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Abstract

An ordering constraint satisfaction problem (OCSP) is defined by a family F of predicates mapping
permutations on {1,...,k} to {0,1}. An instance of Max-OCSP(F) on n variables consists of a list of
constraints, each consisting of a predicate from F applied on k distinct variables. The goal is to find an
ordering of the n variables that maximizes the number of constraints for which the induced ordering on
the k variables satisfies the predicate. OCSPs capture well-studied problems including ‘maximum acyclic
subgraph’ (MAS) and “maximum betweenness”.

In this work, we consider the task of approximating the maximum number of satisfiable constraints
in the (single-pass) streaming setting, when an instance is presented as a stream of constraints. We
show that for every F, Max-OCSP(F) is approximation-resistant to o(n)-space streaming algorithms,
i.e., algorithms using o(n) space cannot distinguish streams where almost every constraint is satisfiable
from streams where no ordering beats the random ordering by a noticeable amount. This space bound
is tight up to polylogarithmic factors. In the case of MAS our result shows that for every € > 0, MAS is
not (1/2+ e)-approximable in o(n) space. The previous best inapproximability result, due to Guruswami
and Tao [GT19], only ruled out 3/4-approximations in o(y/n) space.

Our results build on recent works of Chou, Golovnev, Sudan, and Velusamy [CGSV24] and Chou,
Golovnev, Sudan, Velingker, and Velusamy [CGS™22b] who provide a tight, linear-space inapproximabil-
ity theorem for a broad class of “standard” (i.e., non-ordering) constraint satisfaction problems (CSPs)
over arbitrary (finite) alphabets. Our results are obtained by building a family of appropriate standard
CSPs (one for every alphabet size ¢) from any given OCSP and applying their theorem to this family
of CSPs. To convert the resulting hardness results for standard CSPs back to our OCSP, we show that
the hard instances from this earlier theorem have the following “partition expansion” property with high
probability: For every partition of the n variables into small blocks, for most of the constraints, all
variables are in distinct blocks.

1 Introduction

In this work, we consider the complexity of “approximating” “ordering constraint satisfaction problems
(OCSPs)” in the “streaming model”. We introduce these notions below before describing our results.

1.1 Orderings and constraint satisfaction problems

In this work, we consider optimization problems where the solution space is all possible orderings of n
variables. The Travelling Salesperson Problem and most forms of scheduling problems fit this description,
though our work considers a more concrete class of problems, namely ordering constraint satisfaction problems
(OCSPs). OCSPs as a class were first defined by Guruswami, Hastad, Manokaran, Raghavendra, and
Charikar [GHM™11]. To describe them here, we first set up some notation and terminology, and then give
some examples.
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We let [n] denote the set {1,...,n} and &,, denote the space of all permutations in [n]", i.e.,

def

6, ={o=(01,...,00) € [n|" :Vi#j,0, #0;}.
We interpret each element o € G, as a schedule for n tasks, labeled 1,...,n, such that task i is scheduled
in position o;. We use bold type to denote vectors (e.g., o), parenthetical indices for sequences of vectors
(e.g., o(1),...,0(m)), and normal type to denote scalar entries (e.g., o).

Given k distinct integers ay, ..., ay, we define ord(ay,...,ar) € &) as the unique 7w = (m1,...,7) € &
such that m; < 7; iff a; < a; for all i # j. If aq, ..., ax are not all distinct, we write ord(as,...,ar) = L, and
thus we can view ord as a map Z* — &, U{L}. Given o = (01,...,0,) € &, and k indices j = (j1,...,Jr) €
[n]™, we let ol; denote (oj,,...,0;,) € [n|™.

The solution space of OCSPs is precisely &,,. A k-ary ordering constraint predicate is a function II :
Sk — {0,1}. An ordering constraint application (I, j) on n variables is given by a predicate IT and a k-tuple
j € [n]™ of distinct indices, and (II,j) is satisfied by an assignment o € &,, iff II(ord(o|;)) = 1. In the
interest of brevity, we will often skip the term “ordering” below and further refer to constraint predicates as
“predicates” and constraint applications as “constraints”.

A mazimum ordering constraint satisfaction problem, denoted Max-OCSP(F), is specified by a (finite)
family of ordering constraint predicates F C (J,on{Il : & — {0,1}}. An instance of Max-OCSP(F) on n
variables is given by m constraints C, . .., C,, where C; = (II;,j(7)) and II; € F. (We will typically specialize
to the case where the family F contains only a single predicate II; in this case, we write the problem as
Max-OCSP(IT) and omit II from constraint descriptions. We’ll see below that for proving inapproximability
results, it’s sufficient to consider this case; see the Remark in 1.2 and the proof of 1.1 in 3.) The value of an
ordering o € &,, on the instance ¥, denoted ocsp-valy (o), is the fraction of constraints satisfied by o, i.e.,

ocsp-valg (o) def L Z II;(ord(a j(4)))-
i€[m]

The optimal value of ¥ is defined as
ocsp-valy dof 1ax {ocsp-valy (o) }.
occS,

The canonical problem that fits the Max-OCSP framework is the mazimum acyclic subgraph (MAS)
problem. In this problem, the input is a directed graph on n vertices, and the goal is to find an ordering of
the vertices that maximizes the number of forward edges. A simple depth-first search algorithm can decide
whether a given graph G has a perfect ordering (i.e., one which has no backward edges); however, Karp
[Kar72], in his famous list of 21 NP-complete problems, proved the NP-completeness of deciding whether,
given a graph G and a parameter k, there exists an ordering of the vertices such that at least k edges
are forward. For our purposes, MAS can be viewed as a 2-ary OCSP MAS = Max-OCSP(IIyas), where
TImas : G2 — {0,1} denotes the predicate given by Iuas(1,2) = 1 and IIyas(2,1) = 0, and we associate
vertices with variables and edges with constraints. Indeed, a constraint (j1,72) (where j1, jo € [n] are distinct
variables) will be satisfied by an ordering o = (01,...,0,) € 6, iff lImas(ord(o](;, ;,))) = 1, or equivalently,
iff 0;, < 0j,. In the “scheduling” interpretation of OCSPs, a constraint (ji,j2) expresses “precedence” of
event j; over event jo, since it is satisfied iff j; is scheduled before js.

A second natural Max-OCSP problem is the mazimum betweenness (Max-Btwn) problem. This is a 3-ary
OCSP in which an ordering o = (o1,...,0,) satisfies a constraint (ji,j2,js) iff o, is between o;, and
0js, 1e., iff 05, < 05, < 04, or 05 > 05, > 0, and the goal is again to find the maximum number
of satisfiable constraints. Thus, Max-Btwn = Max-OCSP(Ilgwn) where we define the constraint predicate
Mgwn : 63 — {0,1} by Uawwn(1,2,3) = 1,Hpwn(3,2,1) = 1, and Igwn(7) = 0 for all other w € S3. The
complexity Max-Btwn was originally studied by Opatrny [Opa79], who proved that even deciding whether
a set of betweenness constraints is perfectly satisfiable (i.e., whether the value of an instance ¥ is 1) is
NP-complete.

1.2 Approximability

In this work, we consider the approzrimability of ordering constraint satisfaction problems. We say that
a (randomized) algorithm Alg is an a-approzimation algorithm for Max-OCSP(F) if for every instance U,



a - ocsp-valy < Alg(¥) < ocsp-valy with probability at least 2/3 over the internal coin tosses of Alg. Thus
our approximation factors o are numbers in the interval [0, 1].

Given an ordering predicate IT : & — {0,1}, let p(II) = w denote the probability that IT
is satisfied by a random ordering. Given a (finite) family of predicates F, let p(F) = minge#{p(II)}. Every
instance ¥ of Max-OCSP(F) satisfies

ocsp-valg > p(F)

(since the right-hand side is a lower bound on the expected value of a random assignment). Thus, the trivial
algorithm that always outputs p(F) is a p(F)-approximation algorithm for Max-OCSP(F). Under what
conditions it is possible to beat this “trivial” approximation is a major open question.

Remark. We define p(F) = minger{p(I)} to be the “trivial” approzimability threshold for Max-OCSP(F)
because for every e > 0 there are instances of Max-OCSP(F) with value at most p(F) + €. This is a
consequence, for instance, of 3.4 below, which holds a priori for the single-predicate case |F| = 1, but can

be extended to general finite families F by taking the minimum over IL € F of p(II), since every instance of
Max-OCSP(II) is also an instance of Max-OCSP(F) with the same value.

A problem is said to be approximation resistant with respect to a given class of algorithms if the trivial
algorithm is essentially the best. Specifically for Max-OCSP(F), we say it is approximation resistant for
a class of algorithms if for every € > 0, no algorithm in the class (p(F) + ¢€)-approximates Max-OCSP(F).
Ordering CSP problems were shown to be approximation resistant with respect to the class of polynomial
time algorithms by Guruswami, Hastad, Manokaran, Raghavendra, and Charikar [GHM*11] (assuming the
unique games conjecture (UGC) of Khot [Kho02]). In this work, we consider the analogous question with
respect to “sublinear-space streaming algorithms”, which we define next.

