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Abstract

We study the relationship between various one-way communication complexity measures of a com-
posed function with the analogous decision tree complexity of the outer function. We consider two
gadgets: the AND function on 2 inputs, and the Inner Product on a constant number of inputs. More
generally, we show the following when the gadget is Inner Product on 2b input bits, denoted IP.

If f is a total Boolean function that depends on all of its inputs, then the bounded-error one-way
quantum communication complexity of f ◦ IP equals Ω(n(b− 1)).

If f is a partial Boolean function, then the deterministic one-way communication complexity of
f ◦ IP is at least Ω(b · D→

dt(f)), where D
→

dt(f) denotes the non-adaptive decision tree complexity of
f .

To prove our quantum lower bound, we first show a lower bound on the VC-dimension of f ◦ IP. We
then appeal to a result of Klauck [STOC’00], which immediately yields our quantum lower bound. Our
deterministic lower bound relies on a combinatorial result due to Frankl and Tokushige [Comb.’99].

It is known due to a result of Montanaro and Osborne [arXiv’09] that the deterministic one-way
communication complexity of f ◦ XOR equals the non-adaptive parity decision tree complexity of f . In
contrast, we show the following when the inner gadget is the AND function on 2 input bits.

There exists a function for which even the randomized non-adaptive AND decision tree complexity
of f is exponentially large in the deterministic one-way communication complexity of f ◦ AND.

However, for symmetric functions f , the non-adaptive AND decision tree complexity of f is at most
quadratic in the (even two-way) communication complexity of f ◦ AND.

In view of the first bullet, a lower bound on non-adaptive AND decision tree complexity of f does not

lift to a lower bound on one-way communication complexity of f ◦ AND. The proof of the first bullet
above uses the well-studied Odd-Max-Bit function. For the second bullet, we first observe a connection
between the one-way communication complexity of f and the Möbius sparsity of f , and then use a known
lower bound on the Möbius sparsity of symmetric functions. An upper bound on the non-adaptive AND
decision tree complexity of symmetric functions follows implicitly from prior work on combinatorial group
testing; for the sake of completeness, we include a proof of this result.

This paper includes and improves upon results from an earlier unpublished manuscript of one of the authors [San17].
N.S.M. is supported by the Dutch Research Council (NWO) through QuantERA project QuantAlgo 680-91-034.
S.S. is supported by an ISIRD Grant from Sponsored Research and Industrial Consultancy, IIT Kharagpur. Part of this
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1 Introduction

Composed functions are important objects of study in analysis of Boolean functions and computational
complexity. For Boolean functions f : {0, 1}n → {0, 1} and g : {0, 1}m → {0, 1}, their composition f ◦ g :
({0, 1}m)

n → {0, 1} is defined as follows: f ◦ g(x1, . . . , xn) := f(g(x1), . . . , g(xn)). In other words, f ◦ g is
the function obtained by first computing g on n disjoint inputs of m bits each, and then computing f on the
n resultant bits. Composed functions have been extensively looked at in the complexity theory literature,
with respect to various complexity measures [BdW01, HLS07, Rei11, She12, She13, BT15, Tal13, Mon14,
BK16, GJ16, AGJ+17, GLSS19, BB20].

Of particular interest to us is the case when g is a communication problem (also referred to as “gadget”).
More precisely, let g : {0, 1}b × {0, 1}b → {0, 1} and f : {0, 1}n → {0, 1} be Boolean functions. Consider
the following communication problem: Alice has input x = (x1, . . . , xn) and Bob has input y = (y1 . . . , yn)
where xi, yi ∈ {0, 1}b for all i ∈ [n]. Their goal is to compute f ◦ g((x1, y1), . . . , (xn, yn)) using as little
communication as possible. A natural protocol is the following: Alice and Bob jointly simulate an efficient
query algorithm for f , using an optimal communication protocol for g to answer each query. Lifting theorems
are statements that say this naive protocol is essentially optimal. Such theorems enable us to prove lower
bounds on the rich model of communication complexity by proving feasibly easier-to-prove lower bounds in
the query complexity (decision tree) model.
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Various lifting theorems have been proved in the literature: lifting a query complexity measure to various
one-sided zero communication complexity measures [GLM+16], lifting parallel decision tree complexity to
round-constrained communication complexity [dRNV16], lifting deterministic query complexity to determin-
istic communication complexity [RM99, GPW18, CKLM19, WYY17], lifting DAG-like query complexity to
DAG-like communication complexity [GGKS20], lifting randomized query complexity to randomized com-
munication complexity [GPW20], lifting parity decision tree complexity to deterministic communication
complexity using the XOR gadget [HHL18], lifting AND-decision tree complexity to deterministic com-
munication complexity using the AND gadget [KLMY20], a deterministic lifting theorem for the Equality
gadget [LM19], deterministic and randomized lifting theorems for gadgets with small discrepancy [CFK+21],
etc.

In this work we are interested in the one-way communication complexity of composed functions. In
this setting, a natural protocol is for Alice and Bob to simulate a non-adaptive decision tree for the outer
function, using an optimal one-way communication protocol for the inner function. Thus, the one-way
communication complexity of f ◦ g is at most the non-adaptive decision tree complexity of f times the
one-way communication complexity of g.

Lifting theorems in the one-way model are less studied than in the two-way model. Montanaro and
Osborne [MO09] observed that the deterministic one-way communication complexity of f ◦ XOR equals the
non-adaptive parity decision tree complexity of f . Thus, non-adaptive parity decision tree complexity lifts
“perfectly” to deterministic communication complexity with the XOR gadget. Kannan et al. [KMSY18]
showed that under uniformly distributed inputs, bounded-error non-adaptive parity decision tree complexity
lifts to one-way bounded-error distributional communication complexity with the XOR gadget. Hosseini,
Lovett and Yaroslavtsev [HLY19] showed that randomized non-adaptive parity decision tree complexity lifts
to randomized communication complexity with the XOR gadget in the one-way broadcasting model with
Θ(n) players.

We explore the tightness of the naive communication upper bound for two different choices of the gadget
g: the Inner Product function, and the two-input AND function. For each choice of g, we compare the one-
way communication complexity of f ◦ g with an appropriate type of non-adaptive decision tree complexity
of f . Below, we motivate and state our results for each choice of the gadget.

1.1 Inner Product gadget

Let Q→
cc,ε(·), R→

cc,ε(·) and D→
cc (·) denote quantum ε-error, randomized ε-error and deterministic one-way com-

munication complexity, respectively. When we allow the parties to share an arbitrary input-independent en-
tangled state in the beginning of the protocol, denote the one-way quantum ε-error communication complex-
ity by Q∗,→

cc,ε (·) (see Section 2.4 for formal definitions). Let D→
dt(·) denote deterministic non-adaptive decision

tree complexity (see Section 2.3 for a formal definition). For an integer b > 0, let IP : {0, 1}b×{0, 1}b → {0, 1}
denote the Inner Product Modulo 2 function, that outputs the parity of the bitwise AND of two b-bit input
strings (see Definition 2.1). Let f denote the outer function, and f IP denote the function f ◦ IP. Our first
result shows that if f is a total function that depends on all of its input bits, the quantum (and hence,
randomized) bounded-error one-way communication complexity of f IP is Ω(n(b− 1)). Let Hbin(·) denote the
binary entropy function.

Theorem 1.1. Let f : {0, 1}n → {0, 1} be a total Boolean function that depends on all its inputs (i.e., it is
not a junta on a strict subset of its inputs), and let ε ∈ (0, 1/2). Let IP : {0, 1}b × {0, 1}b → {0, 1} denote
the Inner Product function on 2b input bits for b ≥ 1. Then,

Q→
cc,ε(f

IP) ≥ (1−Hbin(ε))n(b− 1),

Q∗,→
cc,ε (f

IP) ≥ (1−Hbin(ε))n(b− 1)/2.

Remark 1.2. In an earlier manuscript [San17], the second author proved a lower bound of (1−Hbin(ε))n(b−
1) on a weaker complexity measure, namely R→

cc,ε(F ), via information-theoretic tools. Kundu [Kun17] sub-
sequently observed that a quantum lower bound can also be obtained by additionally using Holevo’s theorem.
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They also suggested to the second author via private communication that one might be able to recover these
bounds using a result of Klauck [Kla00]. This is indeed the approach we take, and we thank them for sug-
gesting this and pointing out the reference.

