
On One-way Functions from NP-Complete Problems

Yanyi Liu
Cornell University

yl2866@cornell.edu

Rafael Pass∗

Cornell Tech & Tel-Aviv University
rafael@cs.cornell.edu

November 4, 2021

Abstract

We present the first natural NP-complete problem whose average-case hardness w.r.t. the uni-
form distribution over instances is equivalent to the existence of one-way functions (OWFs). The
problem, which originated in the 1960s, is the Conditional Time-Bounded Kolmogorov Complexity
Problem: let Kt(x | z) be the length of the shortest “program” that, given the “auxiliary input”
z, outputs the string x within time t(|x|), and let McKtP[ζ] be the set of strings (x, z, k) where
|z| = ζ(|x|), |k| = log |x| and Kt(x | z) < k, where, for our purposes, a “program” is defined as a
RAM machine.

Our main result shows that for every polynomial t(n) ≥ n2, there exists some polynomial ζ
such that McKtP[ζ] is NP-complete. We additionally extend the result of Liu-Pass (FOCS’20) to
show that for every polynomial t(n) ≥ 1.1n, and every polynomial ζ(·), mild average-case hardness
of McKtP[ζ] is equivalent to the existence of OWFs. Taken together, these results provide the
following crisp characterization of what is required to base OWFs on NP 6⊆ BPP:

There exists concrete polynomials t, ζ such that “Basing OWFs on NP 6⊆ BPP” is
equivalent to providing a “worst-case to (mild) average-case reduction for McKtP[ζ]”.

In other words, the “holy-grail” of Cryptography (i.e., basing OWFs on NP 6⊆ BPP) is equivalent
to a basic question in algorithmic information theory.

As an independent contribution, we show that our NP-completeness result can be used to shed
new light on the feasibility of the polynomial-time bounded symmetry of information assertion
(Kolmogorov’68).

∗Supported in part by NSF Award SATC-1704788, NSF Award RI-1703846, AFOSR Award FA9550-18-1-0267,
and a JP Morgan Faculty Award. This material is based upon work supported by DARPA under Agreement No.
HR00110C0086. Any opinions, findings and conclusions or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the United States Government or DARPA.

 

ISSN 1433-8092 

Electronic Colloquium on Computational Complexity, Revision 2 of Report No. 59 (2021)



1 Introduction

A one-way function (OWF) [DH76] is a function f that can be efficiently computed (in polyno-
mial time), yet no probabilistic polynomial-time (PPT) algorithm can invert f with inverse poly-
nomial probability for infinitely many input lengths n. Whether OWFs exist is unequivocally the
most important open problem in Cryptography: OWFs are both necessary [IL89] and sufficient
for many of the most central cryptographic primitives and protocols (e.g., pseudorandom gener-
ators [BM88, HILL99], pseudorandom functions [GGM84], private-key encryption [GM84], digital
signatures [Rom90], commitment schemes [Nao91], identification protocols [FS90], coin-flipping pro-
tocols [Blu82], and more). These primitives and protocols are often referred to as private-key prim-
itives, or “Minicrypt” primitives [Imp95] as they exclude the notable task of public-key encryption
[DH76, RSA83].

While many candidate constructions of OWFs are known—most notably based on factoring
[RSA83], the discrete logarithm problem [DH76], or the hardness of lattice problems [Ajt96]—
the question of whether OWFs can be based on some “standard” complexity-theoretic assump-
tion is mostly wide open. Indeed, a central open problem—often referred to as the “holygrail of
cryptography”—originating in the seminal work of Diffie and Hellman [DH76] is whether the exis-
tence of OWFs can be based on the assumption that NP 6⊆ BPP.1 So far, however, most results in
the literature have been negative. Notably, starting with the work by Brassard [Bra83] in 1983, a
long sequence of works have shown various types of black-box separations between restricted types
of OWFs (e.g., one-way permutations) and NP-hardness (see e.g., [Bra83, BT03, AGGM06, Pas06,
GWXY10, Liv10, HMX10, BB15]). We emphasize, however, that these results only show limited
separations: they either consider restricted types of one-way functions, or restricted classes of black-
box reductions. Thus, even w.r.t. black-box reductions, the question of whether OWFs can be
based on the assumption that NP 6⊆ BPP, is wide open. In this work, our focus is on providing a
complexity-theoretic characterization of exactly what is required for basing OWFs on NP 6⊆ BPP:

Is there a simple complexity-theoretic characterization of what is required for basing OWFs
on the assumption that NP 6⊆ BPP?

We believe that having a crisp complexity-theoretic characterization will be useful both for obtaining
more meaningful separation results, and towards the goal of eventually getting a construction of
OWFs based on NP 6⊆ BPP.

Towards Characterizing the Possibility of Basing OWFs on NP 6⊆ BPP A first step towards
answering the above question is implied by a recent work by Liu and Pass [LP20]; they demonstrated
the first natural NP-language whose average-case hardness characterizes the existence of OWFs. In
more detail, they demonstrated that for any polynomial t(n) ≥ 1.1n, OWFs exist if and only the
t-bounded Kolmogorov complexity problem, MKtP, is mildly hard-on-average, where a language L is
said to be mildly hard-on-average if there exists some polynomial p(·) such that no PPT heuristic
H can decide L with probability 1 − 1/p(n) over random n-bit instances for infinitely many input
lengths n. (We provide more details on the definition of MKtP below.) MKpolyP is contained in NP,
but it is unknown whether this problem (which has been studied since the 1960s) is NP-complete.
Indeed, this is one of the long-standing open problems in algorithmic information-theory [Ko91]. A
simple corollary of the result from [LP20] (as far as we know, this has not been previously observed) is
that basing OWFs on NP 6⊆ BPP is equivalent to (1) proving that MKpolyP is NP-complete (perhaps
with a non-constructive reduction), and (2) providing a worst-case to average-case reduction for

1Or more precisely, whether OWFs can be based on the assumption that NP 6⊆ ioBPP since the definition of OWFs
requires “almost everywhere” hardness. For convenience, in the introduction we are ignoring this issue.

1



MKpolyP.2 To see why this is the case, note that if (1) and (2) are satisfied, then by the result of
[LP20], we have directly based OWFs on NP 6⊆ BPP. For the converse direction, note that if OWFs
can be based on NP 6⊆ BPP, then NP 6⊆ BPP implies the existence of OWF, which by [LP20] implies
that MKpolyP is average-case hard (and thus also worst-case hard); thus we have that (1) must hold.
To see that (2) also holds, note that since MKpolyP ∈ NP, it follows that MKpolyP 6⊆ BPP implies
that NP 6⊆ BPP, which in turn implies OWF (by assumption) which in turn by [LP20] implies that
MKpolyP is average-case hard, and thus (2) follows.

The above discussion, however, leaves open the question of whether a crisper characterization
can be obtained. In particular, if one can come up with a natural NP-complete language L whose
average-case hardness is equivalent to the existence of OWFs, then the question of whether OWFs
can be based on NP 6⊆ BPP would be equivalent to the question of whether there exists a worst-case
to average-case reduction for this particular problem. This thus begs the question whether there
exists some natural NP-complete language that characterizes the existence of OWFs:

Does there exist some “natural” NP-complete language L such that OWFs exist iff L is
hard-on-average?

This question was recently raised (but not solved) in a paper by Allender et al [ACM+21a] (and
without the above motivation). We note that “naturality” of the language L is key for this question
to make sense: It is easy to modify MKpolyP into a new “artificial” language L′ which is both
NP-complete, yet (mild) average-case hardness of L′ is equivalent to mild average-case hardness of
MKpolyP (and thus equivalent to the existence of OWFs).3 But such an artificial problem would have
no relevance to the central question that concerns us (i.e., providing a crisp characterization of when
OWF can be based on NP 6⊆ BPP).

There is a long history of work on trying to base OWFs on average-case hardness of NP-complete
problems, starting with the work of Merkle and Hellman [MH78]. While the original attempts
failed to produce secure schemes (see [Odl90] for a survey), more recent approaches pioneered by
Impaglizzo and Naor [IN89], Ajtai [Ajt96] and Ajtai and Dwork [AD97] produced not just OWFs
but also more advanced cryptographic primitives (such as collision-resistant hash functions and
public-key encryption) based on well-founded average-case hardness assumptions on the subset sum
problem (which is NP-complete). However, it is not known whether the existence of OWFs implies
average-case hardness of the subset sum problem (i.e., they only have a one-sided implication).

In this work, we identify the first natural NP-complete language L—time-bounded Conditional
Kolmogorov-complexity [ZL70, Lev73, Tra84, LM91]—such that mild average-case hardness of L
(with respect to the uniform distribution on instances) is equivalent to the existence of OWFs.
As a consequence, we get that basing OWFs on NP 6⊆ BPP is equivalent to providing a worst-
case to average case reduction for this particular problem, yielding a simple complexity-theoretic
characterization of exactly what it takes to base OWFs on NP 6⊆ BPP.

1.1 Our Results

Before describing our results in detail, let us first briefly recall the notion of Time-bounded Kol-
mogorov Complexity and the result of [LP20] that we will be relying on.

2We emphasize that we need a worst-case to 2-sided error average-case reduction. Hirahara’s elegant work [Hir18]
makes partial progress on this question by presenting a worst-case (approximate) to errorless average-case reduction;
errorless average-case hardness does not suffice for [LP20].

3Simply consider the language L′ of 2n-bit instances x||y where x, y ∈ {0, 1}n, and either (a) x = 0n and y ∈ SAT,
or (b) x 6= 0n and y ∈ MKpolyP. In other words, L′ is a combination of SAT and MKpolyP, so clearly this language
is NP-complete, but when considering uniform statements, we only hit SAT instances with negligible probability, and
thus this language behaves essentially just like MKpolyP on average.

2



Time-bounded Kolmogorov Complexity and OWFs What makes the string 121212121212121
21 less random than 60484850668340357492? The notion of Kolmogorov complexity (K-complexity)
[Sol64, Kol68b, Cha69] from the field of algorithmic information theory provides an elegant method
for measuring the amount of “randomness” in individual strings: The K-complexity of a string
is the length of the shortest program (to be run on some fixed universal Turing machine U) that
outputs the string x. The notion of t(·)-time-bounded Kolmogorov Complexity (Kt-complexity) is a
computationally-restricted version of K-complexity: Kt(x) is defined as the length of the shortest
program that outputs the string x within time t(|x|). As surveyed by Trakhtenbrot [Tra84], the
problem of efficiently determining the Kt-complexity for t(n) = poly(n) predates the theory of NP-
completeness and was studied in the Soviet Union since the 60s as a candidate for a problem that
requires “brute-force search”. The modern complexity-theoretic study of this problem goes back
to Sipser [Sip83], Ko [Ko86] and Hartmanis [Har83]. Let MKt(·)P denote the decisional t(n)-time
bounded Kolmogorov complexity problem; namely, the language of pairs (x, k) where |k| = dlog |x|e
and Kt(x) ≤ k.

As mentioned above, Liu and Pass [LP20] demonstrated that for every polynomial t(n) ≥ 1.1n,
mild average-case hardness of MKtP is equivalent to the existence of OWFs. But as mentioned, it is
not known whether MKtP is NP-complete (for any polynomial t). Towards getting a characterization
of OWFs based on average-case hardness of an NP-complete problem, we will consider a generalization
of MKtP based on conditional Kolmogorov complexity.

Conditional Time-bounded Kolmogorov Complexity The t(·)-time-bounded Conditional Kol-
mogorov Complexity [ZL70, Lev73, Tra84, LM91] of a string x conditioned on the string z—denoted
Kt(x | z)—is the length of the shortest program that, given the “auxiliary input” z, outputs the
string x within time t(|x|). More formally,

Kt(x | z) = min
Π∈{0,1}∗

{|Π| : U(Π(z), 1t(|x|)) = x},

where U is a universal Turing machine, and we let U(Π(z), 1t) denote the output of the program Π on
input z after t steps. Whereas the notion of a “program” typically is taken to be a Turing machine,
in this work we focus on the setting where a program is taken to be a RAM-machine—namely Π is
now allowed to be a RAM-machine that can make Random Access queries into the auxiliary string z.
Let McKt(·)P[ζ(·)] denote the decisional t(·)-time bounded ζ(·)-conditional Kolmogorov complexity
problem; namely, the language of triples (x, z, k) where |z| = ζ(|x|), |k| = dlog |x|e and Kt(x | z) ≤ k.
Whereas conditional (time-bounded) Kolmogorov complexity has been studied for decades (see e.g.,
[LM91]), it has also remained an open question to determine whether this problem is NP-complete.4

We observe that the result of [LP20] extends, with only relatively minor modifications in the
proof, also to conditional Kolmogorov complexity: We show that for every polynomial t(·) ≥ 1.1n,
and every polynomial ζ(·), mild average-case hardness of McKtP[ζ] is equivalent to the existence of
OWFs.

Theorem 1.1 (closely following [LP20]). For every polynomial t(n) ≥ 1.1n, every polynomial ζ(·),
mild average-case hardness of McKtP[ζ] is equivalent to the existence of OWFs.

So, if we could show that McKtP[ζ] is NP-complete for some polynomials t, ζ, we would be done.
Our main theorem does exactly this.

4We remark, however, that as far as we know, we are the first to consider this problem w.r.t. RAM programs
as opposed to Turing machines. In our view, this RAM version of the problem is as natural (if not more) than the
“standard” TM version.