1.3 Streaming algorithms

A (single-pass) streaming algorithm for OCSPs is defined as follows. In Max-OCSP(F), an instance ¥ is
presented as a stream (C1,...,C,,), where each stream element is a constraint C; = (II;, j(¢)). A streaming
algorithm Alg updates its state with each element of the stream and at the end produces an output Alg(¥) €
[0,1] (which is supposed to estimate ocsp-valy). The measure of complexity of interest to us is the space
used by Alg measured as a function of n, the number of variables in W. (This is a somewhat non-standard
choice in general but standard in the CSP literature. This choice is consistent with that of measuring the
complexity of graph algorithms as a function of the number of vertices in the input instance.) In particular,
we distinguish between algorithms that use space polylogarithmic in 7 and space that grows polynomially
(Q(n%) for 6 > 0). (Note that for this coarse level of distinction, measuring space as a function of n or as
a function of the input length would be qualitatively equivalent. However, our main result is more detailed
and tight up to polylogarithmic factors when viewed as a function of n.)

We say that a problem Max-OCSP(F) is (streaming) approzimable if we can beat the trivial p(F)-
approximation algorithm by a positive constant factor. Specifically, Max-OCSP(F) is said to be approximable
if for every § > 0 there exists € > 0 and a space O(n’) algorithm that (p(F)+¢)-approximates Max-OCSP(F).
We say Max-OCSP(II) is (streaming) approzimation-resistant otherwise.

In recent years, investigations into CSP approximability in the streaming model have been strikingly suc-
cessful, resulting in tight characterizations of streaming approximability for many problems [KK15; KKS15;
KKSV17; GVV17; GT19; KK19; CGV20; CGSV21; CGST22b; CGST22a; SSSV23a; SSSV23b; CGSV24].
Most of these papers study approximability, not of ordering CSPs, but of “standard” CSPs where the vari-
ables can take values in a finite alphabet. ([GVV17] and [GT19] are the exceptions, and we will discuss
them below.) Single-pass streaming algorithms with subpolynomial space are not formally a subclass of
polynomial time algorithms.! However, as far as we are aware, all known sublinear-space streaming algo-
rithms for CSP approximation can be implemented as polynomial-time (often even linear-time!) algorithms.
Indeed, there is essentially only one family of techniques for achieving nontrivial approximation ratios for
CSPs via sublinear-space streaming algorithms, namely algorithms counting “biases” (see [GVV17; CGV20;
CGSV21; SSSV23al), and these algorithms can be implemented as linear-time classical algorithms and only

1The models are incomparable in the Q(n‘s) space regime since the streaming model has no time complexity or uniformity
assumptions.



give nontrivial guarantees for small classes of CSPs. In particular, Saxena, Singer, Sudan, and Velusamy
[SSSV23a] showed that the Max-2AND problem is 0.483-approximable in the streaming setting (whereas the
trivial approximation is a %—approximation). For more background on CSPs in the streaming model, see the
surveys of Velusamy [Vel23], Singer [Sin22], and Sudan [Sud22].

However, this success in obtaining non-trivial algorithms has not extended to any OCSP problem. In-
deed, given the known (UGC-)hardness of OCSPs with respect to polynomial time algorithms [GHM™11],
and the empirically-observed phenomenon that subpolynomial space streaming algorithms are linear time
simulatable, it would be extremely surprising to find a non-trivial approximation algorithm for an OCSP
using subpolynomial space. This work confirms this expectation formally, and unconditionally, by showing
that there are no non-trivial sublinear (in n) space streaming algorithms for approximating OCSPs.

1.4 Results

In this paper, we prove the following theorem:

Theorem 1.1 (Main theorem). For every (finite) family of ordering predicates F, Max-OCSP(F) is approzimation-
resistant (to single-pass streaming algorithms). In particular, for every e > 0, every (p(F)+e€)-approzimation
algorithm for Max-OCSP(F) requires Q(n) space.

In particular, for every € > 0, MAS is not (1/2 + €)-approximable and Max-Btwn is not (1/3 + €)-
approximable. 1.1 is proved in 3, modulo several technical lemmas proven in later sections.
The linear space bound in 1.1 is optimal, up to logarithmic factors:

Theorem 1.2 (O(n)-space algorithm). Let F denote any (finite) family of ordering predicates. For all ¢ > 0
and € > 0, there exists a single-pass streaming algorithm Alg which, given an instance ¥ of Max-OCSP(F)
with n variables and m < n¢ constraints, outputs a (1 — €)-approzimation to ocsp-valy in O(nlog® n/e*) bits
of space.

The algorithm in 1.2 is the analogue for OCSPs of a well-known algorithm in the setting of streaming
CSPs (see, [KK15; KK19; CGS*22b]): It simply sparsifies the input instance down to O(n/€?) constraints,
and then solves the Max-OCSP(F) problem exactly on the sparsified instance. For completeness, we prove
1.2 in A.

1.5 Related works

As far as we know, in the streaming setting, 1.1 is the first tight inapproximability result for Max-OCSP(F)
for any constraint family F in Q(n%) space for any § > 0, and it yields tight approximability results for every
family in linear space.

1.1 parallels the classical result of Guruswami, Hastad, Manokaran, Raghavendra, and Charikar [GHM*11],
who prove that Max-OCSP(II) is approximation resistant with respect to polynomial-time algorithms, for
every II, assuming the unique games conjecture.? In our setting of streaming algorithms, the only prob-
lem that seems to have been previously explored in the literature was MAS, and even in this case, a tight
approximability result was not known.

In the case of MAS, Guruswami, Velingker, and Velusamy [GVV17] proved that for every e > 0, MAS
is not (7/8 + €)-approximable in o(y/n) space using a gadget reduction from the Boolean hidden matching
problem [GKK'08]. Guruswami and Tao [GT19] indicated that 3/4-approximating MAS is hard in o(y/n)
space. Their proof first establishes o(y/n)-space approximation resistance for a (non-ordering) CSP called
Max-UniqueGames and then reduces from Max-UniqueGames to MAS, though this reduction is not fully
analyzed.

2Without relying on the unique games conjecture, some weaker NP-hardness results are known. For Max-Btwn, since
p(Ugtwn) = %, the trivial algorithm is a %—approximation. Chor and Sudan [CS98] showed that (i—g + ¢)-approximating
MaxBtwn is NP-hard, for every € > 0. The % factor was improved to % by Austrin, Manokaran, and Wenner [AMW15]. For
MAS, the trivial algorithm is a %-approximation. Newman [New00] showed that (% + €)-approximating MAS is NP-hard,
for every € > 0. Austrin, Manokaran, and Wenner [AMW15] improved the % to %, and Bhangale and Khot [BK19] further
improved the factor to %



Chakrabarti, Ghosh, McGregor, and Vorotnikova [CGMV20] recently also studied directed graph ordering
problems (e.g., acyclicity testing, (s,t)-connectivity, topological sorting) in the streaming setting. For the
problems they consider, they give super-linear space lower bounds even for multi-pass streaming algorithms.
In contrast, as we mentioned above, every OCSP can be approximated arbitrarily well by simple O(n)—space
algorithms, even in a single pass. However, one of the problems considered in [CGMV20] is close enough to
MAS to merit a more detailed comparison: the minimum feedback arc set (MFAS) problem, the goal of which
is to output the fractional size of the smallest set of edges whose removal produces an acyclic subgraph. In
other words, the sum of the MFAS value of a graph and the MAS value of the graph is exactly one. The
authors of [CGMV?20] proved that for every x > 1, k-approximating® the MFAS value requires Q(n?) space
in the streaming setting (for a single pass, and more generally Q(n!+(1/P) /pO()) space for p passes). We
remark that, as is typical for pairs of minimization and maximization problems defined in this way (that
is, such that the values sum to 1), the hard instances involved in proving optimal inapproximability are
incomparable: In particular, proving x-inapproximability for MFAS involves constructing indistinguishable
(distributions of) instances with MAS values =~ 1 — € vs. &~ 1 — ke and thus does not imply any hardness of
approximation for MAS.

A recent work of Chatziafratis and Makarychev [CM23] studies another variant of CSPs, called phyloge-
netic CSPs, where the solution space is a set of trees,* analogously to how for ordering CSPs, the solution
space was a set of permutations. The authors prove approximation resistance of phylogenetic CSPs against
polynomial-time algorithms assuming the UGC, and their proof is via value-preserving reductions from or-
dering CSPs, which were themselves proven approximation-resistant under the UGC in [GHM™11]. Tt would
be interesting to see if the techniques in the current work could help prove streaming approximation lower
bounds for phylogenetic CSPs or other CSP variants.

