
Streaming approximation resistance of every ordering CSP

Noah Singer∗ Madhu Sudan† Santhoshini Velusamy‡

Abstract

An ordering constraint satisfaction problem (OCSP) is given by a positive integer k and
a constraint predicate Π mapping permutations on {1, . . . , k} to {0, 1}. Given an instance of
OCSP(Π) on n variables and m constraints, the goal is to find an ordering of the n variables
that maximizes the number of constraints that are satisfied, where a constraint specifies a
sequence of k distinct variables and the constraint is satisfied by an ordering on the n variables
if the ordering induced on the k variables in the constraint satisfies Π. Ordering constraint
satisfaction problems capture natural problems including “Maximum acyclic subgraph (MAS)”
and “Betweenness”.

In this work we consider the task of approximating the maximum number of satisfiable con-
straints in the (single-pass) streaming setting, where an instance is presented as a stream of
constraints. We show that for every Π, OCSP(Π) is approximation-resistant to o(

√
n)-space

streaming algorithms, i.e., algorithms using o(
√
n) space cannot distinguish streams where al-

most every constraint is satisfiable from streams where no ordering beats the random ordering
by a noticeable amount. In the case of MAS our result shows that for every ε > 0, MAS is
not 1/2 + ε-approximable. The previous best inapproximability result only ruled out a 3/4
approximation.

Our results build on a recent work of Chou, Golovnev, Sudan, and Velusamy who show
tight inapproximability results for some constraint satisfaction problems over arbitrary (finite)
alphabets. We show that the hard instances from this earlier work have the following “small-set
expansion” property: in every partition of the hypergraph formed by the constraints into small
blocks, most of the hyperedges are incident on vertices from distinct blocks. By exploiting this
combinatorial property, in combination with a natural reduction from CSPs over large finite
alphabets to OCSPs, we give optimal inapproximability results for all OCSPs.

1 Introduction

In this work we consider the complexity of solving “ordering constraint satisfaction problems
(OCSP)” in the “streaming setting”. We introduce these notions below before describing our
results.

1.1 Orderings and Constraint Satisfaction Problems

In this work we consider optimization problems where the solution space is all possible orderings of
n variables. The Travelling Salesperson Problem and most forms of scheduling fit this framework,

∗Harvard College. Email: noahsinger@college.harvard.edu.
†School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA. Supported in

part by a Simons Investigator Award and NSF Award CCF 1715187. Email: madhu@cs.harvard.edu.
‡School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA. Supported in

part by a Simons Investigator Award and NSF Award CCF 1715187. Email: svelusamy@g.harvard.edu.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 64 (2021)

though our work considers a more restricted class of problems, namely ordering constraint satisfac-
tion problems (OCSPs). OCSPs as a class were first defined by Guruswami, H̊astad, Manokaran,
Raghavendra, and Charikar [GHM+11]. To describe them here, we first set up some notation and
terminology.

We let [n] denote the set {0, . . . , n− 1} and Sn denote the set of permutations on [n], i.e., the
set of bijections σ : [n] → [n]. We sometimes use [σ(0) σ(1) · · ·σ(n − 1)] to denote σ : [n] → [n].
The solution space of ordering problems is Sn, i.e., an assignment to n variables is given by σ ∈ Sn.
Given k distinct integers a0, . . . , ak−1 we define ord(a0, . . . , ak−1) to be the unique permutation in
Sk which sorts a0, . . . , ak−1. In other words, ord(a0, . . . , ak−1) is the unique permutation π ∈ Sk
such that aπ(0) < · · · < aπ(k−1). A k-ary ordering constraint function is given by a predicate
Π : Sk → {0, 1}. An ordering constraint application on n variables is given by a constraint function
Π and a k-tuple j = (j0, j1, . . . , jk−1) ∈ [n]k where the ji’s are distinct. In the interest of brevity we
will often skip the term “ordering” below and further refer to constraint functions as “functions”
and constraint applications as “constraints”. A constraint (Π, j) is satisfied by an assignment
σ : [n]→ [n] if Π(ord(σ|j)) = 1, where σ|j is the k-tuple (σ(j0), . . . ,σ(jk−1)) ∈ [n]k.

A maximum ordering constraint satisfaction problem, Max-OCSP(Π), is specified by a single
ordering constraint function Π : Sk → {0, 1}, for some positive integer arity k. An instance of
Max-OCSP(Π) on n variables is given by m constraints C0, . . . , Cm−1 where Ci = (Π, j(i)), i.e.,
the application of the function Π to the variables j(i) = (j(i)0, . . . , j(i)k−1). (We omit Π from the
description of a constraint Ci when clear from context.) The value of an ordering σ ∈ Sn on an
instance Ψ = (C0, . . . , Cm−1), denoted valΨ(σ), is the fraction of constraints satisfied by σ, i.e.,
valΨ(σ) = 1

m

∑
i∈[m] Π(ord(σ|j(i))). The optimal value of Ψ is defined as valΨ = maxσ∈Sn{valΨ(σ)}.

Two simple examples of Max-OCSP problems are the maximum acyclic subgraph (MAS) problem
and the Betweenness problem. MAS corresponds to the ordering constraint function ΠMAS : S2 →
{0, 1} given by ΠMAS([0 1]) = 1 and ΠMAS([1 0]) = 0. If we re-interpret the constraints as directed
edges in a graph on n vertices, the problem asks for an ordering of the vertices which maximizes the
number of forward edges (which form an acyclic subgraph). The Betweenness problem corresponds
to the ordering constraint function ΠBetweenness : S3 → {0, 1} given by ΠBetweenness([0 1 2]) =
1,ΠBetweenness([2 1 0]) = 1, and ΠBetweenness(π) = 0 for all other π ∈ S3. Here, a constraint (i, j, k)
reads as “xj lies between xi and xk”, and the goal is again to find a permutation σ ∈ Sn maximizing
the number of satisfied constraints.

1.2 Approximability and Streaming Algorithms

In this work we consider the “approximability” of Max-OCSP(Π) in the “streaming setting”. We
define these terms next starting with the latter.

In the (single-pass) “streaming setting” an instance Ψ = (C0, . . . , Cm−1) of Max-OCSP(Π) is
presented as a stream of constraints with the ith element of the stream being j(i) where Ci =
(Π, j(i)). A streaming algorithm A updates its state with each element of the stream and at the
end produces the output A(Ψ) ∈ [0, 1]. The measure of complexity of interest to us is the space
used by A and in particular we distinguish between algorithms that use space polylogarithmic in
the input length and space that grows polynomially (Ω(nε) for ε > 0) in the input length.

We say that A is an α-approximation algorithm if for every Ψ, α · valΨ ≤ A(Ψ) ≤ valΨ with
probability at least 2/3 over the internal coin tosses of A. Thus our approximation factors α are

numbers in the interval [0, 1]. Given Π : Sk → {0, 1} let ρ(Π) = |{π∈Sk|Π(π)=1}|
k! denote the probabil-

ity that Π is satisfied by a random ordering. Every instance of Ψ satisfies valΨ ≥ ρ(Π) and thus the

2

algorithm that always outputs ρ(Π) is a ρ(Π)-approximation algorithm for Max-OCSP(Π). We say
that a problem is approximable (in the streaming setting) if we can beat this trivial algorithm by a
positive factor. Specifically Max-OCSP(Π) is said to be approximable if for every δ > 0 there exists
ε > 0 and a space O(nδ) algorithm A that is a ρ(Π)+ε approximation algorithm for Max-OCSP(Π),
We say Max-OCSP(Π) is approximation-resistant (in the streaming setting) otherwise.

