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Abstract

The purpose of this article is to initiate a systematic study of dimension-free relations be-
tween basic communication and query complexity measures and various matrix norms. In other
words, our goal is to obtain inequalities that bound a parameter solely as a function of an-
other parameter. This is in contrast to perhaps the more common framework in communication
complexity where poly-logarithmic dependencies on the number of input bits are tolerated.

Dimension-free bounds are also closely related to structural results, where one seeks to
describe the structure of Boolean matrices and functions that have low complexity. We prove
such theorems for several communication and query complexity measures as well as various
matrix and operator norms. In several other cases we show that such bounds do not exist.

We propose several conjectures, and establish that, in addition to applications in complexity
theory, these problems are central to characterization of the idempotents of the algebra of
Schur multipliers, and could lead to new extensions of Cohen’s celebrated idempotent theorem
regarding the Fourier algebra.
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1 Introduction

A matrix is called Boolean if its entries are either 0 or 1, and similarly, a function is called Boolean
if it takes only 0 and 1 values. Our goal in this article is to study whether dimension-free relations
exist between basic communication and query complexity measures and various matrix norms for
Boolean matrices and functions.

The field of communication complexity, formally defined in 1979 in a paper by Yao [Yao77],
studies the communication costs of computing Boolean functions whose input is split between two
or more parties. Developed by complexity theorists, this field has been naturally influenced by the
more classical areas of complexity theory such as computational complexity where the main chal-
lenges lie in separation of complexity classes. The communication complexity classes are defined
in [BFS86] as the set of problems that can be solved using protocols with communication costs
logc(n) in the corresponding model. As a result, a major part of the literature of communication
complexity is focused on finding explicit instances (e.g. set-disjointness [She14], Hadamard ma-
trix [For02], gap Hamming distance [CR12]) that require communication cost logc(n) in one model
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(e.g. non-deterministic), whereas they require a much higher communication cost in a different
model (e.g. randomized), ideally Ω(n), where n is the number of input bits. However, a O(log(n))
versus Ω(n) separation unfortunately does not overrule the existence of dimension-free relations, as
for instance, it is possible that one parameter is bounded by an exponential function in the other
parameter.

Dimension-free bounds are also often closely related to structural results. For instance, it is
well-known that if the deterministic communication complexity of a Boolean matrix is bounded by
a constant c, then the matrix is highly structured. Namely, its rank is bounded by 2c, and it can be
partitioned into a constant number of all-zero or all-one submatrices. In other words, its partition
number is bounded by 2c.

The simple example of the identity matrix, often called the equality function in the context of
communication complexity, shows that having small randomized communication complexity does
not imply a small partition number, or equivalently a small rank. While this, and a handful of
other known examples show that the rank of a matrix with bounded randomized communication
complexity can be arbitrarily high, they do not overrule the possibility that such matrices might
be structured in a different way, or at least contain highly structured parts. Investigating such
structures is another focus of this article.

All the known examples of matrices with small randomized communication complexity contain
a large all-zero or all-one submatrix. The following conjecture in [CLV19], speculates that this
structure holds in general.

Conjecture I. If the randomized communication complexity of an n × n Boolean matrix M is
bounded by c, then it contains an all-zero or all-one δcn×δcn submatrix, where δc > 0 is a constant
that only depends on c.

In fact [CLV19] conjectures that one can take δc = 2−O(c) in the above statement.
It is well-known that the so-called approximate trace norm provides a lower bound for the ran-

domized communication complexity [LS07, Theorem 44]. Hence, one way to establish Conjecture I
would be to show that every Boolean matrix with small approximate trace norm contains a large
constant submatrix. This motivates us to ask the following tantalizing question about the trace
norm itself.

Conjecture II. If an n × n Boolean matrix M satisfies ‖M‖tr ≤ cn, then it contains an all-zero
or all-one δcn× δcn submatrix, where δc > 0 is a constant that only depends on c.

This conjecture is interesting also from the point of view of graph theory. The trace norm of
the adjacency matrix of a graph is considered an important graph parameter, and is often called
graph energy [LSG12] in that context. Furthermore, there is an extensive body of research that
investigates graph theoretic [Chu14] or spectral conditions [GN08, BN07, Nik06, LLT07, Nik09]
that guarantee the existence of large complete bipartite subgraphs in a graph or its complement.
Conjecture II, if true, provides a very natural condition based on graph energy.

The motivation behind the subject of this article goes beyond communication complexity and
combinatorics. Several of the problems considered in this article are basic questions about Boolean
matrices, and unsurprisingly, they also arise naturally in other areas of mathematics such as operator
theory, and Harmonic analysis.