1.6 Techniques

Our general approach to prove hardness of Max-OCSP problems is the following: We choose a family of
(standard) CSPs where hardness results are known, and then reduce these CSPs to the OCSPs at hand.
While this general approach is not new, in order to achieve optimal streaming hardness results for OCSPs,
we need to choose the “source” CSPs carefully, so that we can both (i) apply previously-known optimal
streaming hardness results for these CSPs (in our setting, we use results due to Chou, Golovnev, Sudan,
Velingker, and Velusamy [CGST22b]) and (ii) design streaming reductions from these CSPs to Max-OCSPs
which produce instances with (almost) optimal ratios in value between YES and NO instances. In contrast,
previous approaches [GVV17; GT19] towards proving hardness of Max-OCSPs (in particular MAS) were
unable to achieve optimal streaming hardness results despite starting with optimal hardness results for the
source CSP Max-UniqueGames, because of issues in designing streaming reductions which produce sufficiently
large value gaps. In the remainder of this section, we describe and motivate this approach towards proving
the approximation-resistance of Max-OCSPs.

1.6.1 Special case: The intuition for MAS

We start by describing our proof technique for the special case of the MAS problem. Let +, denote the
modular addition operator on [¢] = {1,...,¢}: For a,b € [q], a +4 b denotes the unique ¢ € [g] such that
a+b=c (mod ¢). Thus, for instance, 1 4+, ¢ = 1.

Similarly to earlier work in the setting of streaming approximability (e.g., the work of Kapralov, Khanna,
and Sudan [KKS15]), we prove inapproximability of MAS by exhibiting a pair of distributions over MAS
instances, which we denote Y (the “YES instances”) and N (the “NO instances”), satisfying the following
two properties:

1. Y and NV are “indistinguishable” to streaming algorithms (in a sense we define formally below).

3For minimization problems, a x-approximation to a value v is in the interval [v, kv]. Thus approximation factors are larger
than 1.

4@iven n variables, the ordering space to a phylogenetic CSP consists of rooted binary, or more generally k-ary, trees with
n labeled leaves, and constraints specify “hierarchical structure” among the leaves. For instance, in the “triple reconstruction”
problem, the constraint (a, b, c) expresses that a and b are closer to each other than either is to ¢, where distance is measured
as path length in the tree. See [CM23, §3, §9] for full definitions.



2. With high probability, ) has high MAS values (=~ 1) and A" has low MAS values (~ 3).

The existence of such distributions would suffice to establish the theorem: there cannot be any streaming
approximation for MAS, since any such algorithm would be able to distinguish these distributions. But how
are we to construct distributions ) and N satisfying these properties?

The “recipe” which has proved successful in past works for proving streaming approximation resistance
for “standard” CSPs is roughly to let the N instances be completely random, while ) instances are sampled
with “hidden structure” which guarantees a very good assignment. Then, one would show that streaming
algorithms cannot detect the existence of such hidden structure, via a reduction to a communication game
(typically a variant of Boolean hidden matching [GKK™08; VY11]). In the OCSP setting, we might hope
that the hidden structure could simply be an ordering; that is, we could hope to define ) by first sampling
a random ordering of the variables, then sampling constraints that go forward with respect to this ordering,
and then perhaps adding some noise. But unfortunately, we don’t know how to directly prove communication
lower bounds for such problems.

Hence, instead of seeking to prove indistinguishability directly, we turn back to earlier streaming hardness-
of-approximation results proven in the context of standard CSPs. In this setting, variables take on values in
a finite alphabet [q] (i.e., the solution space is [¢]"), and k-ary predicates f : [¢]*¥ — {0,1} can be applied to
small subsets of variables to form constraints. We make two observations about this definition. Firstly, in
a CSP, two variables may be assigned the same value in [g], whereas in an OCSP, every variable must get
a distinct value in [n]. Secondly, for a CSP or OCSP defined by a single binary predicate, each constraint
simply specifies a pair (41, j2) of distinct indices in [n]; by extension, instances can be viewed equivalently as
directed graphs on [n] (allowing multiple edges). Thus, we can view instances of binary CSPs as instances
of MAS, and vice versa.

The plan is as follows. We’ll define a binary predicate denoted Hk/,qu : [q]? = {0,1}. Let Max—CSP(HkAqAS)
denote the problem of maximizing Hk,lqu constraints applied to assignments in [¢]”. The hope is that for
a careful choice of the alphabet size ¢ and the predicate Hi,,qu, we can reuse indistinguishable YES/NO
distributions for Max—CSP(HﬁfAS) — in particular, those constructed in the recent work of Chou, Golovnev,
Sudan, Velingker, and Velusamy [CGST22b] — as YES/NO distributions for MAS. This requires us to
relate the values of an MAS instance and the corresponding I\/Iax—CSP(H#,,qAS) instance. To be precise, for an
MAS instance ¥, let U+? denote the Max—CSP(HkﬂqAS) instance with the exact same list of constraints and

let csp-valy,, denote the value of this instance. We choose ¢ and Hqus so as to imply the following four
properties about the indistinguishable distributions ) and N “given to us” by [CGS*22b]:

1. With high probability over ¥ ~ ), csp-valg,, = 1.

2. With high probability over ¥ ~ N, csp-valg., ~ 3.

3. For all ¥, ocsp-valy, > csp-valy.,.

4. With high probability over ¥ ~ A/, ocsp-valy is not much larger than csp-valy.,.

Together, these items will suffice to prove the theorem since 2 and 4 together imply that with high
probability over ¥ ~ N, ocsp-valg ~ %7 while 1 and 3 together imply that with high probability over ¥ ~ ),
ocsp-valy ~ 1.

In order to satisfy these criteria, we define the CSP predicate as follows. Recall that IIyas(1,2) = 1 while
Muas(2,1) = 0. We define the constraint predicate Iy : [¢]> — {0,1} by Tyfag(b1,b2) = 1 iff by < by. We
call this the g-coarsening of llyas, and it gives Max—CSP(H#,,qAS) the following “scheduling” interpretation.
Recall, the goal of MAS is to schedule n tasks, each task i is assigned a distinct position o; € [n] in the
schedule, and the goal is to maximize constraints of the form (ji, j2) requiring that task j; takes place before
task ja, ie., 05, < 0j,. In Max—CSP(HkAqAS), the goal is to schedule n tasks in g batches: Each task i receives
a (not necessarily distinct!) batch o; € [g], and constraints (ji,j2) still require that o;, < oj,, that is, ji’s
assigned batch is earlier than jo. 3 follows immediately in this interpretation: Given any batched schedule
b € [¢]", we can immediately “lift” to a non-batched schedule b" € &,, by arbitrarily ordering the tasks in
each batch, which can only increase the number of satisfied constraints.



Proving 4 is the meat of the argument. Note that if we set ¢ = n, Max—CSP(H#,,qAS) becomes the
same problem as MAS, and hence 4 is triviall However, we can only apply the inapproximability results
of [CGST22b] (specifically, the indistinguishability of their distributions J and A') when ¢ is a constant.
Briefly, the [CGS*22b] results roughly state that a predicate f : [¢]* — {0,1} is inapproximable when its
support satisfies a property that they call width: it contains most of a “diagonal”, in the sense that for some
a € [q]¥, the set {c € [q] : f(a+, (c,...,c)) = 1} is large. Luckily for us, H#,lqu has this property with
a = (1,2); indeed, Hk/lqu(l +4¢,244c¢) =1 unless ¢ = ¢ — 1 (in which case 1 +, ¢ = ¢ while 2+, c=1).

To actually prove 4, then, we can no longer use the results of [CGST22b] as a black box. Specifically, we
need to understand the structure of the NO distribution A/ (beyond 2 and its indistinguishability from }).
We show that instances drawn from N are (with high probability) “small partition expanders” in a specific
sense: for every partition of the set of variables into g blocks of roughly equal size, very few constraints,
specifically a o(1) fraction, involve two variables in the same block. (See 4.7.) Now, we think of a “schedule”
o € G, as giving rise to a “batched schedule” o+¢ € [g]" in the following way: If task 4 is scheduled in
position o; € [n], then we place it in batch ~ ¢;q/n. Thus the first &~ n/q scheduled tasks are placed in
batch 1, the next ~ n/q in batch 2, etc. Hence, whenever a constraint (ji, j2) is satisfied by o (as an MAS
constraint), it will also be satisfied by o7 (as a I\/Iax-CSP(Hk,lqAS) constraint), unless j; and js end up in
the same batch; but by the small partition expansion condition, this happens only for o(1) fraction of the
constraints. Hence ocsp-valy < csp-valgi, + o(1).

1.6.2 Extending to general ordering CSPs

Extending the idea to other OCSPs follows the same basic outline. Given the constraint predicate Il : & —
{0,1} (of arity k) and positive integer q, we define II*? : [¢g]* — {0,1} analogously to HkAqu: I1+4(b) is
II(ord(b)) if ord(b) # L (i.e., b’s entries are all distinct), and 0 otherwise. We then describe the YES and
NO distributions of Max-CSP(IT*?) which the general theorem of [CGS*22b] shows are indistinguishable
to o(n) space algorithms, again taking advantage of the fact that I1?’s support mostly contains a diagonal.
Finally, we give an analysis of the partition expansion in the NO instances arising from the construction
in [CGS™22b]. Specifically, we show that the instances are now a “small partition hypergraph expander”, in
the sense that for every partition of the n variables into ¢ blocks of roughly equal size, very few constraints
involve even two vertices from the same block.