1.3 Main result and comparison to prior works

Theorem 1.1 (Main theorem). For every k ∈ N and every Π : Sk → {0, 1}, Max-OCSP(Π) is
approximation resistant in the (single-pass) streaming setting. In particular for every ε > 0, every
ρ(Π) + ε approximation algorithm A for Max-OCSP(Π) requires Ω(

√
n) space.

Theorem 1.1 is restated in Section 3 and proved there. In particular our theorem implies that
MAS is not 1/2 + ε approximable in o(

√
n) space for every ε > 0, and Betweenness is not 1/3 + ε

approximable.
Our theorem parallels a result of Guruswami, H̊astad, Manokaran, Raghavendra, and

Charikar [GHM+11] who prove approximation resistance with respect to polynomial time algo-
rithms based on the unique games conjecture. In our setting of streaming algorithms the only
problem that seems to have been explored in the literature before was MAS, and even in this case
a tight result was not known. Guruswami, Velingker, and Velusamy [GVV17] proved that for every
ε > 0, MAS is not (7

8 +ε)-approximable in o(
√
n) space. A stronger hardness for 3/4 approximation

for MAS is indicated in the work of Guruswami and Tao [GT19] who suggest that their hardness of
unique games, an “unordered” CSP problem, could be converted to such a hardness for MAS. As
far as we know our result is the first tight hardness result for Max-OCSP(Π) for any non-constant
Π, while yielding tight hardness results for every Π.

1.4 Techniques

We start by describing our proof technique for the special case of the MAS problem. Later we
describe the general case.

Our general approach is to start with a hardness result for CSPs over alphabets of size q (i.e.,
constraint satisfaction problems where the variables take values in [q]), and then to reduce these
CSPs to the OCSP at hand. While this general approach is not new, the optimality of our results
seems to come from the fact that we choose the CSP problem carefully, and are able to get optimal
hardness results for problems of our choice thanks to a general result of Chou, Golovnev, Sudan
and Velusamy [CGSV21]. Thus whereas previous approaches towards proving hardness of MAS,
for example, were unable to get optimal hardness results for MAS despite starting with optimal
hardness results of the source (unique games), by choosing our source problem more carefully we
manage to get optimal hardness results.

Recall that ΠMAS([0 1]) = 1 while ΠMAS([1 0]) = 0. For a large constant q, we define the
constraint function f qMAS : [q]2 → {0, 1} by f qMAS(x, y) = 1 iff x < y. Max-CSP(fMAS

q), the problem

of maximizing fMAS
q constraints applied to variables which take values in [q], aims to capture a

“q-coarsening” of ΠMAS. Specifically we think of an ordering σ of n variables as dividing the n
variables into q blocks with variables σ0, . . . , σn/q−1 being in the first block, σn/q, . . . , σ2n/q−1 being
in the second block and so on. f qMAS is defined so that if the [q]-assignment to the variables based
on which block they belong to satisfies an f qMAS constraint, then the underlying ΠMAS constraint
will be satisfied by σ.

3

We can get an optimal hardness result for Max-CSP(f qMAS) from the work of [CGSV21] — we can
use their results to show that o(

√
n) space algorithms cannot distinguish “YES instances” whose

Max-CSP(f qMAS) value is 1 − 1/q from “NO instances” instances whose Max-CSP(f qMAS) value is
1/2. (We remark that even to get this result we need to choose some “distributions” carefully and
this is not immediate from the previous work, but once these choices are made, the lower bound
follows from the previous work.) However this does not immediately imply a hardness result for the
original OCSP problem Max-OCSP(ΠMAS): By definition of f qMAS it follows that the YES instances
of MAS have Max-OCSP(ΠMAS) values at least 1−1/q and they are indistinguishable to small space
algorithms from the NO instances, but the NO instances may now have Max-OCSP(ΠMAS) value
much higher than 1/2.

To get hardness of Max-OCSP(ΠMAS) we can no longer use the main theorems of [CGSV21] as a
black box. Instead we need to delve into their reduction and notice that the hard instances (in the
NO case) not only have small Max-CSP(f qMAS) values but also are “small partition expanders” in a
specific sense: any partition of the constraint graph into q roughly equal sized blocks has very few
edges, specifically a o(1) fraction, which lie within the blocks. This additional property allows us
to prove that the reduction from the coarsened problem Max-CSP(f qMAS) to the ordering problem
Max-OCSP(ΠMAS) preserves values approximately (to within an additive o(1) amount).

Extending the idea to other OCSPs involves two additional steps. We define f qΠ analogously to
f qMAS (the definition is completely determined by Π and q), but we still need to find the right “dis-
tributions” that allow us to apply the results of [CGSV21]. We describe this process in Section 3.1.
Having done this we now need an analysis of the NO instances arising from the construction in
[CGSV21]. Specifically we show that the constraint hypergraph is now a “small partition hyper-
graph expander”, in the sense that any partition into q roughly equal sized blocks would have very
few hyperedges that contain two vertices from the same block. This allows us to show that the
q-coarsened unordered instances have roughly the same Max-CSP(f qΠ) and Max-OCSP(Π) values (in
the NO case) and this allows us to get optimal hardness results for all ordering CSPs.

We remark in passing that our notion of coarsening is somewhat similar to, but not the same
as that used in previous works, notably [GHM+11]. In particular the techniques used to compare
the OCSP value before coarsening with the CSP value after coarsening are somewhat different:
Their analysis involves more sophisticated tools such as influence of variables and Gaussian noise
stability. Our analysis in contrast is a more elementary analysis of the type common with random
graphs.

Organization of the rest of the paper. In Section 2 we introduce some notation we use and
background material. In Section 3 we prove our main theorem, Theorem 1.1. In this section we
also introduce two distributions on Max-OCSP(Π) instances, the YES distribution and the NO
distribution, and state lemmas asserting that these distributions are concentrated on instances with
high, and respectively low, OCSP value; and that these distributions are indistinguishable to single-
pass small space streaming algorithms. We prove the lemmas on the OCSP values in Section 4,
and prove the indistinguishability lemma in Section 5.

4

2 Preliminaries and definitions

2.1 Basic notation

Some of the notation we use is already introduced in Section 1.1. Here we introduce some more
notation we use.

The support of an ordering constraint function Π : Sk → {0, 1} is the set supp(Π) = {π ∈
Sk|Π(π) = 1}.

A (directed, self-loop-free, multi-) k-hypergraph G = (V,E) is given by a set of vertices V and
a multiset E = E(G) ⊆ V k of k-hyperedges (i.e., ordered k-tuples of vertices), such that no vertex
appears in the same k-hyperedge twice. A k-hyperedge e is incident on a vertex v if v appears in
e. Let Γ(e) ⊆ V denote the set of vertices to which a k-hyperedge e is incident, and let m = m(G)
denote the number of k-hyperedges in G.

A k-hypergraph is a k-hypermatching if it has the property that no pair of (distinct) k-
hyperedges is incident on the same vertex. For α ≤ 1

k , an α-partial k-hypermatching is a k-
hypermatching which contains αn k-hyperedges.

A q-partition of V is a map P : V → [q]. Importantly, q-partitions are ordered objects; that is,
composing a q-partition P with a nontrivial permutation on [q] leads to a new q-partition which
we treat as distinct. Given a q-partition P : V → [q] of V and i ∈ [q], we define the i-th block Pi
as the set P−1(i) ⊆ V .

