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Abstract

The orbit of an n-variate polynomial f(x) over a field F is the set {f(Ax + b) | A ∈
GL(n,F) and b ∈ Fn}, and the orbit of a polynomial class is the union of orbits of all the polyno-
mials in it. In this paper, we give improved constructions of hitting-sets for the orbit of read-once
oblivious algebraic branching programs (ROABPs) and a related model. Over fields with charac-

teristic zero or greater than d, we construct a hitting set of size (ndw)O(w2 logn·min{w2,d logw})

for the orbit of ROABPs in unknown variable order where d is the individual degree and w is
the width of ROABPs. We also give a hitting set of size (ndw)O(min{w2,d logw}) for the orbit of
polynomials computed by w-width ROABPs in any variable order. Our hitting sets improve
upon the results of Saha and Thankey [ST21] who gave an (ndw)O(d logw) size hitting set for

the orbit of commutative ROABPs (a subclass of any-order ROABPs) and (nw)O(w6 logn) size
hitting set for the orbit of multilinear ROABPs. Designing better hitting sets in large individual
degree regime, for instance d > n, was asked as an open problem by [ST21] and this work solves
it in small width setting.

We prove some new rank concentration results by establishing low-cone concentration for the
polynomials over vector spaces, and they strengthen some previously known low-support based
rank concentrations shown in [FSS13]. These new low-cone concentration results are crucial in
our hitting set construction, and may be of independent interest. To the best of our knowledge,
this is the first time when low-cone rank concentration has been used for designing hitting sets.

1 Introduction

Polynomial identity testing (PIT) problem is a fundamental problem in the area of algebraic circuit
complexity. PIT is the problem of deciding whether a given multivariate polynomial is identically
zero, where the input is given as an algebraic formula, circuit or other computational models like
algebraic branching program. One way of testing zeroness of a polynomial is to check whether the
coefficients of all the monomials are zero. However, the polynomial computed by a circuit or a
branching program may have, in the worst-case, an exponential number of monomials compared to
its size. Hence, by computing the explicit polynomial from the input, we cannot solve PIT problem
in polynomial time. However, evaluating the polynomial at a point can be done in polynomial time
of the input size. This helps us to get a polynomial time randomized algorithm for PIT by evaluating
the input circuit at a random point, since any nonzero polynomial evaluated at a random point
gives a nonzero value with high probability [DL78, Zip79, Sch80]. However, finding a deterministic
polynomial time algorithm for PIT is a long-standing open question in algebraic complexity theory.

PIT captures several problems in algebra and combinatorics. For example, parallel algorithms for
perfect matching [Tut47, Lov79, FGT16, ST17], primality testing [AKS04], multivariate polynomial
factorization [KSS14], and many other problems [Sha90, DdOS14, GKS17]. PIT also has strong
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connection to circuit lower bounds [HS80, KI04, DSY09, CKS18, GKSS19]. See [Sax09, SY10, SS13]
for surveys on PIT.

PIT problem is studied in two different settings: 1) whitebox, where we are allowed to access the
internal structure of the circuit, and 2) blackbox, where only evaluation of the circuit at points is
allowed. Deterministic blackbox PIT for an n-variate circuit class is equivalent to efficiently finding
a set of points H ⊆ Fn, called a hitting-set, such that for any nonzero P in that circuit class, the set
H contains a point at which P 6= 0 1. In this work, we only focus on the blackbox model.

Despite a lot of effort, little progress has been made on the PIT problem in general. However,
efficient deterministic PIT algorithms are known for many special circuit models. For example,
blackbox PIT for depth-2 circuits (or sparse polynomials) [BT88, KS01, LV03], PIT algorithms for
depth-3 circuits with bounded top fan-in [DS07, KS07, KS09, KS11, SS11, SS12, SS13], depth-3
diagonal circuits [Sax08, FSS13, FGS18] and various other subclasses of depth-3 circuits [SSS13,
AGKS15, dOSV15], PIT for the subclasses of depth-4 circuits [ASSS12, BMS13, For15, KS17, PSS18]
and certain types of symbolic determinants [FGT16, ST17, GT17].

The focus of this work is on the model of read-once oblivious algebraic branching programs
(ROABPs). An ROABP is a product of matrices

f = aT ·M1(xπ(1))M2(xπ(2)) · · ·Mn(xπ(n)) · c,

where a, c ∈ Fw×1 and for some permutation π on [n] for each i ∈ [n], Mi(xπ(i)) ∈ Fw×w[xπ(i)]
can be viewed as a polynomial over the matrix algebra. The permutation π is called the variable
order of the ROABP. One reason to be interested in ROABP is that derandomizing blackbox PIT
for ROABP can be viewed as an algebraic analogue of the RL vs. L question. Besides that, the
ROABP model is surprisingly rich and powerful. It captures several other interesting circuit classes
such as sparse polynomials or depth-two circuits, depth-three powering circuits (symmetric tensors),
set-multilinear depth-three circuits (tensors), and semi-diagonal depth-3 circuits [FS13b]. Some
notable polynomials such as the iterated matrix multiplication polynomial, the elementary and
the power symmetric polynomials, and the sum-product polynomials can be computed by linear
size ROABPs. Hitting sets for ROABPs have also led to the derandomization of an interesting
case of the Noether Normalization Lemma [Mul12, FS13a], and to hitting sets for non-commutative
algebraic branching programs [FS13b].

PIT question for ROABPs and its variants has been widely studied. There are three parameters
associated with an ROABP: the number of variables n, the size of the matrices w called width and
the individual degree d which is the maximum possible degree of any variable. First, [RS05] gave a
polynomial time whitebox PIT algorithm for this model. [FS13b] first gave (ndw)O(logn) size hitting
set for ROABPs when the variable order is known. Later, [FSS13] gave an (ndw)O(d logw·logn) size
hitting for ROABPs with unknown variable order, and subsequently, [AGKS15] gave an improved
hitting set of size (ndw)O(logn) for this model. For zero or large characteristic fields, [GKS17] gave
an ndwlogn size hitting sets for the known order ROABPs and the size becomes polynomially large
when the width is constant. Better hitting set is known for a special class of ROABPs, called
any-order ROABP. A polynomial f is computable by a w-width any-order ROABP, if for every
permutation π on [n], f is computable by a w-width ROABP. The notion of any-order ROABP
subsumes the notion of commutative ROABP. An ROABP is called commutative ROABP if the
polynomial computed by it remains unchanged under any permutation of the matrices involved
in the product. [FSS13] gave two different constructions of hitting sets of size (ndw)O(logw) and
dO(logw) · (nw)O(log logw) for any-order ROABPs 2. Later, [GKS17] gives an improved hitting set of

1When F is a finite field, we are allowed to go some suitable extension K of F and pick points from Kn.
2In [FSS13], any-order ROABPs are referred by “commutative ROABPs”.
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size (ndw)O(log logw) for this model. Recently, [GG20] gives improved hitting sets for both ROABPs
and any-order ROABPs. Compared to the previous constructions, the size of hitting sets in [GG20]
have finer dependence on the parameters of ROABPs. However, the construction of polynomial size
hitting sets for ROABPs and its variants is still open.

In this work, we study the PIT question for the orbit of ROABPs. The orbit of an n-variate
polynomial f(x) over a field F, denoted by orbit(f), is the set of polynomials obtained by applying
invertible affine transformations on the variables of f , that is, orbit(f) = {f(Ax + b) | A ∈
GL(n,F), and b ∈ Fn}. The orbit of a polynomial class C, denoted by orbit(C), is the union of the
orbits of the polynomials in the class. Apart from being a natural question to study the sturdiness
of the known techniques (and improving them), designing hitting sets for the orbits of polynomial
families and circuit classes is interesting for the following reasons:

• As observed by [ST21], the affine projections of “simple” polynomials have great expressive
power. The set of affine projections of an n-variate polynomial f(x) over a field F is aproj(f) :=
{f(Ax + b) | A ∈ Fn×n and b ∈ Fn}. Formally, they show that if the characteristic of F is
zero, the set of affine projections of an n-variate polynomial f(x) over a field F lies inside
the Zariski closure of the orbit of f (denoted by orbit(f)), that is aproj(f) ⊆ orbit(f). This
observation has some interesting implications. For instance, using the above observation
one can show that, the entire class of depth-3 circuits ΣΠΣ with top fan-in s and degree d
is contained in aproj(SPs,d), where SPs,d :=

∑
i∈[s]

∏
j∈[d] xi,j is a very structured s-sparse

polynomial. The orbit closure of ROABPs is also very powerful, in fact they are as powerful as
general ABPs. This can be seen by observing, the iterated matrix multiplication polynomial
IMMw,d is computable by a linear-size ROABP, yet every polynomial computable by a size-s
general algebraic branching program is in aproj(IMMs,s). For more polynomial families whose
orbit closures contain interesting circuit classes, see [MS21].