Let X and Y be fixed countable sets, finite or infinite, and consider the set of X × Y Boolean
matrices M : X ×Y → {0, 1}. We shall think of rank-one Boolean matrices as the most structured
of those. Every such matrix is of the form 1X0 ⊗ 1Y0 for some X0 ⊆ X and Y0 ⊆ Y. These
matrices, which correspond to combinatorial rectangles X0 × Y0 ⊆ X × Y, are the building blocks
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of communication complexity. We denote by

Rect = {M : X × Y → {0, 1} | rk(M) = 1},

the set of all rank-one Boolean matrices.
The next important class of structured Boolean matrices for the purposes of this article is

defined as follows. We call a matrix M : X × Y → {0, 1} blocky if there exist, possibly infinitely
many, disjoint sets Xi ⊆ X and disjoint sets Yi ⊆ Y such that the support of M is⋃

i

Xi × Yi.

A simple example of a blocky matrix is the identity matrix. We denote by Blocky the set of all blocky
matrices. Figure 1 demonstrates examples of a combinatorial rectangle, and blocky matrices.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 1 1 0 0 1 1 1 0 0 1 0 0
0 1 1 1 1 1 0 0 1 1 1 0 0 1 0 0
0 1 1 1 1 1 0 0 1 1 1 0 0 1 0 0
0 1 1 1 1 1 0 0 1 1 1 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 1 1 0 0 1 1 1 0 0 1 0 0
0 1 1 1 1 1 0 0 1 1 1 0 0 1 0 0
0 1 1 1 1 1 0 0 1 1 1 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 1 1 0 0 1 1 1 0 0 1 0 0
0 1 1 1 1 1 0 0 1 1 1 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 1 1 0 0 1 1 1 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0

Figure 1: A combinatorial rectangle on the left, and a blocky matrix on the middle and on the
right.

These basic matrices appear naturally in different contexts, including those related to the topic
of this article, and have been given different names. In graph theory, blocky matrices correspond
to equivalence relations on vertex set of a graph, and thus they have been called equivalence
graphs [Duc79, Fra82, Alo86, BK95]. In complexity theory, blocky matrices have found applications
in proving bounds against circuits and branching programs [PR94, Juk06].

A blocky matrix is essentially a blow-up of the identity matrix, obtained by duplicating rows
and columns, and then permuting them. Hence, similar to the identity matrix, the randomized
communication complexity of every finite blocky matrix is bounded by a fixed constant.

Blocky matrices also arise in the context of Schur multipliers. Recall that the Schur product
(also called the Hadamard product) of two X ×Y matrices M1 and M2, denoted by M1◦M2, is their
entry-wise product. Let B(X ,Y) denote the space of bounded linear operators A : `2(X )→ `2(Y)
endowed with the operator norm. A matrix MX×Y is called a Schur multiplier if for every A ∈
B(X ,Y), we have M ◦A ∈ B(X ,Y). Every Schur multiplier M defines a map B(X ,Y)→ B(X ,Y)
via A 7→M ◦A, which assigns an operator norm to it:

‖M‖m := ‖M‖B(X ,Y)→B(X ,Y) = sup{‖M ◦A‖`2(X )→`2(Y) : ‖A‖`2(X )→`2(Y) ≤ 1}.

Note that Schur multipliers form a Banach algebra via Schur product:

‖M1 ◦M2‖m ≤ ‖M1‖m‖M2‖m.

The following question arises naturally.
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What are the idempotents of the algebra of Schur multipliers?

Obviously, every idempotent of this algebra must satisfy M = M ◦M , and thus is a Boolean matrix.
However, not every (infinite) Boolean matrix is a bounded Schur multiplier, as it is possible to have
‖M‖m =∞ for a Boolean matrix M . It is shown in [Liv95] that blocky matrices are exactly the set
of all contractive idempotents . In other words, an idempotent Schur multiplier satisfies ‖M‖m ≤ 1
if and only if it is a blocky matrix. Livshits’s characterization of idempotent Schur multipliers has
been extended to other related settings [BH04, Neu06, KP05, Lev14, MP16]. An important question
in this area (see e.g. [ELT16]) is whether idempotent Schur multipliers are exactly those Boolean
matrices that can be written as a linear combination of finitely many contractive idempotents, or
equivalently blocky matrices. A simple compactness argument, as outlined in Theorem 5, shows
that this problem is equivalent to the following basic question about Boolean matrices.

Conjecture III. For every c > 0, there exists kc ∈ N such that the following holds. If a fi-
nite Boolean matrix M is a linear combination of rank-one Boolean matrices with coefficients λi
satisfying

∑
|λi| ≤ c, then M is a ±1-linear combination of at most kc blocky matrices.

On the other hand, it is not difficult to see that if M is a ±1-linear combination of at most kc
blocky matrices, then M can be written as linear combination of rank-one Boolean matrices with
coefficients whose absolute values sum to at most O(kc).

By Grothendieck’s inequality, the assumption in Conjecture III can be equivalently replaced
with the bound ‖M‖γ2 = O(1), where

‖M‖γ2
:= min{‖B‖2→∞‖C‖1→2 : M = BC}.

