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Abstract

An ordering constraint satisfaction problem (OCSP) is given by a positive integer k and
a constraint predicate Π mapping permutations on {1, . . . , k} to {0, 1}. Given an instance of
OCSP(Π) on n variables and m constraints, the goal is to find an ordering of the n variables
that maximizes the number of constraints that are satisfied, where a constraint specifies a
sequence of k distinct variables and the constraint is satisfied by an ordering on the n variables
if the ordering induced on the k variables in the constraint satisfies Π. Ordering constraint
satisfaction problems capture natural problems including “Maximum acyclic subgraph (MAS)”
and “Betweenness”.

In this work we consider the task of approximating the maximum number of satisfiable
constraints in the (single-pass) streaming setting, where an instance is presented as a stream
of constraints. We show that for every Π, OCSP(Π) is approximation-resistant to o(n)-space
streaming algorithms, i.e., algorithms using o(n) space cannot distinguish streams where almost
every constraint is satisfiable from streams where no ordering beats the random ordering by a
noticeable amount. This space bound is tight up to polylogarithmic factors. In the case of MAS
our result shows that for every ε > 0, MAS is not 1/2 + ε-approximable in o(n) space. The
previous best inapproximability result only ruled out a 3/4-approximation in o(

√
n) space.

Our results build on recent works of Chou, Golovnev, Sudan, Velingker, and Velusamy who
show tight, linear-space inapproximability results for a broad class of (non-ordering) constraint
satisfaction problems (CSPs) over arbitrary (finite) alphabets. Our results are obtained by
building a family of appropriate CSPs (one for every q) from any given OCSP, and applying
their work to this family of CSPs. To convert the resulting hardness results for CSPs back to
our OCSP, we show that the hard instances from this earlier work have the following “small-set
expansion” property: If the CSP instance is viewed as a hypergraph in the natural way, then
for every partition of the hypergraph into small blocks most of the hyperedges are incident on
vertices from distinct blocks. By exploiting this combinatorial property, in combination with
the hardness results of the resulting families of CSPs, we give optimal inapproximability results
for all OCSPs.
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1 Introduction

In this work we consider the complexity of “approximating” “ordering constraint satisfaction prob-
lems (OCSPs)” in the “streaming setting”. We introduce these notions below before describing our
results.

1.1 Orderings and Constraint Satisfaction Problems

In this work we consider optimization problems where the solution space is all possible orderings of
n variables. The Travelling Salesperson Problem and most forms of scheduling fit this framework,
though our work considers a more restricted class of problems, namely ordering constraint satisfac-
tion problems (OCSPs). OCSPs as a class were first defined by Guruswami, H̊astad, Manokaran,
Raghavendra, and Charikar [GHM+11]. To describe them here, we first set up some notation and
terminology, and then give some examples.

We let [n] denote the set {0, . . . , n− 1} and Sn denote the set of permutations on [n], i.e., the
set of bijections σ : [n] → [n]. We sometimes use [σ(0) σ(1) · · ·σ(n − 1)] to denote σ : [n] → [n].
The solution space of ordering problems is Sn, i.e., an assignment to n variables is given by σ ∈ Sn.
Given k distinct integers a0, . . . , ak−1 we define ord(a0, . . . , ak−1) to be the unique permutation in
Sk which sorts a0, . . . , ak−1. In other words, ord(a0, . . . , ak−1) is the unique permutation π ∈ Sk
such that aπ(0) < · · · < aπ(k−1). A k-ary ordering constraint function is given by a predicate
Π : Sk → {0, 1}. An ordering constraint application on n variables is given by a constraint function
Π and a k-tuple j = (j0, j1, . . . , jk−1) ∈ [n]k where the ji’s are distinct. In the interest of brevity we
will often skip the term “ordering” below and further refer to constraint functions as “functions”
and constraint applications as “constraints”. A constraint (Π, j) is satisfied by an assignment σ ∈ Sn
if Π(ord(σ|j)) = 1, where σ|j is the k-tuple (σ(j0), . . . ,σ(jk−1)) ∈ [n]k.

A maximum ordering constraint satisfaction problem, Max-OCSP(Π), is specified by a single
ordering constraint function Π : Sk → {0, 1}, for some positive integer arity k. An instance of
Max-OCSP(Π) on n variables is given by m constraints C0, . . . , Cm−1 where Ci = (Π, j(i)), i.e.,
the application of the function Π to the variables j(i) = (j(i)0, . . . , j(i)k−1). (We omit Π from the
description of a constraint Ci when clear from context.) The value of an ordering σ ∈ Sn on an
instance Ψ = (C0, . . . , Cm−1), denoted valΨ(σ), is the fraction of constraints satisfied by σ, i.e.,
valΨ(σ) = 1

m

∑
i∈[m] Π(ord(σ|j(i))). The optimal value of Ψ is defined as valΨ = maxσ∈Sn{valΨ(σ)}.

The simplest, and arguably most interesting, problem which fits the Max-OCSP framework is
the maximum acyclic subgraph (MAS) problem. In this problem, the input is a directed graph
on n vertices, and the goal is to find an ordering of the vertices which maximize the number of
forward edges. A simple depth-first search algorithm can decide whether a given graph G has a
perfect ordering (i.e., one which has no back edges); however, Karp [Kar72], in his famous list
of 21 NP-complete problems, proved the NP-completeness of deciding whether, given a graph G
and a parameter k, there exists an ordering of the vertices such that at least k edges are forward.
For our purposes, MAS can be viewed as a 2-ary Max-OCSP problem, by defining the ordering
constraint predicate ΠMAS : S2 → {0, 1} given by ΠMAS([0 1]) = 1 and ΠMAS([1; 0]) = 0, and
associating vertices with variables and edges with constraints. Indeed, an edge/constraint (u, v)
(where u, v ∈ [n] are distinct variables/vertices) will be satisfied by an assignment/ordering σ ∈ Sn
iff ΠMAS(ord(σ|(u,v))) = 1, or equivalently, iff σ(u) < σ(v).

A second natural Max-OCSP problem is the maximum betweenness (MaxBtwn) problem. This
is a 3-ary OCSP in which an ordering σ satisfies a constraint (u, v, w) iff σ(v) is between σ(u)
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and σ(w), i.e., iff σ(u) < σ(v) < σ(w) or σ(u) > σ(v) > σ(w), and the goal is again to find the
maximum number of satisfiable constraints. This is given by the constraint satisfaction function
ΠBtwn : S3 → {0, 1} given by ΠBtwn([0 1 2]) = 1,ΠBtwn([2 1 0]) = 1, and ΠBtwn(π) = 0 for all other
π ∈ S3. The complexity of maximizing betweenness was originally studied by Opatrny [Opa79],
who proved that even deciding whether a set of betweenness constraints is perfectly satisfiable is
NP-complete.

1.2 Approximability

In this work we consider the approximability of ordering constraint satisfaction problems. We say
that a (randomized) algorithm A is an α-approximation algorithm for Max-OCSP(Π) if for every
instance Ψ, α · valΨ ≤ A(Ψ) ≤ valΨ with probability at least 2/3 over the internal coin tosses of A.
Thus our approximation factors α are numbers in the interval [0, 1].

Given Π : Sk → {0, 1} let ρ(Π) = |{π∈Sk|Π(π)=1}|
k! denote the probability that Π is satisfied by

a random ordering. Every instance Ψ of Max-OCSP(Π) satisfies valΨ ≥ ρ(Π) and thus the trivial
algorithm that always outputs ρ(Π) is a ρ(Π)-approximation algorithm for Max-OCSP(Π). Under
what conditions it is possible to beat this trivial approximation is a major open question.

For MaxBtwn, the trivial algorithm is a 1
3 -approximation. Chor and Sudan [CS98] showed that

(47
48 + ε)-approximating MaxBtwn is NP-hard, for every ε > 0. The 47

48 factor was improved to 1
2 by

Austrin, Manokaran, and Wenner [AMW15]. For MAS, the trivial algorithm is a 1
2 -approximation.

Newman [New00] showed that (65
66 + ε)-approximating MAS is NP-hard, for every ε > 0. [AMW15]

improved the 65
66 to 14

15 , and Bhangale and Khot [BK19] further improved the factor to 2
3 .

We could hope that for every nontrivial nontrivial Max-OCSP(Π), it is NP-hard to even
(ρ(Π) + ε)-approximate Max-OCSP(Π) for any constant factor ε > 0. This property is called
approximation resistance (and we define it more carefully in the setting of streaming algorithms
below). Approximation resistance based on NP-hardness is known for certain constraint satisfac-
tion problems which do not fall under the Max-OCSP framework; this includes the seminal result
of H̊astad [H̊as01] that it is NP-hard to (7

8 + ε)-approximate Max3AND for any ε > 0. But as far
as we know, such results are lacking for any Max-OCSP problem.

