
Optimal Error Resilience of Adaptive Message Exchange

Klim Efremenko∗

Ben-Gurion University

Gillat Kol†

Princeton University

Raghuvansh R. Saxena‡

Princeton University

Abstract

We study the error resilience of the message exchange task: Two parties, each

holding a private input, want to exchange their inputs. However, the channel

connecting them is governed by an adversary that may corrupt a constant fraction

of the transmissions. What is the maximum fraction of corruptions that still allows

the parties to exchange their inputs?

For the non-adaptive channel, where the parties must agree in advance on the order

in which they communicate, the maximum error resilience was shown to be 1
4 (see

[BR11], STOC 2011). The problem was also studied over the adaptive channel, where

the order in which the parties communicate may not be predetermined ([GHS14], STOC

2014; [EKS20], STOC 2020). These works show that the adaptive channel admits

much richer set of protocols but leave open the question of finding its maximum error

resilience.

In this work, we show that the maximum error resilience of a protocol for message

exchange over the adaptive channel is 5
16 , thereby settling the above question. Our

result requires improving both the known upper bounds and the known lower bounds

for the problem.

∗klimefrem@gmail.com
†gillat.kol@gmail.com
‡rrsaxena@princeton.edu

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 60 (2021)

mailto:klimefrem@gmail.com
mailto:gillat.kol@gmail.com
mailto:rrsaxena@princeton.edu

1 Introduction

We study the error resilience of the message exchange task: Alice and Bob each have a

private input, and they wish to know both inputs. To achieve this, they may communicate

any number of symbols over any alphabet set1. However, an adversary can corrupt up to θ

fraction of the communicated symbols. What is the maximum2 θ for which there exists a

protocol for the message exchange task?

In the ‘standard’ model, where parties take turns communicating, it can be shown that

the answer is θ = 1
4

(see [BR11]3). Observe, however, that this model is rather restrictive, as

the order of communication in the protocol must be determined in advance, and thus cannot

depend of the parties’ inputs, randomness, and on the messages they received during the

protocol4. Since the order of turns cannot be adapted after an execution commences, these

protocols are called non-adaptive (a.k.a. oblivious or static).

Motivated by the fact that modern communication systems often allow more than one

party to transmit in a single round (e.g., wireless networks), Ghaffari, Haeupler, and Sudan

[GHS14], initiated the study of the message exchange problem over the adaptive channel,

where the order in which the parties transmit is not determined in advance and both (or

none of the) parties may transmit in a given round. However, the messages received in a

round are only meaningful if exactly one party transmitted in this round (see subsection 1.2

and subsection 3.1 for a description of the model). In their paper [GHS14], the authors show

that this modest relaxation of the standard model allows for an improved maximum error

resilience. Specifically, they give a novel message exchange protocol with an error resilience of
2
7
> 1

4
. One key idea behind their protocol, is that it “dynamically” allocates more receiving

rounds to the party that received more corruptions. This scheme was believed to be tight. In

fact, [GHS14] contains a proof of optimality that was later found to contain a vulnerability.

In a recent work [EKS20], we show how to break the 2
7

barrier and obtained a protocol

that is resilient to 7
24

> 2
7

fraction of errors. We mention that both [GHS14] and our

result [EKS20] actually give more general results: They show how to simulate any protocol

(designed to work over the noiseless channel) by a protocol that is resilient to 2
7

and 7
24

fraction of corruptions respectively. Such schemes, that convert protocols over the noiseless

channel to noise resilient protocols, are called interactive coding schemes.

One obvious question left open by our work [EKS20] is whether 7
24

is indeed the maximum

error resilience of the adaptive channel. Prior to our current paper, the best known

1Of course, our end goal is to construct short, efficient protocols over a small alphabet.
2Actually, supremum.
3Note that θ > 1

4 − δ for all δ > 0 as the parties can encode their inputs using an error correcting code
of relative distance 1 − δ. Also, θ ≤ 1

4 as there is a party, say Alice, that ‘speaks’ in no more than half of
the rounds. Let Alice’s input be x. The adversary can corrupt the first half of the messages sent by Alice
to make it look like her input is some x′ 6= x. If this happens, Bob cannot tell whether Alice has input x or
x′. We mention that [BR11] also prove that any task can be performed when the noise rate approaches 1

4 ,
by constructing a beautiful simulation protocol building on the groundbreaking work of [Sch96].

4Indeed, the 1
4 impossibility result assumes that the identity of the party that communicates less is known

is advance.

2

impossibility result for both message exchange and interactive coding ruled out protocols

that tolerate a 1
3

fraction of corruptions [GHS14] (also see [EGH16])5.

1.1 Our Results

In this work, we settle the question of the maximum error resilience of the message exchange

task over the adaptive channel, getting an exact constant. The maximum error resilience of

different (mostly one-way) channels was and still is studied extensively by the information

theory community. For many important channels, exact constants are known. This result is

part of an effort to understand two-way (or multi-way) channels to the extent that one-way

channels are understood.

An informal statement of our main result is given in Theorem 1.1. For a formal statement,

see Theorem 4.1 and Theorem 5.1.

Theorem 1.1 (informal). The maximum error resilience of the message exchange task over

the adaptive channel is 5
16

.

To prove the above theorem, we design a protocol that solves the message exchange task

even in the presence of 5
16
− ε fraction of adversarial errors (for every ε > 0). Our protocol is

deterministic, computationally efficient, and consists of only O (1/ε) communication rounds.

Furthermore, it only requires the parties to communicate messages of bit length at most

n+ 1, where n is the length of their inputs.

We also show that no message exchange protocol is resilient to 5
16

fraction of errors,

thereby showing that our protocol is optimal. Such lower bounds are tricky, as when a

message is corrupted, it may not only cause the parties to change their future messages,

but can also cause them to completely change the order in which they speak. Thus, the

parties can dynamically allocate more rounds to the party that received more corruptions,

decreasing the length of the simulation (see [GHS14] and [EKS20] to learn more about this

phenomenon).

We note that since designing a noise resilient message exchange protocol is a special case

of designing an interactive coding scheme, our result also implies that no interactive coding

scheme can tolerate 5
16

fraction of corruptions. Also, a noise resilient protocol for message

exchange implies the same noise resilience for general interactive coding, albeit, with an

exponentially small rate, as the parties can simply exchange their entire inputs (which may

be exponentially large) and compute the function separately. Thus, Theorem 1.1 implies

5The argument is simple and elegant: Consider the message exchange task with bit inputs. Denote the
length of the protocol by 3N , and assume wlog that on inputs x = y = 0, Bob is speaks in at most N out of
the first 2N rounds. Consider the following adversary (only requiring N corruption): on inputs x = 0, y = 1,
corrupt Bob’s messages in the first 2N rounds to be consistent with y = 0. On inputs x = y = 0, corrupt
Bob’s messages in the last N rounds to be consistent with y = 1. Now, if the messages received by Alice are
consistent with y = 0 in the first 2N rounds and with y = 1 in the last N rounds, Alice cannot tell if y = 0
and the adversary corrupted the end of the protocol, or if y = 1 and the beginning was corrupted.

3

that the maximum error resilience of an interactive coding scheme is 5
16

, if one allows an

arbitrarily small rate.

1.2 The Adaptive Model

The adaptive model was defined in this context by [GHS14] and is inspired by extensively

studied models in distributed computing (e.g. radio networks [CK85]). This model assumes

that each party is equipped with a device that can either receive or transmit in every

communication round. If exactly one party transmits, and the adversary decides not to

corrupt the transmission, then the other party receives the transmitted message. In the case

where both parties decide to transmit, neither gets a message, as neither was listening for

one. Finally, if both parties decide to receive, then since there is no one transmitting, nothing

can be assumed about the received messages. This means these messages are controlled by

the adversary, and are not “charged” to its “corruption budget”.

While it seems pessimistic to assume that the messages received by the parties when

they are both receiving are determined by the adversary, this is a crucial in order to avoid

“signaling”6. For a formal definition of this model, see section subsection 3.1, and for

additional motivation for the definition, see [Hae14, GHS14].

1.3 Our Techniques

To prove our lower bound result, showing that no adaptive message exchange protocol is

resilient to 5
16

fraction of corruptions, we identify and measure two key parameters, ∆ and

L, that govern the error resilience of a protocol. We show that upper bounds on ∆ and L

give an upper bound on the error resilience of the protocol.

Assume that the adversary’s budget is f corruptions. A natural approach for designing

a resilient message exchange protocol is to have one party, say Alice, first try to convey her

input to Bob. For this, she may send her input to Bob in each of the first x rounds of the

protocol. How large should x be? Clearly, we want x ≥ f , as otherwise, the adversary can

target these rounds. Our lower bound shows that protocols with high error resilience have x

substantially larger than f . We denote these extra rounds by ∆, i.e., x = ∆ +f . Intuitively,

a large x can allow Bob to give meaningful feedback to Alice about whether he already knows

her input or not. Observe that if Bob still does not know Alice’s input after these x rounds,

then ∆ corruptions must have happened, and Bob can convey this to Alice.

The second parameter, called L, counts the number of “compensation” rounds. Assume

that Bob is unsure about Alice’s input after the first x rounds, and that Alice was able

to receive Bob’s feedback. Then, Alice should transmit more in the remaining rounds, to

allow Bob to know her input. We denote these extra transmissions by L. We remark that

if Bob is unsure and Alice knows that, the rounds will have Alice transmitting and Bob

6For example, if we were to assume that such “simultaneous receives” can be detected, then each party
can use this to signal their input to the other party.

4

receiving. However, if the feedback from Bob is also corrupted, then Alice may also receive

in some of these rounds. In this case, these rounds have both parties receiving (we call such

rounds RR-rounds). While such rounds are risky, as they are controlled by the adversary,

and indeed, noise resilient protocols in prior works [GHS14, EKS20] were designed to avoid

such rounds, perhaps surprisingly, our lower bound proves that they are necessary to get

optimal resilience.

The parameters ∆ and L also guide the construction of our error resilient protocol. We

implement a mechanism that uses the extra ∆ rounds in the beginning of the protocol to give

suitable feedback from Bob to Alice. We note that this feedback mechanism is very different

from the one developed in [EKS20] (which is not as efficient as the one in this paper, but

better suited for interactive communication).

As suggested by our lower bound, our protocol has L > 0 compensation rounds.

Scheduling these rounds is a subtle task, because, as noted above, these rounds can turn into

RR-rounds in some settings. In RR-rounds, the adversary controls the messages received

by the parties, and may use them to cause both parties to receive in the following round

as well. This potentially allows the adversary to control many additional rounds “for free”.

To avoid this phenomenon, we “interleave” adaptive and non-adaptive rounds, meaning that

after a round in which both parties may receive we schedule a round where exactly one party

receives, and the identity of this party is decided in advance. This interleaving controls the

damage done by the RR-rounds.

Even though our protocol is involved and specialized to the message exchange problem,

we believe that ideas from our protocol, e.g., the interleaving technique, can also be used to

get higher error resilience for other interactive tasks.

1.4 Additional Related Works

The works most related to our paper are [EKS20], [GHS14], and [BR11] mentioned above.

Since the study of coding for interactive communication was initiated by Schulman

[Sch92, Sch93, Sch96], numerous works have been published in this area [GMS11, BR11,

Bra12, KR13, BE17, BKN14, GMS14, GHK+18, EGH16, BGMO17, e.g.]. For a great survey

of this field, see [Gel17]. It is, by now, well known that adaptive models can be much more

powerful than non-adaptive models [Hae14, GH14, GHS14, AGS16, HV17, EKS18].

The question of maximum error resilience was also studied for feedback and erasure

channels [EGH16, FGOS15, SW17, HSV18], and for a different adaptive model (interesting in

its own right) where collisions do not occur [AGS16]. The works of [HKV15, WQC17, Ber64]

show that the maximal error rate of the message transfer problem (one-way communication)

can be improved in the presence of (even partial and noisy) feedback. Feedback was shown

to also allow the construction of interactive codes with better rates [Pan13, GH17].

Finally, we note that the problem of message exchange without noise was extensively

studied under the name of two-way source coding in the information theory community

(see, e.g., [Kas85, MI13] and related works), and also in many multi-party models (e.g. the

5

gossiping problem in wireless radio networks).

2 Our Approach

In this section, we build the ideas behind our results in the paper.

2.1 The Lower Bound Attempt of [GHS14]

The starting point of our lower bound of 5
16

is the attempt by [GHS14] to upper bound the

maximum error resilience of adaptive protocols by 2
7
, although our proof is more involved

and goes far beyond [GHS14]. We go over the attempt of [GHS14] before explaining our

contributions. In all that follows, when we say that the adversary corrupts a party, we mean

that it corrupts the messages this party receives (rather than the messages this party sends).

We also use the words listening and receiving interchangeably. Without loss of generality,

we will assume that all the messages sent by a party contain (at least) its input.

The [GHS14] attempt is based on the observation that if the adversary can corrupt a total

of f rounds in the protocol, then Alice will need to receive more than f copies of Bob’s input

to be sure that the message received is indeed his input, and not something the adversary

sent. A similar claim also holds for Bob. In order to receive more than f copies of Bob’s

input, Alice may have to receive more than 2f messages. In particular, this happens if the

adversary uses all of its corruption in confusing Alice and Alice gets f corrupted messages

that are not what Bob sent.

This observation is already enough to show that non-adaptive protocols cannot have error

resilience higher than 1
4

[BR11]. In a non-adaptive protocol, the rounds where each parties

receives is decided before the execution of the protocol commences. If any of the parties

receives at most 2f messages, then the adversary may use all of its corruptions on that party

alone, thereby confusing that party. Thus, in order for the protocol to work, both parties

should receive in more than 2f rounds, implying the error fraction is at most f
2f+2f

= 1
4
.

[GHS14] attempt to adapt this proof to the adaptive setting. Specifically, they imagine a

situation where the adversary does not corrupt the first f messages received by either of the

parties. Rather, after a party has received f messages, the adversary starts corrupting that

party. Importantly, the adversary does this for both the parties simultaneously in a joint

attack, without giving them any indication that the other party is also being corrupted.

At first, corrupting both the parties may seem infeasible as the adversary will have to

use twice as many errors, but this is not actually the case. Since the adversary does not

indicate to any of the parties that both parties are being corrupted, both the parties will

behave as if only they were being corrupted and receive more than f extra messages. Either

the extra f rounds in which each of the parties receive do not intersect a lot, in which case,

the protocol is long and the error resilience is low anyway, or they do intersect a lot, which

is the case we analyze next.