3



Theorem 1.2 (Main Theorem). For every polynomial t(n) ≥ n2, there exists some polynomial ζ(·),
such that McKtP[ζ] is NP-complete (under randomized polynomial-time reductions).

Let us emphasize that the combination of Theorem 1.1 and Theorem 1.2, for instance, yields the
following crisp characterization of the “holygrail” of Cryptography:

There exists (concrete) polynomials t, ζ such that “Basing OWFs on NP 6⊆ BPP” is
equivalent to the existene of a worst-case to (mild) average-case reduction for McKtP[ζ].

In other words, the “holy grail” of Cryptography is equivalent to a basic question in algorithmic infor-
mation theory. Furthermore, let us point out that for the unconditional time-bounded Kolmogorov
complexity problem MKpolyP, some partial5 worst-case to average-case reductions are known [Hir18],
so this gives us hope that a full worst-case to average-case reduction may be possible also for McKtP.

As we shall discuss shortly, Theorem 1.2 is also interesting in its own right and has other direct
applications: we show how to shed new light on a long-standing open problem regarding symmetry
of information [ZL70] for the setting of time-bounded Kolmogorov complexity.

Let us emphasize that for the NP-completeness result to hold, it is imperative that our notion of
conditional Kolmogorov complexity views programs as RAM-machines (as opposed to Turing ma-
chines). We leave it as an intriguing open problem to determine whether the “standard” conditional
time-bounded Kolmogorov complexity (where interpreting a program as a Turing machine) is also
NP-complete.

We proceed to providing a proof overview of the main theorem (i.e. Theorem 1.2).

1.2 Proof Overview

We first note that it directly follows that for all polynomials t, ζ, McKtP[ζ] ∈ NP—the witness for an
instance (x, z, k) is simply a RAM program Π such that |Π| ≤ k and Π(z) generates x within t(|x|)
steps. We turn to discussing how to prove that there exist polynomials t, ζ, such that McKtP[ζ] is
NP-hard. On a high-level, our approach will start off by using the recent breakthrough approach by
Ilango [Ila19, Ila20] showing NP-hardness of an oracle-variant of the circuit minimization problem
(MCSP) [KC00]—that is, the problem of, given the truth table of a boolean function, determining
the size of the smallest circuit that computes the function—and next extend it to deal with the
conditional Kolmogorov complexity problem by appropriately embedding the “oracles” used in the
construction of [Ila19] in the auxiliary input.

In more detail, following [AHM+08, HOS18, Ila19, Ila20, ILO20], we will embed an (approximate)
Bounded Set Cover instance into an McKtP[ζ] instance; the approximate Bounded Set Cover problem
is known to be NP-complete [Tre01]. Recall that in the Bounded Set Cover problem, we are given a
collection of sets S1, S2, . . . Sr, each of which is a constant-size subset of the universe U = [n] and the
goal is to find a minimal set of indexes, s, such that ∪i∈sSi = [n] (i.e., finding the minimal collection
S of sets Si that cover [n]). We start off by generalizing an idea from [Ila19, Ila20, ILO20] and
replace the universe U = [n] with n random strings Ai ∈ {0, 1}m, where m(n) is some sufficiently
large polynomial (in the formal proof m(n) = n3). Roughly speaking, the rationale for doing this is
that a set cover, intuitively, should give a succinct (proportional to the size of the set cover) way to
generate the random string A = A1||A2|| . . . ||An if we have oracle access to the sets Si—we simply
need to specify the sets in the set cover and can then reconstruct the union of these sets. This
construction was used in [Ila19] to prove NP-hardness of the oracle-version of the MCSP problem—
the sets Si were simply placed into the oracle. ([Ila20] provides a more elaborate construction that
also shows NP-hardness of a conditional variant of the MCSP problem; we will, however, not rely on
that extension.)

5The reduction only shows so-called errorless, as opposed to 2-sided error, average-case hardness.

4



To convert the above set-cover instance into a conditional Kolmogorov complexity problem, our
new idea will be to place the description of the sets Si (each of which consists of some set of strings
Ai) at random locations in the auxiliary string z and to make sure z is very long (yet still only
of polynomial length), and consider the conditional Kolmogorov complexity problem of computing
Kt(A | z) where A = A1||A2|| . . . ||An. Conceptually, one can view this approach as a way to
obfuscate the oracle used in [Ila19] and placing the obfuscation in z. Intuitively, since we are placing
the descriptions of the sets Si at random locations in z, a time-bounded algorithm can only access
Si if it “knows” the random location where it has been put, and thus, intuitively, we can view z as
an information-theoretic obfuscation of gates that compute these descriptions.6

If there exists a set cover s of size `, Kt(A | z) should be no more than `O(log n) + O(1), by
considering the program that simply hardcodes the location in z of the descriptions of the sets Si for
i ∈ s. The harder part is showing that if Kt(A | z) ≤ `O(log n) then there exists a set-cover of size
O(`). Relying on the intuition that z acts as an obfuscation of the description of the sets {Si}, the
intuition for why this holds is that if z is sufficiently longer than t(|x|), and the description of the sets
are put into random positions of z, any program with running-time t(|x|) that reconstructs the string
A = A1||A2|| . . . ||An (which with overwhelming probability has high Kolmogorov complexity) must
“know” the location in the auxiliary string z of sets {Si}i∈s in some set cover s, in the sense that by
running this program, those positions can be “reconstructed”. In a bit more detail, by running this
program and looking at the memory access queries made by the program into z, we must be hitting
the locations where the sets have been put. But since these locations are random (by construction
of z), the program needs to basically “hard-code” them, or else we would be able to compress the
indexes of these locations, but these indexes have high Kolmogorov complexity as they were picked
at random, which is a contradiction.

The reader may note that, perhaps curiously, we are using an argument based on Kolmogorov
complexity to formalize the statement that Kt(A | z) ≤ `O(log n). In more detail, we are relying on a
Kolmogorov-complexity style compression argument to formalize that z acts as a good “obfuscation”
of the description of the sets {Si}. This proof technique bears similarities to the proof technique
pioneered by Gennero and Trevisan [GT00] in the context of proving that a random permutation is
one-way w.r.t. polynomial-size circuits.

Let us end by noting that the above proof outline oversimplifies and misses several crucial details
that make the actual proof quite a bit more complicated.

1.3 Applications to Polynomial-time Bounded Symmetry of Information

The celebrated symmetry of information theorem by Kolmogorov and Levin from 1967 [ZL70] states
that for all strings x, y ∈ {0, 1}∗:

K(xy) = K(y) +K(x | y)±O(log |xy|)

where xy denotes the concatenation of the strings x, y. The proof of this theorem, however, involves
a computationally expensive exhaustive search through all strings of lengths |x|, |y|. The question
of whether a polynomial-time bounded version of information symmetry holds, where K-complexity
is replaced by Kt-complexity for polynomials t, has remained an open problem. We refer to the
assertion that there exists some constant 0 < ε ≤ 1 such that for all sufficiently large polynomials t,
all x, y ∈ {0, 1}∗ (of polynomially-related length), it holds that

Ktε(xy) ≥ Kt(y) +Kt(x | y)−O(log |xy|)
6This intuition is somewhat misleading: since z is only of polynomial length, the “obfuscation” only works with

respect to a-priori time-bounded attackers (that can only explore a small fraction of z) and can only have inverse
polynomial security. But in our context, such a relaxed notion of security suffices.

5



Kt1/ε(xy) ≤ Kt(y) +Kt(x | y) +O(log |xy|)

as the polynomial-time symmetry of information assertion (polySOI). The question of whether a
polynomial-time symmetry of information assertion holds goes back to a work by Kolmogorov from
1968 [Kol68a]; as retold by Levin [Lev03]:

Kolmogorov suggested at the time [Kol68a] that this information symmetry theorem may
be a good test case to prove that for some tasks exhaustive search cannot be avoided (in
today’s terms, P 6= NP)

The first formal complexity-theoretic investigation of this question goes back to works by Longpré
and Mocas [LM91] and Longpré and Watanabe [LW92]. They consider a length-restricted version
of the polySOI where we additionally add the requirement that |x| = |y| and show that (1) the
length-restricted polySOI assertion holds if NP = P, and (2) the length-restricted polySOI assertion
is false if one-way functions exist. We here focus our attention on the above “length-unrestricted”
version of the polySOI assertion, where x and y can be of arbitrary polynomially-related lengths.
We demonstrate, as a corollary of the techniques behind the proof of Theorem 1.2, that the (length
unrestricted) polySOI assertion is unconditionally false.

Theorem 1.3. The (length-unrestricted) polynomial-time symmetry of information assertion is false.

Let us provide a brief overview of how this theorem is proven, and the instrumental role that
the proof of Theorem 1.2 plays in this proof. The proof, roughly speaking, proceeds in the following
steps:

• Step 1: Polynomial increase in running-time can only decrease Kt(x) by O(log |x|).
We first show that polySOI implies that if we polynomially increase the running-time bound,
then this cannot have a significant effect on Kt; more precisely, for large enough t, it holds
that for all constants c, Kt(x) cannot be more than O(log |x|) more than Ktc(x). Intuitively,
this follows from polySOI by letting y be a sufficiently long all “dummy” string, 0m. We note
that this step inherently relies on us considering a length unrestricted polySOI.

• Step 2: Showing that a “strong” polySOI assertion holds. We next observe that com-
bining Step 1 with polySOI yields a strong form of the polySOI assertion where ε = 1; i.e., it
holds that

Kt(xy) = Kt(y) +Kt(x | y)±O(log |xy|)

• Step 3: Polynomial increase in running-time can only decrease conditional Kt(x|z)
by O(log |xz|). We then combine the “strong” polySOI assertion from Step 2 with Step 1 to
show that an analog of Step 1 holds also with respect to conditional time-bounded Kolmogorov
complexity. More precisely, for large enough t, it holds that for all constants c, Kt(x | z) cannot
be more than O(log |xz|) larger than Ktc(x | z).

• Step 4: Contradicting the construction in Theorem 1.2. We finally observe that the
statement of Step 3 contradicts the construction in the proof of Theorem 1.2. In particular, in
the proof of Theorem 1.2, we showed strings x, z where the condition time-bounded Kolmogorov
complexity Kt(x | z) is large (roughly the size of the set-cover). However, this relied on t being
sufficiently small so that the program cannot read all of z. If t is large, so that the program can
read all of z, then Kt(x | z) is tiny (x can be trivially reconstructed from z). This contradicts
the statement of Step 3.

6



Let us emphasize that Theorem 1.3 is incomparable to the result of [LW92]: [LW92] consider
a weaker “length-restricted” polynomial-time symmetry of information assertion (where |x| = |y|),
whereas we are considering a “length-unrestricted” version. While [LW92] show that the length-
restricted polySOI indeed holds if NP = P, we show that the length-unrestricted version is un-
conditionally false. We do, however, note that the “standard” (non time-bounded) symmetry of
information theorem of [ZL70]) consider the length unrestricted case, in analogy with what we do.

Furthermore, for our result to hold (and in contrast to [LW92]), it is crucial that we consider
RAM-programs as the model of computation, as opposed to the (more standard in the context of
time-bounded Kolmogorov complexity) notion of TM-programs; nevertheless, in our eyes, considering
RAM programs is equally motivated (if not more) than TM programs.

1.4 Related Works

As mentioned above, there has been a recent sequence of surprising works proving NP-hardness
results for variants of the MCSP problem [AHM+08, HOS18, Ila19, Ila20, ILO20]; in particular, as
mentioned, Ilango [Ila20] proves that a conditional version of the MCSP problem is NP-hard. As
observed already in [Tra84], and further explored in [ABK+06], the MCSP problem is closely related
to the time-bounded Kolmogorov complexity problem—intuitively, the two problems capture the
same concept, but using a different model of computation—but a formal reduction between these
problems is not known so these results do not directly extend to the setting we consider. (However,
as mentioned above, the starting point for our approach is the result of [Ila19] showing NP-hardness
for an oracle version of the MCSP problem.)

A recent result by Hirahara [Hir20] directly addresses conditional time-bounded Kolmogorov
complexity and shows NP-hardness for a variant of this problem, McKpolyPSAT, where the program
has access to a SAT-oracle. (The McKpolyPSAT problem, however, is not known to be in NP, but is
in NPNP, so NP-completeness is not shown).

An intriguing recent paper by Allender et al [ACM+21a] presented a natural NP-complete problem
L—a sparse variant of the MCSP problem—such that average-case hardness of L was claimed to
imply the existence of OWFs; the authors also claimed a “weak” converse of this implication—that
the existence of OWFs implies a very weak, so-called “non-trivial”, notion of average-case hardness
of the language7; unfortunately, an error was found in the paper. Concurrently and independently
from the current work, the authors of [ACM+21a] show how to repair the issues in their proof
and present a different NP-complete language whose average-case hardness implies the existence of
OWFs, and for which the same weak converse holds.8 While their original posting [ACM+21a]—
which inspired the current work—attempted to base OWFs on the average-case hardness of a sparse
version of the MCSP problem, their new paper [ACM+21b] instead bases OWFs on average-case
hardness of a conditional Kolmogorov complexity style problem, just as in the current work. Their
conditional Kolmogorov complexity problem differs from ours in several aspects: (1) whereas we
consider conditional Kolmogorov complexity w.r.t. RAM programs, [ACM+21b] considers it w.r.t.
Turing machines with “oracle-access” to the auxiliary input z; and (2) instead of considering a
time-bounded version of conditional Kolmogorov complexity (as we do), [ACM+21b] instead charge
for running-time in their notion of Kolmogorov complexity, following the KT notion of [ABK+06].
Due to these differences, NP-completeness of their problem follows essentially directly from the
NP-completeness results of [Ila19] (whereas we have to work a lot harder, as explained above).
However, due to these differences, they only manage to show a one-directional implication between

7Roughly speaking, that average-case hardness holds for an inverse exponential, as opposed to inverse polynomial,
fraction of inputs.