Given this state of affairs, Guruswami, H̊astad, Manokaran, Raghavendra, and
Charikar [GHM+11] proved the “next best thing”: assuming the unique games conjecture (UGC)
of Khot [Kho02], every Max-OCSP(Π) is approximation-resistant. But the question of proving ap-
proximation resistance for polynomial-time algorithms without relying on unproven assumptions
such as UGC and P 6= NP remains unsolved. Towards this goal, in this work, we consider the
approximability of Max-OCSP’s in the (single-pass) streaming model, which we define below.

1.3 Streaming algorithms

A (single-pass) streaming algorithm is defined as follows. An instance Ψ = (C0, . . . , Cm−1) of
Max-OCSP(Π) is presented as a stream of constraints with the ith element of the stream being j(i)
where Ci = (Π, j(i)). A streaming algorithm A updates its state with each element of the stream and
at the end produces the output A(Ψ) ∈ [0, 1] (which is supposed to estimate valΨ). The measure
of complexity of interest to us is the space used by A and in particular we distinguish between
algorithms that use space polylogarithmic in the input length and space that grows polynomially
(Ω(nδ) for δ > 0) in the input length.
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We say that a problem Max-OCSP(Π) is approximable (in the streaming setting) if we can beat
the trivial ρ(Π)-approximation algorithm by a positive constant factor. Specifically Max-OCSP(Π)
is said to be approximable if for every δ > 0 there exists ε > 0 and a space O(nδ) algorithm A that is
a (ρ(Π) + ε)-approximation algorithm for Max-OCSP(Π), We say Max-OCSP(Π) is approximation-
resistant (in the streaming setting) otherwise.

In recent years, investigations into CSP approximability in the streaming model have been strik-
ingly successful, resulting in tight characterizations of streaming approximability for many problems
[KK15, KKS15, KKSV17, GVV17, GT19, KK19, CGV20, CGSV21a, CGSV21b, CGS+21]. Most
of these papers studied approximability, not of ordering CSPs, but of “non-ordering CSPs” where
the variables can take values in a finite alphabet. ([GVV17] and [GT19] are the exceptions, and we
will discuss them below.) While single-pass streaming algorithms are a weaker model than general
polynomial-time algorithms, we do remark that nontrivial approximations for many problems are
possible in the streaming setting. In particular, the Max2AND problem is (roughly) 4

9 -approximable
in the streaming setting (whereas the trivial approximation is a 1

4 -approximation) [CGV20].

1.4 Main result and comparison to prior and related works

Theorem 1.1 (Main theorem). For every k ∈ N and every Π : Sk → {0, 1}, Max-OCSP(Π) is
approximation resistant in the (single-pass) streaming setting. In particular for every ε > 0, every
(ρ(Π) + ε)-approximation algorithm A for Max-OCSP(Π) requires Ω(n) space.

In particular our theorem implies that MAS is not 1/2 + ε-approximable in o(n) space for every
ε > 0, and MaxBtwn is not 1/3 + ε-approximable. Theorem 1.1 is restated in Section 3 and proved
there.

Theorem 1.1 parallels the classical result of [GHM+11], who prove that Max-OCSP(Π) is ap-
proximation resistant with respect to polynomial-time algorithms, for every Π, assuming the unique
games conjecture. In our setting of streaming algorithms, the only problem that seems to have been
previously explored in the literature was MAS, and even in this case a tight approximability result
was not known.

In the case of MAS, Guruswami, Velingker, and Velusamy [GVV17] proved that for every ε > 0,
MAS is not (7

8 +ε)-approximable in o(
√
n) space using a gadget reduction from the Boolean hidden

matching problem [GKK+08]. A stronger o(
√
n)-space, 3/4-approximation hardness for MAS is

indicated in the work of Guruswami and Tao [GT19], who prove streaming bounds for unique
games, an “non-ordering” CSP problem, and suggest a reduction from unique games to MAS.

As far as we know, our result is the first tight approximability result for Max-OCSP(Π) for
any non-constant Π in Ω(nδ) space for any δ > 0, and it yields tight approximability results for
every Π in linear space. We remark that this linear space bound is also optimal (up to logarithmic
factors); similarly to the observation in [CGS+21] for non-ordering CSPs, Max-OCSP(Π) values can
be approximated arbitrarily well in Õ(n) space by subsampling O(n) constraints from the input
instance and then solving the Max-OCSP(Π) problem on this subinstance exactly.1

Chakrabarti, Ghosh, McGregor, and Vorotnikova [CGMV20] recently also studied directed
graph ordering problems (e.g., acyclicity testing, (s, t)-connectivity, topological sorting) in the
streaming setting. For the problems that considered in [CGMV20], their work gives super-linear

1This assumes a definition of streaming complexity which makes no restriction on time complexity. Of course,
if we restrict to polynomial time, then assuming the unique games conjecture, no nontrivial approximation will be
possible.
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space lower bounds even for multi-pass streaming algorithms. Note that for our problems an Õ(n)
upper bound holds, suggesting that their problems are not OCSPs. Indeed this is true, but one of
the problems considered is close enough to MAS to allow a more detailed comparison. The specific
problem is the minimum feedback arc set (MFAS) problem, the goal of which is to output the
fractional size of the smallest set of edges whose removal produces an acyclic subgraph. In other
words, the sum of MFAS value of a graph and the MAS value of the graph is exactly one. [CGMV20]
proved that for every κ > 1, κ-approximating2 the MFAS value requires Ω(n2) space in the stream-
ing setting (for a single pass, and more generally Ω(n1+Ω(1/p)/pO(1)) space for p passes). Note that
such lower bounds are obtained using instances with optimum MFAS values that are o(1). Thus
the MAS values in the same graph are 1− o(1) (even in the NO instances) and thus these results
usually do not imply any hardness of approximation for MAS.

1.5 Techniques

Our general approach is to start with a hardness result for CSPs over alphabets of size q (i.e.,
constraint satisfaction problems where the variables take values in [q]), and then to reduce these
CSPs to the OCSP at hand. While this general approach is not new, the optimality of our results
seems to come from the fact that we choose the CSP problem carefully, and are able to get optimal
hardness results for problems of our choice thanks to a general result of Chou, Golovnev, Sudan,
Velingker and Velusamy [CGS+21]. Thus whereas previous approaches towards proving hardness
of MAS, for example, were unable to get optimal hardness results for MAS despite starting with
optimal hardness results of the source (unique games), by choosing our source problem more care-
fully we manage to get optimal hardness results. In the remainder of this section, we describe and
motivate this approach towards proving the approximation-resistance of Max-OCSP’s.

1.5.1 Special case: The intuition for MAS

We start by describing our proof technique for the special case of the MAS problem. In this section,
for readability, we (mostly) use the language of graphs, edges, and vertices instead of instances,
constraints, and variables.

Similarly to earlier work in the setting of streaming approximability (e.g., [KKS15]), we prove
inapproximability of MAS by exhibiting a pair of distributions, which we denote GY and GN ,
satisfying the following two properties:

1. GY and GN are “indistinguishable” to streaming algorithms (to be defined formally below)

2. (With high probability) GY has high MAS values (≈ 1) and GN has low MAS values (≈ 1
2)

The existence of such distributions would suffice to establish the theorem: there cannot be any
streaming approximation for MAS, since any such algorithm would be able to distinguish these
distributions. But how are we to actually construct distributions GY and GN satisfying these
properties?

The strategy which has proved successful in past work for proving streaming approximation
resistance of other varieties of CSPs was roughly to let the GN graphs be completely random, while
GY graphs are sampled with “hidden structure”, which is essentially a very good assignment. Then,

2For minimization problems a κ approximation is one whose value is at least the minimum value and at most κ
times larger than the minimum. Thus approximation factors are larger than 1.
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one would show that streaming algorithms cannot detect the existence of such hidden structure, via
a reduction to a communication game (typically a variant of Boolean hidden matching [GKK+08,
VY11]). In our setting, we might hope that the hidden structure could simply be an ordering; that
is, we could hope to define GY by first sampling a random ordering of the vertices, then sampling
edges which go forward with respect to this ordering, and then perhaps adding some noise. But
unfortunately, we lack the techniques to prove communication lower bounds when orderings are
the hidden structure.