In order to prove Theorem 1.1, we appeal to a result of Klauck [Kla00, Theorem 3], who showed that
the one-way ε-error quantum communication complexity of a function F is at least (1 − Hbin(ε)) · VC(F ),
where VC(F ) denotes the VC-dimension of F (see Definition 2.12). In the case when the parties can share
an arbitrary entangled state in the beginning of a protocol, Klauck showed a lower bound of (1−Hbin(ε)) ·
VC(F )/2. We exhibit a set of inputs that witnesses the fact that VC(f IP) ≥ n(b− 1).

Note that Theorem 1.1 is useful only when b > 1. Indeed, no non-trivial lifting statement is true for
b = 1 when f is the AND function on n bits, since in this case, f IP = AND2n, whose one-way communication
complexity is 1.

Our second result with the Inner Product gadget relates the deterministic one-way communication com-
plexity of f IP to the deterministic non-adaptive decision tree complexity of f , where f is an arbitrary partial
Boolean function.

Theorem 1.3. Let S ⊆ {0, 1}n be arbitrary, and f : S → {0, 1} be a partial Boolean function. Let b ≥ 4.
Then,

D→
cc (f

IP) = Ω(b · D→
dt(f)).

Given a protocol Π, our proof extracts a set of variables of cardinality linear in the complexity of Π,
whose values always determine the value of f . The following claim which follows directly from the work of
Frankl and Tokushige [FT99] is a crucial ingredient in our proof.

Theorem 1.4. Let q ≥ 8. Let A ⊆ [q]n be such that for all x(1) = (x
(1)
1 , . . . , x

(1)
n ), x(2) = (x

(2)
1 , . . . , x

(2)
n ) ∈ A,

|{i ∈ [n] | x(1)
i = x

(2)
i }| ≥ d. Then, |A| < qn−

d
2 .

We give the details of the derivation of Theorem 1.4 from the result of Frankl and Tokushige in Ap-
pendix C. Theorem 1.4 admits simple proofs when q is large compared to n. See [GMWW17] for a proof
when q is a prime power, and q ≥ n. Their proof is based on polynomials over finite fields. We give a
different proof for all q > ( end )2 in Appendix D.1 However, such statements will only enable us to prove a
lifting theorem for a gadget of size b = Ω(log n). To prove Theorem 1.3 for constant-sized gadgets we need
to set q to O(1).

Remark 1.5. An analogous lifting theorem for deterministic one-way protocols for total outer functions
follows as a special case of both Theorem 1.1 and Theorem 1.3. However, the statement admits a simple and
direct proof based on a fooling set argument.

Theorem 1.1 and Theorem 1.3 give lower bounds even when the gadget is a constant-sized Inner Product
function. It is worth mentioning here that prior works that consider lifting theorems with the Inner Product
gadget [CKLM19, WYY17, CFK+21], albeit in the two-way model of communication complexity, require a
super-constant gadget size.

1.2 AND gadget

Interactive communication complexity of functions of the form f◦AND have gained a recent interest [KLMY20,
Wu21]. In order to state and motivate our results regarding when the inner gadget is the 2-bit AND function,
we first discuss some known results in the case when the inner gadget is the 2-bit XOR function.

Consider non-adaptive decision trees, where the trees are allowed to query arbitrary parities of the input
variables. Denote the best cost of such a tree computing a Boolean function f , by NAPDT(f). An efficient
non-adaptive parity decision tree for f can easily be simulated to obtain an efficient deterministic one-way
communication protocol for f ◦ XOR. Thus, D→

cc (f ◦ XOR) ≤ NAPDT(f). Montanaro and Osborne [MO09]
observed that this inequality is, in fact, tight for all Boolean functions. More precisely,

1For every δ > 0, the proof can be extended to work for all q = Ω(n/d)1+δ .
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Claim 1.6 ([MO09]). For all Boolean functions f : {0, 1}n → {0, 1},

D→
cc (f ◦ XOR) = NAPDT(f).

If the inner gadget were AND instead of XOR, then the natural analogous decision tree model to consider
would be non-adaptive decision trees that have query access to arbitrary ANDs of subsets of inputs. Denote
the best cost of such a tree computing a Boolean function f , by NAADT(f). Clearly, the one-way commu-
nication complexity of f ◦ AND is bounded from above by NAADT(f), since a non-adaptive AND decision
tree can be easily simulated to give a one-way communication protocol for f ◦ AND of the same cost. Thus,
D→

cc (f ◦ AND) ≤ NAADT(f). On the other hand, one can show that D→
cc (f ◦ AND) ≥ log(NAADT(f)) (see

Claim 2.16). Thus we have

log(NAADT(f)) ≤ D→
cc (f ◦ AND) ≤ NAADT(f). (1)

We explore if an analogous statement to Claim 1.6 holds true if the inner function were AND instead of
XOR. That is, is the second inequality in Equation (1) always tight?

We give a negative answer in a very strong sense and exhibit a function for which the first inequality is
tight (up to an additive constant). We show that there is an exponential separation between these measures
even if one allows randomization in the decision trees. We use RNAADT(f) to denote the randomized
non-adaptive AND decision tree complexity of f .

Theorem 1.7. There exists a function f : {0, 1}n → {0, 1} such that

RNAADT(f) = Ω(2D
→

cc (f◦AND)).

The function f we use to witness the bound in Theorem 1.7 is a modification of the well-studied Odd-
Max-Bit function, which we denote OMBn. This function outputs 1 if and only if the maximum index of
the input string that contains a 0, is odd (see Definition 2.2). A ⌈log(n + 1)⌉-cost one-way communication
protocol is easy to show, since Alice can simply send Bob the maximum index where her input is 0 (if it
exists), and Bob can use this along with his input to conclude the parity of the maximum index where
the bitwise AND of their inputs is 0. For a lower bound of Ω(n) on RNAADT(OMBn), we exhibit a hard
distribution under which no low-cost deterministic non-adaptive AND decision tree can compute OMBn with
high accuracy.

Theorem 1.7 implies that, in contrast to the lifting theorem with the XOR gadget (Claim 1.6), the
measure of non-adaptive AND decision tree complexity does not lift to a one-way communication lower
bound for f ◦AND. However we show that a statement analogous to Claim 1.6 does hold true for symmetric
functions f , albeit with a quadratic factor, even when the measure is two-way communication complexity,
denoted Dcc(·).

Theorem 1.8. Let f : {0, 1}n → {0, 1} be a symmetric function. Then,

NAADT(f) = O(Dcc(f ◦ AND)2).

In fact we prove a stronger bound in which Dcc(f ◦ AND) above is replaced by log rank(Mf◦AND), where
Mf◦AND denotes the communication matrix of f ◦ AND (see Section 2.4). That is, we show for symmetric
functions f that

NAADT(f) = O(log2 rank(Mf◦AND)). (2)

Since it is well known (see Equation (7)) that the communication complexity of a function is at least
as large as the logarithm of the rank of its communication matrix, this implies Theorem 1.8. Among
other things, Buhrman and de Wolf [BdW01] observed that the log-rank conjecture holds for symmetric
functions composed with AND. In particular, they showed that if f is symmetric, then Dcc(f ◦ AND) =
O(log rank(Mf◦AND)). This was also observed recently by Wu [Wu21], who also showed other results regard-
ing the communication complexity of AND functions in connection with the log-rank conjecture. While we
have a quadratically worse dependence in the RHS of Equation (2), our upper bound is on a complexity
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measure that can be exponentially larger than communication complexity in general, as demonstrated by
Theorem 1.7.

Buhrman and de Wolf showed a lower bound on log rank(Mf◦AND) for symmetric functions f . An upper
bound on NAADT(f) implicitly follows from prior work on group testing [DR83], but we provide a self-
contained probabilistic proof for completeness. Combining these two results yields Equation (2), and hence
Theorem 1.8.

Suitable analogues of Theorem 1.7 and Theorem 1.8 can be easily seen to hold when the inner gadget
is OR instead of AND. In this case, the relevant decision tree model is non-adaptive OR decision trees.
Interestingly, these decision trees are studied in the seemingly different context of non-adaptive group testing
algorithms. Non-adaptive group testing is an active area of research (see, for, example, [CH08] and the
references therein), and has additionally gained significant interest of late in view of the ongoing pandemic
(see, for example, [ŽLG21]).