6

Recall that whenever both the parties are receiving in a given round, the adversary gets

to corrupt them for free. Therefore, if there are many such rounds, then the adversary

may have enough budget to corrupt both the parties simultaneously. In fact, if the f extra

messages for the two parties are contained in at most 3f
2

rounds, then there are at least f
2

rounds where both parties are listening, and the adversary can corrupt all of the 3f
2

rounds

by using only f corruptions.

Thus, it seems that the adversary can derail any protocol that has at most f+f+ 3f
2

= 7f
2

messages, implying a maximum error resilience of at most 2
7

for any protocol.

2.2 The Vulnerability in [GHS14] - Asymmetry

The [GHS14] attempt outlined above suffers from a vulnerability, which we describe next.

Let pA be the round such that Alice receives in exactly f rounds before pA, and pB be such

that Bob receives in exactly f rounds before pB. Further, assume without loss of generality

that pA > pB. The joint attack outlined above corrupts Alice after round pA and Bob after

round pB, but does not corrupt Alice between rounds pB and pA (because the adversary does

not corrupt the first f messages received by Alice and by the definition of pA, Alice receives

f messages before pA).

Not corrupting Alice between rounds pB and pA turns out to be okay as long as Bob

does not receive in these rounds. In particular, if the protocol is symmetric and pA is very

close to pB, then the joint attack described above works and implies that the maximum

error resilience of such protocols is indeed 2
7
. In fact, it may seem that any protocol for a

‘symmetric’ problem like message exchange must be symmetric, and therefore the 2
7

bound

should apply. Quite astonishingly, this is not true, as is witnessed by our protocol from

[EKS20] with error resilience 7
24
> 2

7
.

[EKS20] establishes that asymmetric protocols are actually more powerful than

symmetric ones when it comes to error resilience, as it allows for meaningful feedback (see

subsection 1.3 and [EKS20]). Therefore, in order to show a lower bound for all protocols,

we need to understand exactly how much power does asymmetry provide a protocol.

To this end, suppose that Bob receives an additional δ messages between round pB and

pA. These δ messages are corrupted by the adversary, and Bob can tell Alice that these δ

corruptions happened between rounds pB and pA. As the adversary does not corrupt Alice

in these rounds, Alice will receive this information from Bob correctly and know that the

adversary has already spent δ corruption on Bob by round pA.

With this information, Alice knows that the adversary only has f − δ corruptions left

and she only needs to listen to f − δ rounds after round pA. Also, Bob has already received

δ messages between rounds pB and pA, and only needs to receive f − δ more messages after

round pA. By a similar calculation as in the foregoing section, we can conclude that a

protocol that solves message exchange must have at least f + f + δ + 3(f−δ)
2

rounds, and

therefore an error resilience of at most 2f
7f−δ .

7

2.3 Bounding the Asymmetry - A New Attack

In the foregoing section, we did get a bound of 2f
7f−δ on the maximum error resilience of any

protocol. However, this bound is unsatisfactory as it involves an unnatural parameter δ of

the protocol. To make matters worse, in the worst case δ = f , and this bound reduces to

the already known bound of 1
3
.

On the bright side, we also get that any upper bound on δ that is better than the trivial

f would give us a new bound on the maximum error resilience. This is exactly the approach

we take, but before we describe how we get a better upper bound on δ, we point out that

a protocol with optimal error resilience should have a large number of rounds between pB

and pA where Alice is listening. This is because a large number of rounds allows Bob to give

better feedback to Alice and inform her about the corruptions on his end. For the rest of

this sketch, we will assume that this number is equal to f , the largest possible. With this

assumption, we get that before pB, Bob receives in f rounds and Alice receives in 0 rounds,

and in between pB and pA, Bob receives in δ rounds while Alice receives in f rounds, a total

of f + δ rounds.

To get a better upper bound on the parameter δ, we consider a new attack, where the

adversary starts corrupting both the parties after round pB itself, such that both the parties

think that they are the only ones being corrupted, i.e., the adversary is cutting the feedback

as well. It is possible that the adversary cannot sustain this attack till the end of the protocol

with its budget of f corruptions. However, it is still worthwhile to consider this attack till

the point where the adversary has used all of its budget. It turns out that the interesting

case is when this point, say q, is before round pA and we shall assume this henceforth.

As far as Bob is concerned, nothing has changed from the joint attack of [GHS14] to this

new attack. He still gets corrupted after round pB and thinks that he is the only one being

corrupted. Thus, he will still be receiving in all the δ rounds in between pB and pA that

he was receiving in before. However, Alice now gets a different view and starts listening in

some of these δ rounds. Based on Alice’s behavior, we partition the δ rounds as follows (see

Figure 1 for an illustration):

1. The rounds before q where Alice is now listening. Observe that, in our new attack

both the parties are listening in these rounds. Let’s say that there are L such rounds.

2. The rounds before q where Alice continues to transmit. Let’s say that there are ∆ such

rounds.

3. The rounds that are in between q and pA. There are δ−∆−L such rounds. We claim

that, in the interesting case, δ−∆−L ≤ ∆. This is because, as observed above, these

rounds are beneficial for the protocol only if Bob can send meaningful feedback about

the corruptions in these rounds to Alice. The amount of meaningful feedback that Bob

can give Alice is obviously constrained by the number of messages Bob can send to

Alice. We next show that this number is ∆.

8

0 pB q pA T

f ∆ + L δ −∆− L

L+ f −∆ ∆

Bob

Alice

Figure 1: Depiction of the various rounds in our lower bound. The number of times Bob
listens in an interval is written above the interval. The number of times Alice listens in an
interval is written below the interval. The L rounds in the between pB and q where both
parties listen is depicted using overlapping braces.

Recall that the number of messages in between pB and pA that Bob sends Alice is f .

We simply show that f−∆ of these messages lie in between pB and q. This is because,

by definition of q, the adversary spends f corruptions between pB and q. ∆ of these

corruptions are spent on Bob in the rounds where he is listening and Alice is speaking.

The remaining f −∆ must have been spent on Alice implying that Alice was listening

and Bob was transmitting in f −∆ rounds between pB and q.

We conclude that δ ≤ 2∆ + L and it is enough to upper bound ∆ and L in order to upper

bound δ. We describe our approach for this in the next section.

2.4 Bounding ∆ and L

We now describe our approach to upper bounding ∆ and L.

Bounding ∆. Recall that ∆ is the number of rounds in between pB and q where Alice

speaks and Bob listens in our new attack. In our new attack, after round pB Alice thinks

that she is the only one being corrupted. This means that she will aspire to listen at least

2f times between rounds pB and T , where T denotes the total length of the protocol. We

get that

2f ≤ (T − q) + (q − pB −∆) = T − pB −∆ ≤ T − f −∆,

as pB ≥ f . It follows that ∆ ≤ T − 3f .

Bounding L. Recall that L is the number of rounds in between pB and q where both

parties are listening. By definition of q, we have q = pB + f + L ≥ 2f + L. In our new

attack, till round q Alice only receives corrupted messages from Bob. Thus, after round q

she must receive at least f messages from Bob to be sure of his input. We get that

f ≤ T − q ≤ T − 2f − L.

It follows that L ≤ T − 3f .

9

Plugging these bounds into our equation for δ, we get that δ ≤ 3(T − 3f) and therefore,

the error resilience f
T

satisfies:

f

T
≤ 2f

7f − δ
≤ 2f

16f − 3T
=⇒ f

T
≤ 5

16
,

as desired.

2.5 What Optimal Protocols Must Look Like?

Not only does our lower bound improve the state-of-the-art, the arguments behind it also

provide explicit design principles that a protocol with a matching error-resilience must satisfy.

We briefly go over these principles before delving deeper into our protocols. We note here

that a subset of these principles apply to all protocols that break the 2
7

barrier. In particular,

they apply to the protocol in [EKS20].

Asymmetry and feedback. Our discussion makes it clear that Alice and Bob must

necessarily play asymmetric roles in any protocol with error resilience > 2
7
. Specifically,

one of the parties will listen more towards the beginning of the protocol and later provide

feedback about the number of errors it sees to the other party. The other party will then

speak more towards the end of the protocol and act on this feedback.

Consequently, even the error-resilient simulation of a non-interactive task such as message

exchange must have inbuilt interaction between the two parties in the sense that the messages

sent by the parties depend on the communication received by them during the protocol. This

is in contrast to the protocol in [GHS14], where only the order of the messages (and not the

content of the messages) depends on the communication during the protocol (the parties in

the [GHS14] protocol only send their inputs).

RR-rounds are necessary. Also, any protocol that achieves an error-resilience of 5
16

must

exhibit the counter-intuitive feature of having “RR-rounds”, i.e., rounds where both parties

are receiving (even when the corruptions inserted by the adversary are within its budget).

The reason this is surprising is because when both the parties are receiving in the same

round, then the adversary gets to corrupt them for free! Paradoxically however, when we

repeat the calculations of the previous section with the parameter L (that measures the

number of RR-rounds) set to 0, we get that the maximum error resilience is upper bounded

by 4
13
< 5

16
.

This apparent paradox is resolved once one takes a closer look at the lower bound

argument. It is, of course, true that RR-rounds give the adversary free corruptions and

cannot help an execution. Nonetheless, they show up in the lower bound because these

rounds can be converted to rounds where only one of the parties is listening in a different

execution, and help that execution. In fact, if the protocol can suitably adapt, these rounds

can be very flexible and be converted to rounds where Bob is speaking to Alice, if Alice is

10

being targeted by the adversary, and to rounds where Alice is speaking to Bob when Bob

is being targeted by the adversary. We ensure that RR-rounds only happen in our protocol

when the adversary is corrupting both the parties more or less evenly, and there is enough

slack in the analysis to accommodate such rounds.

Even though this reasoning explains why rounds where both parties listen can be helpful,

it is unclear how a protocol should be designed in order to exploit them.

2.6 Our Error-Resilient Simulation

Actualizing the design principles above into a protocol requires a lot of effort. In particular,

one needs to implement a feedback mechanism and schedule the RR-rounds so that they

improve the overall error resilience.

Our feedback mechanism. Our feedback mechanism is inspired by the one in [EKS20],

wherein a feedback mechanism was constructed over the same channel for the same reason.

However, the goal in [EKS20], was to design a feedback mechanism that would allow us

to simulate any interactive task with any error-resilience better than 2
7
. Our goal here is

different. We now want a feedback mechanism that will let us perform a particular task of

message exchange with the best error-resilience possible.

Focusing on a particular task allows us to simplify and strengthen the [EKS20] feedback

mechanism in two ways. Firstly, for the message exchange task, we are able to take the

asymmetry between Alice and Bob to the extreme. Namely, Alice does not have to receive

any message at all till a round after pB when Bob starts giving feedback. Thereafter, Bob

does not have to receive any messages from Alice (other than the messages Bob asked for in

his feedback).

Additionally, this asymmetry means that feedback from Bob to Alice does not have to be

‘online’, as was necessary in [EKS20]. Instead, Bob can receive many messages from Alice at

the beginning of the protocol itself, compute the feedback ‘offline’ based on these messages,

and later send this feedback in all of his future messages. We note that even though Bob can

do an arbitrary computation on the messages received from Alice to compute his feedback,

it turns out that Bob only needs to send 1 bit saying whether he is sure of Alice’s input or

not.

Interleaved RR-rounds. With the feedback mechanism described above, one can already

construct a protocol for message exchange with error resilience 4
13

, the best possible for

protocols without RR-rounds. We omit all details about this protocol but mention that it

has T−3f rounds of the types described in item 1 and item 3 respectively, but no RR-rounds.

We now add RR-rounds to the protocol. More precisely, we add rounds to the protocol

that will behave as RR-rounds if the adversary corrupts the parties in the way specified by

our new attack. To get error resilience 5
16

, we need to ensure that, when this happens, then

by corrupting f messages, the adversary can create T − 3f RR-rounds.

11

It would be ideal if all the f corruptions are needed to create these RR-rounds, and it

is not the case that these can be created with significantly smaller number of corruptions.

This is owing to the fact that if T − 3f RR-rounds can be created by a small number of

corruptions, then the adversary has some corruptions left even after these RR-rounds, that

he can use to derail the protocol, e.g., create even more RR-rounds. As our protocol becomes

very vulnerable after T − 3f RR-rounds have taken place, we cannot even afford a small

number of corruptions after these RR-rounds.

An extreme solution would be to somehow ensure that there are no RR-rounds if the

adversary invests only f − 1 corruptions, but somehow there are T − 3f RR-rounds if the

adversary invests just 1 more corruption. However, this seems to be unimplementable as the

adversary can create such a radical change with just his last corruption. We take a more

moderate approach, ensuring that if the adversary has invested f − k corruptions, for some

k, then he can create T − 3f − Θ(k) RR-rounds. This approach prevents both problems:

Neither does it give the last corruption by the adversary a lot of power nor does it leave the

protocol that vulnerable if the adversary only spends f − k corruptions. In particular, the

protocol can still afford Θ(k) more RR-rounds.

We implement our moderate approach by interleaving rounds that can be potentially RR-

rounds with rounds where Bob is sending messages to Alice. Thus, after every RR-round,

Alice has another chance to hear from Bob that he is still unsure and she needs to speak

more. Either the adversary will corrupt this message from Bob and earn a fresh RR-round

or not corrupt this message in which case Alice knows that Bob is unsure and can transmit

more.

3 Formal Problem Definition

3.1 The Adaptive Model

Adaptive protocols. We describe the two party adaptive model used in the paper. The

model was suggested and studied by [GHS14].

Let Γ be a non-empty set that does not contain the special symbol λ7. Throughout, we

will use Γ+ to denote the set Γ ∪ {λ}. Also, fix sets XA,XB from which Alice and Bob

(respectively) draw their input. A deterministic adaptive protocol Π over the alphabet Γ+

in the adaptive model is defined by a tuple 〈T, fA, fB〉. Here, T is a parameter that denotes

the length of the protocol, while fA and fB are transmission functions of the type:

fA : XA × Γ∗+ → Γ+ fB : XB × Γ∗+ → Γ+.

7It may be helpful to think of λ as silence, i.e., if a party sends λ in a given round, then they choose to
receive in this round, and if the party receives λ in a given round, then either the other party was receiving
in this round or the adversary corrupted the symbol sent by the other party to λ.