• For an n-variate polynomial f over a field F, let V(f) denotes the variety (that is, zero locus)
of f . Hitting set construction for an n-variate polynomial class C is the problem of picking a
set of points H such that for each polynomial f ∈ C, H is not entirely contained in V(f). On
the other hand, Constructing hitting sets for the orbits of a polynomial class C is the task of
finding a small set of points H such that for every f ∈ C, H is not entirely contained in the set
{Aa + b | a ∈ V(f), A ∈ GL(n,F) and b ∈ Fn}. This ensures that H will be independent to
the choice of coordinate system, making it mathematically and geometrically robust.

For a more detailed discussion on the reasons for studying hitting set of orbits, see [ST21].

Hitting set construction for orbits of circuit classes is very recent, somewhat simultaneously
Medini and Shpilka [MS21] and Saha and Thankey [ST21] started exploring PIT for the orbit of
various polynomial classes. Medini and Shpilka [MS21] gave a quasi-polynomial size hitting set
for the orbits of sparse polynomials (

∑∏
circuits) and read-once formulas (ROFs). Saha and

Thankey [ST21] gave hitting sets for the orbits of ROABPs and constant-read (more generally,
constant-occur) formulas. Concretely, [ST21] gave an (ndw)d logw size hitting set for the orbit of
n-variate individual degree d width w commutative ROABPs. They also gave an (nw)O(w6 logn)

size hitting set for the orbit of n-variate multilinear polynomials computed by width w ROABPs.
Building on this, they also gave quasi-polynomial size hitting set for constant-depth constant-occur
formulas whose leaves are labeled by s-sparse polynomials with constant individual degree. In
this work, we design hitting sets for the orbit of ROABPs and any-order ROABPs. Our results
significantly improve the dependence on individual degree in the size of hitting sets in comparison
to [ST21], from exponential to polynomial.
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1.1 Our Results

First, we define the models studied in this paper. Algebraic branching programs (ABPs) were defined
by Nisan in [NW97]. In this paper, we study a variant of ABPs known as read-once oblivious ABPs
(ROABPs). While Nisan defined ABPs using directed graphs, we use a more conventional definition
using product of matrices. Let f(x1, . . . , xn) be an n-variate individual degree d polynomial over a
field F. Let π be a permutation on [n]. We say f is computed by a width w ROABP with variable
order π, if f can be written as

f = aT ·M1(xπ(1))M2(xπ(2)) · · ·Mn(xπ(n)) · c,

where a, c ∈ Fw×1 and for all i ∈ [n], Mi(xπ(i)) ∈ Fw×w[xπ(i)] can be viewed as a polynomial in
xπ(i) over the matrix algebra with degree at most d. We say f is computable by a w-width any
order ROABP, if for every permutation π on [n], f is computable by a width w ROABP. We
say f is computed by a width w commutative ROABP, if all Mi(xπ(i))’s are polynomials over a
commutative sub-algebra of the matrix algebra. For example, consider the coefficients of each Mi are
diagonal matrices. One can observe that the set of polynomials computed by w-width commutative
ROABPs are also computable by w-width any-order ROABPs. However, the converse direction is
unknown to us. All PIT algorithms for ROABPs are designed by analyzing the coefficient space of
M1(xπ(1))M2(xπ(2)) · · ·Mn(xπ(n)).

In this paper, we design hitting sets for the orbits of ROABPs and any-order ROABPs. Let
f(x) be an n-variate polynomial over a field F. The orbit of f , denoted by orbit(f), is the set
{f(Ax + b) | A ∈ GL(n,F) and b ∈ Fn}. For a polynomial class C, the orbit of C, denoted by
orbit(C), is the union of orbits of all the polynomials in C. Now, we describe our result for the orbit
of any-order ROABPs.

Theorem 1.1. Let F be a field of characteristic zero or greater than d. Let C be the set of
n-variate polynomials over F with individual degree at most d and computable by a width w any-
order ROABP. Then, there exists a hitting set for orbit(C) computable in time (ndw)O(`) where
` = min{w2, 2d logw}.

Comparison with previous works: As far as we know, this is the first result addressing the
orbit of any-order ROABPs, and it subsumes the commutative ROABP result of Saha and Thankey
[ST21]. They gave an (ndw)O(d logw) size hitting set for the orbit of commutative ROABPs. In
fact, our result strengthens [ST21] in “low width” setting. Concretely, if the individual degree is
poly(log n), [ST21] gives quasi-polynomial time PIT for the orbit of commutative ROABPs. However,
when d ≥ n, their algorithm does not give any non-trivial PIT for the orbit of commutative ROABPs.
On the other hand, our result gives quasi-polynomial time PIT for the orbit of any-order ROABPs
when min{d,w} = poly(log n). Also, for constant width any-order ROABPs with unbounded
individual degree, our result gives a polynomial time PIT for its orbit. However, [ST21] gives
polynomial time PIT for the orbit commutative ROABPs when both d and w are constants. Thus,
our result has much better dependence on the individual degree in comparison with [ST21].

Now, we describe our result regarding the orbit of ROABPs.

Theorem 1.2. Let F be a field of characteristic zero or greater than d. Let C be the set of n-variate
polynomials over F with individual degree at most d and computable by a width w ROABP. Then there
exists a hitting set for orbit(C) computable in time (ndw)O(`) where ` = (w2 log n) ·min{w2, 2d logw}.

Comparison with previous works: Saha and Thankey [ST21] gave an (nw)O(w6 logn) time
PIT for the orbit of multilinear polynomials computed by ROABPs. Therefore, our result can be
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seen as the first one which gives PIT for the orbit of ROABPs with unbounded individual degree.
Irrespective of the value of the individual degree, our result gives a quasi-polynomial time PIT for
the orbit of ROABPs when the width w = poly(log n). Also, the time complexity of our algorithm
has better dependence on the width of ROABPs in comparison with [ST21].

Remark. Our results in this paper continue to hold even if we consider a more generalized
definition for the orbit of an n-variate polynomial f(x), that is orbit(f) = {f(Ay+b) | m ≥ n, A ∈
Fn×m with rank n and b ∈ Fn} where y = (y1, . . . , ym). However, we work with the conventional
definition of the orbit of polynomials for the simplicity of exposition, and because the proofs of the
results with the generalized definition of orbit is almost the same as the proofs given in this paper.

1.2 Proof techniques

First, we briefly sketch the abstract framework followed by the proofs of our results. Let C be a set
of n-variate polynomials in y = (y1, . . . , yn) with individual degree at most d. Then orbit(C) is the
set of n-variate polynomials in x = (x1, . . . , xn) is defined as follows: for all f(x) ∈ orbit(C) there
exists a polynomial h(y) ∈ C, an invertible linear transformation L(x) = (`1, . . . , `n) from Fn to Fn
and a point b ∈ Fn such that

f(x) = h(L(x) + b).

In this paper, we design hitting sets for the orbits of ROABPs and any-order ROABPs. Hitting
sets for ROABPs are constructed by designing a “smartly” chosen shift g(t) (a low variate polynomial
map) such that when we shift any polynomial h(y) computable by a small size ROABP, then
there exists a “low-support” monomial (with nonzero coefficient) in h(x + g). Note that, it is
straightforward to construct hitting sets when such a low-support monomial (with nonzero coefficient)
exists. However, this approach does not directly work for a polynomial f(x) = h(L(x) + b) in the
orbit of ROABPs as shifting f has a slightly different effect. Note,

f(x + g) = h(L(x + g) + b) = h(L(x) + L ◦ g + b).

That is, the shift gets composed with the affine transformation L(x) + b. The main idea in our
construction is to choose a shift such that the transformed shift (for any affine transformation)
is also “smart”. That is, for any invertible linear transformation L(x) and b ∈ Fn, there exists a
“low-support” monomial (with nonzero coefficient) in f(x + g) = h(L(x) + L ◦ g + b).

Let g(t) = (g1, . . . , gn) be a polynomial map from Fm to Fn and h′(y) = h(y +L ◦ g + b). Note
that, f ′(x) := f(x + g) = h′(L(x)). Our abstract format to design hitting sets for the orbits of
ROABPs and any-order ROABPs has the following two steps.

Step 1: First we find some suitable low degree polynomial map g in few variables (compare to n)
such that for all invertible linear transformation L(x) and b ∈ Fn, after shifting h(y) ∈ C
by L ◦ g + b, the new polynomial h′(y) = h(y + L ◦ g + b) has the following property: for
some small positive integer k, hom≤k(h

′(y)) is a nonzero polynomial in y over the field F(t),
where hom≤k(·) denotes the degree up to k part of the input polynomial. This step, more
specifically the construction of g(t), heavily relies on the structure of C.