The connection to Schur multipliers is due to the fact, stated in Theorem 1, that γ2 norm
coincides with the norm of M as a Schur multiplier.

Next, let us state the connection to Harmonic analysis. Let G be a locally compact Abelian
group with dual group Ĝ. Let M(G) denote the measure algebra of G, that is to say the algebra of
bounded, regular, complex-valued measures on G with the convolution operator as multiplication.
Note that every idempotent of this algebra satisfies µ∗µ = µ, and this is equivalent to the statement
that the Fourier transform µ̂ satisfies µ̂2 = µ̂, and thus is Boolean. Paul Cohen, in a celebrated
article [Coh60], proved that µ is an idempotent if and only if µ̂ can be expressed as a ±1-linear
combination of the indicator functions of a finite number of cosets of Ĝ. More recently, Green and
Sanders [GS08], and Sanders [San20] have proven effective bounds on the required number of cosets
as a function of ‖µ‖ when G is finite.

As we will explain below, Cohen’s idempotent theorem is closely related to Conjecture III.
Consider a finite Abelian group G. In this case, since G ∼= Ĝ, and M(G) = L1(G), by switching
the roles of G and Ĝ, one can state Cohen’s idempotent theorem as follows. For every c > 0, there
exists kc > 0 such that the following holds. If f : G→ {0, 1} satisfies

‖f‖A :=
∑
χ∈Ĝ

|f̂(χ)| ≤ c, (1)

then

f =

kc∑
i=1

±1Hi+ai , (2)

where each Hi ≤ G is a subgroup, and each ai ∈ G. The norm ‖ · ‖A is called the Fourier algebra
norm, and for finite Abelian groups, it is equal to the sum of absolute values of Fourier coefficients
of the function.
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Note that ‖1Hi+ai‖A = 1, and furthermore it is not difficult to prove that the indicator functions
of cosets 1H+a are the only non-zero idempotents of the Fourier algebra. This is called the Kawada-
Itô theorem [KI40, Theorem 3] and dates back to 1940. In other words, if f : G → {0, 1} satisfies
‖f‖A = 1, then f = 1H+a for some coset H + a. Hence, Cohen’s idempotent theorem says that
every idempotent of the Fourier algebra of G can be expressed as a linear combination of κ(‖f‖A)
many contractive idempotents for some function κ(·). This is precisely what Conjecture III is trying
to establish regarding the idempotents of the algebra of Schur mutlipliers. As we explain below,
this connection is more than just a verbal analogy.

Let G be a finite Abelian group. Consider a Boolean f : G → {0, 1} satisfying (1), and let
the Boolean matrix F : G ×G → {0, 1} be defined as F (x, y) = f(x − y). It is well-known [LS09,
Lemma 36] that

‖F‖γ2 =
‖F‖tr
|G|

=
∑
χ∈Ĝ

|f̂(χ)| = ‖f‖A. (3)

Hence if ‖f‖A ≤ c, then the assumption of Conjecture III holds, and if the conjecture is true, one
should be able to express F as a linear combination of a bounded number (as a function of c)
of blocky matrices. Indeed in this case, Conjecture III follows from Cohen’s idempotent theorem,
since a coset 1Hi+ai in (2) corresponds to the blocky matrix supported on the entries in⋃

b∈G/H

(Hi + b)× (Hi + b− ai).

Thus Cohen’s idempotent theorem implies that both Conjecture II and Conjecture III are true for
matrices of the form F (x, y) = f(x − y). In this regard, Conjecture III can be thought of as an
extension, or more accurately, an analogue of Cohen’s idempotent theorem for the algebra of Schur
multipliers. Obviously due to lack of group structure, one cannot hope to find cosets—instead
Conjecture III promises blocky matrices.

Finally, let us discuss the approximate version of Cohen’s idempotent theorem, significant to
us due to connections to randomized query and communication complexity. Let G be an Abelian
group, and let f : G→ {0, 1} be a Boolean function. Now, instead of assuming that ‖f‖A is small,
let us assume a weaker condition that f has an approximator with small algebra norm. More
precisely, there exists a function g : G → R, not necessarily Boolean, such that ‖f − g‖∞ ≤ ε and
‖g‖A ≤ c. Such functions have been studied by Méla [M8́2] and Host, Méla, and Parreau [HMP86]
under the name ε-quasi-idempotent. In [M8́2] Méla shows that in general, a structure similar to
Cohen’s idempotent theorem does not necessary hold for such functions. However, in the spirit of
Conjecture I, we conjecture that for G = Zn2 , every ε-quasi-idempotent contains a highly structured
part.

Conjecture IV. Let f, g : Zn2 → R be such that f is Boolean, ‖f − g‖∞ ≤ 1
3 , and ‖g‖A ≤ c. There

exists a coset V = H + a ⊆ Zn2 such that |V ||Zn2 |
≥ δc > 0, and f is constant on V .