1.6.3 Further remarks

Our notion of coarsening is somewhat similar to, but not the same as, that used in previous works, no-
tably [GHM™11]. In particular, the techniques used to compare the OCSP value (before coarsening) with
the standard CSP value (after coarsening) are somewhat different: Their analysis involves more sophisticated
tools such as influence of variables and Gaussian noise stability. The proof in our setting, in contrast, uses
a more elementary analysis of the type common with random graphs.

In the rest of the paper, in the interest of self-containedness, we will avoid invoking the work of [CGST22b]
on linear-space streaming CSP inapproximability where possible. Instead, we will explicitly define the
distributions ) and N over Max-OCSP(II) instances for arbitrary ordering predicates II and analyze them
directly, without invoking any prior analyses of their coarsened CSP values (which would require formally
defining the notion of the “width” of predicates in [CGST22b]). Hence, we’ll only need to invoke [CGST22b]
in the context of using communication lower bounds to prove indistinguishability of ) and N. We also
manage to prove a stronger statement about the coarsened ) distribution (though it is unnecessary for our
application): Its value is high with probability 1, as opposed to just 1 —o(1) (which would be implied by the
analysis in [CGST22D]).

Organization of the rest of the paper. In 2 we introduce some additional notation and background
material. In 3, we introduce two distributions on Max-OCSP(II) instances, the YES distribution ) and
the NO distribution N; state lemmas asserting that these distributions are concentrated on instances with
high, and respectively low, OCSP value; and that these distributions are indistinguishable to (single-pass)
small-space streaming algorithms; and then prove 1.1 modulo these lemmas. Finally, we prove the lemmas
on the OCSP values in 4, and prove the indistinguishability lemma in 5.
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2 Preliminaries and definitions

2.1 Additional notation

The support of an ordering constraint predicate IT : & — {0, 1} is the set supp(Il) = {w € & : II(w) = 1}.

We first define a notion of “k-hypergraphs”. (These are k-uniform ordered hypergraphs with multiple hy-
peredges and without self-loops.) Given a finite set V', an (ordered, self-loop-free) k-hyperedge j = (j1, ..., jk)
is a sequence of k distinct elements ji,...,j5x € V. We stress that the ordering of vertices within an edge
is important to us. An k-hypergraph G = (V, E) is given by a set of vertices V and a multiset £ C V* of
k-hyperedges on V. A k-hyperedge j is incident on a vertex v if v appears in j. Let I'(j) C V denote the set
of vertices to which a k-hyperedge j is incident, and let m = m(G) denote the number of k-hyperedges in G.

A k-hypergraph is a k-hypermatching if it has the property that no pair of (distinct) k-hyperedges is
incident on the same vertex. We let My, o(n) denote the uniform distribution over all k-hypermatchings on
[n] with an edges.

A vector b = (by,...,b,) € [¢]" may be viewed as a g-partition of [n] into blocks b=1(1),...,b™1(q),
where the i-th block b~!(i) is defined as the set of indices {j € [n] : b; = i}. Given b = (by,...,b,) € [¢]"
and an indexing vector j = (j1,...,jx) € [n]*, we define b|; = (b;,,...,b;,) € [¢]*.

Given an instance ¥ of Max-OCSP(II) on n variables, we define its constraint hypergraph G(¥) to be the
k-hypergraph on [n] consisting of the k-hyperedge j for each constraint (IT, j) in U. We also let m(¥) denote
the number of constraints in ¥ (equiv., the number of k-hyperedges in G(¥)).

2.2 Concentration bounds

We require the following Azuma-style concentration inequality for (not necessarily independent) Bernoulli
random variables with bounded conditional expectations taken from Kapralov and Krachun [KK19]:

Lemma 2.1 ([KK19, Lemma 2.5]). Let 0 <p < 1. Let Xi,..., X, be {0,1}-valued random variables such
that for every i € [m], E[X; | X1,...,Xi—1] < p. Then for every n > 0,

02
S eXp <_ <> m> ‘
2(p +n)
We also require standard Chernoff bounds for sums of independent Bernoulli variables which we state

here for completeness:

Lemma 2.2 (Chernoff bounds). Let 0 < p < 1. Let X1,..., X be {0, 1}-valued random variables such that
for every i € [m], E[X;] = p. Then:

Pr ZXi > (p+n)m

i=1

5The conference version of [CGSV24] appeared in 2021. The results in [CGSV24] are quantitatively weaker for the problems
considered in [CGST22b], though their results apply to a broader collection of problems. Interestingly, for our application,
which covers all OCSPs, the narrower set of problems considered in [CGST22b] suffices.



1. For everyn > 0,

Pr [zm: Xi<(p— n)ml < exp (— (g;) m) :

o [Errfzm] s2on (- (5))

m
> Xi—pm
=1
(Note that the lower bounds in these lemmas are trivial if n > p.)

2. For alln >0,

2.3 Stirling’s approximation
Finally, we state a standard form of Stirling’s bound for the factorial:

Lemma 2.3 (Stirling approximation). For alln € N,

V2rn(n/e)t < nl < 2v2mn(n/e)".

3 The streaming space lower bound

In this section, we prove our main theorem (1.1), modulo some lemmas that we prove in later sections. We
focus first on the following special case for single-predicate families:

Theorem 3.1 (Main theorem (single-predicate case)). For every k € N and every predicate Il : &5, — {0, 1},
Max-OCSP(II) is approximation-resistant (to single-pass streaming algorithms). In particular, for every
e > 0, every (p(II) + €)-approximation algorithm for Max-OCSP(II) requires (n) space.

Indeed, given 3.1, 1.1 follows immediately:

Proof of 1.1. Given any family F of predicates, let II have minimal random assignment value p over pred-
icates in F, so that p(II) = p(F). Then since every instance of Max-OCSP(II) is also an instance of
Max-OCSP(F), 3.1 immediately implies (p(F)+¢€)-approximations for Max-OCSP(F) require Q(n) space. [

Our lower bound is proved, as is usual for such statements, by showing that no small space algorithm
can “distinguish” YES instances with OCSP value at least 1 — /2, from NO instances with OCSP value at
most p(IT) +¢€/2. Such a statement is in turn proved by exhibiting two distributions, the YES distribution )
and the NO distribution A, and showing these are indistinguishable. Specifically, we carefully choose some
parameters ¢, T, a and a permutation = € &y, and define two distributions ) = yg;:T(n) and N' = NfaT(n)
over n-variable instances of Max-OCSP(II). We claim that for our choice of parameters ) is supported on
instances with value at least 1 — €/2 — this is asserted in 3.3 below. Similarly, we claim that A is mostly
supported (with probability 1 —o(1)) on instances with value at most p(IT) +€/2 (see 3.4). Finally, we assert
in 3.5 that any algorithm that distinguishes ) from N with “advantage” at least 1/8 (i.e., accepts ¥ ~ Y
with probability 1/8 more than ¥ ~ N) requires Q(n) space.

Assuming 3.3, 3.4, and 3.5, the proof of 3.1 is straightforward and given at the end of this section. We
prove 3.3 and 3.4 in 4 and 3.5 in 5.

3.1 Distribution of hard instances

We now formally define our YES and NO distributions for Max-OCSP(II).

Definition 3.2 (yf,ng(n) and N, 1(n)). Fork € N and 11 : & — {0,1}, let ¢,n, T € N and o > 0, ¢ > k,

and let m € supp(Il). We define two distributions over Max-OCSP(II) instances with n variables, the YES

distribution yng(n) and the NO distribution N}, p(n), as follows:

1. Sample a uniformly random g-partition b = (by,...,b,) € [q|™.



2. Sample T hypermatchings G1,...,Gr ~ Mo (n) independently.
3. For each t € [T, do the following:

o Let Gy be an empty k-hypergraph on [n].
e For each k-hyperedge j = (j1,...,jk) € E(Gy):
— YES case: If there exists ¢ € [q] such that blj =7 44 (c,...,c¢), add j to G, with probability
1/q. (Here m is viewed as k-tuple in [k]* C [q]*.)
— NO case: Add j to Gy with probability qik

4. Set G +— GLU---UGr.
5. Return the Max-OCSP(IT) instance ¥ on n variables given by the constraint hypergraph G.

We say that an algorithm Alg achieves advantage § in distinguishing y;TgTT(n) from N, qHaT(n) if there
exists an ng such that for all n > ng, we have

Pr  [Alg(®)=1]— Pr [Alg(¥)=1]| >

UYL (n) TN 1 (n)

We make several remarks on this definition. Firstly, note that the constraints within y,?g’T(n) and

N, ql?ayT(n) do not directly depend on II. We still parameterize the distributions by II, since they are formally
distributions over Max-OCSP(IT) instances; IT also determines the arity k& and the set of allowed permutations
7 in the YES case. Secondly, we note that when sampling an instance from N (Ir}a)T(n), the partition b is
ignored, and so N EQ’T(n) is “random”. Hence these instances fit into the typical streaming lower bound
“recipe” of “random graphs vs. random graphs with hidden structure”. Finally, we observe that the number
of constraints in both distributions is distributed as a sum of m = naT independent Bernoulli(ﬁ) random
variables.