Step 2: Since L(x) is an invertible linear transformation, all `i’s are algebraically independent.
Also, hom≤k(f

′) = hom≤k(h
′)(L(x)). Therefore, hom≤k(f

′) is a nonzero polynomial in x over
the field F(t). This implies that there exists a monomial xe =

∏n
i=1 x

ei
i such that the support

of e is at most k and the coefficient of xe in f ′ is a nonzero polynomial in t. There are well
known constructions of hitting sets for polynomials like f ′(x). For example, combining Lemma
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2.12 and Observation 2.6 we get a hitting set for f ′ of size around (nd)O(m+k). Thus, we
design a hitting set for orbit(C). This step is independent of the polynomial class C.

For instance, assume that C is the set of n-variate polynomials with individual degree and sparsity
are at most d and s, respectively. Then, from [For15], after shifting any polynomial h(y) ∈ C by
an ααα = (α1, . . . , αn) with all αi’s are nonzero the following holds: there exists a monomial ye such
that the support of e is at most log s and its coefficient in h(y + ααα) is nonzero. Let g(t) be the
polynomial map from F to Fn defined as (t, t2, . . . , tn) and b = (b1, . . . , bn). Then, each `i(g) + bi is
a nonzero polynomial. Therefore, there exists a monomial ye of support-size at most log s such that
its coefficient in h′(y) is a nonzero polynomial in t. Since the individual degree is at most d, the
degree of ye is at most ≤ d log s. Now from the step 2, there exists a monomial in x of support-size
at most d log s such that its coefficient in f ′ is a nonzero polynomial in t. Thus, we have a hitting set
for orbit(C) of size (nd)O(d log s). This gives a different (and much simpler) hitting set construction
than [ST21, Theorem 7] for the orbit of sparse polynomials with low individual degree.

Stronger rank concentration results: We describe some stronger rank concentration results,
which will be very useful in designing our hitting sets for the orbits of ROABPs and any-order
ROABPs. Let G(x) be an n-variate polynomial over the vector space Fk. The coefficient space of G
is the vector space spanned by the coefficients (from Fk) in G. In general, the coefficient space of G
can be spanned by the coefficients of any arbitrary set of monomials. In rank concentration, our goal
is to construct a polynomial map g(t) such that after shifting G(x) by g(t), the coefficient space of
the new polynomial G′(x) = G(x + g) is spanned the coefficients of a “small” set of monomials S.
For example,

1. if S is the set of monomials whose support-size is ≤ `, we say G′ has `-support concentration.
The support-size of a monomial is the number of variables appearing in it.

2. if S is the set of monomials whose cone-size is ≤ `, we say G′ has `-cone concentration. The
cone-size of a monomial is the number of monomials dividing it.

3. if S is the set of monomials which is closed under sub-monomials, we say G′ has a cone-closed
basis.

The notion of rank-concentration was introduced in [ASS13]. Subsequently, many PIT results
are obtained based on “low-support” rank concentration [ASS13, FSS13, GKST15, GKS17, ST21].
Later, [FGS18] introduced the notion of cone concentration and cone-closed basis. Among the three
notions of rank concentrations, cone-closed basis is stronger than the other two, then comes cone
concentration and after that support concentration. More specifically, cone-closed basis of G′ implies
that it has also k-cone concentration, and k-concentration for G′ implies it has also log k-support
concentration. For more details about the relation between these three notions of rank concentrations
see Lemma 2.15. The notion of cone concentration is important for designing our improved hitting
sets over [ST21]. Although the notion of cone concentration was first introduced in [FGS18] and they
showed some low-cone concentration result, we are not are aware of any “non-trivial” application of
them in designing PIT algorithms. Therefore, to the best of our knowledge, this is the first time
when the notion of cone concentration is used in designing PIT algorithms.

In this work, we strengthen some of the rank concentration results shown in [FSS13, FGS18].
[FSS13] showed that if G(x) is shifted by t = (t1, . . . , tn), the new polynomial G(x + t) has log k-
support concentration over the field F(t). Moreover, they showed that if G is shifted by a n-wise
independent monomial map g′(s, t), then the new shifted polynomial has log k-support concentration.
A polynomial map g′(s, t) from Fm × Fm′

to Fn is called `-wise independent monomial map if for

6



every S ⊆ [n] of size ≤ ` there exists an ααα ∈ Fm such that polynomials {g′(ααα, t)e}supp(e)⊆S are
distinct monomials in t. Later, [FGS18] showed that G(x + t) has a cone-closed basis. Their result
can also be extended to show that G(x+g′) has a cone-closed basis when g′ is an n-wise independent
monomial map. However, when we take composition of g′ with an invertible affine transformation,
that is b + L ◦ g′ where b ∈ Fn and L(x) is an invertible linear transformation from Fn to Fn, the
n-wise independence property of g′ breaks down. Therefore, the previous rank concentration results
are not helpful in designing hitting sets for the orbits of circuit classes. We strengthen the rank
concentration results of [FSS13, FGS18] in the following way: After shifting G by a polynomial
map g′ = (g1, . . . , gn) such that all gi’s are algebraically independent, the new polynomial has a
cone-closed basis, hence k-cone concentration. Observe that the n-wise independence property
implies the algebraic independence property needed in our hypothesis. Therefore, our hypothesis is
weaker than the hypothesis used in [FSS13, FGS18]. Also, algebraic independence property of g′

preserves even after composing it with invertible affine transformations. For details see Lemma 3.2.
This rank concentration result will be helpful in designing the hitting sets for the orbit of any-order
ROABPs.

We show one more rank concentration result which will help in designing PIT algorithms for
the orbit of ROABPs. Assume that the coefficients of the monomials of total degree up to D
spans the coefficient space of G. Let g′(s, t) be a total degree D independent monomial map from
Fm × Fm′

to Fn, that is, there exists an ααα ∈ Fm such that the polynomials {g′(ααα, t)e}|e|1≤D are
distinct monomials in t. Then [FSS13] showed that if G(x) is shifted by ug′, then the new shifted
polynomial has log k-support concentration over the field F(u, s, t). Our rank concentration result
differs from [FSS13] in the following ways:

1. Our hypothesis is slightly stronger than [FSS13]. Instead of total degree D independent
monomial map, we assume that g′(s, t) is a total degree Dk independent monomial map.

2. On the other hand, we strengthen the conclusion as follows: for every invertible linear
transformation L(x) from Fn to Fn, if we shift G by uL ◦ g′, then the new shifted polynomial
has a cone-closed basis over the field F(u, s, t).

For details see Lemma 3.3.

Proof idea of Theorem 1.1: Suppose that C is the set of all n-variate polynomials in y with
individual degree at most d and computed by width w any-order ROABPs. Let f(x) be an n-variate
polynomial in orbit(C). Then there exists a polynomial h(y) ∈ C, an invertible linear transformation
L(x) and a point b ∈ Fn such that

f(x) = h(L(x) + b).

Since h(y) ∈ C, there exists a polynomial G(y) ∈ F[y]w×w with individual degree at most d and
computed by a width w any-order ROABP such that

h(y) = aT ·G(y) · c,

where a, c ∈ Fw.
Now we will describe the first step of aforementioned abstract format. First, we show how to

achieve w2-cone concentration in G(y). Let g(t) = (g1, . . . , gn) be a polynomial map from Fm to
Fn such that for any S ⊆ [n] of size k := d2 logw + 1e, the set of polynomials {gi | i ∈ S} are
algebraically independent. Then, in Lemma 4.1, we prove that G(y + g) has w2-cone concentration
over the field F (t). It strengthens the rank-concentration result for any-order ROABPs shown
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in [FSS13, Theorem 4.1]. They showed that if we shift G by a k-wise independent monomial
map, then the new polynomial has 2 logw-support concentration. Next, in Lemma 4.2, we show
that for any invertible linear transformation L(x) and b ∈ Fn, the polynomial map defined as
the composition of L(x) + b and Shpilka-Volkovich generator GSVn,k (see Definition 2.10, or [SV09]),

that is L ◦ GSVn,k + b, satisfies the property required for achieving w2-cone concentration in G(y).

Therefore, G(y +L ◦GSVn,k + b) has w2-cone concentration. This implies that there exists a monomial

ye of cone-size ≤ w2 such that the coefficient of ye in h′(y) = h(y+L◦GSVn,k +b) is nonzero. For any

monomial of cone-size ≤ w2, its degree is less than w2 and the support set is of size at most 2 logw.
Since the individual degree is at most d, the degree of ye is at most ` where ` := min{w2, d logw}.
Therefore, hom≤`(h

′) is nonzero. Now we apply the step two of the abstract format, which is
independent of C, and get our desired hitting set for orbit(C).

Proof idea of Theorem 1.2: Suppose that C is the set of all n-variate polynomials in y with
individual degree at most d and computed by width w ROABPs. Let f(x) be an n-variate polynomial
in orbit(C). Then there exists a polynomial h(y) ∈ C, an invertible linear transformation L(x) and
b ∈ Fn such that

f(x) = h(L(x) + b).