1.3 Organization

We introduce the necessary preliminaries in Section 2. In Section 3 we prove our results regarding the Inner
Product gadget (Theorem 1.1 and Theorem 1.3, respectively). In Section 4 we prove our results regarding the
AND gadget (Theorem 1.7 and Theorem 1.8). In Section A we show some results regarding the Addressing
function, and we provide missing proofs from the main text in the remaining appendices.

2 Preliminaries

2.1 Notation

All logarithms in this paper are taken base 2. We use the notation [n] to denote the set {1, . . . , n}. We often
identify subsets of [n] with their corresponding characteristic vectors in {0, 1}n. The view we take will be
clear from context.

We now introduce function composition. Let f : {0, 1}n → {0, 1} be a Boolean function and let
g : {0, 1}j × {0, 1}j → {−1, 1} be a communication problem. Then F = f ◦ g : {0, 1}nj × {0, 1}nj →
{0, 1} denotes the function corresponding to the communication problem in which Alice is given input
x = (x1, . . . , xn) ∈ {0, 1}nj , Bob is given input y = (y1, . . . , yn) ∈ {0, 1}nj , and their goal is to compute
F (X,Y ) = f(g(x1, y1), . . . , g(xn, yn)). We first define the Inner Product Modulo 2 function on 2b input bits,
denoted IP (we drop the dependence of IP on b for convenience; the value of b will be clear from context).

Definition 2.1 (Inner Product Modulo 2). For an integer b > 0, define the Inner Product Modulo 2
function, denoted IP : {0, 1}b × {0, 1}b → {0, 1} by

IP(x1, . . . , xb, y1, . . . , yb) = ⊕i∈[b](AND(xi, yi)).

Define f IP = f ◦ IP. If f is a partial function, so is f IP.

Definition 2.2 (Odd-Max-Bit). Define the Odd-Max-Bit function, denoted OMBn : {0, 1}n → {0, 1}, by

OMBn(x) =

{
1 if max {i ∈ [n] : xi = 0} is odd

0 otherwise.
(3)

Define OMBn(1
n) = 0.

Remark 2.3. In the literature, OMBn is typically defined with a 1 in the max of Equation (3) instead of
0. That function behaves very differently from our OMBn. For example, it is known that even the weakly
unbounded-error communication complexity of OMBn ◦ AND (under the standard definition of OMBn) is
polynomially large in n [BVW07]. In contrast, it is easy to show that even the deterministic one-way
communication complexity of OMBn ◦ AND equals ⌈log(n+ 1)⌉ with our definition (see Theorem 4.4).
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Definition 2.4 (Binary entropy). For p ∈ (0, 1), the binary entropy of p, Hbin(p), is defined to be the
Shannon entropy of a random variable taking two distinct values with probabilities p and 1− p.

Hbin(p) := p log
1

p
+ (1− p) log

1

1− p
.

In particular, if ε = 1/2 − Ω(1), then 1 − Hbin(ε) = Ω(1). Let S ⊆ {0, 1}n be an arbitrary subset of the
Boolean hypercube, and let f : S → {0, 1} be a partial Boolean function. If S = {0, 1}n, then f is said to
be a total Boolean function. When not explicitly mentioned otherwise, we assume Boolean functions to be
total.

2.2 Möbius expansion of Boolean functions

Every Boolean function f : {0, 1}n → {0, 1} has a unique expansion as

f =
∑

S⊆[n]

f̃(S)ANDS , (4)

where ANDS denotes the AND of the input variables in S and each f̃(S) is a real number. We refer to the
functions ANDS as monomials, the expansion in Equation (4) as the Möbius expansion of f , and the real

coefficients f̃(S) as the Möbius coefficients of f . It is known [Bei93] that the Möbius coefficients can be
expressed as

f̃(S) =
∑

X⊆S

(−1)|S\X|f(X). (5)

Define the Möbius sparsity of f , denoted spar(f), to be the number of Möbius coefficients of f that are
non-zero. That is,

spar(f) :=
∣∣∣
{
S ⊆ [n] : f̃(S) 6= 0

}∣∣∣. (6)

We require the following definition, which captures the number of realizable 0/1-patterns of the monomials
the Möbius support of f .

Definition 2.5 (Möbius pattern complexity). Let f : {0, 1}n → {0, 1} be a Boolean function, and let

f =
∑

S∈S f̃(S)ANDS be its Möbius expansion. For an input x ∈ {0, 1}n, define the pattern of f(x) to be

(ANDS(x))S∈S . Define the Möbius pattern complexity of f , denoted PatM(f), by

PatM(f) =
∣∣{P ∈ {0, 1}S : P = (ANDS(x))S∈S for some x ∈ {0, 1}n

}∣∣.

When clear from context, we refer to the Möbius pattern complexity of f just as the pattern complexity
of f .

2.3 Decision trees and their variants

For a partial Boolean function f : S → {0, 1}, the deterministic non-adaptive query complexity (alternatively
the non-adaptive decision tree complexity) D→

dt(f) is the minimum integer k such that the following is true:
there exist k indices i1, . . . , ik ∈ [n], such that for every Boolean assignment ai1 , . . . , aik to the input variables
xi1 , . . . , xik , f is constant on S ∩ {x ∈ {0, 1}n | ∀j = 1, . . . , k, xij = aij}. It is easy to see that if f is a total
function that depends on all input variables, then D→

dt(f) = n.

Definition 2.6 (Non-adaptive parity decision tree complexity). Define the non-adaptive parity decision tree
complexity of f : {0, 1}n → {0, 1}, denoted by NAPDT(f), to be the minimum number of parities such that
f can be expressed as a function of these parities. In other words, the non-adaptive parity decision tree com-
plexity of f equals the minimal number k for which there exists S = {{S1, . . . , Sk} : Si ⊆ [n] for all i ∈ [k]}
such that the function value f(x) is determined by the values {⊕j∈Si

xj : i ∈ [k]} for all x ∈ {0, 1}n.
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Definition 2.7 (Non-adaptive AND decision tree complexity). Define the non-adaptive AND decision
tree complexity of f : {0, 1}n → {0, 1}, denoted by NAADT(f), to be the minimum number of monomials
such that f can be expressed as a function of these monomials. In other words, the non-adaptive AND decision
tree complexity of f equals the minimal number k for which there exists S = {{S1, . . . , Sk} : Si ⊆ [n] for all i ∈ [k]}
such that the function value f(x) is determined by the values {ANDSi

(x) : i ∈ [k]} for all x ∈ {0, 1}n. We
refer to such a set S as a NAADT basis for f .

We also require a randomized variant of non-adaptive AND decision trees.

Definition 2.8 (Randomized non-adaptive AND decision tree complexity). A randomized non-adaptive
AND decision tree T computing f is a distribution over non-adaptive AND decision trees with the property
that Pr[T (x) = f(x) ≥ 2/3] for all x ∈ {0, 1}n. The cost of T is the maximum depth of a non-adaptive
AND decision tree in its support. Define the randomized non-adaptive AND decision tree complexity of
f : {0, 1}n → {0, 1}, denoted by RNAADT(f), to be the minimum cost of a randomized non-adaptive AND
decision tree that computes f .

We first note some simple observations about the non-adaptive AND decision tree complexity of Boolean
functions.

Claim 2.9. Let f : {0, 1}n → {0, 1} be a Boolean function and let S = {S1, . . . , Sk} be a NAADT basis for
f . Then, every monomial in the Möbius support of f equals

∏
i∈T ANDSi

, for some T ⊆ [k].

Proof. Since S is a NAADT basis for f , the values of {ANDSi
: i ∈ [k]} determine the value of f . That is,

we can express f as

f =
∑

T⊆[k]

bT
∏

i∈T

ANDSi

∏

j /∈T

(1− ANDSj
),

for some values of bT ∈ {0, 1}. If a particular pattern of {ANDSi
: i ∈ [k]} is not attainable, we set bT = 0 for

the corresponding subset. Expanding this expression only yields monomials that are products of ANDSi
’s

from S. The claim now follows since the Möbius expansion of a Boolean function is unique.

Claim 2.10. Let f : {0, 1}n → {0, 1} be a Boolean function with Möbius sparsity r. Then,

log r ≤ NAADT(f) ≤ r.

Proof. The upper bound NAADT(f) ≤ r follows from the fact that knowing the values of all ANDs in the
Möbius support of f immediately yields the value of f by plugging these values in the Möbius expansion of
f . That is, the Möbius support of f acts as a NAADT basis for f .

