
Approximability of all finite CSPs with linear sketches∗

Chi-Ning Chou† Alexander Golovnev‡ Madhu Sudan§ Santhoshini Velusamy¶

Abstract

A constraint satisfaction problem (CSP), Max-CSP(F), is specified by a finite set of con-
straints F ⊆ {[q]k → {0, 1}} for positive integers q and k. An instance of the problem on n
variables is given by m applications of constraints from F to subsequences of the n variables,
and the goal is to find an assignment to the variables that satisfies the maximum number of
constraints. In the (γ, β)-approximation version of the problem for parameters 0 ≤ β < γ ≤ 1,
the goal is to distinguish instances where at least γ fraction of the constraints can be satisfied
from instances where at most β fraction of the constraints can be satisfied.

In this work we consider the approximability of this problem in the context of sketching
algorithms and give a dichotomy result. Specifically, for every family F and every β < γ, we
show that either a linear sketching algorithm solves the problem in polylogarithmic space, or
the problem is not solvable by any sketching algorithm in o(

√
n) space.

We also extend previously known lower bounds for general streaming algorithms to a wide
variety of problems, and in particular the case of q = k = 2 where we get a dichotomy and the
case when the satisfying assignments of f support a distribution on [q]k with uniform marginals.

Prior to this work, other than sporadic examples, the only systematic class of CSPs that
were analyzed considered the setting of Boolean variables q = 2, binary constraints k = 2,
singleton families |F| = 1 and only considered the setting where constraints are placed on literals
rather than variables. Our positive results show wide applicability of bias-based algorithms
used previously by [GVV17] and [CGV20], which we extend to include richer norm estimation
algorithms, by giving a systematic way to discover biases. Our negative results combine the
Fourier analytic methods of [KKS15], which we extend to a wider class of CSPs, with a rich
collection of reductions among communication complexity problems that lie at the heart of the
negative results. In particular, previous works used Fourier analysis over the Boolean cube to
initiate their results and the results seemed particularly tailored to functions on Boolean literals
(i.e., with negations). Our techniques surprisingly allow us to get to general q-ary CSPs without
negations by appealing to the same Fourier analytic starting point over Boolean hypercubes.

∗This paper subsumes [CGSV21b] which in turn replaced the withdrawn paper [CGSV21a].
†School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA. Supported by

NSF awards CCF 1565264 and CNS 1618026. Email: chiningchou@g.harvard.edu.
‡Department of Computer Science, Georgetown University. Email: alexgolovnev@gmail.com.
§School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA. Supported in

part by a Simons Investigator Award and NSF Award CCF 1715187. Email: madhu@cs.harvard.edu.
¶School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA. Supported in

part by a Simons Investigator Award and NSF Award CCF 1715187. Email: svelusamy@g.harvard.edu.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 3 of Report No. 63 (2021)

Contents

1 Introduction 4
1.1 CSPs . 4
1.2 Streaming algorithms . 4
1.3 Past work . 5
1.4 Results . 5
1.5 Contrast with dichotomies in the polynomial time setting 7
1.6 Overview of our analysis . 8
1.7 Structure of rest of the paper . 12

2 Results 12
2.1 Main Notions . 12
2.2 Results on sketching algorithms . 13

2.2.1 Decidability of the Classification . 14
2.2.2 Approximation resistance of sketching algorithms 15

2.3 Lower bounds in the streaming setting . 17
2.4 Relation to single parameter approximability . 20
2.5 Some Examples . 21
2.6 Classification of exact computability . 24

3 Preliminaries 25
3.1 Approximate Constraint Satisfaction . 25
3.2 Total variation distance . 26
3.3 Concentration inequality . 27
3.4 Fourier analysis . 27

4 A Streaming Approximation Algorithm for Max-CSP(F) 28
4.1 Analysis of the correctness of Algorithm 1 . 30

5 Sketching and Streaming Space Lower Bounds for Max-CSP(F) 33
5.1 The Signal Detection Problem and Results . 33
5.2 The streaming lower bound . 35

5.2.1 The (Padded) Streaming SD Problem . 35
5.2.2 CSP value of padded-streaming-SD . 36
5.2.3 Reduction from one-way (DY ,DN)-SD to padded-streaming-SD 40
5.2.4 Proof of the streaming lower bound . 42

5.3 The lower bound against sketching algorithms . 43
5.3.1 T -Player Simultaneous Version of SD . 43
5.3.2 Proof of Theorem 5.1 . 45

6 Hardness of Advice-Signal-Detection with Uniform Marginals 46
6.1 Hardness of Advice-RMD . 47
6.2 Hardness of Advice-SD . 48
6.3 Proof of Theorem 6.2 . 49

2

7 Hardness of Signal Detection 54
7.1 Finite upper bound on the number of polarization steps 56
7.2 Reduction from single function to a family of functions 60
7.3 Putting it together . 61

8 Indistinguishability of the Polarization Step 62
8.1 Reduce a Boolean SD problem to a non-Boolean SD problem 62
8.2 Indistinguishability of shifting distributions . 67
8.3 Proof of Theorem 7.4 . 69

9 Dichotomy for exact Computation 71

3

1 Introduction

In this paper we give a complete characterization of the approximability of constraint satisfaction
problems (CSPs) by sketching algorithms. We describe the exact class of problems below, and give
a brief history of previous work before giving our results.

1.1 CSPs

For positive integers q and k, a q-ary constraint satisfaction problem (CSP) is given by a (finite)
set of constraints F ⊆ {f : [q]k → {0, 1}}. A constraint C on x1, . . . , xn is given by a pair (f, j),
with f ∈ F and j = (j1, . . . , jk) ∈ [n]k where the coordinates of j are all distinct.1 An assignment
b ∈ [q]n satisfies C = (f, j) if f(bj1 , . . . , bjk) = 1. To every finite set F , we associate a maximization
problem Max-CSP(F) that is defined as follows: An instance Ψ of Max-CSP(F) consists of m con-
straints C1, . . . , Cm applied to n variables x1, x2, . . . , xn along with m non-negative integer weights
w1, . . . , wm. The value of an assignment b ∈ [q]n on an instance Ψ = (C1, . . . , Cm;w1, . . . , wm),
denoted valΨ(b), is the fraction of weight of constraints satisfied by b. The goal of the exact prob-
lem is to compute the maximum, over all assignments, of the value of the assignment on the input
instance, i.e., to compute, given Ψ, the quantity valΨ = maxb∈[q]n{valΨ(b)}.

In this work we consider the approximation version of Max-CSP(F), which we study in terms of
the “gapped promise problems”. Specifically given 0 ≤ β < γ ≤ 1, the (γ, β)-approximation version
of Max-CSP(F), abbreviated (γ, β)-Max-CSP(F), is the task of distinguishing between instances
from Γ = {Ψ| opt(Ψ) ≥ γ} and instances from B = {Ψ| opt(Ψ) ≤ β}. It is well-known that
this distinguishability problem is a refinement of the usual study of approximation which usually
studies the ratio of γ/β for tractable versions of (γ, β)-Max-CSP(F). See Proposition 2.21 for a
formal statement in the context of streaming approximability of Max-CSP(F) problems.

1.2 Streaming algorithms

We study the complexity of (γ, β)-Max-CSP(F) in the setting of randomized streaming algorithms.
Here, an instance Ψ = (C1, . . . , Cm) is presented as a stream σ1, σ2, . . . , σm with σi = (f(i), j(i))
representing the ith constraint. We study the space required to solve the (γ, β)-approximation
version of Max-CSP(F). Specifically we consider algorithms that are allowed to use internal ran-
domness and s bits of space. The algorithms output a single bit at the end. They are said to solve
the (γ, β)-approximation problem correctly if they output the correct answer with probability at
least 2/3 (i.e., they err with probability at most 1/3).

The main focus of this work is sketching algorithms, a special class of streaming algorithms,
where the algorithm’s output is determined by a small sketch it produces of the input stream,
and the sketch itself has the property that the sketch of the concatenation of two streams can
be computed from the sketches of the two component streams. (See Definition 3.3 for a formal
definition.) We define the space of the sketching algorithm to be the length of the sketch.

Our main dividing line is between algorithms that work with space poly(log n), versus algorithms
that require space at least nε for some ε > 0. In informal usage we refer to a streaming problem as
“easy” if it can be solved with polylogarithmic space (the former setting) and “hard” if it requires
polynomial space for sketching algorithms. We note that all the positive results (algorithms)

1To allow repeated variables in a constraint, note that one can turn F into F ′ by introducing new functions
corresponding to all the possible replications of variables of functions in F .

4

given in this paper are linear sketching algorithms which are more restrictive than general sketching
algorithms. We also note that many of our lower bounds work against general streaming algorithms
and we elaborate on this in Section 1.4.

1.3 Past work

To our knowledge, streaming algorithms for CSPs have not been investigated extensively. Here we
cover the few results we are aware of, all of which consider only the Boolean (q = 2) setting. On
the positive side, it may be surprising that there exists any non-trivial algorithm at all. (Briefly,
we say that an algorithm that outputs a constant value independent of the input is “trivial”.)

It turns out that there do exist some non-trivial approximation algorithms for Boolean CSPs.
This was established by the work of Guruswami, Velingker, and Velusamy [GVV17] who, in our
notation, gave an algorithm for the (γ, 2γ/5 − ε)-approximation version of Max-2AND, for every
γ ∈ [0, 1] (Max-2AND is the Max-CSP(F) problem corresponding to F = {fc,d|c, d ∈ {0, 1}} where
fc,d(a, b) = 1 if a = c and b = d and fc,d(a, b) = 0 otherwise). A central ingredient in their
algorithm is the ability of streaming algorithms to approximate the `1 norm of a vector in the
turnstile setting, which allows them to estimate the “bias” of n variables (how often they occur
positively in constraints, as opposed to negatively). Subsequently, the work of Chou, Golovnev, and
Velusamy [CGV20] further established the utility of such algorithms, which we refer to as bias-based
algorithms, by giving optimal algorithms for all Boolean CSPs on 2 variables. In particular they
give a better (optimal!) analysis of bias-based algorithms for Max-2AND, and show that Max-2SAT
also has an optimal algorithm based on bias.

On the negative side, the problem that has been explored the most is Max-CUT, or in our
language Max-2XOR, which corresponds to F = {f} and f(x, y) = x⊕ y. Kapralov, Khanna, and
Sudan [KKS15] showed that Max-2XOR does not have a (1, 1/2+ε)-approximation algorithm using
o(
√
n)-space, for any ε > 0. This was subsequently improved upon by Kapralov, Khanna, Sudan,

and Velingker [KKSV17], and Kapralov and Krachun [KK19]. The final paper [KK19] completely
resolves Max-CUT showing that (1, 1/2 + ε)-approximation for these problems requires Ω(n) space.
Turning to other problems, the work by [GVV17] notices that the (1, 1/2 + ε)-inapproximability
of Max-2XOR immediately yields (1, 1/2 + ε)-inapproximability of Max-2AND as well. In [CGV20]
more sophisticated reductions are used to improve the inapproximability result for Max-2AND to
a (γ, 4γ/9 + ε)-inapproximability for some positive γ, which turns out to be the optimal ratio by
their algorithm and analysis. As noted earlier their work gives algorithms for Max-CSP(F) for all
F ⊆ {f : {0, 1}2 → {0, 1}}2, which are optimal if F is closed under literals (i.e., if f(x, y) ∈ F then
so are the functions f(¬x, y) and f(¬x,¬y)).

1.4 Results

Our main theorem is a decidable dichotomy theorem for (γ, β)-Max-CSP(F) with sketching algo-
rithms.

Theorem 1.1 (Succinct version). For every q, k ∈ N, 0 ≤ β < γ ≤ 1 and F ⊆ {f : [q]k → {0, 1}},
one of the following two conditions holds: Either (γ, β)-Max-CSP(F) can be solved with O(log3 n)
space by linear sketches, or for every ε > 0, every sketching algorithm for (γ−ε, β+ε)-Max-CSP(F)

2Note that when q = 2 we switch to using {0, 1} or {−1, 1} as the domain (as opposed to {1, 2}) depending on
convenience.

5

requires Ω(
√
n)-space. Furthermore there is a polynomial space algorithm that decides which of the

two conditions holds, given γ, β and F .

Theorem 1.1 combines the more detailed Theorem 2.3 with decidability coming from Theo-
rem 2.4.

To highlight some of the strengths of Theorem 1.1 above, we note that previous works (including
the previous version of this paper [CGSV21b]) could only handle the special case where (1) F
contains a single function f , (2) q = 2 and (3) Constraints are placed on “literals” rather than
variables. The difference in expressivity is significant: To capture a problem such as Max-3SAT one
needs to go beyond restriction (1) to allow different constraints for clauses of length 1, 2, and 3.
This is a quantitatively significant restriction in that the approximability in this case is “smaller”
than that of Max-CSP(f) for any of the constituent functions. So hard instances do involve a mix
of constraints! The lack of expressiveness induced by the second restriction of Boolean variables is
perhaps more obvious. Natural examples of CSPs that require larger alphabets are Max-q-Coloring
and Unique Games. Finally we turn to restriction (3) — the inability to capture CSP problems
over variables. This restriction prevents previous works from capturing some very basic problems
including Max-CUT and Max-DICUT. Furthermore, the notion of “literals” is natural only in the
setting of Boolean variables — so overcoming this restriction seems crucial to eliminating the
restriction of Booleanity of the variables. Notice that while for families with a single function
F = {f}, going from constraints on literals to constraints on variables does not lead to greater
expressivity, once we study Max-CSP(F) for all sets F , the study does get formally richer.

Theorem 1.1 allows us also to capture the extreme case of hard problems where no “non-trivial”
algorithms exist. Such problems are usually referred to as approximation-resistant problems. In the
study of Boolean CSPs, with constraints placed on literals, “non-triviality” is defined as “beating
the random assignment” and approximation resistance in the setting of polynomial time algorithms
is a well-studied topic. Extending the definition to the setting where constraints are placed on
variables rather than literals, requires some thought. We propose a definition in this paper (see
Definition 2.11) which uses the notion that algorithms outputting a constant value are trivial, and
a problem is approximation resistant if beating this trivial algorithm is hard. Specifically, F is said
to be approximation resistant if for every β < γ either (γ, β)-Max-CSP(F) is solved by a “constant
function” or it requires nΩ(1) space. We then show how Theorem 1.1 (or its more detailed version
Theorem 2.3) leads to a characterization of approximation-resistance in the streaming setting as
well. (See Theorem 2.14.)

The results above (and in particular the negative results) apply only to sketching algorithms
for streaming CSPs. For general streaming algorithm, we get some partial results. To describe our
next result, we define the notion of a function supporting a one-wise independent distribution. We
say that f supports one-wise independence if there exists a distribution D supported on f−1(1)
whose marginals are uniform on [q]. We say that F supports one-wise independence if every f ∈ F
supports one-wise independence.

Theorem 1.2 (Informal). If F ⊆ {f : [q]k → {0, 1}} supports one-wise independence then it is
approximation-resistant in the streaming setting.

Theorem 1.2 is formalized as Theorem 2.17 in Section 2.3. We also give theorems capturing
hardness in the streaming setting beyond the 1-wise independent case. Stating the full theorem
requires more notions (see Section 2.3), but as a consequence we get the following extension of
theorem of [CGV20].

6

Theorem 1.3. Let q = k = 2. Then, for every family F ⊆ {f : [q]2 → {0, 1}}, and for every
0 ≤ β < γ ≤ 1, at least one of the following always holds:

1. (γ, β)-Max-CSP(F) has a O(log3 n)-space linear sketching algorithm.

2. For every ε > 0, every streaming algorithm that solves (γ − ε, β + ε)-Max-CSP(F) requires
Ω(
√
n) space. If γ = 1, then (1, β + ε)-Max-CSP(F) requires Ω(

√
n) space.

Furthermore, for every ` ∈ N, there is an algorithm using space poly(`) that decides which of the
two conditions holds given the truth-tables of functions in F , and γ and β as `-bit rationals.

Theorem 1.3 is proved in Section 2.3. [CGV20] study the setting where constraints are applied
to literals, F contains a single function and get a tight characterization of the approximability
of Max-CSP(F)3. Our work extends theirs by allowing constraints to be applied only to vari-
ables, and by allowing families of constraint functions, and by determining the complexity of every
(γ, β)-Max-CSP(F) (and not just studying the optimal ratio of β/γ).

For the sake of completeness we also give a simple characterization of the Max-CSP(F) problems
that are solvable exactly in polylogarithmic space.

Theorem 1.4 (Succinct version). For every q, k ∈ N and F ⊆ {f : [q]k → {0, 1}}, the Max-CSP(F)
problem is solvable exactly in deterministic logarithmic space if and only if there is a constant σ ∈ [q]
such that every satisfiable function in F is satisfied by the all σ-assignment. All remaining families
F require Ω(n) space to solve exactly.

The proof of this theorem is by elementary reductions from standard communication complexity
problems and included in Section 9.

This version: This version of the paper subsumes the works [CGSV21a, CGSV21b, CGSV21c].
The paper [CGSV21a], now withdrawn, claimed a restriction of Theorem 1.1 in the streaming
setting, but that version had an error and the status of Theorem 1.1 in [CGSV21a] is currently
open. [CGSV21b] proves the results of this paper for the special cases of F = {f}, q = 2 and
constraints being applied to literals rather than variables. [CGSV21c] essentially contains the same
results as this paper, but builds upon [CGSV21b]. This paper combines [CGSV21b] and [CGSV21c].

1.5 Contrast with dichotomies in the polynomial time setting

The literature on dichotomies of Max-CSP(f) problems is vast. One broad family of results here
[Sch78, Bul17, Zhu17] considers the exact satisfiability problems (corresponding to distinguishing
between instances from {Ψ| opt(Ψ) = 1} and instances from {Ψ| opt(Ψ) < 1}. Another family of
results [Rag08, AM09, KTW14] considers the approximation versions of Max-CSP(f) and gets “near
dichotomies” along the lines of this paper — i.e., they either show that the (γ, β)-approximation is
easy (in polynomial time), or for every ε > 0 the (γ − ε, β + ε)-approximation version is hard (in
some appropriate sense). Our work resembles the latter series of works both in terms of the nature
of results obtained, the kinds of characterizations used to describe the “easy” and “hard” classes,
and also in the proof approaches (though of course the streaming setting is much easier to analyze,

3By approximability of Max-CSP(F) we refer to the quantity infβ supγ{{β/γ}} over polylog space solvable (γ, β)-
Max-CSP(F) problems.

7

allowing for much simpler proofs overall). We summarize their results giving comparisons to our
theorem and then describe a principal contrast.

In a seminal work, Raghavendra [Rag08] gave a characterization of the polynomial time approx-
imability of the Max-CSP(f) problems based on the unique games conjecture [Kho02]. Our The-
orem 1.1 is analogous to his theorem. A characterization of approximation resistant functions is
given by Khot, Tulsiani and Worah [KTW14]. Our Theorem 1.2 is analogous to this. Austrin
and Mossel [AM09] show that all functions supporting a pairwise independent distribution are
approximation-resistant. Our Theorem 2.17 is analogous to this theorem.

While our results run in parallel to the work on polynomial time approximability our charac-
terizations are not immediately comparable. Indeed there are some significant differences which
we highlight below. Of course there is the obvious difference that our negative results are un-
conditional (and not predicated on a complexity theoretic assumption like the unique games con-
jecture or P 6=NP). But more significantly our characterization is a bit more “explicit” than those
of [Rag08] and [KTW14]. In particular the former only shows decidability of the problem which
takes ε as an input (in addition to γ, β and f) and distinguishes (γ, β)-approximable problems from
(γ − ε, β + ε)-inapproximable problems. The running time of their decision procedure grows with
1/ε. In contrast our distinguishability is sharper and separates (γ, β)-approximability from “∀ε > 0,
(γ−ε, β+ε)-inapproximability” — so our algorithm does not require ε as an input - it merely takes
γ, β and f as input. Indeed this difference is key to the understanding of approximation resistance.
Due to the stronger form of our main theorem (Theorem 1.1), our characterization of streaming-
approximation-resistance is explicit (decidable in PSPACE), whereas a decidable characterization
of approximation-resistance in the polynomial time setting seems to be still open.

Our characterizations also seem to differ from the previous versions in terms of the features
being exploited to distinguish the two classes. This leads to some strange gaps in our knowledge.
For instance, it would be natural to suspect that (conditional) inapproximability in the polynomial
time setting should also lead to (unconditional) inapproximability in the streaming setting. But
we don’t have a formal theorem proving this.4

1.6 Overview of our analysis

At the heart of our characterization is a family of algorithms for Max-CSP(F) in the linear sketching
streaming setting. We will describe this family soon, but the main idea of our proof is that if no
algorithm in this family solves (γ, β)-Max-CSP(F), then we can extract a pair of instances, roughly
a family of γ-satisfiable “yes” instances and a family of at most β-satisfiable “no” instances, that
certify this inability. We then show how this pair of instances can be exploited as gadgets in
a negative result. Up to this part our approach resembles that in [Rag08] (though of course
all the steps are quite different). The main difference is that we are able to use the structure
of the algorithm and the lower bound construction to show that we can afford to consider only
instances on k variables. (This step involves a non-trivial choice of definitions that we elaborate
on shortly.) This bound on the number of variables allows us to get a very “decidable” separation
between approximable and inapproximable problems. Specifically we show that distinction between
approximable setting and the inapproximable one can be expressed by a quantified formula over
the reals with a constant number of quantifiers over 2k variables and equations — a problem that

4Of course, if this were false, it would be a breakthrough result giving a quasi-polynomial time (even polylog
space) algorithm for the unique games!

8

is known to be solvable in PSPACE. We give more details below. To simplify the discussion we
consider a singleton function family F = {f}. Extending to multiple functions is not much harder
(though as stressed by the Max-3SAT example, this is not trivial either).

Our convex set framework. The essence of our dichotomy are two convex sets in Rkq that
capture the aforementioned “yes” and “no”-instances. To effect this translation, first note that
every instance Ψ on n variables can be viewed as a distribution [n]k supported on sequences with
distinct elements, by picking a constraint C = (f, j) of Ψ uniformly (or according to the weights if
Ψ is weighted) and outputting j. In our framework, the instances we consider are special — they
are instances on kq variables {xi,σ}i∈[k],σ∈[q]. We view these variables as forming a k × q matrix.
Furthermore our instances are special in that the i-th variable in every constraint application
comes from the i-th row. This property allows us to view distributions derived from instances as
distributions supported on [q]k.

As mentioned earlier, if our algorithm does not solve (γ, β)-Max-CSP(F) then we manage to
extract a family of “yes” instances and a family of “no” instances out of this failure. Both families
of instances are special as described above. The “yes” instance will be one such that a particular
planted assignment, namely xi,σ = σ, satisfies γ fraction of the constraints. The “no” instance is
a bit more subtle: We definitely will have that the same planted assignment does not satisfy β
fraction of the constraints of the “no” instance, but we need more. It would certainly suffice to
ensure no assignment satisfies β fraction of the constraints, but this will be too restrictive. The
right choice in the middle turns out to be to require that no “column-symmetric” independent
probabilistic assignment satisfies β fraction of the constraints in expectation. (In other words if
we consider random assignments to the xi,σ where the variable are assigned values independently
and furthermore variables xi,σ and xj,σ have the same marginal distribution, then no such random
assignment should satisfy more than β fraction of the constraints in expectation.) The exact reason
for this choice gets clarified through the proofs, but suffice it to say that both the “yes” instance
and “no” instance are captured by distributions supported on [q]k. The essence to the hardness is
that these two instances will have the same marginals when projected to each of the k coordinates!

The “convex set” framework says that rather than enumerating over all instances to seek out
instances where our algorithm fails, we can search for instances, or the corresponding distributions,
systematically. Since the marginals of distributions supported on [q]k are captured by vectors in
[0, 1]kq ⊆ Rkq we get that the space of marginals of all yes instances (of the special type we care
about) are given by a subset of points in Rkq, which we denote KY

γ (F). Similarly the space of

the marginals of the no instances is also a subset of Rkq denoted KN
β (F). And the search for

distributions with matching marginals is simply the question: Do KY
γ (F) and KN

β (F) intersect?
It turns out these sets are bounded, closed and convex and actually described by some polynomial
conditions. So this condition can actually be decided effectively (using the quantified theory of
reals).

To show that this framework works, we need to explain what our algorithms are, why they
lead to these special instances when they fail, and how to use the failure of the algorithms (or
equivalently the intersection of KY

γ (F) and KN
β (F)) to get hardness of (γ, β)-Max-CSP(F). We

attempt to explain this below.

Bias-based algorithms. The class of algorithms we use are what we call “bias-based algo-
rithms”, which extend algorithms used for Max-DICUT and other problems in [GVV17, CGV20].

9

Roughly these algorithms work by inspecting constraints one at a time and (linearly) updating
the “preference/bias” of variables involved in the constraint for a given assignment. This update
depends on the location of the variable within the constraint (and if there are multiple functions in
the family, also on the function itself). Thus implicitly these algorithms maintain an n-dimensional
bias vector and at the end use some property of this vector to estimate a lower bound on the value
of the instance. If this property is computable efficiently in the turnstile streaming model, then
this leads to a space-efficient streaming algorithm.

The key questions for us are: (1) How to update the bias? and (2) What property of the vector
yields a lower bound. When dealing with specific functions as in previous papers, there are some
natural candidates for bias and the most natural one turns out to be both useful and computable
efficiently using `1 norm estimators. For the property, one has to device a “rounding scheme” that
takes the bias vector and uses it to create an assignment that achieves a large value (or value related
to the property being estimated).

In our case, obviously “inspection” of natural candidates will not work for item (1) — we have
infinitely many problems to inspect. But it turns out that the convex set framework, somewhat
surprisingly, completely solves both parts (1) and (2) for us. If KY

γ (F) and KN
β (F) do not intersect

then there is a linear separator in Rkq separating the two sets and the coefficients of this separator
are interpretable as giving kq “biases” — for i ∈ [k] and σ ∈ [k] the (i, σ)-th coefficient can be
viewed as the bias/preference of the i-th variable in a constraint for taking the assignment σ ∈ [q].
This gives us an n×q bias matrix at the end that captures all the biases of variables from the whole
instance. Turning to (2), a natural property to consider at this stage is the one-infinity norm of this
matrix (i.e., the `1 norm of the n-dimensional vector whose coordinates are the `∞ norms of the rows
of the bias matrix). Informally, this corresponds to each variable acting independently according
to its bias. It turns out this norm is one of many that is known to be computable with small space
in the turnstile streaming setting and in particular we use a result of Andoni, Krauthgamer and
Onak [AKO11] to compute this. Finally, we need a relationship between this property and a lower
bound on the value, and once again the fact that the bias came from a separating hyperplane (and
the exact definition of the sets in the convex set framework) allows us to distinguish instances with
value at least γ from instances of value at most β. (Note that these constants are already baked
into our sets and hence the separating hyperplane.) We remark that we do not give an explicit
rounding procedure for our approximation algorithm, though one can probably be extracted from
the definitions of the convex sets and analyses of correctness of our algorithms.

Lower bounds. Finally we turn to the lower bounds. Once again we restrict our overview to
the setting of |F| = 1 for simplicity. Both our lower bounds for sketching algorithms and for
general streaming algorithms have a common starting point. Recall we are given that there are
two distributions DY and DN on constraints that have the same one-wise marginals and these can
be viewed as distributions on [q]k. For every pair of such distributions DY and DN in [q]k we
define a two player communication problem we call (DY ,DN)-signal detection (SD). (So in effect
these are infinitely many different communication problems, roughly corresponding to the infinitely
many different Max-CSP(F) problems we wish to analyze.) We show that if DY and DN have the
same marginals, then the communication problem requires Ω(

√
n) communication. We give further

details below, but now explain the path from this communication lower bound to the streaming
lower bounds. To get these lower bounds, we convert our SD lower bound into lower bounds on some
T -players games, for all large constants T . Instances of the T -player games immediately correspond

10

to instances of Max-CSP(F) and furthermore the properties of the sets KY
γ (F) and KN

β (F) translate
into the value of these Max-CSP(F) instances. Turning to the T -player games: In the lower bound
for sketching algorithms, we first convert the SD lower bound into a lower bound on a T -player
simultaneous communication game. This conversion is relatively simple and by turning a sketching
algorithm into a protocol for the communication game we can get a space

√
n lower bound for

every (γ, β)-Max-CSP(F) against any sketching algorithms, whenever the corresponding KY and
KN intersect. (See Theorem 5.1.) For the hardness result in the streaming setting, the lower bound
on the simultaneous communication problem no longer suffices. So here we craft our own reduction
to a T -player one-way communication problem which reduces in turn to (γ, β)-Max-CSP(F) in the
streaming setting. (This step follows the same path as [KKS15, CGV20].) Unfortunately this step
works only in some restricted cases (for instance if DN is the uniform distribution on [q]k) and this
yields our lower bound (Theorem 2.17) in the streaming setting.

We now turn to our family of communication problems (SD), which is a distributional one-
way communication problem. In the (DY ,DN)-SD problem with length parameter n, Alice gets a
random string x∗ ∈ [q]n and Bob gets a hypermatching J = (j(1), . . . , j(m)) with m = αn edges
(where α > 0 is a constant of our choice independent of n). In other words j(i) is a sequence of
k distinct elements of [n] and furthermore j(i) and j(i′) are disjoint for every i 6= i′ ∈ [m]. In
addition, Bob also gets m bits z = (z(1), . . . , z(m)), where z(i) is obtained by sampling b(i) ∼ DY
in the YES case (and b(i) ∼ DN in the NO case) independently for i ∈ [m] and letting z(i) = 1 iff
x∗|j(i) = b(i). The goal of the communication problem is for Alice to send a message to Bob that
allows Bob to guess whether this is a YES instance or a NO instance. The minimum length (over all
protocols solving SD) of Alice’s message is the complexity of the (DY ,DN)-SD. It it straightforward
from the definition to get a ODY ,DN ,α(1)-bit communication protocol achieving constant advantage
if DY and DN don’t have the same marginals. Our lower bound shows that whenever the marginals
match, the communication is at least Ω(

√
n). (It is again straightforward to show distributions

with matching marginals where O(
√
n) bits of communication suffice to distinguish the two cases.)

Before giving some details on our lower bound proof of the SD problem, we briefly give some
context to the problem itself. We note that our communication game is different from those in
previous works: Specifically the problem studied in [GKK+09, KKS15] is called the Boolean Hidden
Matching (BHM) problem from [GKK+09] and the works [KKSV17, KK19] study a variant called
the Implicit Hidden Partition problem. While these problems are similar, they are less expressive
than our formulation, and specifically do not seem to capture all Max-CSP(F) problems. We note
that the BHM problem is essentially well suited only for the setting k = q = 2. In particular the
definition and analysis of BHM relies on the Fourier analysis over Fq. Increasing k leads to several
possible extensions which seem more naturally suited to CSPs on literals rather than variables. And
increasing q leads to further complications since we don’t have a natural field to work with. Thus
the choice of SD is made carefully to allow both expressibility (we need to capture all Max-CSP(F)s)
and the ability to prove lower bounds.