Given an instance Ψ of Max-OCSP(Π) on n variables, we define the constraint hypergraph G(Ψ)
to be the k-hypergraph on [n], where each k-hyperedge corresponds to a constraint (given by the
exact same k-tuple). We also let m(Ψ) denote the number of constraints in Ψ (equiv., the number
of k-hyperedges in G(Ψ)).

2.2 Concentration bound

We also require the following form of Azuma’s inequality, a concentration inequality for submartin-
gales. For us the following form, for Boolean-valued random variables with bounded conditional
expectations taken from Kapralov and Krachun [KK19], is particularly convenient.

Lemma 2.1 ([KK19, Lemma 2.5]). Let X0, . . . , Xm−1 be (not necessarily independent) {0, 1}-
valued random variables, such that for some p ∈ (0, 1), E[Xi | X0, . . . , Xi−1] ≤ p for every i ∈ [m].
Then if µ := pm,

Pr[X0 + · · ·+Xm−1 ≥ µ+ ν] ≤ exp

(
−1

2
· ν2

µ+ ν

)
.

3 The streaming space lower bound

In this section we prove our main theorem, modulo some lemmas that we prove in later sections.
We restate the theorem below for convenience.

Theorem 1.1 (Main theorem). For every k ∈ N and every Π : Sk → {0, 1}, Max-OCSP(Π) is
approximation resistant in the (single-pass) streaming setting. In particular for every ε > 0, every
ρ(Π) + ε approximation algorithm A for Max-OCSP(Π) requires Ω(

√
n) space.

Our lower bound is proved, as is usual for such statements, by showing that no small space
algorithm can “distinguish” YES instances with OCSP value at least 1− ε/2, from NO instances

5

with OCSP value at most ρ(Π) + ε/2. Such a statement is in turn proved by exhibiting two
families of distributions, the YES distributions and the NO distributions, and showing these
are indistinguishable. Specifically we choose some parameters q, T, α and a permutation π ∈ Sk
carefully and define two distributions GY = GY,πq,n,α,T (Π) and GN = GNq,n,α,T (Π). We claim that for

our choice of parameters GY is supported on instances with value at least 1−ε/2 — this is asserted
in Lemma 3.6. Similarly we claim that GN is mostly supported (with probability 1 − o(1)) on
instances with value at most ρ(Π) + ε/2 (see Lemma 3.7). Finally we assert in Lemma 3.8 that any
algorithm that distinguishes GY from GN with “advantage” at least 1/8 (i.e., accepts Ψ ∼ GY with
probability 1/8 more than Ψ ∼ GN) requires Ω(

√
n) space.

Assuming Lemma 3.6, Lemma 3.7, and Lemma 3.8 the proof of Theorem 1.1 is straightforward
and proved at the end of this section. Proofs of Lemma 3.6 and Lemma 3.7 are in Section 4 and of
Lemma 3.8 in Section 5.

3.1 Distribution of hard instances

The work of [CGSV21] reduces the task of building hard instances of k-ary CSPs over alphabets of
size q in the streaming setting to the task of defining two distributions supported on [q]k satisfying
certain properties. Following the same approach, to define GY,πq,n,α,T (Π) and GNq,n,α,T (Π), we first

define a pair of distributions on [q]k, where k is the arity of Π, which are denoted DY,πq (Π) and

DNq (Π). Later, in Definition 3.5, we use these distributions to define GY,πq,n,α,T (Π) and GNq,n,α,T (Π).

For i ∈ [q], define the k-tuple of “contiguous” values viq = (i, . . . , i + k − 1 (mod q)). For
a k-tuple a = (a0, . . . , ak−1) and a permutation π ∈ Sk, define the permuted k-tuple aπ as
(aπ−1(0), . . . , aπ−1(k−1)). We define aπ in this way because:

Proposition 3.1. If a is a k-tuple of distinct integers, then ord(aπ) = ord(a) ◦π (where ◦ denotes
composition of permutations).

Proof. Let τ = ord(a), so that τ is the unique permutation such that aτ (0) < · · · < aτ (k−1). Let
σ = ord(aπ), so that σ is the unique permutation such that aσ(π−1(0)) < · · · < aσ(π−1(k−1)). Then
τ = σ ◦ π−1. Hence τ ◦ π = σ, as desired.

Now the distributions supported on [q]k are defined as follows:

Definition 3.2 (DY,πq (Π) and DNq (Π)). Let Π be a Max-OCSP of arity k. For q ∈ N and π ∈ Sk,

DY,πq (Π) is the uniform distribution over the set {(viq)π : i ∈ [q]}. For q ∈ N, DNq is the uniform

distribution over all k-tuples in [q]k.

For a distribution D supported on [q]k and index i ∈ [k] we define its ith marginal to be the
distribution Di supported on [q] sampled by picking a = (a0, . . . , ak−1) ∼ D and outputting ai. We
say that a distribution D has uniform marginals if Di is the uniform distribution on [q] for every
i ∈ [k].

The following proposition follows immediately from the definition of the DY,πq (Π) and DNq (Π).

Proposition 3.3. For every Π, π, k and q, the distributions DY,πq (Π) and DNq (Π) have uniform
marginals.

Definition 3.4 (Uniform distribution over partial hypermatchings). Let Hn,α denote the uniform
distribution over all α-partial k-hypermatchings on [n].

6

We now formally define our YES and NO distributions for Max-OCSP(Π). See Figure 1 below
for a visual interpretation in the case of MAS.

Definition 3.5 (GY,πq,n,α,T (Π) and GNq,n,α,T (Π)). Let q, n, T ∈ N, α > 0, and let B = N or B = (Y,π)

for some π ∈ Sk. We define the distribution GBq,n,α,T , over n-variable Max-OCSP(Π) instances, as
follows:

1. Sample a uniformly random q-partition P : [n]→ [q].

2. Sample T hypermatchings independently G̃0, . . . , G̃T−1 ∼ Hn,α.

3. For each ` ∈ [T], do the following. Let G̃` be an empty k-hypergraph on [n]. For each k-
hyperedge e = (j0, . . . , jk−1) ∈ E(G̃`), sample a tuple i = (i0, . . . , ik−1) ∼ DBq , and add the

k-hyperedge e to G̃` if and only if (P(j0), . . . ,P(jk−1)) = i.

4. Let G := G0 ∪ · · · ∪GT−1.

5. Return the Max-OCSP(Π) instance Ψ on n variables given by the constraint hypergraph G.

We say that an algorithm ALG achieves advantage δ in distinguishing GY,πq,n,α,T (Π) from GNq,n,α,T (Π)
if there exists an n0 such that for all n ≥ n0, we have

E
Ψ∼GY,πq,n,α,T (Π)

[ALG(Ψ) = 1]− E
Ψ∼GNq,n,α,T (Π)

[ALG(Ψ) = 1] ≥ δ.

In the following section we state lemmas which highlight the main properties of the distributions
above.

3.2 Statement of key lemmas

Our first lemma shows that GY is supported on instances of high value.

Lemma 3.6 (GY has high Max-OCSP(Π) values). For every ordering constraint satisfaction func-
tion Π, every π ∈ supp(Π), and Ψ ∼ GY,πq,n,α,T (Π), we have valΨ ≥ 1 − k−1

q (i.e., this occurs with
probability 1).

We prove Lemma 3.6 in Section 4.2. Next we assert that GN is supported mostly on instances
of low value.

