC), pages 701–710, 2006.

30Note that an m-variable O(m)-clause O(1)-width CNF formula can be encoded as a binary string of length
O(m logm).

54

[AGvM+18] Eric Allender, Joshua A. Grochow, Dieter van Melkebeek, Cristopher Moore, and
Andrew Morgan. Minimum Circuit Size, Graph Isomorphism, and Related Problems.
SIAM J. Comput., 47(4):1339–1372, 2018.

[AH19] Eric Allender and Shuichi Hirahara. New Insights on the (Non-)Hardness of Circuit
Minimization and Related Problems. TOCT, 11(4):27:1–27:27, 2019.

[AHM+08] Eric Allender, Lisa Hellerstein, Paul McCabe, Toniann Pitassi, and Michael E. Saks.
Minimizing Disjunctive Normal Form Formulas and AC0 Circuits Given a Truth Table.
SIAM J. Comput., 38(1):63–84, 2008.

[AK20] Yahav Alon and Michael Krivelevich. Finding a Hamilton cycle fast on average using
rotations and extensions. Random Struct. Algorithms, 57(1):32–46, 2020.

[AR88] Eric Allender and Roy S. Rubinstein. P-Printable Sets. SIAM J. Comput., 17(6):1193–
1202, 1988.

[BB15] Andrej Bogdanov and Christina Brzuska. On Basing Size-Verifiable One-Way Func-
tions on NP-Hardness. In Proceedings of the Theory of Cryptography Conference
(TCC), pages 1–6, 2015.

[BCGL92] Shai Ben-David, Benny Chor, Oded Goldreich, and Michael Luby. On the Theory of
Average Case Complexity. J. Comput. Syst. Sci., 44(2):193–219, 1992.

[BFL01] Harry Buhrman, Lance Fortnow, and Sophie Laplante. Resource-Bounded Kol-
mogorov Complexity Revisited. SIAM J. Comput., 31(3):887–905, 2001.

[BFP05] Harry Buhrman, Lance Fortnow, and Aduri Pavan. Some Results on Derandomization.
Theory Comput. Syst., 38(2):211–227, 2005.

[BFS09] Harry Buhrman, Lance Fortnow, and Rahul Santhanam. Unconditional Lower Bounds
against Advice. In Automata, Languages and Programming, 36th International Col-
loquium, ICALP 2009, Rhodes, Greece, July 5-12, 2009, Proceedings, Part I, pages
195–209, 2009.

[BLvM05] Harry Buhrman, Troy Lee, and Dieter van Melkebeek. Language compression and
pseudorandom generators. Computational Complexity, 14(3):228–255, 2005.

[BS07] Andrej Bogdanov and Muli Safra. Hardness Amplification for Errorless Heuristics. In
Proceedings of the Symposium on Foundations of Computer Science (FOCS), pages
418–426, 2007.

[BT06a] Andrej Bogdanov and Luca Trevisan. Average-Case Complexity. Foundations and
Trends in Theoretical Computer Science, 2(1), 2006.

[BT06b] Andrej Bogdanov and Luca Trevisan. On Worst-Case to Average-Case Reductions for
NP Problems. SIAM J. Comput., 36(4):1119–1159, 2006.

[Coo71] Stephen A. Cook. The Complexity of Theorem-Proving Procedures. In Proceedings of
the Symposium on Theory of Computing (STOC), pages 151–158, 1971.

55

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE Trans.
Information Theory, 22(6):644–654, 1976.

[FF93] Joan Feigenbaum and Lance Fortnow. Random-Self-Reducibility of Complete Sets.
SIAM J. Comput., 22(5):994–1005, 1993.

[GL89] Oded Goldreich and Leonid A. Levin. A Hard-Core Predicate for all One-Way Func-
tions. In Proceedings of the Symposium on Theory of Computing (STOC), pages 25–32,
1989.

[GLN11] Oded Goldreich, Leonid A. Levin, and Noam Nisan. On Constructing 1-1 One-Way
Functions. In Studies in Complexity and Cryptography. Miscellanea on the Interplay
between Randomness and Computation, pages 13–25. 2011.

[GRS00] Oded Goldreich, Ronitt Rubinfeld, and Madhu Sudan. Learning Polynomials with
Queries: The Highly Noisy Case. SIAM J. Discrete Math., 13(4):535–570, 2000.

[GS86] Shafi Goldwasser and Michael Sipser. Private Coins versus Public Coins in Interactive
Proof Systems. In Proceedings of the Symposium on Theory of Computing (STOC),
pages 59–68, 1986.