Hence, instead of seeking a direct proof of an indistinguishability result, in this paper, we
turn back to earlier indistinguishability results proven in the context of non-ordering CSPs. In this
setting, variables take on values in an alphabet [q], and constraints specify allowed values of subsets
of the variables. In particular, two distinct variables may take on the same value in [q], whereas
in the ordering setting, every variable in [n] must get a distinct value in [n]. (See Section 4.1
for a formal definition.) We will set q to be a large constant, carefully design a non-ordering
CSP function, employ past results (i.e., [CGS+21]) to characterize its streaming inapproximability,
examine the GY and GN graphs created in the reduction, and then show that GN graphs have low
MAS values while the hidden structure in the GY graphs — even if it isn’t an ordering per se —
guarantees high MAS values.

Why would we expect such an idea to work out, and how do we properly choose the non-
ordering CSP constraint function? To begin, this constraint function will be a 2-ary function
f : [q]2 → {0, 1}. Let Max-CSP(f) denote the non-ordering CSP problem of maximizing the
number of f constraints satisfied by an assignment b ∈ [q]n. We will view an input graph G simul-
taneously as an instance of MAS and as an instance of Max-CSP(f), with the same underlying set of
edges/constraints. For a graph G, let valG denote its MAS value and valG its value in Max-CSP(f).
We will choose f so that the indistinguishable hard distributions GY and GN (originating from the
reduction of [CGS+21]) have the following four properties:

1. With high probability over G ∼ GY , valG ≈ 1.

2. With high probability over G ∼ GN , valG ≈ 1
2 .

3. For all G, valG ≥ valG.

4. With high probability over G ∼ GN , valG is not much larger than valG.

Together, these items will suffice to prove the theorem since Item 2 and Item 4 together imply
that with high probability over G ∼ GN , valG ≈ 1

2 , while Item 1 and Item 3 together imply that
with high probability over G ∼ GY , valG ≈ 1.

Concretely, we setup the non-ordering CSP function as follows. Recall that ΠMAS([0 1]) = 1
while ΠMAS([1 0]) = 0. We define the constraint function f qMAS : [q]2 → {0, 1} by f qMAS(x, y) = 1

iff x < y. Note that f qMAS is supported on q(q−1)
2 ≈ 1

2 pairs in [q]2. We first show that [CGS+21]’s
results imply that Max-CSP(f qMAS) is approximation-resistant, and pick GY and GN as the YES
and NO distributions witnessing this result. This immediately yields Item 1 and Item 2 above. It
remains to prove Item 4 and Item 3. In the remainder of this subsection, we sketch the proofs; see
Figure 1 for a visual depiction, and Section 4 for the formal proofs.

Towards Item 3, we take advantage of the fact that Max-CSP(f qMAS) captures a “q-coarsening”
of MAS. We consider an arbitrary Max-CSP(f qMAS)-assignment b ∈ [q]n for a graph G, which assigns
to the i-th vertex a value bi ∈ [q]. We construct an ordering of G’s vertices by first placing the
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“block” of vertices assigned value 0, then the block of vertices assigned 1, etc., finally placing the
vertices assigned value q−1. (Within any particular block, the vertices may be ordered arbitrarily.)
Now whenever an edge (u, v) is satisfied by b when viewing G as an instance of Max-CSP(f qMAS)
— that is, whenever bv > bu — the same edge will be satisfied by our constructed ordering when
viewing G as an instance of MAS. Hence valG ≥ valG.

Towards Item 4, we can no longer use the results of [CGS+21] as a black box. Instead, we
show that the graphs GN are “small partition expanders” in a specific sense: any partition of the
constraint graph into q roughly equal sized blocks has very few edges, specifically a o(1) fraction,
which lie within the blocks. Now, we think of an ordering σ ∈ Sn variables as dividing the n variables
into q blocks with variables σ(0), . . . ,σ(n/q − 1) being in the first block, σ(n/q), . . . ,σ(2n/q − 1)
being in the second block and so on. Whenever an edge (u, v) is satisfied by σ when viewing G
as an instance of MAS, it will also be satisfied by our constructed ordering when viewing G as an
instance of Max-CSP(f qMAS), unless u and v end up in the same block; but by the small partition
expansion condition, this happens only for o(1) fraction of the edges. Hence valG ≤ valG + o(1).

We remark in passing that our notion of coarsening is somewhat similar to, but not the same
as, that used in previous works, notably [GHM+11]. In particular the techniques used to compare
the OCSP value (before coarsening) with the non-ordering CSP value (after coarsening) are some-
what different: Their analysis involves more sophisticated tools such as influence of variables and
Gaussian noise stability. The proof of Item 4 in our setting, in contrast, uses a more elementary
analysis of the type common with random graphs. Finally, we remark that in the rest of the paper,
in the interest of self-containedness, our construction will “forget” about Max-CSP(f qMAS), define
the distributions GY and GN explicitly, and treat valG simply as an artifact of the analysis which
calculates the MAS values of GY and GN , but we hope that this discussion has motivated the
construction.

1.5.2 Extending to general ordering CSPs

Extending the idea to other OCSPs involves two additional steps. Given the constraint function Π
(of arity k) and positive integer q, we define f qΠ analogously to f qMAS. We then explicitly describe
the YES and NO distributions of Max-CSP(f qΠ) which the general theorem of [CGS+21] shows are
indistinguishable to o(n) space algorithms. Crucial to this application is the observation that f qΠ is
an “1−k − 1/q-wide” function, where f qΠ is ω-wide if there exists a vector v = (v0, . . . , vk−1) ∈ [q]k

such that for an ω-fraction of a ∈ [q], we have f qΠ(v0 + a, . . . , vk−1 + a) = 1. This would allow us
to conclude that Max-CSP(f qΠ) is hard to approximate to within factor of roughly ρ/ω, though as
in the special case of MAS we do not use this result explicitly.3 Instead, the second step of our
proof replicates Item 4 above. We give an analysis of the partition expansion in the NO instances
arising from the construction in [CGS+21]. Specifically we show that the constraint hypergraph is
now a “small partition hypergraph expander”, in the sense that any partition into q roughly equal
sized blocks would have very few hyperedges that contain even two vertices from the same block.
With these two additional ingredients in place, and following the same template as in the hardness
for MAS, we immediately get the approximation resistance of Max-OCSP(Π) for general Π.

This version. The current version of this paper improves on a previous version of this pa-
per [SSV21] that gave only Ω(

√
n) space lower bounds for all OCSPs. Our improvement to Ω(n)

3Indeed, the “width” observation is involved in the proof of Item 1 and Item 2 even in the MAS case (with k = 2).
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space lower bounds comes by invoking the more recent results of [CGS+21], whereas our previous
version used the strongest lower bounds for CSPs that were available at the time from an earlier
work of Chou, Golovnev, Sudan, and Velusamy [CGSV21b]. The results of [CGSV21b] are quanti-
tatively weaker for the problems considered in [CGS+21], though their results apply to a broader
collection of problems. Interestingly for our application, which covers all OCSPs, the narrower
set of problems considered in [CGS+21] suffices. We also note that the proof in this version of
our paper is more streamlined thanks to the notion of “wide” constraints introduced and used in
[CGS+21].

Organization of the rest of the paper. In Section 2 we introduce some notation we use and
background material. In Section 3 we prove our main theorem, Theorem 1.1. In this section we
also introduce two distributions on Max-OCSP(Π) instances, the YES distribution and the NO
distribution, and state lemmas asserting that these distributions are concentrated on instances with
high, and respectively low, OCSP value; and that these distributions are indistinguishable to single-
pass small space streaming algorithms. We prove the lemmas on the OCSP values in Section 4,
and prove the indistinguishability lemma in Section 5.

2 Preliminaries and definitions

2.1 Basic notation

Some of the notation we use is already introduced in Section 1.1. Here we introduce some more
notation we use.

The support of an ordering constraint function Π : Sk → {0, 1} is the set supp(Π) = {π ∈
Sk|Π(π) = 1}.

Addition of elements in [q] is implicitly taken modulo q.
Throughout this paper we will be working with k-uniform ordered hypergraphs, or simply k-

hypergraphs, defined in the sequel. Given a finite set V , an (ordered, self-loop-free) k-hyperedge
e = (v1, . . . , vk) is a sequence of k distinct elements v1, . . . , vk ∈ V . We stress that the ordering
of vertices within an edge is important to us. An (ordered, self-loop-free, multi-) k-hypergraph
G = (V,E) is given by a set of vertices V and a multiset E = E(G) ⊆ V k of k-hyperedges A
k-hyperedge e is incident on a vertex v if v appears in e. Let Γ(e) ⊆ V denote the set of vertices
to which a k-hyperedge e is incident, and let m = m(G) denote the number of k-hyperedges in G.