For the lower bound, let NAADT(f) = k, and let S = {S1, . . . , Sk} be a NAADT basis for f . Claim 2.9
implies that every monomial in the Möbius expansion of f is a product of some of these ANDSi

’s. Thus, the
Möbius sparsity of f is at most 2k, yielding the required lower bound.

Every Boolean function f : {−1, 1}n → R can be uniquely written as f =
∑

S⊆[n]

f̂(S)(−1)⊕j∈Sxj . This

representation is called the Fourier expansion of f and the real values f̂(S) are called the Fourier coefficients
of f . The Fourier sparsity of f is defined to be number of non-zero Fourier coefficients of f .

Sanyal [San19] showed the following relationship between non-adaptive parity decision complexity of a
Boolean function and its Fourier sparsity.

Theorem 2.11 ([San19]). Let f : {−1, 1}n → {−1, 1} be a Boolean function with Fourier sparsity r. Then,

NAPDT(f) = O(
√
r log r).

This theorem is tight up to the logarithmic factor, witnessed by the Addressing function.
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2.4 Communication complexity

The standard model of two-party communication complexity was introduced by Yao [Yao79]. In this model,
there are two parties, say Alice and Bob, each with inputs x, y ∈ {0, 1}n. They wish to jointly compute
a function F (x, y) of their inputs for some function F : U → {0, 1} that is known to them, where U is a
subset of {0, 1}n × {0, 1}n. They use a communication protocol agreed upon in advance. The cost of the
protocol is the number of bits exchanged in the worst case (over all inputs). Alice and Bob are required to
output the correct answer for all inputs (x, y) ∈ U . The communication complexity of F is the best cost of
a protocol that computes F , and we denote it by Dcc(F ). See, for example, [KN97], for an introduction to
communication complexity.

In a deterministic one-way communication protocol, Alice sends a message m(x) to Bob. Then Bob
outputs a bit depending on m(x) and y. The complexity of the protocol is the maximum number of bits
a message contains for any input x to Alice. In a randomized one-way protocol, the parties share some
common random bits R. Alice’s message is a function of x and R. Bob’s output is a function of m(x), y and
R. The protocol Π is said to compute F with error ε ∈ (0, 1/2) if for every (x, y) ∈ U , the probability over
R of the event that Bob’s output equals F (x, y) is at least 1− ε. The cost of the protocol is the maximum
number of bits contained in Alice’s message for any x and R. In the one-way quantum model, Alice sends
Bob a quantum message, after which Bob performs a projective measurement and outputs the measurement
outcome. Depending on the model of interest, Alice and Bob may or may not share an arbitrary input-
independent entangled state for free. As in the randomized setting, a protocol Π computes F with error ε if
Pr[Π(x, y) 6= f(x, y)] ≤ ε for all (x, y) ∈ U .

The deterministic (ε-error randomized, ε-error quantum, ε-error quantum with entanglement, respec-
tively) one-way communication complexity of F , denoted by D→

cc (·) (R→
cc,ε(·), Q→

cc,ε(·), Q∗,→
cc,ε (·), respectively),

is the minimum cost of any deterministic (ε-error randomized, ε-error quantum, ε-error quantum with en-
tanglement, respectively) one-way communication protocol for F .

Total functions F whose domain is {0, 1}n×{0, 1}n induce a communication matrix MF whose rows and
columns are indexed by strings in {0, 1}n, and the (x, y)’th entry equals F (x, y). It is well known (see, for
instance, [KN97]) that

log rank(MF ) ≤ Dcc(F ) ≤ rank(MF ), (7)

where rank(·) denotes real rank. One of the most famous conjectures in communication complexity is
the log-rank conjecture, due to Lovász and Saks [LS88], that proposes that the communication complexity
of any Boolean function is polylogarithmic in its rank, i.e. the first inequality in Equation (7) is always tight
up to a polynomial dependence.

Buhrman and de Wolf [BdW01] observed that the Möbius sparsity of a Boolean function f equals the
rank of the communication matrix of f ◦ AND. In view of the first inequality in Equation (7), this yields

Dcc(f ◦ AND) ≥ log(spar(f)). (8)

We require the definition of the Vapnik-Chervonenkis (VC) dimension [VC71].

Definition 2.12 (VC-dimension). Consider a function F : {0, 1}n × {0, 1}n → {0, 1}. A subset of columns
C of MF is said to be shattered if all of the 2|C| patterns of 0’s and 1’s are attained by some row of MF

when restricted to the columns C. The VC-dimension of a function F : {0, 1}n × {0, 1}n is the maximum
size of a shattered subset of columns of MF .

Klauck [Kla00] showed that the one-way quantum communication complexity of a function F is bounded
below by the VC-dimension of F .

Theorem 2.13 ([Kla00, Theorem 3]). Let F : {0, 1}n × {0, 1}n → {0, 1} be a Boolean function. Then,

Q→
cc,ε(F ) ≥ (1−Hbin(ε))VC(f),

Q∗,→
cc,ε (F ) ≥ (1−Hbin(ε))VC(F )/2.

9



2.5 Pattern complexity and one-way communication complexity

In this section we observe that the logarithm of the pattern complexity, PatM(f), of a Boolean function f
equals the deterministic one-way communication complexity of f ◦AND. We also give bounds on NAADT(f)
in terms of PatM(f). As a consequence we also show that D→

cc (f ◦ AND) ≥ log(NAADT(f)).

Claim 2.14. Let f : {0, 1}n → {0, 1} be a Boolean function. Then,

D→
cc (f ◦ AND) = ⌈log(PatM(f))⌉.

It is well known that the one-way communication complexity of a function equals the logarithm of the
number of distinct rows in its communication matrix. It is also not hard to show that the number of distinct
rows in the communication matrix of f ◦ AND equals the pattern complexity of f . Together these prove
Claim 2.14. For completeness we provide a self-contained proof in Section E.

Next we show that the pattern complexity of f is bounded below by the non-adaptive AND decision
tree complexity of f .

Claim 2.15. Let f : {0, 1}n → {0, 1} be a Boolean function. Then,

PatM(f) ≥ NAADT(f).

Proof. Let f =
∑

S⊆[n] f̃(S)ANDS and suppose NAADT(f) = k. Let S = {S1, . . . , Sk} be a NAADT basis

for f where Sj ⊆ [n] for all j ∈ [k]. For each set Si ∈ S we define the following string Xi ∈ {0, 1}n:

Xi(ℓ) =

{
1 ℓ ∈ Si

0 otherwise.

Consider two indices i 6= j ∈ [k]. By definition ANDSi
(Xi) = 1 and ANDSj

(Xj) = 1. If Si ( Sj , then
ANDSj

(Xi) = 0. Similarly if Sj ( Si, then ANDSi
(Xj) = 0. Thus, we have

(ANDSi
(Xi),ANDSj

(Xi)) 6= (ANDSi
(Xj),ANDSj

(Xj)).

Hence each of the strings Xi induces a different pattern for f , concluding the proof since the number of
strings chosen equals NAADT(f).

Combining Claim 2.14 and Claim 2.15, we have the following claim.

Claim 2.16. Let f : {0, 1}n → {0, 1} be a Boolean function. Then,

⌈log(NAADT(f))⌉ ≤ D→
cc (f ◦ AND) ≤ NAADT(f).

Proof. For the upper bound on D→
cc (f ◦AND), let S = {S1, . . . , Sk} be a NAADT basis for f . By Claim 2.9,

every monomial in the Möbius support of f is a product of some of these ANDSi
’s. Since there are at most

2k possible values for {ANDSi
(x) : i ∈ [k]} and since these completely determine the pattern of f(x) for any

given x ∈ {0, 1}n, we have
PatM(f) ≤ 2NAADT(f),

which proves the required upper bound in view of Claim 2.14.
The lower bound follows from Claim 2.14 and Claim 2.15 since we have

D→
cc (f ◦ AND) = ⌈log(PatM(f))⌉ ≥ ⌈log(NAADT(f))⌉.

3 Composition with Inner Product

In this section we prove Theorem 1.1 and Theorem 1.3, which are our results regarding the quantum and
deterministic one-way communication complexities of functions composed with a small Inner Product gadget.
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3.1 Quantum complexity

In this section, we prove Theorem 1.1 which gives a lower bound on the quantum one-way communication
complexity of f ◦ IP for total functions f that depend on all its inputs.