[GS87] Yuri Gurevich and Saharon Shelah. Expected Computation Time for Hamiltonian
Path Problem. SIAM J. Comput., 16(3):486–502, 1987.

[GS88] Joachim Grollmann and Alan L. Selman. Complexity Measures for Public-Key Cryp-
tosystems. SIAM J. Comput., 17(2):309–335, 1988.

[HILL99] Johan H̊astad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A Pseudo-
random Generator from any One-way Function. SIAM J. Comput., 28(4):1364–1396,
1999.

[Hir18] Shuichi Hirahara. Non-black-box Worst-case to Average-case Reductions within NP.
In Proceedings of the Symposium on Foundations of Computer Science (FOCS), pages
247–258, 2018.

[Hir20a] Shuichi Hirahara. Characterizing Average-Case Complexity of PH by Worst-Case
Meta-Complexity. In Proceedings of the Symposium on Foundations of Computer
Science (FOCS), pages 50–60, 2020.

[Hir20b] Shuichi Hirahara. Non-Disjoint Promise Problems from Meta-Computational View of
Pseudorandom Generator Constructions. In Proceedings of the Computational Com-
plexity Conference (CCC), pages 20:1–20:47, 2020.

[Hir20c] Shuichi Hirahara. Unexpected hardness results for Kolmogorov complexity under uni-
form reductions. In Proceedings of the Symposium on Theory of Computing (STOC),
pages 1038–1051, 2020.

[Hir20d] Shuichi Hirahara. Unexpected Power of Random Strings. In Proceedings of the Inno-
vations in Theoretical Computer Science Conference (ITCS), pages 41:1–41:13, 2020.

56

[HMX10] Iftach Haitner, Mohammad Mahmoody, and David Xiao. A New Sampling Protocol
and Applications to Basing Cryptographic Primitives on the Hardness of NP. In
Proceedings of the Conference on Computational Complexity (CCC), pages 76–87,
2010.

[HOS18] Shuichi Hirahara, Igor Carboni Oliveira, and Rahul Santhanam. NP-hardness of Min-
imum Circuit Size Problem for OR-AND-MOD Circuits. In Proceedings of the Com-
putational Complexity Conference (CCC), pages 5:1–5:31, 2018.

[HW20] Shuichi Hirahara and Osamu Watanabe. On Nonadaptive Security Reductions of
Hitting Set Generators. In Proceedings of the Approximation, Randomization, and
Combinatorial Optimization (APPROX/RANDOM), pages 15:1–15:14, 2020.

[IL89] Russell Impagliazzo and Michael Luby. One-way Functions are Essential for Complex-
ity Based Cryptography (Extended Abstract). In Proceedings of the Symposium on
Foundations of Computer Science (FOCS), pages 230–235, 1989.

[IL90] Russell Impagliazzo and Leonid A. Levin. No Better Ways to Generate Hard NP
Instances than Picking Uniformly at Random. In Proceedings of the Symposium on
Foundations of Computer Science (FOCS), pages 812–821, 1990.

[Ila20a] Rahul Ilango. Connecting Perebor Conjectures: Towards a Search to Decision Re-
duction for Minimizing Formulas. In Proceedings of the Computational Complexity
Conference (CCC), pages 31:1–31:35, 2020.

[Ila20b] Rahul Ilango. Constant Depth Formula and Partial Function Versions of MCSP are
Hard. In Proceedings of the Symposium on Foundations of Computer Science (FOCS),
pages 424–433, 2020.

[Imp95] Russell Impagliazzo. A Personal View of Average-Case Complexity. In Proceedings of
the Structure in Complexity Theory Conference, pages 134–147, 1995.

[Imp11] Russell Impagliazzo. Relativized Separations of Worst-Case and Average-Case Com-
plexities for NP. In Proceedings of the Conference on Computational Complexity
(CCC), pages 104–114, 2011.

[IPZ01] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which Problems Have
Strongly Exponential Complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001.

[IW97] Russell Impagliazzo and Avi Wigderson. P = BPP if E Requires Exponential Circuits:
Derandomizing the XOR Lemma. In Proceedings of the Symposium on the Theory of
Computing (STOC), pages 220–229, 1997.

[Kar72] Richard M. Karp. Reducibility Among Combinatorial Problems. In Proceedings of a
symposium on the Complexity of Computer Computations, pages 85–103, 1972.

[KC00] Valentine Kabanets and Jin-yi Cai. Circuit minimization problem. In Proceedings of
the Symposium on Theory of Computing (STOC), pages 73–79, 2000.