8The papers appear on ECCC/Eprint within one day of each other.

7



average-case hardness of their problem and OWFs (and only a weak converse in the other direction),
whereas we establish an equivalence between average-case hardness of McKtP[ζ] (for any polynomials
t(n) > 1.1n, ζ(·)) and OWFs.

Subsequent to the initial posting [LP21a] of this paper, [ACM+21c] have shown, based on
the results in [RS21] that (mild) average-case hardness of the NP-complete problem considered in
[ACM+21b] is equivalent to the existence of OWFs computable in log space; their work thus provides
an elegant characterization of what it means to base OWFs computable in logspace on NP 6⊆ BPP.
We emphasize that these results were obtained subsequently to initial posting of the current paper
(see [ACM+21b] which is concurrent to the initial posting of this paper [LP21a].)

After the initial posting of this paper, we were informed by Rahul Ilango [Ila21] that he had in-
dependently also shown NP-completeness of some conditional time-bounded Kolmogorov complexity
problem, but without writing down the results. Indeed, as far as we can tell, our paper is the first
to present any type of NP-completeness results for Kolmogorov complexity problems.

Resource bounded notions of conditional Kolmogorov complexity are useful also in other (related)
contexts. In a companion paper to the current work [LP21b], we rely on a notion of space-bounded
conditional Kolmogorov complexity (defined similarly to the time-bounded notion of conditional
Kolmogorov complexity used in the current paper) to characterize OWFs in NC0; alternative char-
acterizations without relying on condition Kolmogorov complexity were provided in [RS21].

In [LP21b], we also identify a problem whose (infinitely-often) average-case hardness w.r.t. error-
less heuristics is equivalent to EXP 6= BPP (i.e., the problem is EXP-average-case complete w.r.t.
errorless heuristics), yet (two-sided error) average-case hardness of this problem is equivalent to
the existence of OWFs; related results were also obtained in [RS21]. Taken together, the current
work and [LP21b, RS21], demonstrate that the existence of OWFs can be characterized through the
average-case hardness of both NP-complete (this work) and EXP-complete ([LP21b, RS21]) languages.

2 Preliminaries

We let [n] denote the set {1, 2, . . . , n} for any integer n ∈ N. For any two strings x, y, let x||y denote
the concatenation of x and y; whenever it is clear from context, we sometimes also use xy to denote
the concatenation of x and y. In this work, we sometimes consider strings that contain a special
symbol ⊥ (besides 0 and 1). We will use the following standard encoding scheme—which we refer
to as simple the standard encoding scheme enc⊥) to transform a string that may contain ⊥ into a
binary string: enc⊥(x), of a string x ∈ {0, 1,⊥}∗ is a 2|x|-bit binary string where we replace each bit
in x by 00 for 0, 01 for 1, and 11 for ⊥.

2.1 Set Cover

Let n be an integer and S1, S2, . . . , S`, T be sets ⊆ [n]. We say that the sets S1, S2, . . . , S` cover T
if T ⊆ S1 ∪ S2 ∪ . . . ∪ S`. Let S be a collection of sets. We define cover(T,S) to be the minimum
number of sets in S necessary to cover T .

We recall the γ-Bounded Set Cover Problem:

• Input: (1n, 1`,S) where n, ` are integers ∈ N and S = {S1, S2, . . . , Sr} is a collection of subsets
⊆ [n]. It is guaranteed that all the sets in S covers [n] together and for all i ∈ [r], |Si| ≤ γ.

• Decide: Is cover([n],S) ≤ `.

We also consider the approximate version of the γ-Bounded Set Cover problem. The α-approximate
γ-Bounded Set Cover Problem is a promise problem (Πyes,Πno) where Πyes contains (1n, 1`,S) such
that cover([n],S) ≤ ` and Πno consists of (1n, 1`,S) such that cover([n],S) > α · `.

8



Trevisan [Tre01] showed that approximating the γ-Bounded Set Cover Problem within a constant
factor is NP-hard:

Theorem 2.1 ([Tre01]). For every constant α ≥ 1, there exists a constant γ ∈ N such that the α-
approximate γ-Bounded Set Cover Problem is NP-hard. More concretely, for any language L ∈ NP,
there exists a polynomial-time algorithm R such that on input x ∈ L, R(x) outputs an instance in
Πyes; on input x 6∈ L, R(x) outputs an instance in Πno, where (Πyes,Πno) denotes the α-approximate
γ-Bounded Set Cover Problem.

2.2 The RAM Model

A RAM program Π = (M,y) consists of a CPU “next-step” Turing machine M , and some initial
input y ∈ {0, 1}∗. Let state = 0 be an initial state. The execution of this RAM program Π on input
z ∈ {0, 1}∗ (which may be empty) proceeds as follows.

• At initialization, the memory is set to y||⊥||z, and the “read bit” bread is set to ⊥. (For
simplicity, we assume that each memory position contains a symbol ∈ {0, 1,⊥}.9 We assume
that the memory is of infinite length and the rest of the positions in the memory are filled with
⊥.)

• At each CPU step, M receives as input state ∈ {0, 1}∗, the most recently read bit bread, and
outputs a new state state′ ∈ {0, 1}∗, a read position iread, a write position iwrite and some bit
bwrite (to be written to position iwrite).10

• The execution of this step replaces state with state′, sets bread to the content of memory position
iread, and replaces the content of memory position iwrite by bwrite.

• When state = ε (i.e., the empty string), the computation ends and the output of the of the
computation is defined as the content of the memory tape up to the symbol ⊥.11

• The running time of Π is defined to be the sum of the running time of M in all CPU steps.

Note that any polynomial-time Turing machine can be simulated by a polynomial-time RAM program
by simply copying the content of the memory into state, next letting M run the original Turing
machine using state as its tape, and finally copying the content of state back into the memory.

2.3 Time-bounded Conditional Kolmogorov Complexity

We introduce the notion of time-bounded conditional Kolmogorov complexity with respect to RAM
programs. Roughly speaking, the t-time-bounded Kolmogorov complexity, Kt(x | z), of a string
x ∈ {0, 1}∗ conditioned on a string z ∈ {0, 1}∗ is the length of the shortest RAM program Π = (M,y)
such that Π(z) outputs x in t(|x|) steps.

Let U be some fixed Universal Turing machine that can emulate any RAM program Π with
polynomial overhead. Let U(Π(z), 1t) denote the output of Π(z) when emulated on U for t steps.
We now define the notion of t-time-bounded conditional Kolmogorov complexity.

9When we implement this, we always use the standard encoding scheme, enc⊥. We also note that the string y and z
can never contain the symbol ⊥ (since they exclusively consist of 0s and 1s). When we load y and z into the memory,
instead of storing y and z directly, we store the standard encoding of y and z (where 0 becomes 00 and 1 becomes 01).

10Formally, the inputs and outputs of M are separated by the ⊥ symbol so that state can be of variable length.
11In a real execution, the content of the memory is encoded by the standard encoding scheme. The output of the

computation is then defined by the decoded content of the memory.

9



Definition 2.2. Let t be a polynomial. For all x ∈ {0, 1}∗ and z ∈ {0, 1}∗, define

Kt(x | z) = min
Π∈{0,1}∗

{|Π| : U(Π(z), 1t(|x|)) = x}

where |Π| is referred to as the description length of Π. When there is no time bound, we define

K(x | z) = min
Π∈{0,1}∗

{|Π| : U(Π(z), 1t
′
) = x for some finite t′}

We also consider the decisional variant of the minimum t-time-bounded conditional Kolmogorov
complexity problem. Let t, ζ be two polynomials, and let McKtP[ζ] denote the language of triples
(x, z, k), having the property that Kt(x | z) ≤ k, where z ∈ {0, 1}ζ(|x|) and k ∈ {0, 1}dlogne.

We note that for any string z ∈ {0, 1}∗, x ∈ {0, 1}∗, for any polynomial t(·), Kt(x | z), is always
upper bounded by |x|+O(1).

Fact 2.1. There exists a constant c ∈ N such that for all polynomial t(·), for all string z ∈ {0, 1}∗, x ∈
{0, 1}∗, Kt(x | z) ≤ |x|+ c.

Proof: Consider the RAM program Π = (M,x) where M is a Turing machine that directly sets
state = ε. Note that in the execution of Π, x will be put into the memory and Π will halt immediately.
Thus Π will output the string x. Note that M is a constant-size machine, so the description length
of Π is at most |x|+ c for some constant c.

We finally remark that for any polynomials t(·), ζ(·), McKtP[ζ] ∈ NP.

Claim 1. For all polynomials t(·), ζ(·), McKtP[ζ] ∈ NP.

Proof: On input an instance (x, z, k) ∈ McKtP[ζ], and a witness Π, checking if |Π| ≤ k, |z| = ζ(|x|)
and U(Π(z), 1t(|x|)) = x can be done in polynomial time.

2.4 One-way Functions

We recall the definition of one-way functions [DH76]. Roughly speaking, a function f is one-way if
it is polynomial-time computable, but hard to invert for PPT attackers.

Definition 2.3. Let f : {0, 1}∗ → {0, 1}∗ be a polynomial-time computable function. f is said to be
a one-way function (OWF) if for every PPT algorithm A, there exists a negligible function µ such
that for all n ∈ N,

Pr[x← {0, 1}n; y = f(x) : A(1n, y) ∈ f−1(f(x))] ≤ µ(n)

We may also consider a weaker notion of a weak one-way function [Yao82], where we only require
all PPT attackers to fail with probability noticeably bounded away from 1:

Definition 2.4. Let f : {0, 1}∗ → {0, 1}∗ be a polynomial-time computable function. f is said to be
a α-weak one-way function (α-weak OWF) if for every PPT algorithm A, for all sufficiently large
n ∈ N ,

Pr[x← {0, 1}n; y = f(x) : A(1n, y) ∈ f−1(f(x))] < 1− α(n)

We say that f is simply a weak one-way function (weak OWF) if there exists some polynomial q > 0
such that f is a 1

q(·) -weak OWF.

Yao’s hardness amplification theorem [Yao82] shows that any weak OWF can be turned into a
(strong) OWF.

Theorem 2.5 ([Yao82]). Assume there exists a weak one-way function. Then there exists a one-way
function.

10



2.5 Average-case Hard Languages

We turn to defining what it means for a language to be average-case hard (for PPT algorithms). We
will be considering languages that are only defined on some input lengths (such as McKtP[ζ]). We
say that a language L is defined over inputs lengths s(·) if L ⊆ ∪n∈N{0, 1}s(n). For concreteness, note
that McKtP[ζ] is defined on input lengths s(n) = n+ ζ(n) + dlog ne.

We now turn to defining average-case hardness.

Definition 2.6. We say that a language L defined over inputs lengths s(·) is α(·) hard-on-average
(α-HoA) if for all PPT heuristic H, for all sufficiently large n ∈ N,

Pr[x← {0, 1}s(n) : H(x) = L(x)] < 1− α(n)

In other words, there does not exist a PPT “heuristic” H that decides L with probability 1−α(n)
on infinitely many input lengths n ∈ N over which L is defined.

We refer to a language L as being mildly HoA if there exists a polynomial p(·) > 0 such that L
is 1

p(·) -HoA.

3 NP-Hardness of McKtP[ζ]

In this section, we prove our main theorem: We show that there exists a reduction from the approx-
imate γ-Bounded Set Cover Problem to McKtP[ζ] when t, ζ are sufficiently large.

Theorem 3.1. For all polynomial t(n) ≥ n2, there exists a polynomial ζ(n) such that McKtP[ζ] is
NP-hard under many-one randomized polynomial-time reductions.

Proof: The theorem follows from Proposition 3.1 and Proposition 3.2 (stated and proved in Sec-
tion 3.2), and Theorem 2.1.

In fact, we note that the reduction only has one-sided errors:

Theorem 3.2. For all polynomial t(n) ≥ n2, if there exists a polynomial ζ(n) such that McKtP[ζ] ∈
coRP, then NP ⊆ coRP.

Proof: By Proposition 3.1, our reduction succeeds with probability 1 on YES instances. By
Proposition 3.2, our reduction succeeds with high probability (≥ 1

2) on NO instances. Finally, the
corollary follows from Theorem 2.1.

3.1 A Reduction from the γ-Bounded Set Cover Problem to McKtP

Let γ be a constant, let t(n) ≥ n2 be a polynomial, and consider ζ(n) = (t(n))4n2γ . We will show
that there exists a randomized reduction from the γ-Bounded Set Cover Problem to McKtP[ζ].

Given an instance (1n, 1`,S) where S = {S1, S2, . . . , Sr} of the γ-Bounded Set Cover Problem,
we proceed as follows:

• Let m = n3; for each i ∈ [n], sample a random string Ai ∈ {0, 1}m, and consider the length-
(n×m) concatenation A = A1||A2|| . . . ||An of the sampled strings. Think of Ai as a randomized
encoding of the element i in the Set Cover problem. See Figure 1 for an illustration of these
strings.