12

Adversaries. When a length T protocol is executed in the adaptive model, some of the

messages transmitted may be adversarially corrupted. An adversary Adv for a protocol

Π = 〈T, fA, fB〉 in the adaptive model is defined by the tuple 〈{gAm}m∈[T], {gBm}m∈[T]〉 of

functions where for all m ∈ [T], we have the types:

gAm, g
B
m : XA ×XB → Γ+.

Intuitively, the function fA(·, ·) computes the symbols sent by Alice and the function gAm(·, ·)
is the symbol received by Alice in round m (which may be different from the symbol sent by

Bob in round m due to a corruption), and likewise for Bob. Note that since the adversary

is assumed to know the inputs of both parties, he also knows the (uncorrupted) transcripts.

Let m ∈ [T]. The functions gAm, g
B
m must satisfy: gAm(xA, xB) = λ if fA(xA, gA<m(xA, xB)) 6=

λ, and, similarly, gBm(xA, xB) = λ if fB(xB, gB<m(xA, xB)) 6= λ. Intuitively, the condition

fA(xA, gA<m(xA, xB)) 6= λ corresponds to Alice transmitting (instead of receiving) in round

m and when this happens, we require that the adversary sends her λ, i.e. gAm(xA, xB) = λ,

and likewise for Bob.

Define, for m ∈ [T], the function gA≤m : XA × XB → Γm+ to be concatenation of the m

values {gAm′}m′∈[m], and likewise, define gB≤m. We often omit the subscript when m = T , i.e.,

gA is the same as gA≤T which is the same as {gAm}m∈[T].

Protocol execution. Let Π = 〈T, fA, fB〉 be a protocol and let Adv =

〈{gAm}m∈[T], {gBm}m∈[T]〉 be an adversary for Π. Let xA ∈ XA and xB ∈ XB be inputs.

Define E to be the tuple 〈Π, xA, xB,Adv〉.
We think of E = 〈Π, xA, xB,Adv〉 as inducing a (noisy) execution of the protocol Π, in

the sense that given this tuple, one can generate the view of both parties (or, more generally,

compute any value known to the parties) at every point in the execution. Specifically,

for m ∈ [T], let αm = fA(xA, gA<m(xA, xB)) be the symbol sent by Alice in round m and

βm = fB(xB, gB<m(xA, xB)) be the symbol sent by Bob in round m. If αm = λ, we say that

Alice received in this round, otherwise, we say that Alice transmitted in this round. Similarly,

if βm = λ, we say that Bob received in this round, otherwise, we say that Bob transmitted in

this round.

Types of rounds. For m ∈ [T], if αm 6= λ and βm = λ, we say that type(E,m) = TR.

Similarly, if αm = βm = λ, we say that type(E,m) = RR. We define TT and RT analogously.

To count the number of rounds with type TT amongst the rounds p, p + 1, · · · , q where

p, q ∈ [T], we use the function

#TT(E, [p, q]) = |{p ≤ m ≤ q | type(E,m) = TT}|.

Similarly, we define #TR,#RT, and #RR. When we use an expression like #TT(E, (p, q]),

we mean that the inequality p ≤ m in the equation above is strict, i.e., we only consider the

rounds p+ 1, · · · , q.

13

Corruptions. We say that the adversary corrupted Alice in round m if Bob is transmitting

and Alice is receiving in round m and the symbol transmitted by Bob is different from the

symbol received by Alice. More precisely, using the same notation as above, we have

corrA≤m(E) = |{m′ ∈ [m] | type(E,m′) = RT and fB(xB, gB<m′(x
A, xB)) 6= gAm′(x

A, xB)}|.
corrB≤m(E) = |{m′ ∈ [m] | type(E,m′) = TR and fA(xA, gA<m′(x

A, xB)) 6= gBm′(x
A, xB)}|.

(1)

Finally, define corr≤m(E) = corrA≤m(E) + corrB≤m(E). As before, we omit the subscript when

m = T .

3.2 The Message Exchange Problem

Informally, the message exchange problem requires each party to output the input of the

other party. More formally, let Γ be a set that does not contain the symbol λ. We say

that Π solves the n-length message exchange problem with error tolerance θ over Γ if Π

is an adaptive protocol of length T with input sets XA,XB = {0, 1}n, and there exist

functions outA : XA × ΓT+ → {0, 1}n, outB : XB × ΓT+ → {0, 1}n such that for all adversaries

Adv = 〈gA, gB〉 and xA ∈ XA, xB ∈ XB, we have:

corr(〈Π, xA, xB,Adv〉) ≤ dθT e =⇒ outA(xA, gA(xA, xB)) = xB ∧outB(xB, gB(xA, xB)) = xA.

4 The Lower Bound Part of Theorem 1.1

We are now ready to formally state our “lower-bound” part of Theorem 1.1.

Theorem 4.1. Let θ = 5
16

. Fix an adaptive protocol Π = 〈T, fA, fB〉 where fA : XA×Γ∗+ →
Γ+ and fB : XB × Γ∗+ → Γ+ and |XA|, |XB| ≥ 2. Also, fix any xA1 6= xA2 ∈ XA

and xB1 6= xB2 ∈ XB. There exists an adversary Adv = 〈{gAm}m∈[T], {gBm}m∈[T]〉 with

gAm, g
B
m : XA ×XB → Γ+ such that:

• We have corr(Eij) ≤ dθT e for all i, j ∈ [2], where Eij = 〈Π, xAi , xBj ,Adv〉.

• Either gA(xA1 , x
B
1) = gA(xA1 , x

B
2) or gB(xA1 , x

B
1) = gB(xA2 , x

B
1).

Informally, the above theorem shows that for every protocol there is an adversary that

only corrupts θ fraction of the rounds and ensures that either the corrupted transcript for

Alice on inputs (xA1 , x
B
1) is identical to the corrupted transcript for Alice on inputs (xA1 , x

B
2),

or the corrupted transcript for Bob on inputs (xA1 , x
B
1) is identical to the corrupted transcript

for Bob on inputs (xA2 , x
B
1). Therefore, with noise of rate θ, the adversary can either make

Alice give the same output on inputs (xA1 , x
B
1) and (xA1 , x

B
2), or make Bob give the same output

on inputs (xA1 , x
B
1) and (xA2 , x

B
1). In particular, if in the original protocol both players give

different values on both of these pairs, no protocol can simulate the original protocol in the

presence of noise of rate θ.

14

We note that Theorem 4.1 shows that even protocols for bit exchange cannot be simulated

in the presence of noise of rate θ. We also note that our result holds when the adversary

does not know the inputs of the parties (but rather only knows Π = 〈T, fA, fB〉 and the

transcripts). Indeed, without loss of generality, the first message sent by each party is a

non-constant function of its bit input and such functions are invertible. Thus, the adversary

can figure out the inputs after the first message from each party.

4.1 Proof of Theorem 4.1

This section lays the groundwork for the proof of Theorem 4.1. We break the proof into

several cases, which are dealt with in subsequent sections. The proofs of all lemmas,

corollaries, and theorems formulated in this section are deferred to later sections.

We begin by defining some notation. We let Π = 〈T, fA, fB〉 be fixed for this proof and

assume without loss of generality that θT is an integer. We can also assume that xA1 = xB1 = 0

and xA2 = xB2 = 1. For all adversaries Adv that we refer to in this proof and i, j ∈ {0, 1},
we will use EAdv,i,j to denote 〈Π, i, j,Adv〉. Sometimes, we use the shorthand EAdv to denote

EAdv,0,0.

Observe that the statement of Theorem 4.1 only deals with inputs in the set I =

{(0, 0), (0, 1), (1, 0)} and throughout this proof, we will only define all our adversaries for

inputs in I. When the inputs to Alice and Bob are (1, 1), none of the adversaries that we

define will cause any corruptions.

The adversary Basic. We begin by defining an adversary Basic = 〈αA, αB〉. The adversary

Basic is defined in a way so that αA(0, 0) = αA(0, 1) and αB(0, 0) = αB(1, 0). Thus, the

adversary Basic satisfies the second property of Theorem 4.1. However, Basic may not

satisfy the first property. The rest and the core of the proof lies in using Basic to construct

adversaries that satisfy the first property (while keeping the second property intact).

We define Basic inductively. Suppose that for m ∈ [T], the values αA<m(i, j) and αB<m(i, j)

have been defined for (i, j) ∈ I. Observe that this partial definition fixes the value of

type(EBasic,i,j,m) for all (i, j) ∈ I. We define:

αAm(0, 1) = αAm(0, 0) =

λ , type(EBasic,0,0,m) ∈ {TR,TT}
fB(0, αB<m(0, 0)) , type(EBasic,0,0,m) = RT

fB(1, αB<m(0, 1)) , type(EBasic,0,0,m) = RR

.

αBm(1, 0) = αBm(0, 0) =

λ , type(EBasic,0,0,m) ∈ {RT,TT}
fA(0, αA<m(0, 0)) , type(EBasic,0,0,m) = TR

fA(1, αA<m(1, 0)) , type(EBasic,0,0,m) = RR

.

αAm(1, 0) =

{
λ , type(EBasic,1,0,m) ∈ {TR,TT,RR}
fB(0, αB<m(1, 0)) , type(EBasic,1,0,m) = RT

.

15

αBm(0, 1) =

{
λ , type(EBasic,0,1,m) ∈ {RT,TT,RR}
fA(0, αA<m(0, 1)) , type(EBasic,0,1,m) = TR

.

Our definition of the adversary Basic satisfies the following lemma.

Lemma 4.2. It holds that:

(a) corr(EBasic,0,0) = corrB(EBasic,0,1) = corrA(EBasic,1,0) = 0.

(b) For all m ∈ [T], corrA≤m(EBasic,0,1) ≤ #RT(EBasic,0,0, (0,m]).

(c) For all m ∈ [T], corrB≤m(EBasic,1,0) ≤ #TR(EBasic,0,0, (0,m]).

We prove the following corollary of the above lemma:

Corollary 4.3. If #RT(EBasic,0,0, (0, T]) ≤ θT or #TR(EBasic,0,0, (0, T]) ≤ θT , then,

Theorem 4.1 holds.

Due to Corollary 4.3, we assume that #RT(EBasic,0,0, (0, T]),#TR(EBasic,0,0, (0, T]) > θT

for the rest of this proof. Define pA to be the smallest such that #TR(EBasic,0,0, (0, p
A]) ≥ θT

and pB to be the smallest such that #RT(EBasic,0,0, (0, p
B]) ≥ θT . Due to our assumption

above that #RT(EBasic,0,0, (0, T]),#TR(EBasic,0,0, (0, T]) > θT , both pA and pB are well

defined. Furthermore, as #TR and #RT increase by at most 1 in every round, we have

that

#TR(EBasic,0,0, (0, p
A]) = θT #RT(EBasic,0,0, (0, p

B]) = θT. (2)

Define p = min(pA, pB).

The adversaries A-only and B-only. We next define the two additional adversaries,

A-only = 〈βA, βB〉 and B-only = 〈γA, γB〉. In what follows, we only state the definition

of A-only. The definition of B-only is completely analogous with the roles of Alice and Bob

reversed.

We define A-only to be the same as Basic in the first p rounds, i.e., for all (i, j) ∈ I,

βA≤p(i, j) = αA≤p(i, j) βB≤p(i, j) = αB≤p(i, j).

It remains to define βAm(i, j) and βBm(i, j) for m > p. We do this inductively. Suppose that for

some m > p, the values βA<m(i, j) and βB<m(i, j) have been defined for all (i, j) ∈ I. Observe

that this partial definition fixes the value of type(EA-only,i,j,m) for all (i, j) ∈ I. We have:

βAm(0, 1) = βAm(0, 0) =

λ , type(EA-only,0,1,m) ∈ {TR,TT}
fB(1, βB<m(0, 1)) , type(EA-only,0,1,m) = RT

fB(0, βB<m(0, 0)) , type(EA-only,0,1,m) = RR

.

16

βBm(1, 0) = βBm(0, 0) =

λ , type(EA-only,0,0,m) ∈ {RT,TT}
fA(0, βA<m(0, 0)) , type(EA-only,0,0,m) = TR

fA(1, βA<m(1, 0)) , type(EA-only,0,0,m) = RR

.

βAm(1, 0) =

{
λ , type(EA-only,1,0,m) ∈ {TR,TT,RR}
fB(0, βB<m(1, 0)) , type(EA-only,1,0,m) = RT

.

βBm(0, 1) =

{
λ , type(EA-only,0,1,m) ∈ {RT,TT,RR}
fA(0, βA<m(0, 1)) , type(EA-only,0,1,m) = TR

.

The adversaries A-only and B-only satisfy:

Lemma 4.4. We have:

(a) corr(EA-only,0,1) = corr≤p(EBasic,0,1) and corr(EB-only,1,0) = corr≤p(EBasic,1,0).

(b) corrB(EA-only,0,0) = corrA(EB-only,0,0) = 0.

(c) For all m ∈ [T], corr≤m(EA-only,1,0) ≤ #TR(EA-only,0,0, (0,m]) and corr≤m(EB-only,0,1) ≤
#RT(EB-only,0,0, (0,m]).

The adversary 2-Sided. Next, define the adversary 2-Sided = 〈δA, δB〉 so that

δA(0, 0) = βA(0, 0) δB(0, 0) = γB(0, 0).

We leave the adversary 2-Sided undefined for the inputs (0, 1) and (1, 0) as we will never

need those values. Using the adversary 2-Sided, we define q to be the smallest such that

#TR(E2-Sided, (p, q]) + #RT(E2-Sided, (p, q]) ≥ θT . If no such value q exists, we define it to be

T + 1. Observe that since the sets of TR and RT rounds in an execution are disjoint, it holds

that #TR(E2-Sided, (p, q]) + #RT(E2-Sided, (p, q]) ≤ θT .

For the rest of this proof, we assume without loss of generality that p = pA < pB. The

argument when pA > pB is analogous. This assumption implies that (from Equation 2):

#TR(EBasic,0,0, (0, p]) = θT #RT(EBasic,0,0, (0, p]) < θT. (3)

Next, define the numbers:

∆ = #TR(E2-Sided, (p, q]) L = #RR(E2-Sided, (p, q]). (4)

We can now show:

Theorem 4.5. If max(L,∆) ≥ (1− 3θ)T , then Theorem 4.1 holds.

Owing to Theorem 4.5, we assume for the rest of the proof that max(L,∆) < (1− 3θ)T .