Since h(y) ∈ C, there exists a polynomial G(y) ∈ F[y]w×w and a permutation π on [n] such that

h(y) = aT ·G(y) · c and G(y) =
n∏
i=1

Mi(xπ(i))

where a, c ∈ Fw and for all i ∈ [n], Mi(xπ(i)) is a polynomial in F[xπ(i)]
w×w.

Now like any-order ROABPs, we want to achieve w2-cone concentration in G(y). However, our
approach here will be different from any-order ROABPs. Here, we strengthen the “merge-and-reduce”
approach of [FSS13] in the following ways:

1. In [FSS13], the polynomial maps hj (for j = 0, 1, . . . , dlog ne) were inductively constructed
such that after shifting G by hj , in the new polynomial G(x + hj), the product of any 2j

consecutive matrices have 2 logw-support concentration. We strengthen this result by showing
w2-cone concentration at each inductive step.

2. At each induction step, since we are dealing with polynomials in orbit (of ROABPs), we not
only need to construct a polynomial map which helps to achieve w2-cone concentration, but its
composition with any invertible affine transformation also helps to achieve the same property.

In [FSS13], hj was constructed as follows: h0 = 0 and for all j ∈ [dlog ne], hj = hj−1 +ujg(sj , tj)
where g(sj , tj) is a total degree 4d logw independent monomial map from Fm × Fm′

to Fn. They
showed that the product of any 2j consecutive matrices in G(y+hj) has 2 logw-support concentration
over the field F((uk, sk, tk)k∈[j]).

Our definition of hj is very close to the definition used in [FSS13]. For j = 0, hj = (t, t2, . . . , tn)
and for all j ∈ [dlog ne], hj = hj−1 + ujg(sj , tj) where g(sj , tj) is a total degree D independent
monomial map from Fm × Fm′

to Fn where D = 2w2 ·min{w2, 2d logw}. We show that for every
invertible linear transformation L(x) from Fn to Fn and b ∈ Fn, the product of any 2j consecutive
matrices in G(y + L ◦ hj + b) has a cone-closed basis, hence has w2-cone concentration, over the
field F(t, (uk, sk, tk)k∈[j]). Our rank concentration results play an important role in proving this
property of hj . For more details see Lemma 5.1 and 5.2. There are many known constructions of
total degree D independent monomial map with m = m′ = O(D). For example see Lemma 2.9.
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After constructing a polynomial map which gives w2-cone concentration in G(y), the rest of the
proof will be similar to what we did for the any-order ROABP case.

1.3 Organization of the paper

In Section 2, we discuss all the preliminaries and necessary notations. Section 3 describes our rank
concentration results. In Section 4 and 5, we give the construction of our hitting sets for the orbits
of any-order ROABPs and ROABPs, respectively.

2 Notations and Preliminaries

By N we denote the set of natural numbers. For any positive integer n, [n] denotes the set
{1, 2, . . . , n}. For a variable tuple x = (x1, . . . , xn) and a tuple e = (e1, . . . , en) ∈ Nn, xe denotes the
monomial

∏n
i=1 x

ei
i . The degree, or total degree, of xe is |e|1 =

∑n
i=1 ei and the individual degree of

xe is |e|∞ = maxi∈[n] ei. The support of xe is the subset S of [n] such that i ∈ S if and only if ei > 0,
and the support-size denotes the cardinality of S. The cone of xe is the set of monomials which
divide it and the cone-size is the cardinality of that set, that is

∏n
i=1(ei + 1). A monomial xf is

called a sub-monomial of xe, if xe divides xf , that is ei ≤ fi for all i ∈ [n]. A set of monomials B is
called cone-closed if for every monomial in B all its sub-monomials are also in B. For a polynomial
f in x and a monomial xe, coeff (xe) denotes the coefficient of xe in f .

Observation 2.1. For a monomial of cone-size at most k, its degree is less that k and the support-
size is at most log k.

A monomial ordering is a total ordering on the set of all monomials in x with following properties:

1. for all a ∈ Nn \ {0 = (0, . . . , 0)},1 ≺ xa.

2. for all a,b, c ∈ Nn, if xa ≺ xb then xa+c ≺ xb+c.

For more on monomial ordering, see [CLO15, Chapter 2].
Suppose that M is a matrix whose rows and columns are indexed by A and B, respectively.

Then for every S ⊆ A and T ⊆ B, MS,T denotes the submatrix of M with rows and columns are
indexed by S and T , respectively. The next lemma is a well known phenomenon in matroid theory
which, informally, says that given distinct weights to the elements of a matroid there exists a unique
minimum weight base. Here, we describe it in a language which is suitable for our context.

Lemma 2.2. Let k be a positive integer and Mn,d be the set of all n-variate monomials in x with
individual degree ≤ d. Let M be a matrix over F of rank r such that its rows are indexed by [k]
and the columns are indexed by Mn,d. Let ≺ be a monomial ordering on the set of monomials in x.
Then there exists a unique subset B ⊆Mn,d of size r such that rank(M[k],B) = r and for every other

subset B′ ⊆Mn,d with rank(M[k],B′) = r,
∏

e∈B xe ≺
∏

e′∈B′ xe′.

Here we give a very brief sketch of the proof. Using the monomial ordering ≺, greedily choose
r linealy independent columns of M as follows: at each step pick the least ≺-indexed column of
M such that it increases the rank of the chosen vectors, and denote that set by B = {m1, . . . ,mr}
with m1 ≺ · · · ≺ mr. Let B′ be another subset of Mn,d with r linearly independent columns of M ,
and B′ = {m′1, . . . ,m′r} with m′1 ≺ · · · ≺ m′r. Then one can show that B � B′ point-wise, that
is mi � m′i for all i ∈ [r], and there exists an i0 ∈ [r] such that mi0 ≺ m′i0 . This implies that∏
i∈[r]mi ≺

∏
i∈[r]m

′
i. For more details one can see [FSS13, Lemma 5.2 and 5.3].

Next, we give an expression for the product of a “fat” matrix with a “tall” matrix. It is known
as Cauchy-Binet formula. It will be useful to prove the rank concentration results in Section 3.
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Lemma 2.3 (Cauchy-Binet formula, [Zen93]). Let n ≥ m be two positive integers. Let M and N
two m× n and n×m matrices, respectively, over F. Then

det(AB) =
∑

S∈([n]
m)

det(M[m],S) · det(MS,[m]).

2.1 Hitting sets

Definition 2.4. Let C be a set of n-variate polynomials over a field F. A set of points H ⊆ Fn is
called a hitting set for C if for every polynomial f ∈ C, f is nonzero if and only if there exists a
point ααα ∈ H such that f(ααα) 6= 0.

We say a hitting set H is computable in time T if there exists an algorithm which computes all
the points in the set H in time T . When F is a finite field, we are allowed to pick points from Kn

where K is a polynomially large extension of F. In PIT literature, a common method of designing
hitting sets is via hitting set generator.

Definition 2.5. Let C be a set of n-variate polynomial class over a field F. A polynomial map g(t)
from Fm to Fn is called hitting set generator for C if for every f ∈ C, f is nonzero if and only if
f(g) 6= 0.

Furthermore, g(t) is called t(m,n)-explicit if there exists an n-output circuit which computes
g(t) and the circuit is computable in t(m,n) time.

Hitting set generators immediately give us hitting sets.

Observation 2.6. Let C be an n-variate polynomial class over a field F such that the degree of
each polynomial is at most d. Let g(t) : Fm ← Fn be a hitting set generator for C such that the
individual degree of each coordinate of g is at most r. Let S be a subset of F of size dr + 1. Then
H := g(Sm) is a hitting set for C. Moreover, if g(t) is t-explicit then the hitting set H is computable
in poly(t(dr)m) time.

Proof. Since g is a hitting set generator for C and each coordinate of g is a m-variate polynomial,
for every nonzero f ∈ C, f(g) is a nonzero m-variate polynomial. Also, the individual degree of
f(g) is at most dr. Thus, there exists a point ααα ∈ Sm such that f(g(ααα)) 6= 0. Therefore, H is a
hitting set for C. Since g is t-explicit, each point in H is computable in time poly(t). Therefore, H
is computable in time poly(t(dr)m).

2.2 Some useful polynomial maps

Suppose that g(t) = (g1, . . . , gn) be a polynomial map from Fm to Fn. Then, we say g is a t(m,n)-
explicit polynomial map if there exists an n-output circuit C which computes the polynomials
(g1, . . . , gn) and the circuit C is computable in time t(m,n). Let g(y) be a polynomial map from
Fm to Fn and h(x) = (h1, . . . , hk) be a polynomial map from Fn to Fk. Then h ◦ g denotes the
composition of g with h, that is h(g) = (h1(g), . . . , hk(g)). A polynomial map L(x) = (`1, . . . , `n)
from Fn to Fn is called an invertible linear transformation if each `i is a linear polynomial of form
`i1x1 + . . . + `inxn and all `i’s are linearly independent. An invertible affine transformation is a
polynomial map of form L(x) + b where L(x) is an invertible linear transformation and b ∈ Fn.
Next, we describe some well known polynomial maps and their properties which are frequently used
in designing PIT algorithms, and they also will be useful for us. First, we describe the generator for
sparse polynomial due to Klivans and Spielman [KS01].
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Lemma 2.7 (Klivans-Spielman generator [KS01]). Let n, d, s,m be positive integers such that
m = Θ(lognd s). Let F be a field of size ≥ poly(nd). Then there exists a poly(nd)-explicit polynomial
map GKSn,d,s(s, t) from Fm × Fm to Fn such that

1. for all i ∈ [n], (GKSn,d,s)i is a polynomial of individual degree ≤ poly(nd).