Lemma 3.7 (GN has low Max-OCSP(Π) values). For every k-ary ordering constraint function
Π : Sk → {0, 1}, and every ε > 0, there exists q0 ∈ N and α0 ≥ 0 such that for all q ≥ q0 and
α ≤ α0, there exists T0 ∈ N such that for all T ≥ T0, for sufficiently large n, we have

Pr
Ψ∼GNq,n,α,T

[
valΨ ≥ ρ(Π) +

ε

2

]
≤ 0.01.

We prove Lemma 3.7 in Section 4.3. We note that this lemma is more technically involved than
Lemma 3.6 and this is the proof that needs the notion of “small partition expanders”. Finally the
following lemma asserts the indistinguishability of GY and GN to small space streaming algorithms.
We remark that this lemma follows directly from the work of [CGSV21].

Lemma 3.8. For every q, k ∈ N there exists α0(k) > 0 such that for every T ∈ N, α ∈ (0, α0(k)]
the following holds: For every Π : Sk → {0, 1} and π ∈ supp(Π), every streaming algorithm ALG
distinguishing GY,πq,n,α,T (Π) from GNq,n,α,T (Π) with advantage 1/8 for all lengths n uses space Ω(

√
n).

7

0

1 2

3

4

(a) Constraint graph of a sample MAS instance drawn from GY

0

1 2

3

4

(b) Constraint graph of a sample MAS instance drawn from GN

Figure 1: The constraint graphs of MAS instances which could plausibly be drawn from GY and GN ,
respectively, for q = 5 and n = 12. Recall that MAS is a binary Max-OCSP with ordering constraint
function Π supported only on [0 1]. According to the definition of GY (see Definition 3.2 and
Definition 3.5, with π = [0 1]), instances are sampled by first sampling a q-partition P : [n]→ [q],
and then sampling some edges; every sampled edge (u, v) must satisfy P(v) = P(u)+1 (mod q). On
the other hand, there are no requirements on (P(u),P(v)) for instances sampled from GN . Above,
the blocks of the partition P are labelled 0, . . . , 4, and the reader can verify that the edges satisfy
the appropriate requirements. We also color the edges in a specific way: We color an edge (u, v)
green, orange, or red if P(v) > P(u), P(v) = P(u), or P(v) < P(u), respectively. This visually
suggests important elements of our proofs that GY has MAS values close to 1 and GN has MAS
values close to 1

2 (for formal statements, see Lemma 3.6 and Lemma 3.7, respectively). Specifically,
in the case of GY , if we arbitrarily arrange the vertices in each block, we will get an ordering in
which every green edge is satisfied, and we expect all but 1

q fraction of the edges to be satisfied (i.e.,
all but those which go from block q − 1 to block 0). On the other hand, if we executed a similar
process in GN , the resulting ordering would satisfy all green edges and some subset of the orange
edges; together, in expectation, these account only for q(q+1)

2q2 = q+1
2q ≈

1
2 fraction of the edges.

8

3.3 Proof of Theorem 1.1

We now prove Theorem 1.1.

Proof of Theorem 1.1. Let A be a ρ(Π) + ε approximation algorithm for Max-OCSP(Π) that uses
space s. Fix π ∈ supp(Π). Consider the algorithm ALG defined as follows: on input Ψ, an instance
of Max-OCSP(Π), if A(Ψ) ≥ ρ(Π) + ε

2 , then ALG outputs 1, else, it outputs 0. Observe that ALG

uses O(s) space. Set q0 ≥ 2(k−1)
ε such that the condition of Lemma 3.7 holds. Set α0 ∈ (0, α0(k)]

such that the conditions of Lemma 3.7 holds. Consider any q ≥ q0 and α ≤ α0: let T0 be set
as in Lemma 3.7. Consider any T ≥ T0: since q ≥ 2(k−1)

ε , it follows from Lemma 3.6 that for

Ψ ∼ GY,πq,n,α,T (Π), we have valΨ ≥ 1− ε
2 , and hence with probability at least 2/3, A(Ψ) ≥ ρ(Π) + ε

2 .
Therefore, EΨ∼GY,πq,n,α,T (Π)

[ALG(Ψ) = 1] ≥ 2/3. Similarly, by the choice of q0, α0, T0, it follows from

Lemma 3.7 that
Pr

Ψ∼GNq,n,α,T

[
valΨ ≥ ρ(Π) +

ε

2

]
≤ 0.01,

and hence, EΨ∼GNq,n,α,T (Π)[ALG(Ψ) = 1] ≤ 1
3 +0.01. Therefore, ALG distinguishes GY,πq,n,α,T (Π) from

GNq,n,α,T (Π) with advantage 1/8. By applying Lemma 3.8, we conclude that the space complexity
of A is at least Ω(

√
n).

4 Bounds on Max-OCSP(Π) values of GY and GN

The goal of this section is to prove our technical lemmas which lower bound the Max-OCSP(Π)
values of GY,πq,n,α,T (Lemma 3.6) and upper bound the Max-OCSP(Π) values of GNq,n,α,T (Lemma 3.7).

4.1 CSPs and coarsening

In preparation for proving the lemmas, we recall the definition of (non-ordering) constraint satis-
faction problems (CSPs), whose solution spaces are [q]n (as opposed to Sn), and define an operation
called q-coarsening on Max-OCSP’s, which restricts the solution space from Sn to [q]n.

A maximum constraint satisfaction problem, Max-CSP(f), is specified by a single constraint
function f : [q]k → {0, 1}, for some positive integer k. An instance of Max-CSP(f) on n vari-
ables is given by m constraints C0, . . . , Cm−1 where Ci = (Π, j(i)), i.e., the application of the
function f to the variables j(i) = (j(i)0, . . . , j(i)k−1). The value of an assignment b ∈ [q]n on an
instance Φ = (C0, . . . , Cm−1), denoted valqΦ(b), is the fraction of constraints satisfied by b, i.e.,
valqΦ(b) = 1

m

∑
i∈[m] f(b|j(i)), where b|j = (bj0 , . . . , bjk−1

) for b = (b0, . . . , bn−1), j = (j0, . . . , jk−1).

The optimal value of Φ is defined as valqΦ = maxb∈[q]n{val
q
Φ(b)}.

Definition 4.1 (q-coarsening). Let Π be a k-ary Max-OCSP and let q ∈ N. The q-coarsening of
Π is the k-ary Max-CSP problem Max-CSP(f qΠ) where we define f qΠ : [q]k → {0, 1} as follows: For
a ∈ [q]k, f qΠ(a) = 1 iff the entries in a are all distinct and Π(ord(a)) = 1. The q-coarsening of an
instance Ψ of Max-OCSP(Π) is the instance Φ of Max-CSP(f qΠ) given by the identical collection of
constraints.

The following lemma captures the idea that coarsening restricts the space of possible solutions;
compare to Lemma 4.8 below.

9

Lemma 4.2. If q ∈ N, Ψ is an instance of Max-OCSP(Π), and Φ is the q-coarsening of Ψ, then
valΨ ≥ valqΦ.

Proof. We will show that for every assignment b ∈ [q]n to Φ, we can construct an assignment σ ∈ Sn
to Ψ such that valΨ(σ) ≥ valqΦ(b). Specifically, given an assignment b ∈ [q]n to Φ, for i ∈ [q], let
Si ⊆ [n] be the sequence of indices with assigned value q, enumerated in some arbitrary order.
Next, let σ be the ordering on [n] given by placing S0, . . . , Sq−1 in order. Consider any constraint
C = (j0, . . . , jk−1) in Φ which is satisfied by b. Since f qΠ(bj0 , . . . , bjk−1

) = 1, Π(ord(bj0 , . . . , bjk−1
)) =

1. By construction, since bj0 , . . . , bjk−1
are distinct, ord(bj0 , . . . , bjk−1

) = ord(σ(j0), . . . ,σ(jk−1)).
Hence C is also satisfied by σ in Ψ, and so valΨ(σ) ≥ valqΨ(b).