We define q′ to be q if #RT(EB-only, (0, q]) < θT . Otherwise, we let q′ denote the smallest

value such that #RT(EB-only, (0, q
′]) ≥ θT . Observe that in either case, we have q′ ≤ q and

#RT(EB-only, (0, q
′]) ≤ θT. (5)

17

The adversary B-then-A. Next, we define an adversary B-then-A = 〈ζA, ζB〉. The

adversary B-then-A does not corrupt any of the parties when the inputs are (1, 0). When

the inputs are (0, 0) and (0, 1), the first q′ rounds, we define the adversary B-then-A to be

the same as B-only, i.e. for j ∈ {0, 1},

ζA≤q′(0, j) = γA≤q′(0, j) ζB≤q′(0, j) = γB≤q′(0, j).

After round q′, we define the adversary B-then-A inductively. Suppose that, for m > q′, j ∈
{0, 1}, the values ζA<m(0, j) and ζB<m(0, j) have been defined. This partial definition fixes the

value of type(EB-then-A,0,j,m) for j ∈ {0, 1} and the value k(m) = #RT(EB-then-A,0,0, (0,m]) +

#RR(EB-then-A,0,0, (q
′,m]). We define:

ζAm(0, 1) = ζAm(0, 0) =

λ , type(EB-then-A,0,0,m) ∈ {TR,TT}
fB(0, ζB<m(0, 0)) , type(EB-then-A,0,0,m) ∈ {RT,RR} and k(m) ≤ θT

fB(1, ζB<m(0, 1)) , type(EB-then-A,0,0,m) ∈ {RT,RR} and k(m) > θT

.

ζBm(0, 0) =

{
λ , type(EB-then-A,0,0,m) ∈ {RT,TT}
fA(0, ζA<m(0, 0)) , type(EB-then-A,0,0,m) ∈ {TR,RR}

.

ζBm(0, 1) =

{
λ , type(EB-then-A,0,1,m) ∈ {RT,TT}
fA(0, ζA<m(0, 1)) , type(EB-then-A,0,1,m) ∈ {TR,RR}

.

We will denote using r the smallest value such that k(r) ≥ θT . If no such value

exists, we define r = T + 1. Observe that our definition of r satisfies r ≥ q′: if

#RT(EB-only, (0, q]) < θT then, by the definition of q′, it holds that q′ = q. In this case, since

in the first q′ rounds, B-then-A is the same as B-only, we get k(q′) = #RT(EB-then-A,0,0, (0, q
′])+

#RR(EB-then-A,0,0, (q
′, q′]) < θT , and therefore r > q′. Otherwise, we defined q′ to be the

smallest value such that #RT(EB-only, (0, q
′]) ≥ θT , and thus r = q′.

We have:

Lemma 4.6. We have:

(a) corrA≤r(EB-then-A,0,0) = corrA≤q′(EB-then-A,0,0) and corrA(EB-then-A,0,1) = corrA≤r(EB-then-A,0,1).

(b) For j ∈ {0, 1}, we have corrB(EB-then-A,0,j) = corrB≤q′(EB-then-A,0,j).

The adversary Combine. Using B-then-A, we define an adversary Combine = 〈ηA, ηB〉 as

follows:

ηA(0, 0) = ζA(0, 0) ηB(0, 0) = γB(0, 0).

Also, define:

lA = #RT(ECombine, (q
′, T]) + #RR(ECombine, (q

′, T]).

lB = #TR(ECombine, (q
′, T]) + #RR(ECombine, (q

′, T]).
(6)

18

We finish the proof by showing that Theorem 4.1 holds in all of the following exhaustive set

of cases. We note that the only place where we use θ = 5
16

in this proof is in Equation 10 in

the proof of item (c). All the other parts would work for any θ ≥ 2
7
.

Theorem 4.7. We have:

(a) If r = T + 1 or lA ≤ 2θT − #TR(EB-then-A, (p, q
′]) − #RT(EB-then-A, (0, q

′]), then

Theorem 4.1 holds.

(b) If lB ≤ θT − L−∆, then Theorem 4.1 holds.

(c) If r ∈ [T] and lA + lB ≥ 3θT −L−∆−#TR(EB-then-A, (p, q
′])−#RT(EB-then-A, (0, q

′]),

then Theorem 4.1 holds.

4.2 Proofs of the Lemmas in Theorem 4.1

In this section, we prove all the lemmas stated in the proof of Theorem 4.1. We use the

same notation as subsection 4.1. We start with Lemma 4.2 that captures some observations

about the adversary Basic.

Proof of Lemma 4.2. For all the parts, we upper bound the number of corruptions by upper

bounding corrA and corrB using Equation 1.

(a) Let us start by showing that corrA(EBasic,0,0) = 0. For this, consider any round m such

that type(EBasic,0,0,m) = RT. For all such rounds m, the definition of Basic says that

αAm(0, 0) = fB(0, αB<m(0, 0)) implying that corrA(EBasic,0,0) = 0.

To show that corrB(EBasic,0,0) = 0, consider any round m such that type(EBasic,0,0,m) =

TR. For all such rounds m, the definition of Basic says that αBm(0, 0) = fA(0, αA<m(0, 0))

implying that corrB(EBasic,0,0) = 0.

Analogous arguments show that corrB(EBasic,0,1) = corrA(EBasic,1,0) = 0.

(b) In order to upper bound corrA≤m(EBasic,0,1) for m ∈ [T], we consider any round

m′ ≤ m such that type(EBasic,0,1,m
′) = RT. By the definition of types, this

means that fA(0, αA<m′(0, 1)) = λ. We use the definition of Basic, saying that

αAm(0, 0) = αAm(0, 1) for all m ∈ [T], to conclude that fA(0, αA<m′(0, 0)) = λ. This

implies type(EBasic,0,0,m
′) ∈ {RT,RR}. If m′ is such that type(EBasic,0,0,m

′) = RR,

then αAm(0, 1) = fB(1, αB<m(0, 1)) and the round m′ does not count towards the

corruptions. This means that the number of corruptions is upper bounded by the

number of rounds m′ such that type(EBasic,0,0,m
′) = RT implying corrA≤m(EBasic,0,1) ≤

#RT(EBasic,0,0, (0,m]).

(c) Proof of this part is similar to item (b) and is omitted.

19

Proof of Corollary 4.3. We prove assuming that #RT(EBasic,0,0, (0, T]) ≤ θT . A similar

argument shows the corollary assuming #TR(EBasic,0,0, (0, T]) ≤ θT .

Let Adv = 〈gA, gB〉 be an adversary that does not corrupt any of the parties when the

inputs are (1, 0). When the inputs are (0, 0) or (0, 1), the adversary Adv behaves exactly like

Basic. By construction we have

gA(0, 0) = αA(0, 0) = αA(0, 1) = gA(0, 1),

and the second property of Theorem 4.1 holds. It remains to show the first property. Observe

that corr(EAdv,1,0) = 0 by definition. Next, we have corr(EAdv,0,0) = corr(EBasic,0,0) = 0 by

Lemma 4.2. Finally, we have corr(EAdv,0,1) = corr(EBasic,0,1) ≤ θT due to Lemma 4.2 and our

assumption that #RT(EBasic,0,0, (0, T]) ≤ θT .

Next, we show Lemma 4.4. We will make use of the following observation:

Observation 4.8. For any adversaries Adv = 〈gA, gB〉,Adv′ = 〈g′A, g′B〉, inputs i, j, j′ ∈
{0, 1} and m ∈ [T], if gA<m(i, j) = g′A<m(i, j′), then

type(EAdv,i,j,m) ∈ {TT,TR} ⇐⇒ type(EAdv′,i,j′ ,m) ∈ {TT,TR}.

An analogous result holds with B instead of A.

Proof of Lemma 4.4. We prove each part in turn.

(a) We only show the first claim as the second one is symmetric. Observe that for any

round m > p such that type(EA-only,0,1,m) = RT, we have that fB(1, βB<m(0, 1)) =

βAm(0, 1). Also, for any round m > p such that type(EA-only,0,1,m) = TR, we

have that fA(0, βA<m(0, 1)) = βBm(0, 1). Together, we have that corr(EA-only,0,1) =

corr≤p(EA-only,0,1) = corr≤p(EBasic,0,1).

(b) We only show why corrB(EA-only,0,0) = 0 as the proof that corrA(EB-only,0,0) = 0 is

symmetric. Consider a round m ∈ [T] such that type(EA-only,0,0,m) = TR. Using the

definition of Basic if m ≤ p and the definition of A-only if m > p, we have that

fA(0, βA<m(0, 0)) = βBm(0, 0),

implying that corrB(EA-only,0,0) = 0.

(c) We only show the first claim as the second one is similar. For any round m ∈ [T] such

that type(EA-only,1,0,m) = RT, using the definition of Basic if m ≤ p and the definition

of A-only if m > p,

fB(0, βB<m(1, 0)) = βAm(1, 0).

Thus, this round will not be counted as a corruption.

For any round m ∈ [T] such that type(EA-only,1,0,m) = TR, since βBm(1, 0) = βBm(0, 0)

for all m ∈ [T], and by Observation 4.8 (used with Adv′ = Adv), we have that

20

type(EA-only,0,0,m) ∈ {TR,RR}. If type(EA-only,0,0,m) = RR, we have

fA(1, βA<m(1, 0)) = βBm(1, 0).

We conclude a round m can only count to the number of corruptions if

type(EA-only,0,0,m) = TR and the claim follows.

Now, we show Lemma 4.6.

Proof of Lemma 4.6. We prove each part in turn.

(a) To show corrA≤r(EB-then-A,0,0) = corrA≤q′(EB-only,0,0), we simply observe that for all

m ∈ (q′, r] such that type(EB-then-A,0,0,m) = RT, we have

fB(0, ζB<m(0, 0)) = ζAm(0, 0).

Similarly to show that corrA(EB-then-A,0,1) = corrA≤r(EB-then-A,0,1), we observe that for all

m > r such that type(EB-then-A,0,1,m) = RT, since ζAm(0, 1) = ζAm(0, 0) for all m > r, and

by Observation 4.8 (used with Adv′ = Adv), we have type(EB-then-A,0,0,m) = {RT,RR},
and we get:

fB(1, ζB<m(0, 1)) = ζAm(0, 1).

(b) To see why corrB(EB-then-A,0,j) = corrB≤q′(EB-then-A,0,j) for j ∈ {0, 1}, note that for all

j ∈ {0, 1}, m > q′ such that type(EB-then-A,0,j,m) = TR, we have

fA(0, ζA<m(0, j)) = ζBm(0, j).

4.3 Proof of Theorem 4.5

In this section, we prove Theorem 4.5. We use the same notation as subsection 4.1.

Proof. Our proof of Theorem 4.5 is roughly divided into two parts. We first show

Theorem 4.1 assuming L ≥ (1− 3θ)T . We then show that Theorem 4.1 also holds assuming

∆ ≥ (1− 3θ)T > L.

Showing Theorem 4.1 when L ≥ (1− 3θ)T . Let Adv = 〈gA, gB〉 be an adversary that

does not corrupt any of the parties when the inputs are (1, 0). When the inputs are (0, 0),

the adversary Adv behaves like 2-Sided till round q and does not corrupt any of the parties

after that. Finally, when the inputs are (0, 1), the adversary Adv behaves like A-only till

round q. Note that this means that

gA≤q(0, 0) = δA≤q(0, 0) = βA≤q(0, 0) = βA≤q(0, 1) = gA≤q(0, 1).

21

The adversary Adv then ensures that gA>q(0, 0) = gA>q(0, 1) without corrupting Bob (only

corrupting Alice) after round q. Since gA≤q(0, 0) = gA≤q(0, 1) and gA>q(0, 0) = gA>q(0, 1), the

second property of Theorem 4.1 is satisfied.

For the first property, we have that corr(EAdv,1,0) = 0 by definition. We also have:

corr(EAdv,0,0) = corr≤q(EAdv,0,0) = corr≤q(E2-Sided)

≤ corr≤p(E2-Sided) + #TR(E2-Sided, (p, q]) + #RT(E2-Sided, (p, q])

≤ corr≤p(EBasic) + θT (Definitions of 2-Sided and q)

= θT. (Lemma 4.2)

It remains to analyze corr(EAdv,0,1). If q = T + 1, then we simply have

corr(EAdv,0,1) = corr(EA-only,0,1) = corr≤p(EBasic,0,1) ≤ #RT(EBasic,0,0, (0, p]) ≤ θT,

by Lemma 4.4, Lemma 4.2 and Equation 3. On the other hand, if q ∈ [T], by our choice of

q and L, we have

q − p ≥ #RR(E2-Sided, (p, q]) + #TR(E2-Sided, (p, q]) + #RT(E2-Sided, (p, q]) = L+ θT. (7)

We get:

corr(EAdv,0,1) ≤ corr≤q(EAdv,0,1) + T − q
≤ T + corr≤q(EA-only,0,1)− p− (q − p)
≤ T + corr(EA-only,0,1)− p− (L+ θT) (Equation 7)

≤ T + corr(EA-only,0,1)− (θT + #RT(EBasic,0,0, (0, p]))− (L+ θT)

(Equation 3)

≤ θT + corr(EA-only,0,1)−#RT(EBasic,0,0, (0, p]) (Assumption L ≥ (1− 3θ)T)

≤ θT. (Lemma 4.4 and Lemma 4.2)

Showing Theorem 4.1 when ∆ ≥ (1− 3θ)T > L. For this part of the proof, we define

z to be the smallest such that #RT(EA-only,0,0, (p, z]) ≥ θT . If no such value exists, define

z = T + 1. We start by showing that z ≥ q (also recall that q ≥ p). For this it is enough to

show that

#RT(EA-only,0,0, (p, q]) ≤ #RT(E2-Sided, (p, q]) + #RR(E2-Sided, (p, q]) (Observation 4.8)

< #RT(E2-Sided, (p, q]) + #TR(E2-Sided, (p, q]) (As L < ∆)

≤ θT. (Definition of q)

Now, let Adv = 〈gA, gB〉 be an adversary that does not corrupt any of the parties when

the inputs are (1, 0). When the inputs are (0, 0), the adversary Adv behaves like A-only till

round z and does not corrupt any of the parties after that. Finally, when the inputs are

22

(0, 1), the adversary Adv behaves like A-only till round z. Note that this means that

gA≤z(0, 0) = βA≤z(0, 0) = βA≤z(0, 1) = gA≤z(0, 1).

The adversary Adv then ensures that gA>z(0, 0) = gA>z(0, 1) without corrupting Bob (only

corrupting Alice) after round z. Since gA≤z(0, 0) = gA≤z(0, 1) and gA>z(0, 0) = gA>z(0, 1), the

second property of Theorem 4.1 is satisfied.