Turning to our lower bound, it comes in two major steps. In the first step we resort to a
different communication problem that we call the “Randomized Mask Detection Problem with
advice” (Advice-RMD). In this problem, defined only for q = 2, Alice and Bob are given more
information than in SD. Specifically Alice is given as “advice” a partition of [n] into k parts with
the promise that the `-th variable in every constraint is from the `-th part for every ` ∈ [k]. And
Bob is given the vectors (z(1), . . . , z(m)) where z(i) = x∗|j(i) ⊕ b(i) for i ∈ [m]. This problem is
closest both in definition and analyzability to the previous problems. Indeed we are able to extend

11

previous Fourier-analytic lower bounds, in the special case where the marginals of DY and DN
over {−1, 1} are uniform, to give an Ω(

√
n) lower bound on the communication complexity of this

problem. (See Theorem 6.2.) This immediately yields a hardness of the SD problem when DY and
DN are distributions over {−1, 1}k with uniform marginals, but we need more.

To extend the lower bound to all q and to non-uniform marginals, we use more combinatorial
methods. Specifically we show that we can move DY to DN in a series of steps DY = D1, . . . ,DL =
DN where for every i, the difference between Di and Di+1 is “captured” (in a sense we don’t
elaborate here) by two distributions with uniform marginals over {a, b}k for some a, b ∈ [q]. We
refer to each of these L steps as a “polarization step”. Showing that L, the number of polarization
steps, is finite leads to an interesting problem we solve in Section 7.1. (The bound depends on q
and k, but not DY ,DN , α or n. We remark that any dependence on the first three would have been
fine for our application.) Finally we show that the lower bound on the Advice-RMD mentioned
above, in the Boolean uniform marginal setting, suffices to show that the (Di,Di+1)-SD problem
also requires Ω(

√
n) communication. (See Theorems 6.4 and 7.4.) By a triangle inequality it follows

that (DY ,DN)-SD requires Ω(
√
n) communication. (See Theorem 5.4).

1.7 Structure of rest of the paper

In Section 2, we describe our result in detail. In particular we build our convex set framework
and give an explicit criterion to distinguish the easy and hard Max-CSP(F) problems. We also
describe sufficient conditions for the hardness of some streaming problems in the streaming setting.
Section 3 contains some of the preliminary background used in the rest of the paper. In Section 4,
we describe and analyze our algorithm that yields our easiness result. In Section 5, we define the
“Signal Detection” problems and show how the communication complexity of this problem leads to
the streaming space lower bounds claimed in Section 2. In Section 6, we introduce and analyze the
Advice-RMD problem. In Section 7 we prove our general lower bound for SD assuming that a single
polarization step is hard. In Section 8 we complete this remaining step by using the Advice-RMD
lower bound to show hardness of a single polarization step, thus concluding our main lower bound.
Finally, in Section 9 we give the dichotomy for the exact computability of Max-CSP(F).

2 Results

We let N denote the set of positive integers. We let [n] denote the set {1, . . . , n}. For a finite set
Ω, let ∆(Ω) denote the space of all probability distributions over Ω, i.e.,

∆(Ω) =

{
D : Ω→ R≥0 |

∑
ω∈Ω

D(ω) = 1

}
.

We view ∆(Ω) as being contained in R|Ω|. We use X ∼ D to denote a random variable drawn from
the distribution D.

2.1 Main Notions

The main objects that allow us to derive our characterization are the space of distributions on
constraints that either allow a large number of constraints to be satisfied, or only a few constraints
to be satisfied. To see where the distributions come from, note that distributions of constraints over

12

n variables can naturally be identified with instances of weighted constraint satisfaction problem
(where the weight associated with a constraint is simply its probability).

In this part we consider distributions of constraints over a set of kq variables denoted x =
(xi,σ | i ∈ [k], σ ∈ [q]). (We think of the variables as sitting in a k × q matrix with i indexing
the rows and σ indexing the columns.) For f ∈ F and a ∈ [q]k, let C(f,a) denote the constraint
f(x1,a1 , . . . , xk,ak). For an assignment b = (bi,σ | i ∈ [k], σ ∈ [q]) ∈ [q]kq we use the notation
C(f,a)(b) to denote the value f(b1,a1 , . . . , bk,ak). We let I ∈ [q]kq denote the assignment Ii,σ = σ.
(In the following section we will use I as our planted assignment.)

We now turn to defining the “marginals” of distributions. For D ∈ ∆(F × [q]k), we let µ(D) =
(µf,i,σ)f∈F ,i∈[k],σ∈[q] be given by µf,i,σ = Pr(g,a)∼D[g = f and ai = σ]. Thus the marginal µ(D)

lies in R|F|×qk. We often reduce our considerations to families F containing a single element.
In such cases we simplify the notion of a distribution to D ∈ ∆([q]k). For D ∈ ∆([q]k), we let
µ(D) = (µi,σ)i∈[k],σ∈[q] be given by µi,σ = Pra∼D[ai = σ].

Next we introduce our family of distributions that capture our “Yes” and “No” instances. “Yes”
instances are highly satisfied by our planted assignment, while “No” instances are not very satisfied
by any “column-symmetric”, independent, probabilistic assignment. The fact that we only consider
distributions on kq variables makes this a set in finite-dimensions.

Definition 2.1 (Space of YES/NO distributions). For q, k ∈ N, γ ∈ [0, 1] and F ⊆ {f : [q]k →
{0, 1}}, we let

SYγ (F) =

{
D ∈ ∆(F × [q]k) | E

(f,a)∼D
[C(f,a)(I)] ≥ γ

}
.

For β ∈ [0, 1] we let

SNβ (F) =

{
D ∈ ∆(F × [q]k) | ∀(Pσ ∈ ∆([q]))σ∈[q], E

(f,a)∼D

[
E

b,bi,σ∼Pσ
[C(f,a)(b)]

]
≤ β

}
.

By construction, for β < γ, the sets SYγ (F) and SNβ (F) are disjoint. (In particular for any

D ∈ SYγ (F), I corresponds to a (deterministic!) column symmetric assignment that satisfies γ > β

fraction of constraints, so D 6∈ SNβ (F).) The key to the analysis of low-space streaming algorithms
is that they only seem to be able to estimate the marginals of a distribution — so we turn to
exploring the marginals of the sets above.

Definition 2.2 (Marginals of Yes/NO Distributions). For γ, β ∈ [0, 1] and F ⊆ {f : [q]k → {0, 1}},
we let

KY
γ (F) = {µ(D) ∈ R|F|kq | D ∈ SYγ (F)} and KN

β (F) = {µ(D) ∈ R|F|kq | D ∈ SNβ (F)}.

See Section 2.6 for some examples of the sets SYγ (F), SNβ (F),KY
γ (F),KN

β (F).

2.2 Results on sketching algorithms

The following theorem now formalizes the informal statement that low space sketching algorithms
(see Definition 3.3) can only capture the marginals of distributions.

Theorem 2.3 (Dichotomy for Sketching Algorithms). For every q, k ∈ N, every family of functions
F ⊆ {f : [q]k → {0, 1}} and for every 0 ≤ β < γ ≤ 1, the following hold:

13

1. If KY
γ (F) ∩ KN

β (F) = ∅, then (γ, β)-Max-CSP(F) admits a probabilistic linear sketching

algorithm (see Definition 3.3) that uses O(log3 n) space5 on instances on n variables.

2. If KY
γ (F)∩KN

β (F) 6= ∅, then for every ε > 0, every sketching algorithm for the (γ−ε, β+ε)-

Max-CSP(F) requires Ω(
√
n) space6 on instances on n variables. Furthermore, if γ = 1, then

every sketching algorithm for (1, β + ε)-Max-CSP(F) requires Ω(
√
n) space.

We remark that Part 1 of Theorem 2.3 is actually stronger and holds even for dynamic streams
where constraints are added and deleted, provided the total length of the stream is polynomial in
n. Theorem 2.3 is proved in two parts: Theorem 4.1 proves Theorem 2.3, Part 1 while Theorem 5.1
proves Theorem 2.3, Part 2.

2.2.1 Decidability of the Classification

We now complement Theorem 2.3 by showing that the condition KY
γ (F) ∩ KN

β (F) = ∅? can be
decided in polynomial space given γ and β as ratios of `-bit integers and members of F as truth
tables. (So the input is of size O(` + |F| · qk) and our algorithm needs space polynomial in this
quantity.)

Theorem 2.4. For every k, q ∈ N F ⊆ {f : [q]k → {0, 1}}, and `-bit rationals β, γ ∈ [0, 1] (i.e.,
β and γ are expressible as the ratio of two integers in {−2`, . . . , 2`}), the condition “KY

γ (F) ∩
KN
β (F) = ∅?” can be decided in space poly(|F|, qk, `) given truth tables of all elements of F and γ

and β as `-bit rationals.

We prove Theorem 2.4 in this section. The following lemma states some basic properties of the
sets SYγ (F), SNβ (F),KY

γ (F) and KN
β (F) and uses them to express the condition ”KY

γ (F)∩KN
β (F) =

∅?” in the quantified theory of reals.

Lemma 2.5. For every k, q ∈ N β, γ ∈ [0, 1] and F ⊆ {f : [q]k → {0, 1}}, the sets
SYγ (F), SNβ (F),KY

γ (F) and KN
β (F) are bounded, closed, and convex. Furthermore, the condition

KY
γ (F)∩KN

β (F) = ∅ can be expressed in the quantified theory of reals with 2 quantifier alternations,

O(|F|qk + q2) variables, and polynomials of degree at most k + 1.

Proof. We start by observing that ∆(F × [q]k) is a bounded convex polytope in R|F|×[q]k . Further-

more, viewing D as a vector in R|F|×[q]k , for any given b ∈ [q]k the quantity E(f,a)∼D[C(f,a)(b)]

is linear in D. Thus SYγ (F) is given by a single linear constraint on ∆(F × [q]k) making it a

bounded convex polytope as well. SNβ (F) is a bit more complex - in that there are infinitely
many linear inequalities defining it (one for every distribution (Pσ)σ∈[q]). Nevertheless this leaves

SNβ (F) bounded, closed (as infinite intersection of closed sets is closed), and convex (though it may

no longer be a polytope). Finally since KY
γ (F) and KN

β (F) are linear projections of SYγ (F) and

SNβ (F) respectively, they retain the features of being bounded, closed and convex.
Finally to get an effective algorithm for intersection detection, we express the intersection

condition in the quantified theory of the reals. To get this, we note that (Pσ)σ∈[q] can be expressed
by q2 variables, specifically using variables Pσ(τ) for every σ, τ ∈ [q] where Pσ(τ) denotes the

5In particular, the space complexity is O(log3 n) bits, or O(log2 n) cells where each cell is O(logn) bits long.
Crucially while the constant in the O(·) depends on k, γ and β, the exponent is a universal constant.

6Again, the constant hidden in the Ω notation depends on k, γ and β.

14

probability of τ in Pσ. In terms of these variables (which will eventually be quantified over) the
condition E(f,a)∼D

[
Eb,bi,σ∼Pσ [C(f,a)(b)]

]
≤ β is a multivariate polynomial inequality in (Pσ)σ and

D. (Specifically we get a polynomial of total degree at most k in (Pσ)σ, and of total degree at
most one in D.) This allows us to use the following quantified system to express the condition
KY
γ (F) ∩KN

β (F) 6= ∅:

∃DY ,DN ∈ R|F|×q
k
, ∀((Pσ)σ) ∈ Rq

2
s.t.

DY ,DN , (Pσ)σ, ∀σ ∈ [q] are distributions, (2.6)

∀f0 ∈ F , ∀i ∈ [k], τ ∈ [q] Pr
(f,a)∼DY

[f = f0 and ai = τ] = Pr
(f,a)∼DN

[f = f0 and ai = τ], (2.7)

E
(f,a)∼DY

[C(f,a)(I)] ≥ γ, (2.8)

E
(f,a)∼DN

[
E

b,bi,σ∼Pσ
[C(f,a)(b)]

]
≤ β. (2.9)

Note that Eqs. (2.6) to (2.8) are just linear inequalities in the variables DY ,DN . As noticed above
Eq. (2.9) is an inequality in the Pσs and DN , of total degree at most k + 1.

We thus get that the intersection problem can be expressed in the quantified theory of the
reals by an expression with two quantifier alternations, 2|F|qk + q2 variables and O(|F|qk + q2)
polynomial inequalities, with polynomials of degree at most k + 1. (Most of the inequalities are of
the form DY (b) ≥ 0 or DN (b) ≥ 0. We also have O(|F|kq) equalities (saying probabilities must
add to one and matching the marginals of DY and DN). Of the two remaining, Eq. (2.8) is linear,
only Eq. (2.9) is a higher-degree polynomial.

We now appeal to the following theorem on the complexity of the quantified theory of the reals.

Theorem 2.10 ([BPR06, Theorem 14.11, see also Remark 13.10]). The truth of a quantified for-
mula with w quantifier alternations over K variables and polynomial (potentially strict) inequalities

can be decided in space KO(w) and time 2K
O(w)

.

Specifically, Theorem 14.11 in [BPR06] asserts the time complexity above, and Remark 13.10
yields the space complexity. We are now ready to prove Theorem 2.4.

Proof of Theorem 2.4. The quantified polynomial system given by Lemma 2.5 yields parameters
K = O(|F|qk + q2) for the number of variables and w = 2 for the number of alternations. Applying
Theorem 2.10 with these parameters yields the theorem.

2.2.2 Approximation resistance of sketching algorithms

We now turn to the notion of “approximation resistant” Max-CSP(F) problems. We start with
a discussion where F = {f}. In the setting where constraints are applied to literals rather than
variables, the notion of approximation resistance is used to refer to problems where it is hard to
outperform the uniform random assignment. In other words if ρ(f) is defined to be the probability
that a random assignment satisfies f , then Max-CSP(f) is defined to be approximation resistant
if (1 − ε, ρ(f) + ε)-Max-CSP(f) is hard. In our setting however, where constraints are applied to
variables, this notion is a bit more nuanced. Here it may be possible to construct functions where a

15

random assignment does poorly and yet every instance has a much higher value.7 In our setting the
correct notion is to consider the probability of satisfying f maximized over all i.i.d. distributions for
variables. If this quantity is defined to be ρ(f), then clearly every instance of Max-CSP(f) achieves
value ρ(f). And now approximation resistance can be defined as beating this trivial lower bound.
Below we formalize the above discussion while also extending to general F .

Definition 2.11 (Approximation resistance for streaming/sketching algorithms). For F ⊆ {f :
[q]k → {0, 1}}, we define

ρmin(F) = lim inf
Ψ instance of Max-CSP(F)

{valΨ}.

We say that Max-CSP(F) is approximation-resistant for streaming algorithms (resp. sketching
algorithms) if for every ε > 0 there exists δ > 0 such that every streaming (resp. sketching)
algorithm for (1− ε, ρmin(F) + ε)-Max-CSP(F) requires Ω(nδ) space. We also define

ρ(F) = min
DF∈∆(F)

{
max
D∈∆([q])

{
E

f∼DF ,a∼Dk
[f(a)]

}}
.

Proposition 2.12. For every q, k ∈ N, F ⊆ {f : [q]k → {0, 1}} we have ρmin(F) = ρ(F).

Proof. We start by showing ρ(F) ≤ ρmin(F). Fix an instance Ψ of Max-CSP(F) and let DF be the
distribution on F obtained by picking a random constraint of Ψ and looking at the function (while
ignoring the variables that the constraint is applied to). By the definition of ρ(F), there exists a
distribution D ∈ ∆([q]) such that Ef∼DF ,a∼Dk [f(a)] ≥ ρ(F). Now consider a random assignment
to the variables of Ψ where variable xj is assignment a value independently according to D. It can
be verified that Ex[valΨ(x)] ≥ ρ(F) and so valΨ ≥ ρ(F). We thus conclude that ρ(F) ≤ valΨ for
all Ψ and so ρ(F) ≤ ρmin(F).

We now turn to the other direction. We prove that for every ε > 0 we have ρmin(F) ≤ ρ(F) + ε
and the inequality follows by taking limits. Let DF be the distribution achieving the minimum in
the definition of ρ(F). Given ε > 0 let n be a sufficiently large integer and let m = O(nk/ε). Let
Ψ be the instance of Max-CSP(F) on n variables with m constraints chosen as follows: For every
j ∈ [n]k with distinct coordinates and every f ∈ F we place bDF (f)/εc copies of the constraint
(f, j).

We claim that the Ψ generated above satisfies valΨ ≤ ρ(F) + ε/2 +O(1/n) and this suffices for
the proposition. To see the claim, fix an assignment ν ∈ [q]n and let D ∈ ∆([q]) be the distribution
induced by sampling i ∈ [n] uniformly and outputting νi. On the one hand we have from the
definition of ρ(F) that Ef∼DF ,a∼Dk [f(a)] ≤ ρ(F). On the other hand we have that the distribution
obtained by sampling a random constraint (f, j) of Ψ and outputting (f,ν|j) is ε/2 +O(1/n) close
in total variation distance to sampling f ∼ DF and a ∼ Dk. (The ε/2 gap comes from the rounding
down of each constraint to an integral number, and the O(1/n) gap comes from the fact that j is
sampled from [n] without replacement.) We thus conclude that

valΨ(ν) ≤ E
f∼DF ,a∼Dk

[f(a)] + ε/2 +O(1/n) ≤ ρ(F) + ε/2 +O(1/n) ≤ ρ(F) + ε.

Since this holds for every ν we conclude that this upper bounds valΨ as well thus establishing the
claim, and hence the proposition.

7Take for instance f(x1) = 1 iff x1 = 1. The random assignment satisfies f with probability 1/q while every
instance is satisfiable!

16

As defined ρmin(F) is not immediately even computable, but using the equivalence to ρ(F) we
get a polynomial space algorithm as shown next.

Theorem 2.13. There is an algorithm A that, on input F ⊆ {[q]k → {0, 1}} presented as |F|
truth-tables and τ ∈ R presented as an `-bit rational, answers the question “Is ρmin(F) ≤ τ?” in
space poly(|F|, qk, `).
Proof. By Proposition 2.12 we have

ρmin(F) = ρ(F) = min
DF∈∆(F)

{
max
D∈∆([q])

{
E

f∼DF ,a∼Dk
[f(a)]

}}
.

Viewing DF ∈ R|F| and D ∈ Rq and noticing that the inner expectation is a degree k + 1
polynomial in DF and D we get, again using Theorem 2.10, that there is a space poly(|F|, qk, `)
algorithm answering the question “Is ρmin(F) ≤ τ?”.

Theorem 2.3 immediately yields a decidable characterization of Max-CSP(F) problems that are
approximation resistant with respect to sketching algorithms.

Theorem 2.14 (Classification of sketching approximation resistance). For every q, k ∈ N, for every
family F ⊆ {f : [q]k → {0, 1}}, Max-CSP(F) is approximation resistant with respect to sketching
algorithms if and only if KY

1 (F) ∩KN
ρ(F)(F) 6= ∅. Furthermore, if Max-CSP(F) is approximation-

resistant with respect to sketching algorithms, then for every ε > 0 we have that (1, ρ(F) + ε)-
Max-CSP(F) requires Ω(

√
n) space. If Max-CSP(F) is not approximation-resistant with respect

to sketching algorithms, then there exists ε > 0 such that (1 − ε, ρ(F) + ε)-Max-CSP(F) can be
solved in polylogarithmic space by linear sketches. Finally, given the truth-table of the functions in
F there is an algorithm running in space poly(qk|F|) that decides whether or not Max-CSP(F) is
approximation-resistant with respect to sketching algorithms.

Proof. By Theorem 2.3 we have that Max-CSP(F) is approximation-resistant if and only if
KY

1−ε(F) ∩ KN
ρ(F)+ε(F) 6= ∅ for every small ε > 0. Taking limits as ε → 0, this im-

plies that Max-CSP(F) is approximation resistant if and only if KY
1 (F) ∩ KN

ρ(F)(F) 6= ∅ . If

KY
1 (F) ∩KN

ρ(F)(F) = ∅, then by the property that these sets are closed (see Lemma 2.5), we have

that there must exist ε > 0 such that KY
1−ε(F) ∩KN

ρ(f)+ε(F) = ∅. In turn this implies, again by

Theorem 2.3, that the (1− ε, ρ(F) + ε)-approximation version of Max-CSP(F) can be solved by a
streaming algorithm with O(log3 n) space.

To get the decidability result, we combine the ingredients from the proof of Theorems 2.4
and 2.13. (We can’t use them as blackboxes since ρmin(F) may not be rational.) We create
a quantified system of polynomial inequalities using a new variable called ρ and expressing the
conditions ρ = ρ(F) (with further variables for DF and D as in the proof of Theorem 2.13) and
expressing the conditions KY

1 (F) ∩ KN
ρ (F) 6= ∅ as in the proof of Theorem 2.4. The resulting

expression is thus satisfiable if and only if F is approximation resistant, and this satisfiability can
be decided in polynomial space in the input length qk|F| by Theorem 2.10.

2.3 Lower bounds in the streaming setting

We now turn to some special classes of functions where we can prove lower bounds in the streaming
setting with general streaming algorithms where the lower bounds match the upper bounds derived
using linear sketches. To define these classes we need some definitions.

17

We start by defining the notion of a “one-wise independent” distribution D ∈ ∆(F × [q]k).
(We note that this is somewhat related to, but definitely not the same as the notion of a family F
that supports one-wise independence which was defined informally in Section 1. We will recall that
notion shortly.) We also define the notion of a “padded one-wise pair” of distributions”.

Definition 2.15 (One-wise independence and Padded one-wise independence). For D ∈ ∆(F ×
[q]k) we say that D is one-wise independent (or has “uniform marginals”) if its marginal µ(D) =
(µf,i,σ)f∈F ,i∈[k],σ∈[q] satisfies µf,i,σ = µf,i,σ′ for every f ∈ F , i ∈ [k] and σ, σ′ ∈ [q].

We say that a pair of distributions (D1,D2) form a padded one-wise pair if there exist D0,D′1,D′2
and τ ∈ [0, 1] such that for every i ∈ {1, 2} we have D′i is one-wise independent and Di = τD0 +
(1− τ)D′i.

Our main lower bound in the streaming setting asserts that if SYγ (F)×SNβ (F) contains a padded

one-wise pair (DY ,DN) then (γ, β)-Max-CSP(F) requires Ω(
√
n)-space.

Theorem 2.16 (Streaming lower bound). For every q, k ∈ N, every family of functions F ⊆ {f :
[q]k → {0, 1}} and for every 0 ≤ β < γ ≤ 1, if there exists a padded one-wise pair of distributions
DY ∈ SYγ (F) and DN ∈ SNβ (F) then, for every ε > 0, any streaming algorithm that solves the

(γ − ε, β + ε)-Max-CSP(F) problem requires Ω(
√
n) space. Furthermore, if γ = 1, then (1, β + ε)-

Max-CSP(f) requires Ω(
√
n) space.

Theorem 2.16 is proved in Section 5.2.4. As stated above the theorem is more complex to
apply than, say, Theorem 2.3, owing to the fact that the condition for hardness depends on the
entire distribution (and the sets SYγ and SNβ) rather than just marginals (or the sets KY

γ and KN
β).

However it can be used to derive some clean results, specifically Theorem 2.17 and Theorem 1.3,
that do depend only on the marginals. We prove these (assuming Theorem 2.16) below.

We say that f : [q]k → {0, 1} supports one-wise independence if there exists a distribution D
supported on f−1(1) whose marginals are uniform on [q]. We say that a family F strongly supports
one-wise independence if every function f ∈ F supports one-wise independence. We say that a
family F weakly supports one-wise independence if there exists F ′ ⊆ F satisfying ρ(F ′) = ρ(F)
and every function f ∈ F ′ supports one-wise independence.

Theorem 2.17. For every q, k ∈ N and F ⊆ {f : [q]k → {0, 1}} such that F weakly supports one-
wise independence, Max-CSP(F) is approximation resistant with respect to streaming algorithms.
In particular, for every ε > 0, every streaming algorithm for (1, ρ(F) + ε)-Max-CSP(F) requires
Ω(
√
n) space.

Remark 2.18. We note that Theorem 1.2 differs from Theorem 2.17 in that Theorem 1.2 asserted
hardness for F that strongly supports one-wise independence whereas Theorem 2.17 asserts hard-
ness for F that weakly supports one-wise independence. Thus Theorem 2.17 is stronger and implies
Theorem 1.2.

Proof. Let F ′ ⊆ F be a family satisfying ρ(F ′) = ρ(F) such that every function f ∈ F ′ supports
one-wise independence. Furthermore let DF ∈ ∆(F ′) minimize maxD∈∆([q])

{
Ef∼DF ,a∼Dk [f(a)]

}
.

For f ∈ F ′ let DF ∈ ∆([q]k) be the distribution with uniform marginals supported on f−1(1). Now
let DY be the distribution where (f,a) ∼ DY is sampled by picking f ∈ DF (where DF is being
viewed as an element of ∆(F)) and then sampling a ∼ DF . Now let DN = DF × Unif([q]k). Note
that DY and DN are one-wise independent distributions with µ(DY) = µ(DN). In particular this

18

implies that (DY ,DN) are a padded one-wise pair. We claim that DY ∈ SY1 (F) and DN ∈ SNρ(F)(F).
The theorem then follows immediately from Theorem 2.16.

To see the claim, first note that by definition we have that (f,a) ∼ DY satisfies C(f,a)(I) =
f(a) = f0(a) = 1 with probability 1. Thus we have E(f,a)∼D[C(f,a)(I)] = 1 and so

DY ∈ SY1 (F). Now consider (f,a) ∼ DN . To show DN ∈ SNρ(F)(F) we need to show

E(f,a)∼D
[
Eb,bi,σ∼Pσ [C(f,a)(b)]

]
≤ ρ(F) for every family of distributions (Pσ ∈ ∆([q]))σ∈[q]. Now

let P be the distribution where τ ∼ P is sampled by picking σ ∼ Unif([q]) and then sampling
τ ∼ Pσ. We have

E
(f,a)∼D

[
E

b,bi,σ∼Pσ
[C(f,a)(b)]

]
= E

f∼DF ,a∼Unif([q]k)

[
E

b,bi,σ∼Pσ
[C(f,a)(b)]

]

= E
f∼DF

[
E

a∼Pk
[f(a)]

]
≤ ρ(F ′)
= ρ(F) .

This proves DN ∈ SNρ(F)(F) and thus proves the theorem.

We now turn to the proof of Theorem 1.3. Indeed we prove a more detailed statement along
the lines of Theorem 2.3 in this case.

Proposition 2.19. If DY ,DN ∈ ∆(F×[2]2) satisfy µ(DY) = µ(DN) then (DY ,DN) form a padded
one-wise pair.

Proof. For g ∈ F , let P (g) denote the probability of sampling a constraint (f, j) ∼ DY with function
f = g and let P denote this distribution. Note that since µ(DY) = µ(DN), DN also samples g
with the same probability. Let DY |g denote DY conditioned on f = g. Similarly let DN |g denote
DN conditioned on f = g.

Now DY |g and DN |g are distributions from ∆({g} × [2]2) with matching marginals. We’ll
show that there exist D0|g, D′Y |g and D′N |g, and τg such that (1) DY |g = τgD0|g + (1 − τg)D′Y |g,
(2) DN |g = τgD0|g + (1 − τg)D′N |g and (3) D′Y |g and D′N |g are one-wise independent. Let

DY |g = (p1,1, p1,2, p2,1, p2,2) where pi,j denotes the probability Pr(a,b)∼DY |g [a = i, b = j]. If

DN |g has matching marginals with DY |g then there exists a δg ∈ [−1, 1] such that DN |g =
(p1,1−δg, p1,2+δg, p2,1+δg, p2,2−δg). Assume without loss of generality that δg ≥ 0. Let τg = 1−2δg,
D0|g = 1

1−2δg
(p1,1 − δg, p1,2, p2,1, p2,2 − δg), D′Y |g = (1/2, 0, 0, 1/2) and D′N |g = (0, 1/2, 1/2, 0). It

can be verified that D′Y |g and D′N |g are one-wise independent, DY |g = τgD0|g + (1 − τg)D′Y |g and

DN |g = τgD0|g + (1− τg)D′N |g.
Now let τ = Ef∼P [τf], and D0 ∈ ∆(F × [q]k) be the distribution where a = (f,b) ∈ {F} × [2]2

is sampled with probability
P (f)·τf ·D0|f (a)

τ , where D0|f (a) is the probability of sampling a from D0|f .
Note that this is a valid probability distribution as∑

f∈F

∑
b∈[2]2

P (f) · τf · D0|f (f,b)

τ
=
∑
f∈F

P (f) · τf
τ

·
∑

b∈[2]2

D0|f ((f,b)) = 1 .

Similarly define D′Y and D′N such that a is sampled with probability
P (f)·(1−τf)·D′

Y |f (a)

1−τ

and
P (f)·(1−τf)·D′

N|f (a)

1−τ , respectively. It can be verified that these choices satisfy

19

(1) DY = τD0 + (1− τ)D′Y , (2) DN = τD0 + (1 − τ)D′N and (3) D′Y and D′N are one-wise in-
dependent. It follows that DY and DN form a padded one-wise pair.

Combining Proposition 2.19 and Theorem 2.16 we immediately get the following theorem, which
in turn implies Theorem 1.3.

Theorem 2.20. For every family F ⊆ {f : [2]2 → {0, 1}}, and for every 0 ≤ β < γ ≤ 1, the
following hold:

1. If KY
γ (F) ∩ KN

β (F) = ∅, then (γ, β)-Max-CSP(F) admits a probabilistic linear sketching

algorithm that uses O(log3 n) space.

2. If KY
γ (F) ∩ KN

β (F) 6= ∅, then for every ε > 0, then (γ − ε, β + ε)-Max-CSP(F) in the

streaming setting requires Ω(
√
n) space8. Furthermore, if γ = 1, then (1, β + ε)-Max-CSP(F)

in the streaming setting requires Ω(
√
n) space.

Proof. Part (1) is simply the specialization of Part (1) of Theorem 2.3 to the case k = 2. For
Part (2), suppose µ ∈ KY

γ ∩KN
β . Let DY ∈ SYγ and DN ∈ SNβ be distributions such that µ(DY) =

µ(DN) = µ. Then by Proposition 2.19 we have that DY and DN form a padded one-wise pair, and
so Theorem 2.16 can be applied to get Part (2).

2.4 Relation to single parameter approximability

The traditional study of approximation algorithms typically focusses on a single parameter problem.
Specifically, for α ∈ [0, 1], Max-CSP(F) is said to be α-approximable in space s in the streaming
setting if there is a space s algorithm that on input a stream representing instance Ψ of Max-CSP(F)
outputs a number in [αvalΨ, valΨ]. The connection between this single parameter approximability
and the gapped problems we study is folklore. For the sake of completeness we describe the
algorithmic implication below.

Proposition 2.21. Given F ⊆ {f : [q]k → {0, 1}} let

α = inf
β∈[0,1]

 sup
γ∈(β,1] s.t KY

γ (F)∩KN
β (F)=∅

{β/γ}

 .

Then for every ε > 0, there is an (α − ε)-approximation algorithm for Max-CSP(F) that uses
O(log3 n) space. Conversely every (α + ε)-approximation sketching algorithm for Max-CSP(F)
requires Ω(

√
n) space.