11



101...0 001...1 110...1 ... 010...0

A₁ A₂ A₃ Aₙ

A:

000...0 A₂ 000...0 ... AₙW₁:

A₁ 000...0 A₃ ... AₙW₂:

..
.

000...0 000...0 A₃ ... 000...0Wᵣ:

0...0z: ... 0...0 W₂ ... 0...0 W₁ ... 0...0 Wᵣ ... 0...0 0...0

k₂location: k₁ kᵣ

Figure 1: An illustrative example for the string A

101...0 001...1 110...1 ... 010...0

A₁ A₂ A₃ Aₙ

A:

000...0 A₂ 000...0 ... AₙW₁:

A₁ 000...0 A₃ ... AₙW₂:

..
.

000...0 000...0 A₃ ... 000...0Wᵣ:

0...0z: ... 0...0 W₂ ... 0...0 W₁ ... 0...0 Wᵣ ... 0...0 0...0

k₂location: k₁ kᵣ

S₁=(2,...,n)

S₂=(1,3,...,n)

Sᵣ=(3,...)

Figure 2: An illustrative example for the gadget strings Wi. Note that if we have a Set Cover
(i1, i2, . . . , i`), then the bitwise OR of the strings Wi1 , Wi1 , . . .Wi` equals A.

• For each i ∈ [r], we construct a “gadget” string Wi ∈ ({0, 1}m)n (for set Si). We partition Wi

into n blocks Wi,1,Wi,2, . . . ,Wi,n where each block is of size m. We let Wi,j = Aj if j ∈ Si, and
otherwise Wi,j = 0m. In other words, Wi reveals the strings Aj for all j ∈ Si; think of Wi as a
randomized encoding of the set Si. See Figure 2 for an illustration of there strings.

• Let λ = 4 log r + 4 log t(nm). For each i ∈ [r], we sample a “key” ki ∈ {0, 1}λ for Wi. For
simplicity, we assume that the sampled keys are distinct with each other. (If this is not the
case, the reduction just aborts; since this happens only with negligible probability we may
ignore this event in the analysis.)

• We are finally ready to describe the “auxiliary input” z. The idea is to hide the gadgets
{Wi} in z at random locations specified by the keys so as to ensure that the only way for
a t-time bounded program to recover Wi is to essentially hard-code the key ki as part of its
description. In more detail, we consider a string z of length 2λ × n ×m; partition z into 2λ

blocks z0λ , z0λ−11, . . . , z1λ−10, z1λ where for all p ∈ {0, 1}λ, |zp| = n×m. For all p ∈ {0, 1}2λ , let
zp = Wi if p = ki for some i ∈ [r], and otherwise, let zp = 0n×m. See Figure 3 for an illustration
of these strings.

101...0 001...1 110...1 ... 010...0

A₁ A₂ A₃ Aₙ

A:

000...0 A₂ 000...0 ... AₙW₁:

A₁ 000...0 A₃ ... AₙW₂:

..
.

000...0 000...0 A₃ ... 000...0Wᵣ:

0...0z: ... 0...0 W₂ ... 0...0 W₁ ... 0...0 Wᵣ ... 0...0 0...0

k₂location: k₁ kᵣ

Figure 3: An illustrative example of the “auxiliary” input z

• Finally, the reduction will output YES if Kt(A | z) ≤ 2λ`. Note that the length of z is upper
bounded by ζ(|A|), and thus this is a syntactically valid reduction to an McKtP[ζ] instance.

We turn to analyzing the success probability of the reduction.

12



3.2 Analyzing the Reduction

We will prove that the above reduction gives us a 4-approximation of the γ-Bounded Set Cover
Problem. We first show that if [n] can be covered by a small number (≤ `) of sets, the time-
bounded Kolmogorov complexity of A conditioned on the string z will be small (≤ 2λ`): the program
computing A simply needs to hard-code the keys ki corresponding to the ` sets in the set cover; it
can look into z at the positions specified by the keys and output the bitwise OR of the content of
those positions.

Proposition 3.1. If cover([n],S) ≤ ` then Kt(A | z) ≤ Kt′(A | z) ≤ 2λ` where t′(n) = n2.

Proof: Let Si1 , Si2 , . . . , Si` be the ` sets in S that cover [n]. (Since the sets are γ-Bounded, it
follows that ` ≥ n/γ.) Let Π be a RAM program with n,m, λ and the keys ki1 , . . . , ki` hardwired
in it. For each j ∈ [`], Π first reads W ′ij = zkij from the kij -th block of the string z (where

|zkij | = n×m). (Recall that z is partitioned into 2λ blocks and each block is of size n×m.) Π then

obtains W ′i1 , . . . ,W
′
i`

and Π simply outputs

W ′i1 ∨W
′
i2 ∨ . . . ∨W

′
i`

where ∨ denotes the bitwise OR for binary strings.
We first show that Π indeed outputs the string A. Note that by the construction of string z, it

holds that
(W ′i1 , . . . ,W

′
i`

) = (zki1 , . . . , zki` ) = (Wi1 , . . . ,Wi`).

Recall that in the construction of the gadget string Wij (for each j ∈ [`]), Wij is partitioned into n
blocks Wij ,1, . . . ,Wij ,n. And for each block b ∈ [n], Wij ,b = Ab if b ∈ Sij , and otherwise Wij ,b = 0m.
Since the sets Si1 , . . . , Si` cover [n], for all b ∈ [n], there exists an index j such that the b-th block of
the gadget string Wij matches Ab. Thus, Wi1 ∨Wi2 ∨ . . . ∨Wi` = A.

We then show that Π can be described within 2λ` bits. Recall that Π contains the values n,m, λ
(which takes O(log n) bits to describe), the keys ki1 , . . . , ki` (which takes λ` bits), and the code of
Π (which takes O(1) bits). We will provide a more fine-grained analysis in the Appendix A to show
that the code of Π is of constant-bit length in the RAM model. Thus, Π can be represented using
λ`+O(log n) ≤ 2λ` bits.

Finally, note that Π runs in time O(`nmpoly log n) ≤ (nm)2 = t′(|A|) ≤ t(|A|) (since in each CPU
step, the CPU next-step machine takes O(poly log n) time). (We refer the reader to the Appendix A
for a more detailed running time analysis.) Thus, we conclude that Kt′(A | z) ≤ Kt(A | z) ≤ 2λ`.

The key part of the analysis is showing that if Kt(A | z) ≤ 2λ` then cover([n],S) ≤ 4`:

Proposition 3.2. With probability at least 1− 2/n over the random choice of k1, k2, . . . , kr (which
determines z) and A, it holds that if Kt(A | z) ≤ 2λ` then cover([n],S) ≤ 4`.

The proof of Proposition 3.2 is provided in Section 3.3. Proposition 3.1 together with Proposition
3.2 concludes that our reduction achieves a 4-approximation.

3.3 Proof of Proposition 3.2

Let Π be a RAM program such that |Π| ≤ 2λ` and Π(z) prints A in ≤ t = t(|A|) CPU steps (where
t is the running time bound associated with the problem McKtP[ζ]). The existence of such Π is
implied by the assumption that Kt(A | z) ≤ 2λ`. We will now show how to use Π, z to extract out

13



a Set Cover of size 4`. Towards this, recall that when executing Π(z), in each CPU step, Π(z) will
read one bit from the memory. Let

q1, q2, . . . , qt

be the memory positions that Π(z) reads in the execution of Π(z) (such that in CPU step i, Π(z)
reads the content of memory position qi). Note that the string z will be stored in the memory of
Π(z), and we are interested in the memory positions where the string z is stored. So, we let d be
the memory position such that z is stored from position d to position d+ |z| − 1. In addition, most
of the bits in z are just zeros and zk1 , zk2 , . . . , zkr are the only informative blocks. (Recall that z is
partitioned into 2λ blocks of size n×m.) Thus, let

pi = b(qi − d)/(n×m)c

be the index of the block in z from which Π(z) reads one bit in CPU step i. When pi matches some
key kj , zpi = zkj = Wj . When pi does not match any of the keys, zpi = 0n×m.12

We say that Π(z) makes a useful access to the string z in CPU step i if there exists j ∈ [r] such
that pi = kj and for all i′ < i, pi 6= pi′ . In other words, Π(z) makes a useful access when it first reads
some bit in the block zkj for some j ∈ [r]. We say that Π(z) hits some block zp if in some CPU step
i, Π(z) reads one bit from zp.

Bounding the number of useful accesses We first present an upper-bound on the number of
useful accesses. The following central claim shows that if the number of useful accesses is large, then
the Kolmogorov complexity of Keys must be small.

Claim 2. Let Keys = k1||k2|| . . . ||kr be the concatenation of k1, k2, . . . , kr. If Π(z) makes α (or
more) useful accesses to the string z, then

K(Keys | A,S) ≤ |Π|+ (r − α)λ+ α(log t+ log r) +O(log n)

We defer the proof of Claim 2 to Section 3.4
We observe that since Keys are picked at random, their (conditional) Kolmogorov complexity is

high.

Claim 3. For all A ∈ {0, 1}n×m, with probability 1− 1/n (over the random choice of Keys), it holds
that

K(Keys | A,S) ≥ |Keys| − log n = rλ− log n.

Proof: Note that the total number of RAM programs with description length < rλ − log n is at
most 2rλ−logn ≤ 2rλ

n , while the total number of the choices of Keys is 2rλ); thus the claim follows.

By combining Claim 2 and Claim 3 we get the following bound on the number of useful accesses.

Corollary 3.3. With probability 1− 1/n over the random choice of Keys, if |Π| ≤ 2λ`, it holds that
Π(z) makes at most 4` useful accesses

12Here we discuss the string z constructed by the reduction, instead of the one stored in the memory. (So Π can not
manipulate values in z.) Thus, when pi is out of the range (e.g., pi < 0), it still holds that zpi = 0n×m.

14



Proof: Assume not. Then by Claim 2,

K(Keys | A,S) ≤ |Π|+ (r − 4`)λ+ 4`(log t+ log r) +O(log n)

≤ 2λ`+ rλ− 4λ`+ 4`(log t+ log r) +O(log n)

≤ rλ− (2λ`− 4`(log t+ log r)−O(log n))

≤ rλ− (2 · 4(log t+ log r) · `− 4`(log t+ log r)−O(log n))

≤ rλ− (
n

γ
−O(log n))

< rλ− log n

which contradicts Claim 3.

Extracting a small Set Cover We now turn to showing that we can extract a Set Cover from
Π, z which is bounded in size by the number of useful accesses. We first show that if Π(z) manages
to output the string A, yet does not make useful accesses such that the union of all the blocks that
are hit by Π(z) equal A, then the Kolmogorov complexity of A must be small.

Claim 4. Assume that

• Π(z) makes α useful accesses;

• Π(z) outputs the string A.

• zp1 ∨ zp2 ∨ . . . ∨ zpt 6= A; 13

Then,
K(A | S) ≤ |Π|+ (n− 1)m+ α(log t+ log r) +O(log n)

We defer the proof of Claim 4 to Section 3.4.
We observe that since A is a random string, its (conditional) Kolmogorov complexity must be

high.

Claim 5. With probability 1− 1/n (over the random choice of A), it holds that

K(A | S) ≥ |A| − log n ≥ nm− log n.

Proof: Note that the total number of RAM programs with description length < nm − log n is at
most 2nm−logn ≤ 2nm

n (while the total number of the choices of A is 2nm); thus the claim follows.

Combining Claim 4 and Claim 5, we conclude that the union of all the blocks hit by Π(z) must
equal A (provided that Π(z) prints the string A and makes at most 4` useful accesses).

Corollary 3.4. With probability 1− 1/n over the random choice of A, if |Π| ≤ 2λ`, Π(z) = A, and
Π(z) makes at most 4` useful accesses, it holds that zp1 ∨ zp2 ∨ . . . ∨ zpt = A.

Proof: Assume not. Then by Claim 4,

K(A | S) ≤ |Π|+ (n− 1)m+ 4`(log t+ log r) +O(log n)

≤ 2λ`+ (n− 1)m+ 4`(log t+ log r) +O(log n)

= nm− (m− (2λ`+ 4`(log t+ log r) +O(log n)))

< nm− log n (since m = n3, λ ≤ n, ` ≤ n)

13When pi < 0 or pi ≥ 2λ, we assume that zpi is an all-zero string and zpi = 0n×m.

15



which contradicts to Claim 5.

We finally show that if the union of all the blocks hit by Π(z) matches A, then we can extract
out a Set Cover whose size is bounded by the number of useful accesses Π(z) made.

Claim 6. If Π(z) makes at most 4` useful accesses and zp1∨zp2∨. . .∨zpt = A, then cover([n],S) ≤ 4`.