The constant 1
3 in the statement is not important and can be replaced by any fixed constant

ε ∈ (0, 1/2), as it is not difficult to see that all such statements will be equivalent.
Note also that by Equation (3), and the fact that randomized communication complexity bounds

the approximate trace norm, Conjecture IV, if true, would imply Conjecture I for matrices of the
form F (x, y) = f(x− y) where f : Zn2 → {0, 1}.

Public-coin versus private-coin randomness: We caution the reader that in this article,
randomized communication complexity always refers to the public-coin model where randomness is
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shared between the players. We also reserve the notation R(M) to denote the public-coin random-
ized communication complexity of a Boolean matrix M . See Section 2.2.2 for formal definitions.

Qualitative versus quantitative, and dimension-free-ness: In this article we are interested
in dimension-free results. In other words, we call two parameters qualitatively equivalent if each
can be bounded as a function of solely the other one. Furthermore, since the main purpose of
this article is establishing dimension-free dependencies, we will not be concerned with quantitative
effectiveness of these bounds.

For example, the well-known relations

log rk(M) ≤ D(M) ≤ rk(M),

between rank and deterministic communication complexity, show that insofar as this article is
concerned, they are qualitatively equivalent. In contrast, despite Newman’s theorem [New91],
which states that for n× n matrices,

R(M) ≤ Rprivate(M) ≤ O(R(M) + log log(n)),

due to the log log(n) term (which is necessary), public and private randomized communication
complexities are not qualitatively equivalent.

In fact, the private-coin model is not interesting from our standpoint: For every Boolean matrix
M ,

Ω(log D(M)) = Rprivate(M) ≤ D(M),

and thus, as far as this article is concerned, the private-coin randomized communication complexity
is qualitatively equivalent to the deterministic communication complexity [KN97, Lemma 3.8].

1.1 Our contributions

In this section, we summarize some of the results proven in this article.

• In Section 3.1 we prove that the deterministic communication complexity with access to an
equality oracle is qualitatively equivalent to the smallest k such that the matrix can be written
as a linear combination of k blocky matrices.

• In Section 3.2, we show that zero-error randomized communication complexity and rank
are qualitatively equivalent. Consequently, combining this with a recent result of Gál and
Syed [GS19] establishes qualitative equivalence between approximate rank, zero-error ran-
domized communication complexity, deterministic communication complexity, and rank.

• In Section 3.3, we establish Conjecture I for one-sided error randomized communication com-
plexity.

• In Section 3.4, in Theorem 5 we use a compactness argument to show that Conjecture III
is equivalent to the statement that every idempotent of the algebra of Schur multipliers is a
linear combination of finitely many contractive idempotents.

• In Section 3.5, we consider matrices that are constructed from functions on finite groups.
Cohen’s idempotent theorem has been generalized to hold for non-Abelian groups as well by
Lefranc [Lef72], and effective bounds were given by Sanders [San11]. We use these results,
in conjunction with a theorem of Davidson and Donsig [DD07] to verify Conjecture II and
Conjecture III for matrices of the form F (x, y) = f(y−1x), where f : G → {0, 1} and G is
any finite group.
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• In Section 4, we consider xor-lifts F⊕(x, y) = f(x1 ⊕ y1, . . . , xn ⊕ yn), where f : {0, 1}n →
{0, 1}. Note that xor-lift is a special case of F (x, y) = f(y−1x), where G = Zn2 , and thus, as
we mentioned above, Conjecture II and Conjecture III are true for these matrices. We further
discuss the analogue of Conjecture I for the ⊕-query model, i.e. for parity decision trees.
In other words, we consider Conjecture IV in relation to randomized ⊕-query complexity.
Furthermore, we show that the deterministic and zero-error randomized ⊕-query complexities
are both qualitatively equivalent to the number of nonzero Fourier coefficients.

• In Section 5, we consider and-lifts F∧(x, y) = f(x1 ∧ y1, . . . , xn ∧ yn) for f : {0, 1}n → {0, 1}.
We prove that the analogue of Conjecture IV is true in the ∧-query model. Namely, in
Theorem 8, we prove that if the randomized and-decision tree of f : {0, 1}n → {0, 1} is small,
then there is a small set J of coordinates such that f is constant on {x : xj = 0 ∀j ∈ J}.
We remark that Conjecture I, Conjecture II and Conjecture III all remain unresolved for
and-lifts.

• In Section 6, we explain our failure in proving Conjecture I, Conjecture II and Conjecture III
by providing an example which shows that the common technique used in proving Cohen’s
idempotent theorem, and several similar theorems, including some of our results in this article,
are inherently inadequate for establishing these conjectures.

2 Preliminaries

Let D denote the complex unit disk {z ∈ C | |z| ≤ 1}. For a positive integer n, we use [n] to denote
{1, . . . , n}. For a set S we denote by 1S the indicator function of S. For a vector x ∈ {0, 1}n, and
S ⊆ [n], we denote by xS ∈ {0, 1}S the restriction of x to the coordinates in S. The Hamming
weight of x is defined as |x| :=

∑
xi.

