
Chapter 1
Reflections on Proof Complexity and Counting
Principles

Noah Fleming and Toniann Pitassi

Abstract This paper surveys the development of propositional proof complexity
and the seminal contributions of Alasdair Urquhart. We focus on the central role of
counting principles, and in particular Tseitin’s graph tautologies, to most of the key
advances in lower bounds in proof complexity. We reflect on a couple of key ideas
that Urquhart pioneered: (i) graph expansion as a tool for distinguishing between
easy and hard principles, and (ii) “reductive" lower bound arguments, proving via
a simulation theorem that an optimal proof cannot bypass the obvious (inefficient)
one.

Keywords: Theory of Computation, Complexity Theory, Propositional Proof Com-
plexity, Counting Principles, Tseitin Tautologies

1.1 Introduction

One of the most basic questions of logic is the following: Given a universally
true statement (tautology) what is the length of the shortest proof of the statement
in some standard axiomatic proof system? The propositional logic version of this
question is particularly important in computer science for both theorem proving and
complexity theory. An important related algorithmic questions is whether there is
an efficient algorithm that will produce a proof of any tautology? Such questions of
theorem proving and complexity inspired Cook’s seminal paper onNP-completeness
notably entitled “The complexity of theorem-proving procedures" [17] and were
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contemplated even earlier by Gödel in his now well-known letter to von Neumann
(see [61])1.

These questions have fundamental implications for complexity theory. As formal-
ized by Cook and Reckhow [17], there exists a propositional proof system giving
rise to short (polynomial-size) proofs of all tautologies if and only if NP equals
co-NP. Cook and Reckhow were the first to propose a program of research aimed
at attacking the NP versus co-NP problem by systematically studying and proving
strong lower bounds for standard proof systems of increasing complexity.

The second motivation concerns automated theorem proving. The main goal
is to investigate the efficiency of heuristics for testing satisfiability, and to give
some theoretical justification for them. The third and perhaps the most compelling
reason to study the complexity of propositional proof systems is as a principled
way to understand the limitations of current algorithmic approaches for solving NP-
hard problems. Almost all algorithms that implement a deterministic or randomized
procedure for solving an NP-hard optimization problem are based on a standard
propositional proof system, and thus upper and lower bounds on these systems shed
light on the inherent complexity of any theorem-proving system based upon it.
The most striking example is Resolution on which almost all propositional theorem
provers (and even first-order theorem provers) are based.

Cook and Reckhow’s program has led to many beautiful results in the last twenty
years, including strong connections to circuit lower bounds, and celebrated expo-
nential lower bounds on proof size for a variety of important and well-studied proof
systems (see the following surveys [6, 65, 57, 60]).

Most of these breakthroughs were established for counting principles such as
the propositional pigeonhole principle, and a special family of mod p counting
principles, introduced by Tseitin and called Tseitin’s graph tautologies. Indeed, the
pigeonhole principle and the Tseitin tautologies are the most well studied structured
hard instances in propositional proof complexity. A Tseitin instance TS(�, ;) is
defined relative to an undirected graph � = (+, �), and a labelling ; : + → {0, 1}
of the vertices of �. The variables correspond to the edges of �, and for each E ∈ + ,
we have a constraint

⊕
4:E∈4 G4 = ; (E) asserting that the parity of the edge variables

incident with vertex E must agree with the label ; (E). By the handshake principle,
for any connected graph �, TS(�, ;) is unsatisfiable if and only if the sum of all
labels is odd (see Figure 1.1 for an example).

Tseitin was the first to study the optimal size of propositional proofs, and in
particular the optimal size of Resolution proofs. In his landmark 1968 paper [63],
Tseitin introduced his now famous Tseitin formulas, and proved lower bounds on the
length of regular Resolution refutations of the Tseitin formulas on the grid graph.

Subsequently, these formulas have been central to nearly every result in proposi-
tional proof complexity. Superpolynomial lower bounds for the Tseitin formulas have
been established for many well-studied proof systems, beginning with the seminal
paper by Urquhart [64] who proved that Tseitin formulas require exponential-size
Resolution refutations, building on Haken’s [37] sub-exponential lower bound on the

1 However, this letter was not discovered until after Cook’s paper.



1 Reflections on Proof Complexity and Counting Principles 3

G1 G2

G3 G4 G5

G6 G7

G8 G9 G10

G11 G12

E1 E2 E3

E6E4
E5

E7 E8
E9

E1 : G1 ⊕ G3 = 1
E2 : G1 ⊕ G2 ⊕ 44 = 1
E3 : G2 ⊕ G5 = 1
E4 : G3 ⊕ G6 ⊕ G8 = 1
E5 : G4 ⊕ G6 ⊕ G7 ⊕ 49 = 1
E6 : G5 ⊕ G7 ⊕ G10 = 1
E7 : G8 ⊕ G11 = 1
E8 : G11 ⊕ G9 ⊕ G12 = 1
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Fig. 1.1 An unsatisfiable instance of the Tseitin formulas on a 3 × 3 grid graph with ; (E) = 1 for
all E ∈ + .

propositional pigeonhole principle. In the last thirty years, exponential lower bounds
for Tseitin formulas were established for stronger proof systems, including including
Nullstellensatz [35], the Polynomial Calculus [12], Sum-of-Squares [36, 58], and
bounded-depth Frege [9, 49, 38].

In this paper, we survey the landscape of results on the proof complexity of
Tseitin formulas and the important role they have played in our understanding of the
proof complexity of stronger systems, as well as the complexity of large families of
algorithms based on these proof systems. In Section 3, we present Urquhart’s seminal
result, proving truly exponential lower bound on the length of Resolution refutations
for Tseitin formulas on any constant-degree expander graph.We highlight two central
concepts that have remained quite important in nearly all subsequent lower bounds.
The first is the role of graph expansion as the key combinatorial property underlying
the lower bound. Over a highly expanding graph (which behaves like a random graph
with respect to expansion), when viewing the graph locally, by looking at a small
subset of the graph, there is a partial assignment to the edges of this subset which
satisfies the Tseitin constraints on the vertices, whereas globally there is no satisfying
assignment. Thus graph expansion is a crucial pseudorandom property used to show
that weak proof systems that reason locally (such as Resolution) cannot reason about
properties where there is a big distinction between the local versus global behaviour
of the property. Secondly, we highlight the reductive nature of the lower bound:
the proof not only rules out Resolution refutations of sub-exponential length, but
it actually shows that any Resolution refutation must essentially mimic the obvious
upper bound strategy that corresponds to Gaussian elimination.