[Ko85] Ker-I Ko. On Some Natural Complete Operators. Theor. Comput. Sci., 37:1–30, 1985.

57

[Ko91] Ker-I Ko. On the Complexity of Learning Minimum Time-Bounded Turing Machines.
SIAM J. Comput., 20(5):962–986, 1991.

[Kre88] Mark W. Krentel. The Complexity of Optimization Problems. J. Comput. Syst. Sci.,
36(3):490–509, 1988.

[KS04] Johannes Köbler and Rainer Schuler. Average-case intractability vs. worst-case in-
tractability. Inf. Comput., 190(1):1–17, 2004.

[Lev73] Leonid Anatolevich Levin. Universal sequential search problems. Problemy Peredachi
Informatsii, 9(3):115–116, 1973.

[Lev86] Leonid A. Levin. Average Case Complete Problems. SIAM J. Comput., 15(1):285–286,
1986.

[LP20] Yanyi Liu and Rafael Pass. On One-way Functions and Kolmogorov Complexity. In
Proceedings of the Symposium on Foundations of Computer Science (FOCS), pages
1243–1254, 2020.

[LW95] Luc Longpré and Osamu Watanabe. On Symmetry of Information and Polynomial
Time Invertibility. Inf. Comput., 121(1):14–22, 1995.

[Mas79] William J Masek. Some NP-complete set covering problems. Unpublished manuscript,
1979.

[MX10] Mohammad Mahmoody and David Xiao. On the Power of Randomized Reductions
and the Checkability of SAT. In Proceedings of the Conference on Computational
Complexity (CCC), pages 64–75, 2010.

[NW94] Noam Nisan and Avi Wigderson. Hardness vs Randomness. J. Comput. Syst. Sci.,
49(2):149–167, 1994.

[Ost91] Rafail Ostrovsky. One-Way Functions, Hard on Average Problems, and Statistical
Zero-Knowledge Proofs. In Proceedings of the Structure in Complexity Theory Con-
ference, pages 133–138, 1991.

[RR97] Alexander A. Razborov and Steven Rudich. Natural Proofs. J. Comput. Syst. Sci.,
55(1):24–35, 1997.

[Sip83] Michael Sipser. A Complexity Theoretic Approach to Randomness. In Proceedings of
the Symposium on Theory of Computing (STOC), pages 330–335, 1983.

[SSS95] Jeanette P. Schmidt, Alan Siegel, and Aravind Srinivasan. Chernoff-Hoeffding Bounds
for Applications with Limited Independence. SIAM J. Discrete Math., 8(2):223–250,
1995.

[STV01] Madhu Sudan, Luca Trevisan, and Salil P. Vadhan. Pseudorandom Generators without
the XOR Lemma. J. Comput. Syst. Sci., 62(2):236–266, 2001.

[Tho89] Andrew Thomason. A simple linear expected time algorithm for finding a hamilton
path. Discret. Math., 75(1-3):373–379, 1989.

58

[TUZ07] Amnon Ta-Shma, Christopher Umans, and David Zuckerman. Lossless Condensers,
Unbalanced Expanders, And Extractors. Combinatorica, 27(2):213–240, 2007.

[TV07] Luca Trevisan and Salil P. Vadhan. Pseudorandomness and Average-Case Complexity
Via Uniform Reductions. Computational Complexity, 16(4):331–364, 2007.

[Vad12] Salil P. Vadhan. Pseudorandomness. Foundations and Trends in Theoretical Computer
Science, 7(1-3):1–336, 2012.

[Vio05a] Emanuele Viola. On Constructing Parallel Pseudorandom Generators from One-Way
Functions. In Proceedings of the Conference on Computational Complexity (CCC),
pages 183–197, 2005.

[Vio05b] Emanuele Viola. The complexity of constructing pseudorandom generators from hard
functions. Computational Complexity, 13(3-4):147–188, 2005.

[VV86] Leslie G. Valiant and Vijay V. Vazirani. NP is as Easy as Detecting Unique Solutions.
Theor. Comput. Sci., 47(3):85–93, 1986.

[Wat12] Thomas Watson. Relativized Worlds without Worst-Case to Average-Case Reductions
for NP. TOCT, 4(3):8:1–8:30, 2012.

[ZL70] AK Zvonkin and LA Levin. The complexity of finite objects and the algorithmic
concepts of randomness and information. UMN (Russian Math. Surveys), 25(6):83–
124, 1970.