In the following section, we state lemmas which highlight the main properties of the distributions above.
See 1 for a visual interpretation of the distributions in the case of MAS.

3.2 Statement of key lemmas

Our first lemma shows that ) is supported on instances of high value.

Lemma 3.3 () has high Max-OCSP(II) values). For every ordering constraint predicate 11 : &, — {0, 1},

every w € supp(Il) and ¥ ~ y(ff;fT(n), we have ocsp-valy > 1 — % (i.e., this occurs with probability 1).

We prove 3.3 in 4.2. Next, we assert that N is supported mostly on instances of low value.

Lemma 3.4 (N has low Max-OCSP(II) values). For every ordering constraint predicate 11 : &), — {0,1},
and every € > 0, there exists qo € N and ay > 0 such that for all ¢ > qo and o < «y, there exists Ty € N
such that for all T > Ty, for sufficiently large n, we have

€
Pr[ocspvaly > p(IT) + S| < 0.01.
o, » ocsp-valy > p(II) 5] <

q,c, T

We prove 3.4 in 4.3. We note that this lemma is more technically involved than 3.3 and this is the proof

that needs the notion of “small partition expanders”. Finally, the following lemma asserts the indistinguisha-

bility of J and A to small space streaming algorithms. We remark that this lemma follows directly from
the work of [CGS™22b], but we prove it for completeness in 5.

Lemma 3.5 (Y and N are indistinguishable). For every q¢ > k € N there exists ag(k) > 0 such that for
every T € N, a € (0, ag(k)] the following holds: For every ordering constraint predicate II : &, — {0,1} and
7 € supp(Il), every streaming algorithm distinguishing ygng(n) from N EQ,T(n) with advantage 1/8 for all
lengths n uses space (n).
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(b) Constraint graph of a sample MAS instance drawn from N

Figure 1: The constraint graphs of MAS instances which could plausibly be drawn from ) and N/, respectively, for ¢ = 5 and
n = 12. Recall that MAS is a binary Max-OCSP with ordering constraint function IIyas supported only on (1,2). According
to the definition of Y (see 3.2, with w = (1,2)), instances are sampled by first sampling a g-partition b = (b1,...,bn) € [q]7,
and then sampling some constraints; every sampled constraint (j1, j2) must satisfy b;, = b;, + 1 (mod ¢). On the other hand,
there are no requirements on (bj, , b;,) for instances sampled from N. Above, the blocks of the partition b are labeled 1,...,5,
and the reader can verify that the edges satisfy the appropriate requirements. We also color the edges in a specific way: We
color an edge (j1,72) green, orange, or red if b;, > bj,, bj, = bj,, or bj, < bj,, respectively. This visually suggests important
elements of our proofs that ) has MAS values close to 1 and N has MAS values close to % (for formal statements, see 3.3 and
3.4, respectively). Specifically, in the case of ), if we arbitrarily arrange the vertices in each block, we will get an ordering in
which every green edge is satisfied, and we expect all but é fraction of the edges to be green (i.e., all but those which go from
block g to block 1). On the other hand, if we executed a similar process in A, the resulting ordering would satisfy all green

a(g+1) _ g+l 1
2q2 -

edges and some subset of the orange edges; however, in expectation, these account only for 20 ~ 3 fraction of the

edges.
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3.3 Proof of 3.1

We now prove 3.1.

Proof of 3.1. Let Alg be an algorithm for Max-OCSP(IT) that uses space s(n) and achieves a (p(II) + ¢)-
approximation. Fix 7 € supp(IT). Consider the algorithm Alg’ defined as follows: on input ¥, an instance of
Max-OCSP(I), if Alg(¥) > p(I) + 5, then Alg’ outputs 1, else, it outputs 0. Observe that Alg’ uses O(s(n))

Q(k_l) such that the condition of 3.4 holds. Set g € (0, ap(k)] such that the conditions of
Q(k by

space. Set qg >
3.4 holds. Con51der any q > qo and a < ag: let Ty be set as in 3.4. Consider any T > Tj: since q >
it follows from 3.3 that for ¥ ~ Y'" - T( n), we have ocsp-valy, > 1 — £, and hence with probability at least
2/3, Alg(¥) > p(IT) + 5. Therefore, E\P YT (n )[/—\Ig(\IJ) = 1] > 2/3. Similarly, by the choice of go, ag, T, it
follows from 3.4 that

€
Pr [ocs -valg > p(IT) 4+ = | < 0.01,
YN () p-valy > p(I) 9] =

and hence, Ev N () [Alg(¥) = 1] < 1 +0.01. Therefore, Alg’ distinguishes yq wp(n) from N p(n) with

advantage 1/8. By applying 3.5, we conclude that Alg uses s(n) > Q(n) space. O

4 Bounds on Max-OCSP(II) values of ) and N

The goal of this section is to prove our technical lemmas 3.3 and 3.4 which, respectively, lower bound the
Max-OCSP(II) values of yq wr(n) and upper bound the Max-OCSP(IT) values of ./\/q 0,7 (7).

4.1 CSPs and coarsening

In order to prove the lemmas, we recall the definition of (standard) constraint satisfaction problems (CSPs),
whose solution spaces are [¢]™ (as opposed to &, for OCSPs), and define an operation called g-coarsening
on Max-OCSPs, which restricts the solution space from &,, to [¢]™.

A mazimum constraint satisfaction problem, Max-CSP(f), is specified by a single constraint predicate
f : lg)% — {0,1}, for some positive integer k. An instance of Max-CSP(f) on n variables is given by
m constraints C1,...,C,, where C; = (f,j(i)), i.e., the application of the predicate f to the variables
j@) =1, ...,70@)k). (Again, f is omitted when clear from context.) The value of an assignment b € [¢]™
on an instance ® = (Cy,...,C,,), denoted csp-valg(b), is the fraction of constraints satisfied by b, i.e.,
csp-valg (b) = L > iem) f (Pli(i)), where (recall) by = (bj,,...,bj,) for b= (by,...,bn),j = (j1,...,jx). The
optimal value of ® is defined as csp-valg = maxy, (g {csp-valg (b)}.

Definition 4.1 (g-coarsening). Let II : & — {0,1} be an ordering predicate. For q € N, the g-coarsening of
II is the predicate 1Y : [q]F — {0, 1} defined by I1¥9(a) = 1 iff Il(ord(a)) = 1 (if ord(a) = L, i.e., a’s entries
are not all distinct, we define IT*4(a) = 0). The g-coarsening of the problem Max-OCSP(II) is the problem
Max-CSP(II*), and the g-coarsening of an instance ¥ of Max-OCSP(II) is the instance U+ of Max-CSP(II+9)
given by the same constraint hypergraph.

The following lemma captures the idea that coarsening restricts the space of possible solutions; compare
to 4.9 below.

Lemma 4.2. If ¢ € N and VU is an instance of Max-OCSP(II), then ocsp-valy > csp-valy,.

Proof. We will show that for every assignment b € [¢]" to U+, we can construct an assignment b’ € &,
to U such that ocsp-valy(b") > csp-valy.,(b). Consider an assignment b € [¢]". Let b be the ordering
on [n] constructed by placing the blocks b=1(1),...,b~!(g) in order (within each block, we enumerate the
indices arbitrarily). Consider any constraint C' = j = (ji,...,j%) in ¥ which is satisfied by b in W+,
Since IT*4(b|;) = 1, by definition of II*¢ we have that II(ord(bl;)) = 1 and in particular that bj,,...,b;, are
distinct. The latter implies, by the construction of b', that ord(b|;) = ord(b'|;). Hence I(ord(b'[;)) = 1, so
b’ satisfies C' in ¥. Hence ocsp-valy (b") > csp-valy.,(b). O
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4.2 Y has high Max-OCSP(II) values

In this section, we prove 3.3, which states that the Max-OCSP(II) values of instances ¥ drawn from yq ()

are large. Note that we prove a bound for every instance ¥ in the support of yq’a’T(n)7 although it would
suffice for our application to prove that such a bound holds with high probability over the choice of V.
To prove 3.3, by 4.2, it suffices to show that csp-valgis > 1 — %. One natural approach is to consider

the g-partition b = (by,...,b,) € [¢]” sampled when sampling ¥ and view b as an assignment for W+,
Consider any constraint C' = j = (ji,..., /i) in ¥; by the definition of Y™™ (3.2), we have b|; = v(9) +, &
for some (unique) ¢ € [q], where v(¢) denotes the vector (c, ..., c) € [¢]*. We term c the identifier of C. Now

we use the following simple fact:
Fact 4.3. Let w € &. Then for every ¢ € {1,...,q — k} U {q}, ord(v(® +o ) =T

Proof. Follows from the fact that for ¢ in this range, and every ¢,j € [k] C [g], we have ¢ < jiff i 44 ¢ <
Jj+qc. O

Thus, C is satisfied by b iff II(ord(v(¢) 4, 7)) = 1. Hence a sufficient condition for b to satisfy C'is that
C’s identifier ¢ € {1,...,q — k} U {q}, since in this case by 4.3, we have ord(v(®) 4+, 7) = . Unfortunately,
when sampling the constraints, we might get “unlucky” and get a sample that over-represents the identifiers
{g—k+1,...,q—1}. We can resolve this issue using “shifted” versions of b.® The proof is as follows:

Proof of 3.3. For t € [q], define the assignment b(*) = (bgt), ce bs)) to Ut via bgt) =b; +4t for i € [n].