4.2 GY has high Max-OCSP(Π) values

In this section, we prove Lemma 3.6, which states that the Max-OCSP(Π) values of instances Ψ
drawn from GY,πq,n,α,T are large. For convenience, we restate it here:

Lemma 3.6 (GY has high Max-OCSP(Π) values). For every ordering constraint satisfaction func-
tion Π, every π ∈ supp(Π), and Ψ ∼ GY,πq,n,α,T (Π), we have valΨ ≥ 1 − k−1

q (i.e., this occurs with
probability 1).

Note that we prove a bound for every instance Ψ in the support of GY,πq,n,α,T , although it would
suffice for our application to prove that such a bound holds with high probability over the choice
of Ψ.

To prove Lemma 3.6, if Φ is the q-coarsening of Ψ, by Lemma 4.2, it suffices to show that
valqΦ ≥ 1 − k−1

q . One natural approach is to consider the q-partition P : [n] → [q] sampled when
sampling Ψ, and define the assignment bΨ to Φ by (bΨ)i = P(i). Consider any constraint C = j =
(j0, . . . , jk−1) in Ψ; by the definition of GY,π (Definition 3.5), we have (P(j0), . . . ,P(jk−1)) = (v`q)π
for some (unique) ` ∈ [q], which we term the identifier of C (recall, we defined v`q as the k-

tuple (`, . . . , ` + k − 1 (mod q)) ∈ [q]k). Now bΨ|j = (v`q)π. Hence, C is satisfied by bΨ iff

Π(ord((v`q)π)) = 1. By Proposition 3.1 above, ord((v`q)π) = ord(v`q)◦π. Hence a sufficient condition

for bΨ to satisfy C (which is in fact necessary in the case |supp(Π)| = 1) is that ord(v`q) = [0 · · · k−1]

(since then ord((v`q)π) = π); this happens iff C’s identifier ` ∈ {0, . . . , q − k}. Unfortunately, when
sampling the constraints C, we might get “unlucky” and get a sample which over-represents the
constraints C with identifier ` ∈ {q − k + 1, . . . , q − 1}. We can resolve this issue using “shifted”
versions of bΨ.1 The proof is as follows:

Proof of Lemma 3.6. For t ∈ [q], define the assignment btΨ to Φ as (btΨ)i = P(i) + t (mod q) for
i ∈ [n].

Fix t ∈ [q]. Then we claim that btΨ satisfies any constraint C with identifier ` such that
` + t (mod q) ∈ {0, . . . , q − k}. Indeed, if C = j is a constraint with identifier `, since
(P(j0), . . . ,P(jk−1)) = (v`q)π, then we have btΨ|j = (v`+tq)π; as long as ` + t ∈ (mod q) ∈
{0, . . . , q − k}, then ord(v`+tq) = [0 · · · k − 1], and so ord((v`+tq)π) = π and Π(ord((v`+tq)π)) = 1.

Now (no longer fixing t), for each ` ∈ [q], let w` be the fraction of constraints in Ψ with identifier
`. By the above claim, for each t ∈ [q], we have valqΦ(btΨ) ≥

∑
`:`+t (mod q)∈{0,...,q−k}w`. On the

1Alternatively, in expectation, valqΦ(bΨ) = 1 − k−1
q

. Hence with probability at least 99
100

, valqΦ(bΨ) ≥ 1 − 100(k−1)
q

by Markov’s inequality; this suffices for a “with-high-probability” statement.

10

other hand,
∑q−1

`=0 w` = 1 (since every constraint has some (unique) identifier). Hence

q−1∑
t=0

valΦ(btΨ) ≥
q−1∑
t=0

 ∑
`:`+t (mod q)∈{0,...,q−k}

w`

 = q − (k − 1),

since each term w` appears exactly q − (k − 1) times in the expanded sum. Hence by averaging,
there exists some t ∈ [q] such that valqΦ(btΨ) ≥ 1− k−1

q , and so valqΦ ≥ 1− k−1
q , as desired.

4.3 GN has low Max-OCSP(Π) values

In this section, we prove Lemma 3.7, which states that the Max-OCSP(Π) value of an instance drawn
from GN does not significantly exceed the random ordering threshold ρ(Π), with high probability.
Restated:

Lemma 3.7 (GN has low Max-OCSP(Π) values). For every k-ary ordering constraint function
Π : Sk → {0, 1}, and every ε > 0, there exists q0 ∈ N and α0 ≥ 0 such that for all q ≥ q0 and
α ≤ α0, there exists T0 ∈ N such that for all T ≥ T0, for sufficiently large n, we have

Pr
Ψ∼GNq,n,α,T

[
valΨ ≥ ρ(Π) +

ε

2

]
≤ 0.01.

Using concentration bounds (i.e., Lemma 2.1), one could show that a fixed solution σ ∈ Sn
satisfies more than ρ(Π) + 1

q constraints with probability which is exponentially small in n. How-
ever, taking a union bound over all n! permutations σ would cause an unacceptable blowup in
the probability. Instead, to prove Lemma 3.7, we take an indirect approach, involving bounding
the Max-CSP value of the q-coarsening of a random instance and bounding the gap between the
Max-OCSP value and the q-coarsenened Max-CSP value. To do this, we define the following notions
of small set expansion for k-hypergraphs:

Definition 4.3 (Lying on a set). Let G = (V,E) be a k-hypergraph. Given a set S ⊆ V , a
k-hyperedge e ∈ E lies on S if it is incident on two (distinct) vertices in S (i.e., if |Γ(e)∩ S| ≥ 2).

Definition 4.4 (Congregating on a partition). Let G = (V,E) be a k-hypergraph. Given a q-
partition P : V → [q], a k-hyperedge e ∈ E congregates on P if it lies on one of the blocks Pi.

We denote by N(G,S) the number of k-hyperedges of G which lie on S.

Definition 4.5 (Small set hypergraph expansion (SSHE) property). A k-hypergraph G = (V,E)
is a (γ, δ)-small set hypergraph expander (SSHE) if it has the following property: For every subset
S ⊆ V of size at most γ|V |, N(G,S) ≤ δ|E| (i.e., the number of k-hyperedges in E which lie on S
is at most δ|E|).

Definition 4.6 (Small partition hypergraph expansion (SPHE) property). A k-hypergraph G =
(V,E) is a (γ, δ)-small partition hypergraph expander (SPHE) if it has the following property: For
every partition P : V → [q] where each block Pi has size at most γ|V |, the number of k-hyperedges
in E which congregate on P is at most δ|E|.

In the context of Figure 1, the SPHE property says that for any partition with small blocks,
there cannot be too many “orange” edges.

Having defined the SSHE and SPHE properties, we now sketch the proof of Lemma 3.7. It will
be proved formally later in this section.