A NP-Completeness of NPsv Under NP ⊆ coAM

We observe that NPsv is NP-complete under the assumption that NP is easy for coAM algorithms.

Proposition A.1. If NP ⊆ coAM, then NPsv = NP.

Proof. We will prove in Lemma A.2 that the assumption of Proposition A.1 implies that pr-AM =
pr-coAM. Fix any L ∈ NP, and let V be an NP-type verifier for L. Let ΠV be the promise
problem defined in Definition 8.2. Then, using the lower bound protocol (Lemma 4.6), we have
ΠV ∈ pr-coAM = pr-AM, which implies that L ∈ NPsv.

Lemma A.2. If NP ⊆ coAM, then pr-AM ⊆ pr-coAM.

Proof Sketch. Consider any promise problem Π = (ΠYes,ΠNo) ∈ pr-AM, and let V be a polynomial-
time verifier for the AM protocol. This means that

1. if x ∈ ΠYes, then for every r, for some y, V (x, y, r) = 1, and

2. if x ∈ ΠNo, then Prr [∃y, V (x, y, r) = 1] ≤ 1
4 .

Let L := { (x, r) | ∃y, V (x, y, r) = 1 } ∈ NP. By the assumption, L ∈ coAM, and thus there exists a
polynomial-time verifier that witnesses coL ∈ AM such that

1. if (x, r) ∈ L, then Prr′ [∃y′,W (x, r, y′, r′) = 0] ≤ 1
4 , and

59

2. if (x, r) 6∈ L, then for every r′, for some y′, W (x, r, y′, r′) = 0.

Combining these two conditions, we obtain

1. if x ∈ ΠYes, then Prr,r′ [∃y′,W (x, r, y′, r′) = 0] ≤ 1
4 , and

2. if x ∈ ΠNo, then Prr,r′ [∃y′,W (x, r, y′, r′) = 0] ≥ 3
4 ,

which implies that Π ∈ pr-coAM.

B Hamiltonian Path Admits P-Computable Average-Case Polynomial-
Time Algorithms

Let G(n, p) denote the distribution of the Erdős-Rényi random graph in which each edge is
included with probability p. For every function p : N→ [0, 1], let Gp := {G(n, p(n))}n∈N be a family
of the Erdős-Rényi random graphs. Let HamiltonianPath be the problem of deciding if a given
graph contains a Hamiltonian path from the first vertex to the second vertex. We observe that
the running time of the heuristic algorithm of Thomason [Tho89] is P-computable average-case
polynomial-time.

Proposition B.1. For every efficiently computable function p such that 1/p(n) ≤ O(log n),

(HamiltonianPath,Gp) ∈ AvgPP.

Proof Sketch. The heuristic algorithm A of [Tho89] consists of three algorithms: A1, A2, and A3.
The algorithm A3 is a dynamic programming algorithm that solves HamiltonianPath in the worst
case in time 2O(n). Let t3(n) denote an upper bound of the running time of A3. The algorithms A1

and A2 are errorless heuristic algorithms that either find a Hamiltonian path or report that there
is no Hamiltonian path or fail. The algorithm A1 runs in time nO(1), and the algorithm A2 runs in
time 2O(1/p(n)) + nO(1) = nO(1). Let t12(n) denote a polynomial upper bound of the running time
of A1 and A2. The heuristic algorithm A for HamiltonianPath is defined as follows: Apply A1.
If A1 fails, apply A2. If A2 fails, apply A3.

We define a time bound t : {0, 1}∗ → N that upper-bounds the running time of A as follows.
For every input graph G of n vertices, if either A1 or A2 succeeds on input G, then t(G) is defined
as t12(n); otherwise, t(G) := t3(n). Since A1 and A2 run in polynomial time, the time bound t is
computable in time nO(1). Moreover, [Tho89] showed that A1 and A2 fail with probability at most
2−cn over a random graph G ∼ G(n, p(n)) for some constant c > 0. Thus, EG∼G(n,p(n)) [t(G)ε] ≤
nO(1) for some constant ε > 0 (in fact, for ε := 1). Therefore, A is a P-computable average-case
polynomial-time algorithm for HamiltonianPath.

There are AvgP algorithms that solve HamiltonianPath for a wider range of p.

Theorem B.2 ([AK20]). For every efficiently computable function p such that 1/p(n) ≤
√
n/70,

(HamiltonianPath,Gp) ∈ AvgP.

Closing the gap between Proposition B.1 and Theorem B.2 is an interesting research question.

60

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