Proof: Let α be the number of useful accesses made by Π(z). Let

i1, i2, . . . , iα

be the CPU steps when Π(z) makes a useful access; that is, i1, i2, . . . , iα is a sequence of CPU step
indices such that for each l ∈ [α], Π(z) will make a useful access in CPU step il. (Recall that except
for zk1 , . . . , zkr , the blocks in the string z are all-zero strings.) Recall that Π(z) makes a useful access
when it first reads some bit in the block zkj for some j ∈ [r].) Thus, by the definition of useful access,
it follows that

zpi1 ∨ zpi2 ∨ . . . ∨ zpiα = zp1 ∨ zp2 ∨ . . . ∨ zpt = A

Since Π(z) makes a useful access in CPU step il, pil must equal some key. We let j1, j2, . . . , jα ∈ [r]
be a sequence of indices of the keys such that

(pi1 , pi2 , . . . , piα) = (kj1 , kj2 , . . . , kjα)

Note that (by the construction of the string z)

(Wj1 ,Wj2 , . . . ,Wjα) = (zpi1 , zpi2 , . . . , zpiα )

Thus, it follows that

Wj1 ∨Wj2 ∨ . . . ∨Wjα = zpi1 ∨ zpi2 ∨ . . . ∨ zpiα = A

Finally, we argue that Sj1 , Sj2 , . . . , Sjα cover [n], which concludes the proof (since α ≤ 4`). We
recall that for each l ∈ [α], Wjl is the gadget string for Sjl . Furthermore, Wjl is partitioned into n
blocks, Wjl,1,Wjl,2, . . . ,Wjl,n. For each block b ∈ [n], Wjl,b = Ab if b ∈ Sjl , and otherwise Wjl,b = 0m.
Since Wj1 ∨Wj2 ∨ . . . ∨Wjα = A, it follows that for all blocks b ∈ [n],

Wj1,b ∨Wj2,b ∨ . . . ∨Wjα,b = Ab.

Thus, for all b ∈ [n], there must exist l ∈ [α] such that b ∈ Sjl . We conclude that the sets
Sj1 , Sj2 , . . . , Sjα indeed cover [n].

We can now conclude the proof of Proposition 3.2:
Proof: [of Proposition 3.2] By Corollary 3.3, with probability 1−1/n, Π(z) makes at most 4` useful
accesses. By Corollary 3.4, with probability 1− 1/n, it holds that zp1 ∨ zp2 ∨ . . . ∨ zpt = A. Finally
by Claim 6, it holds that cover([n],S) ≤ 4`, which happens with probability at least 1 − 2/n (by a
union bound).

3.4 Proof of Claim 2 and Claim 4

In both Claim 2 and Claim 4, the goal is to compress some strings (either Keys or A) provided that
Π(z) prints A. Towards doing this, we need be able to find a short representation of the information
needed to perform the execution of Π(z). Towards this, it will be helpful to track when Π(z) makes
a useful access. Furthermore, note that every useful access corresponds to some key kj such that zkj
stores the gadgets Wj of the set Sj . For each such useful access, we will also track this “key index”

16



j. As we shall see, given Π, A and S, as well as the sequence of CPU steps and key indexes (of useful
accesses), the whole execution of Π(z) can be emulated without having access to z. In fact, as we
shall formalize now, we actually do not even need the full content of A and S, but rather just the
gadgets Wj corresponding to the sets hit by the useful accesses.

To formalize this, let t = t(|A|) be the maximum number of CPU steps that Π(z) can run, and
let α be some integer bounded by the number of useful accesses made by Π(z). We refer a pair
of sequences of CPU steps and key indexes ω = ((i1, i2, . . . , iα), (j1, j2, . . . , jα)) ∈ [t]α × [r]α as a
configuration. We say that Π(z) matches ω if the first time Π(z) makes a useful access is in CPU
step i1 and Π(z) reads one bit from the block zkj1 (and recall that zkj1 = Wj1), and the second time
Π(z) makes a useful access is in CPU step i2 and Π(z) reads one bit from the block zkj2 , and so on.

Lemma 3.3. Let α ∈ N, and ω = ((i1, . . . , iα), (j1, . . . , jα)) be a configuration in [t]α × [r]α. If Π(z)
matches ω then one can emulate Π(z) for iα CPU steps using the code of Π, the configuration ω,
and Wj1 ,Wj2 , . . . ,Wjα (without having access to z).

Proof: We now describe how to emulate the execution of Π(z) for iα steps using the code of Π, the
configuration ω, and Wj1 ,Wj2 , . . . ,Wjα . Recall that d is the memory position where z starts at; that
is, z is stored in memory positions d to d+ |z| − 1.

Given the code of Π, we start to emulate Π(z) with the content of memory positions d, d +
1, . . . , d + |z| − 1 (which are supposed to store z) set to 0. In the simulation, we keep track of
all memory positions that Π(z) has written to. In each CPU step i, if i matches some value in
{i1, i2, . . . , iα} (and suppose i = il), we proceed as follows:

• Let qi be the memory position which Π will read from in CPU step i and proceed as follows.

• Let pi = b(qi − d)/(n ×m)c. Put the string Wjl ∈ {0, 1}n×m into the memory from position
d + pi × nm to position d + pi × nm + nm − 1, with the following exception: If Π has ever
previously written into a memory between position d+ pi× nm and d+ pi× nm+ nm− 1, we
keep those bits unchanged.

• Finally, let Π will read the bit from the memory (just as if the string z had been there), and
we continue to emulate the execution of Π(z) in the rest of CPU step i.

If i does not appear in {i1, i2, . . . , iα}, we simply emulate the execution honestly. When i = iα, we
stop to emulate Π(z).

We argue, by induction, that the above procedure perfectly emulates the execution of Π(z) in the
first iα CPU steps. For the base case, we consider CPU step i = 0, in which Π(z) has not started
yet, so the statement is trivially true. For any i ≤ iα, we now assume that in all the steps ≤ i − 1,
our simulation perfectly emulates Π(z), and we will prove that also in CPU step i, the simulation
does so as well. First note that if, in CPU step i, Π attempts to read from a memory position qi
that has (1) previously been written or read from, (2) the memory position is not within the range
[d, d+ |z| − 1], or (3) the memory access to qi is not a useful access, then the induction step directly
follows from the induction hypothesis and the fact that the step is performed in exactly the same
way in the simulation as in the real execution. We thus only need to consider the case when the
memory access to qi is a useful access. But whenever this happens, by the induction hypothesis, the
simulation will produce exactly the same content in the block of z where qi is contained, as in the
real execution of Π(z). It thus follows that also this step is perfectly emulated.

Thus, we conclude that Π(z) can be emulated for iα steps using the code of Π, the configuration
ω, and Wj1 ,Wj2 , . . . ,Wjα .

We are now ready to prove Claim 2, which we restate for the convenience of the reader.

17



Claim 7 (Claim 2, restated). Let Keys = k1||k2|| . . . ||kr be the concatenation of k1, k2, . . . , kr. If
Π(z) makes α (or more) useful accesses to the string z, then

K(Keys | A,S) ≤ |Π|+ (r − α)λ+ α(log t+ log r) +O(log n)

Proof: If Π(z) makes at least α useful accesses, Π(z) must match some configuration

ω = ((i1, i2, . . . , iα), (j1, j2, . . . , jα))

where ω ∈ [t]α × [r]α. We let {j′1, j′2, . . . , j′r−α} = [r] − {j1, j2, . . . , jα} be the set of key indices that
do not appear in ω.

We consider the following program Π′ that prints the string Keys = k1||k2|| . . . ||kr with the
string A and the collection of sets S as auxiliary information. Π′ has the values n, m, λ, α, t, r
hardwired in it, and the code of Π′ also includes the configuration ω, the code of Π, and the r − α
keys kj′1 , kj′2 , . . . , kj′r−α . Π′ first computes Wj1 ,Wj2 , . . . ,Wjα from A and S. Π′ then emulates the

execution of Π(z) (using the code of Π, the configuration ω, and Wj1 ,Wj2 , . . . ,Wjα , using the method
described in Lemma 3.3) for iα CPU steps (recall that iα is the CPU step when Π(z) makes its α’th
useful access). Let d be the index such that z is initially stored in the memory from position d to the
position d+ |z| − 1. Let

q1, q2, . . . , qiα

be the memory positions that Π(z) reads (such that in CPU step i, Π(z) reads one bit from memory
position qi) in the first iα CPU steps. We will decode kj1 , kj2 , . . . , kjα from q1, q2, . . . , qiα as follows:
For each i ≤ iα, let

pi = b(qi − d)/(n×m)c

Since Π(z) matches ω, it follows that

pi1 = kj1 , pi2 = kj2 , . . . , piα = kjα

Thus, Π′ has access to kj′1 , kj′2 , . . . , kj′r−α (hardwired) and can compute kj1 , kj2 , . . . , kjα as specified

above. Thus, Π′ can recover and output the string Key = k1||k2|| . . . ||kr.
Finally, we show that the description length of Π′ is at most |Π| + (r − α)λ + α(log t + log r) +

O(log n). To describe Π′, we require:

• |Π| bits to store the code of Π;

• (r − α)λ bits to store the r − α keys kj′1 , kj′2 , . . . , kj′r−α ;

• α(log t+ log r) bits to store the configuration ω.

• O(log n) bits to store the values n, m, λ, α, t, r.

• O(1) bits to describe the CPU next-step machine.

Thus, the description length of Π′ is at most |Π| + (r − α)λ + α(log t + log r) + O(log n), and from
this we conclude that

K(Keys | A,S) ≤ |Π|+ (r − α)λ+ α(log t+ log r) +O(log n)

which completes the proof.

We next proceed to prove Claim 4, which we first restate:

18



Claim 8 (Claim 4, restated). Assume that

• Π(z) makes α useful accesses;

• Π(z) outputs the string A.

• zp1 ∨ zp2 ∨ . . . ∨ zpt 6= A; 14

Then,
K(A | S) ≤ |Π|+ (n− 1)m+ α(log t+ log r) +O(log n)

Proof: Consider some Π, z satisfying the pre-conditions of the claim. Since Π(z) has the property
that

zp1 ∨ zp2 ∨ . . . ∨ zpt 6= A,

and recalling that each zpi is divided n m-size blocks, zpi,1, . . . , zpi,n, it follows that there exists a
block index b ∈ [n] such that for each block zpi ∈ {0, 1}n×m that Π(z) reads, zpi,b = 0m. In addition,
note that Π(z) makes α useful accesses, so Π(z) must match some configuration

ω = ((i1, i2, . . . , iα), (j1, j2, . . . , jα))

where ω ∈ [t]α × [r]α. Since Π(z) matches ω, we know that

(Wj1 ,Wj2 , . . . ,Wjα) = (zpi1 , zpi2 , . . . , zpiα )

Thus,
Wj1 ∨Wj2 ∨ . . . ∨Wjα 6= A

It follows that for all l ∈ [α], Wjl,b = 0m. From this, we can conclude that the gadget strings
Wj1 ,Wj2 , . . . ,Wjα can be constructed from S and all randomized encodingsA1, . . . , Ab−1, Ab+1, . . . , An
excluding Ab.

Based on this observation, let us show how to construct a program Π′ that outputs the string A
given S as auxiliary information. The program Π′ embeds the values n, m, λ, α, r, t, the value of
b, the code of Π, the configuration ω, and strings A1, . . . , Ab−1, Ab+1, . . . , An into its code. Π′ first
computes Wj1 ,Wj2 , . . . ,Wjα from A1, . . . , Ab−1, Ab+1, . . . , An and S. Π′ then simulates the execution
of Π(z) using the code of Π, the configuration ω, and the gadget strings Wj1 ,Wj2 , . . . ,Wjα (making
use of Lemma 3.3), and finally outputs whatever Π(z) outputs. Note that since Π(z) makes exactly
α useful accesses, Π′ can emulate Π(z) all the way until it terminates. Furthemore, recall that by
assumption Π(z) outputs A, so Π′ will do so as well.

We finally show that the description length of Π′ is at most |Π| + (n − 1)m + α(log t + log r) +
O(log n). To see this, note that to specify Π′, we require:

• |Π| bits to include the code of Π;

• (n− 1)m bits to store strings A1, . . . , Ab−1, Ab+1, . . . , An;

• α(log t+ log r) bits to save the configuration ω.

• O(log n) bits to strore the values n, m, λ, α, r, t, b

• O(1) bits to implement the CPU next-step machine:

Thus, we have that the description length of Π′ is at most |Π|+(n−1)m+α(log t+log r)+O(log n).
From this we conclude that

K(A | S) ≤ |Π|+ (n− 1)m+ α(log t+ log r) +O(log n).

which proves the claim.

14When pi < 0 or pi ≥ 2λ, we assume that zpi is an all-zero string and zpi = 0n×m.

19



4 OWFs from Mild Avg-case Hardness of McKtP[ζ]

We here show that for all polynomials t(n) > 0, ζ(n) ≥ 0, mild average-case hardness of McKtP[ζ]
implies the existence of OWFs. The proof closely follows the proof in [LP20]; for the reader familiar
with the construction in [LP20], the only modification is that the OWF construction now interprets
part of its input as the “auxiliary string” z and simply ouputs it.

Theorem 4.1. Assume that there exist polynomials t(n) > 0, ζ(n) ≥ 0, p(n) > 0 such that McKtP[ζ]
is mildly HoA. Then, there exists a weak OWF f (and thus also a OWF).

Proof: We start with the assumption that McKtP[ζ] is mildly HoA; that is, there exists a polynomial
p(·) such that for all PPT heuristics H and all sufficiently large n,

Pr[x← {0, 1}n, z ← {0, 1}ζ(n), k ← {0, 1}dlogne : H(x, z, k) = McKtP[ζ](x, z, k)] < 1− 1

p(n)
.