In Section 4 we survey some of the subsequent important lower bounds in proof
complexity. In these breakthrough results, we will see that the proofs, following
Urquhart and Haken, show reductive lower bounds using graph expansion as the
underlying pseudorandom property. Finally in Section 5 we present a new and very
surprising result due to Dadush and Tiwari [19], who showed that Tseitin formulas
are easy for Cutting Planes proofs, thereby refuting a widely believed conjecture.
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We conclude in Section 6 with some open problems and potential barriers to future
progress.

1.2 Preliminaries

1.2.1 Resolution

Using the standard reduction from SAT to 3-SAT, one can take an arbitrary propo-
sitional formula � and convert it to a CNF or 3-CNF formula in such a way that it
has only polynomially larger size and is unsatisfiable iff the original formula was a
tautology. To do this one adds new variables G� to stand for each of its subformulas �
and clauses to specify that the value at each connective is computed correctly, as well
as one clause of the form ¬G� . In this way, one can consider any sound and complete
system that produces refutations for CNF formulas as a general propositional proof
system.

A literal ℓ is a propositional variable G or its negation¬G. A clause is a disjunction
of literals. The Resolution refutation system has a single inference rule:

� ∨ ℓ, � ∨ ¬ℓ
� ∨ � .

The Resolution rule says that if � and � are clauses and ℓ is a literal, then any
assignment that satisfies both of the clauses � ∨ ℓ and � ∨ ¬ℓ also satisfies � ∨ �.
The clause � ∨ � is said to be a resolvent of the clauses � ∨ ℓ and � ∨ ¬ℓ derived
by resolving on the variable ℓ. A Resolution derivation of a clause � from a CNF
formula � consists of a sequence of clauses in which each clause is either a clause of
�, or a resolvent of two previous clauses, and � is the last clause in the sequence; it
is a refutation of � if � is the empty clause Λ. The size of a refutation is the number
of resolvents in it. We can represent it as a directed acyclic graph (dag) where the
nodes are the clauses in the refutation, each clause of � has out-degree 0, and any
other clause has two incoming arcs from the two clauses that produced it. The arcs
pointing from � ∨ ℓ and � ∨ ¬ℓ to � ∨ � are labeled with the literals ℓ and ¬ℓ
respectively. It is well known that Resolution is a sound and complete propositional
proof system, i.e., a formula � is unsatisfiable if and only if there is a Resolution
refutation for �.

History of the Complexity of Resolution Refutations.

Resolution was pre-dated by two systems known as Davis-Putnam procedures which
are still the most widely used in propositional theorem proving. The general idea of
these procedures is to convert a problem on = variables to problems on =−1 variables
by eliminating all references to some variable. The former [21] which we call DP
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Fig. 1.2 A Resolution refutation of the Tseitin formula on a triangle with ; (E) = 1 for all E ∈ [3].

does this by applying all possible uses of the Resolution rule on a given variable to
eliminate it. The latter [20], which we call DLL and is the form used today, branches
based on the possible truth assignments to a given variable; although at first this
does not look like Resolution, it is an easy argument to show that this second form
is equivalent to the special class of tree-like Resolution proofs. As a proof system,
Resolution is strictly stronger than DP [30] and DLL [65]. The reasons for DLL’s
popularity are related to its proof search properties which we discuss below.

Amore general but still restricted form of Resolution is called regularResolution,
and was first introduced by Tseitin in a ground-breaking article [63], the published
version of a talk given in 1966 at a Leningrad seminar. A regular Resolution refutation
is a Resolution refutation whose underlying directed acyclic graph has the property
that along each path from the root (empty clause) to a leaf (initial clause), each
variable is resolved upon at most once. Observe that DP refutations are automatically
regular. If refutations are represented as trees, rather than directed acyclic graphs,
then minimal-size refutations are regular, as can be proved by a simple pruning
argument [65, p. 436].

Tseitin [63] established the first super-polynomial lower bounds on the size of
regular Resolution refutations of the Tseitin formulas. Interestingly, obtaining an im-
provement of this bound to an exponential one byGalil [28]was a driving force behind
some of the early work in the development of the theory of expander graphs [25, 40].

There was a 15+ year gap before the first super-polynomial lower bound for
proofs in general Resolution was obtained by Haken [37] who showed exponen-
tial lower bounds for the pigeonhole principle. Subsequently, Urquhart proved the
first truly exponential exponential bounds for Resolution refutations of the Tseitin
formulas [64].



6 Noah Fleming and Toniann Pitassi

Urquhart’s original proof used the technique known as bottleneck counting due to
Haken. In this method, one views the proof as a directed acyclic graph of clauses and
views the truth assignments as flowing from the root of the directed acyclic graph
to a leaf, where an assignment flows through a clause � if and only if: (i) it flows
through the parent clause of � and (ii) the assignment falsifies �. Each assignment
can be seen to flow through a unique path in any Resolution refutation. The idea is to
show that for the formula in question, there must exist a large set of truth assignments
with the property that each must pass through a wide clause (a clause containing
many literals). Since a wide clause cannot be falsified by too many assignments, this
implies that there must exist many wide clauses and hence the proof must be large.

An essential lemma in any bottleneck counting argument is to show that any
Resolution refutation of � must involve a wide clause (a bottleneck). An important
paper by Ben-Sasson and Wigderson [10], using ideas from [16], shows that this
lemma is sufficient; namely, they prove that any Resolution refutation of small size
can be converted into a refutation with no wide clauses. This result is important
since it reduces the more difficult problem of proving Resolution size lower bounds
to the easier problem of proving Resolution width lower bounds.

Lower bounds for the Tseitin formulas have paved theway to proving lower bounds
for random unsatisfiable instances. Indeed, there is a strong link between Tseitin
formulas and random CNF formulas. By varying the underlying odd-labelling, and
3-regular graph, we get precisely a uniform distribution on 3-XOR instances, where
each variable occurs in exactly two equations. Because of this connection, lower
bounds for Tseitin formulas has been a precursor to understanding lower bounds
for random instances, such as random :-XOR and random :-SAT. Urquhart’s lower
bound for Tseitin was the precursor to Chvatal and Szemeredi’s exponential lower
bounds for Resolution refutations of random kCNF formulas [15], and similarly
for other proof systems including Nullstellensatz, Polynomial Calculus and SOS
[35, 36, 49, 38].

1.3 Urquhart’s Resolution Lower Bound

In this section we present the main ideas behind Urquhart’s exponential lower bound
for Resolution refutations of the Tseitin formulas:

Theorem 1 Let � be a 3-regular odd-charged graph on = vertices with expansion
4(�) = Ω(=). Then any resolution refutation of TS(�) has size 2Ω(=) .