For the first property, we have that corr(EAdv,1,0) = 0 by definition. We also have:

corr(EAdv,0,0) = corr≤z(EAdv,0,0) = corr≤z(EA-only)

≤ corr≤p(EA-only) + #RT(EA-only, (p, z]) (Lemma 4.4)

≤ corr≤p(EBasic) + θT (Definitions of A-only and z)

= θT. (Lemma 4.2)

It remains to analyze corr(EAdv,0,1). If z = T + 1, then we simply have

corr(EAdv,0,1) = corr(EA-only,0,1) = corr≤p(EBasic,0,1) ≤ θT,

by Lemma 4.4, Lemma 4.2 and Equation 3. On the other hand, if z ∈ [T], we have

z − p ≥ #TT(EA-only, (p, z]) + #TR(EA-only, (p, z]) + #RT(EA-only, (p, z])

≥ #TR(E2-Sided, (p, z]) + #RT(EA-only, (p, z]) (Observation 4.8)

≥ ∆ + θT. (Definitions of ∆ and z, and z ≥ q)

Using this, we get:

corr(EAdv,0,1) ≤ corr≤z(EAdv,0,1) + T − z
≤ T + corr≤z(EA-only,0,1)− p− (z − p)
≤ T + corr(EA-only,0,1)− p− (∆ + θT)

≤ T + corr(EA-only,0,1)− (θT + #RT(EBasic,0,0, (0, p]))− (∆ + θT)

(Equation 3)

≤ θT + corr(EA-only,0,1)−#RT(EBasic,0,0, (0, p]) (Assumption ∆ ≥ (1− 3θ)T)

≤ θT. (Lemma 4.4 and Lemma 4.2)

4.4 Proof of Theorem 4.7

In this section, we prove Theorem 4.7. We prove each part separately and use the same

notation as subsection 4.1.

23

4.4.1 Proving item (a)

Proof of item (a) of Theorem 4.7. Let Adv = B-then-A. The second property of Theorem 4.1

holds by construction.

For the first property, we observe that corr(EAdv,1,0) = 0 by definition. By Theorem 4.5,

if max(L,∆) ≥ (1− 3θ)T , then Theorem 4.1 holds, and we are done. Thus, we assume

L,∆ < (1− 3θ)T . We have:

corr(EB-then-A,0,0) ≤ corrB≤q′(EB-then-A,0,0) + corrA≤q′(EB-then-A,0,0) + #RT(EB-then-A,0,0, (r, T])

(Lemma 4.6)

≤ corrB≤q′(EB-only,0,0) + corrA≤q′(EB-only,0,0) + #RT(EB-then-A,0,0, (r, T])

≤ corrB≤q′(EB-only,0,0) + #RT(EB-then-A,0,0, (r, T]) (Lemma 4.4)

≤ corrB≤p(EB-only,0,0) + #TR(EB-only,0,0, (p, q
′]) + #RT(EB-then-A,0,0, (r, T])

≤ corrB≤p(EBasic,0,0) + #TR(EB-only,0,0, (p, q
′]) + #RT(EB-then-A,0,0, (r, T])

≤ #TR(EB-only,0,0, (p, q
′]) + #RT(EB-then-A,0,0, (r, T]). (Lemma 4.2)

If r = T + 1, we continue as follows:

corr(EB-then-A,0,0) ≤ #TR(EB-only,0,0, (p, q
′])

≤ #TR(E2-Sided,0,0, (p, q
′]) + #RR(E2-Sided,0,0, (p, q

′]) (Observation 4.8)

≤ ∆ + L (As q′ ≤ q, Equation 4)

≤ 2T (1− 3θ) (L,∆ < (1− 3θ)T)

≤ θT. (θ ≥ 2/7)

If r ∈ [T], we continue as follows:

corr(EB-then-A,0,0) ≤ #TR(EB-only,0,0, (p, q
′]) + #RT(EB-then-A,0,0, (r, T])

≤ #TR(EB-then-A, (p, q
′]) + #RT(ECombine, (r, T]) + #RR(ECombine, (r, T])

(Observation 4.8)

≤ lA + #TR(EB-then-A, (p, q
′])−#RT(ECombine, (q

′, r])−#RR(ECombine, (q
′, r])

(Equation 6)

≤ lA + #TR(EB-then-A, (p, q
′])−#RT(EB-then-A, (q

′, r])−#RR(EB-then-A, (q
′, r])

(Observation 4.8)

≤ lA + #TR(EB-then-A, (p, q
′]) + #RT(EB-then-A, (0, q

′])− θT (As r ∈ [T])

≤ θT,

by our assumption on lA. Finally, we analyze corr(EB-then-A,0,1).

corr(EB-then-A,0,1) ≤ corrA≤r(EB-then-A,0,1) + corrB≤q′(EB-then-A,0,1) (Lemma 4.6)

≤ corr≤q′(EB-only,0,1) + #RT(EB-then-A,0,1, (q
′, r])

24

≤ corr≤q′(EB-only,0,1) + #RT(EB-then-A,0,0, (q
′, r]) + #RR(EB-then-A,0,0, (q

′, r])

(Observation 4.8)

≤ #RT(EB-only,0,0, (0, q
′]) + #RT(EB-then-A,0,0, (q

′, r]) + #RR(EB-then-A,0,0, (q
′, r])

(Lemma 4.4)

≤ #RT(EB-then-A,0,0, (0, r]) + #RR(EB-then-A,0,0, (q
′, r]) ≤ θT,

by definition of r.

4.4.2 Proving item (b)

Proof of item (b) of Theorem 4.7. Let Adv = 〈gA, gB〉 be an adversary that does not corrupt

any of the parties when the inputs are (0, 1). When the inputs are (0, 0) or (1, 0),

the adversary Adv behaves the same as B-only. By the definition of B-only, we have

gB(0, 0) = gB(1, 0) and the second property of Theorem 4.1 holds. It remains to show

the first property.

For this property, we have corr(EAdv,0,1) = 0 by definition. We also have:

corr(EAdv,0,0) = corr(EB-only,0,0)

= corrB(EB-only,0,0) (Lemma 4.4)

≤ corrB≤p(EB-only,0,0) + #TR(EB-only,0,0, (p, q]) + #TR(EB-only,0,0, (q, T])

= #TR(EB-only,0,0, (p, q]) + #TR(EB-only,0,0, (q, T]) (Lemma 4.2)

≤ #TR(E2-Sided, (p, q]) + #RR(E2-Sided, (p, q])

+ #TR(ECombine, (q, T]) + #RR(ECombine, (q, T]) (Observation 4.8)

≤ ∆ + L+ lB (Equation 4, Equation 6 and q′ ≤ q)

≤ θT. (Assumption lB ≤ θT − L−∆)

Finally, we analyze corr(EAdv,1,0). We have:

corr(EAdv,1,0) = corr(EB-only,1,0)

= corr≤p(EBasic,1,0) (Lemma 4.4)

≤ θT. (Lemma 4.2 and Equation 3)

4.4.3 Proving item (c)

We prove of item (c) of Theorem 4.7. The proof uses the following lemma.

Lemma 4.9. If r ∈ [T] and lA + lB ≥ 3θT − L − ∆ − #TR(EB-then-A, (p, q
′]) −

25

#RT(EB-then-A, (0, q
′]), we have

2T ≥ #RT(ECombine, (q
′, T]) + #TR(ECombine, (q

′, T]) + #TR(EB-then-A, (p, q
′]) + 6θT −L− 2∆.

Proof. We use the following inequalities:

p ≥ #RT(EB-then-A, (0, p]) + #TT(EB-then-A, (0, p]) + #TR(EB-then-A, (0, p])

= #RT(EB-then-A, (0, p]) + #TT(EB-then-A, (0, p]) + #TR(EBasic, (0, p])

= #RT(EB-then-A, (0, p]) + #TT(EB-then-A, (0, p]) + θT. (Equation 3)

q′ − p ≥ #RT(EB-then-A, (p, q
′]) + #TT(EB-then-A, (p, q

′]) + #TR(EB-then-A, (p, q
′]).

T − q′ ≥ #RT(ECombine, (q
′, T]) + #TR(ECombine, (q

′, T]) + #RR(ECombine, (q
′, T]).

Multiplying the last inequality by 2 and using Equation 6, we get:

2T − 2q′ ≥ #RT(ECombine, (q
′, T]) + #TR(ECombine, (q

′, T]) + lA + lB. (8)

Adding the lower bounds on p, q′ − p, we get:

q′ ≥ #RT(EB-then-A, (0, q
′]) + #TT(EB-then-A, (0, q

′]) + #TR(EB-then-A, (p, q
′]) + θT.

We use this to continue Equation 8 as follows:

2T ≥ #RT(ECombine, (q
′, T]) + #TR(ECombine, (q

′, T]) + lA + lB + 2θT

+ 2 ·#RT(EB-then-A, (0, q
′]) + 2 ·#TT(EB-then-A, (0, q

′]) + 2 ·#TR(EB-then-A, (p, q
′])

≥ #RT(ECombine, (q
′, T]) + #TR(ECombine, (q

′, T]) + 5θT − L−∆

+ #RT(EB-then-A, (0, q
′]) + #TT(EB-then-A, (0, q

′]) + #TR(EB-then-A, (p, q
′])

= #RT(ECombine, (q
′, T]) + #TR(ECombine, (q

′, T]) + 5θT − L−∆

+ #RT(EB-only, (0, q
′]) + #TT(EB-only, (0, q

′]) + #TR(EB-then-A, (p, q
′]).

(9)

We now consider two cases and analyze the term #RT(EB-only, (0, q
′])+#TT(EB-only, (0, q

′])

in each case. If #RT(EB-only, (0, q]) < θT , then we have q′ = q ≤ r ≤ T and:

#RT(EB-only, (0, q
′]) + #TT(EB-only, (0, q

′])

= #RT(EB-only, (0, q]) + #TT(EB-only, (0, q])

= #RT(E2-Sided, (0, q]) + #TT(E2-Sided, (0, q]) (Observation 4.8)

≥ #RT(E2-Sided, (p, q])

≥ θT −∆. (As q ∈ [T] and Equation 4)

Otherwise, we have

#RT(EB-only, (0, q
′]) + #TT(EB-only, (0, q

′]) ≥ #RT(EB-only, (0, q
′]) = θT ≥ θT −∆.

Thus, in either case, we have #RT(EB-only, (0, q
′]) + #TT(EB-only, (0, q

′]) ≥ θT −∆. Plugging

26

into Equation 9, we get:

2T ≥ #RT(ECombine, (q
′, T]) + #TR(ECombine, (q

′, T]) + #TR(EB-then-A, (p, q
′]) + 6θT −L− 2∆.

Proof of item (c) of Theorem 4.7. Let the Adv = 〈gA, gB〉 be such that there are no

corruptions when the inputs are (0, 1). When the inputs are (0, 0), the adversary Adv behaves

like as Combine. When the inputs are (1, 0), the adversary Adv behaves like as B-only. By the

definition of Combine, we have gB(0, 0) = gB(1, 0) and the second property of Theorem 4.1

is satisfied.

For the first property, we start by observing that corr(EAdv,0,1) = 0 by definition. Also

corr(EAdv,0,0) = corr(ECombine)

≤ corr≤q′(ECombine) + #TR(ECombine, (q
′, T]) + #RT(ECombine, (q

′, T])

= corr≤q′(EB-only) + #TR(ECombine, (q
′, T]) + #RT(ECombine, (q

′, T])

= corrB≤q′(EB-only) + #TR(ECombine, (q
′, T]) + #RT(ECombine, (q

′, T])

(Lemma 4.4)

≤ corrB≤p(EB-only) + #TR(EB-only, (p, q
′]) + #TR(ECombine, (q

′, T])

+ #RT(ECombine, (q
′, T])

≤ corrB≤p(EBasic) + #TR(EB-then-A, (p, q
′]) + #TR(ECombine, (q

′, T])

+ #RT(ECombine, (q
′, T])

≤ #TR(EB-then-A, (p, q
′]) + #TR(ECombine, (q

′, T]) + #RT(ECombine, (q
′, T])

(Lemma 4.2)

≤ 2T (1− 3θ) + L+ 2∆. (Lemma 4.9)

By Theorem 4.5, if max(L,∆) ≥ (1− 3θ)T , then Theorem 4.1 holds, and we are done. Thus,

we assume L,∆ < (1− 3θ)T . We get

corr(EAdv,0,0) ≤ 2T (1− 3θ) + L+ 2∆ ≤ 5T (1− 3θ).

To finish, we use θ = 5
16

to get

corr(EAdv,0,0) ≤ 5T (1− 3θ) ≤ θT. (10)

Finally, we have:

corr(EAdv,1,0) = corr(EB-only,1,0)

= corr≤p(EBasic,1,0) (Lemma 4.4)

≤ θT. (Lemma 4.2 and Equation 3)

27

5 The 5
16 Error Resilient Protocol

We now show the “upper-bound” part of Theorem 1.1. This is formalized in Theorem 5.1

below:

Theorem 5.1. Let n ∈ N and ε > 0. There exists a set Γ, |Γ| = 2n+1 and a deterministic,

adaptive protocol Π of length T = O
(
1
ε

)
that solves the n-length message exchange problem

with error tolerance θ = 5
16
− ε over Γ.

The proof of Theorem 5.1 spans the remainder of this section. Fix n ∈ N, ε > 0 and let

Γ = {0, 1}n+1. We assume without loss of generality that 1
ε

is an integer and a multiple of

24. We define a protocol Π for Alice and Bob in Algorithm 1 and Algorithm 2 respectively

and show that this protocol satisfies Theorem 5.1.

5.1 Our Protocols

We begin with some notation. We will use x ∈ {0, 1}n to denote the input of Alice and

y ∈ {0, 1}n to denote the input of Bob. Define N = 1
ε
. The length of our protocol is

T = 16N = 16
ε

. We divide the 16N rounds in our protocol into 5 stages. We define

stageA = [6N], stageB(0) = (6N, 8N], stageB(1) = (8N, 11N], stageB(2) = (11N, 15N], and

stageC = (15N, 16N]. Define NA-Bob = (6N, 8N]∪{8N+1, 8N+3, 8N+4, 8N+6, · · · , 11N−
2, 11N} ∪ {11N + 2, 11N + 4, 11N + 6, · · · , 15N}. Observe that |NA-Bob| = 6N . We break

ties in all the arg max in our protocols arbitrarily.