Proof. The negative result is simple. Given γ, β with β/γ ≥ α + ε, we can use an (α + ε)-
approximation algorithm A to solve the (γ, β)-Max-CSP(F), by outputting YES if A(Ψ) ≥ β and
NO otherwise. Thus if KY

γ (F) ∩KN
β (F) 6= ∅, then by Theorem 2.3, A requires Ω(

√
n) space.

For the positive result, let τ , ε · ρ/2, where ρ = ρmin(F) is as given by Definition 2.11. Let

Aτ = {(iτ, jτ) ∈ [0, 1]2 | i, j ∈ Z≥0, i > j,KY
iτ (F) ∩KN

jτ (F) = ∅}.
8The constant hidden in the Ω notation may depend on k and ε.

20

By Theorem 2.3, for every (γ, δ) ∈ Aτ there is a O(log3 n)-space algorithm for (γ, β)-Max-CSP(F)
with error probability 1/3. By repeating this algorithm O(log(1/τ)) times and taking majority, we
may assume the error probability is at most 1/(10τ2). We refer to this amplified algorithm as the
(γ, β)-distinguisher below. In the following we consider the case where all O(τ−2) distinguishers
output correct answers, which happens with probability at least 2/3.

Our Oτ (log3 n) space (α − ε)-approximation algorithm for Max-CSP(F) is the following: On
input Ψ, run in parallel all the (γ, β)-distinguishers on Ψ, for every (γ, β) ∈ Aτ . Let

β0 = arg max
β

[∃γ such that the (γ, β)-distinguisher outputs YES on Ψ] .

Output β′ = max{ρ, β0}.
We now prove that this is an (α−ε)-approximation algorithm. First note that by the correctness

of the distinguisher we have β′ ≤ valΨ. Let γ0 be the smallest multiple of τ satisfying γ0 ≥
(β0 + τ)/α. By the definition of α, we have that KY

γ0
∩KN

β0+τ = ∅. So (γ0, β0 + τ) ∈ Aτ and so the
(γ0, β0 +τ)-distinguisher must have output NO on Ψ (by the maximality of β0). By the correctness
of this distinguisher we conclude valΨ ≤ γ0 ≤ (β0 + τ)/α+ τ ≤ (β′ + τ)/α+ τ . We now verify that
(β′ + τ)/α+ τ ≤ β′/(α− ε) and this gives us the desired approximation guarantee. We have

(β′ + τ)/α+ τ ≤ (β′ + 2τ)/α ≤ (β′/α) · (1 + 2τ/ρ) = (β′/α)(1 + ε) ≤ (β′/(α(1− ε))),

where the first inequality uses α ≤ 1, the second uses β′ ≥ ρ, the equality comes from the definition
of τ and the final inequality uses (1 + ε)(1− ε) ≤ 1. This concludes the positive result.

2.5 Some Examples

We consider three basic examples of general q-CSP and illustrate how to apply Theorem 2.16 to
determine their approximability.

The first example is Max-DICUT described below. This characterization is more refined than a
corresponding one in [CGV20] in that ours characterizes the complexity of (γ, β)-Max-DICUT for
every γ, β whereas their work only characterizes α-approximability of Max-DICUT.

Example 1 (Max-DICUT).

Let f(x, y) : [2]2 → {0, 1} with f(x, y) = 1 if and only if x = 2 and y = 1. Note that
Max-DICUT = Max-CSP({f}) with q = k = 2. Observe that for every distribution D ∈
∆([q]k) with probability density vector φ(D) = (φ22, φ21, φ12, φ11), we have for every 0 ≤
γ, β ≤ 1

SYγ (F) = {D |φ21 ≥ γ}

and

SNβ (F) =

{
D | max

p,q∈[0,1]
p(1− p) · φ22 + pq · φ21 + (1− q)(1− p) · φ12 + (1− q)q · φ11 ≤ β

}
.

Also, note that the marginal vector µ(D) = (µ22, µ21, µ12, µ11) and φ(D) satisfy the following

21

relations: 
µ22 = φ12 + φ22

µ21 = φ11 + φ21

µ12 = φ21 + φ22

µ11 = φ11 + φ12 .

Note that for every D ∈ ∆([q]k), we have D ∈ SN1/4. In particular, the uniform distribu-

tion Unif([2]2) ∈ SN1/4. Since the distribution given by the density vector (φ22 = 0, φ21 =

1/2, φ12 = 1/2, φ11 = 0) also has uniform marginals and belongs to SY1/2, we have that for

every β ≥ 1/4, KY
1/2 ∩K

N
β (F) 6= ∅. So it suffices to focus on the case where γ ≥ 1/2.

Fix γ ≥ 1/2, we want to compute the minimum β such that KY
γ (F) ∩ KN

β (F) 6= ∅. The
kernel of the mapping from probability density φ to the marginal vector µ is spanned by
(1,−1,−1, 1). Then simple calculations show that the minimum β is achieved when µ =
(1 − γ, γ, γ, 1 − γ) with (0, γ, 1 − γ, 0) ∈ SYγ (F) and (1 − γ, 2γ − 1, 0, 1 − γ) ∈ SNβ (F).
Specifically,

β = max
p,q∈[0,1]

(p(1− p) + q(1− q)) · (1− γ) + pq · (2γ − 1)

= max
p,q∈[0,1]

(1− γ)2

3− 4γ
− 3− 4γ

2
·

((
p+

1− γ
4γ − 3

)2

+

(
q +

1− γ
4γ − 3

)2
)
− (2γ − 1)

2
· (p− q)2 .

When γ ≥ 2/3, the expression is maximized by p = q = 1 and hence β = 2γ − 1. When
1/2 ≤ γ ≤ 2/3, the expression is maximized by p = q = (1 − γ)/(3 − 4γ) and hence
β = (1− γ)2/(3− 4γ).
We thus get that the set H∩ , {(γ, β) ∈ [0, 1]2|KY

γ ∩KN
β 6= ∅} (of hard problems) is given

by (see also Figure 1):

H∩ =

[
0,

1

2

]
×
[

1

4
, 1

]
∪

{
(γ, β)|γ ∈

[
1

2
,
2

3

]
, β ∈

[
(1− γ)2

3− 4γ
, 1

]}
∪

{
(γ, β)|γ ∈

[
2

3
, 1

]
, β ∈ [2γ − 1, 1]

}
.

(We note that [CGSV21b, Example 1] gives exactly the same set as the hard set of Max-2AND,
which is a related but not identical result.)

22

Figure 1: A plot of H∩.

Finally, over γ ∈ [2/3, 1], β/γ is minimized at (γ, β) = (2/3, 1/3) and β/γ = 1/2; over
γ ∈ [1/2, 2/3], β/γ is minimized at (γ, β) = (3/5, 4/15) and β/γ = 4/9, yielding 4/9 as
the approximability threshold. Specifically, Proposition 2.19 gives us that any pair of dis-
tributions DY ,DN ∈ ∆(F × [2]2),DY ∈ SY3/5,DY ∈ SN4/15 witnessing KY

3/5 ∩ K
Y
4/15 6= ∅

forms a padded one-wise pair. Finally, Theorem 2.16, applied to the padded one-wise pair
(DY ,DN), implies that Max-DICUT cannot be approximated better with a factor (4/9 + ε)
in space o(

√
n) in the streaming setting, which is consistent with the findings in [CGV20]

for the Max-DICUT problem.

Next, we consider Unique Games (UG) to be an example with alphabet q ≥ 2.

Example 2 (Max-qUG).

Let k = 2 and q ≥ 2. Let F = {f : [q]2 → {0, 1} | f−1(1) is a bijection}. Note that
Max-qUG = Max-CSP(F). We claim that the quantity α = infβ α(β) = 1/q where α(β) =
supγ|KY

γ ∩KN
β =∅{β/γ}. First, note that D ∈ SN1/q for every D and hence implies α ≥ 1/q.

For simplicity we work with the alphabet Zq = {0, . . . , q − 1} instead of [q]. For τ ∈ Zq let
fτ ∈ F be the constraint fτ (x, y) = 1 if and only if x − y = τ (mod q). Let DY be the
uniform distribution over {(fτ , σ, σ + τ) |σ, τ ∈ Zq}. Note that obviously we have DY ∈ SY1 .
Now let DN be the uniform distribution over {fτ | τ ∈ Zq}×Z2

q . Note that for any assignment
to two variables x1,σ1 , x2,σ2 the probability over τ that it satisfies fτ (x1,σ1 , x2,σ2) is exactly
1/q. If follows that any assignment to (xi,σ)i,σ satisfies exactly 1/q fraction of the constraints
in DN and so DN ∈ SN1/q. Observe that the marginals of DY and DN are the same, i.e.,

µ(DY) = µ(DN) = µ(Unif({fτ} × Z2
q)). This gives us µ(Unif({fτ} × [q]2)) ∈ KY

1 ∩KN
1/q so

we have α(β) = β for β ≥ 1/q. Minimizing this over β, Theorem 2.16, applied to the one-
wise independent distribution DY and DN , gives that the problem can not be approximated
better than 1/q in space o(

√
n) in the streaming setting, which is consistent with the findings

in [GT19] for the Max-qUG problem.

23

Example 3 (Max-qCol)

Let k = 2 and q ≥ 2. Let F = {f6=} where f6= : [q]2 → {0, 1} is given by f6=(x, y) = 1⇔ x 6= y.
Note that Max-qCol = Max-CSP(F). We claim that the quantity α = infβ α(β) = 1 − 1/q
where α(β) = supγ|KY

γ ∩KN
β =∅{β/γ}. First, note that D ∈ SN1−1/q for every D and hence

implies α ≥ 1− 1/q. We now show this is also the upper bound by exhibiting DY and DN .
Let DY be the uniform distribution over {(f6=, σ, τ) |σ 6= τ ∈ [q]}. Note that obviously we
have DY ∈ SY1 . Now let DN be the uniform distribution over {f6=} × [q]2. This leads to
β = maxPσ{E(f,a1,a2)∼DN [Ex∼Pa1 ,y∼Pa2

[f(x, y)]]}. The independence of a1 and a2 in DN
allows us to simplify this to maxP∈∆([q]){Ex,y∼P [f6=(x, y)]} and the latter is easily seen to be

at most 1−1/q. Thus we conclude DN ∈ SN1−1/q. Since the marginals of DY and DN are the

same, i.e., µ(DY) = µ(DN) = µ(Unif({f6=}×[2]×[q])), this gives us µ(Unif({f6=}×[2]×[q])) ∈
KY

1 ∩ KN
1/q so we have α(β) = β for β ≥ 1 − 1/q. Minimizing this over β, Theorem 2.16,

applied to the one-wise independent distribution DY and DN , gives that the problem can
not be approximated better than 1− 1/q in space o(

√
n) in the streaming setting.

Another example along the same vein is analyzed in a subsequent work by Singer, Sudan and
Velusamy [SSV21] who show that (1−1/q, (1/2)(1−1/q))-Max-CSP(F) is hard for F = {f<} where
f< : [q]2 → {0, 1} is given by f<(x, y) = 1 if and only if x < y. This analysis forms a critical step
in their improved analysis of the Maximum Acyclic Subgraph Problem (which is not captured in
our framework).

2.6 Classification of exact computability

Finally for the sake of completeness we show that all “non-trivial” CSPs are hard to solve exactly.
“Trivial” families are those where all satisfiable constraints are satisfied by a constant assignment,
as defined precisely below.

Definition 2.22 (Constant satisfiable). For σ ∈ [q] and F ⊆ {f : [q]k → {0, 1}} we say that F is
σ-satisfiable if for every f ∈ F \ {0} we have that f(σk) = 1. We say F is constant-satisfiable if
there exists σ ∈ [q] such that F is σ-satisfiable.

Our theorem below asserts that constant satisfiable families are the only ones that are solvable
exactly. And for additive ε approximations to the maximum fraction of satisfiable constraints, they
require space growing polynomially in ε−1.

Theorem 2.23. For every q, k ∈ N, every family of functions F ⊆ {f : [q]k → {0, 1}} the following
hold:

1. If F is constant satisfiable, then there exists a deterministic linear sketching algorithm that
uses O(log n) space and solves Max-CSP(F) exactly optimally.

2. If F is not constant satisfiable, then the following hold in the streaming setting:

(a) Every probabilistic algorithm solving Max-CSP(F) exactly requires Ω(n) space.

(b) For every ε = ε(n) > 0, (1, 1− ε)-Max-CSP(F) requires Ω(min{n, ε−1})-space9 on suffi-
ciently large inputs.

9 The constant hidden in the Ω depends on F , but (obviously) not on ε.

24

(c) For ρmin(F) defined in Definition 2.11, for every ρmin(F) < γ < 1 and every ε = ε(n) >
0, (γ, γ − ε)-Max-CSP(F) requires Ω(min{n, ε−2})-space9 on sufficiently large inputs.

Theorem 2.23 is proved in Section 9.

Organization of the rest of the paper. In Section 3 we introduce some basic notation and
review some probability theory and Fourier analytic basics. In Section 4 we describe our algorithm
for approximating Max-CSP(F) in the tractable cases, giving the positive part of Theorem 2.3. In
Section 5 we introduce our communication problem, state a lower bound (Theorem 5.4) and prove
our streaming lower bounds (Theorem 2.16 and the negative part of Theorem 2.3) modulo this
lower bound. We prove Theorem 5.4 in Sections 6 to 8. In Section 9 we prove Theorem 2.23 giving
the characterization of Max-CSP(F) problems exactly solvable in logarithmic space.

3 Preliminaries

We will follow the convention that n denotes the number of variables in the CSP as well as the
communication game, m denotes the number of constraints in the CSP, and k denotes the arity of
the CSP. We use N to denote the set of natural numbers {1, 2, 3, . . .} and use [n] to denote the set
{1, 2, . . . , n}. By default, a Boolean variable in this paper takes value in {−1, 1}.

For variables of a vector form, we write them in boldface, e.g., x ∈ [q]n, and its i-th entry is
written without boldface, e.g., xi. For variable being a vector of vectors, we write it, for example,
as b = (b(1),b(2), . . . ,b(m)) where b(i) ∈ [q]k. The j-th entry of the i-th vector of b is then
written as b(i)j . Let x and y be two vectors of the same length, x � y denotes the entry-wise
product of them.

For every p ∈ [0, 1], Bern(p) denotes the Bernoulli distribution that takes value 1 with proba-
bility p and takes value −1 with probability 1− p.

3.1 Approximate Constraint Satisfaction

Max-CSP(F) is specified by a family of constraints F , where each constraint function f ∈ F is
such that f : [q]k → {0, 1}, for a fixed positive integer k. Given n variables x1, x2, . . . , xn, an
application of the constraint function f to these variables, which we term simply a constraint, is
given by a k-tuple j = (j1, . . . , jk) ∈ [n]k where the ji’s are distinct and represent the application of
the constraint function f to the variables xj1 , . . . , xjk . Specifically an assignment b ∈ [q]n satisfies
a constraint given by (f, j) if f(bj1 , . . . , bjk) = 1. An instance Ψ of Max-CSP(F) consists of m
constraints C1, . . . , Cm with non-negative weights w1, . . . , wm where Ci = (fi, j(i)) and wi ∈ R for
each i ∈ [m]. For an assignment b ∈ [q]n, the value valΨ(b) of b on Ψ is the fraction of weight of
constraints satisfied by b, i.e., valΨ(b) = 1

W

∑
i∈[m]wi ·fi(b|j(i)), where W =

∑m
i=1wi. The optimal

value of Ψ is defined as valΨ = maxb∈[q]n{valΨ(b)}. The approximation version of Max-CSP(F) is
defined as follows.

Definition 3.1 ((γ, β)-Max-CSP(F)). Let F be a constraint family and 0 ≤ β < γ ≤ 1. For each
m ∈ N, let Γm = {Ψ = (C1, . . . , Cm) | valΨ ≥ γ} and Bm = {Ψ = (C1, . . . , Cm) | valΨ ≤ β}.

The task of (γ, β)-Max-CSP(F) is to distinguish between instances from Γ = ∪m≤poly(n)Γm and
instances from B = ∪m≤poly(n)Bm. Specifically we desire algorithms that output 1 w.p. at least 2/3
on inputs from Γ and output 1 w.p. at most 1/3 on inputs from B.

25

We now define streaming and sketching algorithms in the context of Max-CSP(F). Note that
the input to both algorithms are sequences of constraints. We use CF ,n to denote the set of all
constraints of Max-CSP(F) on n variables. A stream is thus an element of (CF ,n)∗ and we use λ to
denote the empty stream.

Definition 3.2 (Streaming algorithm). A space s general streaming algorithm ALG for
Max-CSP(F) on n variables is given by a (state-evolution) function S : {0, 1}s × CF ,n → {0, 1}s

and a (output) function v : {0, 1}s → [0, 1]. Let S̃ : (CF ,n)∗ → {0, 1}s given by S̃(λ) = 0s and

S̃(σ1, . . . , σm)) = S(S̃(σ1, . . . , σm−1), σm) denote the iterated state-evolution map. Then the out-
put of ALG on input σ = (σ1, . . . , σm) is v(S̃(σ)). For the purposes of this paper, a randomized
streaming algorithm is simply a distribution on the pairs (S, v).

Sketching algorithms are a special class of streaming algorithms that have been widely used in
both upper bounds and lower bounds.

Definition 3.3 (Sketching algorithms). A (deterministic) space s streaming algorithm ALG =
(S, v) is a sketching algorithm if there exists a compression function COMP : (CF ,n)∗ → {0, 1}s and
a combination function COMB : {0, 1}s × {0, 1}s → {0, 1}s such that the following hold:

• S(z, C) = COMB(z,COMP(C)) for every z ∈ {0, 1}s and C ∈ CF ,n.

• For every pair of streams σ, τ ∈ (CF ,n)∗, we have

COMB(COMP(σ),COMP(τ)) = COMP(σ ◦ τ)

where σ ◦ τ represents the concatenation of the streams σ and τ . A randomized algorithm
ALG is a randomized sketching algorithm if it is a distribution over deterministic sketching
algorithms.

We remark that a linear sketching algorithm roughly associates with elements of a vector space
V (over some field) and COMB is simply vector addition in V .

3.2 Total variation distance

The total variation distance between probability distributions plays an important role in our anal-
ysis.

Definition 3.4 (Total variation distance of discrete random variables). Let Ω be a finite probability
space and X,Y be random variables with support Ω. The total variation distance between X and
Y is defined as follows.

‖X − Y ‖tvd :=
1

2

∑
ω∈Ω

|Pr[X = ω]− Pr[Y = ω]| .

We will use the triangle and data processing inequalities for the total variation distance.

Proposition 3.5 (E.g.,[KKS15, Claim 6.5]). For random variables X,Y and W :

• (Triangle inequality) ‖X − Y ‖tvd ≥ ‖X −W‖tvd − ‖Y −W‖tvd.

• (Data processing inequality) If W is independent of both X and Y , and f is a function, then
‖f(X,W)− f(Y,W)‖tvd ≤ ‖X − Y ‖tvd.

26

3.3 Concentration inequality

We will use the following concentration inequality which is essentially an Azuma-Hoeffding style
inequality for submartingales. The form we use is based on [KK19, Lemma 2.5], and allows for
variables with different expectations. The analysis is a very slight modification of theirs.

Lemma 3.6. Let X =
∑

i∈[N]Xi where Xi are Bernoulli random variables such that for every

k ∈ [N], E[Xk |X1, . . . , Xk−1] ≤ pk for some pk ∈ (0, 1). Let µ =
∑N

k=1 pk. For every ∆ > 0, we
have:

Pr [X ≥ µ+ ∆] ≤ exp

(
− ∆2

2µ+ 2∆

)
.

Proof. Let v = ∆/(µ+ ∆) and u = ln(1 + v). We have

E[euX] = E[
N∏
k=1

euXk] ≤ (1 + pN (eu − 1)) · E[
N−1∏
k=1

euXk] ≤
N∏
i=1

(1 + pk(e
u − 1)) =

N∏
i=1

(1 + pkv) ≤ evµ,

where the final inequality uses 1 + x ≤ ex for every x (and the definition of µ). Applying Markov’s
inequality to the above, we have:

Pr [X ≥ µ+ ∆] = Pr
[
euX ≥ eu(µ+∆)

]
≤ E[euX]/eu(µ+∆) ≤ evµ−uµ−u∆.

From the inequality ev−v
2/2 ≤ 1 + v we infer u ≥ v− v2/2 and so the final expression above can be

bounded as:

Pr [X ≥ µ+ ∆] ≤ evµ−uµ−u∆ ≤ e
v2

2
(µ+∆)−v∆ = e

− ∆2

2(µ+∆) ,

where the final equality comes from our choice of v.

3.4 Fourier analysis

We will need the following basic notions from Fourier analysis over the Boolean hypercube (see, for
instance, [O’D14]). For a Boolean function f : {−1, 1}k → R its Fourier coefficients are defined by

f̂(v) = Ea∈{−1,1}k [f(a) · (−1)v
>a], where v ∈ {0, 1}k. We need the following two important tools.

Lemma 3.7 (Parseval’s identity). For every function f{−1, 1}k → R,

‖f‖22 =
1

2k

∑
a∈{−1,1}k

f(a)2 =
∑

v∈{0,1}k
f̂(v)2 .

Note that for every distribution f on {−1, 1}k, f̂(0k) = 2−k. For the uniform distribution U on
{−1, 1}k, Û(v) = 0 for every v 6= 0k. Thus, by Lemma 3.7, for any distribution f on {−1, 1}k:

‖f − U‖22 =
∑

v∈{0,1}k

(
f̂(v)− Û(v)

)2
=

∑
v∈{0,1}k\{0k}

f̂(v)2 . (3.8)

Next, we will use the following consequence of hypercontractivity for Boolean functions as given
in [GKK+09, Lemma 6] which in turns relies on a lemma from [KKL88].

27

Lemma 3.9. Let f : {−1, 1}n → {−1, 0, 1} and A = {a ∈ {−1, 1}n | f(a) 6= 0}. If |A| ≥ 2n−c for
some c ∈ N, then for every ` ∈ {1, . . . , 4c}, we have

22n

|A|2
∑

v∈{0,1}n
‖v‖1=`

f̂(v)2 ≤

(
4
√

2c

`

)`
.

4 A Streaming Approximation Algorithm for Max-CSP(F)
In this section we give our main algorithmic result — an O(log3 n)-space linear sketching streaming
algorithm for the (γ, β)-Max-CSP(F) if KY

γ = KY
γ (F) and KN

β = KN
β (F) are disjoint. (See

Definition 2.2.)
The algorithm in fact works in the (general) dynamic setting where the input Ψ =

(C1, . . . , Cm;w1, . . . , wm) is obtained by inserting and deleting (unweighted) constraints, pos-
sibly with repetitions and thus leading to a (integer) weighted instance. Formally Ψ =
(C1, . . . , Cm;w1, . . . , wm) is presented as a stream σ1, . . . , σ` where σt = (C ′t, w

′
t) and w′t ∈ {−1, 1}

such that wi =
∑

t∈[`]:Ci=C′t
w′t. For the algorithmic result to hold, we require that wi’s are non-

negative at the end of the stream but the intermediate values can be arbitrary. Furthermore
the algorithm requires that the length of the stream be polynomial in n (or else there will be a
logarithmic multiplicative factor in the length of the stream in the space usage).

We now state our main theorem of this section which simply repeats Part (1) of Theorem 2.3.

Theorem 4.1. For every q, k ∈ N, every family of functions F ⊆ {f : [q]k → {0, 1}} and for every
0 ≤ β < γ ≤ 1 if KY

γ (F) ∩KN
β (F) = ∅, then (γ, β)-Max-CSP(F) in the dynamic setting admits a

probabilistic linear sketching streaming algorithm that uses O(log3 n) space.

We start with a brief overview of our algorithm. Roughly, given an instance Ψ on n variables
with m constraints, our streaming algorithm (implicitly) works with an n × q bias non-negative
matrix bias whose (i, σ)th entry tries to capture how much the ith variable would like to be assigned
the value σ (according to our approximation heuristic). Note that any such matrix is too large
for our algorithm, so the algorithm does not explicitly maintain this matrix. Our heuristic ensures
that bias is updated linearly by every constraint and so the rich theory of norm-approximations
of matrices under linear updates can be brought into play to compute any desired norm of this
matrix. Given the intuition that biasi,σ represents the preference of variable i for value σ, a natural
norm of interest to us is ‖bias‖1,∞ ,

∑n
i=1{maxσ∈[q]{biasi,σ}}. This norm, fortunately for us, is

well-known to be computable using O(q log3 n) bits of space [AKO11] (assuming bias is updated
linearly) and we use this algorithm as a black box.

The question then turns to asking how bias should be defined. On input a stream σ1, . . . , σ`
representing an instance Ψ = (C1, . . . , Cm) with σi = (C ′i = (j(i),b(i)), w′i), how should bias be
updated? Presumably the i-th update will only involve the rows j(i)1, . . . , j(i)k but how should
these be updated and how should this update depend on the function fi? Here is where the
disjointness of KY and KN comes into play. (We suppress F and γ and β in the notation of the
sets SYγ , SNβ and KY

γ and KN
β in this overview.) We show that these sets are convex and closed,

and so there is a hyperplane (with margin) separating the two sets. Let λ = (λf,i,σ)f∈F ,i∈[k],σ∈[q] be
the coefficients of this separating hyperplane and let τN < τY be thresholds such that 〈λ,µ〉 ≥ τY
for µ ∈ KY and 〈λ,µ〉 ≤ τN for µ ∈ KN . It turns out that the coefficients of λ give us exactly the

28

right information to determine the update to the bias vector: Specifically given an element σi of
the stream with constraint C ′i = (fi, j(i)) and weight w′i and ` ∈ [k] and σ ∈ [q], we add λfi,`,σ · w′i
to biasj(i)`,σ. We are unable to provide intuition for why these updates work but the proof that the
algorithm works is nevertheless quite short!

We now turn to describing our algorithm. Recall by Lemma 2.5 that the set SY , SN ,KY ,KN

are all convex and closed. This implies the existence of a separating hyperplane when KY and
KN do not intersect. We use a mild additional property to conclude that the coefficients of this
hyperplane are non-negative, and we later use this crucially in the computation of the bias of the
instance.

Proposition 4.2. Let β, γ and F be such that 0 ≤ β < γ ≤ 1 and KY
γ (F) ∩KN

β (F) = ∅. Then
there exists a non-negative vector λ = (λf,i,σ)f∈F ,i∈[k],σ∈[q] and real numbers τY > τN such that

∀µ ∈ KY
γ (F), 〈λ,µ〉 ≥ τY and ∀µ ∈ KN

β (F), 〈λ,µ〉 ≤ τN .

Proof. The existence of a separating hyperplane follows from standard convexity (see, e.g., [BV04,
Exercise 2.22]). For us this implies there exists λ′ ∈ R|F|×kq and τ ′N < τ ′Y such that

∀µ ∈ KY
γ (F), 〈λ′,µ〉 ≥ τ ′Y and ∀µ ∈ KN

β (F), 〈λ′,µ〉 ≤ τ ′N .

But λ′ is not necessarily a positive vector. To remedy this we use the fact that KY
γ (F)∪KN

β (F) is
contained in a hyperplane whose coefficients are themselves positive. In particular we note that for
every D ∈ ∆(F × [q]k) we have 〈µ(D),1〉 = k where 1 ∈ R|F|×kq is the all ones vector, as verified
below:

〈µ(D),1〉 =
∑

f∈F ,i∈[k],σ∈[q]

µf,i,σ =
∑
i∈[k]

 ∑
f∈F ,σ∈[q]

µf,i,σ

 =
∑
i∈[k]

1 = k.

Let λ′min = minf,t,σ λ
′
f,t,σ. Now let λ, τY and τN be given by:

λf,t,σ = λ′f,t,σ + |λ′min| , τY = τ ′Y + k · |λ′min| and τN = τ ′N + k · |λ′min| .

Observe that λ is a non-negative vector and τY > τN . We also have:

∀µ ∈ KY
γ (F), 〈λ,µ〉 = 〈λ′,µ〉+ |λ′min| ≥ 〈1,µ〉 ≥ τ ′Y + k|λ′min| = τY

as desired. Similarly also get ∀µ ∈ KN
β (F), 〈λ,µ〉 ≤ τN , concluding the proof.

To use the vector λ given by Proposition 4.2 we introduce the notion of the bias matrix and
the bias of a Max-CSP(F) instance Ψ.

Definition 4.3 (Bias (matrix)). For a non-negative vector λ = (λf,i,σ)f∈F ,i∈[k],σ∈[q] ∈ R|F|kq, and
instance Ψ = (C1, . . . , Cm;w1, . . . , wm) of Max-CSP(F) where Ci = (fi, j(i)), where fi ∈ F and
j(i) ∈ [n]k, we let the λ-bias matrix of Ψ, denoted biasλ(Ψ), be the matrix in Rn×q given by

biasλ(Ψ)`,σ =
1

W
·

∑
i∈[m],t∈[k]:j(i)t=`

λfi,t,σ · wi ,

for ` ∈ [n] and σ ∈ [q], where W =
∑

i∈[m]wi. The λ-bias of Ψ, denoted Bλ(Ψ), is defined as

Bλ(Ψ) =
∑n

`=1 maxσ∈[q] biasλ(Ψ)`,σ.

29

Key to our algorithm for approximating Max-CSP(F) is the following algorithm to compute
the `1,∞ norm of a matrix. Recall that for a matrix M ∈ Ra×b the `1,∞ norm is the quantity
‖M‖1,∞ =

∑
i∈[a]{maxj∈[b]{|Mij |}}.

Theorem 4.4 (Implied by [AKO11, Theorem 4.5]). There exists a constant c such that the `1,∞
norm of an n× q matrix M can be estimated by a linear sketch to within a multiplicative error of
(1+ε) in the turnstile streaming model with O(ε−c · q · log2 n) words (or with O(ε−c · q · log3 n) bits).

We note that Theorem 4.5 in [AKO11] is much more general. Theorem 4.4 is the special case
corresponding to X = `∞ and EX being simply the identity function. α(· · ·) in this case turns out
to be O(log n) leading to the bounds above [And20].

Note that there is a slight distinction between the definitions of Bλ(Ψ) and ‖biasλ(Ψ)‖1,∞, but
these quantities are equal since biasλ is a non-negative matrix (which in turn follows from the fact
that λ is non-negative). We thus get the following corollary.

Corollary 4.5. There exists a constant c such that for every k, q,F and ε > 0, there exists a linear
sketching streaming algorithm running in space O(ε−c · log3 n) that on input a stream σ1, . . . , σ`
representing a Max-CSP(F) instance Ψ = (C1, . . . , Cm;w1, . . . , wm) on n variables, outputs a (1±ε)
approximation to Bλ(Ψ).

We are now ready to describe our algorithm for (γ, β)-Max-CSP(F).

Algorithm 1 A streaming algorithm for (γ, β)-Max-CSP(F)

Input: A stream σ1, . . . , σ` representing an instance Ψ of Max-CSP(F).
1: Let λ ∈ R|F|kq, τN and τY be as given by Proposition 4.2 separating KY

γ (f) and KN
β (f), so λ

is non-negative and τN < τY .
2: Let ε = τY −τN

2(τY +τN) .