As previously mentioned, Urquhart’s original proof used the bottleneck counting
method due to Haken. Here we give a simpler presentation of his argument, using
Ben-Sasson and Wigderson’s size-width theorem for Resolution [10].

We start with some intuition behind the proof. Without loss of generality, we will
consider a 3-regular graph� = (+, �) on = vertices, where = is odd and such that all
charges are odd. The variables of TS(�) are G8, 9 where (8, 9) ∈ � . Each vertex 8 ∈ +
corresponds to a constraint which says that the mod-2 sum of the edges incident to
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E is odd: ∑
9 , (8, 9) ∈�

G8, 9 = 1 (<>3 2).

The central intuition behind the proof is to relate the combinatorial notion of
expansion of the underlying graph � to the complexity of refuting TS(�):

Definition 1 (Graph Expansion.) Let � be an undirected graph with = vertices. The
expansion of �, 4(�), is min{|� (+ ′, + −+ ′) | : + ′ ⊆ +, =/3 ≤ |+ ′ | ≤ 2=/3}.

For any odd-charged graph �, the equations in TS(�) form a set of mod-2
constraints with the property that every variable occurs in exactly two constraints.
Thus if � is a random 3-regular graph with a random odd-charged labelling, then
TS(�) can be viewed as a random -$' formula, where each mod-2 constraint
contains 3 − 1 variables, and such that each variable occurs in exactly 2 equations.
The most obvious way to obtain a contradiction is iteratively deriving new mod-2
constraints. For instance if G1,2 +G1,3 +G1,4 = 1 and G1,3 +G2,5 = 1 have been derived,
then we can derive their sum mod-2: G1,2 + G1,4 + G2,5 = 0. This simple addition rule
is sometimes called the Gaussian rule. A Gaussian refutation consists of a sequence
of mod-2 equations where each equation is either an initial one or obtained by two
previous equations by the Gaussian rule, and such that the final equation is 0 = 1.
For a Gaussian refutation Π of TS(�), let F83Cℎ(Π) be the maximum number of
variables that occur in any equation in Π. Now it follows fairly easily from the
definition of expansion that if � is a connected expanding graph (i.e. 4(�) = Ω(=)),
then any Gaussian refutation of � must have width Ω(=).

Let’s see what happens when we try to mimic a Gaussian using Resolution. Since
Resolution can only express disjunctions of literals, a mod-2 constraint involving
: variables translates into an equivalent conjunction of 2:−1 clauses. Now if � is
expanding, any Gaussian refutation has linear width, and therefore translating this
refutation to a Resolution refutation will lead to a huge blowup in size – the proof
will have size exponential in =.

The difficult step in proving Resolution lower bounds for TS(�) is therefore to
prove that Resolution can do no better – that is, that the optimal size Resolution
refutation for TS(�) is that obtained by mimicking a Gaussian refutation.

We now proceed to the proof. An assignment for a formula � (sometimes we call
it also a restriction) is a Boolean assignment to some of the variables in the formula;
the assignment is total if all the variables in the formula are assigned values. If �
is a clause, and f an assignment, then we write � df for the result of applying the
assignment to �, that is, � df = 1 if f(;) = 1 for some literal ; in �, otherwise, � df
is the result of removing all literals set to 0 by f from � (with the convention that
the empty clause is identified with the Boolean value 0). If � is a CNF formula, then
� df is the conjunction of all the clauses � df, � a clause in �. If ' = �1, . . . , �: is
a Resolution derivation from a formula �, and f an assignment to the variables in
�, then we write 'df for the sequence �1df, . . . , �: df.

Ben-Sasson and Wigderson [10] proved the following relationship between Res-
olution width and Resolution proof size.
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Lemma 1 (Size-Width Lemma) Let � be an unsatisfiable :-CNF formula over =
variables, with a Resolution refutation of size B. Then � also has a refutation of
width $ (

√
= log B) + : .

Thus, sufficiently strong lower bounds on width imply superpolynomial or even
exponential lower bounds on proof size. For tree-likeResolution proofs, they obtained
a similar result, proving that tree-like refutations of size ( imply refutations of width
$ (log ().

We first reproduce Ben-Sasson and Widerson’s proof of the Size-Width Lemma,
which uses the following Lemma.

Lemma 2 (Lemma 3.2 in [10])
Let � be an unsatisfiable :-CNF formula, and let ℓ be a literal appearing in �. If

� d(ℓ = 1) has a refutation of width F − 1 and � d(ℓ = 0) have a refutation of width
at most F, then � has a width-F refutation.

Proof (Proof sketch) Let cd(ℓ = 1) be a width F − 1 refutation of � d(ℓ = 1). By
adding ℓ and ¬ℓ back to all initial clauses of �, cd(ℓ = 1) becomes a derivation of
the clause ¬ℓ of width F. We can then resolve the derived clause ¬ℓ with all clauses
in � to derive � d(ℓ = 0) in width F. Then by assumption that � d(ℓ = 0) has a width
F refutation, we can refute � in width F. �

Proof (Proof of Size-Width Lemma) Let � be an unsatisfiable :-CNF over = vari-
ables, and let c be a size B resolution refutation of �. Let c∗ denote the set of wide
clauses in c, where a wide clause is one that contains at least F :=

√
2= log B literals.

We prove by induction on 1 and = that if |c∗ | < 01 then � has a refutation of width
at most F + : + 1, where 0 = (1 − F/(2=))−1. The base case (1 = 0) is trivially
true. For the induction step, by an averaging argument, there must exist a literal, say
ℓ, appearing in at least the average number of wide clauses, which is |c∗ | · F/(2=).
Restricting the entire proof c by setting ℓ = 1 gives a refutation of � d(ℓ = 1) with at
most (1 − F/2=) |c∗ | < 01−1 wide clauses, which by induction on 1 has a refutation
of width at most F + : + 1 − 1. On the other hand, setting ℓ = 0 gives a refutation
of � d(ℓ = 0) of width at most F + : + 1, by induction on =. Applying Lemma 2
completes the proof. �

The next lemma shows that as long as� is a connected graphwith good expansion,
then any resolution refutation of TS(�) must have linear width. This combined with
the Size-Width Lemma completes the proof of 1.

Lemma 3 (Tseitin Width Lower Bound) Let � be a connected 3-regular odd-
charged graph with = vertices, and linear expansion, i.e. 4(�) = Ω(=). Then any
Resolution refutation of TS(�) requires width Ω(=).