Let c be the constant from Fact 2.1. Consider the function f : {0, 1}n+c+dlog(n+c)e+ζ(n) → {0, 1}∗,
which given an input `||Π′||z where |`| = dlog(n + c)e, |Π′| = n + c, and |z| = ζ(n), outputs
`||U(Π(z), 1t(n))||z where Π = [Π′]` is the `-bit prefix of Π′. That is,

f(`||Π′||z) = `||U(Π(z), 1t(n))||z.

Observe that f is only defined over some input lengths, but by an easy padding trick, it can be
transformed into a function f ′ defined over all input lengths, such that if f is (weakly) one-way (over
the restricted input lengths), then f ′ will be (weakly) one-way (over all input lengths): f ′(x′) simply
truncates its input x′ (as little as possible) so that the (truncated) input x now becomes of length
m = n+ c+ dlog(n+ c)e+ ζ(n) for some n and outputs f(x).

We now show that f is a 1
q(·) -weak OWF, where q(n) = 22c+3np(n)2, which concludes the proof of

the theorem. The remaining proof follows exactly the same structure as the proof [LP20] with only
minor adjustments to deal with the fact that we now consider conditional Kolmogorov complexity.

Assume for contradiction that f is not a 1
q(·) -weak OWF. That is, there exists some PPT attacker

A that inverts f with probability at least 1− 1
q(n) ≤ 1− 1

q(m) for infinitely many m = n+c+dlog(n+

c)e+ ζ(n). Fix some such m,n > 2. We first claim that we can use A to construct a PPT heuristic
H∗ such that

Pr[x← {0, 1}n, z ← {0, 1}ζ(n) : H∗(x, z) = Kt(x | z)] ≥ 1− 1

p(n)
.

If this is true, consider the heuristic H which given a string x ∈ {0, 1}n, a string z ∈ {0, 1}ζ(n), and
a size parameter k ∈ {0, 1}dlogne, outputs 1 if H∗(x) ≤ k, and outputs 0 otherwise. Note that if H∗
succeeds on some string x, H will also succeed. Thus,

Pr[x← {0, 1}n, z ← {0, 1}ζ(n), k ← {0, 1}dlogne : H(x, z, k) = McKtP[ζ](x, z, k)] ≥ 1− 1

p(n)
,

which is a contradiction.
It remains to construct the heuristic H∗ that computes Kt(x | z) with high probability over

random inputs x ∈ {0, 1}n, z ∈ {0, 1}ζ(n), using A. By an averaging argument, except for a fraction
1

2p(n) of random tapes r for A, the deterministic machine Ar (i.e., machine A with randomness fixed

to r) fails to invert f with probability at most 2p(n)
q(n) . Fix some such “good” randomness r for which

Ar succeeds to invert f with probability 1− 2p(n)
q(n) .

20



On input x ∈ {0, 1}n, z ∈ {0, 1}ζ(n), our heuristic H∗r(x, z) runs Ar(i||x||z) for all i ∈ [n+c] where
i is represented as a dlog(n + c)e bit string, and outputs the length of the smallest RAM program
Π output by Ar such that Π(z) produces the string x within t(n) steps. Let S be the set of pairs
(x, z) ∈ {0, 1}n × {0, 1}ζ(n) for which H∗r(x, z) fails to compute Kt(x | z). Note that H∗r thus fails
with probability

failr =
|S|

2n+ζ(n)
.

Consider any pair (x, z) ∈ S and let w = Kt(x | z) be its conditional Kt-complexity. By Fact 2.1,
we have that w ≤ n+ c. Since H∗r(x, z) fails to compute Kt(x | z), Ar must fail to invert (w||x||z).
But, since w ≤ n+ c, the output (w||x||z) is sampled with probability

1

n+ c
· 1

2w2ζ(n)
≥ 1

(n+ c)

1

2n+c+ζ(n)
≥ 1

n22c+1
· 1

2n+ζ(n)

in the one-way function experiment, so Ar must fail with probability at least

|S| · 1

n22c+1
· 1

2n+ζ(n)
=

1

n22c+1
· |S|

2n+ζ(n)
=

failr
n22c+1

which by assumption (that Ar is a good inverter) is at most that 2p(n)
q(n) . We thus conclude that

failr ≤
22c+2np(n)

q(n)

Finally, by a union bound, we have that H∗ (using a uniform random tape r) fails in computing
Kt(x | z) with probability at most

1

2p(n)
+

22c+2np(n)

q(n)
=

1

2p(n)
+

22c+2np(n)

2c+3np(n)2
=

1

p(n)
.

Thus, H∗ computes Kt(x | z) with probability 1 − 1
p(n) for infinitely many n ∈ N (and therefore H

decides McKtP[ζ] with probability 1− 1
p(n) for infintely many n), which contradicts the assumption

that McKtP[ζ] is 1
p(·) -HoA.

5 Mild Avg-case Hardness of McKtP[ζ] from OWFs

We here show that that for all polynomial ζ and every polynomial t(n) ≥ 1.1n, the existence of OWFs
implies mild average-case hardness of McKtP[ζ]. Again, our proof closely follows the proof in [LP20]
with only minor modifications to deal with the fact that we now consider conditional Kolmogorov
complexity.

Theorem 5.1. If one-way functions exist, then for every constant ε > 0, all t(n) ≥ (1 + ε)n, for all
polynomial ζ(n) ≥ 0, McKtP[ζ] is mildly HoA.

Proof: The theorem follows immediately from Theorem 5.4 and Theorem 5.5, which will be stated
and proved below.

5.1 Some additional preliminaries

Let us first recall some additional standard preliminaries.

21



Computational Indistinguishability We recall the definition of (computational) indistinguisha-
bility [GM84].

Definition 5.2. Two ensembles {An}n∈N and {Bn}n∈N are said to be µ(·)-indistinguishable, if for
every probabilistic machine D (the “distinguisher”) whose running time is polynomial in the length
of its first input, there exists some n0 ∈ N so that for every n ≥ n0:

|Pr[D(1n, An) = 1]− Pr[D(1n, Bn) = 1]| < µ(n)

We say that are {An}n∈N and {Bn}n∈N simply indistinguishable if they are 1
p(·) -indistinguishable for

every polynomial p(·).

Statistical Distance and Entropy For any two random variables X and Y defined over some
set V, we let SD(X,Y ) = 1

2

∑
v∈V |Pr[X = v] − Pr[Y = v]| denote the statistical distance between

X and Y . For a random variable X, let H(X) = E[log 1
Pr[X=x] ] denote the (Shannon) entropy of X,

and let H∞(X) = minx∈Supp(X) log 1
Pr[X=x] denote the min-entropy of X.

5.2 Entropy-preserving PRGs

Liu and Pass [LP20] defined a notion of a conditionally-secure entropy-preserving pseudorandom
generator (cond-EP PRG). Roughly speaking, a cond-EP PRG is a function where the output is
indistinguishable from the uniform distribution and also preserves the entropy in the input only
when conditioned on some event E.

Definition 5.3. An efficiently computable function G : {0, 1}n → {0, 1}n+γ logn is a µ(·)-conditionally
secure entropy-preserving pseudorandom generator (µ-condEP PRG) if there exist a sequence of
events = {En}n∈N and a constant α (referred to as the entropy-loss constant) such that the following
conditions hold:

• (pseudorandomness): {G(Un | En)}n∈N and {Un+γ logn}n∈N are µ(n)-indistinguishable;

• (entropy-preserving): For all sufficiently large n ∈ N, H(G(Un | En)) ≥ n− α log n.

We say that G has rate-1 efficiency if its running time on inputs of length n is bounded by
n + O(nε) for some constant ε < 1. When defining running-time, we here mean running-time in
terms of a RAM-program computation. [LP20] showed the existence of rate-1 efficient cond EP-
PRG; in [LP20] running-time was counted in terms of execution on Turing machine, but we note
that identically the same proof shows that the PRG us rate-1 efficient also when run on a RAM.

Theorem 5.4 ([LP20]). Assume that OWFs exist. Then, for every γ > 1, there exists a rate-1
efficient µ-cond-EP PRG Gγ : {0, 1}n → {0, 1}n+γ logn, where µ = 1

n2 .

5.3 Mild Avg-case Hardness of McKtP[ζ] from Cond-EP PRGs

Theorem 5.5. Assume that for some γ ≥ 4, there exists a rate-1 efficient µ-condEP PRG G :
{0, 1}n → {0, 1}n+γ logn where µ(n) = 1/n2. Then, for every ε > 0, all t(n) ≥ (1 + ε)n, for all
polynomial ζ(n) ≥ 0, McKtP[ζ] is mildly HoA.

Proof: The proof follows exactly the same structure as the proof [LP20] with only minor adjustments
to deal with the fact that we now consider conditional Kolmogorov complexity. Essentially, the
key observation is that random strings have high Kolmogorov complexity also conditionned on any

22



arbitrary string, and due to this observation, essentially the proof in [LP20] can still be applied. We
proceed to the full details.

Let γ ≥ 4, and let G′ : {0, 1}n → {0, 1}m′(n) where m′(n) = n + γ log n be a rate-1 efficient
µ-condEP PRG, where µ = 1/n2. For any constant c, let Gc(x) be a function that computes G′(x)
and truncates the last c bits. It directly follows that Gc is also a rate-1 efficient µ-condEP PRG
(since G′ is so). Consider any ε > 0 and any polynomial t(n) ≥ (1 + ε)n and let p(n) = 2n2(α+γ+1).

Assume for contradiction that there exists some PPT H(x, z, k) that decides McKtP[ζ] with
probability 1 − 1

p(m) for infinitely many m ∈ N. Since m′(n + 1) −m′(n) ≤ γ + 1, there must exist

some constant c ≤ γ + 1 such that H succeeds (to decide McKtP[ζ]) with probability 1 − 1
p(m) for

infinitely many m of the form m = m(n) = n + γ log n − c. Let G(x) = Gc(x); recall that G is a
rate-1 efficient µ-condEP PRG (trivially, since Gc is so), and let α, {En}, respectively, be the entropy
loss constant and sequence of events, associated with it.

We next show that H can be used to break the condEP PRG G. Towards this, note that a
random string still has high Kt-complexity with high probability even if conditioned on a random
string: for m = m(n), we have,

Pr
x∈{0,1}m,z∈{0,1}ζ(m)

[Kt(x | z) > m− γ

2
log n] ≥ 2m − 2m−

γ
2

logn

2m
= 1− 1

nγ/2
, (1)

since the total number of RAM programs Π with length smaller than m− γ
2 log n is only 2m−

γ
2

logn,
and fix an auxiliary string z, Π(z) could output a single string. However, any string output by G,
must have “low” Kt complexity no matter what string is conditioned on: For every sufficiently large
n,m = m(n), we have that,

Pr
x∈{0,1}n,z∈{0,1}ζ(m)

[Kt(G(x) | z) > m− γ

2
log n] = 0, (2)

since G(x) can be produced by a RAM program Π with the seed x of length n and the code of
G (of constant length) hardwired in it (and the string z is skipped). The running time of Π is
bounded by t(n) for all sufficiently large n (since G is rate-1 efficient in the RAM model) , so
Kt(G(x) | z) = n+O(1) ≤ m− γ/2 log n for sufficiently large n (since recall that γ ≥ 4).

Based on these observations, we now construct a PPT distinguisher A breaking G. On input
1n, x, where x ∈ {0, 1}m(n), A(1n, x) samples z ← {0, 1}ζ(m) and picks k = m − γ

2 log n. A outputs
1 if H(x, z, k) outputs 1 and 0 otherwise. Fix some n, m = m(n), m′(n) = m + ζ(m) + dlogme for
which H succeeds to decide McKtP[ζ] with probability 1

p(m) . The following two claims conclude that

A distinguishes Um(n) and G(Un | En) with probability at least 1
n2 .

Claim 9. A(1n,Um) outputs 0 with probability at least 1− 2
nγ/2

.

Proof: Note that A(1n, x) will output 0 if (1) x is a string with Kt-complexity larger than
m − γ/2 log n conditioned on a randomly sampled string z and (2) H succeeds on input (x, z, k).
Thus,

Pr[A(1n, x) = 0]

≥ Pr[Kt(x | z) > m− γ/2 log n ∧H succeeds on (x, z, k)]

≥ 1− Pr[Kt(x | z) ≤ m− γ/2 log n]− Pr[H fails on (x, z, k)]

≥ 1− 1

nγ/2
− 1

p(m)

≥ 1− 2

nγ/2
.

23



where the probability is over a random x ← Um, z ← Uζ(m), k ← dlogme and the randomness of A
and H.

Claim 10. A(1n, G(Un | En)) outputs 0 with probability at most 1− 1
n + 3

n2

Proof: Recall that by assumption, H(x, z, k) fails to decide whether (x, z, k) ∈ McKtP[ζ] for a
random x ∈ {0, 1}m, z ∈ {0, 1}ζ(m), k ∈ {0, 1}dlogme with probability at most 1

p(m) .

By an averaging argument, for at least a 1− 1
n2 fraction of random tapes r for H (resp a 1− 1

n2

fraction of random choices of z), the deterministic machine Hr (resp the machine H with part of

input fixed to z) fails to decide McKtP[ζ] with probability at most n2

p(m) . Fix some “good” randomness

r and “good” string z such that Hr,z decides McKtP[ζ](·, z, ·) with probability at least 1− n2

p(m) .
We next analyze the success probability of Ar,z. Assume for contradiction that Ar,z outputs 1

with probability at least 1− 1
n + 1

nα+γ
on input G(Un | En). Recall that (1) the entropy of G(Un | En)

is at least n − α log n and (2) the quantity − log Pr[G(Un | En) = y] is upper bounded by n for all
y ∈ G(Un | En). By an averaging argument, with probability at least 1

n , a random y ∈ G(Un | En)
will satisfy

− log Pr[G(Un | En) = y] ≥ (n− α log n)− 1.