Fix t € [g]. Then we claim that b(*) satisfies any constraint C' with identifier ¢ such that gt €{l,...,q—
k} U{q}. Indeed, if C' = j is a constraint with identifier ¢, we have b(®)|; = v(9) 4, vV 4 7 = v(ctad) 4 7,
and then we use 4.3.

Now (no longer fixing t), for each ¢ € [g], let w(® be the fraction of constraints in ¥ With identiﬁer c. By
the previous paragraph for each t € [g], we have csp- vallq(b(t)) > et gte{1,q—k}U{q }w . On the other

.....

hand, >7_, = 1 (since every constraint has some (unique) identifier). Hence
a
chp ~valg.. (b)) Z Z w® | =q—(k-1),
t=1 t=1 \cict+qte{l,...,q—k}U{q}

since each term w(®) appears exactly g — (k— 1) times in the expanded sum. Hence by averaging, there exists
some t € [g] such that csp-valg.,(b®) > 1 — , and so csp-valgyy > 1 — T as desired. O

4.3 N has low Max-OCSP(II) values

In this section, we prove 3.4, which states that the Max-OCSP(II) value of an instance drawn from N does
not significantly exceed the random ordering threshold p(II), with high probability.

Remark. Using concentration bounds (i.e., 2.1), one could show that the probability that a fized solution
o € G, satisfies more than p(IT) + 1/q constraints is exponentially small in n. However, taking a union
bound over all n! permutations o would cause an unacceptable blowup in the probability (since by Stirling’s
approximation, n! ~ (n/e)"™).

Instead, to prove 3.4, we take an indirect approach, involving bounding the Max-CSP value of the ¢-
coarsening of a random instance and bounding the gap between the Max-OCSP value and the g-coarsened
Max-CSP value. To do this, we define the following notions of small set expansion for k-hypergraphs:
Definition 4.4 (Lying on a set). Let G = ([n], E) be a k-hypergraph. Given a set S C [n], a k-hyperedge
j€ Elieson S if it is incident on two (distinct) vertices in S (i.e., if [T(G)N S| > 2).

Definition 4.5 (Congregating on a partition). Let G = ([n], E) be a k-hypergraph. Given a q-partition
b € [¢]", a k-hyperedge j € E congregates on b if it lies on a block b='(i) = {j € [n] : b; = i} for some
i € [q].

6 Alternatively, in expectation, csp-valyq(b) =1 — . Hence with probability at least 100, csp-valygq(b) > 1 —

100(k—1)
q

by Markov’s inequality; this suffices for a “with-high- probablhty statement.
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Definition 4.6 (Small set hypergraph expansion (SSHE) property). A k-hypergraph G = ([n], E) is a (v,9)-
small set hypergraph expander (SSHE) if it has the following property: For every subset S C [n] of size at
most yn, the number of k-hyperedges in E which lie on S is at most 6|E)|.

Definition 4.7 (Small partition hypergraph expansion (SPHE) property). A k-hypergraph G = ([n], E) is
a (7, 96)-small partition hypergraph expander (SPHE) if it has the following property: For every partition
b € [q]" where each block b~ (i) = {j € [n] : b; = i} has size at most yn, the number of k-hyperedges in E
that congregate on b is at most §|E)|.

In the context of 1, the SPHE property says that for any partition with small blocks, there cannot be
too many “orange” edges.

In the remainder of this subsection, we state several lemmas and then give a formal proof of 3.4. We
begin with several short lemmas.

Lemma 4.8 (Good SSHEs are good SPHESs). For every k € N and v, > 0, if a k-hypergraph G = (V, E)
is a (v,0)-SSHE, then it is a (v,8(2/y+ 1))-SPHE.

Proof. Let n = |V|. Consider any partition b € [¢]™ of V where each block b~!(i) has size at most yn.
WLOG, all but one block has size at least %* (if not, merge blocks until this happens, only increasing the
number of k-hyperedges that congregate on b). Hence £ < % + 1.7 By the SSHE property, there are at most

om k-hyperedges that lie on each block; hence there are at most 5(% + 1)m constraints that congregate on
b. O
Lemma 4.9 (Coarsening roughly preserves value in SPHESs). Let ¥ be a Max-OCSP(II) instance on n
variables and let ¢ > 2/v. Suppose that the constraint hypergraph G(¥) of ¥ is a (v,0)-SPHE. Then for
sufficiently large n,

ocsp-valy, < csp-valgyq + 9.

Proof. For every assignment o = (01, ...,0,) € &, to ¥, we will construct an assignment o+¢ = (ofq, Lov) €
[q]™ to W+ such that ocsp-valy (o) < csp-valy i, (0¥9) + 6. Fix o € &,,. Define o¥4 € [¢]" by O':L-Lq = |oi/yn]
for each i € [n]. We verify that since o; < n, we have

ot? < |n/yn) < njyn <n/(2n/q) <n/(n/q) =g,

so 0¥ is a valid assignment to W+4. Also, o*? has the property that for every i,j € [n], if o; < o; then
ojq < O'j-’q; we call this monotonicity of o¥9.

Now view o7 as a g-partition and consider the constraint hypergraph G(¥) of ¥ (which is the same
as the constraint hypergraph G(¥+?) of W+?). Call a constraint C = j = (ji,...,5%) in ¥ good if it is
both satisfied by &, and the k-hyperedge corresponding to it does not congregate on o¥?. If C is good,
then Uj—lq, ceey aji-kq are all distinct; together with monotonicity of o+?, we conclude that if C' is good, then
ord(o+4|;) = ord(o|;), and hence C is also satisfied by o+ in W+,

Finally, we note that each block in o*? has size at most yn by definition; hence by the SPHE property
of the constraint hypergraph of ¥, at most J-fraction of the constraints of ¥ correspond to k-hyperedges
that congregate on o*?. Since ocsp-valy (o )-fraction of the constraints of W are satisfied by o, at least
(ocsp-valy (o) —d)-fraction of the constraints of ¥ are good, and hence o7 satisfies at least (ocsp-valy (o) —6)-
fraction of the constraints of ¥¥?, as desired. O

The construction in this lemma was called coarsening the assignment o by Guruswami, Hastad, Manokaran,
Raghavendra, and Charikar [GHM T 11] (cf. [GHM ' 11, Definition 4.1]).

We also include the following helpful lemma, which lets us restrict to the case where our sampled
Max-OCSP(II) instance has many constraints.

Lemma 4.10 (Most instances in A/ have many constraints). For every n, o,y > 0, and q € N,

oT oT
P U) < [ — < B )
%qufz,T(n) [m( )< <2q’“> n} = ( (Sq’“> n)

TWe include the +1 to account for the extra block which may have arbitrarily small size. Excluding this block, there are at
most —2-— < —2- blocks remaining.
[yn/2] = yn/2
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Proof. The number of constraints in ¥ is distributed as the sum of naT" independent Bernoulli(1/¢*) random
variables. The desired bound follows by applying a Chernoff bound (2.2) with n = p/2. O

Now we state the following pair of lemmas, whose more involved proofs we defer to 4.3.1 and 4.3.2,
respectively:

Lemma 4.11. For every n, o,y >0, and ¢ € N with o < 1/(2k),

naT]

Pr [G(\IJ) is not a (v, 8k*~*)-SSHE ‘ m(¥) > o

‘PN./\/.(EOLYT(TL)

2aT
< exp (—(7222 —ln2>n).

Lemma 4.12 (Satisfiability of random Max-CSP(¥+9) instances). For every n, a,n > 0,

nal’
P csp-valy.s > p(II) + U) > ——
‘I’NNE:T(H)[ p-valy., > p(II) Tl‘m( )= qu}

= e (‘(zupaq)fn)q ‘“”)”) |

We remark here that the proofs of both lemmas only require union bounds over sets of size (O.(1))™ (the
set of all small subsets of [n] and of all solutions to the coarsened Max-CSP, respectively); this lets us avoid
the issue, mentioned in the Remark at the beginning of this subsection, of union-bounding over the entire
space &,, of super-exponential size n! directly.

We finally give the proof of 3.4.