Proof Let c be a Resolution refutation of TS(�). Let � be the set of clauses of
TS(�), let �(E) denote the clauses associated with vertex E, and for +∗ ⊆ + let
�(+∗) := ∪E∈+ ∗�(E). We define the following complexity measure `(�) on clauses
� over the variables of TS(�).
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`(�) = <8={|+ ′ | | + ′ ⊆ +, �(+ ′) =⇒ �∗}.

That is, `(�) is the size of the minimal set of vertices + ′ ⊆ + such that the clauses
associated with+ ′ imply�. Since Resolution is a sound procedure, ` is subadditive.
That is, if � is derived from the Resolution rule applied to clauses �1 and �2, then
`(�) ≤ `(�1) + `(�2). Note that for an initial clause, � ∈ �, `(�) = 1, and for the
final empty clause of Π, `(Λ) = |�|, because if one of the clauses of � is left out
then � becomes satisfiable. Therefore by subadditivity, there exists a clause �∗ in c
such that |�|/3 ≤ `(�∗) ≤ 2|�|/3.

Let + ′ denote a minimal set of vertices such that �(+ ′) =⇒ �. By expansion of
�, the size of the boundary |� (+ ′, + \+ ′) | = Ω(=). We will argue that F83Cℎ(�) =
Ω(=) since all literals associated with the edges in � (+ ′, + \ + ′) must occur in �.
Let G8 ∈ � (+ ′, + \ + ′) and suppose that G8 does not occur in �. We will construct
an assignment that falsifies � but satisfies �(+ ′), contradicting that �(+ ′) =⇒ �.
Because G8 ∈ � (+ ′, + \+ ′), there is exactly one vertex E ∈ + ′ incident to G8 . Pick an
assignment U that falsifies �(E), falsifies �, and satisfies �(E′) for all E′ ∈ + ′ \ {E};
the existence of such an assignment follows because �(+ ′) =⇒ � and + ′ is
minimal. Let U⊕8 be the assignment obtained from U by flipping the 8th bit, i.e.
U⊕8
9
= U 9 for 9 ≠ 8 and U⊕8

8
= 1 − U8 . Then U⊕8 falsifies �(E′) and therefore

�(+ ′), however it satisfies � because � does not depend on G8; this contradicts that
�(+ ′) =⇒ �. Therefore � must depend on all of the variables in |� (+ ′, + \ + ′) |.
Altogether, we have shown that anyResolution refutation of TS(�) haswidthΩ(=).�

1.4 Subsequent Lower Bounds for Tseitin Formulas

1.4.1 Bounded-Depth Frege

A Frege system is a propositional proof system where the underlying lines in a
proof are Boolean formulas over the basis ∧, ∨ and ¬. There are a large number
of axiomatizations of Frege systems, and by the foundational results of Cook and
Reckhow [17], they are all known to be polynomially equivalent, meaning that the
minimum proof length of any tautology remains the same to within a polynomial
factor. Obtaining even super-linear lower bounds for Frege proofs for any family of
tautologies remains one of the most important open problem in proof complexity.

A well-known restricted proof system is bounded-depth Frege, where the rules
remain the same, but we impose the restriction that every formula in the proof has
depth at most 3. (In order for this to remain a complete system, we measure depth
of a formula as the number of alternations of ∨ and ∧ connectives in the formula,
or equivalently, we can generalize the connectives ∧ and ∨ and associated rules to
have unbounded-fanin, and then the depth is simply the number of alternations of
unbounded-fanin ∧ and ∨ gates.

In a breakthrough result, Ajtai [1] established super-polynomial lower bounds on
the length of bounded-depth Frege proofs of the propositional pigeon hole principle.
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In this tour-de-force paper, he actually proved the existence of a nonstandard model
for an axiomatic system of arithmetic (�Δ0) that corresponds to bounded-depth Frege,
where the pigeonhole principle is false. His ingenious construction of a nonstandard
model is obtained by showing, through a combinatorial switching lemma, that any
small bounded-depth Frege proof of the pigeonhole principle actually implies the
existence of a small, simpler Resolution proof. Thus the proof again establishes a
reductive lower bound by reducing a more complex bounded-depth Frege proof to
a simpler Resolution proof. Subsequently, [8] obtained somewhat stronger bounds,
via a purely combinatorial analysis of Ajtai’s proof. Exponential lower bounds for
bounded-depth Frege proofs of the pigeonhole principle were established in [48, 47].

Urquhart and Fu [67] gave a more streamlined presentation of the lower bounds
mentioned above, and extended the argument to prove super-polynomial lower
bounds for Tseitin’s formulas on the complete graph. Shortly thereafter and inde-
pendently, Ben-Sasson [9] managed to prove lower bounds for the Tseitin formulas
over any expander graph by a clever reduction to the pigeonhole lower bound.

The above lower bounds left open the question of proving optimal lower bounds.
Due to the difficulty of proving a switching lemma in this context, the state-of-the-
art lower bounds for depth-3 Frege proofs of the pigeonhole principle (as well as
for Tseitin) are exponential in =1/23 , whereas the best possible upper bounds are
exponential in =1/3 , leaving a large gap. Improving the lower bound to matching the
upper bound appeared to be much more difficult, and closing this gap remained open
for over twenty years. The first progress was made by Pitassi, Rossman, Servedio and
Tan [49] who were able to close this gap but only for a certain range of parameters,
by establishing a switching lemma following some of the high-level ideas in a related
breakthrough result [39]. In a remarkable recent paper, Håstad [38] finally obtained
near-optimal lower bounds for Tseitin formulas, for the grid graph (the original
graph used by Tseitin to prove super-polynomial lower bounds on regular Resolution
proofs). Recently, Galesi et al. [26] extended Håstad result to every graph, obtaining
a lower bound of 2CF (�)Ω(1/3) where CF(�) is the tree-width of�. Furthermore, they
show that this is tight up to a multiplicative constant in the top exponent.

1.4.2 Algebraic Proof Systems

Algebraic proof systems, first defined in [5], are aimed at proving the unsolvability
of a family of polynomial equalities or inequalities over an underlying field, and
as a special case they are refutation systems for unsatisfiable CNF formulas. Given
an unsatisfiable :-CNF formula over = variables, by a standard translation we can
convert the formula into a family of degree-: polynomial equations P = {?1 =
0, . . . , ?< = 0} over variables G1, . . . , G= such that the polynomial equations are
satisfiable over {0, 1} if and only if the formula is satisfiable. A Nullstellensatz
refutation is a set of polynomials @1, . . . , @< such that

∑
8 ?8@8 = 1 – that is, the

polynomials @8 witness the fact that 1 is in the ideal generated by the ?8’s and
therefore they are not simultaneously satisfiable. The degree of a refutation is the
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maximal degree of the @8’s. The Polynomial Calculus (PC) is a dynamic version of
the Nullstellensatz refutation system allowing proofs of potentially lower degree. The
semi-algebraic systems Sherali-Adams (SA) and Sum-of-Squares (SoS) are further
extension which refute families of polynomial inequalities.