We refer to an output y satisfying the above condition as being “good” and other y’s as being “bad”.
Let S = {y ∈ G(Un | En) : Ar,z(1n, y) = 0 ∧ y is good}, and let S′ = {y ∈ G(Un | En) : Ar,z(1n, y) =
0 ∧ y is bad}. Since

Pr[Ar,z(1n, G(Un | En)) = 0] = Pr[G(Un | En) ∈ S] + Pr[G(Un | En) ∈ S′],

and Pr[G(Un | En) ∈ S′] is at most the probability that G(Un | En) is “bad” (which as argued above
is at most 1− 1

n), we have that

Pr[G(Un | En) ∈ S] ≥
(

1− 1

n
+

1

nα+γ

)
−
(

1− 1

n

)
=

1

nα+γ
.

Furthermore, since for every y ∈ S, Pr[G(Un | En) = y] ≤ 2−n+α logn+1, we also have,

Pr[G(Un | En) ∈ S] ≤ |S|2−n+α logn+1

So,

|S| ≥ 2n−α logn−1

nα+γ
= 2n−(2α+γ) logn−1

However, for any y ∈ G(Un | En), if Ar,z(1n, y) outputs 0, then by Equation 2, Kt(y | z) ≤
m− γ/2 log n = k, so Hr,z fails to decide McKtP[ζ] on input (y, z,m− γ/2 log n).

Thus, the probability that Hr,z fails (to decide McKtP[ζ]) on a random input (y, z, k) (where y
and k are uniformly sampled in {0, 1}m and {0, 1}dlogme, z is a fixed string) is at least

|S|/2m+dlogme =
2n−(2α+γ) logn−1

2n+γ logn+dlogme ≥
2−(2α+2γ) logn−1

2dlogme ≥ 2−2(α+γ+1) logn−1 =
1

2n2(α+γ+1)

which contradicts the fact that Hr,z fails to decide McKtP[ζ] with probability at most n2

p(m) <
1

2n2(α+γ+1) (since n < m).
We conclude that for every good randomness r, every good choice of string z, Ar,z outputs 0

with probability at most 1 − 1
n + 1

nα+γ
. Finally, by union bound (and since a random tape is bad

24



with probability ≤ 1
n2 and a random choice of z is bad with probability ≤ 1

n2 ), we have that the
probability that A(G(Un | En)) outputs 1 is at most

2

n2
+

(
1− 1

n
+

1

nα+γ

)
≤ 1− 1

n
+

3

n2
,

since γ ≥ 2.

We conclude, recalling that γ ≥ 4, that A distinguishes Um and G(Un | En) with probability of at
least (

1− 2

nγ/2

)
−
(

1− 1

n
+

2

n2

)
≥
(

1− 2

n2

)
−
(

1− 1

n
+

2

n2

)
=

1

n
− 4

n2
≥ 1

n2

for infinitely many n ∈ N.

6 Applications to Polynomial-time Symmetry of Information

In this section, we consider the consequences of polynomial-time symmetry of information (polySOI).
We start by formalizing the polynomial-time symmetry of information assertion.

Definition 6.1. We say that the polynomial-time symmetry of information assertion (polySOI) holds
if there exist constants d ∈ N, 0 < ε ≤ 1 and a polynomial t0(n) ≥ n, such that for all polynomials
p(n) ≥ n, t(n) ≥ t0(n), and all but finitely many strings x, y ∈ {0, 1}∗ such that |x| ≤ p(|y|) and
|y| ≤ p(|x|), it holds that:

Kt1/ε(xy)− d log |xy| ≤ Kt(y) +Kt(x | y) ≤ Ktε(xy) + d log |xy|

Larger run-time has small effect on Kt We observe that if polySOI holds, then for every string
x, the gap between Kt(x) and Ktc(x) is just logarithmic in |x| (but still depends on c). Thus, allowing
the running-time to be polynomially larger does not help compress the string x by too much. To

formalize this, and subsequent claims, let a
c
≈ b denote a− c ≤ b ≤ a+ c.

Lemma 6.1. Assume that polySOI holds. Then there exist a constant d′ and a polynomial t0(n) ≥ n
such that for all c ≥ 1, all polynomial t(n) ≥ t0(n), all but finitely many strings x, it holds that

Ktc(x)
cd′ log |x|
≈ Kt(x)

Proof: We first claim that Ktc(x) ≤ Kt(x); this simply follows from the fact that the machine that
produces x in time t(|x|) will also produce x in time tc(|x|) if c ≥ 1.

To show the converse direction, let n = |x|, and let d, ε be the constant fixed in polySOI. We first
observe that conditioning on a simple string (such as 0m) cannot significantly decrease Kt-complexity
(as the string we condition on can be easily generated):

Claim 11. There exists a constant 0 < α < 1 such that for any m ∈ N, it holds that

Ktα(x | 0m) + 2 logm+O(1) ≥ Kt(x)

Proof: Let Π be the (shortest) machine that generates the string x on input 0m in time tα(|x|).
We build a machine Π′ that simulates the machine Π, and provide Π with input 0m. Note that Π′

does not need an input, and Π′ outputs the string x in poly(tα(|x|)) ≤ t(|x|) if α is sufficiently small.

25



Additionally, note that the Π′ can be bounded by |Π| + 2 logm + O(1), which concludes the proof.

We now apply polySOI to the string x padded with the dummy string 0m for a sufficiently
large m. More precisely, consider the string x0m, where m is fixed to be an integer satisfying
tε·α(m+n) ≥ O(m)+tc(n); such anm can always be picked for every t(n) ≥ t0(n), where t0(n) = n

1
ε·α .

By polySOI, it holds that

Ktα·ε(x0m) + d log |x0m| ≥ Ktα(0m) +Ktα(x | 0m)

With respect to the LHS, we remark that Ktc(x) + 2 logm+O(1) ≥ Ktα·ε(x0m); this follows since if
there exists a machine generating x in time tc(|x|), we can build a machine that prints x0m in time
O(m) + tc(n) ≤ tα·ε(m+ n) by the choice of m (by just outputting m zeros after outputting x).

With respect to the RHS, note that Ktα(0m) ≥ 0, and Ktα(x | 0m) + 2 logm+O(1) ≥ Kt(x) due
to Claim 11. Thus

Ktc(x) + 4 logm+O(1) + d log |0mx| ≥ Kt(x)

which concludes the proof.

We next use the above lemma to show that if polySOI holds, a stronger variant of polySOI, where
ε = 1, also holds.

Lemma 6.2. Assume that polySOI holds. Then there exist a constant δ ∈ N and a polynomial
t0(n) ≥ n such that for all polynomials p(n) ≥ n, t(n) ≥ t0(n), all but finitely many strings x, y ∈
{0, 1}∗ such that |x| ≤ p(|y|) and |y| ≤ p(|x|),

Kt(xy)
δ log |xy|
≈ Kt(y) +Kt(x | y).

Proof: By polySOI, there exist constants d ∈ N, 0 < ε ≤ 1 and a polynomial t0(·) such that for all
polynomials p(n) ≥ n, t(n) ≥ t0(n), all (but finitely many) strings x, y ∈ {0, 1}∗ such that |x| ≤ p(|y|)
and |y| ≤ p(|x|),

Kt1/ε(xy)− d log |xy| ≤ Kt(y) +Kt(x | y) ≤ Ktε(xy) + d log |xy|

For all t(n) ≥ t0(n)1/ε, by Lemma 6.1, there exists a constant d′ such that

Kt1/ε(xy)
1/εd′ log |xy|
≈ Kt(xy)

Ktε(xy)
1/εd′ log |xy|
≈ Kt(xy)

Let δ = 1/εd′ + d, it follows that

Kt(xy)
δ log |xy|
≈ Kt(y) +Kt(x | y)

We next show that in fact a conditional variant of Lemma 6.1 will also hold.

Lemma 6.3. Assume that polySOI holds. Then there exist a constant β and a polynomial t0(n) ≥ n
such that for all c ≥ 1, all polynomials t(n) ≥ t0(n), p(n) ≥ n, all but finitely many strings x, z ∈
{0, 1}∗ such that |x| ≤ p(|z|) and |z| ≤ p(|x|), it holds that

Ktc(x | z)
cβ log |xz|
≈ Kt(x | z)

26



Proof: Since polySOI holds, by Lemma 6.2, there exists a constant δ such that

Ktc(x | z)
δ log |xz|
≈ Ktc(xz)−Ktc(z)

Kt(x | z)
δ log |xz|
≈ Kt(xz)−Kt(z)

By Lemma 6.1, there exists a constant d′ such that

Ktc(xz)
cd′ log |xz|
≈ Kt(xz)

Ktc(z)
cd′ log |z|
≈ Kt(z)

Let β = 2δ + 2d′. It follows that

Ktc(x | z)
cβ log |xz|
≈ Kt(x | z)

Concluding the Proof We are now ready to show that the polySOI assertion is false.

Theorem 6.2. The polySOI assertion is false.

Proof: Assume for contradiction that polySOI holds. Let γ ≥ 3 be a constant, let t(n) ≥ n2 be a
sufficiently large polynomial, and consider ζ(n) = (t(n))4n2γ . For all sufficiently large n, consider all
instances (1n, 1`,S) of the γ-Bounded Set Cover Problem. Note that in the γ-Bounded Set Cover
Problem, it is guaranteed that cover([n],S) ≥ n/γ. We focus on the reduction to McKtP[ζ] and let
A, z,m, λ be as in Section 3.1. By Proposition 3.2, with probability at least 1− 2/n, it holds that

Kt(A | z) ≥ cover([n],S)

2
λ ≥ n/(2γ) (3)

Let c be a constant ≥ 8γ. We show that

Ktc(A | z) ≤ O(log n)

which (combined with Equation 3) contradicts Lemma 6.3. Consider the following machine Π which
outputs A on input z. Π simply outputs the bitwise OR of all blocks in z. (Recall that each block
is of length n×m and there are 2λ such blocks in z.) Note that each block in z is either an all-zero
string 0n×m or some “gadget” string Wi (for some i ≤ |S|) and W1 ∨ . . . ∨W|S| = A. Thus, Π will

indeed output the string A. Finally, note that Π runs in O(2λ × n×m) ≤ O(ζ(n)) ≤ tc(|A|) and Π
can be implemented using O(log n) bits. We conclude that Ktc(A | z) ≤ O(log n).

7 Acknowledgements

We are very grateful to Vinod Vaikuntanathan and Rahul Ilango for helpful comments on an earlier
version of this paper.

27



References

[ABK+06] Eric Allender, Harry Buhrman, Michal Kouckỳ, Dieter Van Melkebeek, and Detlef
Ronneburger. Power from random strings. SIAM Journal on Computing, 35(6):1467–
1493, 2006.

[ACM+21a] Eric Allender, Mahdi Cheraghchi, Dimitrios Myrisiotis, Harsha Tirumala, and Ilya
Volkovich. One-way functions and partial MCSP. Electron. Colloquium Comput. Com-
plex., 28:9, 2021.

[ACM+21b] Eric Allender, Mahdi Cheraghchi, Dimitrios Myrisiotis, Harsha Tirumala, and Ilya
Volkovich. One-way functions and a conditional variant of mktp. Electron. Colloquium
Comput. Complex., 28:9, 2021. Revision 1; April 18, 2021.

[ACM+21c] Eric Allender, Mahdi Cheraghchi, Dimitrios Myrisiotis, Harsha Tirumala, and Ilya
Volkovich. One-way functions and a conditional variant of mktp. Electron. Colloquium
Comput. Complex., 28:9, 2021. Revision 2; October 19, 2021.

[AD97] Miklós Ajtai and Cynthia Dwork. A public-key cryptosystem with worst-case/average-
case equivalence. In Frank Thomson Leighton and Peter W. Shor, editors, Proceedings
of the Twenty-Ninth Annual ACM Symposium on the Theory of Computing, El Paso,
Texas, USA, May 4-6, 1997, pages 284–293. ACM, 1997.

[AGGM06] Adi Akavia, Oded Goldreich, Shafi Goldwasser, and Dana Moshkovitz. On basing one-
way functions on NP-hardness. In STOC ’06, pages 701–710, 2006.

[AHM+08] Eric Allender, Lisa Hellerstein, Paul McCabe, Toniann Pitassi, and Michael E. Saks.

Minimizing disjunctive normal form formulas and ac0 circuits given a truth table. SIAM
J. Comput., 38(1):63–84, 2008.

[Ajt96] Miklós Ajtai. Generating hard instances of lattice problems (extended abstract). In
Gary L. Miller, editor, Proceedings of the Twenty-Eighth Annual ACM Symposium on
the Theory of Computing, Philadelphia, Pennsylvania, USA, May 22-24, 1996, pages
99–108. ACM, 1996.