A k-hypergraph is a k-hypermatching if it has the property that no pair of (distinct) k-
hyperedges is incident on the same vertex. For α ≤ 1

k , an α-partial k-hypermatching is a k-
hypermatching which contains αn k-hyperedges. We let Hk,n,α denote the uniform distribution
over all α-partial k-hypermatchings on [n].

A vector b = (b0, . . . , bn−1) ∈ [q]n may be viewed as a q-partition of [n] into blocks
b−1(0), . . . ,b−1(q−1), where the i-th block b−1(i) is defined as the set of indices {j ∈ [n] : bj = i}.
Given b = (b0, . . . , bn−1) ∈ [q]n and an indexing vector j = (j0, . . . , jk−1) ∈ [n]k, we define
b|j = (bj0 , . . . , bjk−1

).
Given an instance Ψ of Max-OCSP(Π) on n variables, we define the constraint hypergraph G(Ψ)

to be the k-hypergraph on [n], where each k-hyperedge corresponds to a constraint (given by the
exact same k-tuple). We also let m(Ψ) denote the number of constraints in Ψ (equiv., the number
of k-hyperedges in G(Ψ)).
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2.2 Concentration bound

We also require the following form of Azuma’s inequality, a concentration inequality for submartin-
gales. For us the following form, for Boolean-valued random variables with bounded conditional
expectations taken from Kapralov and Krachun [KK19], is particularly convenient.

Lemma 2.1 ([KK19, Lemma 2.5]). Let X0, . . . , Xm−1 be (not necessarily independent) {0, 1}-
valued random variables, such that for some p ∈ (0, 1), E[Xi | X0, . . . , Xi−1] ≤ p for every i ∈ [m].
Then if µ := pm, for every ν > 0,

Pr[X0 + · · ·+Xm−1 ≥ µ+ ν] ≤ exp

(
−1

2
· ν2

µ+ ν

)
.

3 The streaming space lower bound

In this section we prove our main theorem, modulo some lemmas that we prove in later sections.
We restate the theorem below for convenience.

Theorem 1.1 (Main theorem). For every k ∈ N and every Π : Sk → {0, 1}, Max-OCSP(Π) is
approximation resistant in the (single-pass) streaming setting. In particular for every ε > 0, every
(ρ(Π) + ε)-approximation algorithm A for Max-OCSP(Π) requires Ω(n) space.

Our lower bound is proved, as is usual for such statements, by showing that no small space
algorithm can “distinguish” YES instances with OCSP value at least 1− ε/2, from NO instances
with OCSP value at most ρ(Π) + ε/2. Such a statement is in turn proved by exhibiting two
families of distributions, the YES distributions and the NO distributions, and showing these
are indistinguishable. Specifically we choose some parameters q, T, α and a permutation π ∈ Sk
carefully and define two distributions GY = GY,πq,n,α,T (Π) and GN = GNq,n,α,T (Π). We claim that for

our choice of parameters GY is supported on instances with value at least 1−ε/2 — this is asserted
in Lemma 3.3. Similarly we claim that GN is mostly supported (with probability 1 − o(1)) on
instances with value at most ρ(Π) + ε/2 (see Lemma 3.4). Finally we assert in Lemma 3.5 that any
algorithm that distinguishes GY from GN with “advantage” at least 1/8 (i.e., accepts Ψ ∼ GY with
probability 1/8 more than Ψ ∼ GN ) requires Ω(n) space.

Assuming Lemma 3.3, Lemma 3.4, and Lemma 3.5 the proof of Theorem 1.1 is straightforward
and proved at the end of this section. Proofs of Lemma 3.3 and Lemma 3.4 are in Section 4 and of
Lemma 3.5 in Section 5.

3.1 Distribution of hard instances

For `, k ∈ [q], define the k-tuple of “contiguous” values v
(`)
q = (`, . . . , ` + k − 1) ∈ [q]k. Crucially,

since the addition here is taken modulo q, we may have ` + k − 1 < ` and in particular ord(v
(`)
q )

may not be the identity.
For a k-tuple a = (a0, . . . , ak−1) and a permutation π ∈ Sk, define the permuted k-tuple aπ

as (aπ−1(0), . . . , aπ−1(k−1)). In particular, we have (v
(`)
q )π = (π−1(0) + `, . . . ,π−1(k − 1) + `). We

define aπ in this way because:

Proposition 3.1. If a is a k-tuple of distinct integers, then ord(aπ) = ord(a) ◦π (where ◦ denotes
composition of permutations).

9



Proof. Recall that ord(a) is the unique permutation τ such that aτ (0) < · · · < aτ (k−1). Let
τ = ord(a), and let σ = ord(aπ), so that σ is the unique permutation such that aσ(π−1(0)) < · · · <
aσ(π−1(k−1)). Then τ = σ ◦ π−1. Hence τ ◦ π = σ, as desired.

We now formally define our YES and NO distributions for Max-OCSP(Π).

Definition 3.2 (GY,πq,n,α,T (Π) and GNq,n,α,T (Π)). For k ∈ N and Π : Sk → {0, 1}, let q, n, T ∈ N,

α > 0, and let B = N or B = (Y,π) for some π ∈ supp(Π). We define the distribution GBq,n,α,T ,
over n-variable Max-OCSP(Π) instances, as follows:

1. Sample a uniformly random q-partition b = (b0, . . . , bn−1) ∈ [q]n.

2. Sample T hypermatchings independently G̃0, . . . , G̃T−1 ∼ Hk,n,α.

3. For each t ∈ [T ], do the following:

• Let Gt be an empty k-hypergraph on [n].

• For each k-hyperedge ẽ = (j0, . . . , jk−1) ∈ E(G̃t):

– (YES) If B = (Y,π), and there exists ` ∈ [q] such that b|j = (v
(`)
q )π, add ẽ to Gt

with probability 1
q .

– (NO) If B = N , add ẽ to Gt with probability 1
qk

.

4. Let G := G0 ∪ · · · ∪GT−1.

5. Return the Max-OCSP(Π) instance Ψ on n variables given by the constraint hypergraph G.

We say that an algorithm ALG achieves advantage δ in distinguishing GY,πq,n,α,T (Π) from GNq,n,α,T (Π)
if there exists an n0 such that for all n ≥ n0, we have∣∣∣∣∣ Pr

Ψ∼GY,πq,n,α,T (Π)
[ALG(Ψ) = 1]− Pr

Ψ∼GNq,n,α,T (Π)
[ALG(Ψ) = 1]

∣∣∣∣∣ ≥ δ.
We make several remarks on this definition. Firstly, note that the constraints within GY,πq,n,α,T (Π)

and GNq,n,α,T (Π) do not directly depend on Π. We still parameterize the distributions by Π, since
they are formally distributions over Max-OCSP(Π) instances; Π also determines the set of allowed
permutations π in the YES case as well as the underlying arity k. However, we will omit the
parameterization (Π) when clear from context. Secondly, we note that when sampling an instance
from GNq,n,α,T , the partition b has no effect, and so GNq,n,α,T is completely random. Hence these
instances fit into the standard paradigm for streaming lower bounds of “random graphs vs. ran-
dom graphs with hidden structure”. Finally, we observe that the number of constraints in both
distributions is distributed as a sum of m = nαT independent Bernoulli( 1

qk
) random variables.

In the following section we state lemmas which highlight the main properties of the distributions
above. See Figure 1 for a visual interpretation of the distributions in the case of MAS.
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(a) Constraint graph of a sample MAS instance drawn from GY

0

1 2

3

4

(b) Constraint graph of a sample MAS instance drawn from GN

Figure 1: The constraint graphs of MAS instances which could plausibly be drawn from GY and
GN , respectively, for q = 5 and n = 12. Recall that MAS is a binary Max-OCSP with ordering
constraint function Π supported only on [0 1]. According to the definition of GY (see Definition 3.2,
with π = [0 1]), instances are sampled by first sampling a q-partition b = (b0, . . . , bn−1) ∈ [q]n,
and then sampling some edges; every sampled edge (u, v) must satisfy bv = bu + 1 (mod q). On
the other hand, there are no requirements on (bu, bv) for instances sampled from GN . Above, the
blocks of the partition b are labelled 0, . . . , 4, and the reader can verify that the edges satisfy
the appropriate requirements. We also color the edges in a specific way: We color an edge (u, v)
green, orange, or red if bv > bu, bv = bu, or bv < bu, respectively. This visually suggests important
elements of our proofs that GY has MAS values close to 1 and GN has MAS values close to 1

2 (for
formal statements, see Lemma 3.3 and Lemma 3.4, respectively). Specifically, in the case of GY , if
we arbitrarily arrange the vertices in each block, we will get an ordering in which every green edge
is satisfied, and we expect all but 1

q fraction of the edges to be satisfied (i.e., all but those which

go from block q − 1 to block 0). On the other hand, if we executed a similar process in GN , the
resulting ordering would satisfy all green edges and some subset of the orange edges; together, in
expectation, these account only for q(q+1)

2q2 = q+1
2q ≈

1
2 fraction of the edges.
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3.2 Statement of key lemmas

Our first lemma shows that GY is supported on instances of high value.