Proof of Theorem 1.1. By Theorem 2.13, it suffices to show that VC(f IP) ≥ n(b − 1). Since f is a function
that depends on all its input variables, the following holds. For each index i ∈ [n], there exist inputs

z(i,0) = z
(i)
1 , . . . , z

(i)
i−1, 0, z

(i)
i+1, . . . , z

(i)
n ,

z(i,1) = z
(i)
1 , . . . , z

(i)
i−1, 1, z

(i)
i+1, . . . , z

(i)
n

such that f(z(i,0)) = bi and f(z(i,1)) = 1 − bi. That is, z(i,0) and z(i,1) have different function values, but
differ only on the i’th bit.

For each i ∈ [n] and j ∈ {2, 3, . . . , b}, define a string y(i,j) ∈ {0, 1}nb as follows. For all k ∈ [n] and ℓ ∈ [b],

y
(i,j)
k,ℓ =





z
(i)
k if k 6= i and ℓ = 1

1 if k = i and ℓ = j

0 otherwise.

That is, for k 6= i, the k’th block of y(i,j) is (z
(i)
k , 0b−1), and the i’th block of y(i,j) is (0i−1, 1, 0b−i). Consider

the set of n(b − 1)-many columns of Mf IP , one for each y(i,j). We now show that this set of columns is
shattered. Consider an arbitrary string

c = c1,2, . . . , c1,b, . . . , cn,2, . . . , cn,b ∈ {0, 1}n(b−1).

We show below the existence of a row that yields this string on restriction to the columns described above.
Define a string x ∈ {0, 1}nb as follows. For all i ∈ [n] and j ∈ [b],

xi,1 = 1,

xi,j =

{
ci,j if bi = 0

1− ci,j if bi = 1.

That is, the first element of each block of x is 1, and the remaining part of any block, say the i’th block,
equals either the string ci,2, . . . , ci,b or its bitwise negation, depending on the value of bi.

To complete the proof, we claim that the row of Mf IP corresponding to this string x equals the string

c when restricted to the columns
{
y(i,j)

}
i∈[n],j∈{2,3,...,b}

. To see this, fix i ∈ [n] and j ∈ {2, 3, . . . , b} and

consider Mf IP(x, y(i,j)). Next, for each k ∈ [n] with k 6= i, the inner product of the k’th block of x with the

k’th block of y equals z
(i)
k , since xk,1 = 1 and the first element of the k’th block of y(i,j) equals z

(i)
k , and all

other elements of the block are 0 by definition. In the i’th block of y(i,j), only the j’th element is non-zero,
and equals 1 by definition. Moreover, xi,j = ci,j if bi = 0, and equals 1 − ci,j otherwise. Hence, the inner
products of the i’th blocks of x and y(i,j) equals ci,j if bi = 0, and equals 1− ci,j otherwise. Thus, the string
obtained on taking the block-wise inner product of x and y(i,j) equals

z
(i)
1 , . . . , z

(i)
i−1, ci,j , z

(i)
i+1, . . . , z

(i)
n if bi = 0

z
(i)
1 , . . . , z

(i)
i−1, 1− ci,j , z

(i)
i+1, . . . , z

(i)
n if bi = 1.

By our definitions of z(i,0), z(i,1) and bi for each i ∈ [n], it follows that the value of f when applied to either
of these inputs equals ci,j . This concludes the proof.

11



3.2 Deterministic complexity

In this section we prove Theorem 1.3, which gives a lower bound on the deterministic one-way communication
complexity of f ◦ IP for even partial functions f . A crucial ingredient of our proof is Theorem 1.4. We derive
Theorem 1.4 from a result of Frankl and Tokushige [FT99] in Appendix C. Now we proceed to the proof of
Theorem 1.3.

Proof of Theorem 1.3. Let q := 2b − 1 and let Π be an optimal one-way deterministic protocol for f IP of
complexity D→

cc (f
IP) =: c log q. Π induces a partition of {0, 1}nb into at most qc parts; each part corresponds

to a distinct message. There are (2b−1)n = qn inputs (x1, . . . , xn) to Alice such that for each i, xi 6= 0b. Let
Z be the set of those inputs. Identify Z with [q]n. By the pigeon-hole principle there exists one part P in
the partition induced by Π that contains at least qn−c strings in Z. Theorem 1.4 (which is applicable since

the assumption b ≥ 4 implies that q ≥ 8) implies that there are two strings x(1) = (x
(1)
1 , . . . , x

(1)
n ), x(2) =

(x
(2)
1 , . . . , x

(2)
n ) ∈ P ∩ Z such that |{i ∈ [n]} | x(1)

i = x
(2)
i }| < 2c. Let I := {i ∈ [n]} | x(1)

i = x
(2)
i }. Let

z = (z1, . . . , zn) denote a generic input to f . We claim that for each Boolean assignment (ai)i∈I to the
variables in I, f is constant on S ∩ {z : ∀i ∈ I, zi = ai}. This will prove the theorem, since querying
the variables {zi | i ∈ I} determines f ; thus D→

dt(f) ≤ |I| < 2c. Towards a contradiction, assume that
there exist z(1), z(2) ∈ S ∩ {z : ∀i ∈ I, zi = ai} such that f(z(1)) 6= f(z(2)). We will construct a string
y = (y1, . . . , yn) ∈ {0, 1}nb in the following way:

i ∈ I : Choose yi such that IP(yi, x
(1)
i ) = IP(yi, x

(2)
i ) = ai.

i /∈ I : Choose yi such that IP(yi, x
(1)
i ) = z

(1)
i and IP(yi, x

(2)
i ) = z

(2)
i .

Note that we can always choose a y as above since for each i ∈ [n], x
(1)
i , x

(2)
i 6= 0b, and for each i /∈ I,

x
(1)
i 6= x

(2)
i . By the above construction, f IP(x(1), y) = f(z(1)) and f IP(x(2), y) = f(z(2)). Since by assumption

f(z(1)) 6= f(z(2)), we have that f IP(x(1), y) 6= f IP(x(2), y). But since Alice sends the same message on inputs
x(1) and x(2), Π produces the same output on (x(1), y) and (x(2), y). This contradicts the correctness of
Π.

4 Composition with AND

We first investigate the relationship between non-adaptive AND decision tree complexity and Möbius sparsity
of Boolean functions. Recall that Claim 2.10 shows that for all Boolean functions f : {0, 1}n → {0, 1},

log spar(f) ≤ NAADT(f) ≤ spar(f).

A natural question to ask is whether both of the bounds are tight, i.e. are there Boolean functions witnessing
tightness of each bound? The first bound is trivially tight for any Boolean function with full Möbius sparsity,
for example, the NOR function: querying all the input bits (which is querying n many ANDs) immediately
yields the value of the function, and its Möbius sparsity can be shown to be 2n.

One might expect that the upper bound is not tight in view of Theorem 2.11. The Addressing function
witnesses tightness of the quadratic gap in Theorem 2.11. This gives rise to the natural question of whether
an analogous bound holds true in the {0, 1}-world: is it true for all Boolean functions f that NAADT(f) =

Õ(
√

spar(f))?
Interestingly we show in Section A that the Addressing function already gives a negative answer to this

question. We observe in Section 4.1 that a stronger separation holds, and there exists a function (OMBn)
for which the second inequality in Claim 2.10 is in fact an equality. We use this same function to prove
Theorem 1.7 in Section 4.2, which gives a maximal separation between RNAADT(f) and D→

cc (f ◦ AND2).
Finally, we prove Theorem 1.8 in Section 4.3, which says that NAADT(f) is at most quadratically large in
Dcc(f ◦ AND) for symmetric functions f .
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4.1 Deterministic complexity

We prove in this section that the non-adaptive AND decision tree complexity of OMBn is maximal whereas
the one-way communication complexity of OMBn ◦ AND is small.

Claim 4.1. Let n be a positive integer. Then

NAADT(OMBn) = n,

and

spar(OMBn) =

{
n if n is even

n+ 1 if n is odd.