11

Proof sketch of Lemma 3.7. For sufficiently large q, with high probability, the Max-CSP value of
the q-coarsening of a random Max-OCSP(Π) instance drawn from GNq is not much larger than ρ(Π)
(Lemma 4.13 below). The constraint hypergraph for a random Max-OCSP(Π) instance drawn from
GNq is a good SSHE with high probability (Lemma 4.11 below). Hypergraphs which are good
SSHEs are also (slightly worse) SPHEs (Lemma 4.7 below). Finally, if the constraint hypergraph of
a Max-OCSP(Π) instance is a good SPHE, its Max-OCSP(Π) value cannot be much larger than its q-
coarsened Max-CSP value (Lemma 4.8 below); intuitively, this is because if we “coarsen” an optimal
ordering σ for the Max-OCSP by lumping vertices together in small groups to get an assignment
b for the coarsened Max-CSP, we can view this assignment b as a partition on V , and for every
k-hyperedge in G(Ψ) which does not congregate on this partition, the corresponding constraint in
Ψ is satisfied.

We remark that the bounds on Max-CSP values of coarsened random instances (Lemma 4.13
below) and on SSHE in random instances (Lemma 4.11 below) both use concentration inequalities
(i.e., Lemma 2.1) and union bound over a space of size only (Oε(1))n (the space of all solutions to
the coarsened Max-CSP and the space of all small subsets of [n], respectively); this lets us avoid
the issue of union-bounding over the entire space Sn directly.

In the remainder of this section, we prove the necessary lemmas and then give a formal proof
of Lemma 3.7. We begin with several short lemmas.

Lemma 4.7 (Good SSHEs are good SPHEs). For every γ, δ > 0, if a k-hypergraph G = (V,E) a

(γ, δ)-SSHE, then it is a
(
γ, δ(2

γ + 1)
)

-SPHE.

Proof. Let n = |V |. Consider any partition P : V → [`] of V where each block has size at most
γn. WLOG, all but one block Pi has size at least γn

2 (if not, merge blocks until this happens,
only increasing the number of k-hyperedges which congregate on P). Hence ` ≤ 2

γ + 1.2 By the
SSHE property, there are at most δm k-hyperedges which lie on each block; hence there are at
most δ(2

γ + 1)m constraints which congregate on P.

Lemma 4.8 (Coarsening roughly preserves value in SPHEs). Let Ψ be a Max-OCSP(Π) instance on
n variables. Suppose that the constraint hypergraph of Ψ is a (γ, δ)-SPHE. Let Φ be the q-coarsening
of Ψ. Then for sufficiently large n, if q ≥ 2

γ ,

valΨ ≤ valqΦ + δ.

Proof. We will show that for every assignment σ ∈ Sn to Ψ, we can construct an assignment
b = (b0, . . . , bn−1) ∈ [q]n to Φ such that valΨ(σ) ≤ valqΦ(b) + δ. Fix σ ∈ Sn. Define b ∈ [q]n by
bi = bσ(i)/bγncc for each i ∈ [n]. Observe that since σ(i) ≤ n−1, we have bi ≤ b(n−1)/bγncc < q,
hence b is a valid assignment to Φ. Also, b has the property that for every i, j ∈ [n], if σ(i) < σ(j)
then bi ≤ bj ; we call this monotonicity of b.

View b ∈ [q]n as a q-partition Pb : [n] → [q] (given by Pb(i) = bi). Consider the con-
straint hypergraph of Ψ (which is the same as the constraint hypergraph of Φ). Call a constraint
C = (j0, . . . , jk−1) good if it is both satisfied by σ, and the k-hyperedge corresponding to it does
not congregate on Pb. If C is good, then Pb(j0), . . . ,Pb(jk−1) are all distinct; together with
monotonicity of b, we conclude that if C is good, then ord(bj0 , . . . , bjk−1

) = ord(σ(j0), . . . ,σ(jk−1)).

2We include the +1 to account for the extra block which may have arbitrarily small size. Excluding this block,
there are at most n

dγn/2e ≤
n

γn/2
blocks remaining.

12

Finally, we note that each block in Pb has size at most γn; hence by the SPHE property of the
constraint hypergraph of Ψ, at most δ-fraction of the constraints of Ψ correspond to k-hyperedges
which congregate on Pb. Since valΨ(σ) fraction of the constraints of Ψ are satisfied by σ, at least
(valΨ(σ)− δ)-fraction of the constraints of Ψ are good, and hence b satisfies at least (valΨ(σ)− δ)-
fraction of the constraints of Φ, as desired.

The construction in this lemma was called coarsening the assignment σ by [GHM+11] (cf.
[GHM+11, Definition 4.1]).

We also include the following helpful lemma, which lets us restrict to the case where our sampled
Max-OCSP(Π) instance has many constraints.

Lemma 4.9 (Most instances in GN have many constraints). For every n, α, γ > 0, and q ∈ N,

Pr
Ψ∼GNq,n,α,T

[
m(Ψ) ≤ nαT

2qk

]
≤ exp

(
−nαT

8qk

)
.

Proof. We observe that the following process samples an instance from GNq,n,α,T . First, sample T

hypermatchings G̃0, . . . , G̃T−1 ∼ Hn,α independently, and let G̃ := G̃0 ∪ · · · ∪ G̃T−1. Then, throw

away every k-hyperedge in G̃ with probability 1− 1
qk

independently to get a new k-hypergraph G,

and return the Max-OCSP(Π) instance whose constraint hypergraph is G. Hence, the number of
constraints in Ψ is distributed as the sum of nαT independent Bernoulli(1/qk) random variables.
The desired bound then follows by applying the Chernoff bound.

4.3.1 GN is a good SSHE with high probability

Recall that for a k-hypergraph G = (V,E) and S ⊆ V (G), we define N(G,S) to be the number of
k-hyperedges in G that lie on S, and for an k-hyperedge e ∈ E, we define Γ(e) ⊆ V as the set of
vertices incident on e.

Lemma 4.10 (Random hypermatchings barely lie on small sets). For every n and α, γ > 0 with
α ≤ 1

2k , and every subset S ⊆ [n] of at most γn vertices, we have

Pr
G∼Hn,α

[N(G,S) ≥ 8k2γ2αn] ≤ exp
(
−γ2αn

)
.

Proof. Label the hyperedges of G as e0, . . . , eαn−1. For i ∈ [αn], let Xi be the indicator for the
event that ei lies on S. We have N(G,S) = X0 + · · ·+Xαn−1.

We first bound E[Xi | X0, . . . , Xi−1] for each i. Conditioned on e0, . . . , ei−1, the k-hyperedge ei
is uniformly distributed over the set of all k-hyperedges on [n] \ (Γ(e0) ∪ · · · ∪ Γ(ei−1)). It suffices
to union-bound, over distinct pairs j1 < j2 ∈

(
[k]
2

)
, the probability that the j1-st and j2-nd vertices

of ei are in S (conditioned on X0, . . . , Xi−1). We can sample the j1-st and j2-nd vertices of ei first
(uniformly over remaining vertices outside of S) and then sample the remaining vertices (uniformly
over remaining vertices). Hence we have the upper-bound

13

E[Xi | X0, . . . , Xi−1] ≤
(
k

2

)
· |S|(|S| − 1)

(n− ki)(n− ki− 1)

≤
(
k

2

)
·
(
|S|

n− ki

)2

≤
(
k

2

)
·
(

|S|
n− kαn

)2

≤ 4k2γ2 ,

since α ≤ 1
2k .

Now, we apply the concentration bound in Lemma 2.1 to conclude that:

Pr
G∼Hn,α

[
X0 + · · ·+Xαn−1 ≥ 8k2γ2αn

]
≤ exp

(
−2k2γ2αn

)
≤ exp(−γ2αn).

Lemma 4.11. For every n, α, γ > 0, and q ∈ N with α ≤ 1
2k ,

Pr
Ψ∼GNq,n,α,T

[
G(Ψ) is not a (γ, 8k2γ2)-SSHE

∣∣∣∣ m(Ψ) ≥ nαT

2qk

]
≤ exp

(
−
(
γ2αT

2qk
− ln 2

)
n

)
.