5.2 Protocol Analysis

This section shows that the protocol, Π, given in Algorithm 1 and Algorithm 2 solves the

n-length message exchange problem with error tolerance θ = 5
16
− ε over Γ, thereby proving

Theorem 5.1. In order to show this, we show that for all adversaries Adv = 〈gA, gB〉 and

x, y ∈ {0, 1}n, we have:

corr(〈Π, x, y,Adv〉) ≤ dθT e =⇒ ỹ = y ∧ x̃ = x.

For the rest of the text, fix inputs x, y ∈ {0, 1}n and an adversary Adv = 〈gA, gB〉 for our

protocol with corr(E) < 5N − 5, where E = 〈Π, x, y,Adv〉. As explained in subsection 3.1,

fixing E describes an execution of the protocol completely, and fixing E also fixes the types

of the rounds and the values of all the variables used by Algorithm 1 and Algorithm 2 at

any point in this execution. From now on, we omit the parameter E and write, for example,

corr≤T instead of corr≤T (E), etc. We use RR to denote the set of rounds where both parties

are receiving, i.e. all rounds m ∈ [T] such that type(E,m) = RR, and RT, TT, TR, are

defined analogously.

Note that both Algorithm 1 and Algorithm 2 loop over i ∈ [16N]. We use vari to denote

the value of a variable var at the end of iteration i (here var may be any of the variables

28

Algorithm 1 Alice’s side of our protocol

Input: String x ∈ {0, 1}n.
Output: String ỹ ∈ {0, 1}n.

1: ∀s ∈ {0, 1}n : sv(s), uv(s)← 0.
2: buf ← 6N .
3: isBobSure← False.
4: for all i ∈ [16N] do
5: if i ∈ NA-Bob or isBobSure or buf = 0 then
6: Receive (ŷ, sure) from Bob.
7: if sure or isBobSure or i /∈ NA-Bob then
8: sv(ŷ)← sv(ŷ) + 1.
9: else

10: if uv(ŷ) = maxt∈{0,1}n uv(t) then
11: buf ← min(N, buf + 1).
12: end if
13: uv(ŷ)← uv(ŷ) + 1.
14: end if
15: else
16: Send x to Bob.
17: buf ← buf − 1.
18: end if
19: if i+ |NA-Bob ∩ [i]| −maxt∈{0,1}n uv(t)−

∑
t∈{0,1}n sv(t) + uv(t) ≥ 10N then

20: isBobSure← True.
21: end if
22: end for
23: ∀s ∈ {0, 1}n : tv(s)← sv(s) + uv(s) · 1

(
uv(s) < maxt∈{0,1}n uv(t)

)
.

24: if maxt∈{0,1}n tv(t) ≥
∑

t∈{0,1}n sv(t) + uv(t)− 5N then

25: Output ỹ ← arg maxt∈{0,1}n tv(t).
26: else
27: Output ỹ ← arg maxt∈{0,1}n sv(t) + uv(t).
28: end if

29

6

2

1 2

2 2

1

stageA

stageB(0)

stageB(1)

stageB(2)

stageC

ALICE BOB
0

6

8

11

15

16

Figure 2: A depiction of the 5 stages in our protocol in section 5 with their relative lengths.

30

Algorithm 2 Bob’s side of our protocol

Input: String y ∈ {0, 1}n.
Output: String x̃ ∈ {0, 1}n.
29: ∀s ∈ {0, 1}n : v(s)← 0.
30: isSure← False.
31: for all i ∈ [16N] do
32: if isSure or i ∈ NA-Bob then
33: Send (y, isSure) to Alice.
34: else
35: Receive x̂ from Alice.
36: v(x̂)← v(x̂) + 1.
37: if v(x̂) ≥ 5N then
38: isSure← True.
39: end if
40: end if
41: end for
42: Output x̃← arg maxt∈{0,1}n v(t).

used by the protocols or one of the previously defined values e.g., corri will denote corr≤i,

etc.). The notation var0 will denote the value of var at the beginning of the protocol. We

omit the subscript when we refer to the value of var at the end of the protocol, i.e. var16N .

We also omit the subscript when making claims like, “the value of the variable var only

increases”. These two cases can be differentiated from context.

As we chose the variables in Algorithm 1 and Algorithm 2 to be disjoint, we will leave

implicit which protocol a particular variable belongs to. We also use the convention that

True = 1 and False = 0, and treat boolean values as numeric (e.g., we can write True > False).

5.2.1 Structural Lemmas About Our Protocol

We start with some simple observations about our protocol.

Observation 5.2. We have:

1. In every iteration, the value of each of the numeric (and boolean) variables, except buf,

used by Algorithm 1 and Algorithm 2, can either increase by 1 or stay unchanged. The

same holds for the value of
∑

t∈{0,1}n sv(t) + uv(t) and the value in Line 20, i.e.

i+ |NA-Bob ∩ [i]| − max
t∈{0,1}n

uv(t)−
∑

t∈{0,1}n
sv(t) + uv(t).

The value of buf can either increase by 1, stay unchanged, or decrease by 1.

2. For all i ∈ [16N], we have |(RR ∪ RT) ∩ [i]| =
∑

t∈{0,1}n svi(t) + uvi(t).

3. NA-Bob ⊆ RT.

31

4. For all i ∈ [6N], we have bufi = 6N − i and i ∈ TR ∪ TT.

Bounding the number of times Alice transmits. The following lemma contains what

we show about the set TT ∪ TR of all the iterations where Alice transmits.

Lemma 5.3. We have [6N] ⊆ TT ∪ TR and for all 6N ≤ i ≤ i′

−2N ≤ |(TR ∪ TT) ∩ (i, i′]|+ bufi′ − bufi −
(

max
t∈{0,1}n

uvi′(t)− max
t∈{0,1}n

uvi(t)

)
≤ 0.

Furthermore, if bufi′′−1 < N for all i′′ ∈ (i, i′] ∩ (RT ∪ RR), we have:

|(TR ∪ TT) ∩ (i, i′]|+ bufi′ − bufi −
(

max
t∈{0,1}n

uvi′(t)− max
t∈{0,1}n

uvi(t)

)
= 0.

Proof. The claim 6N ⊆ TT∪TR follows from item 4 in Observation 5.2. For the other claim,

we observe that:

bufi′ − bufi =
∑

i′′∈(i,i′]

bufi′′ − bufi′′−1

=
∑

i′′∈(i,i′]∩(TR∩TT)

bufi′′ − bufi′′−1 +
∑

i′′∈(i,i′]∩(RT∪RR)

bufi′′ − bufi′′−1

= −|(TR ∪ TT) ∩ (i, i′]|+
∑

i′′∈(i,i′]∩(RT∪RR)

1 (bufi′′ − bufi′′−1 = 1) .

Next, we observe that, for all i′′ ∈ (i, i′] ∩ (RT ∪ RR), we have:

1 (bufi′′ − bufi′′−1 = 1) = 1

(
max

t∈{0,1}n
uvi′′(t)− max

t∈{0,1}n
uvi′′−1(t) = 1

)
· 1 (bufi′′−1 < N) .

This immediately gives:

bufi′ − bufi ≤ −|(TR ∪ TT) ∩ (i, i′]|+
∑

i′′∈(i,i′]∩(RT∪RR)

1

(
max

t∈{0,1}n
uvi′′(t)− max

t∈{0,1}n
uvi′′−1(t) = 1

)
= −|(TR ∪ TT) ∩ (i, i′]|+ max

t∈{0,1}n
uvi′(t)− max

t∈{0,1}n
uvi(t).

We also have:

bufi′ − bufi ≥ −|(TR ∪ TT) ∩ (i, i′]|+
∑

i′′∈(i,i′]∩(RT∪RR)

1

(
max

t∈{0,1}n
uvi′′(t)− max

t∈{0,1}n
uvi′′−1(t) = 1

)
−

∑
i′′∈(i,i′]∩(RT∪RR)

1 (bufi′′−1 = N) · 1 (i′′ ∈ NA-Bob) · 1 (isBobSurei′′−1 = False)

≥ −|(TR ∪ TT) ∩ (i, i′]|+ max
t∈{0,1}n

uvi′(t)− max
t∈{0,1}n

uvi(t)

−
∑

i′′∈(i,i′]∩(RT∪RR)

1 (bufi′′−1 = N) · 1 (i′′ − 1, i′′ ∈ NA-Bob)

32

≥ −|(TR ∪ TT) ∩ (i, i′]|+ max
t∈{0,1}n

uvi′(t)− max
t∈{0,1}n

uvi(t)− 2N.

The furthermore part is straightforward from our derivation.

The variable isBobSure. We now establish some properties of the variable isBobSure of

Alice.

Lemma 5.4. For all i ∈ [16N], we have isBobSurei = True =⇒ isSurei = True.

Proof. Proof by contradiction. Suppose there is an i′ such that isBobSurei′ = True and

isSurei′ = False. We let i denote the smallest such i′. First, by our choice of i, we bound

corrA as:

corrA ≥ |NA-Bob ∩ [i]| − |{j ∈ NA-Bob ∩ [i] | (ŷj, surej) = (y,False)}|
≥ |NA-Bob ∩ [i]| − uvi(y)

≥ |NA-Bob ∩ [i]| − max
t∈{0,1}n

uvi(t).

(11)

Also, as isSurei = False, by Observation 5.2, we have that TT ∩ [i] = ∅. We get that:

corrB ≥ |(TT ∪ TR) ∩ [i]| − |{j ∈ (TT ∪ TR) ∩ [i] | x̂j = x}|
≥ |(TT ∪ TR) ∩ [i]| − vi(x)

≥ |(TT ∪ TR) ∩ [i]| − 5N.

(12)

Combining, we have:

10N = |(NA-Bob ∪ TR ∪ TT) ∩ [i]| − max
t∈{0,1}n

uvi(t) (Observation 5.2)

≤ corr + 5N (Equation 11 and Equation 12)

< 10N,

a contradiction.

Lemma 5.5. isBobSure15N+buf15N = True and isBobSure11N−1 = False.

Proof. We prove both claims by contradiction.

For the first claim, observe from our protocol that, if isBobSure15N+buf15N = False, then

Alice transmits in iterations (15N, 15N+buf15N] and thus, buf15N+buf15N = 0. By Lemma 5.3,

we get that (define i∗ = 15N + buf15N):

10N ≤ 12N + |(TR ∪ TT) ∩ (6N, i∗]| − max
t∈{0,1}n

uvi∗(t)

≤ |(NA-Bob ∪ TR ∪ TT) ∩ [i∗]| − max
t∈{0,1}n

uvi∗(t).

33

implying that isBobSurei∗ = True, a contradiction.

For the second claim, if maxt∈{0,1}n uv11N−1(t) ≥ N , then, we have a contradiction as by,

Observation 5.2,

10N ≤ |(NA-Bob ∪ TR ∪ TT) ∩ [11N − 1]| − max
t∈{0,1}n

uv11N−1(t)

≤ 10N − 1.

Otherwise, as buf only increases when maxt∈{0,1}n uv(t) does, we get that bufi′−1 < N for all

i′ ∈ (6N, 11N]. We have

10N ≤ |(NA-Bob ∪ TR ∪ TT) ∩ [11N − 1]| − max
t∈{0,1}n

uv11N−1(t)

≤ |NA-Bob ∩ [11N − 1]|+ |(TR ∪ TT) ∩ [11N − 1]| − max
t∈{0,1}n

uv11N−1(t)

< 10N + |(TR ∪ TT) ∩ (6N, 11N − 1]| − max
t∈{0,1}n

uv11N−1(t)

≤ 10N, (Lemma 5.3)

a contradiction.

Defining iA and iB. We define iB ∈ [16N] to be the smallest such that isSureiB = True.

Similarly, define iA ∈ [16N] to be the smallest such that isBobSureiA = True. Owing to

Lemma 5.4 and Lemma 5.5, we have that isSure = isBobSure = True. and therefore, both

iA and iB are well defined.

Furthermore, from Lemma 5.4 and Lemma 5.5, we conclude that 11N, iB ≤ iA and from

Algorithm 2 that 5N ≤ iB /∈ NA-Bob. We have:

Lemma 5.6. We have for all i ≤ iB that corrBi ≥ |[i] \ NA-Bob| − 5N − |RR ∩ [i]|.

Proof. Observe that [i]\NA-Bob ⊆ TR∪RR =⇒ |TR ∩ [i]| ≥ |[i] \ NA-Bob|− |RR ∩ [i]|. We

know that Alice sends x in iteration i′ for all i′ ∈ TR. Therefore,

corrBi ≥ |TR ∩ [i]| − v(x) ≥ |[i] \ NA-Bob| − |RR ∩ [i]| − 5N.

Lemma 5.7. (TR ∪ RR) ∩ (iB, 16N] = ∅ and TT ⊆ (iB, iA] ⊆ RT ∪ TT.

Proof. Bob transmits in all iterations > iB. It follows that (TR ∪ RR) ∩ (iB, 16N] = ∅ and

(iB, iA] ⊆ RT ∪ TT. To see why TT ⊆ (iB, iA], observe that Alice receives in all iterations

> iA and in iterations i ≤ iB, Bob transmits only if i ∈ NA-Bob when Alice is receiving.

The set RR. We finish this section with lemmas concerning the set RR. Throughout, we

use that i ∈ RR =⇒ i ≤ iB ≤ iA =⇒ bufi−1 = bufi = 0. This is due to Lemma 5.7.

34

Lemma 5.8. If, for some i > 8N , we have i /∈ NA-Bob, bufi = 0, then, for i ≤ i′ ≤ iA, we

have

0 ≤ bufi′ ≤ |(i, i′] ∩ NA-Bob| − |(i, i′] \ NA-Bob|.

Proof. We start with the following simple claims:

Claim 5.9. For i′′ ≥ 15N satisfying bufi′′ = 0, we have i′′ ≥ iA.

Proof. Observation 5.2 says that bufi decreases by at most 1 in any iteration. Thus, we have

i′′ ≥ 15N + buf15N ≥ iA by Lemma 5.5.

Claim 5.10. If 15N < i′ ≤ iA, then bufi′ = bufi′−1 − 1.

Proof. From the contrapositive of Claim 5.9, we have that bufi′−1 > 0. This together with

15N < i′ ≤ iA implies that Alice transmits in iteration i′ and the claim follows.