There is a long history of degree lower bounds for all of these systems, again with
the Tseitin formulas being the prototypical hard instance. The sequence of papers
[35, 12, 36, 58] culminated in linear degree lower bound for Tseitin formulas over
expander graphs. In [7], and later [34], lower bounds for more general lifted Tseitin
formulas were proven by a reduction to communication complexity lower bounds,
which in turn implies lower bounds for more general dynamic SoS systems as well as
certain extensions of them. (See e.g., [23] (Chapter 5) for a simplified presentation
of the SoS lower bound, as well as a survey of related results.)

By fairly standard low-degree reductions, lower bounds as well as integrality
gaps have been proven for a variety of other problems. An integrality gap is aimed
at proving lower bounds for approximation algorithms for NP-hard optimization al-
gorithms, which is more general than proving lower bounds for solving the problem
exactly. At a high level, these SoS integrality gap lower bounds show that no effi-
cient SoS-based algorithm can approximate Max-3SAT any better than the trivial
algorithm that achieves a 7/8-approximation factor. SoS-based algorithms capture
a natural family of linear and semidefinite programming algorithms, and thus SoS
lower bounds rule out a large and natural family of algorithms for approximating
NP-hard optimization problems.

Extended Formulations of Linear Programs.

In a beautiful line of work, the above-mentioned SoS lower bounds have been
central to proving strong lower bounds for extended formulations of linear programs.
More specifically, Sherali-Adams degree bounds for Tseitin formulas were used
to prove lower bounds for LP (linear programming) extended formulations [13,
45], and similarly SoS bounds were shown to imply lower bounds for SDP (semi-
definite programming) extended formulations. These lower bounds on extension
complexity are again reductive – they show that, given an extended formulation for
the optimization problem, the algorithm implies a much simpler SA-based algorithm
for the sameproblem.That is, they prove in a very constructive sense that an algorithm
coming from the larger family of polynomial-size extended formulations, actually
implies the much simpler SA-based algorithm. Göös, Jain and Watson [33] proved
the first truly exponential lower bounds on extension complexity by a reduction to a
simpler lower bound for the Tseitin formulas.

We cannot begin to do justice to this fascinating topic and developments, but refer
the reader to [23] for a comprehensive treatment.
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1.5 Cutting Planes and Tseitin Formulas

The method of using cutting planes for inference in the study of polytopes in inte-
ger programming was first described by Gomory [32], modified and shown to be
complete by Chvátal [14], and first analyzed for its efficiency as a proof system
in [18].

Cutting Planes proofs manipulate integer linear inequalities. A CNF formula
� = (�1, . . . , �<) is translated into a system of linear inequalities as follows: for
each variable G8 add the inequalities G8 ≥ 0 and G8 ≤ 1. For each clause �8 =∨
8∈% G8 ∨

∨
8∈# ¬G8 , add ∑

8∈%
G8 +

∑
8∈#
(1 − G8) ≥ 1.

It can be checked that � is satisfiable if and only if there exists an assignment in
{0, 1}= satisfying this system of inequalities.

Given a system of linear inequalities �G ≥ 1, a Cutting Planes (CP) derivation of
�G ≥ 1 is a sequence of inequalities {28G ≥ 38}8∈[C ] , where 28 ∈ Z= is a vector and
38 ∈ Z, such that every 28G ≥ 38 either belongs to �G ≥ 1, or is obtained from earlier
inequalities by a Chvátal-Gomory cut (CG cut). A CG cut consists of two steps

– LinearCombination: Frompreviously derived inequalities (281G ≥ 381 ), . . . , (28: G ≥
38: ) and _81 , . . . , _8: ≥ 0, let 0G ≥ 1 be such that 0 =

∑:
9=1 _8 9 28 9 and

1 =
∑:
9=1 _8 9 38 9 .

– division: Derive 0G ≥ d1e.

A CP derivation is a refutation if the final inequality is 0 ≥ 1.
The size of the refutation is the number of lines (inequalities) in the refutation

(which is polynomially related to the bit-size complexity [18]). Associated with
any CP refutation is a directed acyclic graph labelled with the inequalities in the
refutation, such that (i) each leaf is an inequality from �G ≥ 1; (ii) intermediate
nodes follow from their children by a CG cut; (iii) the root is 0 ≥ 1. A CP refutation
is tree-like if the graph is a tree.

History of the Complexity of Cutting Planes Refutations.

There is a long history of lower bounds for CP, beginning with a paper by Impagli-
azzo, Pitassi and Urquhart [43] who proved lower bounds on tree-like CP proofs by
a reduction to the communication complexity of an associated search problem. The
first lower bounds for general CP were established by Pudlak [50] and independently
by Bonet, Pitassi and Raz [11] (for the case of bounded coefficients) using themethod
of feasible interpolation [46]. However, the formulas for which these lower bounds
were obtained had to be specially tailored to the method of feasible interpolation,
and it remained a longstanding open problem to resolve the complexity of the Tseitin
formulas, as well as random instances, for CP.



1 Reflections on Proof Complexity and Counting Principles 13

Recently, [24, 41] proved super-polynomial lower bounds on the size of Cutting
Planes refutations for random :-CNF formulas, for : = $ (log =). This is the first
example of a proof system for which lower bounds on random formulas did not follow
from lower bounds for the Tseitin formulas. Following this, Garg et al. [29] showed
that Urquhart’s lower bound for Resolution implied a lower bounds on the size of CP
refutation of lifted Tseitin formulas by establishing a general lifting theorem from
Resolution lower bounds to CP lower bounds. Recently, Dadush and Tiwari [19]
showed that CP has quasi-polynomial size proofs of the Tseitin formulas.

Lower Bounds via Communication Complexity.

Here we sketch the main idea behind all of the aforementioned lower bounds. At their
core, all of these lower bounds are reductions to the communication complexity2 of
an associated search problem.