Proof. Let α0, . . . , αT−1 ≥ 0 be such that αT
2qk
≤ α0 + · · · + αT−1 ≤ αT . It suffices to prove the

bound, for every such sequence α0, . . . , αT−1, conditioned on the event that for every i ∈ [T],
m(Gi) = αin (where Gi is defined as in Definition 3.5). This is equivalent to simply sampling each
Gi ∼ Hn,αi independently.

Fix any set S ⊆ [n] of size at most γn. Applying Lemma 4.10, and the fact that each hyper-
matching Gi in G is sampled independently, we conclude that

Pr
Ψ∼GNq,n,α,T

[
∃i ∈ [T] s.t. N(Gi, S) ≥ 8k2γ2αin

∣∣ ∀i ∈ [T],m(Gi) = αin
]

≤ exp
(
−γ2(α0 + · · ·+ αT−1)n

)
≤ exp

(
−γ

2αTn

2qk

)
.

Hence by averaging, the total fraction of k-hyperedges in G which lie on S is at most 8k2γ2.
Taking the union-bound over the ≤ 2n possible subsets S ⊆ [n] gives the desired bound.

4.3.2 GN has low coarsened Max-CSP(f qΠ) values with high probability

For G ∼ Hn,α, we define an instance Φ(G) of Max-CSP(f qΠ) on n variables x0, . . . , xn−1 naturally
as follows: for each k-hyperedge j = (j0, . . . , jk−1) ∈ E(G) ⊆ [n]k, we add the constraint j to Φ(G).

Lemma 4.12 (Satisfiability of random instances of Max-CSP(f qΠ)). For every n, α, η > 0, and
b ∈ [q]n,

Pr
G∼Hn,α

[valqΦ(G)(b) ≥ ρ(Π) + η] ≤ exp

(
−
(

η2α

2(ρ(Π) + η)

)
n

)
.

14

Proof. Let the k-hyperedges of G be labelled as e0, . . . , eαn−1 and the corresponding constraints
of Φ(G) be denoted by j(0), . . . , j(αn− 1). For i ∈ [αn], let Xi be the indicator for the event that
the constraint j(i) is satisfied by b, i.e., f qΠ(b|j(i)) = 1. Again, like in the proof of Lemma 4.10,
we bound E[Xi | X0, . . . , Xi−1], for each i. Conditioned on e0, . . . , ei−1, the k-hyperedge ei is
uniformly distributed over the set of all k-hyperedges on [n] \ (Γ(e0) ∪ · · · ∪ Γ(ei−1)). Hence,

E[Xi | X0, . . . , Xi−1] ≤ ρ(Π). Indeed, the set of possible k-hyperedges on [n]\ (Γ(e0)∪· · ·∪Γ(ei−1))
may be partitioned into blocks of size k! by mapping each k-hyperedge to the set of vertices on
which it is incident. For each subset J = {j0, . . . , jk−1} ⊆ [n], if bj0 , . . . , bjk−1

are not all distinct,
then for every π ∈ Sk, the constraint corresponding to the k-tuple jπ = (jπ(0), . . . , jπ(k−1)) is not
satisfied by b. On the other hand, if bj0 , . . . , bjk−1

are all distinct, then∣∣{π ∈ Sk : f qΠ(b|jπ) = 1}
∣∣ = |supp(Π)| = ρ(Π) · k! .

Finally, we again apply the concentration bound in Lemma 2.1 to conclude that:

Pr
G∼Hn,α

[X0 + · · ·+Xαn−1 ≥ (ρ(Π) + η)αn] ≤ exp

(
−
(

η2α

2(ρ(Π) + η)

)
n

)
,

as desired.

Lemma 4.13. For every n and α, η > 0,

Pr
Ψ∼GNq,n,α,T

[
valqΦ ≥ ρ(Π) + η, where Φ is the q-coarsening of Ψ

∣∣∣∣ m(Ψ) ≥ nαT

2qk

]
≤ exp

(
−
(

η2αT

4(ρ(Π) + η)qk
− ln q

)
n

)
.

Proof. Identical to the proof of Lemma 4.11 (using Lemma 4.12 instead of Lemma 4.10), but now
union-bounding over a set of size qn (i.e., the set of possible assignments b ∈ [q]n for Φ).

We finally give the proof of Lemma 3.7.

Proof of Lemma 3.7. Let q0 :=
⌈

192k2

ε

⌉
and let α0 := 1

2k . Suppose α ≤ α0 and q ≥ q0. Then let

γ := ε
96k2 and η := ε

4 , and let

T0 := max

{
4(ln 2)qk

γ2α
,
8(ρ(Π) + η)qk(ln q)

η2α

}
.

Consider any T ≥ T0; we will prove the desired bound. Let δ := 8k2γ2. Then the multiplicative
factors in the exponents of the error terms in Lemma 4.9, Lemma 4.11, and Lemma 4.13 are all
positive (the latter two lemmas may be applied since α ≤ α0 = 1

2k); taking a union bound (and
then conditioning on m(Ψ) ≥ nαT

2qk
), for sufficiently large n, we can conclude that with probability

at least 0.99 over Ψ ∼ GNq,n,α,T , we have valqΦ ≥ ρ(Π) + η (where Φ is the q-coarsening of Ψ) and
G(Ψ) is a (γ, δ)-SSHE. If G(Ψ) is a (γ, δ)-SSHE, by Lemma 4.7 it is also a (γ, δ′)-SPHE, where
δ′ := 3δ

γ ≥ δ(2
γ + 1). Note that δ′ = 24k2γ = ε

4 . Now since q ≥ q0 ≥ 2
γ , we can apply Lemma 4.8,

and conclude that for sufficiently large n, with probability ≥ 0.99 over the choice of Ψ ∼ GNq,n,α,T ,
we have

valΨ ≥ ρ(Π) + η + δ′ = ρ(Π) +
ε

2
,

as desired.

15

5 Streaming indistinguishability of GY and GN

In this section we prove Lemma 3.8. This indistinguishability follows directly from the work of
[CGSV21], who introduce a 2-player communication problem called “Signal Detection (SD)”, and
a related streaming problem called “Streaming SD”. Both problems are parameterized by two
distributions DY and DN supported on [q]k. If both distributions have uniform marginals then
they show that the corresponding streaming-SD problem requires Ω(

√
n) space to solve. Our lower

bound on the distinguishability of GY and GN follows immediately.
In order to state their result that we use, we recall their definition of the Streaming-SD problem,

which relies in turn on two distributions they define as part of the SD problem. We define their
distributions below, and then define the Streaming-SD problem and then state their space lower
bound. The following definition is based on [CGSV21, Definition 5.3].

Definition 5.1 (Signal Detection (SD) Distributions). Let n, k, q ∈ N, α ∈ (0, 1), where k, q and
α are constants with respect to n, and αn is an integer less than n/k. For a pair DY and DN of
distributions over [q]k we define two distributions Y and N over triples (x∗,M, z) where x∗ ∈ [q]n,
M ∈ {0, 1}kαn×n and z ∈ {0, 1}αn.

• In the YES case, the triple (x∗,M, z) ∼ Y is sampled as follows:

1. x∗ ∼ Unif([q]n).

2. M ∈ {0, 1}kαn×n is chosen uniformly among all matrices with exactly one 1 in each row
and at most one 1 in each column. We let M = (M0, . . . ,Mαn−1) where Mi ∈ {0, 1}k×n
is the ith block of rows of M , where each block has exactly k rows.