Proof. Write the polynomial representation of OMBn as

OMBn(x1, . . . , xn) = (1− xn) · 0 + xn(1− xn−1) · 1 + xnxn−1OMBn−2(x1, . . . , xn−2) if n is even (9)

OMBn(x1, . . . , xn) = (1− xn) · 1 + xn(1− xn−1) · 0 + xnxn−1OMBn−2(x1, . . . , xn−2) if n is odd. (10)

One can observe that the Möbius support of OMBn equals {{j, . . . , n} : j ≤ n} ∪ {∅} if n is odd, and
{{j, . . . , n} : j ≤ n} if n is even. Thus spar(OMBn) = n+ 1 if n is odd, and equals n if n is even.

We now show that the NAADT(OMBn) = n. Let S denote a NAADT basis for OMBn. By Claim 2.9, any
monomial in the Möbius expansion of OMBn can be expressed as a product of some ANDs from S. Thus,
{n} must participate in S since it appears in its Möbius support. Next, since {n− 1, n} appears in the
support as well, either {n− 1, n} or {n− 1} must appear in S. Continuing iteratively, we conclude that for
all i ∈ [n], there must exist a set in S that contains i, but does not contain any j for j < i. This immediately
implies that |S| ≥ n. Equality holds since NAADT(f) ≤ n for any Boolean function f : {0, 1}n → {0, 1}.

Remark 4.2. The fact that the non-adaptive AND decision tree complexity (in fact even the non-adaptive
monotone decision tree complexity, where the tree is allowed to make arbitrary monotone queries rather
than just ANDs) of OMBn equals Ω(n) already follows by a recent result of Amireddy, Jayasurya and
Sarma [AJS20]. They show that any function with large alternating number (which is the largest num-
ber of switches of the function’s value along a monotone path from 0n to 1n) must have large non-adaptive
monotone decision tree complexity. We implicitly use the fact that OMBn has large alternating number in the
proof of Theorem 4.5, where we show that even the randomized non-adaptive AND decision tree complexity
of OMBn is Ω(n).

Thus OMBn witnesses that non-adaptive AND decision tree complexity can be as large as sparsity. We
remark here that OMBn admits a simple O(log n) depth (adaptive) AND-decision tree. This uses a binary
search using AND-queries to determine the right-most index where a 0 is present.

One might expect that a result similar to Claim 1.6 holds when the inner function is AND instead of
XOR. That is, it is plausible that the deterministic one-way communication complexity of f ◦AND equals the
non-adaptive AND decision tree complexity of f . We show that this is not true, and exhibit an exponential
separation between D→

cc (OMBn ◦ AND) and NAADT(OMBn).

Claim 4.3. Let n be a positive integer. Then

D→
cc (OMBn ◦ AND) = ⌈log(n+ 1)⌉.

Proof. From Equation (9) we conclude that the Möbius support of OMBn equals

S = {{n} , {n− 1, n} , . . . , {n, n− 1, . . . , 1}} if n is even

S = {∅, {n} , {n− 1, n} , . . . , {n, n− 1, . . . , 1}} if n is odd.
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It is easy to verify that the only possible Möbius patterns attainable (ignoring the empty set since it always
evaluates to 0) are 1i0n−i, for i ∈ {0, 1, . . . , n}. Moreover, all of these patterns are attainable: the pattern
1i0n−i is attained by the input string 0n−i1i. Thus,

PatM(OMBn) = n+ 1.

Claim 2.14 implies D→
cc (OMBn ◦ AND) = ⌈log(n+ 1)⌉.

We readily obtain our main result of this section.

Theorem 4.4. Let n be a positive integer. Then

NAADT(OMBn) = n,

D→
cc (OMBn ◦ AND) = ⌈log(n+ 1)⌉.

Proof. It follows from Claim 4.1 and Claim 4.3.

4.2 Randomized complexity

We prove that even the randomized non-adaptive AND decision tree complexity of OMBn is Ω(n). In view
of the small one-way communication complexity of OMBn ◦AND from Claim 4.3, Theorem 1.7 then follows.

Theorem 4.5. Let n be a positive integer. Then,

RNAADT(OMBn) = Ω(n).

Proof. We prove this by constructing a hard distribution µ on {0, 1}n such that any NAADT of small size
computing OMBn must have large error under this distribution of inputs. By the minimax principle, this
would imply the required lower bound. Define µ : {0, 1}n → R by

µ(x) =

{
1

n+1 if x = 0i1n−i for some i ∈ {0, 1, . . . , n}
0 otherwise.

(11)

Let T be a NAADT of cost at most cn (where c is a constant to be fixed later) computing OMBn to error
less than 0.48 under the distribution above. Let T be the set of ANDs queried by T . We first argue that
we may assume without loss of generality that every AND in T must have fan-in either 1 or 2. To see
this, let AND(xi1 , . . . , xik) be an AND queried by T , where k > 2 and i1 < · · · < ik. We may replace
this by AND(xi1 , xik) without affecting the output of the AND on any input in the support of µ. Let
J = {j1, j2, . . . , jℓ} be the set of indices involved in at least one of these ANDs. Order these indices such
that j1 < j2 < · · · < jℓ. Since T was assumed to have size at most cn, we must have

ℓ := |J | ≤ 2cn. (12)

For m ∈ [ℓ + 1], let Im denote the set of indices in between, but not including, jm−1 and jm. Here j0 := 0
and jℓ+1 := n+ 1. That is,

Im = (jm−1, jm) ∩ N.

We remark that certain intervals Ik might be empty, and all of the Ik’s are disjoint. However, we have

|I1|+ · · ·+ |Iℓ+1| = n− ℓ. (13)

For each m ∈ [ℓ+ 1], define the set Xm ⊆ {0, 1}n to be

Xm =
{
x ∈ {0, 1}n : x = 0i1n−i for some i ∈ Im

}
.
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Note that T cannot distinguish between inputs in Xm. Moreover each set Xm contains at least ⌊|Im|/2⌋
many 0-inputs to OMBn from the support of µ (see Equation (11)) and at least ⌊|Im|/2⌋ many 1-inputs to
OMBn from the support of µ. Thus, by the definition of µ, T must make error at least

1

n+ 1

ℓ+1∑

m=1

⌊ |Im|
2

⌋
≥ 1

n+ 1

ℓ+1∑

m=1

|Im| − 1

2
≥ 1

n+ 1
· n− ℓ− (ℓ+ 1)

2

=
1

2

(
n− 2ℓ− 1

n+ 1

)
=

1

2
− ℓ+ 1

n+ 1
,

where the second inequality holds by Equation (13). Set c = 1/200. Equation (12) implies that ℓ ≤ n/100.
This implies that for sufficiently large values of n, any NAADT of cost at most n/100 computing OMBn

must make error at least 1/2− 2ℓ/n ≥ 0.48, concluding the proof.

The proof of Theorem 1.7 now follows easily.

Proof of Theorem 1.7. It follows from Claim 4.3 and Theorem 4.5.

4.3 Symmetric functions

In this section we show that symmetric functions f admit efficient non-adaptive AND decision trees in terms
of the deterministic (even two-way) communication complexity of f ◦AND. We require the following bounds
on the Möbius sparsity of symmetric functions, due to Buhrman and de Wolf [BdW01]. For a non-constant
symmetric function f : {0, 1}n → {0, 1}, define the following measure which captures the smallest Hamming
weight inputs before which f is not a constant.

switch(f) := argmin
k

{f is a constant on all x : |x| < n− k} .

Claim 4.6 ([BdW01, Lemma 5]). Let n be sufficiently large, let f : {0, 1}n → {0, 1} be a symmetric Boolean
function, and let k := switch(f). Then,

log spar(f) ≥ 1

2
log

(
n∑

i=n−k

(
n

i

))
.

Upper bounds on the non-adaptive AND decision tree complexity of symmetric functions follow from
known results in the non-adaptive group testing literature. To the best of our knowledge, the following
upper bounds were first shown (formulated differently) by Dyachkov and Rykov [DR83]. Also see [CH08]
and the references therein.

Theorem 4.7. Let f : {0, 1}n → {0, 1} be a Boolean function with switch(f) = k < n/2. Then

NAADT(f) = O

(
log2

(
n

k

))
.

We give a self-contained proof of Theorem 4.7 in Section B for clarity and completeness. We are now
ready to prove Theorem 1.8.

Proof of Theorem 1.8. If switch(f) ≥ n/2, then Claim 4.6 implies that spar(f) = 2Ω(n). Equation (8) implies
that Dcc(f ◦ AND) = Ω(n). Thus, a trivial NAADT of cost n witnesses NAADT(f) = O(Dcc(f ◦ AND)) in
this case.