Definition 2 (Canonical Search Problem) Let � = (�1, . . . , �<) be a CNF for-
mula and (-,. ) be a partition of its variables. The associated search problem
(40A2ℎ-,. (�) ⊆ {0, 1}- × {0, 1}. × [<] asks, given (G, H) ∈ {0, 1}- × {0, 1}. to
find the index of a clause 8 ∈ [<] that is violated by (G, H), i.e. �8 (G, H) = 0.
The use of communication complexity to obtain proof complexity lower bounds was
pioneered in the work of Impagliazzo, Pitassi, and Urquhart [43]. We illustrate their
main technique in Lemma 4 for the case of low-weight CP refutations in which the
sum of the magnitude of the coefficients of each line require at most C = $ (log =)
bits to express.

Lemma 4 (Impagliazzo et al. [43]) Let � be an unsatisfiable formula and (-,. )
be any partition of the variables. If there is a tree-like CP refutation of � of size B
in which every line can be expressed in C bits, then the communication complexity of
solving (40A2ℎ-,. (�) is $ (C log B).

Proof First note that with at most a polynomial increase in the size, we can assume
that the graph of the refutation has fan-in at most 2; let B′ be the size of the fan-in 2
proof. Let the input to Alice and Bob be G ∈ {0, 1}- and H ∈ {0, 1}. respectively.
The proof is by induction on B′. Viewing the refutation c as a tree, there exists an
intermediate node ; such that the number of nodes above ; is between B′/3 and 2B′/3.
Denote by c1 the subtree rooted at ;, and let the remainder c \ c1 be denoted by c0.

Alice and Bob will evaluate ; := 0G+1H ≥ 3. To do so, Alice evaluates 0G−3 and
sends the result to Bob in$ (log =) bits, who can then evaluate whether 0G + 1H ≥ 3.
If ; is falsified under (G, H) then Alice and Bob proceed on the subtree c1. Otherwise,
they recurse on c0. Both c0 and c1 have size at most 2B′/3 and thus by induction they
have communication protocols of size C log(2B′/3). Therefore, in total the number
of bits communicated by the protocol solving the search problem on c is at most
C + C log(2B′/3) ≤ C log B′ = $ (C log B).

2 We refer the reader to the excellent book [51] for definitions and a rigorous treatment of commu-
nication complexity.
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The correctness of the protocol follows by the soundness of the refutation: if ; is
falsified by (G, H) then at least one child of ; must also falsified by (G, H). Therefore,
this procedure is guaranteed to arrive at at a clause of � which is falsified by (G, H).�

Using this reduction together with the monotone formula lower bounds of Raz
and Wigderson [52], Impagliazzo, Pitassi, and Urquhart [43] obtained lower bounds
for tree-like CP. The issue of low coefficients is avoided by using randomized or real
models of communication, both of which have short protocols for computing integer
linear inequalities. Lower bounds on general CP size can be obtained by switching
to an appropriate dag-like model of communication [53, 62].

1.5.1 A Warmup to an Upper Bounds on the Tseitin Formulas

Reductions to communication complexity form the backbone of all of the known
lower bounds for CP. This presented a significant barrier against obtaining lower
bounds on the Tseitin formulas: the search problem associated with the Tseitin
formulas has a short communication protocol. We will first give a general strategy
for finding a violated constraint in TS(�, ;) which will be useful in the following
section. In Lemma 5 we will show that this strategy can be implemented with a short
communication protocol and in Section 1.5.2 we will describe how this upper bound
strategy can be implemented in CP.

Fix an assignment (G, H) ∈ - × . . For * ⊂ + let � [*] := � [*,+ \ *] and
let ; (*) :=

⊕
D∈* ; (D) be the parity of the total labelling on *. At each recursive

round we will maintain a subset of* ⊆ + and a value X ∈ {0, 1} such that X ≠ ; (*)
(initially* = + , X = 0) such that we have determined that

∑
4∈� [* ] G4 = X (mod2).

This will ensure that * contains a vertex whose constraint is falsified by (G, H).
Indeed, suppose the constraints of* are satisfiable, then

; (*) =
∑
D∈*

∑
4:D∈4

G4 (mod2) =
∑

4=(D,E):D,E∈*
2G4 +

∑
4∈� [* ]

G4 (mod2) = X,

which contradicts X ≠ ; (*).
At each round, perform the following:

1. Partition* into two halves,*1 and*2.
2. Determine X1 =

∑
4∈� [*1 ] G4 (mod2) and X2 =

∑
4∈[*2 ] G4 (mod2).

3. Recurse on*1 if X1 ≠ ; (*1) and otherwise on*2 when X2 ≠ ; (*2).
The recursion halts when |* | = 1, at which point we have found a violated constraint.

Lemma 5 Fix a graph �, an odd labelling ;, and let (-,. ) be any partition of
the variables of TS(�, ;). There is a $ (log =) communication protocol solving
(402ℎ-,. (TS(�, ;)).

Proof Given G ∈ - and H ∈ . respectively, Alice and Bob will implement the
aforementioned upper bound strategy. To do so, we must show that they are able to
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perform step (2) while communicating $ (1) bits. Under the partition (-,. ) of the
edges � , the first sum in (2) can be written as

∑
4∈� [*1 ],4∈- G4 +

∑
4∈� [*1 ],4∈. H4.

Alice evaluates
∑
4∈� [*1 ],4∈. H4 and sends the answer (a single bit) to Bob, who is

then able to determine X1 and send the answer to Alice. Similarly, they are able to
compute X2 in 2 bits of communication.

Each recursive round halves the size of the set *. Thus, there are log = rounds,
each costing 4 bits of communication. �

1.5.2 Tseitin Formulas are Easy For Cutting Planes

In a surprising breakthrough result, Dadush and Tiwari [19] refuted the conjecture
that the Tseitin formulas are hard for CP.

Theorem 2 (Dadush-Tiwari [19]) For any graph � and odd labelling ; there is a
quasi-polynomial size CP refutation of TS(�, ;).

Their proof shows that a known refutation of the Tseitin formulas in the stronger
Stabbing Planes proof system (introduced by Beame et al. [4]) could be simulated
in CP. In the remainder we will describe the proof of this upper bound.

Definition 3 (Stabbing Planes) Let � be an unsatisfiable system of linear inequali-
ties. A Stabbing Planes (SP) refutation of � is a directed binary tree in which each
edge is labelled with a linear integral inequality satisfying the following conditions:

– Internal Nodes: For any internal node D, if the right outgoing edge is labelled
with 0G ≥ 1, then the left outgoing edge is labelled with 0G ≤ 1 − 1.

– Leaves: Each leaf node D is labelled with a non-negative linear combination of
inequalities in � with inequalities along the path leading to D that yield 0 ≥ 1.