The claim is trivial if i = iA, so assume that i < iA. We have from Claim 5.9 that

i < 15N . We focus on showing bufi′ ≤ |(i, i′] ∩ NA-Bob| − |(i, i′] \ NA-Bob| as the other

inequality is trivial. Due to Claim 5.10, we can assume without loss of generality that

i′ ≤ 15N . Moreover, as our definition of NA-Bob implies that the right hand side decreases

with i (for values i /∈ NA-Bob), we can assume without loss of generality that i ≤ i′ is the

largest such that i /∈ NA-Bob, bufi = 0. We have:

bufi′ =
∑

i′′∈(i,i′]

bufi′′ − bufi′′−1 =
∑

i′′∈(i,i′]∩NA-Bob

(bufi′′ − bufi′′−1) +
∑

i′′∈(i,i′]\NA-Bob

(bufi′′ − bufi′′−1).

Now, as i ≤ i′ is the largest such that i /∈ NA-Bob, bufi = 0, we get that for all

i′′ ∈ (i, i′] \ NA-Bob, we have bufi′′ > 0 =⇒ bufi′′ = bufi′′−1 − 1. This gives:

bufi =
∑

i′′∈(i,i′]∩NA-Bob

(bufi′′ − bufi′′−1)− |(i, i′] \ NA-Bob|

≤ |(i, i′] ∩ NA-Bob| − |(i, i′] \ NA-Bob|.

Lemma 5.11. It holds that:

1. If RR∩[11N] 6= ∅, then corrBiB ≥ N , corrAiB ≥ 2·(N + |RR|)−1, and RR∩(11N, 16N] = ∅.

2. If RR ∩ (11N, 15N] 6= ∅, then corrBiB ≥ 2N , corrAiB ≥ N and corriB ≥ 4N + |RR| − 2,

and RR ∩ (15N, 16N] = ∅.

3. RR ∩ (15N, 16N] = ∅.

It follows that |RR| ≤ min(N, corrA, corrB).

Proof. We prove each part separately.

35

1. If RR∩ [11N] 6= ∅, then, let r be the largest element in RR∩ [11N]. Due to Lemma 5.7

and Observation 5.2, we have that iB ≥ 6N and [6N] ∈ TR. The claim about corrBiB
then follows from Lemma 5.6 and iB ≥ 6N .

Next, we argue that RR ∩ (11N, 16N] = ∅. For this, we first show:

Claim 5.12. For all i′ ∈ (6N, 11N), we have bufi′ < N .

Proof. For i′ ≥ r, we use Lemma 5.8 to conclude that bufi′ ≤ |(r, i′] ∩ NA-Bob| −
|(r, i′] \ NA-Bob| < N for all i′ < 11N by definition of NA-Bob. For i′ < r, we proceed

via contradiction. If bufi′ = N for some i′ > 6N , then as buf decreases by at most 1

in every iteration and decreases only when Alice transmits, we get from the definition

of NA-Bob and the fact that Alice does not transmit in iterations in NA-Bob that

bufr−1 > 0, a contradiction.

Suppose that r′ ∈ RR ∩ (11N, 16N] for the sake of contradiction. We get:

corr ≥ corrBr′−1 + corrA11N

≥ |[r′ − 1] \ NA-Bob| − 5N − |RR ∩ [r′ − 1]|+ corrA11N (Lemma 5.6)

≥ N + |TR ∩ (6N, r′)|+ corrA11N

≥ N + |TR ∩ (6N, 11N]|+ buf11N + corrA11N

≥ 5N + |TR ∩ (6N, 11N]|+ buf11N − max
t∈{0,1}n

uv11N(t)

≥ 5N, (Lemma 5.3 and Lemma 5.7)

a contradiction.

Finally, we argue about corrAiB . We have:

corrAiB ≥ |NA-Bob ∩ [r]| − uvr(y)

≥ |NA-Bob ∩ [r]| − max
t∈{0,1}n

uvr(t)

≥ |NA-Bob ∩ [r]| − |TR ∩ (6N, r]| (Lemma 5.3 and Lemma 5.7)

≥ 2N + |TR ∩ (6N, r]|+ 2 · |RR ∩ [r]| − 1

= 2N + |TR ∩ (6N, r]|+ 2 · |RR| − 1.

2. If RR∩ (11N, 15N] 6= ∅, then, by the previous part, we have RR∩ [11N] = ∅. Let r and

r be the smallest and the largest elements in RR ∩ (11N, 15N] respectively. Observe

that 11N < r ≤ r ≤ iB and [r − 1] \ NA-Bob ⊆ TR. The claim about corrBiB then

follows from Lemma 5.6 and iB ≥ 11N .

Next, we argue that RR ∩ (15N, 16N] = ∅. Suppose that r′ ∈ RR ∩ (15N, 16N] for the

sake of contradiction. Observe that:

corr ≥ corrBr′−1 + corrA15N

36

≥ |[r′ − 1] \ NA-Bob| − 5N − |RR ∩ [r′ − 1]|+ corrA15N (Lemma 5.6)

≥ N + |TR ∩ (6N, r′)|+ corrA15N

≥ N + |TR ∩ (6N, 15N]|+ buf15N + corrA15N

≥ 7N + |TR ∩ (6N, 15N]|+ buf15N − max
t∈{0,1}n

uv15N(t)

≥ 5N, (Lemma 5.3 and Lemma 5.7)

a contradiction.

Define r∗ > 6N to be the largest such that bufr∗−1 = N . If no such value exists, define

r∗ = 6N . Also observe that r∗ < r ≤ r by Lemma 5.8. We have:

corrAiB ≥ |NA-Bob ∩ [r]| − max
t∈{0,1}n

uvr(t)

≥ |NA-Bob ∩ (r∗, r]| − max
t∈{0,1}n

uvr(t) + max
t∈{0,1}n

uvr∗(t)

≥ |NA-Bob ∩ (r∗, r]|+ (N − 1) · 1(r∗ 6= 6N)− |TR ∩ (r∗, r]|
(Lemma 5.3 and Lemma 5.7)

Observe that corrAiB ≥ N follows. We also get that

corriB ≥ |NA-Bob ∩ (r∗, r]|+ (N − 1) · 1(r∗ 6= 6N)− |TR ∩ (r∗, r]|+ corrBiB

≥ |NA-Bob ∩ (r∗, r]|+ 2N + (N − 1) · 1(r∗ 6= 6N)− |TR ∩ (r∗, r]|+ |TR ∩ (11N, r]|.
(Lemma 5.6)

If r∗ > 11N , we continue as follows:

corriB ≥ |NA-Bob ∩ (r∗, r]|+ 3N

≥ 4N + |TR ∩ (r, r]|+ |RR| − 1.

Observe that r∗ = 11N is not possible as r∗ /∈ NA-Bob. If r∗ < 11N , we continue as

follows:

corriB ≥ |NA-Bob ∩ (r∗, r]|+ 2N + (N − 1) · 1(r∗ 6= 6N)− |TR ∩ (r∗, 11N]|
≥ 4N + |TR ∩ (r, r]|+ |RR| − 2.

3. If RR ∩ [15N] 6= ∅, then we are done by the previous parts. Otherwise, suppose that r

is the smallest ∈ RR ∩ (15N, 16N]. This means that iB > 15N , which when combined

with RR ∩ [15N] = ∅ implies that TR ∩ [15N] = 9N . Observe that:

corr ≥ corrBr−1 + corrA15N

≥ |[r − 1] \ NA-Bob| − 5N + corrA15N (Lemma 5.6)

≥ N + |TR ∩ (6N, r)|+ corrA15N

≥ N + |TR ∩ (6N, 15N]|+ buf15N + corrA15N

37

≥ 7N + |TR ∩ (6N, 15N]|+ buf15N − max
t∈{0,1}n

uv15N(t)

≥ 5N, (Lemma 5.3 and Lemma 5.7)

a contradiction.

Lemma 5.13. If RR 6= ∅, then it holds that |TT| ≤ 2N − 2 · |RR|.

Proof. We break the proof into two cases that are exhaustive by Lemma 5.11. First, assume

that RR ⊆ [11N]. Let r be the largest element in RR. In this case, we have

corriB ≥ corrAiB + corrBiB

≥ 2N + 2 · |RR|+ corrBiB − 1 (Lemma 5.11)

≥ 3N + 2 · |RR|+ |(r, iB] \ NA-Bob| − 1 (Lemma 5.6)

≥ 3N + 2 · |RR|+ bufiB − 1. (Lemma 5.8)

Using this inequality, we get:

bufiB ≥
∑

i′∈(iB ,16N]

bufi′−1 − bufi′

≥ |TT|+
∑

i′∈(iB ,16N]∩RT

bufi′−1 − bufi′ (Lemma 5.7)

≥ |TT|+ corriB − corr

≥ |TT| − 2N + 2 · |RR|+ bufiB .

The result follows. Next, assume that RR ⊆ (11N, 15N]. In this case, by Lemma 5.11, we

have corriB ≥ 4N + |RR| − 2. Using this inequality and Lemma 5.8, we get:

1 ≥ bufiB ≥
∑

i′∈(iB ,16N]

bufi′−1 − bufi′

≥ |TT|+
∑

i′∈(iB ,16N]∩RT

bufi′−1 − bufi′ (Lemma 5.7)

≥ |TT|+ corriB − corr

≥ |TT|+ 1−N + |RR|
≥ |TT|+ 1− 2N + 2 · |RR|. (Lemma 5.11)

The result follows.

5.2.2 Bob’s Output is Correct

Lemma 5.14. x̃ = x.

38

Proof. Due to Lemma 5.4 and Lemma 5.5, there exists t such that v(t) ≥ 5N , it also

holds that v(x̃) ≥ 5N . Thus, there exists a set I of size |I| ≥ 5N such that Bob

receives x̃ for all iterations i ∈ I. Since Alice transmits x for all i ∈ I \ RR and since

corrB ≤ corr − corrA < |I| − |RR| due to Lemma 5.11, we have x̃ = x.

5.2.3 Alice’s Output is Correct

This section is dedicated to proving the following lemma.

Lemma 5.15. ỹ = y.

We divide the proof into two parts based on the two cases in Line 24.

When Line 24 evaluates to true. For this part of the proof, we assume that

maxt∈{0,1}n tv(t) ≥
∑

t∈{0,1}n sv(t) + uv(t)− 5N . In particular, we have that:

tv(ỹ) ≥
∑

t∈{0,1}n
sv(t) + uv(t)− 5N. (13)

All the results stated in this section assume that Line 24 evaluates to true.

Lemma 5.16. tv(ỹ)− sv(ỹ) + maxt∈{0,1}n uv(t) ≤
∑

t∈{0,1}n uv(t).

Proof. If tv(ỹ) = sv(ỹ), then there is nothing to show. So, we assume that tv(ỹ) > sv(ỹ)

implying that uv(ỹ) < maxt∈{0,1}n uv(t). In this case, we have∑
t∈{0,1}n

uv(t) ≥ uv(ỹ) + max
t∈{0,1}n

uv(t) = tv(ỹ)− sv(ỹ) + max
t∈{0,1}n

uv(t).

We define a potential function Φi(s) for all i ∈ [0, 16N] and s ∈ {0, 1}n:

Φi(s) = svi(s)−
∑

t∈{0,1}n
svmin(i,iA)(t)− corri − |RR ∩ [i]|. (14)

We also define Φ0(s) = 0 and Φ(s) = Φ16N(s) for all s ∈ {0, 1}n. The main property that

our potential function satisfies is:

Lemma 5.17. For all s 6= y and i ∈ [16N], we have

Φi(s) ≤ Φi−1(s).

Furthermore, the inequality is strict if i ∈ RT ∩ (iB, iA].

Proof. If Alice is transmitting in iteration i, then, for all s ∈ {0, 1}n, we simply have

Φi(s) − Φi−1(s) = corri−1 − corri ≤ 0 and we are done. Otherwise, Alice is receiving in

iteration i. If i > iA, we have:

Φi(s)− Φi−1(s) = svi(s)− svi−1(s)− 1(i ∈ RT ∧ (ŷi, surei) 6= (y, isSurei−1))− 1(i ∈ RR)

39

= 1(ŷi = s)− 1(i ∈ RT ∧ (ŷi, surei) 6= (y, isSurei−1))− 1(i ∈ RR)

(Alice is receiving in iteration i > iA)

≤ 1(ŷi 6= y)− 1(i ∈ RT ∧ (ŷi, surei) 6= (y, isSurei−1))− 1(i ∈ RR)

(As s 6= y)

≤ 0.

Assume henceforth that i ≤ iA. We have:

Φi(s)− Φi−1(s) =
∑

t6=s∈{0,1}n
svi−1(t)−

∑
t6=s∈{0,1}n

svi(t)

− 1(i ∈ RT ∧ (ŷi, surei) 6= (y, isSurei−1))− 1(i ∈ RR),

which is non-positive by Observation 5.2, and all that remains is to show that “furthermore”

part. If i ∈ RT ∩ (iB, iA], we simplify as:

Φi(s)− Φi−1(s) =
∑

t6=s∈{0,1}n
(svi−1(t)− svi(t))− 1((ŷi, surei) 6= (y,True))

≤ −
∑

t6=s∈{0,1}n
1((ŷi, surei) = (t,True))− 1((ŷi, surei) 6= (y,True))

≤ −1((ŷi, surei) = (y,True))− 1((ŷi, surei) 6= (y,True)) (As s 6= y)

≤ −1.

Lemma 5.18. For all s 6= y, we have

Φ(s) ≤ −4N + |NA-Bob ∩ [iA]| −
∑

t∈{0,1}n
(sviA(t) + uviA(t))− |RR|.

Proof. We argue using Lemma 5.17.

Φ(s) ≤ ΦiA(s) ≤ ΦiB(s)− |RT ∩ (iB, iA]|
≤ −corriB − |RR ∩ [iB]| − |RT ∩ (iB, iA]| (Equation 14)

≤ −corriB − |RR| − |RT ∩ (iB, iA]| (Lemma 5.7)

≤ −corrAiB − corrBiB − |RR| − |RT ∩ (iB, iA]|
≤ 5N − corrAiB − |[i

B] \ NA-Bob| − |RT ∩ (iB, iA]|. (Lemma 5.6)

We now consider two cases:

• iB ∈ [6N]: In this case, we have RR = ∅ and we get:

Φ(s) ≤ 5N − corrAiB − |[i
B] \ NA-Bob| − |RT ∩ (iB, iA]|

≤ −|RT ∩ (iB, iA]|

40

≤ −4N + |NA-Bob ∩ [iA]| −
∑

t∈{0,1}n
(sviA(t) + uviA(t))− |RR|,

as iA ≥ 11N (Lemma 5.5) and RR = ∅.