2. for every subset S of at most s monomials in n-variables with individual degree at most d,
there exists an ααα ∈ Fm such that the polynomials {(GKSn,d,s(ααα, t))e}e∈S are nonzero, distinct
monomials in t.

The above generator is a slight variation of the construction given in [KS01], but it can be
constructed from their techniques. For a proof-sketch see [FSS13, Theorem 2.3]. Next, we define
total degree D independent monomial map from [FSS13].

Definition 2.8. For some positive integers n and D, a polynomial map g(s, t) from Fm × Fm′
to

Fn is called total degree D independent monomial map if there exists an ααα ∈ Fm such that the
polynomials {g(ααα, t)e}|e|1≤D are nonzero, distinct monomials in t.

In the following lemma, we describe a construction of total degree D independent monomial
map using Klivans-Spielman generator.

Lemma 2.9. Let n, d,D be positive integers. Let |F| ≥ poly(nd). Then, GKS
n,d,nD is a poly(ndD)-

explicit total degree D independent monomial map from Fm × Fm to Fn where m = O(D).

For proof see [FSS13, Lemma 6.4]. Next, we describe a polynomial map introduced by Shpilka
and Volkovich [SV09]. It is a widely used tool in PIT and other related results [SV09, FSS13, SV15,
MV17, KV21, MS21, ST21], and also crucial for proving our results.

Definition 2.10 (Shpilka-Volkovich generator [SV09]). Fix a positive integer n and a set of n
distinct elements A = {α1, . . . , αn} ⊆ F. Let Li(t) be the ith Lagrange interpolation polynomial for
the set A. That is, Li(t) is a univariate polynomial of degree n − 1 such that Li(αj) = δij. Let
s = (s1, . . . , sk) and t = (t1, . . . , tk). Then GSVn,k (s, t) is the polynomial map from Fk × Fk to Fn
defined as follows: for all i ∈ [n]

(GSVn,k )i =

k∑
j=1

Li(sj)tj .

The above definition gives the following properties of Shpilka-Volkovich generator.

Observation 2.11. Fix a set of k distinct elements S = {i1, . . . , ik} ⊆ [n]. Let ααα = (αi1 , . . . , αik).
Then, for all j ∈ [k], (GSVn,k (ααα, t))ij = tj, and the other coordinates of GSVn,k (ααα, t) are zero. Furthermore,

for all i ∈ [n], the degree of the polynomial (GSVn,k )i is at most n.

Using Shpilka-Volkovich generator, the following lemma describes a nonzeroness preserving
variable reduction for polynomials having a “low-support” monomial with nonzero coefficient.

Lemma 2.12. Let f(x) be an n-variate polynomial over F such that there exists a monomial xe

with nonzero coefficient in f and the support-size of e is at most `. Then f ◦ GSVn,` 6= 0.

Proof. Let {xi1 , . . . , xi`} be the support set of the monomial xe. Then, from Observation 2.11, there
exists an ααα ∈ Fα such that for all j ∈ [`], (GSVn,` (ααα, t))ij = tj and the other coordinates of GSVn,` (ααα, t)

are zero. This implies that f(GSVn,` (ααα, t)) 6= 0, and therefore f ◦ GSVn,` 6= 0.
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2.3 Algebraic independence

Suppose that A = {g1, . . . , gk} is a set of n-variate polynomials over a field F. We say that the set
of polynomials A are algebraically dependent over F if there exists a nonzero k-variate polynomial
A(z1, . . . , zk) over F such that A(g1, . . . , gk) = 0. Otherwise, they are called algebraically independent
(over F). In the following lemma, we describe a well known criteria regarding algebraic independence
of a set of linear polynomials.

Lemma 2.13. Let m ≥ n be two positive integers. Let L(x) = (`1, . . . , `n) be a linear transformation
from Fm to Fn such that all `i’s are linearly independent. Then, all `i’s are also algebraically
independent.

Proof. For the sake of contradiction, assume that all `i’s are not algebraically independent. Then
there exists a nonzero polynomial A(z1, . . . , zn) such that A(L(x)) = A(`1, . . . , `n) = 0. Let
x = (x1, . . . , xm) and A′(x) = A(L(x)). Since all `i’s are linearly independent, there exists a tuple
of linear polynomials U(x) = (u1, . . . , um) and a subset {i1, . . . , in} of [m] such that for all j ∈ [n],

`j(U(x)) = xij .

This implies that A′(U(x)) = A(xi1 , . . . , xim) = 0 which is a contradiction. Therefore, all `i’s are
algebraically independent.

2.4 Various notions of rank concentration

We define various notions of rank concentration and show the relation between them. Suppose that
G(x) be an n-variate polynomial over the vector space Fk. The coefficient space of G is the vector
space spanned by the coefficient vectors of G.

Definition 2.14 (Rank Concentration). We say that G has

1. `-support concentration if there exists a set of monomials B such that the support-size of each
monomial in B is at most ` and their coefficients form a basis for the coefficient space of G.

2. `-cone concentration if there exists a set of monomials B such that the cone-size of each
monomial in B is at most ` and their coefficients form a basis for the coefficient space of G.

3. a cone-closed basis if there is a cone-closed set of monomials B whose coefficients in G form
a basis of the coefficient space of G.

In the next lemma, we show that cone-closed basis notion subsumes the other two notions of
rank concentration.

Lemma 2.15. Let G(x) be a polynomial in F[x]k. Suppose that G(x) has a cone-closed basis. Then,
G(x) has k-cone concentration and log k-support concentration.

Proof. Let B be a cone-closed set of monomials whose coefficients in G form a basis for the coefficient
space of G. Since the cardinality of B is at most k and it is closed under submonomials, the cone-size
of each monomial B is at most k. Therefore, G has k-cone concentration.

Let m ∈ B and S be the support set of m. Let m′ be the monomial defined as m′ =
∏
i∈S xi.

Since B is cone-closed, every sub-monomial m′ is also in B. Thus the cardinality of S can be at
most log k. Therefore, G has log k-support concentration.
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3 Achieving Cone-closed basis by shift

In this section, we show our rank concentration results for polynomials over the vector space Fk.
By Mn,d, we denote the set of n-variate monomials with individual degree at most d. We also use
Mn,d to denote the exponent vectors for those monomials since there is one-to-one correspondence
between monomials and their exponent vectors. For any a,b ∈ Nn with a = (a1, . . . , an) and
b = (b1, . . . , bn),

(
a
b

)
denotes

∏n
i=1

(
ai
bi

)
.

Let G(x) be an n-variate polynomial over Fk with individual degree at most d. After shifting
G(x) by z, the coefficients of the shifted polynomial G′(x) = G(x + z) can be written as follows: for
all e ∈Mn,d,

coefxe(G′) =
∑

f∈Mn,d

(
f

e

)
coefxf (G)zf−e.

The above equation can be written in matrix form as follows:

F ′(z) = W−1(z)TW (z)F, (1)

where

• F and F ′(z) are the matrices with entries from F and F[z], respectively. The rows of both
the matrices are indexed by the elements of Mn,d, and for any monomial e ∈Mn,d, the rows
indexed by e in F and F ′ are coefxe(G) and coefxe(G′), respectively.

• W (z) be the diagonal matrix whose rows and columns are indexed by the elements of Mn,d

and for all e ∈Mn,d, W (z)e,e = ze.

• T is a square matrix such that the rows and columns are indexed by Mn,d and for all e, f ∈Mn,d,

Te,f =
(
f
e

)
. In the literature, T is known as transfer matrix.

In the following lemma, we recall a property of transfer matrix from [FGS18].

Lemma 3.1 (Lemma 17 [FGS18]). Let F be a field of characteristic 0 or greater than d. Then, for
every B ⊆Mn,d, there exists a cone-closed set A ⊆Mn,d with |A| = |B| such that TA,B is full rank
over F.

Next, we show our first rank concentration result. Informally, we prove that if G(x) is shifted
by algebraically independent polynomials, the new polynomial has a cone-closed basis.

Lemma 3.2. Let F be a field of characteristic 0 or greater than d. Let G(x) ∈ Fk[x] be an n-variate
polynomial with individual degree at most d. Let g(z) = (g1, . . . , gn) be a polynomial map from Fn to
Fn such that all gi’s are algebraically independent. Then G(x + g) has a cone-closed basis over F(z).