Lemma 3.3 (GY has high Max-OCSP(Π) values). For every ordering constraint satisfaction func-
tion Π, every π ∈ supp(Π) and Ψ ∼ GY,πq,n,α,T , we have valΨ ≥ 1 − k−1

q (i.e., this occurs with
probability 1).

We prove Lemma 3.3 in Section 4.2. Next we assert that GN is supported mostly on instances
of low value.

Lemma 3.4 (GN has low Max-OCSP(Π) values). For every k-ary ordering constraint function
Π : Sk → {0, 1}, and every ε > 0, there exists q0 ∈ N and α0 ≥ 0 such that for all q ≥ q0 and
α ≤ α0, there exists T0 ∈ N such that for all T ≥ T0, for sufficiently large n, we have

Pr
Ψ∼GNq,n,α,T

[
valΨ ≥ ρ(Π) +

ε

2

]
≤ 0.01.

We prove Lemma 3.4 in Section 4.3. We note that this lemma is more technically involved than
Lemma 3.3 and this is the proof that needs the notion of “small partition expanders”. Finally the
following lemma asserts the indistinguishability of GY and GN to small space streaming algorithms.
We remark that this lemma follows directly from the work of [CGS+21].

Lemma 3.5. For every q, k ∈ N there exists α0(k) > 0 such that for every T ∈ N, α ∈ (0, α0(k)]
the following holds: For every Π : Sk → {0, 1} and π ∈ supp(Π), every streaming algorithm ALG
distinguishing GY,πq,n,α,T from GNq,n,α,T with advantage 1/8 for all lengths n uses space Ω(n).

3.3 Proof of Theorem 1.1

We now prove Theorem 1.1.

Proof of Theorem 1.1. Let A be a ρ(Π) + ε approximation algorithm for Max-OCSP(Π) that uses
space s. Fix π ∈ supp(Π). Consider the algorithm ALG defined as follows: on input Ψ, an instance
of Max-OCSP(Π), if A(Ψ) ≥ ρ(Π) + ε

2 , then ALG outputs 1, else, it outputs 0. Observe that ALG

uses O(s) space. Set q0 ≥ 2(k−1)
ε such that the condition of Lemma 3.4 holds. Set α0 ∈ (0, α0(k)]

such that the conditions of Lemma 3.4 holds. Consider any q ≥ q0 and α ≤ α0: let T0 be set
as in Lemma 3.4. Consider any T ≥ T0: since q ≥ 2(k−1)

ε , it follows from Lemma 3.3 that for

Ψ ∼ GY,πq,n,α,T , we have valΨ ≥ 1 − ε
2 , and hence with probability at least 2/3, A(Ψ) ≥ ρ(Π) + ε

2 .
Therefore, EΨ∼GY,πq,n,α,T

[ALG(Ψ) = 1] ≥ 2/3. Similarly, by the choice of q0, α0, T0, it follows from

Lemma 3.4 that
Pr

Ψ∼GNq,n,α,T

[
valΨ ≥ ρ(Π) +

ε

2

]
≤ 0.01,

and hence, EΨ∼GNq,n,α,T
[ALG(Ψ) = 1] ≤ 1

3 + 0.01. Therefore, ALG distinguishes GY,πq,n,α,T from

GNq,n,α,T with advantage 1/8. By applying Lemma 3.5, we conclude that the space complexity of A
is at least Ω(n).
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4 Bounds on Max-OCSP(Π) values of GY and GN

The goal of this section is to prove our technical lemmas which lower bound the Max-OCSP(Π)
values of GY,πq,n,α,T (Lemma 3.3) and upper bound the Max-OCSP(Π) values of GNq,n,α,T (Lemma 3.4).

4.1 CSPs and coarsening

In preparation for proving the lemmas, we recall the definition of (non-ordering) constraint satis-
faction problems (CSPs), whose solution spaces are [q]n (as opposed to Sn), and define an operation
called q-coarsening on Max-OCSP’s, which restricts the solution space from Sn to [q]n.

A maximum constraint satisfaction problem, Max-CSP(f), is specified by a single constraint
function f : [q]k → {0, 1}, for some positive integer k. An instance of Max-CSP(f) on n variables
is given by m constraints C0, . . . , Cm−1 where Ci = (f, j(i)), i.e., the application of the function
f to the variables j(i) = (j(i)0, . . . , j(i)k−1). (Again, f is omitted when clear from context.)
The value of an assignment b ∈ [q]n on an instance Φ = (C0, . . . , Cm−1), denoted val

q
Φ(b), is

the fraction of constraints satisfied by b, i.e., val
q
Φ(b) = 1

m

∑
i∈[m] f(b|j(i)), where (recall) b|j =

(bj0 , . . . , bjk−1
) for b = (b0, . . . , bn−1), j = (j0, . . . , jk−1). The optimal value of Φ is defined as

val
q
Φ = maxb∈[q]n{val

q
Φ(b)}.

Definition 4.1 (q-coarsening). Let Π be a k-ary Max-OCSP and let q ∈ N. The q-coarsening of
Π is the k-ary Max-CSP problem Max-CSP(f qΠ) where we define f qΠ : [q]k → {0, 1} as follows: For
a ∈ [q]k, f qΠ(a) = 1 iff the entries in a are all distinct and Π(ord(a)) = 1. The q-coarsening of an
instance Ψ of Max-OCSP(Π) is the instance Φ of Max-CSP(f qΠ) given by the identical collection of
constraints.

The following lemma captures the idea that coarsening restricts the space of possible solutions;
compare to Lemma 4.8 below.

Lemma 4.2. If q ∈ N, Ψ is an instance of Max-OCSP(Π), and Φ is the q-coarsening of Ψ, then
valΨ ≥ val

q
Φ.

Proof. We will show that for every assignment b ∈ [q]n to Φ, we can construct an assignment
σ ∈ Sn to Ψ such that valΨ(σ) ≥ val

q
Φ(b). Consider an assignment b ∈ [q]n. Let σ be the ordering

on [n] given by placing the blocks b−1(0), . . . ,b−1(q−1) in order (within each block, we enumerate
the indices arbitrarily). Consider any constraint C = j = (j0, . . . , jk−1) in Φ which is satisfied by
b in Φ. Since f qΠ(b|j) = 1, by definition of f qΠ we have that Π(ord(b|j)) = 1 and bj0 , . . . , bjk−1

are
distinct. The latter implies, by construction of σ, that ord(b|j) = ord(σ|j). Hence Π(ord(σ|j)) = 1,
so σ satisfies C in Ψ. Hence valΨ(σ) ≥ val

q
Φ(b).

4.2 GY has high Max-OCSP(Π) values

In this section, we prove Lemma 3.3, which states that the Max-OCSP(Π) values of instances Ψ
drawn from GY,πq,n,α,T are large. Note that we prove a bound for every instance Ψ in the support of

GY,πq,n,α,T , although it would suffice for our application to prove that such a bound holds with high
probability over the choice of Ψ.

To prove Lemma 3.3, if Φ is the q-coarsening of Ψ, by Lemma 4.2, it suffices to show that val
q
Φ ≥

1− k−1
q . One natural approach is to consider the q-partition b = (b0, . . . , bn−1) ∈ [q]n sampled when

sampling Ψ and view b as an assignment to Φ. Consider any constraint C = j = (j0, . . . , jk−1)
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in Ψ; by the definition of GY,π (Definition 3.2), we have b|j = (v
(`)
q )π for some (unique) ` ∈ [q],

which we term the identifier of C (recall, we defined v
(`)
q as the k-tuple (`, . . . , `+k−1) ∈ [q]k). In

other words, b|j = (v
(`)
q )π. Hence, C is satisfied by b iff Π(ord((v

(`)
q )π)) = 1. By Proposition 3.1

above, ord((v
(`)
q )π) = ord(v

(`)
q ) ◦ π. Hence a sufficient condition for b to satisfy C (which is in fact

necessary in the case |supp(Π)| = 1) is that ord(v
(`)
q ) = [0 · · · k − 1] (since then ord((v

(`)
q )π) = π);

this happens iff C’s identifier ` ∈ {0, . . . , q − k}. Unfortunately, when sampling the constraints C,
we might get “unlucky” and get a sample which over-represents the constraints C with identifier
` ∈ {q − k + 1, . . . , q − 1}. We can resolve this issue using “shifted” versions of b.4 The proof is as
follows:

Proof of Lemma 3.3. For t ∈ [q], define the assignment b(t) = (b
(t)
0 , . . . , b

(t)
n−1) to Φ via b

(t)
i = bi + t

for i ∈ [n].
Fix t ∈ [q]. Then we claim that b(t) satisfies any constraint C with identifier ` such that

`+ t ∈ {0, . . . , q− k}. Indeed, if C = j is a constraint with identifier `, since b|j = (v
(`)
q )π, then we

have b(t)|j = (v
(`+t)
q )π; as long as `+ t ∈ {0, . . . , q − k}, then ord(v

(`+t)
q ) = [0 · · · k− 1], and so by

Proposition 3.1, ord((v
(`+t)
q )π) = π. Thus, Π(ord((v

(`+t)
q )π)) = 1.