3. b = (b(0), . . . ,b(αn−1)) is sampled by sampling each b(i) ∈ [q]k independently according
to DY .

4. z = (z(0), . . . , z(αn − 1)) is determined from M , x∗ and b as follows. For each i, we
define z(i) = 1 if Mix

∗ = b(i), and z(i) = 0 otherwise.

• The NO case is similar. To sample (x∗,M, z) ∼ N we sample x∗ and M as in the YES
case. We now sample each b(i) independently according to DN for i ∈ [αn], and let z(i) = 1
if Mix

∗ = b(i), and z(i) = 0 otherwise.

We now define the Streaming-SD problem.

Definition 5.2 (Streaming-SD, [CGSV21, Definition 5.5]). Let n, q, T ∈ N, α ∈ (0, 1), where q,
T , and α are constants with respect to n. For a pair DY and DN of distributions over [q]k, the
(DY ,DN , T)-streaming-SD problem is the task of distinguishing, for every n, σ ∼ Ystrm,n from σ ∼
Nstrm,n where for a given length parameter n, the distributions Ystrm = Ystrm,n and Nstrm = Nstrm,n

are defined as follows:

• Let Y be the distribution over YES-instances of length n, i.e., triples (x∗,M, z), from YES-
case of the definition of (DY ,DN)-SD (Definition 5.1). For x ∈ [q]n, let Y|x denote the
distribution Y conditioned on x∗ = x. The stream σ ∼ Ystrm is sampled as follows:

– Sample x∗ uniformly from [q]n.

– Let (M (0), z(0)), . . . , (M (T−1), z(T−1)) be sampled independently according to Y|x∗.
– Let σ(t) be the pair (M (t), z(t)) presented as a stream of edges with labels in {0, 1}.

16

– Specifically for t ∈ [T] and i ∈ [αn], let σ(t)(i) = (e(t)(i), z(t)(i)) where e(t)(i) is the i-th
hyperedge of M (t), i.e., e(t)(i) = (j(t)(ki), . . . , j(t)(ki + k − 1) and j(t)(`) is the unique

index j such that M
(t)
j,` = 1.

– Let σ = σ(0) ◦ · · · ◦ σ(T−1) be the concatenation of the σ(t)s.

• σ ∼ Nstrm is sampled similarly except we now sample (M (0), z(0)), . . . , (M (T−1), z(T−1)) inde-
pendently according to N|x∗ where N|x is the distribution N of NO-instances conditioned on
x∗ = x.

We say that an algorithm ALG solves (DY,πq ,DNq , T)-streaming-SD with advantage δ if there exists
an n0 such that for all n ≥ n0, we have

E
σ∼Ystrm

[ALG(σ) = 1]− E
σ∼Nstrm

[ALG(σ) = 1] ≥ δ.

The following theorem from [CGSV21] states that every streaming algorithm ALG solving
(DY ,DN , T)-streaming-SD for distributions DY and DN with uniform marginal distributions, with
some constant advantage for all lengths n, uses space Ω(

√
n).

Theorem 5.3 ([CGSV21, Lemma 5.14]). For every q, k ∈ N there exists α0(k) > 0 such that for
every T ∈ N, α ∈ (0, α0(k)] the following holds: If DY ,DN are distributions supported on [q]k with
uniform marginals, then every streaming algorithm ALG solving (DY ,DN , T)-streaming-SD with
advantage 1/8 for all lengths n uses space Ω(

√
n).

We note that Lemma 5.14 in [CGSV21] actually states a more general (and somewhat harder to
state) result that effectively allows the use of some pairs of distributions that do not have uniform
marginals. But it is straightforward to see that Theorem 5.3 is a special case of their Lemma 5.14
and we do not state the more general form here.

We are now ready to prove Lemma 3.8 which is restated for convenience below.

Lemma 3.8. For every q, k ∈ N there exists α0(k) > 0 such that for every T ∈ N, α ∈ (0, α0(k)]
the following holds: For every Π : Sk → {0, 1} and π ∈ supp(Π), every streaming algorithm ALG
distinguishing GY,πq,n,α,T (Π) from GNq,n,α,T (Π) with advantage 1/8 for all lengths n uses space Ω(

√
n).

Proof of Lemma 3.8. We prove the lemma for the same α0 as in Theorem 5.3.
Suppose ALG distinguishes GY,πq,n,α,T (Π) from GNq,n,α,T (Π) with advantage 1/8 for all lengths n.

In Definition 3.2, we constructed two distributions DY,πq and DNq supported on [q]k with uniform

marginals. We now show how to use ALG to get an algorithm ALG′ solving (DY,πq ,DNq , T)-
streaming-SD with advantage 1/8 for all lengths n. The Ω(

√
n) space lower bound then follows

from Theorem 5.3.
Let Ystrm,n and Nstrm,n denote the distributions of YES and NO instances of (DYq (π),DN , T)-

streaming-SD of length n. Given an instance σ of streaming-SD, which is a sequence
(σ(0), . . . ,σ(αTn − 1)) where each σ(i) = (j(i), z(i)) with j(i) ∈ [n]k and z(i) ∈ {0, 1}, the
algorithm ALG′ produces (a stream representing) an instance Ψ(σ) of Max-OCSP(Π) with n vari-
ables. The variables of Ψ are x = (x0, . . . , xn−1), where x ∈ Sn, and the constraints C0, . . . , Cm−1

of Ψ are constructed as follows. For each σ(i) = (j(i), z(i)) with z(i) ∈ {0, 1}, if z(i) = 1 we
add the constraint j(i) to Ψ, otherwise if z(i) = 0, we don’t add the corresponding constraint to
Ψ. Observe that for σ ∼ Ystrm,n, we have Ψ(σ) ∼ GY,πq,n,α,T (Π), and for σ ∼ Nstrm,n, we have

17

Ψ(σ) ∼ GNq,n,α,T (Π), where GY,πq,n,α,T (Π) and GNq,n,α,T (Π) are the distributions on the instances of

Max-OCSP(Π) that were defined in Definition 3.5. ALG′ now runs ALG on Ψ and outputs what
ALG outputs. It is straightforward to see that ALG′ achieves the same advantage as ALG, thus
proving the lemma.

References

[CGSV21] Chi-Ning Chou, Alexander Golovnev, Madhu Sudan, and Santhoshini Velusamy. Ap-
proximability of all finite CSPs in the dynamic streaming setting. In ECCC, 3rd May
2021.

[GHM+11] Venkatesan Guruswami, Johan H̊astad, Rajsekar Manokaran, Prasad Raghavendra,
and Moses Charikar. Beating the random ordering is hard: Every ordering CSP is
approximation resistant. SIAM Journal on Computing, 40(3):878–914, 2011.

[GT19] Venkatesan Guruswami and Runzhou Tao. Streaming hardness of unique games. In
APPROX 2019, pages 5:1–5:12. LIPIcs, 2019.

[GVV17] Venkatesan Guruswami, Ameya Velingker, and Santhoshini Velusamy. Streaming com-
plexity of approximating Max 2CSP and Max Acyclic Subgraph. In Approximation,
Randomization, and Combinatorial Optimization. Algorithms and Techniques (AP-
PROX/RANDOM 2017). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

[KK19] Michael Kapralov and Dmitry Krachun. An optimal space lower bound for approxi-
mating MAX-CUT. In STOC 2019, pages 277–288. ACM, 2019.

18

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