All logarithms in this article are in base 2.
For two functions f : N→ R and g : N→ R, we use the following asymptotic notations:

• f(n) = O(g(n)), if lim
n→∞

sup |f(n)|
|g(n)| <∞.

• f(n) = Ω(g(n)), if and only if g(n) = O(f(n)).

• f(n) = Θ(g(n)), if f(n) = O(g(n)) and f(n) = Ω(g(n)).

• f(n) = o(g(n)), if lim
n→∞

|f(n)|
|g(n)| = 0.

• f(n) = ω(g(n)), if lim
n→∞

|f(n)|
|g(n)| =∞.

We sometimes identify {0, 1}n or Zn2 with the vector space Fn2 over F2. In this context, we refer
to cosets H + a ⊆ Zn2 as affine subspaces, which naturally assign a dimensions and a codimension
to them.

For sets X and Y, we will often identify a function f : X ×Y → C with its corresponding matrix
[f(x, y)]x∈X ,y∈Y .

For a measure space (Ω, µ), and p ∈ [1,∞), we denote by Lp(µ) the normed space of functions
f : Ω→ C with

∫
|f |pdµ <∞, together with the norm

‖f‖Lp(µ) :=

(∫
|f |pdµ

)1/p

,
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and ‖f‖L∞(µ) is defined as the essential supremum of |f |.
For a finite set Ω, we write µΩ to denote the uniform probability measure on Ω, and we shorthand

‖f‖Lp(µΩ) to ‖f‖Lp(Ω). When Ω is a countable set, we define the normed space `p(Ω) according to
the counting measure:

‖f‖`p(Ω) =

(∑
x∈Ω

|f(x)|p
)1/p

.

There are several natural norms on the space of m× n matrices. Considering an m× n matrix
M as a linear operator M : Cn → Cm endows the space with operator norms: For p, q ∈ [1,∞], we
use the notation ‖M‖p→q to denote its operator norm from `p to `q. That is

‖M‖p→q = sup
x∈Cn,‖x‖`p≤1

‖Mx‖`q ,

It is easy to see that
‖M‖2→2 = σmax,

where σmax is the largest singular value of M .
We shall need the following well-known inequality.

Lemma 2.1 (Hoeffding’s inequality). For i = 1, . . . , n, let Xi be independent random variables
taking values from range [ai, bi] and let X =

∑n
i=1Xi. Then,

Pr[|X − E[X]| ≥ t] < 2 exp

(
− 2t2∑

i(bi − ai)2

)
.

2.1 Matrix norms and ranks

In this section we describe some well-known as well as some new matrix parameters which arise
from representations of general matrices in terms of more structured matrices. Allowing S to be
various sets of structured matrices (for example, S = Rect or S = Blocky) we define, in a generic
way, the matrix parameters that come up in this article. This also makes it easier to see how some
of these parameters relate to each other. For a fixed set S of structured matrices, we introduce a
notion of matrix rank in terms of S , which we call S-rank, and a matrix norm in terms of S , which
we call S-norm analogously.

Definition 2.2. Let Z be a finite set, and let S be a spanning subset of the vector space {f : Z →
C}.

• Define the S-rank of a function f , denoted by rk(S , f), to be the smallest k such that f can
be expressed as a linear combination of at most k functions in S over C.

• Define ‖f‖S as

‖f‖S = inf

{
r∑
i=1

|λi| : f =
r∑
i

λigi, for gi ∈ S , λi ∈ C, r ∈ N

}
.

It is easy to verify that ‖ · ‖S is always a semi-norm. By considering different S we can recover
many of the norms and parameters related to this article.
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• (Normalized trace norm) The trace norm of an m× n matrix M is defined as the sum of its
singular values σmax := σ1 ≥ . . . ≥ σmin(m,n) ≥ 0, namely

‖M‖tr =

min(m,n)∑
i=1

σi.

In this article, it is more convenient to work with the following normalized version of this
norm, which we call the normalized trace norm:

‖M‖ntr =
‖M‖tr√
mn

.

When S is the set of all m× n matrices of the form a⊗ b, where a ∈ Rm and b ∈ Rn satisfy

‖a‖L2(m) :=

(
m∑
i=1

|ai|2

m

)1/2

≤ 1, and ‖b‖L2(n) :=

(
n∑
i=1

|bi|2

n

)1/2

≤ 1,

then rk(S ,M) coincides with rk(M) over C, and it follows from the singular value decompo-
sition that

‖M‖S = ‖M‖ntr.

• (µ-norm) If S = Rect , that is the set of rank-one Boolean matrices a⊗ b, where a ∈ {0, 1}m
and b ∈ {0, 1}n, then ‖ · ‖Rect is commonly known as the ‖ · ‖µ norm. Note that to define ‖ · ‖µ
one could equivalently take a⊗ b, where a ∈ [0, 1]m and b ∈ [0, 1]n.