3: Using Corollary 4.5 compute a (1± ε) approximation B̃ to Bλ(Ψ), i.e.,

(1− ε)Bλ(Ψ) ≤ B̃ ≤ (1 + ε)Bλ(Ψ) with probability at least 2/3.

4: if B̃ ≤ τN (1 + ε) then
Output: NO.

5: else
Output: YES.

Given Corollary 4.5 it follows that the algorithm above uses space O(log3 n) on instances on n
variables. In what follows we prove that the algorithm correctly solves (γ, β)−Max-CSP(F).

4.1 Analysis of the correctness of Algorithm 1

Lemma 4.6. Algorithm 1 correctly solves (γ, β)-Max-CSP(F), if KY
γ (F) and KN

β (F) are disjoint.

Specifically, for every Ψ, let τY , τN , ε,λ, B̃ be as given in Algorithm 1, we have:

valΨ ≥ γ ⇒ Bλ(Ψ) ≥ τY and B̃ > τN (1 + ε) ,

and valΨ ≤ β ⇒ Bλ(Ψ) ≤ τN and B̃ ≤ τN (1 + ε) ,

provided (1− ε)Bλ(Ψ) ≤ B̃ ≤ (1 + ε)Bλ(Ψ).

30

In the rest of this section, we will prove Lemma 4.6. The key to our analysis is a distribution
D(Ψb) ∈ ∆(F × [q]k) that we associate with every instance Ψ and assignment b ∈ [q]n to the
variables of Ψ. If Ψ is γ-satisfied by assignment b, we prove that µ(D(Ψb)) ∈ KY

γ (F). On the other

hand, if Ψ is not β-satisfiable by any assignment, we prove that for every b, µ(D(Ψb)) ∈ KN
β (F).

Finally we also show that the bias Bλ(Ψ) relates to λ(D(Ψb)) , 〈µ(D(Ψb),λ〉, where the latter
quantity is exactly what needs to be computed (by Proposition 4.2) to distinguish the membership
of µ(D(Ψb)) in KY

γ (F) versus the membership in KN
β (F).

The key step is the definition of these distributions that allows the remaining steps (esp.
Lemma 4.9) to be extended, which we present now.

Given an instance Ψ = (C1, . . . , Cm;w1, . . . , wm) on n variables with Ci = (fi, j(i)) and an
assignment b ∈ [q]n, the distribution D(Ψb) ∈ ∆(F × [q]k) is sampled as follows: Sample i ∈ [m]
with probability wi/W where W =

∑
i∈[m]wi, and output (fi,b |j(i)).

We start by relating the bias Bλ(Ψ) to D(Ψ).

Lemma 4.7. For every vector b ∈ [q]n, we have λ(D(Ψb)) =
∑n

`=1 biasλ(Ψ)`,b`. Consequently we
have Bλ(Ψ) =

∑n
`=1 maxσ∈[q] biasλ(Ψ)`,σ = maxb∈[q]n{λ(D(Ψb))}.

Proof. We start with the first equality. Fix b ∈ [q]n. Given f ∈ F , t ∈ [k], and σ ∈ [q], we have
µ(D(Ψb))f,t,σ = 1

W

∑m
i=1wi · 1[fi = f, bj(i)t = σ]. Hence,

λ(D(Ψb)) =
∑

f∈F ,t∈[k],σ∈[q]

µ(D(Ψb))f,t,σ · λf,t,σ

=
1

W

∑
f∈F ,t∈[k],σ∈[q]

∑
i∈[m]

wi · 1[fi = f, bj(i)t = σ] · λf,t,σ

=
1

W

∑
i∈[m],t∈[k],σ∈[q]:bj(i)t=σ

wi · λfi,t,σ

=

n∑
`=1

1

W

∑
i∈[m],t∈[k]:j(i)t=l

wi · λfi,t,bl

=
n∑
`=1

biasλ(Ψ)`,b` .

For the final equality, observe that

Bλ(Ψ) =

n∑
`=1

max
σ∈[q]

biasλ(Ψ)`,σ = max
b∈[q]n

n∑
`=1

biasλ(Ψ)`,b` = max
b∈[q]n

{λ(D(Ψb))} .

The following lemmas relate valΨ to the properties of D(Ψa).

Lemma 4.8. For every Ψ ∈ Max-CSP(F) and b ∈ [q]n, if valΨ(b) ≥ γ then D(Ψb) ∈ SYγ (F).

31

Proof. Follows from the fact that

E
(f,a)∼D(Ψb)

[C(f, a)(I)] =
1

W

m∑
i=1

wi · fi(b |j(i)) = valΨ(b) ≥ γ,

implying D(Ψb) ∈ SYγ (F).

Lemma 4.9. For every Ψ ∈ Max-CSP(F), if valΨ ≤ β, then for all b ∈ [q]n, we have D(Ψb) ∈
SNβ (F).

Proof. We prove the contrapositive. We assume that ∃b ∈ [q]n such that D(Ψb) /∈
SNβ (F) and show this implies valΨ > β. Then there exists (Pσ ∈ ∆([q]))σ∈[q] such that

E(f,a)∼D(Ψb)

[
Ec,ci,σ∼Pσ [C(f,a)(c)]

]
> β.

We thus have

β < E
(f,a)∼D(Ψb)

[
E

c,ci,σ∼Pσ
[C(f,a)(c)]

]
= E

c,ci,σ∼Pσ

[
E

(f,a)∼D(Ψb)
[C(f,a)(c)]

]

= E
c,ci,σ∼Pσ

[
1

W

m∑
i=1

wi · fi((ct,bj(i)t)t∈[k])

]

=
1

W

m∑
i=1

wi · E
c,ci,σ∼Pσ

[
fi((ct,bj(i)t)t∈[k])

]
=

1

W

m∑
i=1

wi · E
x,x`∼Pb`

[
fi((xj(i)t)t∈[k])

]
= E

x,x`∼Pb`

[
1

W

m∑
i=1

wi · fi((xj(i)t)t∈[k])

]
= E

x,x`∼Pb`
[valΨ(x)]

≤ max
x∈[q]n

valΨ(x)

= valΨ

which contradicts the assumption that valΨ ≤ β. This concludes the proof of the claim and hence
the lemma.

The key step among the equalities above is the one asserting 1
W

∑m
i=1wi ·

Ec,ci,σ∼Pσ

[
fi((ct,bj(i)t)t∈[k])

]
= 1

W

∑m
i=1wi · Ex,x`∼Pb`

[
fi((xj(i)t)t∈[k])

]
which relies crucially

on column symmetry of the distributions used in the definition of SNβ (F) in Definition 2.1.Without
this restriction, or even more stringent ones, this step of the rounding would fail. And the reason
we can’t use a more stringent restriction will become clear in the proof of Theorem 2.16 (and is
specifically used in the proof of Lemma 5.8). We also note that this key equality relies on the
assumption that the variables in a single constraint are distinct. In particular the left hand side
assumes ci,σs are drawn independently whereas the right side allows this only for the distinct
variables x` in a constraint.

32

5 Sketching and Streaming Space Lower Bounds for Max-CSP(F)
In this section, we prove our two lower bound results, modulo a communication complexity lower
bound which is proved in Sections 6 to 8. We start by restating the results to be proved. Recall
(from Definition 2.15) the notion of a padded one-wise pair of distributions: (D1,D2) is a padded
one-wise pair if there exist D0,D′1,D′2 and τ ∈ [0, 1] such that for every i ∈ {1, 2},D′i is one-wise
independent, and Di = τD0 + (1− τ)D′i.

The first theorem we prove is the lower bound in the streaming setting for padded one-wise
pairs of distributions. We restate the theorem below for convenience.

Theorem 2.16 (Streaming lower bound). For every q, k ∈ N, every family of functions F ⊆ {f :
[q]k → {0, 1}} and for every 0 ≤ β < γ ≤ 1, if there exists a padded one-wise pair of distributions
DY ∈ SYγ (F) and DN ∈ SNβ (F) then, for every ε > 0, any streaming algorithm that solves the

(γ − ε, β + ε)-Max-CSP(F) problem requires Ω(
√
n) space. Furthermore, if γ = 1, then (1, β + ε)-

Max-CSP(f) requires Ω(
√
n) space.

We also restate the lower bound against sketching algorithms from Theorem 2.3 as a separate
theorem below.

Theorem 5.1 (Lower bounds against sketching algorithms). For every q, k ∈ N, every family of
functions F ⊆ {f : [q]k → {0, 1}} and for every 0 ≤ β < γ ≤ 1, if KY

γ (F) ∩KN
β (F) 6= ∅, then for

every ε > 0, any sketching algorithm for the (γ − ε, β + ε)-Max-CSP(F) problem requires Ω(
√
n)

space. Furthermore, if γ = 1, then any sketching algorithm for (1, β + ε)-Max-CSP(F) requires
Ω(
√
n) space.

To prove both theorems, we introduce a new communication game we call the Signal Detection
(SD) in Section 5.1. In Theorem 5.4 we state a lower bound on the communication complexity of
this problem. This lower bound is established in Sections 6 to 8. We then use this lower bound to
prove Theorem 2.16 in Section 5.2 and to prove Theorem 5.1 in Section 5.3.

5.1 The Signal Detection Problem and Results

In this section we introduce our communication game and state the lower bound for this game. We
start with the definition of a general one-way communication game.

Definition 5.2 (One-way communication game). Given two distributions Y and N , an instance
of the two-player one-way communication game is a pair (X,Y) either drawn from Y or from N .
Two computationally unbounded parties, Alice and Bob, receive X and Y , respectively. A protocol
Π = (ΠA,ΠB) is a pair of functions with ΠA(X) ∈ {0, 1}c denoting Alice’s message to Bob, and
ΠB(ΠA(X), Y) ∈ {YES,NO} denoting the protocol’s output. We denote this output by Π(X,Y).
The complexity of this protocol is the parameter c specifying the maximum length of Alice’s message
ΠA(X). The advantage of the protocol Π is the quantity∣∣∣∣ Pr

(X,Y)∼Y
[Π(X,Y) = YES]− Pr

(X,Y)∼N
[Π(X,Y) = YES]

∣∣∣∣ .
We now define the specific game we are interested in.

33

Figure 2: The roadmap of our lower bounds. The top two rows describe the results of this section,
while the remaining rows describe notions and results from Sections 6 to 8.

Definition 5.3 (Signal Detection (SD) Problem). Let n, k, q ∈ N, α ∈ (0, 1), where k, q and α are
constants with respect to n, and αn is an integer less than n/k. Let F be a finite set. For a pair DY
and DN of distributions over F× [q]k, we consider the following two-player one-way communication
problem (F ,DY ,DN)-SD.

• The generator samples the following objects:

1. x∗ ∼ Unif([q]n).

2. M ∈ {0, 1}kαn×n is chosen uniformly among all matrices with exactly one 1 in each row
and at most one 1 in each column. We let M = (M1, . . . ,Mαn) where Mi ∈ {0, 1}k×n is
the i-th block of rows of M , where each block has exactly k rows.

3. b = (b(1), . . . ,b(αn)) is sampled from one of the following distributions:

– (YES) each b(i) = (fi, b̃(i)) ∈ F × [q]k is sampled according to DY .

– (NO) each b(i) = (fi, b̃(i)) ∈ F × [q]k is sampled according to DN .

4. z = (z(1), . . . , z(αn)) is determined from M , x∗ and b = (b(1), . . . ,b(αn)) as follows.
Recall that b(i) = (fi, b̃(i)). We let z(i) = (fi, z̃i) ∈ F × {0, 1} where z̃i = 1 iff
Mix

∗ = b̃(i).

• Alice receives x∗ as input.

• Bob receives M and z as input.

In the special case when the set F contains just one element, |F| = 1, we call the corresponding
communication problem (DY ,DN)-SD.

We note that our communication game is slightly different from those in previous works: Specif-
ically the problem studied in [GKK+09, KKS15] is called the Boolean Hidden Matching (BHM)
problem from [GKK+09] and the works [KKSV17, KK19] study a variant called the Implicit Hidden

34

Partition problem. While these problems are similar, they are less expressive than our formulation,
and specifically do not seem to capture the many different all Max-CSP(f) problems.

There are two main differences between the previous settings and our setting. The first difference
is the way to encode the matching matrix M . In all the previous works, each edge (or hyperedge) is
encoded by a single row in M where the corresponding columns are assigned to 1, so that m = αn.
However, it turns out that this encoding hides too much information and hence we do not know
how to reduce the problem to general Max-CSP. We unfold the encoding by using k rows to encode
a single k-hyperedge (leading to the setting of m = kαn in our case). The second difference is that
we allow the masking vector b to be sampled from a more general distribution. This is also for
the purpose of establishing a reduction to general Max-CSP. Due to the above two differences, it
is not clear how to derive communication lower bounds for general DY and DN by reduction from
the previous works.

Theorem 5.4 (Communication lower bound for (F ,DY ,DN)-SD). For every k, q, every finite set
F , every pair of distributions DY ,DN ∈ ∆(F × [q]k) with µ(DY) = µ(DN) there exists α0 > 0
such that for every 0 < α ≤ α0 and δ > 0 there exists τ > 0 such that the following holds: Every
protocol for (F ,DY ,DN)-SD achieving advantage δ on instances of length n requires τ

√
n bits of

communication.

Sections 6 to 8 are devoted to proving Theorem 5.4. The specific proof can be found in Sec-
tion 7.3. In the rest of this section we assume this theorem to prove Theorems 5.1 and 2.16.

5.2 The streaming lower bound

In this section we introduce two streaming problems, the (F ,DY ,DN , T)-streaming-SD problem and
the (F ,DY ,DN , T,D0, τ)-padded-streaming-SD problem in Definitions 5.5 and 5.7, where the new
parameter T is an integer (a large constant) that represents the number of “parts” in a stream.
We then show how to reduce these problems to Max-CSP(F) problems so that membership of
DY ∈ SYγ (F) and DN ∈ SNβ (F) leads to a gap in the value of the instances produced by this
reduction for large T . (See Lemma 5.8.) We then show that the lower bounds on the one-way
communication complexity of (F ,DY ,DN)-SD translate into lower bounds on the space complexity
of (F ,DY ,DN , T)-streaming-SD. (See Lemma 5.12.) Combining these lemmas leads immediately to
a proof of Theorem 2.16 in Section 5.2.4.

5.2.1 The (Padded) Streaming SD Problem

Definition 5.5 ((F ,DY ,DN , T)-streaming-SD). For k, q, T ∈ N, α ∈ (0, 1/k], a finite set F and
distributions DY ,DN over F × [q]k, the streaming problem (F ,DY ,DN , T ;α, k, q)-streaming-SD is
the task of distinguishing, for every n, σ ∼ Ystream,n from σ ∼ Nstream,n where for a given length
parameter n, the distributions Ystream = Ystream,n and Nstream = Nstream,n are defined as follows:

• Let Y be the distribution over instances of length n, i.e., triples (x∗,M, z), from the definition
of (F ,DY ,DN)-SD. For x ∈ [q]n, let Y|x denote the distribution Y conditioned on x∗ =
x. The stream σ ∼ Ystream is sampled as follows: Sample x∗ uniformly from [q]n. Let
(M (1), z(1)), . . . , (M (T), z(T)) be sampled independently according to Y|x∗. Let σ(t) be the
pair (M (t), z(t)) presented as a stream of edges with labels in F × {0, 1}, i.e., z(t) = (fi, z̃i).
Specifically for t ∈ [T] and i ∈ [αn], let σ(t)(i) = (e(t)(i), z(t)(i)) where e(t)(i) is the i-th

35

hyperedge of M (t), i.e., e(t)(i) = (j(t)(k(i − 1) + 1), . . . , j(t)(k(i − 1) + k) and j(t)(`) is the

unique index j such that M
(t)
j,` = 1. Finally we let σ = σ(1) ◦ · · · ◦ σ(T) be the concatenation

of the σ(t)s.

• σ ∼ Nstream is sampled similarly except we now sample (M (1), z(1)), . . . , (M (T), z(T)) indepen-
dently according to N|x∗ where N|x is the distribution N condition on x∗ = x.

Again when α, k, q are clear from context we suppress them and simply refer to the
(F ,DY ,DN , T)-streaming-SD problem.

Remark 5.6. We note that when DN = DF × Unif([q]k) for some DF ∈ ∆(F), then the distri-
butions N|x∗ are identical for all x∗ (and the variables z(t)(i) are distributed as DF × Bern(q−k)
independently for every t, i).

For technical reasons, we need the following padded version of streaming-SD to extend our lower
bound techniques in the streaming setting beyond the setting of one-wise independent distributions.

Definition 5.7 ((F ,DY ,DN , T,D0, τ)-padded-streaming-SD). For k, q, T ∈ N, α ∈ (0, 1/k],
τ ∈ [0, 1), a finite set F , and distributions DY ,DN ,D0 over F × [q]k, the streaming prob-
lem (F ,DY ,DN , T,D0, τ ;α, k, q)-padded-streaming-SD is the task of distinguishing, for every n,
σ ∼ Ypad-stream,n from σ ∼ Npad-stream,n where for a given length parameter n, the distributions
Ypad-stream = Ypad-stream,n and Npad-stream = Npad-stream,n are defined as follows: Sample x∗ from

[q]n uniformly. For each i ∈ [τ
1−τ αnT], uniformly sample a tuple e(0)(i) = (i1, . . . , ik) ∈

([n]
k

)
and (fi,b

(0)(i)) ∼ D0, let σ(0)(i) = (e(0)(i), (fi,1b(0)(i)=x∗|
e(0)(i)

)). Next, sample σ(1), . . . ,σ(T) ac-

cording to the Yes and No distribution of (F ,DY ,DN , T)-streaming-SD respectively. Finally, let
σ = σ(0) ◦ · · · ◦ σ(T) be the concatenation of the σ(t)s.

Again when α, k, q are clear from context we suppress them and simply refer to the
(F ,DY ,DN , T,D0, τ)-padded-streaming-SD problem. Note that when τ = 0, (F ,DY ,DN , T,D0, τ)-
padded-streaming-SD is the same as (F ,DY ,DN , T)-streaming-SD.

5.2.2 CSP value of padded-streaming-SD

There is a natural way to convert instances of padded-streaming-SD to instances of a Max-CSP(F)
problem. In this section we make this conversion explicit and show to use properties of the under-
lying distributions D0,DY ,DN to get bounds on the value of the instances produced.

Note that an instance σ of padded-streaming-SD is simply a sequence (σ(1), . . . , σ(`)) where
each σ(i) = (j(i), z(i)) with j(i) ∈ [n]k and z(i) = (fi, z̃i) ∈ F × {0, 1}. This sequence is already
syntactically very close to the description of a Max-CSP(F) instance. Formally, we define an
instance Ψ(σ) of Max-CSP(F) as follows. For each σi = (j(i), z(i)) with z(i) = (fi, z̃i), if z̃i = 1 we
add the constraint fi(x|j(i)) to Ψ(σ); otherwise, we do not add any constraint to the formula.

In what follows we show that ifDY ∈ SYγ then for all sufficiently large constant T , and sufficiently
large n, if we draw σ ∼ Ypad-stream,n, then with high probability, Ψ(σ) has value at least γ − o(1).
Conversely if DN ∈ SNβ , then for all sufficiently large n, if we draw σ ∼ Npad-stream,n, then with
high probability Ψ(σ) has value at most β + o(1).

Lemma 5.8 (CSP value of padded-streaming-SD). For every q, k ∈ N, F ⊆ {f : [q]k → {0, 1}},
0 ≤ β < γ ≤ 1, ε > 0, τ = [0, 1), and distributions DY ,DN ,D0 ∈ ∆({−1, 1}k) there exists α0 such
that for every α ∈ (0, α0] the following hold for every sufficiently large T :

36

1. If τD0 +(1−τ)DY ∈ SYγ , then for every sufficiently large n, the (F ,DY ,DN , T,D0, τ)-padded-
streaming-SD YES instance σ ∼ Ypad-stream,n satisfies Pr[valΨ(σ) < (γ − ε)] ≤ exp(−n).10

2. If τD0+(1−τ)DN ∈ SNβ , then for every sufficiently large n, the (F ,DY ,DN , T,D0, τ)-padded-
streaming-SD NO instance σ ∼ Npad-stream,n satisfies Pr[valΨ(σ) > (β + ε)] ≤ exp(−n).

Furthermore, if γ = 1 then Prσ∼Ypad-stream,n
[
valΨ(σ) = 1

]
= 1.

Proof. We assume ε ≤ 1/2 (and if not we prove the lemma for ε′ = 1
2 and this implies the lemma

also for ε). We prove the lemma for α0 = ε
20kqk

and T0 = 1000/(ε2α). In what follows we set

η = ε
20kqk

.

In what follows we let N0 = ταnT
1−τ , Nt = αn for t ∈ [T] and N = N0 + TN1. Recall that an

instance of (F ,DY ,DN , T,D0, τ)-padded-streaming-SD consists of a stream σ = σ(0) ◦ · · · ◦ σ(T)

where σ(t) = (σ(t)(i)|i ∈ [Nt]) and σ(t)(i) = (e(t)(i), (f
(t)
i , z̃(t)(i)) where e(t)(i) denotes a k-uniform

hyperedge on [n] and f (t)(i) ∈ F and z̃(t)(i) ∈ {0, 1}. Finally recall that σ(t) ∼ Y|x∗ in the YES
case and σ(t) ∼ N|x∗ in the NO case independently for each t, where x∗ ∼ Unif([q]n) is common
across all t. We use I = ({0}× [T0])∪([T]× [T1]) to denote the set of legal pairs of indices (t, i). We
let m denote the total number of constraints in Ψ(σ) with mt denoting the number of constraints
from σ(t) for 0 ≤ t ≤ T . (Note that m and the mt’s are random variables.)

For η > 0, define x∗ to be η-good if for every σ ∈ [q], we have |{i ∈ [n] | x∗i = σ}| ∈ [(1 − η) ·
n
q , (1 + η) · nq]. A straightforward application of Chernoff bounds shows that for every η > 0 the
vector x∗ is η-good with probability 1− exp(−n).

Below we condition on a good x∗ and prove the following: (1) We show the expected value of
m is roughly q−k · N and furthermore m is sharply concentrated around its expectation. (2) In
the YES case we prove that the expected number of constraints satisfied by x∗ is roughly at least
γ · q−k ·N and again this variable is sharply concentrated around its expectation. (3) In the NO
case we prove that the expected number of constraints satisfied by any assignment is roughly at
most β ·q−k ·N and again this variable is sharply concentrated around its expectation. We note that
the sharp concentration part is essentially the same in all cases and it is bounding the expectations
that is different in each case. That being said the analysis of the NO case does require sharper
concentration since we need to take a union bound over all possible assignments.

Bounding the number of constraints. We start with step (1). Fix an η-good x∗. Note that
mt =

∑
i∈[Nt]

z̃(t)(i) for every 0 ≤ t ≤ T . We divide the analysis into two subparts. In step (1a)

we bound µ , E[z̃(t)(i)] (in particular this expectation does not depend on i or t). Note that
m =

∑T
t=0

∑
i∈[Nt]

z̃(t)(i) and so bounding µ bounds E[m] = µ ·N . Then in step (1b) we show that
m is concentrated around its expected value.

For step (1a), let pσ denote the fraction of occurrences of the letter σ in x∗, i.e., pσ = 1
n |{i ∈

[n]|x∗i = σ}|. Note that given a sequence b̃(t)(i) = a ∈ [q]k, the probability that z̃(t)(i) = 1
over a random choice of e(t)(i) depends on a as well as the pσ’s. (Specifically this probability
is
∏k
j=1 paj ± O(k2/n), where the additive correction term accounts for the sampling without

replacement in the choice of e(t)(i).) However if the vector x∗ is good, this dependence has little
quantitative effect. In particular, if x∗ is η-good, we have µ ∈ (1

q ± η)k ±O(k2/n) and thus we get

10In this lemma and proof we use exp(−n) to denote functions of the form c−n for some c > 1 that does not depend
on n or T , but may depend on all other parameters including q, k,DY ,DN ,D0, β, γ, ε.

37

q−k − 2kη ≤ µ ≤ q−k + 2kη provided η ≤ 1/(4kq) and n is sufficiently large. This simplifies further
to µ ∈ (1± ε

10)q−k using η ≤ q−kε/(20k). Summing up over (t, i) ∈ I we get E[m] ∈ (1± ε
10)q−kN .

We now turn to step (1b), i.e., proving that m is concentrated around its expectation. (In this
part we work a little harder than necessary to prove that the failure probability is exp(−nT) rather
than exp(−n). This is not necessary, but will be needed for the similar step in step (3).) Let Z̃
denote the set of random variables {z̃(t)(i)|(t, i) ∈ I} and for (t, i) ∈ I, let Z̃−(t,i) = Z̃ \ {z̃(t)(i)}.
We first show that for every (t, i) ∈ I we have E[z̃(t)(i) | Z̃−(t,i)] ∈ (1± ε

10)E[z̃(t)(i)]. Let Bt denote

the t-th block of variables, i.e., Bt = {z̃(t)(i)|i ∈ [Nt]}. Now note that the only dependence among
the z̃(t)(i)’s is among the variables within a block while the blocks themselves are independent.
Furthermore the variables in the block B0 are independent of each other. Thus for i ∈ [N0] we have

E[z̃(0)(i)|Z−(0,i)] = E[z̃(0)(i)]. For t > 0, we have the variables from block Bt may depend on each
other due to the constraint that the underlying set of hyperedges are vertex disjoint. Fix (t, i) ∈ I
with t > 0 and let S be the set of variables touched by the hyperedges from block Bt, excluding
e(t)(i). Now consider picking a hyperedge uniformly from [n] and let ψ be the probability that this
hyperedge touches S. We clearly have ψ ≤ k|S|/n ≤ kα. On the other hand, ψ also upper bounds
the difference between E[z̃(t)(i) | Z̃−(t,i)] and E[z̃(t)(i)], so we have:

|E[z̃(t)(i) | Z̃−(t,i)]− E[z̃(t)(i)]| ≤ ψ ≤ kα ≤ εq−k

20
≤ ε

10
E[z̃(t)(i)].

Applying Lemma 3.6 to the variables of Z̃ (arranged in some arbitrary order) we have Pr[m 6∈
((q−k · (1± ε/10)3] ≤ exp(−nT). Using (1± ε/10)3 ⊆ (1± ε/2) for ε < 1 we get:

Pr[m 6∈ (1± ε/2) · q−kN] ≤ exp(−nT) (5.9)

Lower bounding the number of satisfied constraints in the YES case. Let Z(t)(i) be the
indicator variable for the event that the i-th element of σ(t) produces a constraint that is satisfied
by x∗, i.e., Z(t)(i) = z̃(t)(i) · fi(x∗|j(t)(i)). Note that the number of constraints satisfied by x∗ is∑

(t,i)∈I Z
(t)(i). Note further that Z(0)(i)’s are identically distributed across i ∈ [N0], and Z(t)(i) are

also identically distributed across t ∈ [T] and i ∈ [N0]. By construction (see Definition 5.7) we have

E[Z(0)(i)] = E(f,b)∼D0
[f(b) · Ej[1(x∗|j = b)]]. By the η-goodness of x∗, we have that for every b ∈

[q]k, Ej[1(x∗|j = b)] ≥ (1− ε
10)q−k. Thus we get E[Z(0)(i)] ≥ (1− ε

10)q−k ·E(f,b)∼D0
[f(b)]. Similarly

for t > 0 we have E[Z(t)(i)] = E(f,b)∼DY [f(b) · Ej[1(x∗|j = b)]] ≥ (1 − ε
10)q−k · E(f,b)∼DY [f(b)].

Using linearity of expectations we now get

E

 ∑
(t,i)∈I

Z(t)(i)

 = N0 E[Z(0)(1)] + TNT E[Z(1)(1)]

= N(τ E[Z(0)(1)] + (1− τ)E[Z(1)(1)])

≥
(

1− ε

10

)
q−kN · (τ E

(f,b)∼D0

[f(b)] + (1− τ) E
(f,b)∼DY

[f(b)])

=
(

1− ε

10

)
q−kN · E

(f,b)∼τD0+(1−τ)DY
[f(b)]

≥ γ ·
(

1− ε

10

)
q−kN,

38

where the final inequality uses τD0 + (1 − τ)DY ∈ SYγ (F). The concentration can be analyzed

exactly as in step (1b). In particular if we let Z denote all variables Z(t)(i)’s, then we have

E[Z(t)(i)|Z \ {Z(t)(i)}] ≥ E[Z(t)(i)]− ε
10q
−k.

Pr

 ∑
(t,i)∈I

Z(t)(i) ≤ (γ − 3ε

10
) · q−kN ≤ γ · (1− ε

10
)q−kN − ε

5
q−kN

 ≤ exp(−nT). (5.10)

Upper bounding the number of satisfiable constraints in the NO case. Fix an assignment
ν ∈ [q]k and consider the expected number of constraints satisfied by ν. (We will later take a union
bound over all ν.) Let W (t)(i) be the indicator variable for the event that the i-th element of σ(t)

produces a constraint that is satisfied by ν, i.e., W (t)(i) = z̃(t)(i) · fi(ν|j(t)(i)). Note once again

that W (0)(i)’s are identically distributed across i and W (t)(i) are identical across t > 0 and i. Let
µ0 = E[W (0)(1)] and µN = E[W (1)(1)]. Note that the expected number of satisfied constraints is

E[
∑

(t,i)∈IW
(t)(i)] = N · (τµ0 + (1− τ)µN), so we bound µ0 and µN . By construction we have

µ0 = E
(f,b)∼D0,j

[f(ν|j) · 1(x∗|j = b)] = E
(f,b)∼D0,j

[1(x∗|j = b)] · E
(f,b)∼D0,j

[f(ν|j) | 1(x∗|j = b)]

where j is a uniform random sequence of k distinct elements of [n]. As argued earlier for every b
we have Ej[1(x∗|j = b)] ≤ (1 + ε

10)q−k for η-good x∗. So we turn to bounding the second term.
For σ, ρ ∈ [q] let Pσ(ρ) be the fraction of coordinates in ν that take the value ρ among those

coordinates where x∗ is σ, i.e., Pσ(ρ) =
|{i∈[n]|νi=ρ & x∗i=σ}|
|{i∈[n]|x∗i=σ}| . Note that for every σ, Pσ is a

probability distribution in ∆(q). Furthermore, conditioning on x∗|j(`) = b(`), the distribution
of ν|j(`) is given by Pb(`). Thus the joint distribution of ν|j is O(k2/n)-close in total variation
distance to Pb(1) × · · · × Pb(k). We thus have

E
(f,b)∼D0,j

[f(ν|j) | 1(x∗|j = b)] ≤ E
(f,a)∼D0

[E
c,c`∼Pa`

[f(c)]] +O(k2/n)

= E
(f,a)∼D0

[E
d,d`,σ∼Pσ

[C(f,a)(d)]] +O(k2/n),

where c ∈ [q]k and d ∈ [q]k×q. Note that the final expression is simply a change of notation applied
to the middle expression above to make the expression syntactically closer to the notation in the
definition of SNβ (F). Combining with the bound on Ej[1(x∗|j = b)] above we get

µ0 ≤ (1 +
ε

10
)q−k · (E

(f,a)∼D0

[E
d,d`,σ∼Pσ

[C(f,a)(d)]]) +O(k/n).