Now (no longer fixing t), for each ` ∈ [q], let w(`) be the fraction of constraints in Ψ with
identifier `. By the above claim, for each t ∈ [q], we have val

q
Φ(b(t)) ≥

∑
`:`+t∈{0,...,q−k}w

(`). On the

other hand,
∑q−1

`=0 w
(`) = 1 (since every constraint has some (unique) identifier). Hence

q−1∑
t=0

valΦ(b(t)) ≥
q−1∑
t=0

 ∑
`:`+t∈{0,...,q−k}

w(`)

 = q − (k − 1),

since each term w(`) appears exactly q − (k − 1) times in the expanded sum. Hence by averaging,
there exists some t ∈ [q] such that val

q
Φ(b(t)) ≥ 1− k−1

q , and so val
q
Φ ≥ 1− k−1

q , as desired.

4.3 GN has low Max-OCSP(Π) values

In this section, we prove Lemma 3.4, which states that the Max-OCSP(Π) value of an instance drawn
from GN does not significantly exceed the random ordering threshold ρ(Π), with high probability.

Using concentration bounds (i.e., Lemma 2.1), one could show that a fixed solution σ ∈ Sn
satisfies more than ρ(Π) + 1

q constraints with probability which is exponentially small in n. How-
ever, taking a union bound over all n! permutations σ would cause an unacceptable blowup in
the probability. Instead, to prove Lemma 3.4, we take an indirect approach, involving bounding
the Max-CSP value of the q-coarsening of a random instance and bounding the gap between the
Max-OCSP value and the q-coarsenened Max-CSP value. To do this, we define the following notions
of small set expansion for k-hypergraphs:

Definition 4.3 (Lying on a set). Let G = (V,E) be a k-hypergraph. Given a set S ⊆ V , a
k-hyperedge e ∈ E lies on S if it is incident on two (distinct) vertices in S (i.e., if |Γ(e)∩ S| ≥ 2).

Definition 4.4 (Congregating on a partition). Let G = (V,E) be a k-hypergraph. Given a q-
partition b ∈ [q]n, a k-hyperedge e ∈ E congregates on b if it lies on one of the blocks b−1(i).

4Alternatively, in expectation, val
q
Φ(b) = 1 − k−1

q
. Hence with probability at least 99

100
, val

q
Φ(b) ≥ 1 − 100(k−1)

q
by

Markov’s inequality; this suffices for a “with-high-probability” statement.
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We denote by N(G,S) the number of k-hyperedges of G which lie on S.

Definition 4.5 (Small set hypergraph expansion (SSHE) property). A k-hypergraph G = (V,E)
is a (γ, δ)-small set hypergraph expander (SSHE) if it has the following property: For every subset
S ⊆ V of size at most γ|V |, N(G,S) ≤ δ|E| (i.e., the number of k-hyperedges in E which lie on S
is at most δ|E|).

Definition 4.6 (Small partition hypergraph expansion (SPHE) property). A k-hypergraph G =
(V,E) is a (γ, δ)-small partition hypergraph expander (SPHE) if it has the following property: For
every partition b ∈ [q]n where each block b−1(i) has size at most γ|V |, the number of k-hyperedges
in E which congregate on b is at most δ|E|.

In the context of Figure 1, the SPHE property says that for any partition with small blocks,
there cannot be too many “orange” edges.

Having defined the SSHE and SPHE properties, we now sketch the proof of Lemma 3.4. It will
be proved formally later in this section.

Proof sketch of Lemma 3.4. For sufficiently large q, with high probability, the Max-CSP value of
the q-coarsening of a random Max-OCSP(Π) instance drawn from GNq is not much larger than ρ(Π)
(Lemma 4.13 below). The constraint hypergraph for a random Max-OCSP(Π) instance drawn from
GNq is a good SSHE with high probability (Lemma 4.11 below). Hypergraphs which are good
SSHEs are also (slightly worse) SPHEs (Lemma 4.7 below). Finally, if the constraint hypergraph of
a Max-OCSP(Π) instance is a good SPHE, its Max-OCSP(Π) value cannot be much larger than its q-
coarsened Max-CSP value (Lemma 4.8 below); intuitively, this is because if we “coarsen” an optimal
ordering σ for the Max-OCSP by lumping vertices together in small groups to get an assignment
b for the coarsened Max-CSP, we can view this assignment b as a partition on V , and for every
k-hyperedge in G(Ψ) which does not congregate on this partition, the corresponding constraint in
Ψ is satisfied.

We remark that the bounds on Max-CSP values of coarsened random instances (Lemma 4.13
below) and on SSHE in random instances (Lemma 4.11 below) both use concentration inequalities
(i.e., Lemma 2.1) and union bound over a space of size only (Oε(1))n (the space of all solutions to
the coarsened Max-CSP and the space of all small subsets of [n], respectively); this lets us avoid
the issue of union-bounding over the entire space Sn directly.

In the remainder of this section, we prove the necessary lemmas and then give a formal proof
of Lemma 3.4. We begin with several short lemmas.

Lemma 4.7 (Good SSHEs are good SPHEs). For every γ, δ > 0, if a k-hypergraph G = (V,E) a

(γ, δ)-SSHE, then it is a
(
γ, δ( 2

γ + 1)
)

-SPHE.

Proof. Let n = |V |. Consider any partition b ∈ [q]n of V where each block has size at most γn.
WLOG, all but one block b−1(i) has size at least γn

2 (if not, merge blocks until this happens, only
increasing the number of k-hyperedges which congregate on b). Hence ` ≤ 2

γ + 1.5 By the SSHE
property, there are at most δm k-hyperedges which lie on each block; hence there are at most
δ( 2
γ + 1)m constraints which congregate on b.

5We include the +1 to account for the extra block which may have arbitrarily small size. Excluding this block,
there are at most n

dγn/2e ≤
n

γn/2
blocks remaining.
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Lemma 4.8 (Coarsening roughly preserves value in SPHEs). Let Ψ be a Max-OCSP(Π) instance on
n variables. Suppose that the constraint hypergraph of Ψ is a (γ, δ)-SPHE. Let Φ be the q-coarsening
of Ψ. Then for sufficiently large n, if q ≥ 2

γ ,

valΨ ≤ val
q
Φ + δ.

Proof. We will show that for every assignment σ ∈ Sn to Ψ, we can construct an assignment
b = (b0, . . . , bn−1) ∈ [q]n to Φ such that valΨ(σ) ≤ val

q
Φ(b) + δ. Fix σ ∈ Sn. Define b ∈ [q]n by

bi = bσ(i)/bγncc for each i ∈ [n]. Observe that since σ(i) ≤ n−1, we have bi ≤ b(n−1)/bγncc < q,
hence b is a valid assignment to Φ. Also, b has the property that for every i, j ∈ [n], if σ(i) < σ(j)
then bi ≤ bj ; we call this monotonicity of b.

View b as a q-partition and consider the constraint hypergraph of Ψ (which is the same as
the constraint hypergraph of Φ). Call a constraint C = (j0, . . . , jk−1) good if it is both satisfied
by σ, and the k-hyperedge corresponding to it does not congregate on b. If C is good, then
bj0 , . . . , bjk−1

are all distinct; together with monotonicity of b, we conclude that if C is good, then
ord(b|j) = ord(σ(j0), . . . ,σ(jk−1)).

Finally, we note that each block in b has size at most γn by definition; hence by the SPHE
property of the constraint hypergraph of Ψ, at most δ-fraction of the constraints of Ψ correspond
to k-hyperedges which congregate on b. Since valΨ(σ) fraction of the constraints of Ψ are satisfied
by σ, at least (valΨ(σ)− δ)-fraction of the constraints of Ψ are good, and hence b satisfies at least
(valΨ(σ)− δ)-fraction of the constraints of Φ, as desired.