• iB > 6N : We derive:

10N = iA −
∑

t∈{0,1}n
(sviA(t) + uviA(t)) + |NA-Bob ∩ [iA]| − max

t∈{0,1}n
uviA(t)

≤ corrAiB −
(
|NA-Bob ∩ [iB]| − max

t∈{0,1}n
uviB(t)

)
+ iA

−
∑

t∈{0,1}n
(sviA(t) + uviA(t)) + |NA-Bob ∩ [iA]| − max

t∈{0,1}n
uviA(t).

This gives using Lemma 5.7:

Φ(s) ≤ 5N − corrAiB − |[i
B] \ NA-Bob| − |RT ∩ (iB, iA]|

≤ −5N + iA − iB −
(

max
t∈{0,1}n

uviA(t)− max
t∈{0,1}n

uviB(t)

)
−

∑
t∈{0,1}n

(sviA(t) + uviA(t)) + |NA-Bob ∩ [iA]| − |RT ∩ (iB, iA]|

≤ −5N + iA − iB + bufiB − |(TR ∪ TT) ∩ (iB, iA]|

−
∑

t∈{0,1}n
(sviA(t) + uviA(t)) + |NA-Bob ∩ [iA]| − |RT ∩ (iB, iA]|

(Lemma 5.3)

≤ −5N + bufiB −
∑

t∈{0,1}n
(sviA(t) + uviA(t)) + |NA-Bob ∩ [iA]|

≤ −4N − |RR| −
∑

t∈{0,1}n
(sviA(t) + uviA(t)) + |NA-Bob ∩ [iA]|.

(Lemma 5.7, Lemma 5.8)

Lemma 5.19. We have:

Φ(ỹ) > −4N + |NA-Bob ∩ [iA]| −
∑

t∈{0,1}n
(sviA(t) + uviA(t))− |RR|.

Proof. We derive:

Φ(ỹ) = sv(ỹ)−
∑

t∈{0,1}n
sviA(t)− corr − |RR| (Equation 14)

> tv(ỹ) + max
t∈{0,1}n

uv(t)−
∑

t∈{0,1}n
(sviA(t) + uv(t))− 5N − |RR| (Lemma 5.16)

41

≥ tv(ỹ) + max
t∈{0,1}n

uviA(t)−
∑

t∈{0,1}n
(sviA(t) + uviA(t))− 5N − |RR|

≥ tv(ỹ) + |(NA-Bob ∪ TR ∪ TT) ∩ [iA]| − 15N −
∑

t∈{0,1}n
(sviA(t) + uviA(t))− |RR|

(Observation 5.2)

≥ tv(ỹ) + |TR ∪ TT|+ |NA-Bob ∩ [iA]| − 15N −
∑

t∈{0,1}n
(sviA(t) + uviA(t))− |RR|

≥ −4N + |NA-Bob ∩ [iA]| −
∑

t∈{0,1}n
(sviA(t) + uviA(t))− |RR|. (Equation 13)

Lemma 5.18 and Lemma 5.19 show Lemma 5.15 assuming that Line 24 evaluates to true.

When Line 24 evaluates to false. We now consider the case when Line 24 evaluates to

False. Henceforth, we assume without saying in all our lemmas that (see Observation 5.2)

max
t∈{0,1}n

tv(t) < |RR ∪ RT| − 5N (15)

Lemma 5.20. iB > 6N .

Proof. Suppose for the sake of contradiction that iB ≤ 6N . This means that RR = ∅ and

Bob transmits (y,True) in all iterations > iB. In particular, in every round where Alice

receives, Bob transmits (y,True). Therefore, we have:

tv(y) ≥ sv(y) ≥ |RT ∪ RR| − corr > |RT ∪ RR| − 5N,

a contradiction to Equation 15.

Lemma 5.21. If RR 6= ∅, then ỹ = y.

Proof. If RR 6= ∅, we use Lemma 5.13 to conclude that |TT| ≤ 2N − 2 · |RR| implying that

|RR| + |RT| + |TR| ≥ 14N + 2 · |RR|. We also have from Lemma 5.6 and Lemma 5.7 that

corrB ≥ corrBiB ≥ |TR| − 5N ≥ N =⇒ corrA < 5N − corrB ≤ 10N − |TR|.
Combining, and using Lemma 5.20, we get that

|RT|+ |RR| ≥ 14N + 2 · |RR| − |TR| > 4N + 2 · |RR|+ corrA ≥ 2 ·
(
|RR|+ corrA

)
.

Now, ŷi = y for all i ∈ RT that are not corrupted. This means that

sv(y) + uv(y) ≥ |RT|+ |RR| −
(
corrA + |RR|

)
>

1

2
· (|RT|+ |RR|) =

1

2
·
∑

t∈{0,1}n
(sv(t) + uv(t)) .

It follows from our choice of ỹ that ỹ = y.

42

Lemma 5.22. If RR = ∅, then ỹ = y.

Proof. We first claim that maxt∈{0,1}n uv(t) = uv(y). Suppose not. Then, as Bob transmits

either (y,True) or (y,False) in all rounds in RT, we get.

tv(y) = sv(y) + uv(y) ≥ |RT| − corrA ≥ |RT| − 5N,

contradicting Equation 15. Next, by Lemma 5.20, we have that iB > 6N , implying, due to

Lemma 5.6, that corrA < 5N − corrB ≤ 4N .

Assume for now that |TR ∪ TT| ≤ 16N − 2 · corrA. This means that |RT| ≥ 2 · corrA.

We get that sv(y) + uv(y) ≥ |RT| − corrA ≥ 1
2
|RT| ≥ 1

2

(∑
t∈{0,1}n sv(t) + uv(t)

)
, implying

that ỹ = y by our choice of ỹ. For the rest of the proof, we assume that |TR ∪ TT| >
16N − 2 · corrA > 8N =⇒ iA > 13N .

Using iA > 13N and the definition of iA and NA-Bob, we get:

32N − 4 · corrA < 2 · |TR ∪ TT| − 1

= 2 · |(TR ∪ TT) ∩ [iA]| − 1

≤ 3N + |(TR ∪ TT ∪ NA-Bob) ∩ [iA]| (As iA > 13N)

= 13N + max
t∈{0,1}n

uviA(t)

= 13N + max
t∈{0,1}n

uv(t)

= 13N + uv(y). (As maxt∈{0,1}n uv(t) = uv(y))

Now, as corrA < 4N , we get that uv(y) > 3N . If uv(y) ≥ 4N , then by our choice of ỹ, we

have that sv(ỹ) + uv(ỹ) ≥ 4N . This means that there exists a set I, |I| ≥ 4N , of iterations

such that ŷi = ỹ, for all i ∈ I. As we assume that RR = ∅ and corrA < 4N ≤ |I|, we have

that there ỹ = y.

Thus, we can assume that uv(y) < 4N implying that corrA > 15
4
N and corrB < 5

4
N and

therefore iB ≤ 35
4
N by Lemma 5.6. As Bob sends (y,False), whenever he transmits before

iB and (y,True) whenever he transmits after iB, we get that

4N > corrA ≥ |RT| − sv(y)− uv 35
4
N(y)

≥ |RT| − sv(y) + 3N − uv(y)− uv 35
4
N(y) (As uv(y) > 3N)

≥ |RT| − sv(y) +
1

2
N − uv(y)

≥ 8N − sv(y)− uv(y) (As 2 · |TR ∪ TT| − 1 ≤ 13N + uv(y) ≤ 17N − 1)

≥ 8N − sv(ỹ)− uv(ỹ).

Rearranging gives sv(ỹ) + uv(ỹ) ≥ 4N which implies ỹ = y just like before.

Observe that Lemma 5.21 and Lemma 5.22 imply Lemma 5.15 assuming that Line 24

43

evaluates to false. This together with the arguments in the foregoing section finishes the

proof of Theorem 5.1.

References

[AGS16] Shweta Agrawal, Ran Gelles, and Amit Sahai. Adaptive protocols for interactive

communication. In Information Theory (ISIT), pages 595–599. IEEE, 2016. 5

[BE17] Mark Braverman and Klim Efremenko. List and unique coding for interactive

communication in the presence of adversarial noise. SIAM Journal on

Computing, 46(1):388–428, 2017. 5

[Ber64] Elwyn R. Berlekamp. Block Coding with Noiseless Feedback. PhD thesis,

Massachusetts Institute of Technology (MIT), 1964. 5

[BGMO17] Mark Braverman, Ran Gelles, Jieming Mao, and Rafail Ostrovsky. Coding

for interactive communication correcting insertions and deletions. IEEE

Transactions on Information Theory, 63(10):6256–6270, 2017. 5

[BKN14] Zvika Brakerski, Yael Tauman Kalai, and Moni Naor. Fast interactive coding

against adversarial noise. Journal of the ACM (JACM), 61(6):35, 2014. 5

[BR11] Mark Braverman and Anup Rao. Towards coding for maximum errors in

interactive communication. In Symposium on Theory of computing (STOC),

pages 159–166. ACM, 2011. 1, 2, 5, 6

[Bra12] Mark Braverman. Towards deterministic tree code constructions. In Innovations

in Theoretical Computer Science (ITCS), pages 161–167. ACM, 2012. 5

[CK85] Imrich Chlamtac and Shay Kutten. On broadcasting in radio networks-problem

analysis and protocol design. IEEE Trans. Communications, 33(12):1240–1246,

1985. 4

[EGH16] Klim Efremenko, Ran Gelles, and Bernhard Haeupler. Maximal noise in

interactive communication over erasure channels and channels with feedback.

IEEE Transactions on Information Theory, 62(8):4575–4588, 2016. 3, 5

[EKS18] Klim Efremenko, Gillat Kol, and Raghuvansh Saxena. Interactive coding over

the noisy broadcast channel. In Symposium on Theory of Computing (STOC),

pages 507–520. ACM, 2018. 5

[EKS20] Klim Efremenko, Gillat Kol, and Raghuvansh Saxena. Interactive error resilience

beyond 2/7. In Symposium on Theory of Computing (STOC). ACM, 2020. 1, 2,

3, 5, 7, 10, 11

44

[FGOS15] Matthew Franklin, Ran Gelles, Rafail Ostrovsky, and Leonard J. Schulman.

Optimal coding for streaming authentication and interactive communication.

IEEE Transactions on Information Theory, 61(1):133–145, 2015. 5

[Gel17] Ran Gelles. Coding for interactive communication: A survey. Foundations and

Trends R© in Theoretical Computer Science, 13(1–2):1–157, 2017. 5

[GH14] Mohsen Ghaffari and Bernhard Haeupler. Optimal Error Rates for Interactive

Coding II: Efficiency and List Decoding. In Foundations of Computer Science

(FOCS), pages 394–403, 2014. 5

[GH17] Ran Gelles and Bernhard Haeupler. Capacity of interactive communication over

erasure channels and channels with feedback. SIAM Journal on Computing,

46(4):1449–1472, 2017. 5

[GHK+18] Ran Gelles, Bernhard Haeupler, Gillat Kol, Noga Ron-Zewi, and Avi Wigderson.

Explicit capacity approaching coding for interactive communication. IEEE

Transactions on Information Theory, 64(10):6546–6560, 2018. 5

[GHS14] Mohsen Ghaffari, Bernhard Haeupler, and Madhu Sudan. Optimal error rates

for interactive coding i: Adaptivity and other settings. In Symposium on Theory

of computing (STOC), pages 794–803, 2014. 1, 2, 3, 4, 5, 6, 7, 8, 10, 12

[GMS11] Ran Gelles, Ankur Moitra, and Amit Sahai. Efficient and explicit coding for

interactive communication. In Foundations of Computer Science (FOCS), pages

768–777. IEEE, 2011. 5

[GMS14] Ran Gelles, Ankur Moitra, and Amit Sahai. Efficient coding for interactive

communication. IEEE Transactions on Information Theory, 60(3):1899–1913,

2014. 5

[Hae14] Bernhard Haeupler. Interactive channel capacity revisited. In Foundations of

Computer Science (FOCS), pages 226–235. IEEE, 2014. 4, 5

[HKV15] Bernhard Haeupler, Pritish Kamath, and Ameya Velingker. Communication

with partial noiseless feedback. In Approximation,

Randomization, and Combinatorial Optimization. Algorithms and Techniques

(APPROX/RANDOM), 2015. 5

[HSV18] Bernhard Haeupler, Amirbehshad Shahrasbi, and

Ellen Vitercik. Synchronization strings: Channel simulations and interactive

coding for insertions and deletions. In International Colloquium on Automata,

Languages, and Programming (ICALP), pages 75:1–75:14, 2018. 5

45

[HV17] Bernhard Haeupler and Ameya Velingker. Bridging the capacity gap between

interactive and one-way communication. In Symposium on Discrete Algorithms

(SODA), pages 2123–2142, 2017. 5

[Kas85] Amiram Kaspi. Two-way source coding with a fidelity criterion. IEEE

Transactions on Information Theory, 31(6):735–740, 1985. 5

[KR13] Gillat Kol and Ran Raz. Interactive channel capacity. In Symposium on Theory

of computing (STOC), pages 715–724, 2013. 5

[MI13] Nan Ma and Prakash Ishwar. The infinite-message limit of two-terminal

interactive source coding. IEEE transactions on information theory, 59(7):4071–

4094, 2013. 5

[Pan13] Denis Pankratov. On the power of feedback in interactive channels. Manuscript,

2013. 5

[Sch92] Leonard J Schulman. Communication on noisy channels: A coding theorem

for computation. In Foundations of Computer Science (FOCS), pages 724–733.

IEEE, 1992. 5

[Sch93] Leonard J Schulman. Deterministic coding for interactive communication. In

Symposium on Theory of computing (STOC), pages 747–756. ACM, 1993. 5

[Sch96] Leonard J. Schulman. Coding for interactive communication. IEEE Transactions

on Information Theory, 42(6):1745–1756, 1996. 2, 5

[SW17] Alexander A. Sherstov and Pei Wu. Optimal interactive coding for insertions,

deletions, and substitutions. In Foundations of Computer Science (FOCS), pages

240–251, 2017. 5

[WQC17] Gang Wang, Yanyuan Qin, and Chengjuan Chang. Communication with

partial noisy feedback. In IEEE Symposium on Computers and Communications

(ISCC), pages 602–607, 2017. 5

46
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