Hence, we may assume switch(f) = k < n/2. We have

NAADT(f) = O

(
log2

(
n

k

))
by Theorem 4.7
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= O(log2(spar(f))) by Claim 4.6

= O(Dcc(f ◦ AND)2). by Equation (8)
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A Addressing function

Recall that Theorem 2.11 shows that for all Boolean functions f , we have NAPDT(f) = O(
√
r log r), where r

denotes the Fourier sparsity of f . Moreover a quadratic separation is witnessed by the Addressing function.
We showed in Claim 4.1 that such an upper bound does not hold in the {0, 1}-world, and NAADT(OMBn) ∈
{spar(OMBn), spar(OMBn)− 1}. In this section we show that the Addressing function already witnesses that
a separation similar to that in Theorem 2.11 cannot hold in the {0, 1}-world (even on allowing randomization
in the decision trees). While the bound we obtain here is weaker than that in Claim 4.1, it is interesting
that the Addressing function, which witnesses a quadratic separation in the {−1, 1}-world, no longer does
so in the {0, 1}-world.
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Definition A.1. For an integer n ≥ 2 that is a power of 2, define the Addressing function, denoted ADDRn :
{0, 1}log n+n → {0, 1}, by

ADDRn(x, y) = ybin(x),

where bin(x) denotes the integer in [n] whose binary representation is x. We refer to the x-variables as
addressing variables and the y-variables as target variables.

The following is our main claim of this section.

Claim A.2. Let n ≥ 2 be a positive integer that is a power of 2. Then,

RNAADT(ADDRn) = Θ(spar(ADDRn)
1

log 3 ).

We first show that even the randomized non-adaptive AND decision tree complexity of the Addressing
function is large.

Claim A.3. For an integer n ≥ 2 that is a power of 2,

RNAADT(ADDRn) = Θ(n).

Proof. Since ADDRn is a function on log n + n variables, we have RNAADT(ADDRn) ≤ log n + n = O(n).
In the remaining part of the proof we show that RNAADT(ADDRn) = Ω(n). We exhibit a hard distribution
on {0, 1}log n+n such that any NAADT of small cost that computes ADDRn must have large error under
this distribution. The required lower bound would then follow from the minimax principle. Define µ :
{0, 1}log n+n → R by

µ(x, y) =





1
2n ybin(x) = 0 and yz = 0 for all z 6= bin(x)
1
2n ybin(x) = 1 and yz = 0 for all z 6= bin(x)

0 otherwise.

(14)

In other words, the distribution is obtained by picking an x uniformly at random from {0, 1}log n, setting
yz = 0 for all z 6= bin(x), and setting ybin(x) to 0 or 1 with equal probability. If ybin(x) is set to 0, then this
is a 0-input to ADDRn and it is a 1-input if ybin(x) = 1.

Consider a deterministic non-adaptive AND decision tree T of cost k < n/100. Let S = {S1, . . . , Sk}
denote the ANDs queried by T . By a simple counting, there must exist at least 99n/100 target variables
that do not appear as the only target variable in any of these sets. Denote this set of target variables by Y ,
and fix a yi ∈ Y . Let x ∈ {0, 1}log n be such that bin(x) = i. Define w0 = (x, y0), w1 = (x, y1) ∈ {0, 1}log n+n

by

y0z = y1z = 0 for all z 6= i

y0i = 0

y1i = 1.

By our definition, the ANDs in S must output the same values on w0 and w1. Thus, T outputs the same
value on these inputs, and hence must err on one of them. Since µ assigns 1/(2n) mass to both of these
inputs, the total error of T is at least |Y |/2n > 0.49 since |Y | ≥ 99n/100.

Thus RNAADT(ADDRn) = Θ(n). However as we note in the following proof, its sparsity is nlog 3, which is
polynomially smaller that its sparsity in the {−1, 1}-world which is n2. This yields the bound in Claim A.2.

Proof of Claim A.2. Let I(E) denote the indicator function of E, that is, I(E) = 1 if E is true, and 0
otherwise. From the expression in Definition A.1 we have

ADDRn(x, y) =
∑

b∈{0,1}log n

ybI[x = b] =
∑

b∈{0,1}log n

yb
∏

i∈[logn]:bi=0

(1− xi)
∏

i∈[logn]:bi=1

xi. (15)
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The monomials arising from each summand are disjoint, since monomials containing yb only appear in
the summand corresponding to b. For all b ∈ {0, 1}log n, the number of monomials in

∏
i∈[logn]:bi=0(1 −

xi)
∏

i∈[logn]:bi=1 xi equals 2logn−|b|, where |b| equals the Hamming weight (number of 1s) of b. From the

expansion in Equation (15), we obtain

spar(ADDRn) =
∑

b∈{0,1}log n

2logn−|b| =

logn∑

j=0

(
log n

j

)
2j = 3logn = nlog 3.

Since RNAADT(ADDRn) = Θ(n) from Claim A.3, this concludes the proof of the claim.

B On non-adaptive AND decision trees for symmetric functions

Recall Theorem 4.7, restated below.

Theorem B.1 (Restatement of Theorem 4.7). Let f : {0, 1}n → {0, 1} be a Boolean function with switch(f) =
k < n/2. Then

NAADT(f) = O

(
log2

(
n

k

))
.

The proof is via the probabilistic method. We construct a random family of O
(
log2

(
n
k

))
many ANDs

and argue that with non-zero probability, their evaluations on any input determine the function’s value.
We require the following intermediate claim.

Claim B.2. Let n be a positive integer, and let 1 ≤ k < n/2 be an integer. Then, there exists a collection
X of O

(
log2

(
n
k

))
many subsets of [n] satisfying the following.

∀i1, . . . , ik+1 ∈ [n], j ∈ [k + 1], ∃X ∈ X such that ij ∈ X, iℓ /∈ X for all ℓ 6= j. (16)

Proof. Consider a random set X ⊆ [n] chosen as follows: For each index i ∈ [n] independently, include i in
X with probability 1/(2k). Pick w many sets (where w is a parameter that we fix later) independently using
the above sampling process, giving the multiset of sets X = {X1, . . . , Xw}.

For any set X ∈ X and fixed i1, . . . , ik+1 ∈ [n] and j ∈ [k + 1],

Pr
X
[ij ∈ X and iℓ /∈ X for all ℓ 6= j] =

1

2k
·
(
1− 1

2k

)k

≥ 1

2k · e , (17)

where the last inequality uses the fact that k ≥ 1 and the standard inequality that 1 − x ≥ e−2x for all
x ≤ 1/2. Thus Equation (17) implies that for fixed i1, . . . , ik+1 ∈ [n] and j ∈ [k + 1],

Pr
X
[∄X ∈ X : ij ∈ X and iℓ /∈ X for all ℓ 6= j] ≤

(
1− 1

2k · e

)w

≤ exp(−w/(2ke)). (18)

By a union bound over these “bad events” for all i1, . . . , ik+1 ∈ [n] and j ∈ [k + 1], we conclude that

Pr
X
[∀i1, . . . , ik+1 ∈ [n] and j ∈ [k + 1], ∃X ∈ X : ij ∈ X and iℓ /∈ X for all ℓ 6= j]

≥ 1−
(

n

k + 1

)
· (k + 1) · exp(−w/(2ke)). (19)

We want to choose w such that this probability is greater than 0. Thus we require

1 >

(
n

k + 1

)
· (k + 1) · exp(−w/(2ke))
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⇐⇒ exp(w/(2ke)) > (k + 1) ·
(

n

k + 1

)

⇐⇒ w > 2ke

(
log(k + 1) + log

(
n

k + 1

))
. taking logarithms and rearranging

Since
(

n
j+1

)
≥ n > j+1 ≥ log(j+1) for all j ∈ {1, 2, 3, . . . , n/2} and n > 2, and since log

(
n
j

)
≥ j log(n/j) ≥ j

for all j ∈ {1, 2, . . . , n/2}, it suffices to choose

w ≥ 2e log

(
n

k

)(
2 log

(
n

k + 1

))
. (20)

By standard binomial inequalities we have log
(

n
k+1

)
≤ (k+1) log(ne/(k+1)), and log

(
n
k

)
> k log

(
n
k

)
. Next,

since k + 1 ≤ 2k for k ≥ 1 and ne/(k + 1) < n3/k3 for k ∈ {1, 2, . . . , n/2}, Equation (20) implies that it
suffices to choose

w ≥ 2e log

(
n

k

)(
12 log

(
n

k

))
.