The construction in this lemma was called coarsening the assignment σ by [GHM+11]
(cf. [GHM+11, Definition 4.1]).

We also include the following helpful lemma, which lets us restrict to the case where our sampled
Max-OCSP(Π) instance has many constraints.

Lemma 4.9 (Most instances in GN have many constraints). For every n, α, γ > 0, and q ∈ N,

Pr
Ψ∼GNq,n,α,T

[
m(Ψ) ≤ nαT

2qk

]
≤ exp

(
−nαT

8qk

)
.

Proof. The number of constraints in Ψ is distributed as the sum of nαT independent Bernoulli(1/qk)
random variables. The desired bound follows by applying the Chernoff bound.

4.3.1 GN is a good SSHE with high probability

Recall that for a k-hypergraph G = (V,E) and S ⊆ V (G), we define N(G,S) to be the number of
k-hyperedges in G that lie on S, and for an k-hyperedge e ∈ E, we define Γ(e) ⊆ V as the set of
vertices incident on e.

Lemma 4.10 (Random hypermatchings barely lie on small sets). For every n and α, γ > 0 with
α ≤ 1

2k , and every subset S ⊆ [n] of at most γn vertices, we have

Pr
G∼Hk,n,α

[N(G,S) ≥ 8k2γ2αn] ≤ exp
(
−γ2αn

)
.

16



Proof. Label the hyperedges of G as e0, . . . , eαn−1. For i ∈ [αn], let Xi be the indicator for the
event that ei lies on S. We have N(G,S) = X0 + · · ·+Xαn−1.

We first bound E[Xi | X0, . . . , Xi−1] for each i. Conditioned on e0, . . . , ei−1, the k-hyperedge ei
is uniformly distributed over the set of all k-hyperedges on [n] \ (Γ(e0) ∪ · · · ∪ Γ(ei−1)). It suffices
to union-bound, over distinct pairs j1 < j2 ∈

(
[k]
2

)
, the probability that the j1-st and j2-nd vertices

of ei are in S (conditioned on X0, . . . , Xi−1). We can sample the j1-st and j2-nd vertices of ei first
(uniformly over remaining vertices outside of S) and then sample the remaining vertices (uniformly
over remaining vertices). Hence we have the upper-bound

E[Xi | X0, . . . , Xi−1] ≤
(
k

2

)
· |S|(|S| − 1)

(n− ki)(n− ki− 1)

≤
(
k

2

)
·
(
|S|

n− ki

)2

≤
(
k

2

)
·
(

|S|
n− kαn

)2

≤ 4k2γ2 ,

since α ≤ 1
2k .

Now, we apply the concentration bound in Lemma 2.1 to conclude that:

Pr
G∼Hk,n,α

[
X0 + · · ·+Xαn−1 ≥ 8k2γ2αn

]
≤ exp

(
−2k2γ2αn

)
≤ exp(−γ2αn).

Lemma 4.11. For every n, α, γ > 0, and q ∈ N with α ≤ 1
2k ,

Pr
Ψ∼GNq,n,α,T

[
G(Ψ) is not a (γ, 8k2γ2)-SSHE

∣∣∣∣ m(Ψ) ≥ nαT

2qk

]
≤ exp

(
−
(
γ2αT

2qk
− ln 2

)
n

)
.

Proof. Let α0, . . . , αT−1 ≥ 0 be such that αT
2qk
≤ α0 + · · · + αT−1 ≤ αT . It suffices to prove the

bound, for every such sequence α0, . . . , αT−1, conditioned on the event that for every i ∈ [T ],
m(Gi) = αin (where Gi is defined as in Definition 3.2). This is equivalent to simply sampling each
Gi ∼ Hk,n,αi independently.

Fix any set S ⊆ [n] of size at most γn. Applying Lemma 4.10, and the fact that each hyper-
matching Gi in G is sampled independently, we conclude that

Pr
Ψ∼GNq,n,α,T

[
∃i ∈ [T ] s.t. N(Gi, S) ≥ 8k2γ2αin

∣∣ ∀i ∈ [T ],m(Gi) = αin
]

≤ exp
(
−γ2(α0 + · · ·+ αT−1)n

)
≤ exp

(
−γ

2αTn

2qk

)
.

Hence by averaging, the total fraction of k-hyperedges in G which lie on S is at most 8k2γ2.
Taking the union-bound over the ≤ 2n possible subsets S ⊆ [n] gives the desired bound.
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4.3.2 GN has low coarsened Max-CSP(f qΠ) values with high probability

For G ∼ Hk,n,α, we define an instance Φ(G) of Max-CSP(f qΠ) on n variables x0, . . . , xn−1 naturally
as follows: for each k-hyperedge j = (j0, . . . , jk−1) ∈ E(G) ⊆ [n]k, we add the constraint j to Φ(G).

Lemma 4.12 (Satisfiability of random instances of Max-CSP(f qΠ)). For every n, α, η > 0, and
b ∈ [q]n,

Pr
G∼Hk,n,α

[val
q
Φ(G)(b) ≥ ρ(Π) + η] ≤ exp

(
−
(

η2α

2(ρ(Π) + η)

)
n

)
.

Proof. Let the k-hyperedges of G be labelled as e0, . . . , eαn−1 and the corresponding constraints
of Φ(G) be denoted by j(0), . . . , j(αn− 1). For i ∈ [αn], let Xi be the indicator for the event that
the constraint j(i) is satisfied by b, i.e., f qΠ(b|j(i)) = 1. Again, like in the proof of Lemma 4.10,
we bound E[Xi | X0, . . . , Xi−1], for each i. Conditioned on e0, . . . , ei−1, the k-hyperedge ei is
uniformly distributed over the set of all k-hyperedges on [n] \ (Γ(e0) ∪ · · · ∪ Γ(ei−1)). Hence,

E[Xi | X0, . . . , Xi−1] ≤ ρ(Π). Indeed, the set of possible k-hyperedges on [n]\ (Γ(e0)∪· · ·∪Γ(ei−1))
may be partitioned into blocks of size k! by mapping each k-hyperedge to the set of vertices on
which it is incident. For each subset J = {j0, . . . , jk−1} ⊆ [n], if bj0 , . . . , bjk−1

are not all distinct,
then for every π ∈ Sk, the constraint corresponding to the permuted k-tuple jπ is not satisfied by
b. On the other hand, if bj0 , . . . , bjk−1

are all distinct, then∣∣{π ∈ Sk : f qΠ(b|jπ) = 1}
∣∣ = |supp(Π)| = ρ(Π) · k! .

Finally, we again apply the concentration bound in Lemma 2.1 to conclude that:

Pr
G∼Hk,n,α

[X0 + · · ·+Xαn−1 ≥ (ρ(Π) + η)αn] ≤ exp

(
−
(

η2α

2(ρ(Π) + η)

)
n

)
,

as desired.

Lemma 4.13. For every n and α, η > 0,

Pr
Ψ∼GNq,n,α,T

[
val

q
Φ ≥ ρ(Π) + η, where Φ is the q-coarsening of Ψ

∣∣∣∣ m(Ψ) ≥ nαT

2qk

]
≤ exp

(
−
(

η2αT

4(ρ(Π) + η)qk
− ln q

)
n

)
.

Proof. Identical to the proof of Lemma 4.11 (using Lemma 4.12 instead of Lemma 4.10), but now
union-bounding over a set of size qn (i.e., the set of possible assignments b ∈ [q]n for Φ).

We finally give the proof of Lemma 3.4.

Proof of Lemma 3.4. Let q0 :=
⌈

192k2

ε

⌉
and let α0 := 1

2k . Suppose α ≤ α0 and q ≥ q0. Then let

γ := ε
96k2 and η := ε

4 , and let

T0 := max

{
4(ln 2)qk

γ2α
,
8(ρ(Π) + η)qk(ln q)

η2α

}
.

Consider any T ≥ T0; we will prove the desired bound. Let δ := 8k2γ2. Then the multiplicative
factors in the exponents of the error terms in Lemma 4.9, Lemma 4.11, and Lemma 4.13 are all
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positive (the latter two lemmas may be applied since α ≤ α0 = 1
2k ); taking a union bound (and

then conditioning on m(Ψ) ≥ nαT
2qk

), for sufficiently large n, we can conclude that with probability

at least 0.99 over Ψ ∼ GNq,n,α,T , we have val
q
Φ ≥ ρ(Π) + η (where Φ is the q-coarsening of Ψ) and

G(Ψ) is a (γ, δ)-SSHE. If G(Ψ) is a (γ, δ)-SSHE, by Lemma 4.7 it is also a (γ, δ′)-SPHE, where
δ′ := 3δ

γ ≥ δ( 2
γ + 1). Note that δ′ = 24k2γ = ε

4 . Now since q ≥ q0 ≥ 2
γ , we can apply Lemma 4.8,

and conclude that for sufficiently large n, with probability ≥ 0.99 over the choice of Ψ ∼ GNq,n,α,T ,
we have

valΨ ≥ ρ(Π) + η + δ′ = ρ(Π) +
ε

2
,

as desired.