Associated with every node D in the SP proof is a polytope %D formed by the
intersection of the inequalities in � together with the inequalities labelling the root-
to-D path. The polytopes labelling the leaves are empty. The pair of inequalities
(0G ≤ 1 − 1, 0G ≥ 1) is called the query corresponding to the node. The slab
corresponding to the query is {G ∈ R= | 1 − 1 < 0G < 1}. The size of a refutation is
the number of queries in the tree, which is polynomially equivalent to the bit-length
needed to encode a description of the entire proof tree [19].

Lemma 6 (Beame et al. [4]) For any � and odd labelling ; there is a quasi-
polynomial size SP refutation of TS(�, ;).

Proof (Proof Sketch) We show that the upper bound strategy from the previous
section can be implemented in SP. However, this implementation will be lossy
because SP cannot reason about mod 2 equations directly. Instead of maintaining
that we have some X ∈ {0, 1} such that

∑
4∈� [* ] G4 = X and X ≠ ; (*), we will

strengthen our invariant to require that we have determined
∑
4∈� [* ] G4 exactly.

That is, we have determined that
∑
4∈� [* ] G4 = X for X ∈ {0, . . . , |� [*] |}.

At each round we will perform the following:
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1. Partition* into two halves,*1 and*2.
2. Determine X1 =

∑
4∈� [*1 ] G4 and X2 =

∑
4∈� [*2 ] G4.

3. Recurse on *1 if ; (*1) ≠ X1 (mod2) and otherwise on *2 when ; (*2) ≠
X2 (mod2). If neither holds then we have a contradiction to our inductive as-
sumption and we can derive 0 ≥ 1.

The recursion stops when |* | = 1, at which point we obtain a contradiction between
X and the constraint of the single vertex in*.

It remains to show how to perform step (2) in SP: First, query( ∑
4∈� [*1 ]

G4 ≤ X1 − 1,
∑

4∈� [*1 ]
G4 ≥ X1

)
for X1 = 1, . . . , |� [*1] |,

where the 8th query is attached to the right child of the (8−1)st query (see Figure 1.3).
Each leaf of this tree has determined that

∑
4∈� [*1 ] G4 = X1 (for the edge cases

X1 = 0, X1 = |� [*1 | we use the axioms G8 ≥ 0 and G8 ≤ 1). At each leaf of this tree
we query( ∑

4∈� [*2 ]
G4 ≤ X2 − 1,

∑
4∈� [*2 ]

G4 ≥ X2
)

for X2 = 1, . . . , |� [*2] |,

where again the 8th query is attached to the right child of the (8−1)st. This completes
the simulation of (2).

Each recursive step halves the size of the set* under consideration and converges
in $ (log =) recursive steps. Each recursive step can be implemented in $ ( |� |2)
queries. Thus, the total proof size is quasi-polynomial. �

∑
4∈� [* ]

G4 ≥ 1
∑

4∈� [* ]
G4 ≤ 0

∑
4∈� [* ]

G4 ≥ |� [* ] |
∑

4∈� [* ]
G4 ≤ |� [* ] |−1

∑
4∈� [* ]

G4 ≤ 1
∑

4∈� [* ]
G4 ≥ 2

Fig. 1.3 The first tree of SP queries in a recursive step.

Simulating the Tseitin Refutation in CP.

Dadush and Tiwari showed that Lemma 6 could be converted into a CP refutation.
Let us first recall some basic facts about polytopes and the geometry of CP proofs.



1 Reflections on Proof Complexity and Counting Principles 17

A hyperplane 0G ≥ 1 is valid for a polytope % if 0G ≥ 1 for every G ∈ %. � :=
% ∩ {G : 0G = 1} is face of % if at least one of 0G ≥ 1, 0G ≤ 1 is valid for %. We
can view a CP refutation of a set of linear inequalities � as a sequence of polytopes
� = %0, %1, . . . , %C = ∅ where %8 is derived from %8−1 by a Chvátal-Gomory (CG)
cut, which corresponds to taking a hyperplane 0G ≥ 1 that is valid for %8−1 and
shifting it to the nearest integral point (see Figure 1.5). The principal difference
between CP and SP is that SP can cut within the current polytope by removing a slab
from it, while CP can only cut on the boundary of the current polytope.

The key observation is that the SP refutation from Lemma 6 works from the
boundary of the polytope % = TS(�, ;) inwards. Indeed, if the vertices * are
partitioned into *1 and *2, then the first branch (see Figure 1.3) corresponds to
refuting the face

∑
4∈� [*1 ] G4 = 0, the second to refuting

∑
4∈� [*1 ] G4 = 1, and so on

(see Figure 1.4). More generally, for every query (0G ≤ 1, 0G ≥ 1+1) corresponding
to some node D in the SP refutation of TS(�, ;), 0G ≥ 1 will be valid for the current
polytope %D:

– If 1 = 0 this follows from the axioms G8 ≥ 0.
– If 1 > 0 then this follows because the SP proof queries (0G ≤ 1, 0G ≥ 1 + 1)

sequentially from 1 = 1, 2, . . . and so 0G ≥ 1 is one of the defining inequalities
for %.

Therefore, the SP proof refutes )((�, ;) by recursively cutting away at the sides of
the polytope.

A second important observation is that if we have a CP derivation of a polytope
%′ from % such that %′∩{G : 0G = 1} = ∅ (i.e. we have refuted the face {G : 0G = 1})
then CP can drive 0G ≥ 1 + 1 from %′. Indeed, there must be some Y ∈ (0, 1) such
that 0G ≥ 1 + Y is valid for %′ and so 0G ≥ d1 + Ye is a GC cut from %′.

0G ≥ 1 0G ≥ d1e

Fig. 1.4 A CG cut 0G ≥ d1e, the shift of a valid halfspace 0G ≥ 1 to the nearest integer point.
The grid intersection points represent integer points.
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Together, these observations show that each recursive round of the SP proof looks
locally like a CP proof. The challenge is to show that we can unroll the recursion. We
would like to show that if we have CP refutations of %∩ {G : ∑4∈� [* ] G4 = X} for all
X = 0, . . . , |� [*] | then we can glue these refutations together to form a refutation
%. The following Lemma due to Shrĳver [59] will allow us to do this.

Lemma 7 (Shrĳver [59]) Let % be a polytope and � be a face of %. If � ′ is obtained
from � by a CG cut then there is a polytope %′ obtained by a CG cut from % such
that %′ ∩ � ⊆ � ′.