For this choice of w, the RHS of Equation (19) is strictly positive. This proves the claim.

Proof of Theorem B.1. Let f be a symmetric function with switch(f) = k < n/2, and let X be as in Claim B.2
with |X | = O

(
log2

(
n
k

))
. We now show how X yields a NAADT for f . Without loss of generality assume

that f(x) = 0 for all |x| < n− k (if not, output 1 in place of 0 in the Output step of Algorithm 1 below).

Algorithm 1: NAADT for f

Input: x ∈ {0, 1}n

1. Let X be as obtained from Claim B.2.

2. Query {ANDX(x) : X ∈ X} to obtain a string Px ∈ {0, 1}|X |.

Output: f(y) if Px = Py for some y with |y| ≥ n− k, and 0 otherwise.

We show below that the following holds: Px 6= Py for all x 6= y ∈ {0, 1}n such that |y| ≥ n − k. This
would show correctness of the algorithm and prove the theorem. Let x 6= y ∈ {0, 1}n be two strings such
that |y| ≥ n − k. Without loss of generality assume |y| ≥ |x| (else swap the roles of x and y above). Let
Ix, Iy ⊆ [n] denote the sets of indices where x and y take value 0, respectively. By assumption, x 6= y and
|Ix| ≥ |Iy|. Thus there exists an index ix ∈ Ix \ Iy.

Since |Iy| ≤ k, by Claim B.2 there exists X ∈ X such that ix ∈ X and X ∩ Iy = ∅. Thus, for this X we
have

ANDX(x) = 0, ANDX(y) = 1.

Hence Px 6= Py, which proves the correctness of the algorithm and yields the theorem.

Remark B.3. The proof above in fact yields a NAADT of cost O
(
log2

(
n
k

))
for any function f : {0, 1}n →

{0, 1} for which f is a constant on inputs of Hamming weight less than n−k for some k < n/2 (in particular,
f need not be symmetric on inputs of larger Hamming weight).

C Derivation of Theorem 1.4

Recall Theorem 1.4, restated below.

Theorem C.1 (Restatement of Theorem 1.4). Let q ≥ 8. Let A ⊆ [q]n be such that for all x(1) =

(x
(1)
1 , . . . , x

(1)
n ), x(2) = (x

(2)
1 , . . . , x

(2)
n ) ∈ A, |{i ∈ [n] | x(1)

i = x
(2)
i }| ≥ d. Then, |A| < qn−

d
2 .
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Let q be as in the statement of the theorem. For x ∈ {0, 1}n and S ⊆ [n], let xS denote the restriction of
x to the indices in S. Let |x| denote the Hamming weight of x, which is |{i ∈ [n] | xi = 1}|.

For an arbitrary alphabet L, a set H ⊆ Ln is called d-intersecting if for each x = (xi)i∈[n], x
′ = (x′

i)i∈[n] ∈
H, |{i ∈ [n] | xi = x′

i}| ≥ d. Let agr(d, q, n) denote the size of a largest d-intersecting set in [q]n. Frankl and
Tokushige determined agr(d, q, n) in their work.

For an integer r ≤ (n− d)/2, Let Ar be the following d-intersecting family in {0, 1}n.
Ar := {x ∈ {0, 1}n | |x{1,...,d+2r}| ≥ d+ r}.

Now consider the following d-intersecting family Br in [q]n: A string x ∈ [q]n belongs to Br iff there exists
a string z ∈ Ar such that for each i ∈ [n], zi = 1 ⇒ xi = 1. Br is easily seen to be d-intersecting. Hence for
each such r, agr(d, q, n) ≥ |Br|.

Frankl and Tokushige showed that in fact there is a choice of r for which agr(d, q, n) = |Br|. In other
words, there exists a choice of r such that Br is a largest d-intersecting family in [q]n.

Theorem C.2 (Theorem 2 in [FT99]). Let q ≥ 3, r = ⌊d−1
q−2⌋ and n ≥ d+ 2r. Then, agr(d, q, n) = |Br|.

Proving Theorem 1.4 now amounts to estimating |Br|. A string in Br can be generated as follows.

Choose a subset T ∈ [d+ 2r] of size d+ r.

For each i ∈ T , set xi = 1.

For each i /∈ T , set xi arbitrarily.

There are
(
d+2r
d+r

)
choices of T . For each choice of T , there are qn−d−r ways of assigning variables with indices

outside T . We thus have,

|Br| ≤
(
d+ 2r

d+ r

)
· qn−d−r

≤
(
e(d+ 2r)

d+ r

)d+r

· qn−d−r

= ed+r ·
(
1 +

r

d+ r

)d+r

· qn−d−r

≤ ed+2r · qn−d−r (Since 1 + z ≤ ez for all real z)

= qn−d(1− 1
loge q

)−r(1− 2
loge q

) (21)

By the assumption q ≥ 8, we have that 1− 2
loge q > 0 and 1− 1

loge q > 1
2 . Thus from (21) we have,

|Br| < qn−
d
2 .

D A proof of Theorem 1.4 for q = Ω(nd)
2

In this section we give a self-complete and simple proof of the statement of Theorem 1.4 for the special case
of q > (en/d)2 (with a worse constant).

Let X ⊆ [q]n be such that every x, x′ ∈ X agree in at least d locations. Observe that each pair (x, x′)
can be uniquely specified by,

A set Px,x′ ⊆ [n] of indices of size d such that xi = x′
i for each i ∈ Px,x′ .

A vector a = (ai)i∈Px,x′
∈ [q]d. a represents xPx,x′

= x′
Px,x′

.

Vectors xPx,x′
and x′

Px,x′

.

Thus the number of pairs (x, x′) is at most the number of such representations, which is upper bounded by(
n
d

)
· qd · q2(n−d) ≤ (en/d)d · q2n−d < q2n−

d
2 (since q > ( end )2). Thus |X |2 < q2n−

d
2 ⇒ |X | < qn−

d
4 .
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E Communication complexity of AND functions and pattern com-

plexity

Proof of Claim 2.14. Let S denote the Möbius support of f , and say PatM(f) = k. Write the Möbius
expansion of f as

f =
∑

S∈S

f̃(S)ANDS . (22)

We first show that D→
cc (f ◦ AND) ≤ ⌈log k⌉ by exhibiting a one-way protocol of cost ⌈log k⌉. Alice computes

the pattern of x and sends Bob the pattern using ⌈log k⌉ bits of communication. Bob now knows the values
of {ANDS(x) : S ∈ S}. Since Bob can compute {ANDS(y) : S ∈ S} without any communication, he can now
compute the value of f ◦ AND(x, y) using the formula

(f ◦ AND)(x, y) =
∑

S∈S

f̃(S)ANDS(x)ANDS(y).

It remains to show that D→
cc (f ◦ AND) ≥ ⌈log k⌉. Let D→

cc (f ◦ AND) = d. Thus there are at most 2d

messages that Alice can send Bob. We show that any two inputs x, x′ ∈ {0, 1}n for which Alice sends the
same message have the same pattern, which would prove 2d ≥ k, and prove the claim since d must be an
integer.

Let x, x′ be 2 inputs to Alice for which her message to Bob is m. We have

f(x ∧ y) =
∑

S∈S

f̃(S)ANDS(x)ANDS(y)

f(x′ ∧ y) =
∑

S∈S

f̃(S)ANDS(x
′)ANDS(y)

Since m and y completely determine the value of the function, we must have

∑

S∈S

f̃(S)ANDS(x)ANDS(y) =
∑

S∈S

f̃(S)ANDS(x
′)ANDS(y) for all y ∈ {0, 1}n.

Define the functions gx, gx′ : {0, 1}n → {0, 1} by

gx(y) =
∑

S∈S

f̃(S)ANDS(x)ANDS(y)

gx′(y) =
∑

S∈S

f̃(S)ANDS(x
′)ANDS(y).

Thus by uniqueness of the Möbius expansion of Boolean functions, gx = gx′ as functions of y. This implies
g̃x(S) = g̃x′(S) for all S ∈ S. Since g̃x(S) = f̃(S)ANDS(x) and g̃x′(S) = f̃(S)ANDS(x

′) for all S ∈ S,

ANDS(x) = ANDS(x
′) for all S ∈ S,

This shows that the pattern induced by x and the pattern induced by x′ are the same, concluding the proof.
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