Proof of 3.4. Let qo def [%—‘ and let «g def L. Suppose o < g and ¢ > qo. Then let def and

n def 7, and let

_€ _
96k2

7, 4t {max {2(1n22)qk A1 +277)q’“(1n q) H 41
v n2a
Now, we will prove the desired bound for any T > Tj.
Let &1, &, and & denote, respectively, the events “m(¥) < (aT/(2¢*))n”, “G(¥) is not a (v, 8k*y?)-
SSHE”, and “csp-valy., > p(II) +n”. Then, since o < g, 4.10, 4.11, and 4.12 state that

Pr[&] < exp(—Cin),

Pr[&; | &1] < exp(—Can),
Pr[&5 | £1] < exp(—C3n),
respectively, where we define the constants C; = g‘TTk, Cy = 7223,31 —1In2, and C5 = m —Ingq, and all

probabilities are over the choice of ¥ ~ A/ fa’T(n). Now observe that for our choice of T', C, Cy, C3 are all
positive and do not depend on n, so for sufficiently large n, all three probabilities are smaller than 1/1000.
This implies that Pr[€; V €3] < 1/100: Indeed,

Pr[&; V &3] = Pr[&a V &3 | E1] Pr[&1] + Pr[€a V E3 | £1] Pr[&] (total probability)
< Pr[& V & | &1] + Pr[&] (probabilities < 1)
< Pr[& | &) + Pr[&5 | &1] + Pr[&] (union bound)

and this is < 3/1000 < 1/100 by assumption.

Finally, we show that when neither & nor £; occurs, we have ocsp-valg < p(II) + ¢/2. Indeed, if G(¥)
is a (7, 8Kky?)-SSHE, by 4.8 it is also a (v, d)-SPHE for § = 8k%72(2/y + 1) < 8k%42(3/v) = 24k%*y = ¢/4.
Now since ¢ > qo > 2/, we can apply 4.9 and conclude that

ocsp-valy < p(I) + 7+ 6 < p(II) + %
as desired. O
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4.3.1 N is a good SSHE with high probability: Proving 4.11

Recall that for a k-hypergraph G = (V, E) and S C V(G), we define T'(j) C V as the set of vertices incident
on j.

Proof of 4.11. Let G, denote the t-th hypermatching sampled when sampling ¥ (as in 3.2). Let § = Tn),
and for each t € [T], let 8; = nGt), so that 8 = = Zt 1 Bt. By our conditioning assumption, 8 > 5o 2,
and B; < « for each ¢ € [T]. Tt suffices to prove the lemma conditioned on fixed values for fy, ..., Sr. This
is equivalent to simply sampling hypermatchings Gy ~ My, g,(n) independently and including all of their
k-hyperedges as constraints.

Fix any set S C [n] of size at most yn. For each t € [T, label the k-hyperedges of Gy as j(t,1), .. .,j(t, Bin).
Consider the collection of m(¥) = 8Tn random variables { Xt ;}1e[7),ic(.n), €ach of which is the indicator

for the event that j(¢,4) lies on S. Define X = Zt 1 Zﬁt" Xt,; as the number of such “lying on” edges we
observe. Since m(G(¥)) = BTn, it suffices to bound the probability that X > 8k?y?m, and then take the
union bound over all subsets S.

For fixed t € [T, we first bound E[Xy; | X¢1,...,X;,i—1] for each ¢ € [8;n]. Conditioned on j;1,...,Jti—1,
the k-hyperedge j(¢,%) is uniformly distributed over the set of all k-hyperedges on [n]\ (I'(ji,1)U- - -UL'(jt,i—1))-
It suffices to union-bound, over distinct pairs {a,b} € ([]2“]), the probability that the a-th and b-th vertices
of j(t,4) are in S (conditioned on Xy 1,...,X;;—1). We can sample the a-th and b-th vertices of j(¢,1) first
(uniformly over the remaining vertices) and then ignore the remaining vertices. Hence we have the upper
bound

k 1S|(1S] = 1)
E[Xt,i ‘ Xi, ooy Xyjie 1) < <2> (n—k(i—1)(n—k@{i—1)—1)

<(3) (i)

EIRR
< <
- ( ) (n—kﬁtn 45
since B < a < i

Now, we want to apply 2.1 to the random variables (X ;). Consider enumerating the X; ;’s lexicograph-
ically as
X1, X1 gims X2ty Xo gons - Xy oo X7 g

Now since the hypermatchings G; are sampled independently for all ¢ € [T], the collections of random
variables (Xt ;)ie[g,n) are independent across ¢ € [T]. So, for all t € [T] and i € [B;n], the expectation of
X;.; conditioned on the lexicographically-earlier Xy ;’s is still at most 4k%y2. Thus 2.1 (at p = n = 4k?4?)
implies that

Pr (X > 8k*y*m] < exp (—k*v*m) < exp(—y*m).

YN 1 (n)
Finally, we assumed m QTkn combined with the union-bound over the < 2" possible subsets S C [n],
gives the desired bound. O

4.3.2 N has low coarsened Max-CSP(¥+?) values (w.h.p.): Proving 4.12

Proof of 4.12. We consider the same setup as in the first paragraph of the proof of 4.11 in the previous
subsection: We set 8 = Tn ) and B, = =2, Abbreviating m = m(¥), ¥ contains m = ST'n constraints.
We condition on fixed fi,..., 57, and conmder sampling hypermatchings G; ~ My g,(n) and we have
%Z?:l B: = B > a/2¢". We label the k-hyperedges of G; as j(t,1),...,j(t, 5n). Now, we view these
k-hyperedges as the constraints of U4 for ¥ ~ fa r(n).

Let X;,; for t € [T],i € [Bn] be the indicator for the event that, as a constraint in W+, j(¢,4) is
satisfied by b, i.e., Hiq(b|j(t7i)) = 1. Again, like in the proof of 4.11, we first fix ¢ € [T] and bound
E[X:: | Xea,..., X i-1], for each i € [Bn]. Conditioned on j(¢,1),...,j(¢,i — 1), the k-hyperedge j(¢,%) is
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uniformly distributed over the set of all k-hyperedges on [n]\ (T'(j(¢,1))U- - -UT'(j(¢,i—1))). Now, we claim that
E[X: ;| Xea,--.. Xii—1] < p(II). Indeed, the set of possible k-hyperedges on [n]\(T'(j(¢,1))U- - -UT(j(¢,i—1)))
may be partitioned into blocks of size k! by mapping each k-hyperedge to the set of vertices on which it is
incident. That is, we can consider the k! possible k-hyperedges resulting from permuting the vertices of a
given k-hyperedge j = (j1,...,Jjx). If bj,,...,b;, are not all distinct, then ord(b|;) = L and so none of the
k-hyperedges are satisfied by b as constraints in ¥+?; otherwise, ord(b|;) is some ordering in &y, and so
exactly |supp(IT)| = p(II) - k! permutations of j are satisfied as constraints in W+9.

Now, we again apply 2.1 to the random variables (X;;). Using the same lexicographic enumeration
of variables as in the proof of 4.11, and the same observation that the hypermatchings G; are sampled
independently, we conclude that the expectation of X;; conditioned on the lexicographically-earlier X ;’s
is at most p(II). Again, we apply 2.1 (now with p = p(II)) to deduce that

= o ( <2(p(1717j+77)) m) |

Finally, we assumed m > naT'/2q", so the RHS is at most

> (- (st ) )

then, we union bound over b € [g]™ to yield the desired conclusion.

t=1 i=1

T pBin
Pr [Z > Xi > (p(I) + n)m

5 Streaming indistinguishability of ) and N

In this section, we prove 3.5 establishing the streaming indistinguishability of the distributions ) and N.
This indistinguishability follows directly from the work of Chou, Golovnev, Sudan, Velingker, and Velusamy
[CGST22b], who introduce a T-player communication problem called implicit randomized mask detection
(IRMD). Once we properly situate our instances Y and N within the framework of [CGST22b], 3.5 follows
immediately.

We first recall their definition of the IRMD problem and state their lower bound. The following definition
is based on [CGS™22b, Definition 3.1]. In [CGS*22b], the IRMD game is parametrized by two distributions
Dy and Dy, but hardness is proved for a specific pair of distributions which suffices for our purpose; these
distributions will thus be “hardcoded” into the definition we give.

Definition 5.1 (Implicit randomized mask detection problem). Let ¢, k,n,T € N,« € (0,1/k) be parameters.
IRMDg i,a,7(n) is a T-player one-way communication game. The T players are denoted Playery, ..., Playery.
The input to the players is drawn either from a “YES distribution” or a “NO distribution”, and their
collective goal is to distinguish these two cases. Each player Player, receives two inputs: (i) a uniform k-
hypermatching Gy ~ My o(n) on n vertices with an hyperedges j(t,1),...,j(t,an), and (i) a vector z; =
(Ze1s - Zt.an) € ([q)F)*™ labeling the k-hyperedges of Gy. There is also a random partition b ~ Unif([g]™)
which is hidden, i.e., not given to the players directly. The difference between the YES and NO distributions
is in how z; is determined by ét and b:

o YES case: Each z;; = bljui) +q ye,i where y,; ~ Unif({v() = (c,... ,c) : c € [q]}) independently.
® NO case: Each z;; = blj i) +q Yt where yg; ~ Unif([q]*) independently.