5 Streaming indistinguishability of GY and GN

In this section we prove Lemma 3.5. This indistinguishability follows directly from the work of
[CGS+21], who introduce a T -player communication problem called implicit randomized mask de-
tection (IRMD). Once we properly situate our instances GY and GN within the framework of
[CGS+21], Lemma 3.5 follows immediately.

We first recall their definition of the IRMD problem, and state their lower bound. The following
definition is based on [CGS+21, Definition 3.1]. In [CGS+21] the IRMD game is parametrized by
two distributions DY and DN , but hardness is proved for a specific pair of distributions which
suffices for our purpose; these distributions will thus be “hardcoded” into the definition we give.

Definition 5.1 (Implicit randomized mask detection (IRMD) problem). Let q, k, n, T ∈ N, α ∈
(0, 1/k) be parameters. In the IRMDα,T game, there are T players, indexed from 0 to T − 1, and
a hidden partition encoded by a random b ∈ [q]n. The t-th player has two inputs: (a.) Mt ∈
{0, 1}αkn×n, the hypermatching matrix corresponding to a uniform α-partial k-hypermatching on n
vertices (i.e., drawn from Hn,α), and (b.) a vector zt ∈ [q]αkn that can be generated from one of
two different distributions:

• (YES) zt = Mtb + yt (mod q) where yt ∈ [q]αkn is of the form yt = (yt,0, . . . ,yt,αn−1) and
each yt,i ∈ [q]k is sampled as (a, . . . , a) where a is sampled uniformly from [q].

• (NO) zt = Mtb+yt (mod q) where yt ∈ [q]αkn is of the form yt = (yt,0, . . . ,yt,αn−1) and each
yt,i ∈ [q]k is sampled as (a0, . . . , ak−1) where each aj is sampled uniformly and independently
from [q].

This is a one-way game where the t-th player can send a private message to the (t + 1)-st player
after receiving a message from the previous player. The goal is for the (T − 1)-st player to decide
whether the {zt} have been chosen from the YES or NO distribution, and the advantage of a
protocol is defined as∣∣∣∣ Pr

YES case
[the (T − 1)-st player outputs 1]− Pr

NO case
[the (T − 1)-st player outputs 1]

∣∣∣∣ .
Note that the definition of the IRMD problem does not depend on an underlying family of

constraints. Nevertheless, we will be able to leverage its hardness to prove Lemma 3.5 (and indeed,
all hardness results in [CGS+21] itself stem from hardness for the IRMD problem). The follow-
ing theorem from [CGS+21] gives a lower bound on the communication complexity of the IRMD
problem:
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Theorem 5.2 ([CGS+21, Theorem 3.2]). For every q, k ∈ N and δ ∈ (0, 1/2), α ∈ (0, 1/k), T ∈ N
there exists n0 ∈ N and τ ∈ (0, 1) such that the following holds. For all n ≥ n0, every protocol for
IRMDα,T on n vertices with advantage δ requires τn bits of communication.

Now, we use this hardness result to prove Lemma 3.5. The following proof is based on the
proof of [CGS+21, Theorem 4.3], which introduces a notion called the width of a constraint family,
which we briefly discuss. For our purposes, it suffices to define the width ω(f) ∈ [0, 1] of a single
constraint f : [q]k → {0, 1} as

ω(f) = max
b∈[q]k

{
Pr
`∈[q]

[f(b + `) = 1]

}
,

where b+ ` denotes adding ` to each component of b. [CGS+21, Theorem 4.3] states that for every
f and ε > 0, Max-CSP(f) cannot be (ρ(f)/ω(f)+ε)-approximated by a sublinear-space single-pass
streaming algorithm, where ρ(f) = Prb∈[q]k [f(b) = 1] is the random assignment value for f . In
other words, whenever ω(f) is close to 1, Max-CSP(f) is difficult to approximate. In our setting,
we have ω(f qΠ) ≥ 1 − k−1

q ; indeed, simply take b = (π−1(0), . . . ,π−1(k − 1)), and then for any

` ∈ {0, . . . , q − k}, we have f qΠ(b + `) = 1 (by the same reasoning as in Section 4.2). The fact
that ω(f qΠ) ≈ 1 for large q is precisely what enables us to apply [CGS+21]’s lower bounds to get
optimal lower bounds in our setting. However, [CGS+21, Theorem 4.3] as written contains both
the streaming-to-communication reduction and an analysis of the CSP values of YES and NO
instances; in the following, we reprove only the former (and adapt the language to our setting).

Proof of Lemma 3.5. We prove the lemma for the same α0 as in Theorem 5.2.
Suppose ALG is a O(n)-space streaming algorithm which distinguishes GY,πq,n,α,T from GNq,n,α,T

with advantage 1/8 for all lengths n. We now show how to use ALG to construct a protocol ALG′

solving IRMDα,T with advantage 1/8 for n ≥ n0, which uses only O(n) bits of communication; this
contradicts Theorem 5.2. As is standard, this reduction will involve the players collectively running
the streaming algorithm ALG. That is, ALG′ is defined as follows: For t = 0, . . . , T − 1, the t-th
player Pt will add some constraints to the stream and then send the state of ALG on to the next
player. Finally, the last player PT−1 terminates the streaming algorithm and outputs the output
of ALG.

Which constraints does Pt add to the stream in ALG′? Pt’s input is (Mt, zt), with zt =

(zt,0, . . . , zt,αn−1), and each zt,i ∈ [q]k. Above, we defined v
(`)
q = (`, . . . , ` + k − 1 (mod q)) ∈ [q]k,

so that (v
(0)
q )π = (π−1(0), . . . ,π−1(k− 1)) (see Section 3.1). Pt simply examines each i ∈ [αn] and

the corresponding hyperedge ẽi in Mt. If zt,i = (v
(0)
q )π, Pt adds the constraint corresponding to ẽi

to the stream.
Let SY,πq,n,α,T and SNq,n,α,T denote the distributions of Max-OCSP(Π) instances constructed by

ALG′ in the YES and NO cases, respectively. The crucial claim is that SY,πq,n,α,T and GY,πq,n,α,T

are identical distributions, and similarly with SNq,n,α,T and GNq,n,α,T . This claim suffices to prove
the lemma, since the constructed stream of constraints is fed into ALG, which is an O(n)-space
streaming algorithm distinguishing GY,πq,n,α,T from GNq,n,α,T ; hence we can conclude that ALG′ is a
protocol for IRMD using O(n) bits of communication.

It remains to prove the claim. We first consider the NO case. SNq,n,α,T and GNq,n,α,T are both
sampled by independently sampling T hypermatchings from Hn,α and then (independently) se-
lecting some subset of hyperedges from each hypermatching to add as constraints. It suffices by
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independence to prove equivalence of how the subset of each hypermatching is sampled in each

case. In the t-th hypermatching in SNq,n,α,T , Pt adds a hyperedge ẽi iff zt,i = (v
(0)
q )π. But (even

conditioned on all other zt,i′ ’s and on ẽi itself), zt,i is a uniform value in [q]k, and hence ẽi is added

to the instance with probability 1
q

k
(independently of every other hyperedge). This is exactly how

we defined GNq,n,α,T to sample constraints.

Similarly, we consider the YES case, analyzing the t-th hypermatching in SY,πq,n,α,T . Consider the
sampled q-partition b = (b0, . . . , bn−1) ∈ [q]n. Again consider a hyperedge ẽi = (j0, . . . , jk−1). In
this case, zt,i is a uniform translation of b|j, i.e., it equals b|j + `′ where `′ ∈ [q] is uniform and the

sum denotes adding `′ to each component of b|j . Hence Pt will add ẽi iff (1) b|j = (v
(`)
q )π for some

` ∈ [q] and (2) ` + `′ = 0 (mod q). The latter event occurs with probability 1
q , even conditioned

on all other zt,i′ ’s and on ẽi. Hence ẽi is added to the instance with probability 1
q , as long as

b|j = (v
(`)
q )π for some ` ∈ [q]. This is exactly how we defined GYq,n,α,T to sample constraints.
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