Similarly we get

µN ≤ (1 +
ε

10
)q−k · (E

(f,a)∼DN
[E
d,d`,σ∼Pσ

[C(f,a)(d)]]) +O(k/n).

Now combining the two conditions above we get

(τµ0 + (1− τ)µN) ≤ (1 +
ε

10
)q−k ·

(
E

(f,a)∼τD0+(1−τ)DN
[E
d,d`,σ∼Pσ

[C(f,a)(d)]]

)
+O(k2/n)

≤ β · (1 +
ε

10
)q−k +O(k2/n)

≤ β · (1 +
ε

9
)q−k,

39

where the final inequality uses the fact that n is sufficiently large. We thus conclude the the
expected number of constraints satisfied by ν is at most β · (1 + ε

9)q−kN . Concentration around

the mean is now similar to before. In particular if we let W denote the set of all W (t)(i)’s then
we still have If we E[W (t)(i)|W \ {W (t)(i)}] ≤ E[W (t)(i)] + kα ≤ E[W (t)(i)] + ε

10q
−kN , and so by

Lemma 3.6 we get

Pr

 ∑
(t,i)∈I

W (t)(i) ≥ (β +
2ε

9
) · q−kN ≥ β(1 + ε/9)q−kN +

ε

9
q−kN

 ≤ exp(−nT).

In particular by using T sufficiently large, we get that the probability that more than (β+ 2ε
9)·q−kN

constraints are satisfied by ν is at most c−n for some c > q. So by a union bound over all possible
ν’s we get the following:

Pr

[
∃ν ∈ [q]k s.t. ν satisfies more than (β +

2ε

9
) · q−kN constraints

]
≤ exp(−nT). (5.11)

Putting it together. Putting the above together we get that in the YES case with probability
1 − exp(−n) we have that x∗ is good and the number of constraints is at most (1 + ε

2)q−kN (by
Eq. (5.9)) while the number of satisfied constraints is at least (γ − 3ε

10) · q−kN (by Eq. (5.10)).
Taking ratios we get

valΨ(σ) ≥
γ − 3ε

10

1 + ε
2

≥ γ − ε.

Similarly in the NO case we have with probability at least 1−exp(−n) we have that x∗ is good,
and the number of constraints is at least (1− ε

2)q−kN (by Eq. (5.9)) while the number of satisfied
constraints is at most (β + 2ε

9) · q−kN (by Eq. (5.11)). Taking ratios we get

valΨ(σ) ≤
β + 2ε

9

1− ε
2

≤ β + ε.

This proves the main part of the lemma.
The furthermore part follows from the fact that if γ = 1 then every constraint in the YES case

is satisfied by x∗.

5.2.3 Reduction from one-way (DY ,DN)-SD to padded-streaming-SD

We start by reducing SD to padded-streaming-SD in the special case where DN is “uniform on the
variables” in the sense defined next. We say a distribution D ∈ ∆(D × [q]k) is uniform on the
variables if there exists a distribution Df ∈ ∆(F) such that D = Df × Unif([q]k). The following
lemma implies that in this special case padded-streaming-SD is hard. Since this holds for all one-
wise independent distributions DY , by applying the lemma twice we get that padded-streaming-SD
is hard for all one-wsie independent DY and DN .

Lemma 5.12. Let F be a finite set, T, q, k ∈ N, α ∈ (0, α0(k)], τ ∈ [0, 1), and DY ,DN ,D0 ∈
∆(F×[q]k) with DY being one-wise independent and DN = Df×Unif([q]k) for some Df ∈ ∆(F) and
µ(DY) = µ(DN). Suppose there is a streaming algorithm ALG that solves (F ,DY ,DN , T,D0, τ)-
padded-streaming-SD on instances of length n with advantage ∆ and space s, then there is a one-
way protocol for (F ,DY ,DN)-SD on instances of length n using at most sT bits of communication
achieving advantage at least ∆/T .

40

The proof of Lemma 5.12 is based on a hybrid argument (e.g., [KKS15, Lemma 6.3]). We
provide a proof here based on the proof of [CGV20, Lemma 4.11].

Proof of Lemma 5.12. Note that since we are interested in distributional advantage, we can fix the
randomness in ALG so that it becomes a deterministic algorithm. By an averaging argument the
randomness can be chosen to ensure the advantage does not decrease. Let Γ denote the evolution
of function of ALG as it processes a block of edges. That is, if the algorithm is in state s and
receives a stream σ then it ends in state Γ(s,σ). Let s0 denote its initial state.

We consider the following collection of (jointly distributed) random variables: Let x∗ ∼
Unif({−1, 1}n). Denote Y = Ypad-stream,n and N = Npad-stream,n. Let (σ

(0)
Y ,σ

(1)
Y , . . . ,σ

(T)
Y) ∼ Y|x∗ .

Similarly, let (σ
(0)
N ,σ

(1)
N , . . . ,σ

(T)
N) ∼ N|x∗ . Recall by Remark 5.6 that since DN = Df ×Unif([q]k),

we have N|x∗ is independent of x∗, a feature that will be crucial to this proof.

Let SYt denote the state of ALG after processing σ
(0)
Y , . . . ,σ

(t)
Y , i.e., SY0 = Γ(s0,σ

(0)
Y) and

SYt = Γ(SYt−1,σ
(t)
Y) where s0 is the fixed initial state (recall that ALG is deterministic). Similarly

let SNt denote the state of ALG after processing σ
(0)
N , . . . ,σ

(t)
N . Note that since σ

(0)
Y has the same

distribution (conditioned on the same x∗) as σ
(0)
N by definition, we have ‖SY0 − SN0 ‖tvd = 0.

Let SYa:b denote the sequence of states (SYa , . . . , S
Y
b) and similarly for SNa:b. Now let ∆t =

‖SY0:t − SN0:t‖tvd. Observe that ∆0 = 0 while ∆T ≥ ∆. (The latter is based on the fact that ALG
distinguishes the two distributions with advantage ∆.) Thus ∆ ≤ ∆T −∆0 =

∑T−1
t=0 (∆t+1 −∆t)

and so there exists t∗ ∈ {0, 1, . . . , T − 1} such that

∆t∗+1 −∆t∗ = ‖SY0:t∗+1 − SN0:t∗+1‖tvd − ‖SY0:t∗ − SN0:t∗‖tvd ≥
∆

T
.

Now consider the random variable S̃ = Γ(SYt∗ ,σ
(t∗+1)
N) (so the previous state is from the YES

distribution and the input is from the NO distribution). We claim below that ‖SYt∗+1 − S̃‖tvd =

EA∼dSY0:t∗
[‖SYt∗+1|SY

0:t∗=A − S̃|SY
0:t∗=A‖tvd] ≥ ∆t∗+1 −∆t∗ . Once we have the claim, we show how to

get a space T · s protocol for (F ,DY ,Dn)-SD with advantage ∆t∗+1 −∆t∗ concluding the proof of
the lemma.

Claim 5.13. ‖SYt∗+1 − S̃‖tvd ≥ ∆t∗+1 −∆t∗.

Proof. First, by triangle inequality for the total variation distance, we have

‖SYt∗+1 − S̃‖tvd ≥ ‖SYt∗+1 − SNt∗+1‖tvd − ‖S̃ − SNt∗+1‖tvd .

Recall that S̃ = Γ(SYt∗ ,σ
(t∗+1)
N) and SNt∗+1 = Γ(SNt∗ ,σ

(t∗+1)
N). Also, note that σ

(t∗+1)
N follows the

product distribution (Df × Bern(q−k))αn and in particular is independent of SYt∗ and SNt∗ . (This is
where we rely crucially on the property DN = Df × Unif([q]k).) Furthermore Γ is a deterministic
function, and so we can apply the data processing inequality (Item (2) of Proposition 3.5 with

X = SYt∗ , Y = SNt∗ , W = σ
(t∗+1)
N , and f = Γ) to conclude

‖S̃ − SNt∗+1‖tvd = ‖Γ(SYt∗ ,σ
(t∗+1)
N)− Γ(SNt∗ ,σ

(t∗+1)
N)‖tvd ≤ ‖SYt∗ − SNt∗ ‖tvd.

Combining the two inequalities above we get

41

‖SYt∗+1 − S̃‖tvd ≥ ‖SYt∗+1 − SNt∗+1‖tvd − ‖SYt∗ − SNt∗ ‖tvd = ∆t∗+1 −∆t∗

as desired.

We now show how a protocol can be designed for (F ,DY ,DN)-SD that achieves advantage
at least θ = EA∼dSY0:t∗

[‖SYt∗+1|S0:t∗=A − S̃|S0:t∗=A‖tvd] ≥ ∆t∗+1 − ∆t∗ concluding the proof of the

lemma. The protocol uses the distinguisher TA : {0, 1}s → {0, 1} such that EA,SY
t∗+1

,S̃ [TA(SYt∗+1)]−

E[TA(S̃)] ≥ θ which is guaranteed to exist by the definition of total variation distance.
Our protocol works as follows: Let Alice receive input x∗ and Bob receive inputs (M, z) sampled

from either YSD|x∗ orNSD|x∗ where YSD andNSD are the Yes and No distribution of (F ,DY ,DN)-SD
respectively.

1. Alice samples (σ(0),σ(1), . . . ,σ(T)) ∼ Y|x∗ and computes A = SY0:t∗ ∈ {0, 1}(t
∗+1)s and sends

A to Bob.

2. Bob extracts SYt∗ from A, computes Ŝ = Γ(SYt∗ ,σ), where σ is the encoding of (M, z) as a
stream, and outputs YES if TA(Ŝ) = 1 and NO otherwise.

Note that if (M, z) ∼ YSD|x∗ then Ŝ ∼d SYt∗+1|SY
0:t∗=A while if (M, z) ∼ NSD|x∗ then Ŝ ∼ S̃SY

0:t∗=A.

It follows that the advantage of the protocol above exactly equals EA[TA(SYt+1)]−EA[TA(S̃)] ≥ θ ≥
∆t∗+1 −∆t∗ ≥ ∆/T . This concludes the proof of the lemma.

By combining Lemma 5.12 with Theorem 5.4, we immediately have the following consequence.

Lemma 5.14. For k ∈ N let α0(k) be as given by Theorem 5.4. Let T ∈ N, α ∈ (0, α0(k)],
τ ∈ [0, 1), and D0,DY ,DN ,∈ ∆(F× [q]k) where DY and DN are one-wise independent distributions
with µ(DY) = µ(DN). Then every streaming algorithm ALG solving (F ,DY ,DN , T,D0, τ)-padded-
streaming-SD in the streaming setting with advantage 1/8 for all lengths n uses space Ω(

√
n).

Proof. Let ALG be an algorithm using space s solving (F ,DY ,DN , T,D0, τ)-padded-streaming-
SD with advantage 1/8. For g ∈ F , let pg = Pr(f,σ)∼DY [f = g] and let Df be the dis-

tribution given by Df (g) = pg. Let DM = Df × Unif([q]k). Note that DM is uniform on
the variables and satisfies µ(DM) = µ(DY) = µ(DN). Then by the triangle inequality ALG
solves either the (F ,DY ,DM , T,D0, τ)-padded-streaming-SD with advantage 1/16 or it solves the
(F ,DN ,DM , T,D0, τ)-padded-streaming-SD with advantage 1/16. Assume without loss of generality
it is the former. Then by Lemma 5.12, there exists a one-way protocol for (F ,DY ,DM)-SD using
at most sT bits of communication with advantage at least 1/(16T). Applying Theorem 5.4 with
δ = 1/(16T) > 0, we now get that s = Ω(

√
n).

5.2.4 Proof of the streaming lower bound

We are now ready to prove Theorem 2.16.

42

Proof of Theorem 2.16. We combine Theorem 5.4, Lemma 5.14 and Lemma 5.8. So in particular
we set our parameters α and T so that the conditions of these statements are satisfied. Specifically k

and ε > 0, let α
(1)
0 be the constant from Theorem 5.4 and let α

(2)
0 be the constant from Lemma 5.8.

Let α0 = min{α(1)
0 , α

(2)
0 }, Given α ∈ (0, α0) let T0 be the constant from Lemma 5.8 and let T = T0.

(Note that these choices allow for both Theorem 5.4 and Lemma 5.8 to hold.) Suppose there exists
a streaming algorithm ALG that solves (γ − ε, β + ε)-Max-CSP(F). Let τ ∈ [0, 1) and DY ,DN ,D0

be distributions such that (i) DY and DN are one-wise independent, (ii) τD0 +(1− τ)DY ∈ SYγ (F),

and (iii) τD0 + (1 − τ)DN ∈ SNβ (F). Let n be sufficiently large and let Ystream,n and Nstream,n

denote the distributions of YES and NO instances of (F ,DY ,DN , T,D0, τ)-padded-streaming-SD
of length n. Since α and T satisfy the conditions of Lemma 5.8, we have for every sufficiently large
n

Pr
σ∼Ystream,n

[
valΨ(σ) < (γ − ε)

]
= o(1) and Pr

σ∼Nstream,n

[
valΨ(σ) > (β + ε)

]
= o(1) .

We conclude that ALG can distinguish YES instances of Max-CSP(F) from NO instances
with advantage at least 1/4 − o(1) ≥ 1/8. However, since DY ,DN and α satisfy the conditions
of Lemma 5.14 (in particular DY and DN are one-wise independent and α ∈ (0, α0(k))) such an
algorithm requires space at least Ω(

√
n). Thus, we conclude that any streaming algorithm that

solves (γ − ε, β + ε)-Max-CSP(F) requires Ω(
√
n) space.

Finally, note that if γ = 1 then in Lemma 5.8, we have valΨ = 1 with probability one. Repeating
the above reasoning with this information, shows that (1, β + ε) −Max-CSP(F) requires Ω(

√
n)-

space.

5.3 The lower bound against sketching algorithms

In the absence of a reduction from SD to streaming-SD for general DY and DN , we turn to other
means of using the hardness of SD. In particular, we use lower bounds on the communication com-
plexity of a T -player communication game in the simultaneous communication setting — one which
is significantly easier to obtain lower bounds for than the one-way setting. Below we explain their
setup and show how our problems fit in their general class of problems. We then describe a family of
T -player simultaneous communication games, which we call (F ,DY ,DN , T)-simultaneous-SD, aris-
ing from applying their framework to our problems. (See Definition 5.15.) We then show a simple
reduction from (F ,DY ,DN)-SD to (F ,DY ,DN , T)-simultaneous-SD. Combining this reduction with
our lower bounds on SD and the reduction from simultaneous-SD to streaming complexity leads to
the proof of Theorem 5.1.

5.3.1 T -Player Simultaneous Version of SD

In this section, we consider the complexity of T -player number-in-hand simultaneous message
passing communication games (abbrev. T -player simultaneous communication games). Such
games are described by two distributions Y and N . An instance of the game is a T -tuple
(X(1), . . . , X(T)) either drawn from Y or from N and X(t) is given as input to the t-th
player. A (simultaneous communication) protocol Π = (Π(1), . . . ,Π(T),Πref) is a (T + 1)-tuple
of functions with Π(t)(X(t)) ∈ {0, 1}c denoting the t-th player’s message to the referee, and
Πref(Π

(1)(X(1)), . . . ,Π(T)(X(T))) ∈ {YES,NO} denoting the protocol’s output. We denote this
output by Π(X(1), . . . , X(T)). The complexity of this protocol is the parameter c specifying the

43

maximum length of Π(1)(X(1)), . . . ,Π(T)(X(T)) (maximized over all X). The advantage of the
protocol Π is the quantity∣∣∣∣ Pr

(X(1),...,X(T))∼Y
[Π(X(1), . . . , X(T)) = YES]− Pr

(X(1),...,X(T))∼N
[Π(X(1), . . . , X(T)) = YES]

∣∣∣∣ .
Definition 5.15 ((F ,DY ,DN , T)-simultaneous-SD). For k, T ∈ N, α ∈ (0, 1/k], a finite set
F , distributions DY ,DN over F × [q]k, the (F ,DY ,DN , T)-simultaneous-SD is a T -player com-
munication game given by a family of instances (Ysimul,n,Nsimul,n)n∈N,n≥1/α where for a given
n, Y = Ysimul,n and N = Nsimul,n are as follows: Both Y and N are supported on tuples
(x∗,M (1), . . . ,M (T), z(1), . . . , z(T)) where x∗ ∈ [q]n, M (t) ∈ {0, 1}kαn×n, and z(t) ∈ (F × {0, 1})kαn,
where the pair (M (t), z(t)) are the t-th player’s inputs for all t ∈ [T]. We now specify the distribu-
tions of x∗, M (t), and z(t) in Y and N :

• In both Y and N , x∗ is distributed uniformly over [q]n.

• In both Y and N the matrix M (t) ∈ {0, 1}αkn×n is chosen uniformly (and independently of
x∗) among matrices with exactly one 1 per row and at most one 1 per column.

• The vector z(t) is determined from M (t) and x∗ as follows. Sample a random vector b(t) ∈ (F×
[q]k)αkn whose distribution differs in Y and N . Specifically, let b(t) = (b(t)(1), . . . ,b(t)(αn))
be sampled from one of the following distributions (independent of x∗ and M):

– Y: Each b(t)(i) = (fi, b̃(i)) ∈ F × [q]k is sampled independently according to DY .

– N : Each b(t)(i) = (fi, b̃(i)) ∈ F × [q]k is sampled independently according to DN .

We now set z(t) = (fi, z̃i) where z̃i = 1 iff = (M (t)x∗) = b̃(t)(i).

If F ⊆ {f : [q]k → {0, 1}}, then given an instance σ = (x∗,M (1), . . . ,M (T), z(1), . . . , z(T)), we will
let Ψ(σ) represent the associated instance of Max-CSP(F) as described in Section 5.2.2.

Note that the instance Ψ(σ) obtained in the YES and NO cases of (F ,DY ,DN , T)-
simultaneous-SD are distributed exactly according to instances derived in the YES and NO cases
of (F ,DY ,DN , T,D0, τ = 0)-padded-streaming-SD and thus Lemma 5.8 can still be applied to con-
clude that YES instances usually satisfy valΨ(σ) ≥ γ − o(1) and NO instances usually satisfy
valΨ(σ) ≤ β − o(1). We will use this property when proving Theorem 5.1.

We start by showing the simultaneous-SD problems above do not have low-communication pro-
tocols when the marginals of DY and DN match.

Lemma 5.16. Let F be a finite set, k, q, T ∈ N, DY ,DN ∈ ∆(F × [q]k), and let α ∈ (0, 1/k].
Suppose there is a protocol Π that solves (F ,DY ,DN , T)-simultaneous-SD on instances of length n
with advantage ∆ and space s, then there is a one-way protocol for (F ,DY ,DN)-SD on instances
of length n using at most s(T − 1) bits of communication and achieving advantage at least ∆/T .

Proof. Let us first fix the randomness in Π so that it becomes a deterministic protocol. Note that
by an averaging argument the advantage of Π does not decrease. Recall that Y and N are Yes and
No input distribution of (F ,DY ,DN , T)-simultaneous-SD and we have

Pr
X∼Y

[Π(X) = YES]− Pr
X∼N

[Π(X) = YES] ≥ ∆ .

44

Now, we define the following distributions D0, . . . ,DT . Let D0 = Y and DT = N . For each
t ∈ [T − 1], we define Dt to be the distribution of input instances of (F ,DY ,DN , T)-simultaneous-
SD by sampling b(t′)(i) independently according to DY (resp. DN) for all t′ ≤ t (resp. t′ > t) and
i (see Definition 5.15 to recall the definition). Next, for each t ∈ [T], let

∆t = Pr
X∼Dt

[Π(X) = YES]− Pr
X∼Dt−1

[Π(X) = YES] .

Observe that
∑

t∈[T] ∆t = ∆ and hence there exists t∗ ∈ [T] such that ∆t∗ ≥ ∆/T .

Now, we describe a protocol Π′ for (F ,DY ,DN)-SD as follows. On input (x∗,M, z), Alice re-
ceives x∗ and Bob receives (M, z). Alice first samples matrices M (1), . . . ,M (t∗−1),M (t∗+1), . . . ,M (T)

as the second item in Definition 5.15. Next, Alice samples b(t′)(i) = (fi, b̃
(t′)(i)) according

to DY (resp. DN) for all t′ < t∗ (resp. t′ > t∗) and i ∈ [αnT] and sets z(t′)(i) = (fi, z̃i)
as the third item in Definition 5.15. Note that this is doable for Alice because she pos-
sesses x∗. Finally, Alice sends {Π(t′)(M (t′), z(t′))}t′∈[T]\{t∗} to Bob. After receiving Alice’s mes-

sage (X(1), . . . , X(t∗−1), X(t∗+1), . . . , X(T)), Bob computes Π(t∗)(M, z) and outputs Π′(M, z) =
Πref(X

(1), . . . , X(t∗−1),Π(t∗)(M, z), X(t∗+1), . . . , X(T)).
It is clear from the construction that the protocol Π′ uses at most s(T − 1)

bits of communication. To see Π′ has advantage at least ∆/T , note that if
(x∗,M, z) is sampled from the Yes distribution YSD of (F ,DY ,DN)-SD, then
((M (1), z(1)), . . . , (M (t∗−1), z(t∗−1)), (M, z), (M (t∗+1), z(t∗+1)), . . . , (M (T), z(T))) follows the dis-
tribution Dt∗ . Similarly, if (x∗,M, z) is sampled from the No distribution NSD of (F ,DY ,DN)-SD,
then ((M (1), z(1)), . . . , (M (t∗−1), z(t∗−1)), (M, z), (M (t∗+1), z(t∗+1)), . . . , (M (T), z(T))) follows the
distribution Dt∗−1. Thus, the advantage of Π′ is at least

Pr
(M,z)∼YSD,Π′

[Π′(M, z) = YES]− Pr
(M,z)∼NSD,Π′

[Π′(M, z) = YES]

= Pr
X∼Dt∗

[Π(X) = YES]− Pr
X∼Dt∗−1

[Π(X) = YES] = ∆t∗ ≥ ∆/T .

We conclude that there is a one-way protocol for (F ,DY ,DN)-SD using at most s(T − 1) bits of
communication achieving advantage at least ∆/T .

As an immediate consequence of Theorem 5.4 and Lemma 5.16 we get that (F ,DY ,DN , T)-
simultaneous-SD requires Ω(

√
n) bits of communication when the marginals of DY and DN match.

Lemma 5.17. For every k, q ∈ N, there exists α0 > 0 such that for every α ∈ (0, α0) and δ > 0
the following holds: For every finite set F and T ∈ N and every pair of distributions DY ,DN ∈
∆(F × [q]k) with µ(DY) = µ(DN), there exists τ > 0 and n0 such that for every n ≥ n0, every
protocol for (F ,DY ,DN , T)-simultaneous-SD achieving advantage δ on instances of length n requires
τ
√
n bits of communication.

We are now ready to prove Theorem 5.1.

5.3.2 Proof of Theorem 5.1

Proof of Theorem 5.1. The proof is a straightforward combination of Lemma 5.8 and Lemma 5.17

and so we pick parameters so that all these are applicable. Given ε and k, let α
(1)
0 be as given by

45

Lemma 5.8 and let α
(2)
0 be as given by Lemma 5.17. Let α = min{α(1)

0 , α
(2)
0 }. Given this choice of

α, let T0 be as given by Lemma 5.8. We set T = T0 below. Let n be sufficiently large.
Throughout this proof we will be considering integer weighted instances of Max-CSP(F) on n

variables with constraints. Note that such an instance Ψ can be viewed as a vector in ZN where
N = O(|F|×nk) represents the number of possibly distinct constraints applications on n variables.
Let Γ = {Ψ|valΨ ≥ γ − ε}. Let B = {Ψ|valΨ ≤ β + ε}. Suppose there exists a sketching algorithm
ALG1 that solves (γ − ε, β + ε)-Max-CSP(F) using at most s(n) bits of space. Note that ALG1

must achieve advantage at least 1/3 on the problem (Γ, B). By running several independent copies
of ALG1 and thresholding appropriately, we can get an algorithm ALG2 with space O(s) and
advantage 1− 1

100 solving (Γ, B).
Now, let COMP and COMB be the compression and combination functions as given by this

sketching algorithm (see Definition 3.3). We use these to design a protocol for (F ,DY ,DN , T)-
simultaneous-SD as follows.

Let (M (t), z(t)) denote the input to the t-th player in (F ,DY ,DN , T)-simultaneous-SD. Each

player turn his/her inputs into Ψ(t) = (C
(t)
1 , . . . , C

(t)
mt) where C

(t)
i corresponds to the con-

straint (j(t)(i), f
(t)
i) with j

(t)
i ∈ [n]k the indicator vector for the i-th hyperedge of M (t).

Next, the players use the shared randomness to compute the sketch of his/her input

COMP(
∑

iC
(t)
i) and send it to the referee. Finally, the referee computes the sketch for all

streams COMB(COMP(
∑

iC
(1)
i),COMP(

∑
iC

(2)
i), . . . ,COMP(

∑
iC

(T)
i)) and outputs the answer

correspondingly.
To analyze the above, note that the communication is O(s). Next, by the advantage of the

sketching algorithm, we have that

min
Ψ∈Γ

[ALG2(Ψ) = 1]−max
Ψ∈B

[ALG2(Ψ) = 1] ≥ 1− 12/100. (5.18)

Now we consider what happens when Ψ ∼ Ysimul,n and Ψ ∼ Nsimul,n. By Lemma 5.8 we have that
PrΨ∼Ysimul,n

[Ψ ∈ Γ] ≥ 1− o(1) and PrΨ∼Nsimul,n
[Ψ ∈ B] ≥ 1− o(1). Combining with Eq. (5.18) we

thus get

Pr
Ψ∼Ysimul,n

[ALG2(Ψ) = 1]− Pr
Ψ∼Nsimul,n

[ALG2(Ψ) = 1] ≥ 1− 12/100− o(1) ≥ 1/2,

We thus get that there is a O(s) simultaneous communication protocol for (F ,DY ,DN , T)-
simultaneous-SD with at least advantage 1/2.

Now we conclude by applying Lemma 5.17 with δ = 1/2 to get that s = Ω(
√
n)/T = Ω(

√
n),

thus yielding the theorem.

6 Hardness of Advice-Signal-Detection with Uniform Marginals

The goal of this section is to prove a variant of Theorem 5.4 that will be used in Section 7 and
Section 8 for a proof of the general case of Theorem 5.4. Recall that in the (DY ,DN)-SD problem
|F| = 1, so we omit F . The main result of this section, presented in Theorem 6.4, gives an Ω(

√
n)

lower bound on the communication complexity of (DY ,DN)-SD for distributions with matching
marginals µ(DY) = µ(DN) for the case when (i) the alphabet is Boolean {−1, 1} 11, (ii) the

11Throughout this section we use {−1, 1} to denote the Boolean domain.

46

marginals are uniform µ(DY) = µ(DN) = 0k, but (iii) both players also receive a specific advice
vector a. We define the corresponding Advice-SD communication game below.

In order to prove the hardness of Advice-SD, we first define the Randomized Mask Detec-
tion with advice (Advice-RMD) communication game, and prove an Ω(

√
n) lower bound on the

communication complexity of this game in Theorem 6.2. The proof of the main result of this
section, Theorem 6.4, will then follow from the corresponding lower bounds for Advice-RMD in
Theorem 6.2.

6.1 Hardness of Advice-RMD

In this section we state a theorem that establishes hardness of RMD in the Boolean setting and with
uniform marginals while allowing for advice. The proof of this theorem is postponed to Section 6.3.
First we define the Advice-RMD one-way communication game.

Definition 6.1 (Advice-RMD). Let n, k ∈ N, α ∈ (0, 1), where k and α are constants with respect
to n, and αn is an integer less than n/k. For a pair DY and DN of distributions over {−1, 1}k, we
consider the following two-player one-way communication problem (DY ,DN)-Advice-RMD.

• The generator samples the following objects:

1. x∗ ∼ Unif({−1, 1}n).

2. Γ ∈ Sn is chosen uniformly among all permutations of n elements.

3. We let M ∈ {0, 1}kαn×n be a partial permutation matrix capturing Γ−1(j) for j ∈ [kαn].
Specifically, Mij = 1 if and only if j = Γ(i). We view M = (M1, . . . ,Mαn) where each
Mi ∈ {0, 1}k×n is a block of k successive rows of M .

4. b = (b(1), . . . ,b(αn)) is sampled from one of the following distributions:

– (YES) each b(i) ∈ {−1, 1}k is sampled according to DY .

– (NO) each b(i) ∈ {−1, 1}k is sampled according to DN .

5. z = Mx∗ � b, where � denotes the coordinate-wise product of the elements.

6. Define a vector a ∈ [k]n as aj = i where i = Γ−1(j) (mod k) for every j ∈ [n].

• Alice receives x∗ and a as input.

• Bob receives M , z, and a as input.

We follow the approach of [GKK+09] to prove the following theorem showing a Ω(
√
n) commu-

nication lower bound for Boolean Advice-RMD. We postpone the proof to Section 6.3.

Theorem 6.2 (Communication lower bound for Boolean Advice-RMD). For every k ∈ N, and
every pair of distributions DY ,DN ∈ ∆({−1, 1}k) with uniform marginals µ(DY) = µ(DN) = 0k

there exists α0 > 0 such that for every α ≤ α0 and δ > 0 there exists τ > 0 such that every protocol
for (DY ,DN)-Advice-RMD achieving advantage δ requires τ

√
n bits of communication on instances

of length n.

47

6.2 Hardness of Advice-SD

Let us first extend the definition of the Signal Detection (SD) problem to the following Advice-SD
one-way communication game.

Definition 6.3 (Advice-SD). Let n, k, q ∈ N, α ∈ (0, 1), where k, q and α are constants with respect
to n, and αn/k is an integer less than n. For a pair DY and DN of distributions over [q]k, we
consider the following two-player one-way communication problem (DY ,DN)-Advice-SD.

• The generator samples the following objects:

1. x∗ ∼ Unif([q]n).

2. Γ ∈ Sn is chosen uniformly among all permutations of n elements.

3. We let M ∈ {0, 1}kαn×n be a partial permutation matrix capturing Γ−1(j) for j ∈ [kαn].
Specifically, Mij = 1 if and only if j = Γ(i). We view M = (M1, . . . ,Mαn) where each
Mi ∈ {0, 1}k×n is a block of k successive rows of M .

4. b = (b(1), . . . ,b(αn)) is sampled from one of the following distributions:

– (YES) each b(i) ∈ [q]k is sampled according to DY .

– (NO) each b(i) ∈ [q]k is sampled according to DN .

5. z = (z1, . . . , zαn) ∈ {0, 1}αn is determined from M , x∗ and b as follows. We let zi = 1
if Mix

∗ = b(i), and zi = 0 otherwise.

6. Define a vector a ∈ [k]n as aj = i where i = Γ−1(j) (mod k) for every j ∈ [n].

• Alice receives x∗ and a as input.

• Bob receives M , z, and a as input.

Almost immediately we get the following corollary for the Advice-SD problem from Theorem 6.2.