Proof. First we show that G′(x) = G(x + z) has a cone-closed basis over F(z). This part of our
proof closely follows the proof outline of [FGS18, Theorem 2]. From Equation 1, we know that the
shifted polynomial G(x + z) yields the following matrix equation:

F ′(z) = W (z)−1TW (z)F.

Let k′ be the rank of the matrix F . Then we divide our proof in two cases:

13



Case 1 (k′ < k): We reduce this case to the other one where k′ = k. Since the rank of F is k′,
there exists a S ⊆ [k] of size k′ such that FM,S is full rank where M = Mn,d. Let GS(x) and G′S(x)
be the projections of G(x) and G′(x) on the coordinates indexed by S. Then G′S(x) = GS(x + z).
One can observe that for any set of monomials A, if their coefficients in GS(x) forms a basis for its
coefficient space, then their coefficients in G(x) also forms a basis for the coefficients space of G(x).
Similarly, this is also true between G′S(x) and G′(x). Now from the case 2, G′S(x) has a cone-closed
basis over F(z), that is, there exists a cone-closed set of monomials A such that their coefficients in
G′S(x) forms a basis for its coefficient space. This implies that G′(x) also has a cone-closed basis
over F(z).

Case 2 (k′ = k): The rows of F are indexed by the monomials in Mn,d. Fix a monomial ordering
≺ on the monomials in z. For example, assume ≺ is the lexicographic monomial ordering. Then,
from Lemma 2.2, we have a unique subset B of Mn,d with the following properties: rank(FB,[k]) = k,
and for every other subset C of Mn,d with rank(FC,[k]) = k,∏

e∈B
ze ≺

∏
e′∈C

ze
′
.

Using Lemma 3.1, we have a cone-closed subset A of Mn,d such that TA,B has full rank. Now

det(F ′(z)A,[k]) = det(W (z)A,A)−1 · det((TW (z)F )A,[k]). (2)

Applying Lemma 2.3, we get that

det((TW (z)F )A,[k]) =
∑

C∈(Mn,d
k

)

det(TA,C) det(FC,[k])
∏
e∈C

ze. (3)

For every C ∈
(Mn,d

k

)
\ {B} such that FC,[k] is a full rank matrix, the following holds:

∏
e∈B ze ≺∏

e′∈C ze
′
. Therefore, the coefficient of

∏
e∈B ze in the above polynomial does not get cancelled

by other monomials. Also, the coefficient of
∏

e∈B ze, det(TA,B) det(FB,[k]) 6= 0. Therefore, the
polynomial det((TW (z)F )A,[k]) is a nonzero polynomial in z. Also, det(W (z)A,A)−1 is a nonzero
element in F(z) since det(W (z)A,A) is a nonzero polynomial in z. Therefore, det(F ′(z)A,[k]) is
nonzero in F(z). This implies that G′(x) = G(x + z) has a cone-closed basis over F(z).

Now we show that G(x + g) has a cone-closed basis over F(z). In Equation 2, since both
det(W (z)A,A) and det((TW (z)F )A,[k]) are nonzero polynomials in z. Therefore, after evaluating
them on any n algebraically independent polynomials, they will remain nonzero. Thus, det(F ′(g)A,[k])
remains nonzero. This implies that for the polynomial G(x + g), the coefficients of the monomials
in A form a cone-closed basis (over F(z)) for its coefficient space.

The above lemma combined Lemma 2.15 implies that the polynomial G(x + g) also has k-
cone concentration over F(t). Here, we would like to mention that although the above rank
concentration result is described in terms of cone-closed basis, to design our hitting sets, proving
k-cone concentration property of G(x + g) is sufficient. The similar thing is also true for our next
rank concentration result.

Lemma 3.3. Let F be a field of characteristic zero or greater than d. Let G(x) be an n-variate
individual degree ≤ d polynomial over Fk such that the coefficients of all the monomials of total
degree up to D spans the coefficient space of G. For some N ≥ n, let L(y) = (`1, . . . , `n) be a linear
transformation from FN to Fn such that all `i’s are linearly independent. Let g(s, t) be a total degree
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Dk independent monomial map from Fm × Fm′
to FN . Then G(x + g′), where g′ = uL ◦ g, has a

cone-closed basis over F (u, s, t).

Proof. First we study the shifted polynomial G′(x) = G(x + uz). To do so, we revisit the proof of
our Lemma 3.2. There we considered the lexicographic monomial ordering over the monomials in
z. Here we consider the deg-lex monomial ordering, that is, first order the monomials from lower
degree to higher degree and then within each degree arrange them in lexicographic order. Like
Equation 1, the matrix equation for the shifted polynomial G′(x) will be

F ′(uz) = W−1(uz)TW (uz)F, (4)

that is scaling of each variable in Equation 1 by u. Applying Lemma 2.2, let B be the unique subset
of Mn,d such that the rows of F indexed by B form the least basis for the row-space of F with
respect to the deg-lex monomial ordering. From the hypothesis of the lemma, there exists a subset
C ⊆ Mn,d such that the rows in F indexed by C forms a basis for the row-space of F (same as
the coefficient space of G) and deg(C) =

∑
e∈C |e|1 ≤ Dk. Therefore, deg(B) is also ≤ Dk since

the rows indexed by B forms the least basis (with respect to deg-lex monomial ordering) for the
row-space of F . As promised by Lemma 3.1, let A be a cone-closed subset of Mn,d such that TA,B is
full rank. Now we see how Equation 2 and 3 in the proof of Lemma 3.2 change here. Like Equation
2, we get

det(F ′(uz)A,[k]) = det(W (uz)A,A)−1 · det((TW (uz)F )A,[k]) (5)

and Equation 3 changes as follows:

det((TW (uz)F )A,[k]) =
∑
i

 ∑
C∈(Mn,d

k
):deg(C)=i

det(TA,C) det(FC,[k])
∏
e∈C

ze

ui. (6)

Since B is the least basis (with respect to deg-lex monomial ordering), the coefficient of udeg(B) is a
nonzero degree deg(B) homogeneous polynomial in z. Thus, det(F ′(uz)A,[k]) is a nonzero-polynomial
in (u, z). This implies the coefficients of the monomials in A is a cone-close basis for G(x + uz). For
G(x + uL), the polynomial det((TW (uL)F )A,[k]) looks like the following:

det((TW (uL)F )A,[k]) =
∑
i

 ∑
C∈(Mn,d

k
):deg(C)=i

det(TA,C) det(FA,C)
∏
e∈C

Le

ui.

Since all `i’s are linearly independent, from Lemma 2.13, they are also algebraically independent.
Therefore, the coefficient of udeg(B) in det((TW (uL)F )A,[k]) is also a nonzero degree deg(B) homo-
geneous polynomial in y. Also, deg(B) ≤ Dk. Therefore, after substituting z by L ◦ g in Equation
6, we get det((TW (g′)F )A,[k]) which is a nonzero polynomial in (u, s, t). Since det(W (g′)) is also a
nonzero polynoimal in (u, s, t), det(F ′(g′)A,[k]) is nonzero in F(u, s, t). This implies that G(x + g′)
has a cone-closed basis over F(u, s, t).

4 Hitting set for orbit of any-order ROABPs

In this section, we describe our hitting set for the orbit of any-order ROABPs. As mentioned
earlier, the notion of low-cone concentration plays an important role is designing our hitting sets.
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We begin by showing that for w-width n-variate any-order ROABPs, w2-cone concentration can be
established by showing w2-cone concentration for every Ω(logw)-size subset of variables.

Lemma 4.1. Let F be a field of characteristic 0 or greater than d. Let G(x) ∈ F[x]w×w be an
n-variate polynomial over F with individual degree at most d and computed by a w-width any-order
ROABP. Let ` = b2 logwc+ 1. Let g(t) = (g1, . . . , gn) be a polynomial map such that for all S ⊆ [n]
of size `, the polynomials {gi | i ∈ S} are algebraically independent. Then G(x + g) has w2-cone
concentration over F(t).

Proof. The structure of our proof is very similar to the proof of [FSS13, Theorem 4.1]. Let
G′ = G(x + g). For every a ∈ Mn,d, the coefficient of xa in G′ is the same as the evaluation of
∂xa(G) at g. Consider some derivative ∂xa(G) for a ∈Mn,d. We show that its evaluation at g is in
F(t)-linear span of the derivatives of cone-size ≤ w2, evaluated at g. If the cone-size of xa is already
≤ w2, it is trivial. Therefore, assume that the cone-size of xa is greater than w2. We can write xa

as ybzc over two disjoint sets of variables such that the cone-size of b is greater than w2 but the
support-size of b is ≤ `. If the support-size of a ≤ `, take S as the support of a. Otherwise, take S
as some subset of the support of a such that |S| = `. Then, take yb =

∏
i∈S x

ai
i and zc =

∏
i∈S̄ x

ai
i .