• (ν-norm) If S is the set of all m × n matrices of the form a ⊗ b, where a ∈ {−1, 1}m and
b ∈ {−1, 1}n, then ‖ · ‖S is commonly known as the ‖ · ‖ν norm. Again to define ‖ · ‖ν one
could equivalently take a⊗ b, where a ∈ [−1, 1]m and b ∈ [−1, 1]n.

It immediately follows that ‖ · ‖ν ≤ ‖ · ‖µ, but in fact the two norms are equivalent, since
every {−1, 1}-valued vector can be written as the difference of two Boolean vectors:

‖ · ‖ν ≤ ‖ · ‖µ ≤ 4‖ · ‖ν . (4)

Note that for the identity matrix, we have

In(x, y) =
1

2n

∑
S⊆[n]

(−1)1x∈S (−1)1y∈S ,

and thus ‖In‖ν = 1.

• (γ2-norm) We can relax the ν-norm further. Let S be the set of all m × n matrices with
ij-entries 〈ai,bj〉, where ai and bj are unit vectors in any Hilbert space H.

Taking H to be R, we have only two unit vectors ±1 and thus we recover ν norm. Hence
‖ · ‖γ2 ≤ ‖ · ‖ν . It turns out that γ2-norm is also equivalent to the ν norm. This is in fact the
well-known Grothendieck inequality (see Theorem 1):

‖ · ‖γ2 ≤ ‖ · ‖ν ≤
π

2 ln
(
1 +
√

2
)‖ · ‖γ2 .

The constant π
2 ln(1+

√
2)

is due to Krivine [Kri79], and it holds for both real and complex

Hilbert spaces. Note also that the unit ball of ‖ · ‖γ2 is the set of m × n matrices with
ij-entries 〈ai,bj〉, where ‖ai‖ ≤ 1 and ‖bj‖ ≤ 1 in some Hilbert space H.
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• (Blocky-rank and norm) For S = Blocky , we study rk(Blocky , f), which we prove is qualitatively
equivalent to the deterministic communication complexity with access to equality oracle (see
Proposition 3.1). We refer to ‖ · ‖Blocky as blocky-norm. Blocky matrices are the blow-ups of
the identity matrix, and thus every non-zero blocky matrix B satisfies

‖B‖γ2 = ‖B‖ν = 1.

On the other hand every a⊗ b, where a ∈ {−1, 1}m and b ∈ {−1, 1}n, can be written as the
difference of two blocky matrices, and thus satisfies ‖a⊗ b‖Blocky ≤ 2. We conclude

‖ · ‖ν ≤ ‖ · ‖Blocky ≤ 2‖ · ‖ν . (5)

• (Fourier rank and algebra norm) Let G be a finite Abelian group with dual Ĝ. Then for
f : G→ C,

rk(Ĝ, f)

corresponds to the so-called Fourier rank of f , which is the number of non-zero Fourier
coefficients of f . In this case, the corresponding norm coincides with Fourier algebra norm

‖f‖
Ĝ

= ‖f‖A.

• (Monomial rank and norm) Consider the space of functions f : {0, 1}n → C, and let

M on :=

{
x 7→

∏
i∈S

xi | S ⊆ [n]

}

be the set of all monomials where every variable appears with degree at most 1. Then, for a
function f : {0, 1}n → C,

rk(M on, f)

corresponds to the number of non-zero coefficients in the (unique) polynomial represen-
tation of f . This is often called the sparsity of f in the literature of computer science.
Note also that ‖f‖Mon coefficients in the unique polynomial representation of f in the ring
C[x1, . . . , xn]/(x2

1 = x1, . . . , x
2
n = xn).

Schur Multipliers Let X and Y be two countable sets. The Schur product of two X×Y matrices
A = [axy] and B = [bxy], denoted by A ◦B, is their entry-wise product [axybxy].

Consider the two Hilbert spaces H1 = `2(Y) and H2 = `2(X ), and let B(H1,H2) be the space of
all bounded linear operators A : H1 → H2 together with the operator norm ‖A‖H1→H2 . A matrix
MX×Y is called a Schur multiplier if for every A ∈ B(H1,H2), the matrix M ◦ A ∈ B(H1,H2).
Every Schur multiplier defines a map B(H1,H2)→ B(H1,H2) via A 7→M ◦A.

To distinguish from the norm on bounded operators, we will write ‖M‖m for the norm of a
Schur multiplier:

‖M‖m = sup{‖M ◦A‖H1→H2 : ‖A‖H1→H2 ≤ 1}.

It turns out that ‖ · ‖m coincides with γ2 norm defined above. The following relations are
essentially due to Grothendieck (see also [LS07, Pis12]).