The high-level idea of the proof is as follows: Let % = {�G ≤ 1}, � = {�0G =
10, �1G ≤ 11} and 0G ≥ 1 be the CG cut which obtains � ′ from �. Observe that
shifting 0G ≥ 1 by factors of �0G ≤ 10 does not change its effect on �. Since we
care only about the resulting polytope when restricted to the face �, we can shift
0G ≥ 1 by �0G ≤ 10 so that it no longer depends on �0G ≥ 10 and is therefore a
valid cut from %.

Repeated application of this lemma allows us to simulate a refutation of a face �
on % itself.

Corollary 1 Suppose that 0G ≥ 1 is valid for %, 0 ∈ Z=, 1 ∈ Z, and let � := %∩ {G :
0G = 1}. Let � = �0, . . . , �: = ∅ be a CP refutation of �, then there is a CP
derivation % = %0, . . . , %: , %:+1 such that %:+1 ⊆ % ∩ {G : 0G ≥ 1 + 1}.

Proof For 8 = 1, . . . , : , apply Lemma 7 to obtain %8 from �8 and %8−1 such that
%8 ∩ � ⊂ �8 and therefore %: ∩ � = ∅. Because 0G ≥ 1 is valid for % and
%: ∩ {G : 0G = 1} = ∅ it follow that there exists 0 < Y ≤ 1 such that 0G ≥ 1 + Y is
valid for %. Therefore, %:+1 := %: ∩ {G : 0G ≥ 1 + 1} is a CG cut from %: . �

We now sketch the proof of the CP refutation of the Tseitin formulas by Dadush
and Tiwari.

0
1

3
4

|� [* ] |

Fig. 1.5 The faces
∑
4∈� [* ] G4 = X for X ∈ [� [* ] | ] of the TS(�, ;) polytope refuted sequen-

tially in the SP refutation.
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Proof (Proof Sketch of Theorem 2.) The proof is a post-order traversal of the SP
refutation of TS(�, ;). Consider some node in the SP refutation corresponding to a
query (0G ≤ 1, 0G ≥ 1 + 1), and let % be the polytope associated with this node.
Suppose that we have CP refutations of the left and right children % ∩ {G : 0G = 1}
and % ∩ {G : 0G = 1 + 1}. We will construct a CP refutation of % as follows:

1. Apply Corollary 1 to the refutation of the left child in order to obtain a CP
derivation % = %0, . . . , %C+1 such that %C+1 ⊆ % ∩ {G : 0G ≥ 1 + 1}.

2. Append the CP refutation of the right child in order to refute %C+1.

Since the root of the SP refutation corresponds to the polytope )((�, ;), this proce-
dure will produce a CP refutation of)((�, ;). Observe that this simulation preserves
the size of the SP refutation. �

In a followup work Fleming et al. [22] gave an alternative proof of Theorem 2
and extended it to hold for any unsatisfiable system of linear equations over a finite
field. To do this, they showed that CP can quasi-polynomially simulate any SP proof
provided that the coefficients of the proof are quasi-polynomially bounded.

1.6 Concluding Remarks

We end with several related open problems.

Are Optimal Resolution Refutations of Tseitin Formulas Regular?

In his paper [63], Tseitin makes the following remarks about the heuristic interpre-
tation of the regularity restriction:

The regularity condition can be interpreted as a requirement for not proving intermediate
results in a form stronger than that in which they are later used (if � and � are disjunctions
such that � ⊆ �, then � may be considered to be the stronger assertion of the two); if the
derivation of a disjunction containing a variable b involves the annihilation of the latter,
then we can avoid this annihilation, some of the disjunctions in the derivation being replaced
by “weaker" disjunctions containing b .

These heuristic remarks of Tseitin suggest that there is always a regular Resolution
refutation of minimal size, as in the case of tree Resolution. Consequently, some
authors tried to extend Tseitin’s results to general Resolution by showing that regular
Resolution can simulate general Resolution efficiently. The results of [42, 31, 2, 66]
show that these attempts were doomed to failure. Despite this negative result showing
that regular Resolution can be substantially weaker than general Resolution in the
worst case, it remains open for natural examples such as counting principles. In
particular, Urquhart [64] conjectured that the minimal-size Resolution refutations
for Tseitin are always regular.

There has been significant progress towards resolving this conjecture for constant-
degree graphs. For constant-degree graphs, In this case, the results of [27, 3] imply
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a regular Resolution proof of size 2$ (CF (�)) log |+ |, where CF(�) is the tree-width
of �. As observed by [44], the technique of Galesi et al. [26] implies a 2Ω(CF (�)1/10)

lower bound for Resolution. Recently [44] proved near-optimal 2Ω̃(CF (�)) lower
bounds for regular Resolution.

Further Lower Bounds for Bounded-depth Frege.

It is still an open to prove optimal lower bounds for the propositional pigeonhole
principle. Asmentioned above, the best known lower bound is exponential in =1/2$ (3)

for depth-3 Frege proofs, whereas the best known upper bound is exponential in =1/3 .
Another longstanding open problem is to prove lower bounds for bounded-depth
Frege proofs for :-CNF random formulas; in this case there are no nontrivial lower
bounds known for 3 > 2. Lower bounds for the Tseitin formulas have typically paved
the way for obtaining lower bounds on random formulas. Indeed, :-XOR instances
can be viewed as :-CNF formulas with additional clauses, and thus random :-
XOR lower bounds imply lower bounds on random :-CNFs. While near-optimal
lower bounds on the Tseitin formulas are known, these lower bounds rely on certain
structure of the underlying graph that is not available for random :-XOR instances.

Finally, the most longstanding open problem concerning bounded-depth Frege
systems is to prove lower bounds for bounded-depth Frege systems over the basis
which includes mod-? gates, for any prime ? ≥ 2. It is conjectured that the Tseitin
formulas (mod 2) should be hard for bounded-depth Frege systems over the basis
which includes mod-? gates, for any ? ≠ 2.

Unprovability of P ≠ NP.

In [53] Razborov showed that if one assumes the existence of strong pseudo-random
generators, then certain systems of Bounded Arithmetic cannot prove circuit lower
bounds, thus ruling out any approach for proving NP * P/poly that could be imple-
mented in these systems. As well, this implies the same result for any propositional
proof systemwhich admits feasible interpolation by monotone circuits (equivalently,
any proof system that can be simulated by the '��1 [24] proof system). In several
followup works Razborov established unconditionally that the Polynomial Calcu-
lus [54], Resolution [55], and Resolution over >(log =)-DNFs [56] do not possess
short proofs of NP * P/poly. It remains an open problem to extend these lower
bounds to stronger systems such as bounded-depth Frege.
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