Theorem 6.4 (Communication lower bound for Boolean Advice-SD). For every k ∈ N, and every
pair of distributions DY ,DN ∈ ∆({−1, 1}k) with uniform marginals µ(DY) = µ(DN) = 0k there
exists α0 > 0 such that for every 0 < α ≤ α0 and δ > 0 there exists τ > 0, such that every protocol
for (DY ,DN)-advice-SD achieving advantage δ requires τ

√
n bits of communication on instances of

length n.

Proof. We show that a protocol achieving advantage δ in the (DY ,DN)-Advice-SD game with s
bits of communication implies a protocol achieving advantage δ for the (DY ,DN)-Advice-RMD
game with s bits of communication. Then the lower bounds of Theorem 6.2 for distributions with
matching marginals will finish the proof.

Assume that there exists Bob’s algorithm B(M, z,a,Alice’s message) that distinguishes bi ∼ DY
and bi ∼ DN with advantage δ in the Advice-SD game. For the Advice-RMD game, we keep the
same algorithm for Alice, and modify Bob’s algorithm as follows. Bob receives M ∈ {0, 1}kαn×n, z ∈
{−1, 1}kαn,a, and Alice’s message, and partitions z = (z1, . . . , zαn) where zi ∈ {−1, 1}k. For each
i ∈ [αn], Bob computes z̃i ∈ {0, 1} as follows: z̃i = 1 if and only if zi = 1k. Now Bob sets
z′ = (z̃1, . . . , z̃αn) ∈ {0, 1}αn, and outputs B(M, z′,a,Alice’s message). It is easy to see that in
both YES and NO cases, the distribution of the vectors z′ computed by Bob is the distribution of
vectors z sampled in the (DY ,DN)-Advice-SD game. Thus, the protocol achieves advantage δ for
the (DY ,DN)-Advice-SD game using s bits of communication as desired.

48

6.3 Proof of Theorem 6.2

Our proof of Theorem 6.2 follows the methodology of [GKK+09] with some modifications as required
by the Advice-RMD formulation. Their proof uses Fourier analysis to reduce the task of proving
a communication lower bound to that of proving some combinatorial identities about randomly
chosen matchings. We follow the same approach and this leads us to different conditions about
randomly chosen hypermatchings which requires a fresh analysis in Lemma 6.9.

Without loss of generality in the following we assume that n is a multiple of k. A vector a ∈ [k]n

is called an advice vector if for every i ∈ [k], |{j : aj = i}| = n/k. For an advice vector a ∈ [k]n,
we say that a partial permutation matrix M ∈ {0, 1}kαn×n of a permutation Γ is a-respecting if
for every i ∈ [kαn] and j ∈ [n], Mij = 1 if and only if aj = i (mod k). Intuitively, a is the advice
vector that tells you which congruence class Γ(j) lies in.

For each advice vector a ∈ [k]n, each a-respecting partial permutation matrix M ∈ {0, 1}kαn×n,
distributionD over {−1, 1}k, and a fixed Alice’s message, the posterior distribution function pM,D,a :
{−1, 1}kαn → [0, 1] is defined as follows. For each z ∈ {−1, 1}kαn, let

pM,D,a(z) := Pr
x∗∈{−1,1}n

b∼Dαn
[z = (Mx∗)� b | M, a, Alice’s message] = E

x∗∈A
E

b∼Dαn
[1z=(Mx∗)�b] ,

where A ⊂ {−1, 1}n is the set of Alice’s inputs that correspond to the message.

Lemma 6.5. Let a ∈ [k]n, A ⊆ {−1, 1}n, and f : {−1, 1}n → {0, 1} be the indicator function of
A. Let k ∈ N and α ∈ (0, 1/100k). Let D be a distribution over {−1, 1}k such that Ea∼D[aj] = 0
for all j ∈ [k].

E
M

M is a-resp.

[‖pM,D,a − U‖2tvd] ≤
22n

|A|2
kαn∑
`≥2

h(`) ·
∑

v∈{0,1}n
|v|=`

f̂(v)2 ,

where U ∼ Unif({−1, 1}kαn) and for each ` ∈ [n],

h(`) = max
v`∈{0,1}n
|v`|=`

Pr
M

M is a-resp.

[
∃s ∈ {0, 1}kαn\{0kαn}, |s(i)| 6= 1∀i, M>s = v`

]
.

Here for a vector s ∈ {0, 1}kαn and integer i ∈ [αn], s(i) ∈ {0, 1}k denotes the i-th group of k
coordinates of s.

Proof. Observe that

‖pM,D,a − U‖22 =
∑

s∈{0,1}kαn

(
p̂M,D,a(s)− Û(s)

)2
=

∑
s∈{0,1}kαn\{0kαn}

p̂M,D,a(s)2 .

Now by the Cauchy–Schwarz inequality we have that

E
M

M is a-resp.

[
‖pM,D,a − U‖2tvd

]
≤ 22kαn E

M
M is a-resp.

[
‖pM,D,a − U‖22

]

= 22kαn E
M

M is a-resp.

 ∑
s∈{0,1}kαn\{0kαn}

p̂M,D,a(s)2

 . (6.6)

49

The following claim shows that the Fourier coefficients of the posterior distribution pM,D,a can
be bounded from above by a certain Fourier coefficient of the indicator function f . Let’s define
GOOD := {s ∈ {0, 1}kαn | |s(i)| 6= 1 ∀i}.

Claim 6.7.

E
M

M is a-resp.

[‖pM,D,a − U‖2tvd] ≤
22n

|A|2
∑

s∈GOOD\{0kαn}
E
M

M is a-resp.

[
f̂(M>s)2

]
.

Proof. Observe that

p̂M,D,a(s) =
1

2kαn

∑
z∈{−1,1}kαn

pM,D,a(z)
∏

i∈[αn],j∈[k]
s(i)j=1

z(i)j .

Recall that pM,D,a(z) = Ex∗∈A Eb∼Dαn [1z=Mx∗�b], the equation becomes

=
1

2kαn
· E
x∗∈A

 ∏
i∈[αn],j∈[k]
s(i)j=1

(Mx∗)i,j

 E
b∼Dαn

 ∏
i∈[αn],j∈[k]
s(i)j=1

b(i)j

 .
Since Ea∼D[aj] = 0 for all j ∈ [k], the right most sum is 0 if there exists i such that |s(i)| = 1. This
equation becomes

≤ 1

2kαn
·

∣∣∣∣∣∣∣∣∣ E
x∗∈A

 ∏
i∈[αn],j∈[k]
s(i)j=1

(Mx∗)i,j


∣∣∣∣∣∣∣∣∣ · 1s∈GOOD .

Note that as each row and column of M has at most 1 non-zero entry, we have

=
1

2kαn
·

∣∣∣∣∣∣∣∣∣ E
x∗∈A

 ∏
i∈[n]

(M>s)i=1

x∗i


∣∣∣∣∣∣∣∣∣ · 1s∈GOOD

Now we relate the above quantity to the Fourier coefficients of f . Recall that f is the indicator
function of the set A and hence for each v ∈ {0, 1}n, we have

f̂(v) =
1

2n

∑
x∗

f(x∗)
∏

i∈[n]:vi=1

x∗i =
1

2n

∑
x∗∈A

∏
i∈[n]:vi=1

x∗i .

Thus, the Fourier coefficient of pM can be bounded as follows.

p̂M,D,a(s) ≤ 1

2αkn
· 2n

|A|

∣∣∣f̂(M>s)
∣∣∣ · 1s∈GOOD . (6.8)

By plugging Eq. (6.8) into Eq. (6.6), we have the desired bound and complete the proof of Claim 6.7.

50

Next, by Claim 6.7, we have

E
M

M is a-resp.

[‖pM,D,a − U‖2tvd] ≤
22n

|A|2
∑

s∈GOOD\{0αkn}
E
M

M is a-resp.

[
f̂(M>s)2

]
.

Since for a fixed M , the map M> is injective, the right hand side of the above inequality has the
following combinatorial form.

=
22n

|A|2
∑

v∈{0,1}n\{0n}

Pr
M

M is a-resp.

[
∃s ∈ GOOD\{0kαn}, M>s = v

]
f̂(v)2 .

By symmetry, the above probability term will be the same for v and v′ having the same Hamming
weight. Recall that

h(`) = max
v`∈{0,1}n
|v`|=`

Pr
M

M is a-resp.

[
∃s ∈ GOOD\{0kαn}, M>s = v`

]
,

this equation becomes

≤ 22n

|A|2
n∑
`≥1

h(`) ·
∑

v∈{0,1}n
|v|=`

f̂(v)2 .

Note that for ` = 1 and every ` > αkn, h(`) = 0 by definition. Thus, this expression simplifies to
the following.

=
22n

|A|2
αkn∑
`≥2

h(`) ·
∑

v∈{0,1}n
|v|=`

f̂(v)2 .

This completes the proof of Lemma 6.5.

Now we bound from above the combinatorial quantity h(`) from Lemma 6.5.

Lemma 6.9. For every 0 < α ∈ (0, 1/100k2) and ` ∈ [kαn], we have

h(`) = max
v`∈{0,1}n
|v`|=`

Pr
M

M is a-resp.

[
∃s 6= 0, |s(i)| 6= 1 ∀i, M>s = v`

]
≤
(
`

n

)`/2
(e3αk5)`/2 .

Proof. By symmetry, without loss of generality we can fix the advice vector a = (1n/k2n/k . . . kn/k).
For non-negative integers `1, . . . , `k, we say that v` ∈ {0, 1}n is an (`1, . . . , `k)-vector if for every
i ∈ [k], v has exactly `i entries equal 1 in the ith group of n/k coordinates. For fixed values of `i,
let us define

h(`1, . . . , `k) = Pr
M

M is a-resp.

[
∃s 6= 0, |s(i)| 6= 1 ∀i, M>s is a (`1, . . . , `k)-vector

]
.

51

We note that

h(`) = max
`1,...,`k≥0∑

i `i=`

h(`1, . . . , `k) . (6.10)

An equivalent way to compute the probability h(`1, . . . , `k) is to fix the matching M = {(i, n/k+
i, . . . , (k − 1)n/k + i)|i ∈ [αn]}, and to let v be a random (`1, . . . , `k)-vector . Then

h(`1, . . . , `k) = Pr
v

v is (`1,...,`k)

[
∃s 6= 0, |s(i)| 6= 1 ∀i, M>s = v

]
=
|U |
|V |

, (6.11)

where V ⊆ {0, 1}n is the set of all (`1, . . . , `k)-vectors, and U = {u ∈ V : ∃s 6= 0, |s(i)| 6=
1 ∀i, M>s = u}. From `1 + . . .+ `k = `, the number of (`1, . . . , `k)-vectors is

|V | =
k∏
i=1

(
n/k

`i

)
≥
(

n/k∑k
i=1 `i

)
=

(
n/k

`

)
≥
(n
k`

)`
, (6.12)

where the first inequality uses that n/k ≥ kαn ≥ ` for α ≤ 1/k2.
For a vector s ∈ {0, 1}kαn, let Ts = {i : |s(i)| > 0} be the set of indices of non-zero blocks of

s. In order to give an upper bound on the size of U , first we pick a set Ts, and then we choose a
vector u such that M>s = u for some s corresponding to the set Ts. Note that since for each i ∈ T ,
s(i) > 0 and s(i) 6= 1 by the definition of h(`), the size of t = |T | ≤ k/2. For every t, the number of
ways to choose Ts is

(
αn
t

)
. For a fixed Ts, it remains to choose the ` coordinates of u among at most

kt non-zero coordinates of s. For a vector s ∈ {0, 1}kαn, let Ts = {i ∈ [αn] : |s(i)| > 0} be the set of
indices of non-zero blocks of s. In order to give an upper bound on the size of U , first we pick a set
T , and then we choose a vector u such that M>s = u for some s with (i) |s(i) 6= 1| for all i and (ii)
Ts = T . Note that since for each i ∈ T , s(i) > 0 and |s(i)| 6= 1, the size of t = |T | ≤ `/2. For every
t, the number of ways to choose T is

(
αn
t

)
. For a fixed T , it remains to choose the ` coordinates of

u among at most kt non-zero coordinates of s. This gives us the following upper bound on the size
of |U |.

|U | ≤ max
t≤`/2

(
αn

t

)(
kt

`

)
. (6.13)

The second term of the upper bound in Eq. (6.13) can be bounded from above by(
kt

`

)
≤
(
ekt

`

)`
≤
(
ek`/2

`

)`
=

(
ek

2

)`
.

Now we’ll show that the first term of the upper bound in Eq. (6.13) can be bounded from above

by
(

2ekαn
`

)`/2
. If ` ≥ 2αn, then(

αn

t

)
≤ 2αn ≤ 2`/2 ≤

(
2ekαn

`

)`/2
,

where in the last inequality we use ` ≤ kαn. If ` < 2αn, then t ≤ `/2 < αn, and(
αn

t

)
≤
(eαn

t

)t
≤
(

2eαn

`

)`/2
<

(
2ekαn

`

)`/2
.

52

The above implies that

|U | ≤ max
t≤min{αn,`/2}

(
αn

t

)(
kt

`

)
≤
(
ek

2

)`(2ekαn

`

)`/2
≤
(n
`

)`/2
(e3αk3)`/2 . (6.14)

Finally, from Eqs. (6.10) to (6.12) and (6.14),

h(`) = max
`1,...,`k≥0∑

i `i=`

h(`1, . . . , `k) =
|U |
|V |
≤
(
k`

n

)`
·
(n
`

)`/2
(e3αk3)`/2 ≤

(
`

n

)`/2
(e3αk5)`/2 .

In Lemma 6.15 below we give the final ingredient needed for the proof of Theorem 6.2. If U is
the uniform distribution over {−1, 1}k, then we show that for every large set A ⊆ {0, 1}n of inputs
x corresponding to a fixed Alice’s message (and a fixed advice a), EM,M is a-resp.[‖pM,D,a−U‖2tvd] is
small.

Lemma 6.15. For every k ∈ N there exists α0 > 0 such that for every 0 < α ≤ α0, δ ∈ (0, 1), and

c ≤ δ
√
n

100
√
αk5

the following holds for all large enough n. If D is a distribution over {−1, 1}k such

that for all j ∈ [k], Ea∼D[aj] = 0, and A ⊆ {−1, 1}n is of size |A| ≥ 2n−c, then

E
M

M is a-resp.

[‖pM,D,a − U‖2tvd] ≤
δ2

16
.

where U ∼ Unif({−1, 1}kαn).

Proof. Lemma 6.5 and Lemma 6.9 imply that for every A of size |A| ≥ 2n−c,

E
M

M is a-resp.

[‖pM,D,a − U‖2tvd] ≤
22n

|A|2
·
kαn∑
`≥2

(
`

n

)`/2
(e3αk5)`/2

∑
v∈{0,1}n
|v|=`

f̂(v)2 .

For every ` ∈ [4c], Lemma 3.9 implies that

22n

|A|2
∑

v∈{0,1}n
|v|=`

f̂(v)2 ≤

(
4
√

2c

`

)`
.

By the Parseval identity,
∑

v f̂(v)2 ≤ 1. This gives us that

E
M

M is a-resp.

[‖pM,D,a − U‖2tvd] ≤
4c∑
`≥2

(
`

n

)`/2
(e3αk5)`/2 ·

(
4
√

2c

`

)`
+

22n

|A|2
· max

4c<`≤kαn

{(
`

n

)`/2
(e3αk5)`/2

}
.

53

Recall that c ≤ δ
√
n

100
√
αk5

. Let α0 = 1
2e3k5 . Then for every α ≤ α0, the max term on the right hand

side is maximized by ` = 4c+ 1 for all large enough n,

≤
4c∑
`≥2

(
32e3αk5c2

n`

)`/2
+

(
8e3cαk5

n

)2c

≤
4c∑
`≥2

(
δ2

30

)`/2
+

(
8e3δ
√
α

100
√
k3
√
n

)2c

<
δ2

16
.

We are ready to finish the proof of Theorem 6.2.

Proof of Theorem 6.2. Let us set τ = δ

200
√
αk5

, and let α0 be as set in Lemma 6.15. Suppose that

there exists a one-way communication protocol for (DY ,DN)-Advice-RMD that uses s = τ
√
n bits

of communication and has advantage at least δ. By the triangle inequality there must exist a
protocol with advantage δ/2 and s bits of communication for either the (DY ,Dunif)-Advice-RMD
or the (DN ,Dunif)-Advice-RMD problem. Without loss of generality, we assume that (DY ,Dunif)-
Advice-RMD can be solved with advantage δ/2. Then,

‖pM,DY ,a − pM,Dunif ,a‖tvd ≥
δ

2
.

Without loss of generality, we can assume that Alice’s protocol is deterministic. In other words,
for every a, Alice’s s-bit communication protocol partitions the set of {−1, 1}n of inputs x into 2s

sets A1, . . . , A2s ⊆ {−1, 1}n according to the message sent by Alice. Therefore, at least (1− δ/4)-
fraction of inputs x ∈ {−1, 1}n belongs to sets Ai of size |Ai| ≥ δ

4 · 2
n−s ≥ 2n−c for c = s+ 1− log δ.

By Lemma 6.15, for every Ai of size |Ai| ≥ 2n−c,

‖pM,DY ,a − pM,Dunif ,a‖tvd|x∗∈Ai = E
M

M is a-resp.

[‖pM,D,a − U‖tvd|x∗∈Ai] ≤ δ/4 .

Finally,

‖pM,DY ,a − pM,Dunif ,a‖tvd ≤ Pr[x ∈ Ai : |Ai| < 2n−c]

+ Pr[x ∈ Ai : |Ai| ≥ 2n−c] · ‖pM,DY ,a − pM,Dunif ,a‖tvd|x∗∈Ai
≤ δ/4 + (1− δ/4) · δ/4
< δ/2 .

7 Hardness of Signal Detection

In this section we extend the hardness result of the SD problems for the special distributions
described in Section 6 to the fully general setting, thus proving the following theorem.

54

Theorem 5.4 (Communication lower bound for (F ,DY ,DN)-SD). For every k, q, every finite set
F , every pair of distributions DY ,DN ∈ ∆(F × [q]k) with µ(DY) = µ(DN) there exists α0 > 0
such that for every 0 < α ≤ α0 and δ > 0 there exists τ > 0 such that the following holds: Every
protocol for (F ,DY ,DN)-SD achieving advantage δ on instances of length n requires τ

√
n bits of

communication.

The bulk of this section is devoted to proving that for every pair of distributions DY and DN ,
we can find a path (a sequence) of intermediate distributions DY = D0,D1, . . . ,DL = DN such that
adjacent pairs in this sequence are indistinguishable by a “basic” argument, where a basic argument
is a combination of an indistinguishability result from Theorem 7.4 and a shifting argument.

Our proof comes in the following steps:

1. For every marginal vector µ, we identify a canonical distribution Dµ that we use as the
endpoint of the path. So it suffices to prove that for all D, D is indistinguishable from Dµ(D),
i.e., there is a path of finite length from D to Dµ(D).

2. We give a combinatorial proof that there is a path of finite length (some function of k) that
takes us from an arbitrary distribution to the canonical one.

Putting these ingredients together, along with a proof that a “basic step” is indistinguishable gives
us the final theorem.

LetQ = [q1]×· · · [qk] where ∀i, qi ∈ N. We start with the definition of the chain and the canonical
distribution. For a distribution D ∈ ∆(Q), its support is the set supp(D) = {a ∈ Q |D(a) > 0}.
For D ∈ Q, we define the marginal vector µ(D) = (µi,σ)i∈[k],σ∈[qi] as µi,σ = Pra∼D[ai = σ]. Next,
we consider the following partial order on Q. For vectors a,b ∈ Q we use the notation a ≤ b if
ai ≤ bi for every i ∈ [k]. Further we use a < b if a ≤ b and a 6= b.

Definition 7.1 (Chain). We refer to a sequence a(0) < a(1) < · · · < a(`), a(i) ∈ Q for every
i ∈ {0, . . . , `}, as a chain of length `. Note that chains in Q have length at most

∑k
i=1(qi − 1).

Lemma 7.2 (Canonical distribution). Given a vector of marginals µ = (µi,σ)i∈[k],σ∈[qi], there exists
a unique distribution D with matching marginals (µ(D) = µ) such that the support of D is a chain.
We call this the canonical distribution Dµ associated with µ.

Proof. We will prove the proposition by applying induction on
∑k

i=1 qi. In the base case when∑k
i=1 qi = k, there is only one point in the support of the distribution and the claim holds trivially.

For
∑k

i=1 qi > k, define h = arg mini∈[k] µi,qi and τ = µh,qh . Let q̃h = qh − 1 and q̃i = qi, for
i 6= h. Define a vector of marginals µ̃ = (µ̃i,σ)i∈[k],σ∈[q̃i] as follows: µ̃i,σ = (µi,σ − τ)/(1 − τ) if
i 6= h and σ = qi, and µ̃i,σ = µi,σ/(1 − τ) otherwise. By the induction hypothesis, there exists a
unique distribution D̃ supported on a chain such that µ(D̃) = µ̃. Observe that the distribution
D = (1 − τ)D̃ + τ{(q1, . . . , qk)} has marginal µ and is supported on a chain. We will now show
that D is the unique distribution with these properties. For a distribution D ∈ ∆([q1]× · · · × [qk])
and v ∈ [q1] × · · · × [qk], we define D(v) = Prc∼D[c = v]. Note that it suffices to prove that if
D′ ∈ ∆([q1] × · · · × [qk]) is supported on a chain and µ(D′) = µ, then D′(q1, . . . , qk) = τ . Clearly
D′(q1, . . . , qk) ≤ τ . Let u be lexicographically the largest vector smaller than (q1, . . . , qk) in the
support of D′. Let r be an index where ur < qr. Since D′ is supported on a chain, D′(v) = 0 for
v ∈ [q1] × · · · × [qk] such that vr = qr and v 6= (q1, . . . , qk). Hence µr,qr = D′(q1, . . . , qk). Since
τ = mini∈[k] µi,qi , we have τ ≤ µr,qr = D′(q1, . . . , qk).

55

For u,v ∈ Q, let u′ = min{u,v} , (min{u1, v1}, . . . ,min{uk, vk}) and let v′ = max{u,v} ,
(max{u1, v1}, . . . ,max{uk, vk}). We say u and v are incomparable if u 6≤ v and v 6≤ u. Note that
if u and v are incomparable then {u,v} and {u′,v′} are disjoint12.

Definition 7.3 (Polarization (update) operator). Given a distribution D ∈ ∆(Q) and incomparable
elements u,v ∈ Q, we define the (u,v)-polarization of D, denoted Du,v, to be the distribution as
given below. Let ε = min{D(u),D(v)}.

Du,v(b) =


D(b)− ε , b ∈ {u,v}
D(b) + ε , b ∈ {u′,v′}
D(b) , otherwise.

We refer to ε(D,u,v) = min{D(u),D(v)} as the polarization amount.

It can be verified that the polarization operator preserves the marginals, i.e., µ(D) = µ(Du,v).
Note also that this operator is non-trivial, i.e., Du,v = D, if {u,v} 6⊆ supp(D).

Theorem 7.4 (Indistinguishability of the polarization step). Let n, k, q ∈ N, α ∈ (0, 1) where
k, q, α are constants with respect to n and αn is an integer less than n/k. For a distribution
D ∈ ∆([q]k), incomparable vectors u,v ∈ [q]k, and δ > 0, there exists τ > 0 such that every protocol
for (D,Du,v)-SD achieving advantage δ requires τ

√
n bits of communication.

We defer the proof of this theorem to Section 8.2 and focus instead on the number of steps

7.1 Finite upper bound on the number of polarization steps

In this section we prove that there is a finite upper bound on the number of polarization steps needed
to move from a distribution D ∈ ∆(Q) to the canonical distribution with marginal µ(D), i.e., Dµ(D).
Together with the indistinguishability result from Theorem 7.4 this allows us to complete the proof
of Theorem 5.4 by going from DY to Dµ(DY) = Dµ(DN) and then to DN by using the triangle
inequality for indistinguishability.

In this section we extend our considerations to functions A : Q → R≥0. Let F(Q) = {A :
Q → R≥0}. For A ∈ F(Q) and i ∈ [k], let µ0(A) =

∑
a∈QA(a). Note ∆(Q) ⊆ F(Q) and

A ∈ ∆(Q) if and only if A ∈ F(Q) and µ0(A) =
∑

a∈QA(a) = 1. We extend the definition of
marginals, support, canonical distribution, and polarization operators to F(Q). In particular we
let µ(A) = (µ0, (µi,σ)i∈[k],σ∈[qi]) where µi,σ =

∑
a∈Q:ai=σ

A(a). We also define canonical function

and polarization operators so as to preserve µ(A). So given arbitrary A, let D = 1
µ0(A) · A. Note

D ∈ ∆(Q). For µ = (µ0, (µi,σ)i∈[k],σ∈[qi]) where ∀i,
∑

σ∈[qi]
µi,σ = µ0, we define Aµ = µ0 ·Dµ′ where

µ′ = (µi,σ/µ0)i∈[k],σ∈[qi] to be the canonical function associated with µ.

Definition 7.5 (Polarization length). For distribution A ∈ F(Q), where Q = [q1] × · · · × [qk], let
N(A) be the smallest t such that there exists a sequence A = A0, A1, . . . , At such that A0 = A,
At = Aµ(A) is canonical and for every i ∈ [t] it holds that there exists incomparable ui,vi ∈
supp(Ai−1) such that Ai = (Ai−1)ui,vi. If no such finite sequence exists then let N(A) be infinite.
Let N(k, q1, . . . , qk) = supA∈F(Q){N(A)}, and Ñ(Q) = maxk,q1,...,qk|

∑
i qi=Q

N(k, q1, . . . , qk). Again,

if N(A) =∞ for some A or if no finite upper bound exists, Ñ(Q) is defined to be ∞.

12To see this, suppose u = u′, then we have uj = min{uj , vj} for all j ∈ [k] and hence u ≤ v, which is a
contradiction. The same analysis works for the other cases.

56

Note that if D ∈ ∆(Q), so is every element in the sequence, so the polarization length bound
below applies also to distributions. Our main lemma in this subsection is the following:

Lemma 7.6 (A finite upper bound on Ñ(Q)). Ñ(Q) is finite for every finite Q. Specifically
Ñ(Q) ≤ (Q2 + 3)Ñ(Q− 1) . Consequently for every k, q1, . . . , qk, N(q1, . . . , qk) is finite as well.

We prove Lemma 7.6 constructively in the following four steps.

Step 1: The algorithm Polarize. Let us start with some notations. For A ∈ F([q1]×· · ·×[qk])
we let A|x`=q` denote the function A restricted to the domain [q1]×· · ·×[q`−1]×{q`}×[q`+1]×· · ·×[qk].
Note that A|x`=q` is effectively a (k − 1)-dimensional function. We also define A|x`<q` as the
restriction of A to the domain [q1]× · · · × [q`−1]× [q` − 1]× [q`+1]× · · · × [qk]..

Algorithm 2 Polarize(·)
Input: A ∈ F([q1]× · · · × [qk]).

1: if k=1 OR 6 ∃i : qi ≥ 2 then
2: Output: A.

3: WLOG, let qk ≥ 2.
4: t← 0; Q− ←

∑k
i=1(qi − 1)− 1; Q+ ←

∑k−1
i=1 (qi − 1)

5: (A0)|xk<qk ← Polarize(A|xk<qk) ; (A0)|xk=qk ← Polarize(A|xk=qk)
6: Let (1)k = at(0) < · · · < at(Q

−) = (q1, . . . , qk−1, qk − 1) be a chain supporting (At)|xk<qk .
7: Let ((1)k−1, qk) = bt(0) < · · · < bt(Q

+) = (q1, . . . , qk) be a chain supporting (At)|xk=qk .
8: while ∃(i, j) with j < Q+ s.t. max{at(i),bt(j)} = (q1, . . . , qk) and At(at(i)), At(bt(j)) > 0 do
9: Let (it, jt) be the lexicographically smallest such pair (i, j).

10: Bt ← (At)at(it),bt(jt).
11: (At+1)|xk<qk ← Polarize(Bt|xk<qk); (At+1)|xk=qk ← (Bt)|xk=qk .
12: t← t+ 1.
13: Let (1)k = at(0) < · · · < at(Q

−) = (q1, . . . , qk − 1) be a chain supporting (At)|xk<qk .
14: Let ((1)k−1, qk) = bt(0) < · · · < bt(Q

+) = (q1, . . . , qk) be a chain supporting (At)|xk=qk .

15: Let ` ∈ [k] be such that for every a ∈ [q1]×· · ·×[qk]\{(q1, . . . , qk)} we have At(a) > 0⇒ a` < q`.
16: (At+1)|x`<q` ←Polarize(At)|x`<q` ; (At+1)|x`=q` ← (At)|x`=q` .
17: Output: At+1.

The goal of the rest of the proof is to show that Algorithm 2 terminates after a finite number
of steps and outputs Aµ(A).

Step 2: Correctness assuming Polarize terminates.

Claim 7.7 (Correctness condition of Polarize). For every A ∈ F([q1]× · · · × [qk]), if Polarize
terminates, then Polarize(A) = Aµ(A). In particular, Polarize(A) has the same marginals as
A and is supported on a chain.

Proof. First, by the definition of the polarization operator (Definition 7.3), the marginals of At are
the same for every t. So in the rest of the proof, we focus on inductively showing that if Polarize
terminates, then Polarize(A) is supported on a chain.

The base case where k = 1 is trivially supported on a chain as desired.

57

When k > 1, note that when the algorithm enters the Clean-up stage, if we let m and n
denote the largest indices such that At(at(m)), At(bt(n)) > 0 and At(bt(n)) 6= (q1, . . . , qk), then
the condition that max{at(m),bt(n)} 6= (q1, . . . , qk) implies that there is a coordinate ` such that
at(m)` < q` and bt(n)` < q`. Since every c such that At(c) > 0 and ck < qk satisfies c ≤ at(m),
we have At(c) > 0 implies c` < q`. Similarly for every c 6= (q1, . . . , qk) such that ck = qk, we have
At(c) > 0 implies c` < q`. We conclude that At is supported on {(q1, . . . , qk)}∪ {c | c` < q`}. Thus,
by the induction hypothesis, after polarizing (At)|x`<q` and leaving (At)|x`=q` unchanged, we get
that the resulting function At+1 is supported on a chain as desired and complete the induction. We
conclude that if Polarize terminates, we have Polarize(A) = Aµ(A).

Step 3: Invariant in Polarize. Now, in the rest of the proof of Lemma 7.6, the goal is to show
that for every input A, the number of iterations of the while loop in Algorithm 2 is finite. The
key claim (Claim 7.11) here asserts that the sequence of pairs (it, jt) is monotonically increasing
in lexicographic order. Once we establish this claim, it follows that there are at most Q− · Q+

iterations of the while loop and so Ñ(Q) ≤ (Q2 + 3)Ñ(Q− 1) , proving Lemma 7.6. Before proving
Claim 7.11, we establish the following properties that remain invariant after every iteration of the
while loop.

Claim 7.8. For every t ≥ 0, we have (At)|xk=qk and (At)|xk<qk are both supported on chains.