One can observe that in both the cases the cone-size of b is greater than w2, but the support-size of
b is ≤ `.

Since G is computed by a w-width any-order ROABP, G(x) can be written as

G(x) = M(y)N(z)

such that both M and N are computed by w-width any-order ROABPs. After shifting G by g, the
new polynomial G′(x) becomes

M(y + g|y)N(z + g|z),

where g|y and g|z denotes the restriction of g to y and z, respectively. From our choice of y, M(y)
is a polynomial (over Fw×w) of at most ` variables. Also, the hypothesis of our lemma ensures that
the polynomials in g|y are algebraically independent. Therefore, from Lemma 3.2, M(y + g|y) has
a cone-closed basis over F(t). Applying Lemma 2.15, we get that M(y + g|y) has also w2-cone
concentration over F(t). This implies that

∂yb(M)(g|y) ∈ spanF(t)

{
∂ye(M)(g|y) | cone-size(e) ≤ w2

}
.

Since ∂xa(G) = ∂yb(M)∂zc(N),

∂xa(G)(g) = ∂yb(M)(g|y)∂zc(N)(g|z)

∈ spanF(t)

{
∂ye(M)(g|y)∂zc(N)(g|z) | cone-size(e) ≤ w2

}
∈ spanF(t)

{
∂xe+c(G)(g) | cone-size(e + c) ≤ w2 · cone-size(c)

}
∈ spanF(t) {∂xf (M)(g) | cone-size(f) < cone-size(a)}

Now repeatedly applying the above procedure for all the monomials of cone-size greater than w2

(by properly picking a partition x = y t z), we can show that for every monomial xa, ∂xa(G)(g) is
in F(t)-linear span of the derivatives (of G) of cone-size ≤ w2, evaluated at g. Therefore, G(x + g)
has w2-cone concentration over F(t).

Our next lemma, using Shpilka-Volkovich generator (Definition 2.10), gives the construction of a
polynomial map which satisfies the condition of the above lemma.

16



Lemma 4.2. Let L(x) = (`1, . . . , `n) be an invertible linear transformation from Fn to Fn. Let b
be a point in Fn. For some k ≤ n, let g(s, t) = (g1, . . . , gn) be the polynomial map from Fk × Fk to
Fn, defined as g = L ◦ GSVn,k + b. Then for all S ⊆ [n] of size k, the polynomials {gi | i ∈ S} are
algebraically independent.

Proof. Let S be a subset of [n] of size k. Let g|S , L|S , b|S be the restrictions of g, L and b,
respectively, to S. Then g|S = L|S ◦ GSVn,k + b|S . For the sake of contradiction, assume that the
polynomials {gi | i ∈ S} are not algebraically independent. Then, there exists a nonzero polynomial
A(t1, . . . , tk) such that A(g|S) = 0. This implies that the nonzero polynomial A′(t) = A(t + b|S)
evaluated at g′(y, z) = L|S ◦ GSVn,k is also zero. For every A ⊆ [n] and i ∈ [n], let xA denotes the
projection of x on the coordinates indexed by A and `iA denotes the linear polynomial we get
from `i after assigning all the variables in xĀ to zero. Since all the coordinates in L|S are linearly
independent, there exists a A ⊆ [n] of size k such that L|S(xA) = (`iA)i∈S is an invertible linear
transformation (in xA) from Fk to Fk. From Observation 2.11, there exists an ααα ∈ Fk such that the
set of polynomials {(GSVn,k (ααα, t))i | i ∈ A} is same as {t1, . . . , tk}, that is the set of t variables, and
the other coordinates are zero. Hence,

g′(ααα, t) = L|S ◦ GSVn,k (ααα, t)

= (`iA(t))i∈S .

From Lemma 2.13, the polynomials {(g′(ααα, t))i | i ∈ [k]} are algebraically independent. Therefore,
A′(g′(ααα, t)) is nonzero. Hence A′(g′) is also nonzero which is a contradiction. This completes our
proof.

Combining the above two lemmas, we get the following.

Corollary 4.3. Let F be a field of characteristic 0 or greater than d. Let G(x) ∈ F[x]w×w be
an n-variate polynomial with individual degree at most d and computed by a width w any-order
ROABP. Let L(x) be an invertible linear transformation from Fn to Fn and b be a point in Fn. Let
k = b2 logwc+ 1 and g = L ◦ GSVn,k + b. Then G(x + g) has w2-cone concentration over F (s, t).

Proof. Let g(s, t) = (g1, . . . , gn). From Lemma 4.2, for every subset S ⊆ [n] of size k, the polynomials
{gi | i ∈ S} are algebraically independent. Therefore, using Lemma 4.1, we get that G(x + g) has
w2-cone concentration over F(s, t).

Now we describe the construction of our hitting set for the orbit of any-order ROABPs.

Proof of Theorem 1.1. Let f(x) be an n-variate individual degree ≤ d polynomial which is in
the orbit of width w any-order ROABPs. Then, there exists an n-variate individual degree ≤ d
polynomial G(y) ∈ Fw×w[y] computed by a width w any-order ROABP, an invertible linear
transformation L(x) from Fn to Fn and a point b ∈ Fn such that

f(x) = aT ·G(L+ b) · c,

where a, c ∈ Fn. Let g(s, t) = L ◦ GSVn,k + b where k = b2 logwc+ 1, and let

h(y) = aT ·G(y + g) · c.

This implies that
f ′(x) = f(x + GSVn,k ) = h(L(x)). (7)
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From Corollary 4.3, G(y + g) has w2-cone concentration over F(s, t). This implies that there exists
a monomial ye in h with cone-size ≤ w2 such that coefye(h) is nonzero. For a monomial of cone-size
≤ w2, its total degree is less than w2 and the support-size is ≤ logw2. Since the individual degree of
each variable in G(y) is at most d, Therefore, the degree of ye is ≤ ` where ` = min{w2, 2d logw}.
Hence, hom≤`(h(y)) is a nonzero polynomial in y. Since

hom≤`(h(L(x))) = (hom≤`(h))(L(x)),

from Lemma 2.13, hom≤`(h(L(x))) is a nonzero polynomial. Therefore, from Equation 7, hom≤`(f
′(x))

is a nonzero polynomial over F(s, t). This implies that there exists a monomial xe of support-size
≤ ` such that its coefficient in f ′ is nonzero. Thus, from Lemma 2.12, f ′(GSVn,` ) = f(GSVn,k+`) is a k+ `-
variate nonzero polynomial over F. The total degree of f is at most nd, and from Observation 2.11,
the individual degree of each coordinate of GSVn,k+` is at most n. Also, GSVn,k+` is poly(ndw)-explicit.

Thus, from Observation 2.6, f has a hitting set computable in time (ndw)O(`).

5 Hitting Set for orbit of ROABPs

Here, we discuss the construction of our hitting set for the orbit of ROABPs. Towards that, first
we need to construct some polynomial map which helps us in achieving low-cone concentration for
ROABPs. At this step, we also have to be more careful as we are dealing with the orbit of ROABPs.
Lemma 5.2 describes inductive construction of a polynomial map, by taking sum of logarithmically
many variable disjoint copies of total degree D independent monomial maps (Definition 2.8) for
some small D, such that the following holds: by shifting its composition with any invertible affine
transformation we can achieve low-cone concentration for ROABPs. We begin by showing how to
achieve cone-closed basis for the product of two polynomials in a disjoint set of variables, with the
property that each polynomial also has a cone-closed basis.

Lemma 5.1. Let y and z be two disjoint sets of variables. Let G(y) ∈ F[y]w×w and H(z) ∈ F[z]w×w

be two n-variate individual degree ≤ d polynomials such that both have cone-closed bases. Let
L(x) = (`1, . . . , `|ytz|) be a linear transformation from F|x| to F|y|×F|z| such that all `is are linearly
independent. Let D = 2w2 ·min{w2, 2d logw}, g(s, t) be a total degree D independent monomial
map form F|s| × F|t| to F|x|, and g′ = uL ◦ g. Then G(y + g′|y)H(z + g′|z) has a cone-closed basis
over F (u, s, t), where g′|y and g′|z are the restrictions of g′ over y and z, respectively.

Proof. Let B1 and B2 be the set of monomials (in y and z, respectively) such that their coefficients
form cone-closed bases for the coefficient space of G and H, respectively. Let

B1B2 = {m1m2 | m1 ∈ B1 and m2 ∈ B2}.