Theorem 1 (Grothendieck [Gro52]). For every matrix M ,

‖M‖m = ‖M‖γ2 ≤ ‖M‖ν ≤
π

2 ln
(
1 +
√

2
)‖M‖γ2 .
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In other words, ‖ · ‖m, ‖ · ‖µ, ‖ · ‖ν , and ‖ · ‖γ2 are all within constant factors of each other. Let
us also mention the following common property of these norms, which is straightforward to verify.

Proposition 2.3. Let ‖ · ‖ be any of the norms ‖ · ‖m, ‖ · ‖µ, ‖ · ‖ν , or ‖ · ‖γ2. Then

‖⊕∞i=1Mi‖ = sup
i
‖Mi‖.

Idempotents and Boolean matrices Schur multipliers on B(H1,H2) form a Banach algebra
via the Schur product, since

‖M1 ◦M2‖m ≤ ‖M1‖m‖M2‖m.
When H1 and H2 are finite dimensional, Boolean matrices and idempotents of this algebra coincide:
M ◦M = M if and only if M is a Boolean matrix. However, in the infinite dimensions, not every
Boolean matrix is a bounded Schur multiplier.

We will be interested in characterizing the idempotents of the algebra of Schur multipliers. As
we shall see in Theorem 5, this reduces to characterizing the structure of finite Boolean matrices
M with a uniform bound on ‖M‖m.

First let us consider the contractive idempotents. Note that every rank-one Boolean matrix is
a contraction. As a result, by Proposition 2.3, the identity matrix and, more generally, all blocky
matrices are contractions.

Note that the Schur multiplier norm is monotone in the sense that the norm of a submatrix
cannot be larger than the original matrix. Since ‖1‖m = 1, it follows that every non-zero Boolean
matrix satisfies ‖M‖m ≥ 1. Livshits [Liv95] showed that the 2 × 2 matrix with three 1’s is not
contractive.

Lemma 2.4 ([Liv95]). We have ∥∥∥∥[1 1
0 1

]∥∥∥∥
m

=
2√
3
> 1.

Since ‖ · ‖m norm is invariant under row and column permutations, it follows that a contractive
idempotent M cannot have any 2×2 submatrices with exactly 3 ones. In this context, the property
is often called the 3-of-4 property, which fully characterizes such matrices as being the same as the
set of blocky-matrices.

Theorem 2 ([Liv95]). M is a contractive idempotent of the algebra of Schur multipliers if and
only if M ∈ Blocky. More generally, this is true for idempotents that satisfy ‖M‖m < 2√

3
.

Relation to the Normalized Trace Norm As we saw above ‖ · ‖γ2 = ‖ · ‖m, ‖ · ‖µ, and ‖ · ‖ν ,
are all equivalent. Furthermore, it is easy to see [LS07, Section 2.3.2] that

‖ · ‖ntr ≤ ‖ · ‖γ2 . (6)

However, ‖ · ‖ntr could be much smaller than the above norms since adding all-zero rows or
columns would decrease the normalized trace norm, while other norms would remain intact.

2.1.1 The Fourier algebra norm

Let f : {0, 1}n → {0, 1} be a Boolean function. Identifying {0, 1}n with the finite Abelian group
G = Zn2 allows us to consider the Fourier expansion of f =

∑
χ∈Ĝ f̂(χ)χ, where Ĝ is the dual of G.

It is common in theoretical computer science to represent this expansion as

f =
∑
S⊆[n]

f̂(S)χS ,
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by representing the characters of Zn2 as

χS : x 7→
∏
i∈S

(−1)xi .

The Fourier algebra norm of f , denoted by ‖f‖A, is the sum of absolute values of Fourier coefficients:

‖f‖A =
∑
S

|f̂(S)|.

The name comes from the fact that it satisfies ‖f1f2‖A ≤ ‖f1‖A‖f2‖A for any f1, f2 : G → C. In
the literature of theoretical computer science, this norm is sometimes called the spectral norm of f ,
but in order to avoid confusion with spectral norm of matrices, we will use the harmonic analysis
term, Fourier algebra norm.

The above definition immediately generalizes to every finite Abelian groupG, namely the Fourier
algebra norm of f : G→ C is the sum of absolute values of Fourier coefficients. This can be further
generalized to every locally compact Abelian group, and in fact Eymard in [Eym64] generalized
the definition of the Fourier algebra to every locally compact group. In this article, we are only
concerned with finite groups. Suppose that G is a finite group and f, g ∈ L1(µG), where µG denotes
the unique Haar probability measure on G, which is the uniform probability measure on G, since
G is finite. The convolution f ∗ g of f and g is then defined point-wise by

f ∗ g(x) :=

∫
f(y)g(y−1x)dµG(y) = Ey∈G

[
f(y)g(y−1x)

]
.

This can be used to introduce the convolution operator: given h ∈ L1(G), define Lh : L2(G) →
L2(G) via Lh : ν 7→ ν ∗ h. The Fourier algebra norm of f is then defined as

‖f‖A := sup
{
〈f, h〉 : ‖Lh‖L2(G)→L2(G) ≤ 1

}
.