Player, sends a private message to the Player, , after receiving a message from Player, ;. The goal is for
Player to decide whether (zi)icr has been chosen from the YES or NO distribution, and the advantage of
a protocol is defined as

Pr [Playery outputs 1] — Pr [Player; outputs 1]].

YES case NO case
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Note that the definition of the IRMD problem does not depend on an underlying predicate (beyond fixing
g and k). Nevertheless, we will be able to leverage IRMD’s hardness to prove 3.5 (and indeed, all hardness
results in [CGS™*22b] itself stem from hardness for the IRMD problem). The following theorem of [CGS™22b]
gives a lower bound on the communication complexity of the IRMD problem:

Theorem 5.2 ([CGST22b, Theorem 3.2]). For every g,k € N and § € (0,1/2), a € (0,1/k), T € N there
exists ng € N and 7 € (0,1) such that the following holds. For all n > ng, every protocol for IRMDg k o 7(n)
with advantage 0 requires Tn bits of communication.

Now, we use this hardness result to prove 3.5. The following proof is based on the proof of [CGS™22b,
Theorem 4.3]. However, [CGST22b, Theorem 4.3] as written contains both the streaming-to-communication
reduction and an analysis of the CSP values of YES and INO instances; in the following, we reprove only
the former (and adapt the language to our setting).

Proof of 3.5. We prove the lemma for the same o as in 5.2.

Suppose Alg is a s(n)-space streaming algorithm that distinguishes yg;;fT(n) from N £a7T(n) with ad-
vantage 1/8 for all lengths n. We now show how to use Alg to construct a protocol Prot = (Proty, ..., Proty)
(where Prot, defines the behavior of the Player,) solving IRMD,, i, o 7(n) with advantage 1/8 for n > ng, which
uses only s(n) bits of communication; 5.2 provides a constant T € (0, 1) yielding the desired contradiction if
we set s(n) < tn. As is standard, this reduction will involve the players collectively running the streaming
algorithm Alg. That is, Prot is defined as follows: For ¢t € [T — 2], Prot; adds some constraints to the stream
(in a manner to be specified below) and then sends the state of Alg on to Player, ;. Finally, Prot7 terminates
the streaming algorithm and outputs the output of Alg.

Recall, Player,’s input is a pair (ét, z;) consisting of a hypermatching G, and a vector z; = (Ze1,- -+ Z1,0n)
of labels z; ; € [g]* for each hyperedge in M;. We define Prot,’s behavior as follows: It adds each hyperedge
j(@) in G, to the stream iff Zi; = T.

Let V'(n) and N’ (n) denote the distributions of Max-OCSP(II) instances constructed by Prot in the YES

and NO cases, respectively. The crucial claim is that )’ (n) and Y7, .(n) are identical distributions, and

g0, T
similarly with A”(n) and qu?ayT(n). This claim suffices to prove the lemma since the constructed stream

of constraints is fed into Alg, which is an s(n)-space streaming algorithm distinguishing yqrf;;jT
Tl

q,a, T
It remains to prove the claim. We first consider the NO case. N (n) and N, gayT(n) are both sampled by
independently sampling 7" hypermatchings from M, ,(n) and then (independently) selecting some subset of
k-hyperedges from each hypermatching to add as constraints. It suffices by independence to prove equivalence
of how the subset of each hypermatching is sampled in each case. For each ¢ € [T], Prot; adds a hyperedge
j(t,7) iff z, ; = . But in the NO case (even conditioned on all other z; ;+’s, on the hidden partition b, and
on j(t,i) itself), z;; is a uniform value in [g]*, and hence j(¢,7) is added to the instance with probability
1/¢*. This is exactly how we defined ql?ayT(n) to sample constraints.
Similarly, in the YES case, we consider the sampled g-partition b = (by,...,b,) € [¢]™ and a hyperedge
j(t,i) = (j1,---,Jk). In this case, by the definition of IRMD, we have z;; = bj«,;) +q¢ v(©) where ¢ ~ [q] is

(n) from
(n); hence we can conclude that Prot is a protocol for IRMD using s(n) < 7n bits of communication.

uniform and v(¢) = (¢, ..., ¢). Hence Prot, will add j(t,4) iff bljt,i) = T +4 v(©) where ¢ € [q] is the unique
value such that ¢’ +, ¢ = q. Consider the event & that there exists any ¢’ € [g] such that bljq ;) = 7 +4 v(€)
and the event & that ¢+, ¢’ = ¢. Note that if & does not occur, then j(¢,4) is never added, while if &
does occur, with probability 1/¢q over the choice of ¢, £ occurs and hence j(¢,7) is added. (Again, this holds

even conditioned on all other z; ;+’s, on j(t,7), and on b.) This is exactly how we defined yggj +(n) to sample
constraints. O
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A Good approximations in O(n) space via sparsification
In this appendix, we prove 1.2, which gives a simple (1—e€)-approximation algorithm for all Max-OCSP prob-

lems given O(n) space. To prove 1.2, we first develop a simple sampling lemma that states that sparsifying
down to Q(nlogn/e?) constraints preserves the value of a Max-OCSP instance up to an additive =e:
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Lemma A.1 (O(n)-space sampling lemma). Let F = [, y{II : &x — {0,1}} denote the (infinite) family
of all ordering predicates. For all € > 0 and sufficiently large n, let U be an instance of Max-OCSP(F) on n
variables. Let m > 10nlog n/e2. Consider the random instance U with n variables and 1 constraints which
is sampled by sampling each constraint independently and uniformly from the constraints of V. Then w.p.
99% over the choice of U, ocsp-valy — € < ocsp-valg < ocsp-valy + €.

Proof. First, fix an assignment & € &,, to W. Let &, denote the event that |ocsp-valg (o) —ocsp-valy ()] > e.
We claim that
Pr[és] < 2exp(—100nlogn).

Indeed, for j € [n], let C; denote the j-th constraint sampled when sampling U, and let X; denote the
indicator for the event that C; is satisfied by o. So m - ocsp-valg (o) = >°1"; X;. Multiplying both sides of
the desired inequality by m, & is the event that | >"!" | X; — /- ocsp-valy (o)| > em. Since C; is a uniform
constraint from U, E[X,] = ocsp-valy. Since the C;’s are sampled independently, by the Chernoff bound
(2.2) with n = € and p = ocsp-valy we have

|

n
E X; —m - ocsp-valy
=1

> eﬁ] < 2exp(—2€%m/ocsp-valy,)

< 2exp(—2€%m).

We assumed m > 10nlogn/e?. Therefore, the RHS is at most 2 exp(—100nlogn), as desired.
Now, let £ = Es denote the event that &, occurs for any o € &,,. To bound Pr[€], we use a
union bound:

occeS,

Pr[€] < 2|6,,| exp(—100nlogn).
But by Stirling’s approximation (2.3), |&,| < 3v/n(n/e)", and exp(—100nlogn) > n=109" (since logn >
Inn), so the error probability is (3v/7(n/e)™)(2n"109") < 60997+ which is less than 1/100 for sufficiently
large n.

Finally, we show that conditioned on &£, the desired inequality ocsp-valg — ¢ < ocsp-valg, < ocsp-valy + €
holds. Indeed, we have

ocsp-valg = max ocsp-valg (o)

ocS,

< max (ocsp-valy (o) + €) = ocsp-valy, + ¢
occ6S,

and similarly for ocsp-valg > ocsp-val — ¢. O

Remark. For OCSPs, the logn factor in m is required because the solution space has size Q((n/e)™) (by
Stirling’s approzimation) and we take a union bound over all solutions. In contrast, for standard CSPs over
an alphabet size of q, the solution space has size only q", and in the analogous analysis, there would only be
a log q factor in m.

Given A.1, we can now prove 1.2:

Proof of 1.2. Let ¢ = ep(I1)/2, and let m = [10nlogn/(¢')?]. Consider the following streaming algorithm
to sample an instance ¥ on n variables and 7 constraints: Initialize a buffer (C1,...,Cp) of constraints,
and then when the i-th constraint C of ¥ arrives, set C; +— C with probability 1/i (otherwise C; remains the
same) independently for each j € []. After the stream, let ¥ denote the instance formed by (C1,...,Cy),
and output ocsp-valg — €.

After all constraints of W arrive, each constraint C; is an independent, uniformly chosen constraint from
¥, and so we can apply A.1 to ¥ to deduce that w.h.p. ocsp-valy — € < ocsp-valy < ocsp-valy + €.
Conditioning on this event, we deduce that

ocsp-valy — 2€¢’ < ocsp-valg < ocsp-valy,.

The LHS is
ocsp-valy — 2¢’ = ocsp-valy, — ep(I1) > (1 — €)ocsp-valy,

since ocsp-valy, > p(II), yielding the desired conclusion. O
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