[BB15] Andrej Bogdanov and Christina Brzuska. On basing size-verifiable one-way functions on
NP-hardness. In Yevgeniy Dodis and Jesper Buus Nielsen, editors, Theory of Cryptog-
raphy - 12th Theory of Cryptography Conference, TCC 2015, Warsaw, Poland, March
23-25, 2015, Proceedings, Part I, volume 9014 of Lecture Notes in Computer Science,
pages 1–6. Springer, 2015.

[Blu82] Manuel Blum. Coin flipping by telephone - A protocol for solving impossible prob-
lems. In COMPCON’82, Digest of Papers, Twenty-Fourth IEEE Computer Society In-
ternational Conference, San Francisco, California, USA, February 22-25, 1982, pages
133–137. IEEE Computer Society, 1982.

[BM88] László Babai and Shlomo Moran. Arthur-merlin games: A randomized proof system,
and a hierarchy of complexity classes. J. Comput. Syst. Sci., 36(2):254–276, 1988.

[Bra83] Gilles Brassard. Relativized cryptography. IEEE Transactions on Information Theory,
29(6):877–893, 1983.

28



[BT03] Andrej Bogdanov and Luca Trevisan. On worst-case to average-case reductions for np
problems. In FOCS ’03, pages 308–317, 2003.

[Cha69] Gregory J. Chaitin. On the simplicity and speed of programs for computing infinite sets
of natural numbers. J. ACM, 16(3):407–422, 1969.

[DH76] Whitfield Diffie and Martin Hellman. New directions in cryptography. IEEE Transac-
tions on Information Theory, 22(6):644–654, 1976.

[FS90] Uriel Feige and Adi Shamir. Witness indistinguishable and witness hiding protocols. In
STOC ’90, pages 416–426, 1990.

[GGM84] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. On the cryptographic applications
of random functions. In CRYPTO, pages 276–288, 1984.

[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. J. Comput. Syst. Sci.,
28(2):270–299, 1984.

[GT00] Rosario Gennaro and Luca Trevisan. Lower bounds on the efficiency of generic crypto-
graphic constructions. In 41st Annual Symposium on Foundations of Computer Science,
FOCS 2000, 12-14 November 2000, Redondo Beach, California, USA, pages 305–313.
IEEE Computer Society, 2000.

[GWXY10] S. Dov Gordon, Hoeteck Wee, David Xiao, and Arkady Yerukhimovich. On the round
complexity of zero-knowledge proofs based on one-way permutations. In LATINCRYPT,
pages 189–204, 2010.

[Har83] J. Hartmanis. Generalized kolmogorov complexity and the structure of feasible compu-
tations. In 24th Annual Symposium on Foundations of Computer Science (sfcs 1983),
pages 439–445, Nov 1983.

[HILL99] Johan H̊astad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudoran-
dom generator from any one-way function. SIAM J. Comput., 28(4):1364–1396, 1999.

[Hir18] Shuichi Hirahara. Non-black-box worst-case to average-case reductions within NP. In
59th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2018, pages
247–258, 2018.

[Hir20] Shuichi Hirahara. Unexpected hardness results for kolmogorov complexity under uni-
form reductions. In Konstantin Makarychev, Yury Makarychev, Madhur Tulsiani,
Gautam Kamath, and Julia Chuzhoy, editors, Proccedings of the 52nd Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2020, Chicago, IL, USA, June
22-26, 2020, pages 1038–1051. ACM, 2020.

[HMX10] Iftach Haitner, Mohammad Mahmoody, and David Xiao. A new sampling protocol
and applications to basing cryptographic primitives on the hardness of NP. In IEEE
Conference on Computational Complexity, pages 76–87, 2010.

[HOS18] Shuichi Hirahara, Igor Carboni Oliveira, and Rahul Santhanam. Np-hardness of min-
imum circuit size problem for OR-AND-MOD circuits. In Rocco A. Servedio, editor,
33rd Computational Complexity Conference, CCC 2018, June 22-24, 2018, San Diego,
CA, USA, volume 102 of LIPIcs, pages 5:1–5:31. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2018.

29



[IL89] Russell Impagliazzo and Michael Luby. One-way functions are essential for complexity
based cryptography (extended abstract). In 30th Annual Symposium on Foundations
of Computer Science, Research Triangle Park, North Carolina, USA, 30 October - 1
November 1989, pages 230–235, 1989.

[Ila19] Rahul Ilango. $acˆ0[p]$ lower bounds and np-hardness for variants of MCSP. Electron.
Colloquium Comput. Complex., 26:21, 2019.

[Ila20] Rahul Ilango. Approaching MCSP from above and below: Hardness for a conditional
variant and acˆ0[p]. In 11th Innovations in Theoretical Computer Science Conference,
ITCS 2020, pages 34:1–34:26, 2020.

[Ila21] Rahul Ilango. Personal communication, 2021.

[ILO20] Rahul Ilango, Bruno Loff, and Igor Carboni Oliveira. Np-hardness of circuit minimiza-
tion for multi-output functions. In 35th Computational Complexity Conference, CCC
2020, pages 22:1–22:36, 2020.

[Imp95] Russell Impagliazzo. A personal view of average-case complexity. In Structure in Com-
plexity Theory ’95, pages 134–147, 1995.

[IN89] Russell Impagliazzo and Moni Naor. Efficient cryptographic schemes provably as se-
cure as subset sum. In 30th Annual Symposium on Foundations of Computer Science,
Research Triangle Park, North Carolina, USA, 30 October - 1 November 1989, pages
236–241. IEEE Computer Society, 1989.

[KC00] Valentine Kabanets and Jin-yi Cai. Circuit minimization problem. In Proceedings of
the Thirty-Second Annual ACM Symposium on Theory of Computing, May 21-23, 2000,
Portland, OR, USA, pages 73–79, 2000.

[Ko86] Ker-I Ko. On the notion of infinite pseudorandom sequences. Theor. Comput. Sci.,
48(3):9–33, 1986.

[Ko91] Ker-I Ko. On the complexity of learning minimum time-bounded turing machines.
SIAM J. Comput., 20(5):962–986, 1991.

[Kol68a] A. N. Kolmogorov. Several theorems about algorithmic entropy and algorithmic amount
of information (a talk at a moscow math. soc. meeting 10/31/67). An abstract in Usp.
Mat. Nauk, 23(2):201, 1968.

[Kol68b] A. N. Kolmogorov. Three approaches to the quantitative definition of information.
International Journal of Computer Mathematics, 2(1-4):157–168, 1968.

[Lev73] Leonid A. Levin. Universal search problems (russian), translated into english by ba
trakhtenbrot in [Tra84]. Problems of Information Transmission, 9(3):265–266, 1973.

[Lev03] L. A. Levin. The tale of one-way functions. Problems of Information Transmission,
39(1):92–103, 2003.

[Liv10] Noam Livne. On the construction of one-way functions from average case hardness. In
ICS, pages 301–309. Citeseer, 2010.

30



[LM91] Luc Longpré and Sarah Mocas. Symmetry of information and one-way functions. In
Wen-Lian Hsu and Richard C. T. Lee, editors, ISA ’91 Algorithms, 2nd International
Symposium on Algorithms, Taipei, Republic of China, December 16-18, 1991, Proceed-
ings, volume 557 of Lecture Notes in Computer Science, pages 308–315. Springer, 1991.

[LP20] Yanyi Liu and Rafael Pass. On one-way functions and kolmogorov complexity. In 61st
IEEE Annual Symposium on Foundations of Computer Science, FOCS 2020, Durham,
NC, USA, November 16-19, 2020, pages 1243–1254. IEEE, 2020.

[LP21a] Yanyi Liu and Rafael Pass. On one-way functions from np-complete problems. Cryp-
tology ePrint Archive, Report 2021/513, 2021. https://ia.cr/2021/513; received on
April 19, 2021.

[LP21b] Yanyi Liu and Rafael Pass. On the possibility of basing cryptography on exp 6= bpp.
In CRYPTO, 2021.

[LW92] Luc Longpré and Osamu Watanabe. On symmetry of information and polynomial time
invertibility. In Algorithms and Computation, pages 410–419, Berlin, Heidelberg, 1992.
Springer Berlin Heidelberg.

[MH78] R. Merkle and M. Hellman. Hiding information and signatures in trapdoor knapsacks.
IEEE Transactions on Information Theory, 24(5):525–530, 1978.

[Nao91] Moni Naor. Bit commitment using pseudorandomness. J. Cryptology, 4(2):151–158,
1991.

[Odl90] A. M. Odlyzko. The rise and fall of knapsack cryptosystems. In In Cryptology and
Computational Number Theory, pages 75–88. A.M.S, 1990.

[Pas06] Rafael Pass. Parallel repetition of zero-knowledge proofs and the possibility of bas-
ing cryptography on np-hardness. In 21st Annual IEEE Conference on Computational
Complexity (CCC 2006), 16-20 July 2006, Prague, Czech Republic, pages 96–110. IEEE
Computer Society, 2006.

[Rom90] John Rompel. One-way functions are necessary and sufficient for secure signatures. In
STOC, pages 387–394, 1990.

[RS21] Hanlin Ren and Rahul Santhanam. Hardness of KT characterizes parallel cryptography.
Electron. Colloquium Comput. Complex., 28:57, 2021.

[RSA83] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for obtaining digital
signatures and public-key cryptosystems (reprint). Commun. ACM, 26(1):96–99, 1983.

[Sip83] Michael Sipser. A complexity theoretic approach to randomness. In Proceedings of the
15th Annual ACM Symposium on Theory of Computing, 25-27 April, 1983, Boston,
Massachusetts, USA, pages 330–335. ACM, 1983.

[Sol64] R.J. Solomonoff. A formal theory of inductive inference. part i. Information and Control,
7(1):1 – 22, 1964.

[Tra84] Boris A Trakhtenbrot. A survey of russian approaches to perebor (brute-force searches)
algorithms. Annals of the History of Computing, 6(4):384–400, 1984.

31

https://ia.cr/2021/513


[Tre01] Luca Trevisan. Non-approximability results for optimization problems on bounded de-
gree instances. In Jeffrey Scott Vitter, Paul G. Spirakis, and Mihalis Yannakakis, editors,
Proceedings on 33rd Annual ACM Symposium on Theory of Computing, July 6-8, 2001,
Heraklion, Crete, Greece, pages 453–461. ACM, 2001.

[Yao82] Andrew Chi-Chih Yao. Theory and applications of trapdoor functions (extended ab-
stract). In 23rd Annual Symposium on Foundations of Computer Science, Chicago,
Illinois, USA, 3-5 November 1982, pages 80–91, 1982.

[ZL70] A. K. Zvonkin and L. A. Levin. the Complexity of Finite Objects and the Development
of the Concepts of Information and Randomness by Means of the Theory of Algorithms.
Russian Mathematical Surveys, 25(6):83–124, December 1970.

A Proof of Lemma 3.1: Implementing Π in the RAM model

Recall that in Lemma 3.1, we aim at constructing a machine Π that prints A ∈ {0, 1}n×m with
running time ≤ t(|A|). The machine Π has the values n, m, λ, `, the keys ki1 , ki2 , . . . , ki` (where

each of the keys is of length λ ∈ O(log n)), and the string z ∈ ({0, 1}n×m)2λ in its memory. It is
guaranteed that

zki1 ∨ zki2 ∨ . . . ∨ zki` = A.

We note that the machine Π only has to read zki1 , zki2 , . . . , zki` from the string z using the keys
ki1 , ki2 , . . . , ki` , and outputs the bit-wise or of those strings. (Note that the length of z could be
larger than t(|A|), Π’s running time bound, and thus a Turing machine cannot finish the algorithm
in time t(|A|).)

We show that there exists a CPU “next-step” machine M receiving a state with O(log n) bits
that implements the above algorithm. Recall that in each CPU step, M receives a state state and
some “read bit” bread as input, and outputs a new state state′, a read position iread, a write position
iwrite, and some bit bwrite. The execution of Π will replace state with the new state state′, bread with
the content of memory position iread, and replace the content of memory position iwrite by bwrite.

When designing a CPU next-step machine M , it is instructive to view the state state as a
“snapshot” of some registers of Π, and each register could store a O(log n) bit string. Thus, we can
view the machine M as a machine that receives the values in the registers as input, and outputs some
new value for each register. Thus, we are equipped with some registers, and our implementation is
as follows.

• M loads n,m, λ into some registers.

• M creates a new register j, initialized with 1. M makes a loop with j going from 1 to `. In
the j-th iteration, M loads kij into a register.

• In the j-th iteration, M creates two new register p and L, and L is set to be a large enough
integer such that the contents in memory positions ≥ L are ⊥.

• M makes a loop with p going from 1 to n×m. M loads zkij ,p into a register.

• In the p-th iteration, if the memory is empty in position L+ p, M moves zkij ,p to the memory

position L+ p. Otherwise, M replace the content of memory position L+ p with its binary-or
with zkij ,p.

• The two loops end here.

32



• Finally, M outputs the string saved from memory position L+ 1 to memory position L+ nm.

Note that the above procedure (as a RAM program) takes O(`nm) CPU steps, but in each CPU
step, the machine M is only in charged of computing the new values in the registers (and the values
of iread, iwrite, bwrite) from the old values in the registers (and the value of bread). And we only have
constant number of registers, and each of them is of size O(log n). Thus, in each CPU step, the
computation of M is polynomial in its input size (O(log n)), and the total running time of the RAM
program is O(`nmpoly log n).

33
ECCC   ISSN 1433-8092 

https://eccc.weizmann.ac.il