Proof. For (At)|xk<qk , the claim follows from the correctness of the recursive call to Polarize. For
(At)|xk=qk , we claim by induction on t that the supporting chain bt(0) < · · · < bt(Q

+) never changes
(with t). To see this, note that bt(k−1) = (q1, . . . , ak) is the only point in the support of (At)|xk=qk

that increases in value, and this is already in the supporting chain. Thus bt(0) < · · · < bt(Q
+)

continues to be a supporting chain for (At+1)|xk=qk .

For c ∈ [q1]× · · · × [qk], we say that a function A : [q1]× · · · × [qk]→ R≥0 is c-respecting if for
every c′ such that A(c′) > 0, we have c′ ≥ c or c′ ≤ c. We say that A is c-downward-respecting if
A is c-respecting and the points in the support of A above c form a partial chain, specifically, if
u,v > c have A(u), A(v) > 0, then either u ≥ v or v ≥ u.

Note that if A is supported on a chain then A is c-respecting for every point c in the chain.
Conversely, if A is supported on a chain and A is c-respecting, then A is supported on a chain that
includes c.

Claim 7.9. Let A be a c-respecting function and let Ã be obtained from A by a finite sequence
of polarization updates, as in Definition 7.3. Then Ã is also c-respecting. Furthermore if A is
c-downward-respecting and w > c then Ã is also c-downward-respecting and A(w) = Ã(w).

Proof. Note that it suffices to prove the claim for a single update by a polarization operator since
the rest follows by induction. So let Ã = Au,v for incomparable u,v ∈ supp(A). Since A is c-
respecting, and u,v are incomparable, either u ≤ c,v ≤ c or u ≥ c,v ≥ c. Suppose the former
is true, then max{u,v} ≤ c and min{u,v} ≤ c, and hence, Ã is c-respecting. Similarly, in the
case when u ≥ c,v ≥ c, we can show that Ã is c-respecting. The furthermore part follows by
noticing that for u and v to be incomparable if A is c-downward-respecting and A(u), A(v) > 0,
then u,v ≤ c, and so the update changes A only at points below c.

The following claim asserts that in every iteration of the while loop, by the lexicographically
minimal choice of (it, jt), there exists a coordinate h ∈ [k − 1] such that every vector c < at(it)

58

in the support of At, Bt, or At+1 has ch < qh, and every vector c 6= (q1, . . . , qk) in the support of
(At)|xk=qk has ch < qh.

Claim 7.10. For every t ≥ 0, ∃h ∈ [k − 1] such that ∀c ∈ [q1] × · · · × [qk], if c ∈ supp(At) ∪
supp(Bt) ∪ supp(At+1), then the following hold:

• If c < at(it), then ch < qh.

• If ck = qk and c 6= (q1, . . . , qk), then ch < qh.

Proof. Since (it, jt) is lexicographically the smallest incomparable pair in the support of At, for
i < it, j < Q+, and At(a(i)), At(b(j)) > 0, we have max{a(i),b(j)} 6= (q1, . . . , qk). Let m be the
largest index smaller than it such that At(at(m)) > 0. Similarly, let n < Q+ be the largest index
such that At(bt(n)) > 0. Then the fact that max{at(m),bt(n)} 6= (q1, . . . , qk) implies that there
exists h ∈ [k − 1] such that at(m)h < qh and bt(n)h < qh. Now, using the fact (from Claim 7.8)
that (At)|xk<qk is supported on a chain, we conclude that for every c < at(it), At(c) > 0 implies
that c ≤ at(m) and hence, ch < qh. Similarly, for every vector c 6= (q1, . . . , qk) in the support of
(At)|xk=qk , by the maximality of n, we have ch < qh.

We now assert that the same holds for Bt. First, recall that supp(Bt) ⊂ supp(At) ∪
{(q1, . . . , qk),min{at(it),bt(jt)}} since Bt = (At)at(it),bt(jt). Next, note that the only point
(other than (q1, . . . , qk)) where Bt is larger than At is min{at(it),bt(jt)}. It suffices to show
that min{at(it),bt(jt)}h < qh. We have min{at(it),bt(jt)} ≤ bt(jt) ≤ bt(n) and hence
min{at(it),bt(jt)}h < qh.

Finally, we assert that same holds also for At+1. Since At+1|xk=qk = Bt|xk=qk , the second item
in the claim follows trivially. To prove the first item, let us consider a′ ∈ [q1] × · · · × [qk] defined
as follows: a′h = qh − 1 and a′r = at(it)r for r 6= h. Note that Bt|xk<qk is at(it)-respecting since
potentially the only new point in its support (compared to At|xk<qk) is min{at(it),bt(jt)} ≤ at(it).
From the previous paragraph we also have that if Bt(c) > 0 and c < at(it), then ch < qh and
hence, c ≤ a′. On the other hand, if Bt(c) > 0 and c ≥ at(it), then c ≥ a′. Therefore, Bt|xk<qk
is a′-respecting. By applying Claim 7.9, we conclude that (At+1)|xk<qk is also a′-respecting. It
follows that if c < a(it) and At+1(c) > 0, then c ≤ a′ and so ch < qh.

Step 4: Proof of Lemma 7.6. The following claim establishes that the while loop in the
Polarize algorithm terminates after a finite number of iterations.

Claim 7.11. For every t ≥ 0, (it, jt) < (it+1, jt+1) in lexicographic ordering.

Proof. Consider the chain at+1(0) < · · · < at+1(Q−) supporting At+1|xk<qk . Note that for i ≥ it,
At+1|xk<qk is at(i)-respecting (since At|xk<qk and Bt|xk<qk were also so). In particular, At|xk<qk
is at(i)-respecting because it is supported on a chain containing at(i). Next Bt|xk<qk is at(i)-
respecting since potentially the only new point in its support is min{at(it),bt(jt)} ≤ at(i). Finally,
At+1|xk<qk is also at(i)-respecting using Claim 7.9. Thus we can build a chain containing at(i) that
supports At+1|xk<qk . It follows that we can use at+1(i) = at(i) for i ≥ it. Now consider i < it. We
must have at+1(i) < at+1(it) = at(it). By Claim 7.10, there exists h ∈ [k − 1] such that for i < it,
at+1(i)h < qh.

We now turn to analyzing (it+1, jt+1). Note that by definition, At+1(at+1(it+1)) > 0 and
At+1(bt+1(bt+1)) > 0. First, let us show that it ≤ it+1. On the contrary, let us assume that it+1 < it.
It follows from the above paragraph that at+1(it+1)h < qh. Also, for every bt+1(j) with j < Q+

59

and At+1(bt+1(j)) > 0, we have bt+1(j)h < qh. Therefore, max{a(it+1),b(jt+1)} 6= (q1, . . . , qk) (in
particular max{a(it+1),b(jt+1)}h < qh), which is a contradiction.

Next, we show that if it+1 = it, then jt+1 ≥ jt. By the minimality of (it, jt) in the t-th
round, for j < jt such that At(bt(j)) > 0, we have max{at(it), bt(j)} 6= (q1, . . . , qk). Since it+1 = it,
at+1(it+1) = at+1(it) = at(it). We already noted in the proof of Claim 7.8 that bt(0) < · · · < bt(Q

+)
is also a supporting chain for (At+1)|xk=qk . The only point where the function At+1|xk=qk has
greater value than At|xk=qk is (q1, . . . , qk). Therefore, for j < jt such that At+1(bt+1(j)) > 0, we
have max{at+1(it+1), bt+1(j)} 6= (q1, . . . , qk) and hence, jt+1 ≥ jt.

So far, we have established that (it+1, jt+1) ≥ (it, jt) in lexicographic ordering. Finally, we will
show that (it+1, jt+1) 6= (it, jt) by proving that at least one of At+1(at+1(it)) and At+1(bt+1(jt))
is zero. The polarization update ensures that at least one of Bt(at(it)) and Bt(bt(jt)) is zero.
If Bt(bt(jt)) = 0, then by definition, we have At+1(bt+1(jt)) = At+1(bt(jt)) = 0. Finally to
handle the case Bt(at(it)) = 0, let us again define a′ as: a′h = qh − 1 and a′r = at(it)r for
r 6= h, where h is as given by Claim 7.10. We assert that Bt|xk<qk is a′-downward-respecting. As
shown in the proof of Claim 7.10, we have Bt|xk<qk is a′-respecting. The support of Bt|xk<qk is
contained in {at(0), · · · ,at(Q−)} ∪ {min{at(it),bt(jt)}} and min{at(it),bt(jt)} < at(it), and by
Claim 7.10, min{at(it),bt(jt)} ≤ a′. It follows that Bt|xk<qk is a′-downward-respecting. Finally, by
the furthermore part of Claim 7.9 applied to Bt|xk<qk and w = at(it), we get that At+1(at+1(it)) =
At+1(at(it)) = Bt(at(it)) = 0. It follows that (it+1, jt+1) 6= (it, jt).

Proof of Lemma 7.6. By Claim 7.7, we know that if Algorithm 2 terminates, we have
Polarize(A) = Aµ(A). Hence, the maximum number of polarization updates used in Polarize (on

input from F([q1]×· · ·× [qk])) serves as an upper bound for Ñ(Q), for Q =
∑k

i=1 qk. By Claim 7.11,
we know that there are at most Q2 iterations of the while loop and so Ñ(Q) ≤ (Q2 + 3)Ñ(Q− 1)
as desired.

7.2 Reduction from single function to a family of functions

In this subsection, we prove the following lemma that reduces an SD problem for a single function
to an SD problem for a family of functions.

Lemma 7.12. Suppose there exists F ,DY ,DN , δ > 0 with µ(DY) = µ(DN) and a c = c(n)-
communication protocol achieving advantage δ solving (F ,DY ,DN)-SD on instances of length n
for every n ≥ n0. Then there exist D1,D2 ∈ ∆([q]k) with µ(D1) = µ(D2), δ′ > 0, n′0, and a
c-communication protocol achieving advantage δ′ solving (D1,D2)-SD on instances of length n ≥ n′0
using O(s) bits of communication.

We prove the lemma by a hybrid argument, where we slowly change the distribution DY to
DN by considering one function from F at a time. The crux of the lemma is in showing that two
adjacent steps in this sequence are at least as hard as some single-function SD problem, which
follows from the following lemma.

Lemma 7.13. Let n, k, q ∈ N, α ∈ (0, 1) where k, q, α are constants with respect to n and αn
is an integer less than n/k. Let F ⊆ {f : [q]k → {0, 1}} For every ε, δ ∈ (0, 1], there exist
n′ = Ω(n) and constants α′, δ′ ∈ (0, 1) such that the following holds. For every distributions
DY ,DN ,D0,D1,D2 ∈ ∆(F × [q]k) such that DY = (1 − ε)D0 + εD1 and DN = (1 − ε)D0 + εD2

and for every c ∈ N, suppose there exists a protocol for (F ,DY ,DN)-SD with parameters n and

60

α using c bits of communication with advantage δ, then there exists a protocol for (F ,D1,D2)-SD
with parameters n′ and α′ using c bits of communication with advantage δ′.

The proof idea of Lemma 7.13 is very similar to that of Theorem 7.4. We defer the proof
to Section 8.2 and turn to showing how Lemma 7.12 follows.

Proof of Lemma 7.12. Let ALG(x∗;M, z) be the c-bit protocol for (F ,DY ,DN)-SD achieving
advantage δ guaranteed to exist by the theorem statement. Let F = {f1, . . . , f`}. Since
µ(DY) = µ(DN) for each i ∈ [m], we have that Pr[f = fi : (f,b) ∼ DY] = Pr[f = fi : (f,b) ∼ DN].
Let us denote this probability by w(i), w(i) = Pr[f = fi : (f,b) ∼ DY] = Pr[f = fi : (f,b) ∼ DN]

for each i ∈ [`]. For each i ∈ [`], let D(i)
Y be the distribution of a random variable b ∈ [q]k that

is sampled from (f,b) ∼ DY conditioned on f = fi. Similarly, for each i ∈ [`], let D(i)
N be the

distribution of b ∈ [q]k from (f,b) ∼ DN conditioned on f = fi. This way we have that DY and

DN are the mixture distributions: DY =
∑

i∈[`]w
(i) · D(i)

Y and DN =
∑

i∈[`]w
(i) · D(i)

N .

For every i ∈ {0, . . . , `}, we define a distribution D(i) as the following mixture distribution:

D(i) =
∑

j∈{1,...,i}

w(j) · D(j)
N +

∑
j∈{i+1,...,`}

w(j) · D(j)
Y .

Let pi = Pr[ALG(x∗;M, z) = YES : (f,b) ∼ D(i)] for every i ∈ {0, . . . , `}. Observe that p0 =
Pr[ALG(x∗;M, z) = YES : (f,b) ∼ DY] and p` = Pr[ALG(x∗;M, z) = YES : (f,b) ∼ DN].
Since the advantage of ALG in distinguishing DY and DN is at least δ, we have that

δ = |p0 − p`| =

∣∣∣∣∣∣
∑

i∈{0,...,`−1}

(pi − pi+1)

∣∣∣∣∣∣ ≤
∑

i∈{0,...,`−1}

|pi − pi+1| .

Let δ′ = δ/`. We have that at least one term of this sum is |pi − pi+1| ≥ δ′. From this we conclude
that for some i ∈ {0, . . . , `− 1}, ALG achieves advantage at least δ′ for (F ,D(i),D(i+1))-SD.

It remains to show that if one can distinguish D(i) and D(i+1) that differ only for (f,b) with

f = fi+1, then one can also distinguish D1 = D(i+1)
Y and D2 = D(i+1)

N . Since µ(D1) = µ(D2), this
will finish the proof. We show that D1 and D2 are distinguishable using Lemma 7.13.

Let us define ε = wi+1, D = 1
1−ε

(∑
j∈{1,...,i}w

(j) · D(j)
N +

∑
j∈{i+2,...,`}w

(j) · D(j)
Y

)
. Now observe

that D(i) = (1 − ε)D + εD1 and D(i+1) = (1 − ε)D + εD2. Now by Lemma 7.13, a protocol
that distinguishes D(i) and D(i+1) implies a protocol for (D1,D2)-SD with advantage δ′′ > 0 and
communication complexity O(s).

7.3 Putting it together

We now have the ingredients in place to prove Theorem 5.4 which we recall below for convenience.

Theorem 5.4 (Communication lower bound for (F ,DY ,DN)-SD). For every k, q, every finite set
F , every pair of distributions DY ,DN ∈ ∆(F × [q]k) with µ(DY) = µ(DN) there exists α0 > 0
such that for every 0 < α ≤ α0 and δ > 0 there exists τ > 0 such that the following holds: Every
protocol for (F ,DY ,DN)-SD achieving advantage δ on instances of length n requires τ

√
n bits of

communication.

61

Proof of Theorem 5.4. Fix F ⊆ {f : [q]k → {0, 1}} and distributions DY ,DN ∈ ∆(F × [q]k)
with µ = µ(DY) = µ(DN). Lemma 7.12, applied to (F ,DY ,DN), gives us n0, δ

′, and distribu-
tions D′Y ,D′N ∈ ∆([q]k) with µ′ = µ(D′Y) = µ(D′N) such that any c-communication protocol for
(F ,DY ,DN)-SD with advantage δ implies a c-communication protocol for (D′Y ,D′N)-SD with ad-
vantage δ′ for all n ≥ n0. Now we’ll focus on proving a lower bounds for the problem (D′Y ,D′N)-SD.

Lemma 7.6, applied to D′Y , gives us D0 = D′Y ,D1, . . . ,Dt = Dµ′ such that Di+1 = (Di)u(i),v(i),

i.e., Di is an update of Di, with t ≤ Ñ(Q) <∞, for Q =
∑k

i=1 qk. Similarly Lemma 7.6, applied to
D′N , gives us D′0 = D′N ,D′1, . . . ,D′t′ = Dµ′ such that D′i+1 = (D′i)u′(i),v′(i) with t′ ≤ Ñ(Q) <∞.

Applying Theorem 7.4 with δ′′ = δ′/(2Ñ(Q)) to the pairs Di and Di+1, we get that there
exists τi such that every protocol for (Di,Di+1)-SD requires τi

√
n bits of communication to achieve

advantage δ′′. Similarly applying Theorem 7.4 again with δ′′ = δ′/(2Ñ(Q)) to the pairs D′i and
D′i+1, we get that there exists τ ′i such that every protocol for (D′i,D′i+1)-SD requires τ ′i

√
n bits of

communication to achieve advantage δ′′.
Letting τ ′ = min

{
mini∈[t]{τi},mini∈[t′]{τ ′i}

}
, we get, using the triangle inequality for indistin-

guishability, that every protocol Π′ for (D′Y ,D′N)-SD achieving advantage (t + t′)δ′′ ≤ δ′ requires
τ ′
√
n bits of communication. Finally, by Lemma 7.12, every protocol Π for (F ,DY ,DN)-SD achiev-

ing advantage δ requires τ ′
√
n bits of communication.

8 Indistinguishability of the Polarization Step

Recall that in Definition 7.3 we define a polarization operator that polarizes a distribution D ∈
∆([q]k) toDu,v ∈ ∆([q]k) for every incomparable pair (u,v). In this section, we show that (D,Du,v)-
SD requires Ω(

√
n) communication.

Theorem 7.4 (Indistinguishability of the polarization step). Let n, k, q ∈ N, α ∈ (0, 1) where
k, q, α are constants with respect to n and αn is an integer less than n/k. For a distribution
D ∈ ∆([q]k), incomparable vectors u,v ∈ [q]k, and δ > 0, there exists τ > 0 such that every protocol
for (D,Du,v)-SD achieving advantage δ requires τ

√
n bits of communication.

Let u ∨ v,u ∧ v ∈ [q]k be given by ui ∨ vi = max{ui, vi} and ui ∧ vi = min{ui, vi}. Let
AY = Unif({u,v}) and AN = Unif({u ∨ v,u ∧ v}). We prove Theorem 7.4 in two steps. First,
we use the Boolean hardness in Theorem 6.4 to show in Lemma 8.1 that the hardness holds for
the special case (AY ,AN)-SD. Next, we reduce (AY ,AN)-advice-SD to (D,Du,v)-SD for arbitrary
distribution D ∈ ∆([q]k).

8.1 Reduce a Boolean SD problem to a non-Boolean SD problem

In this subsection, we consider a special case of u,v ∈ [q]k where ui 6= vi for every i ∈ [k]. The
following key lemma of this subsection establishes the hardness of (AY ,AN)-SD via a reduction
from a Boolean SD problem to a non-Boolean version.

Lemma 8.1. Let n, k, q ∈ N, α ∈ (0, 1) where k, q, α are constants with respect to n and αn
is an integer less than n/k. For u,v ∈ [q]k satisfying ui 6= vi for all i ∈ [k] and δ > 0, there
exists τ > 0 such that every protocol for (AY ,AN)-SD achieving advantage δ requires τ

√
n bits of

communication.

62

We prove Lemma 8.1 by a reduction. For such u,v, let ū, v̄ ∈ {0, 1}k be the Boolean version
given by (ūi, v̄i) = (0, 1) if ui < vi and (ūi, v̄i) = (1, 0) if ui > vi. Let ĀY = Unif({ū, v̄}) and
ĀN = Unif({ū∨ v̄, ū∧ v̄}). Note that both ĀY and ĀN are distributions on Boolean domain with
uniform marginals. Thus, Theorem 6.4 shows that any protocol for (ĀY , ĀN)-advice-SD requires
Ω(
√
n) bits of communication. In the rest of this subsection, we reduce (ĀY , ĀN)-advice-SD to

(AY ,AN)-SD.
For every n̄, k, ᾱ, q, δ, let n = 2qn̄ and α = qk−12−(k+2)ᾱ. Let Ī = (x̄, Γ̄, b̄, M̄ , z̄, ā) denote

an instance of (ĀY , ĀN)-advice-SD of length n̄ with parameter ᾱ. We show below how Alice and
Bob can use their inputs and shared randomness to generate an instance I = (x,Γ,b,M, z,a) of
(AY ,AN)-advice-SD of length n with parameter α “locally” and “nearly” according to the correct
distributions. Namely, we show that with high probability if Ī is a Yes (resp. No) instance of
(ĀY , ĀN)-advice-SD, then I will be a Yes (resp. No) instance of (AY ,AN)-SD.

Step 1: Specify the shared randomness. The common randomness between Alice and Bob is
an instances IR = (xR,ΓR,bR,MR, zR,aR) drawn according to the Yes13 distribution of (AY ,AN)-
advice-SD of length n with parameter α. For j ∈ [αn], let Vj denote the set of variables in
the j-th constraint, i.e., Vj = {` ∈ [n] |ΓR(`) ∈ {k(j − 1) + 1, . . . , k(j − 1) + k}}. For i ∈ [k],
let Ti be the set of variables that are in the i-th partition and take on values in {ui, vi}, i.e.,
Ti = {j ∈ [n] | aj = i& (xR)i ∈ {ui, vi}}. Let U ⊆ [αn] be the set of constraints that work on
variables in Ti, i.e., U = {j ∈ [αn] |Vj ⊆ ∪iTi}. See Fig. 3 for an example.

Figure 3: An example of shared randomness used in Lemma 8.1. Here n = 12, k = 2, q = 3, and
α = 1/3. The value of xR ∈ [q]n is listed in a table. Consider (u1, v1) = (1, 3) and (u2, v2) = (3, 2).
The variables in sets T1, T2 are marked grey. The variables correspond to the set U are circled with
red lines and the variables correspond to sets S1, S2 are circled with yellow dashed lines.

If |U | ≥ ᾱn̄ we say an error of type (1) has occurred. For i ∈ [k], let Xi ⊆ Ti be the set
of variables that operate on constraints in U , i.e., Xi = Ti ∩ (∪j∈UVj). Let Wi ⊆ Ti be a set of
variables that do not participate in any constraint, i.e., Wi = Ti \ (∪j∈[αn]Vj). Finally let Si be any
set satisfying |Si| = n̄/k with Xi ⊆ Si ⊆ Xi ∪Wi if such a set exists. If no such set exists we say
an error of type (2) has occurred.

Step 2: Specify the reduction. If there is an error, we simply set I = IR. If no errors have
occurred, our reduction will embed Ī into IR by replacing the constraints in U and the variables

13The reduction also works if we used No distribution. However, the mapping between Yes and No instances would
get flipped. Namely, if Ī is a Yes (resp. No) instance of (ĀY , ĀN)-advice-SD, then I will be a No (resp. Yes) instance
of (AY ,AN)-SD.

63

in ∪iSi as described next. Note that we have to specify variables (x,Γ,b,M, z). In particular, we
want the private inputs can be computed locally. We verify the local property of the reduction
in Claim 8.2 and prove the correctness of the reduction in Claim 8.3.

• x: Let ρ : [n̄]→ ∪iSi be a bijection satisfying āj = i⇒ ρ(j) ∈ Si. We now define x ∈ [q]n as
follows:

xj =


(xR)j if j /∈ ∪i∈[k]Si
ui j ∈ Si for some i ∈ [k] and ui < vi and x̄j = 0
ui j ∈ Si for some i ∈ [k] and ui > vi and x̄j = 1
vi j ∈ Si otherwise

• Γ and M : Let V = {V (1), . . . , V (n̄)} with V (j) < V (j+1) be such that V = {j ∈ [n]|ΓR(j) ∈
∪i∈[k]Si}. For j ∈ [n] we let

Γ(j) =

{
ΓR(j) if j /∈ V
ρ(Γ̄(j̄)) if j = V (j̄)

It may be verified that Γ is a permutation and furthermore the constraints in Γ corresponding
to j ∈ U are derived from constraints of Ī. M is then defined as the partial permutation
matrix capturing Γ−1(j) for j ∈ [kαn].

• b: Since b is a hidden variable and won’t be given to Alice and Bob, we postpone the
specification of b to the proof of Claim 8.3.

• z: Let z(j) = z̄(V (j)) if j ∈ U and z(j) = zR(j) otherwise.

Step 3: Correctness of the reduction assuming no error occurs.

Claim 8.2 (The reduction can be computed locally). Let Ī = (x̄, Γ̄, b̄, M̄ , z̄, ā) be an instance
of (ĀY , ĀN)-advice-SD and IR = (xR,ΓR,bR,MR, zR,aR) be the shared randomness of Alice and
Bob. The above reduction satisfies the following local properties:

• Alice can compute x using IR and (x̄, ā).

• Bob can compute (M, z) using IR and (M̄, z̄, ā).

Proof.

• Note that from the construction, it suffices to have {Si}, ā, x̄ to compute x. Since {Si} can
be obtained from IR, we conclude that Alice can compute x using IR and (x̄, ā).

• Note that from the construction, it suffices to have {Si}, ΓR, Γ̄(j) where j ∈ [kαn] to compute
M . Since Γ̄(j) is encoded in M̄ for every j ≤ kαn, and the other information can be obtained
from IR, we know that M can be computed from IR and M̄ . Finally, since z = z′, z can also
be computed from IR. We conclude that Bob can compute (M, z) using IR and (M̄, z̄, ā).

Claim 8.3 (The distribution of I). Let Ī = (x̄, Γ̄, b̄, M̄ , z̄, ā) be an instance drawn from either the
Yes or No distribution of (ĀY , ĀN)-advice-SD and IR = (xR,ΓR,bR,MR, zR,aR) be a instance
drawn from the Yes distribution of (AY ,AN)-advice-SD. Let I = (x,Γ,b,M, z,a) be the result of
applying the above reduction on Ī and IR. Then the following hold.

64

• x ∼ Unif([q]n).

• M is a uniformly random partial permutation matrix as required in the item 3 of Defini-
tion 6.3.

• Suppose there is no error happening in the reduction.

– If Ī is a Yes instance, then Pr[z(j) = 1] = Prb(j)∼A[(Mx)(j) = b(j)] for every j ∈ [αn].

– If Ī is a No instance, then Pr[z(j) = 1] = Prb(j)∼A′ [(Mx)(j) = b(j)] for every j ∈ [αn].

Namely, if Ī is a Yes (resp. No) instance of (ĀY , ĀN)-advice-SD, then I is a Yes (resp. No)
instance of (AY ,AN)-SD.

Proof.

• To prove x ∼ Unif([q]n), observe that x is obtained from xR by flipping some of the ui to vi
(and vice versa). In particular, (i) xR ∼ Unif([q]n) and (ii) the flipping is decided by x̄, which
is uniformly sampled from {0, 1}n̄ and is independent to xR. Note that for a fixed xR, Si,
and j ∈ Si, the probability of xj being set to ui is the same as being set to vi. As a result,
by symmetry of ui and vi, we conclude that x ∼ Unif([q]n).

• By the symmetry of the n variables, M is a uniformly random partial permutation matrix as
required in the item 3 of Definition 6.3.

• Suppose there is no error happening in the reduction. We consider the following two cases:
(i) j ∈ [αn]\U and (ii) j ∈ U .

(i) For each j ∈ [αn]\U , by the construction we have z(j) = zR(j) and hence when fixing
xR,MR, we have Pr[z(j) = 1] = Pr[zR(j) = 1] = PrbR(j)∼A[(MRxR)(j) = bR(j)].
We set b(j) = bR(j) and note that b(j) ∼ AY (resp. b(j) ∼ AN) if b̄(j) ∼ ĀY
(resp. b̄(j) ∼ ĀN) for every j ∈ U . Finally, since j /∈ U , there exists i ∈ [k] such
that (MRxR(j))i = (Mx(j))i /∈ {ui, vi} and hence PrbR(j)∼AY [(MRxR)(j) = bR(j)] =
Pr[(Mx)(j) = b(j)] = 0. So we have Pr[z(j) = 1] = Prb(j)∼AY [(Mx)(j) = b(j)] (resp.
Pr[z(j) = 1] = Prb(j)∼AN [(Mx)(j) = b(j)]) if Ī is a Yes (resp. No) instance as desired.

(ii) For each j ∈ U , by construction we have z(j) = z̄(V (j)). We set

b(j)i =


ui if ui < vi and b̄(V (j))i = 0
ui if ui > vi and b̄(V (j))i = 1
vi otherwise.

First, observe that z(j) = 1 iff (Mx)(j) = b(j). To see this, note that

z(j) = 1⇔ z̄(V (j)) = 1

⇔ (M̄ x̄)(V (j)) = b̄(V (j)) .

For each i ∈ [k], if ui < vi and b̄(V (j))i = (M̄ x̄)(V (j))i = 0, we have b(j)i = (Mx)(j)i =
ui. Similarly, for all the other situations we have b(j)i = (Mx)(j) and hence the equation
becomes

⇔ (Mx)(j) = b(j)

65

as desired.

Next, observe that if Ī is a Yes (resp. No) instance, then b(j) ∼ AY (resp. b(j) ∼ AN).
We analyze the two cases as follows.

– If Ī is a Yes instance, we have b̄(V (j)) ∼ ĀY = Unif({ū, v̄}). Recall that (ūi, v̄i) =
(0, 1) if ui < vi and (ūi, v̄i) = (1, 0) otherwise. Now observe that, by the above
choice of b(j), we have b̄(V (j)) = ū iff b(j) = u (resp. b̄(V (j)) = v̄ iff b(j) = v).
Thus, we have b(j) ∼ AY as desired.

– If Ī is a No instance, we have b̄(V (j)) ∼ ĀN = Unif({ū ∨ v̄, ū ∧ v̄}). Recall that
for each i ∈ [k], ui ∨ vi = max{ui, vi} and ui ∧ vi = min{ui, vi}. Now observe
that, by the above choice of b(j), we have b̄(V (j)) = ū ∨ v̄ iff b(j) = u ∨ v (resp.
b̄(V (j)) = ū ∧ v̄ iff b(j) = u ∧ v). Thus, we have b(j) ∼ AN as desired.

To sum up, for each j ∈ U , we have Pr[z(j) = 1] = Prb(j)∼AY [(Mx)(j) = b(j)] (resp.
Pr[z(j) = 1] = Prb(j)∼AN [(Mx)(j) = b(j)]) if Ī is a Yes (resp. No) instance as desired.

Step 4: An error occurs with low probability.

Claim 8.4. When n is sufficiently large, the probability of an error happening in the reduction is
at most 2−Ω((2/q)2kαn).

Proof. Recall that for given n̄, k, ᾱ, q, δ, we let n = 2qn̄ and α = qk−12−(k+2)ᾱ.
Note that U is a sum of αn i.i.d. Bern((2/q)k). So by concentration inequality, we have

Pr[|U | > 2(2/q)kαn] < 2−Ω((2/q)2kαn). By the choice of parameters, we have 2(2/q)kαn ≤ ᾱn̄.

Thus, type (1) error happens with probability at most 2−Ω((2/q)2kαn).
Note that by the choice of parameters, we have |Xi| = |U | ≤ n̄/k and hence type (2) error

happens only when |U | + |Wi| < n̄/k for some i ∈ [k]. For each i ∈ [k], note that |Wi| is a sum
of n/k − αn i.i.d. Bern(2/q). So by concentration inequality, we have Pr[|Wi| < (n/k − αn)/q] <
2−Ω((1/q)2(n/k−αn)). By the choice of parameters, we have (n/k−αn)/q ≥ n̄/k. Thus, type (2) error

happens with probability at most 2−Ω((1/q)2(n/k−αn)) ≤ 2−Ω((2/q)2kαn).

Step 5: Proof of Lemma 8.1.