We show that the coefficients of the monomials in B1B2 span the coefficient space of GH. Let
m be a monomial in y t z. Since y and z are disjoint set of variables, the monomial m can be
uniquely written as a product mymz where my and mz are monomials in y and z, respectively.
Also, coefm(GH) is same as coefmy(G) · coefmz(H). Now

coefm(GH) = coefmy(G) · coefmz(H)

∈ spanF {coefm1(G) | m1 ∈ B1} · spanF {coefm2(H) | m2 ∈ B2}
∈ spanF {coefm1(G) · coefm2(H) | m1 ∈ B1, m2 ∈ B2}
∈ spanF {coefm(GH) | m ∈ B1B2} .
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Since B1 and B2 are cone-closed sets, the cone-size of every monomial in B1 ∪B2 is at most w2.
This implies that the degree of every monomial in B1 ∪B2 is at most w2 and the support-size is at
most 2 logw. Since both G and H are polynomials of individual degree at most d, the degree of
every monomial in B1B2 is at most k = 2 ·min{w2, 2d logw}. Also, the coefficients of the monomials
in B1B2 spans the coefficient space of GH. This implies that the coefficients of monomials in GH of
degree at most k spans its coefficient space. From the hypothesis, g(s, t) is a total degree D = kw2

independent monomial map. Therefore, from Lemma 3.3, G(y + g′|y)H(z + g′|z) has a cone-closed
basis over F (u, s, t).

Applying the above lemma repeatedly, the next one gives the construction of a polynomial map
which helps us to achieve low-cone concentration for ROABPs.

Lemma 5.2. Let n ≥ 0, N = 2n and d,w ≥ 1. Let D = 2w2 ·min{w2, 2d logw}. Let g(s, t) be a
total degree D independent monomial map from Fm × Fm′

to FN . Let t0 = (t, t2, . . . , tN ). Let

Gn,d,w = t0 +
n∑
i=1

uig(si, ti),

where all si’s and ti’s are disjoint set of variables.
Let π be permutation on [N ]. Let F (x) =

∏N
i=1Mi(xπ(i)) such that each Mi(xπ(i)) is a polynomial

in Fw×w[xπ(i)] with individual degree at most d. Then for every invertible linear transformation

L(x) from FN to FN and b ∈ FN , F (x + b + L ◦ Gn,d,w) has a cone-closed basis over the field
F(t, (ui, si, ti)i∈[n]).

Proof. Let L(x) = (`1, . . . , `N ). Let h0 = b + L(t0), and for all k ∈ [n],

hk = hk−1 + ukL ◦ g(tk, sk).

Then hn = b + L ◦ Gn,d,w. For all 1 ≤ i ≤ j ≤ N , let

Fij [x] =

j∏
r=i

Mr(xπ(r)).

Using induction, we show that for all k ∈ {0, 1, . . . , n} and i, j ∈ [n] with j − i+ 1 = 2k, Fij [x + hk]
has a cone-closed basis over F(t, (ui, si, ti)i∈[k]).

For k = 0: Let b = (b1, . . . , bN ). We need to show that for all i ∈ [N ], Mi(xπ(i) + `π(i)(t0) + bπ(i))
has a cone-closed basis over F(t). Since L(x) is an invertible linear transformation, each `i is a
nonzero linear polynomial over x. Therefore, `i(t0) is a non-contant polynomial in t. Hence, using
Lemma 3.1, for all i ∈ [N ], Mi(xπ(i) + `π(i)(t0) + bπ(i)) has a cone-closed basis over F(t).

For k > 0: Let i, j ∈ [N ] such that j − i + 1 = 2k. Let y and z be a partition of the variables
(xπ(i), . . . , xπ(j)) into two equal halves such that they respect the permutation π. Then Fij [x] can be
written as G(y)H(z) where G(y) ∈ F[y]w×w and H(z) ∈ F[z]w×w. From the induction hypothesis,
we know that both

G′(y) = G(y + hk−1|y) and H ′(z) = H(z + hk−1|z)

have cone-closed bases over F(t, (ui, si, ti)i∈[k−1]). Let F ′ij(x) = G′(y)H ′(z). Then, using Lemma
5.1,

Fij(x + hk) = F ′ij(x + ukL ◦ g(sk, tk))
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has a cone-closed basis over F(t, (ui, si, ti)i∈[k]). This completes our proof.

From Lemma 2.9, using Klivans-Spielman generator (Lemma 2.7), we can construct a total
degree D independent monomial map. Therefore, Klivans-Spielman generator combined with the
above lemma we get the following corollary.

Corollary 5.3. Let n ≥ 0, N = 2n and d,w ≥ 1. Let D = 2w2 ·min{w2, 2d logw}. Let

G′n,d,w = t0 +

n∑
i=1

uiGKSN,d,ND(si, ti). (8)

Let π be permutation on [N ]. Let F (x) =
∏N
i=1Mi(xπ(i)) such that each Mi(xπ(i)) is a polynomial

in F[xπ(i)]
w×w with individual degree at most d. Then,

1. for every invertible linear transformation L(x) from FN to FN and b ∈ FN , the polynomial
F (x + b + L ◦ G′n,d,w) has a cone-closed basis over the field F(t, (ui, si, ti)i∈[n]).

2. b + G′n,d,w is a polynomial map from F× (F× Fm × Fm)n to FN where m = O(D).

3. G′n,d,w is poly(dND)-explicit polynomial map and its each coordinate is a polynomial of
individual degree at most poly(dN).

Proof. From Lemma 2.9, GKS
N,d,ND(s, t) is a poly(NDd)-explicit total degree D independent monomial

map from Fm × Fm to FN , where m = O(D). Also, each coordinate of GKS
N,d,ND is a polynomial

of individual degree at most poly(dN). Now this combined with Lemma 5.2 prove the above
corollary.

Now we describe the construction of hitting set for orbit of ROABPs.

Proof of Theorem 1.2. Let f(x) be an n-variate individual degree ≤ d polynomial which is in the
orbit of width w ROABPs. Then, there exists an n-variate individual degree ≤ d polynomial
G(y) ∈ F[y]w×w computed by a w-width ROABP, an invertible linear transformation L(x) from Fn
to Fn and b ∈ Fn such that

f(x) = aT ·G(L(x) + b) · c,

where a, c ∈ Fn. Let D = 2w2 · min{w2, d logw2}. Let G′dlogne,d,w be defined as Equation 8 in
Corollary 5.3, that is

G′dlogne,d,w = t0 +

dlogne∑
i=1

uiGKSn,d,nD(si, ti),

where t0 = (t, t2, . . . , tn). Then, G′dlogne,d,w is a polynomial map from F× (F×Fm×Fm)dlogne to Fn

where m = O(D). This implies that the number of variables used in G′dlogne,d,w is O(D log n). Let

g(y) = aT ·G(y + b + L ◦ G′dlogne,d,w) · c.

Then
f ′(x) = f(x + G′dlogne,d,w) = g(L(x)). (9)

From Corollary 5.3,
G′(y) = G(y + b + L ◦ G′dlogne,d,w)
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has a cone-closed basis over F(t, (ui, si, ti)i∈[dlogne]). Therefore, from Lemma 2.15, G′(y) has also
w2-cone concentration. This implies that g(y) has a monomial of nonzero coefficient and its cone-size
is at most w2. For every monomial of cone-size at most w2, its degree is also at most w2 and its
support-size is at most 2 logw. Therefore, for every monomial of cone-size ≤ w2 and individual
degree ≤ d, its degree is at most k = min{w2, 2d logw}. Therefore, hom≤k(g(y)) is a nonzero
polynomial in y over F(t, (ui, si, ti)i∈[dlogne]). Since

hom≤k(g(L(x))) = (hom≤k(g))(L(x)),

from Lemma 2.13, hom≤k(g(L(x))) is also nonzero polynomial. Therefore, from Equation 9,
hom≤k(f

′(x)) is also a nonzero polynomial. This implies that there exists a monomial xe of
support-size at most k such that coefxe(f ′) is nonzero. Thus, from Lemma 2.12,

f ′(GSVn,k ) = f(GSVn,k + G′dlogne,d,w)

is a nonzero polynomial. Let G = GSVn,k + G′dlogne,d,w. Then, G is a polynomial map in O(kw2 log n)

many variables and the individual degree of each coordinate is at most poly(ndw). Since both
GSVn,k and G′dlogne,d,w both are poly(ndw)-explicit, G is also poly(ndw)-explicit. Thus, applying

Observation 2.6, we have a hitting set for f computable in time (ndw)O(`) where ` = (w2 log n) ·
min{w2, d logw2}.

6 Conclusion

In this paper, we studied the hitting set problem for the orbits of ROABPs and any-order ROABPs.
We have designed improved hitting sets for these two polynomial classes. In low-width but high-
individual-degree setting, our hitting sets are more efficient than the previous ones given by Saha
and Thankey. On the technical front, we have shown some stronger rank concentration results by
establishing low-cone concentration for polynomials over vector spaces. These new rank concentration
results have played a significant role in designing our hitting sets. However, our hitting sets for the
orbits of ROABPs and any-order ROABPs are yet to match the time complexity of hitting sets
known for ROABPs and its variants. Therefore, it is an interesting open question to close this gap.
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