Proof of Lemma 8.1. For every n̄, k, ᾱ, q, δ, we let n = 2qn̄ and α = qk−12−(k+2)ᾱ. Suppose there
is a protocol for (AY ,AN)-SD using C(n) bits of communication and achieving advantage δ. We
show that how to get a protocol Π̄ for (ĀY , ĀN)-advice-SD with parameters (n̄, ᾱ) using C(n) bits
of communication and achieving advantage δ/2.

Let Ī = (x̄, Γ̄, b̄, M̄ , z̄, ā) be an instance drawn from either the Yes or No distribution of
(ĀY , ĀN)-advice-SD where (x̄, ā) is Alice’s private input and (M̄, z̄, ā) is Bob’s private input. The
protocol Π̄ works as follows. Alice and Bob first use their private input and the shared randomness
to compute x and (M, z) respectively. This can be done due to Claim 8.2. Next, Alice and Bob
simply invoke the protocol Π on the new instance x and (M, z) and output the result accordingly.

It is immediate to see that Π̄ only uses C(n) bits of communication. To show that Π̄ has
advantage at least δ/2, we first show that the joint distribution of (x,M, z) is the same as that
from an instance of (AY ,AN)-SD if there is no error in the reduction. By Claim 8.3, x ∼ Unif([q]n)
and M follows the distribution as required in the item 3 of Definition 6.3. When there is no

66

error in the reduction and Ī is sampled from the Yes (resp. No) distribution of (ĀY , ĀN)-advice-
SD, Claim 8.3 implies that z follows the conditional distribution (conditioned on x and M) of a Yes
(resp. No) instance of (AY ,AN)-SD as required in the item 5 of Definition 6.3. Next, Claim 8.4
shows that the probability of an error happening in the reduction is at most δ/2. Finally, by triangle
inequality, we conclude that Π̄ has advantage at least δ/2 in solving (ĀY , ĀN)-advice-SD.

To conclude, by Theorem 6.4, any protocol for (ĀY , ĀN)-advice-SD with advantage δ/2 requires
τ̄
√
n̄ bits of communication. Thus, we have C(n) ≥ τ̄

√
n̄ ≥ τ

√
n for some constant τ > 0.

8.2 Indistinguishability of shifting distributions

In this subsection, we prove the following lemma which was used in Section 7.2 for reducing a
single-function SD to a multi-function SD, and will be used in Section 8.3 for reductions between
various SD problems.

Lemma 7.13. Let n, k, q ∈ N, α ∈ (0, 1) where k, q, α are constants with respect to n and αn
is an integer less than n/k. Let F ⊆ {f : [q]k → {0, 1}} For every ε, δ ∈ (0, 1], there exist
n′ = Ω(n) and constants α′, δ′ ∈ (0, 1) such that the following holds. For every distributions
DY ,DN ,D0,D1,D2 ∈ ∆(F × [q]k) such that DY = (1 − ε)D0 + εD1 and DN = (1 − ε)D0 + εD2

and for every c ∈ N, suppose there exists a protocol for (F ,DY ,DN)-SD with parameters n and
α using c bits of communication with advantage δ, then there exists a protocol for (F ,D1,D2)-SD
with parameters n′ and α′ using c bits of communication with advantage δ′.

Proof. Given the parameters n, α and ε ∈ (0, 1), define n′ = εn and α′ = 2α.
Let (x′,M ′,b′, z′) be an instance of the (F ,D1,D2)-SD problem where x′ ∈ [q]n

′
, M ′ ∈

{0, 1}kα′n′×n′ , b′ ∈ [q]kα
′n′ , z′ ∈ {0, 1}α′n′ . Let R′ be the shared randomness defined later. We

specify the map (x′,M ′,b′, z′, R′) 7→ (x,M,b, z) where x ∈ [q]n, M ∈ {0, 1}kαn×n, b ∈ [q]kαn,
z ∈ {0, 1}αn.

A reduction from (F ,D1,D2)-SD to (F ,DY ,DN)-SD

Let y ∼ Unif([q]n−n
′
), w ∼ Bern(2ε)αn. Let Γ ∈ {0, 1}n×n be a uniform permutation matrix.

Let c = (c(1), . . . , c((n− n′)/k)) where c(i) ∼ D are chosen independently.

• Let R′ = (y,w,Γ, c) be the shared randomness.

Let #w(i) = |{j ∈ [i] |wj = 1}| denote the number 1’s among the first i coordinates of w. If
#w(αn) ≥ α′n′ or if αn−#w(αn) ≥ (n−n′)/k we declare an error, Note E[#w(n)] = α′n′/2
so the probability of error is negligible (specifically it is exp(−n)).
Given (x′,M ′,b′, z′, R′), we now define (x,M,b, z) as follows.

• Let x = Γ(x′,y) so x is a random permutation of the concatenation of x′ and y.

• Let M ′ = (M ′1, . . . ,M
′
α′n′) where M ′i ∈ {0, 1}k×n

′
. We extend M ′i to Ni ∈ {0, 1}k×n

by adding all-zero columns to the right. For i ∈ {1, . . . , (n− n′)/k}, let Pi ∈ {0, 1}k×n
be given by (Pi)j` = 1 if and only if ` = n′ + (i − 1)k + j. Next we define a matrix
M̃ ∈ {0, 1}kαn×n = (M̃1, . . . , M̃αn) where M̃i ∈ {0, 1}k×n is defined as follows: If wi = 1
then we let M̃i = N#w(i) else we let M̃i = Pi−#w(i). Finally we let M = M̃ · Γ−1.

• Let b = (b(1), . . . ,b(αn)) where b(i) = b′(#w(i)) if wi = 1, otherwise b(i) = c(i −
#w(i)).

67

• Let zi = 1 if and only if Mix = b(i) for every i ∈ [αn].

Now, we verify that the reduction satisfies the following success conditions.

Success conditions for the reduction

(1) The reduction is locally well-defined. Namely, there exist random strings R′ so
that (i) Alice can get x through a map (x′, R′) 7→ x while Bob can get (M, z) through
a map (M ′, z′, R′) 7→ (M, z).

(2) The reduction is sound and complete. Namely, (i) zi = 1 if and only if Mix = b(i)
for all i ∈ [αn]. (ii) If b′ ∼ Dα′n′1 , then b ∼ DαnY . Similarly if b′ ∼ Dα′n′2 , then b ∼ DαnN .
(iii) x ∼ Unif([q]n) and M is a uniformly random matrix conditioned on having exactly
one “1” per row and at most one “1” per column.

Claim 8.5. If #w(αn) ≤ α′n′ and αn−#w(αn) ≤ (n−n′)/k, then the second map in the reduction
is locally well-defined, sound, and complete. In particular, the error event happens with probability
at most exp(−Ω(n)) over the randomness of R′.

Proof. To see the reduction is locally well-defined, first note that Alice can compute x = Γ(x′,y)
from x′ and the shared randomness R′ locally. As for Bob, note that the maximum index needed
for N and b′ (resp. P and c) is at most #w(αn) (resp. αn −#w(i)). Namely, if #w(αn) ≤ α′n′

and αn − #w(αn) ≤ (n − n′)/k, then M and b are well-defined. Note that this happens with
probability at least 1 − 2−Ω(n). Also, one can verify from the construction that M and b can be
locally computed by M ′, b′, and the shared randomness R′.

To see the reduction is sound and complete, (i) zi = 1 if and only if Mix = b(i) for every
i ∈ [αn] directly follows from the construction. As for (ii), if b′ ∼ Dα′n′1 . Now, for each i ∈ [αn],
b(i) = b′(#w(i)) with probability ε and b(i) = c(i−#w(i)) with probability 1− ε. As b′(i′) ∼ D1

for every i′ ∈ [α′n′] and c(i′) ∼ D0 for every i′ ∈ [(n−n′)/k], we have b(i) ∼ (1− ε)D0 + εD1 = DY
as desired. Similarly, one can show that if b′ ∼ Dα′n′2 , then for every i′ ∈ [α′n′] we have b(i′) ∼ DN .
Finally, we have x ∼ Unif([q]n) and M is a uniformly random matrix with exactly one “1” per
row and at most one “1” per column (due to the application of a random permutation Γ) by
construction.

This completes the proof of the success conditions (1)-(2) for the reduction.

To wrap up the proof of Lemma 7.13, suppose there is a protocol Π for (F ,DY ,DN)-SD with
parameters n and α using c bits of communication with advantage δ. We describe a protocol Π′ for
(F ,D1,D2)-SD with parameters n′ and α′ using c bits of communication with advantage at least
δ − 2−Ω(n).

Let (x′,M ′,b′, z′) be an instance of the (F ,D1,D2)-SD problem where x′ ∈ [q]n
′
, M ′ ∈

{0, 1}kα′n′×n′ , b′ ∈ [q]kα
′n′ , z′ ∈ {0, 1}α′n′ . Let R′ be the shared randomness defined above.

In the new protocol Π′, Alice and Bob computes their private inputs x and (M, z) respectively.
By Claim 8.5, the computation can be done locally with their original private inputs and the shared
randomness. Also, with probability at least 1− 2−Ω(n), the Yes (resp. No) instance of (F ,D1,D2)-
SD is mapped to the Yes (resp. No) instance of (F ,DY ,DN)-SD. Namely, by directly applying Π

68

on the new inputs, Alice and Bob can achieve δ − 2−Ω(n) advantage on (F ,D1,D2) using the same
amount of communication as desired.

8.3 Proof of Theorem 7.4

Let u,v be incomparable, let S = {i ∈ [k] |ui 6= vi}, and let k′′ = |S|.

Step 1: Specify the auxiliary distributions.

• Let AY = Unif({u|S ,v|S}) and AN = Unif({(u|S) ∨ (v|S), (u|S) ∧ (v|S)}). By Lemma 8.1,
(AY ,AN)-SD requires τ

√
n space.

• Let D1 = Unif({u,v}) and D2 = Unif({u ∨ v,u ∧ v}).

• Finally, there exists D0 such that we have D = (1−2ε)D0+2εD1 and Du,v = (1−2ε)D0+2εD2.

In the following, we are going to describe reduction from (AY ,AN)-SD with parameters
(n′′, α′′, k′′) to (D1,D2)-SD with parameters (n′, α′, k). And by Lemma 7.13, there exists a re-
duction from (D1,D2)-SD with parameters (n′, α′, k) to (D,Du,v)-SD with parameters (n, α, k).

Step 2: Overview of the reduction from (AY ,AN)-SD to (D,Du,v)-SD. Let Π be a protocol
for (D,Du,v)-SD with parameter α ≤ 1/(200k) using C(n) communication bits to achieve advantage
δ on instances of length n. We let n′′ = (k′′ε/k)n, α′′ = (2k/k′′)α and design a protocol Π′′ for
(AY ,AN)-SD with parameter α′′ achieving advantage at least δ/2 on instances of length n′′ using
C ′′(n′′) = C(n) communication. Thus, by Lemma 8.1, there exists a constant τ ′′ > 0 such that
C(n) = C ′′(n′′) ≥ τ ′′

√
n′′ = τ ′′

√
(k′′ε/k)

√
n as desired.

To construct such reduction, we first reduce the above instance of (AY ,AN)-SD to an instance
of (D1,D2)-SD with parameters n′ = kn′′/k′′ and α′ = α′′n′′/n′. Next, we invoke Lemma 7.13
to get a protocol Π′ (from Π) which achieves δ − 2−Ω(n) advantage on (D1,D2)-SD using C(n)
communication.

Without loss of generality, we assume Π′ is deterministic and our new protocol Π′′ for
(AY ,AN)-SD uses shared randomness between Alice and Bob. The protocol Π′′ consists a map:
(x′′,M ′′,b′′, z′′, R′′) 7→ (x′,M ′,b′, z′).

Before describing the map, let us first state the desired conditions.

Success conditions for the reduction

(1) The reduction is locally well-defined. Namely, there exist a random string R′′ so
that (i) Alice can get x′ through the maps (x′′, R′′) 7→ x′ while Bob can get (M ′, z′)
through the map (M ′′, z′′, R′′) 7→ (M ′, z′).

(2) The reduction is sound and complete. Namely, (i) z′i = 1 if and only if M ′ix
′ =

b′(i) for all i ∈ [α′n′]. (ii) If b′′ ∼ Aα′′n′′Y then b′ ∼ Dα′n′1 . Similarly if b′′ ∼ Aα′′n′′N then
b′ ∼ Dα′n′2 . (iii) x′ ∼ Unif([q]n

′
) and M ′ is a uniformly random matrix conditioned on

having exactly one “1” per row and at most one “1” per column.

69

Step 3: Specify and analyze the reduction from (AY ,AN)-SD to (D1,D2)-SD. We now
specify the first map mentioned above and prove that it satisfies conditions (1)-(2).

A reduction from (AY ,AN)-SD to (D1,D2)-SD

• Let R′′ ∼ Unif([q]n
′−n′′) be the shared randomness.

Given (x′′,M ′′,b′′, z′′, R′′) we define (x′,M ′,b′, z′) as follows. To get M ′, z′ and b′ we need
some more notations. First, note that α′′n′′ = α′n′ due to the choice of parameters.

• Let x′ = (x′′, R′′).

• M ′ can be viewed as the stacking of matrices M ′′1 , . . . ,M
′′
α′′n′′ ∈ {0, 1}k

′′×n′′ . We first
extend M ′′i by adding all-zero columns at the end to get N ′i ∈ {0, 1}k

′′×n′ . We then
stack N ′i on top of P ′i ∈ {0, 1}(k−k

′′)×n′ to get M ′i , where (P ′i)j` = 1 if and only if
` = n′′ + (i− 1)k + j. We let M ′ be the stacking of M ′1, . . . ,M

′
α′n′ .

• Let b′′ = (b′′(1), · · · ,b′′(α′n′)). Let ũ = (uk′′+1, . . . , uk) denote the common parts of
u and v. We let b′(i) = (b′′(i), ũ) and b′ = (b′(1), · · · ,b′(α′n′)).

• Let z′i = 1 if and only if M ′ix
′ = b′(i) for all i ∈ [α′n′] as required.

Claim 8.6. The above reduction is locally well-defined, sound, and complete.

Proof. To see the map is locally well-defined, note that Alice can compute x′ = (x′′, R′′) locally.
Similarly, Bob can compute M ′ locally by construction. As for z′, note that for every i ∈ [α′n′],
z′i = 1 if and only if z′′i = 1 and P ′ix

′ = ũ. Since Bob has z′ and can locally compute P ′ix
′ for every

i, her can also compute z′ locally.
To see the map is sound and complete, (i) z′i = 1 if and only if M ′ix

′ = b′(i) follows from
the construction. As for (ii), for each i ∈ [α′n′] = [α′′n′′], if b′′i ∼ AY = Unif({u|S ,v|S}), then
b′i ∼ Unif({(u|S , ũ), (v|S , ũ)}) = Unif({u,v}) = D1 as desired. Similarly, one can show that if
b′′i ∼ AN , then b′i ∼ D1. Finally, we have x′ ∼ Unif([q]n

′
) by construction and hence (iii) holds.

This completes the proof of conditions (1)-(2) for the reduction.

Step 4: Proof of Theorem 7.4.

Proof of Theorem 7.4. Let us start with setting up the parameters. Given k ∈ (0, 1/(200k)), α, n,D,
and incomparable pair (u,v) ∈ supp(D) and polarization amount ε = ε(D,u,v), let k′′ = |{i ∈
[k] |ui 6= vi}|, n′′ = (k′′ε/k)n, α′′ = (2k/k′′)α, n′ = kn′′/k′′, α′ = α′′n′/n′, and δ′′ = δ/2.

Now, for the sake of contradiction, we assume that there exists a protocol Π = (ΠA,ΠB) for
(D,Du,v)-SD with advantage δ and at most τ

√
n bits of communication.

First, by Claim 8.6, if (x′′,M ′′, z′′) is a Yes (resp. No) instance of (AY ,AN)-SD, then the output
of the reduction, i.e., (x′,M ′, z′), is a Yes (resp. No) instance of (D1,D2)-SD. Next, Alice and Bob
run the protocol Π′ from Lemma 7.13 on (x′,M ′, z′). By the correctness of the reduction as well as
the protocol Π′, we know that Alice and Bob have advantage at least δ − exp(−Ω(n)) ≥ δ/2 = δ′′

in solving (AY ,AN)-SD with at most τ
√
n = τ

√
(k/(k′′ε))n′′ bits of communication.

Finally, by Lemma 8.1, we know that there exists a constant τ0 > 0 such that any protocol for
(AY ,AN)-SD with advantage δ′′ requires at least τ0

√
n′′ bits of communication. This implies that

70

τ ≥ τ0

√
k′′ε/k. We conclude that any protocol for (D,Du,v)-SD with advantage δ requires at least

τ
√
n bits of communication.

9 Dichotomy for exact Computation

In this section we prove Theorem 2.23. For this, we will use tight bounds on the randomized
communication complexity of the Disjointness (Disj) and Gap Hamming Distance (GHD) problems.

Definition 9.1 (Disjointness (Disj)). In the Disjn problem, Alice and Bob receive binary strings
x, y ∈ {0, 1}n of Hamming weight ∆(x) = ∆(y) = n/4, respectively. If the Hamming distance
∆(x, y) = n/2 the players must output 1, if ∆(x, y) < n/2 they must output 0.

Definition 9.2 (Gap Hamming Distance (GHD)). In the GHDn,t,g problem, Alice and Bob receive
binary strings x, y ∈ {0, 1}n, respectively. If the Hamming distance ∆(x, y) ≥ t+g the players must
output 1, if ∆(x, y) ≤ t− g they must output 0, otherwise they may output either 0 and 1.

The following results give tight bounds on the randomized communication complexity of Disj
and GHD.

Theorem 9.3 ([KS92, Raz90]). For all large enough n, any randomized protocol solving Disjn with
probability 2/3 must use Ω(n) bits of communication.

Theorem 9.4 ([CR12, Vid12, She12]). For every a ∈ (0, 1/2] and every g ≥ 1, and all large
enough n the following holds. If t ∈ [an, (1 − a)n], then any randomized protocol solving GHDn,t,g
with probability 2/3 must use Ω(min{n, n2/g2}) bits of communication.

Equipped with these results, we are ready to prove Theorem 2.23.

Theorem 2.23. For every q, k ∈ N, every family of functions F ⊆ {f : [q]k → {0, 1}} the following
hold:

1. If F is constant satisfiable, then there exists a deterministic linear sketching algorithm that
uses O(log n) space and solves Max-CSP(F) exactly optimally.

2. If F is not constant satisfiable, then the following hold in the streaming setting:

(a) Every probabilistic algorithm solving Max-CSP(F) exactly requires Ω(n) space.

(b) For every ε = ε(n) > 0, (1, 1 − ε)-Max-CSP(F) requires Ω(min{n, ε−1})-space14 on
sufficiently large inputs.

(c) For ρmin(F) defined in Definition 2.11, for every ρmin(F) < γ < 1 and every ε = ε(n) >
0, (γ, γ − ε)-Max-CSP(F) requires Ω(min{n, ε−2})-space9 on sufficiently large inputs.

While this theorem doesn’t give tight bounds on the space complexity of Max-CSP(F) in terms
of n, the dependence on ε is tight. For every family of functions F , if we sample O(n/ε2) random
constraints, then by the Chernoff bound we preserve the values of all assignments within a factor
of 1± ε.

14 The constant hidden in the Ω depends on F , but (obviously) not on ε.

71

Proof. For the first item of the theorem, we note that the maximum number of simultaneously
satisfiable constraints in a σ-satisfiable formula is the number of non-zero constraints f ∈ F \ {0}
in it. This can be computed in space O(log n).

Now we turn to the proof of the second item of the theorem in the streaming setting. To this
end, first we prove that there exists an unsatisfiable instance I of Max-CSP(F \ {0}). Let I be an
instance on kq variables that has every constraint from F \{0} applied to every (unordered) k-tuple
of distinct variables. Any assignment ν ∈ [q]kq has at least k equal coordinates. That is, there
exists σ ∈ [q] such that Σ = {i : νi = σ} has size |Σ| ≥ k. Since F is not σ-satisfiable, there exists a
function f ∈ F \ {0} that f(σk) 6= 1. Thus, the corresponding constraint of I is not satisfied by ν.

Now we pick a minimal unsatisfied formula J on kq variables with constraints from F \ {0},
that is a formula such that all proper subsets of the constraints of J can be simultaneously satisfied.
Since J doesn’t have zero-constraints, J must have at least two constraints. We partition J into
two arbitrary non-empty subsets of constraints J = JAtJB. Note that by minimality of J , JA and
JB are both satisfiable.

Observe that item 2(a) of the theorem follows from 2(b) by setting ε = Θ(1/n). In order to
prove the item 2(b), we reduce Disjm for m = |J |−1ε−1 to Max-CSP(F) on n variables. We can
assume that ε ≥ kq

n|J | , as for smaller ε the optimal lower bound of Ω(n) is implied by this setting.

We partition the n variables of Max-CSP(F) into at least m groups of size kq. Let x, y ∈ {0, 1}m be
the inputs of Alice and Bob in the Disjm problem. If xi = 1, then Alice applies the constraints JA
to the ith block of kq variables of the formula. Similarly, if yi = 1, then Bob applies the constraints
JB to the ith block of kq variables. Let CA and CB be the sets of constraints produced by Alice
and Bob, respectively, and let Ψ = CA ∪ CB. Since ∆(x) = ∆(y) = m/4, the total number of
constraints in the formula |Ψ| = |J |m/4. Note that Ψ is satisfiable if and only if Disj(x, y) = 1.
Therefore, if x and y are disjoint, then val(CA ∪ CB) = 1, otherwise

val(Ψ) ≤ 1− 4

|J |m
< 1− ε .

Any streaming algorithm that receives constraints CA and CB and solves (1, 1 − ε)-Max-CSP(F)
with probability 2/3, also solves the Disjm problem. Therefore, by Theorem 9.3, such an algorithm
must use space Ω(m) = Ω(1/ε).

In order to prove item 2(c), we reduce the GHDn,t,g problem to Max-CSP(F) on nkq +O(1) =
O(n) variables, where t = n(1− γ) and g ≥ 1 will be determined later. We will create two groups
of constraints: the first group of constraints CA ∪ CB will have value 1 − O(∆(x, y)/n), and the
second group of constraints will have value close to ρmin. By taking a weighed combination of these
two groups we will get a formula whose value is less than γ − ε for ∆(x, y) ≥ t+ g, and value is at
least γ for ∆(x, y) ≤ t.

Again, we start with a minimal unsatisfiable formula on kq variables. If |J | = 2d is even, then
we arbitrarily partition J into two sets of d constraints JA and JB. If |J | is odd, then we add one
constraint to |J | as follows. By minimality, there is an assignment that satisfies |J | − 1 constraints
of J , let c be one of these constraints. We add another copy of c to J , and partition J into two
sets of d constraints JA and JB. Note that while JA and JB are satisfiable, only 2d− 1 constraints
of JA ∪ JB can be satisfied simultaneously.

Let x, y ∈ {0, 1}n be the inputs of Alice and Bob in the GHDn,t,g problem. If xi = 1, then Alice
applies the constraints JA to the ith block of kq variables of the formula, otherwise Alice applies
the constraint JB to these variables. Similarly, if yi = 1 or yi = 0, then Bob applies the constraints

72

JA or JB to the ith block of kq variables. Let CA and CB be the sets of constraints produced by
Alice and Bob, respectively. Observe that |CA| = |CB| = nd. The set of constraints added by Alice
and Bob when processing their ith coordinates is satisfiable if and only if xi = yi. When xi 6= yi,
then by the construction of J , exactly 2d− 1 constraints are satisfiable. Therefore,

val(CA ∪ CB) = 1− ∆(x, y)

2dn
.

Let γ′ = (γ + ρmin)/2 < γ. By the definition of ρmin(F), there exists n0 and a formula Φ′ of
Max-CSP(f) such that val(Φ′) = γ′. By taking several copies of Φ′ on the same n0 variables, we

get an instance Φ with D = |Φ| = n(2d−1)(1−γ)
γ−γ′ = Θ(n) constraints and value val(Φ) = γ′.

Now we output an instance Ψ of Max-CSP(F) on nkq + n0 variables that is simply a union of
CA ∪ CB and Φ on disjoint sets of variables. By construction.

val(Ψ) =
(2dn−∆(x, y)) + γ′D

2dn+D
.

In the case when ∆(x, y) ≤ t = (1− γ)n, we have

val(Ψ) ≥ 2dn− (1− γ)n+ γ′D

2dn+D
= γ .

And for the case of ∆(x, y) ≥ t+ g = (1− γ)n+ g, we have that

val(Ψ) ≤ (2dn− (1− γ)n− g) + γ′D

2dn+D
= γ − g

2dn+D
= γ − ε

for g = ε(2dn+D) = Θ(nε).
Therefore, any streaming algorithm for (γ, γ − ε)-Max-CSP(F) will imply a protocol for

the GHDn,t,g problem. By Theorem 9.4, any such streaming algorithm must use at least
Ω(min{n, n2/g2}) = Ω(min{n, ε−2}) bits of communication.

Acknowledgments

We are grateful to Lijie Chen, Gillat Kol, Dmitry Paramonov, Raghuvansh Saxena, Zhao Song,
and Huacheng Yu, for detecting a fatal error in an earlier version of this paper [CGSV21a] and
then for pinpointing the location of the error. As a result the main theorem of the current paper
is significantly different than the theorem claimed in the previous version.

Thanks to Johan H̊astad for many pointers to the work on approximation resistance and answers
to many queries. Thanks to Dmitry Gavinsky, Julia Kempe and Ronald de Wolf for prompt and
detailed answers to our queries on outdated versions of their work [GKK+09]. Thanks to Prasad
Raghavendra for answering our questions about the approximation resistance dichotomy from his
work [Rag08]. Thanks to Saugata Basu for the pointers to the algorithms for quantified theory of
the reals. Thanks to Jelani Nelson for pointers to `1 norm estimation algorithms used in the earlier
version of this paper. Thanks to Alex Andoni for pointers to `1,∞ norm estimation algorithms.

73

References

[AKO11] Alexandr Andoni, Robert Krauthgamer, and Krzysztof Onak. Streaming algorithms
via precision sampling. In FOCS 2011, pages 363–372. IEEE, 2011.

[AM09] Per Austrin and Elchanan Mossel. Approximation resistant predicates from pairwise
independence. Comput. Complex., 18(2):249–271, 2009.

[And20] Alexandr Andoni. Personal communication, 24 December 2020.

[BPR06] Saugata Basu, Richard Pollack, and Marie-Françoise Roy. Algorithms in Real Algebraic
Geometry. Springer, 2006.

[Bul17] Andrei A. Bulatov. A dichotomy theorem for nonuniform CSPs. In Chris Umans,
editor, FOCS 2017, pages 319–330. IEEE, 2017.

[BV04] Stephen P. Boyd and Lieven Vandenberghe. Convex optimization. Cambridge Univer-
sity Press, 2004.

[CGSV21a] Chi-Ning Chou, Alexander Golovnev, Madhu Sudan, and Santhoshini Velusamy. Clas-
sification of the streaming approximability of Boolean CSPs. CoRR, abs/2102.12351v1,
24th February 2021.

[CGSV21b] Chi-Ning Chou, Alexander Golovnev, Madhu Sudan, and Santhoshini Velusamy.
Approximability of all Boolean CSPs in the dynamic streaming setting. CoRR,
abs/2102.12351v3, 14th April 2021.

[CGSV21c] Chi-Ning Chou, Alexander Golovnev, Madhu Sudan, and Santhoshini Velusamy.
Approximability of all finite CSPs in the dynamic streaming setting. CoRR,
abs/2105.01161, 3rd May 2021.

[CGV20] Chi-Ning Chou, Alexander Golovnev, and Santhoshini Velusamy. Optimal streaming
approximations for all Boolean Max-2CSPs and Max-kSAT. In FOCS 2020, pages
330–341. IEEE, 2020.

[CR12] Amit Chakrabarti and Oded Regev. An optimal lower bound on the communication
complexity of gap-hamming-distance. SIAM J. Comput., 41(5):1299–1317, 2012.

[GKK+09] Dmitry Gavinsky, Julia Kempe, Iordanis Kerenidis, Ran Raz, and Ronald de Wolf.
Exponential separation for one-way quantum communication complexity, with appli-
cations to cryptography. SIAM J. Comput., 38(5):1695–1708, 2009.

[GT19] Venkatesan Guruswami and Runzhou Tao. Streaming hardness of unique games. In
APPROX 2019, pages 5:1–5:12. LIPIcs, 2019.

[GVV17] Venkatesan Guruswami, Ameya Velingker, and Santhoshini Velusamy. Streaming com-
plexity of approximating Max 2CSP and Max Acyclic Subgraph. In APPROX 2017.
LIPIcs, 2017.

[Kho02] Subhash Khot. On the power of unique 2-prover 1-round games. In STOC 2002, pages
767–775. ACM, 2002.

74

[KK19] Michael Kapralov and Dmitry Krachun. An optimal space lower bound for approxi-
mating MAX-CUT. In STOC 2019, pages 277–288. ACM, 2019.

[KKL88] Jeff Kahn, Gil Kalai, and Nathan Linial. The influence of variables on Boolean func-
tions. In FOCS 1988, pages 68–80. IEEE, 1988.

[KKS15] Michael Kapralov, Sanjeev Khanna, and Madhu Sudan. Streaming lower bounds for
approximating MAX-CUT. In SODA 2015, pages 1263–1282. SIAM, 2015.

[KKSV17] Michael Kapralov, Sanjeev Khanna, Madhu Sudan, and Ameya Velingker. (1 + ω(1))-
approximation to MAX-CUT requires linear space. In SODA 2017, pages 1703–1722.
SIAM, 2017.

[KS92] Bala Kalyanasundaram and Georg Schintger. The probabilistic communication com-
plexity of set intersection. SIAM J. Discrete Math., 5(4):545–557, 1992.

[KTW14] Subhash Khot, Madhur Tulsiani, and Pratik Worah. A characterization of strong
approximation resistance. In STOC 2014, pages 634–643, 2014.

[O’D14] Ryan O’Donnell. Analysis of Boolean functions. Cambridge University Press, 2014.

[Rag08] Prasad Raghavendra. Optimal algorithms and inapproximability results for every CSP?
In STOC 2008, pages 245–254, 2008.

[Raz90] Alexander A. Razborov. On the distributional complexity of disjointness. In ICALP
1990, pages 249–253. Springer, 1990.

[Sch78] Thomas J. Schaefer. The complexity of satisfiability problems. In STOC 1978, pages
216–226. ACM, 1978.

[She12] Alexander A. Sherstov. The communication complexity of gap hamming distance.
Theory Comput., 8(1):197–208, 2012.

[SSV21] Noah Singer, Madhu Sudan, and Santhoshini Velusamy. Streaming approximation
resistance of every ordering csp. In APPROX 2021, pages 17:1–17:19. LIPIcs, 2021.

[Vid12] Thomas Vidick. A concentration inequality for the overlap of a vector on a large
set, with application to the communication complexity of the gap-hamming-distance
problem. Chicago J. Theor. Comput. Sci., 18(1):1–12, 2012.

[Zhu17] Dmitriy Zhuk. A proof of CSP dichotomy conjecture. In FOCS 2017, pages 331–342.
IEEE, 2017.

75

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