When G is an Abelian group, it is not difficult to see that this coincides with the sum of absolute
values of Fourier coefficients of f :

‖f‖A =
∑
χ∈Ĝ

|f̂(χ)|.

2.2 Communication complexity

2.2.1 Deterministic communication complexity

The field of communication complexity studies the amount of communication required to solve a
problem of computing discrete functions when the input is split between two parties. Every Boolean
function f : X × Y → {0, 1} defines a communication problem. An input x ∈ X is given to Alice,
and an input y ∈ Y is given to Bob. Together, they should both compute the entry f(x, y) by
exchanging bits of information in turn, according to a previously agreed-on protocol. There is no
restriction on their computational power; the only measure we care to minimize is the number of
exchanged bits.

A deterministic protocol π specifies for each of the two players, the bit to send next, as a
function of their input and history of the communication so far. A protocol naturally corresponds
to a binary tree as follows. Every internal node is associated with either Alice or Bob. If an internal
node v is associated with Alice, then it is labeled with a function av : X → {0, 1}, which prescribes
the bit sent by Alice at this node as a function of her input. Similarly, Bob’s nodes are labeled
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with Boolean functions on Y. Each leaf is labeled by 0 or 1 which corresponds to the output of
the protocol. We denote the number of bits exchanged on the input (x, y) by costπ(x, y). This is
exactly the length of the path from the root to the corresponding leaf. The communication cost of
the protocol is simply the depth of the protocol tree, which is the maximum of costπ(x, y) over all
inputs (x, y).

CC(π) := max
x,y

costπ(x, y).

Every such protocol π computes a function X ×Y → {0, 1}, which we also denote by π. Namely
π(x, y) is the label of the leaf reached by the path corresponding to the players’ communication
on the input (x, y). We say that π computes f if π(x, y) = f(x, y) for all x, y. The deterministic
communication complexity of f , denoted by D(f), is the smallest communication cost of a protocol
that computes f .

A useful insight is that a bit sent by Alice at a node v corresponds to a partition of the
rows into two parts a−1

v (0) and a−1
v (1), and every bit sent by Bob corresponds to a partition

of the columns. Every time Alice sends a bit, we restrict to a subset of the rows, and proceed
with the created submatrix. Similarly Bob’s communicated bits restrict the columns. As this
process continues, we see that every c-bit protocol induces a partition of the matrix f into at
most 2c submatrices. In the context of the communication complexity, submatrices are often called
combinatorial rectangles or simply rectangles. If the protocol computes f , then all submatrices in
this partition are monochromatic, namely, labeled by a unique element 0 or 1.

Note that every rank-one Boolean matrix is of the form 1X0 · 1TY0
for subsets X0 ⊆ X and

Y0 ⊆ Y. Thus rank-one Boolean matrices are essentially the same as 1-monochromatic rectangles.
We conclude the following proposition.

Proposition 2.5 ([KN97]). For every Boolean matrix F , we have

log rk(F ) ≤ D(F ) ≤ rk(F ) ≤ rk(Rect , F ) ≤ c ≤ 2rk(F ),

where c is the partition number of f , which is the smallest c > 0 such that f can be partitioned
into c constant submatrices. In particular, all the above parameters are qualitatively equivalent.

To the extent that we are concerned with qualitative results, Proposition 2.5 provides a satisfac-
tory description of the structure of Boolean matrices whose deterministic communication complex-
ities are uniformly bounded. However, quantitatively, closing the exponential gap between D(f)
and log rk(f) into a polynomial dependency is called the log-rank conjecture, and is perhaps the
most famous open problem in communication complexity [Lov14].

2.2.2 Randomized communication complexity

In this article, we use the public coin model, where a probabilistic protocol πR is simply a distribution
over deterministic protocols. In this notation R is a random variable, and every fixation of R to
a particular value r leads to a deterministic protocol πr. We define the communication cost of a
probabilistic protocol πR as the maximum cost of any protocol πr in the support of this distribution:

CC(πR) = max
r

CC(πr) = max
r

max
x,y

costπr(x, y).

We also define the average cost of such a protocol as the expected number of exchanged bits
over the worst input (x, y):

CCavg(πR) = max
x,y

ER[costπR(x, y)].

In the probabilistic models of computation, three types of error are often considered.
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• Two-sided error: This is the most important notion of randomized communication com-
plexity. For every x, y, we require

Pr
R

[πR(x, y) 6= f(x, y)] ≤ ε,

where ε is a fixed constant that is strictly less than 1/2. Note that ε = 1/2 can be easily
achieved by outputting a random bit; hence it is crucial that ε in the definition is strictly
less than 1/2. It is common to take ε = 1

3 . Indeed, the choice of ε is not important so
long as ε ∈ (0, 1/2), since the probability of error can be reduced to any constant ε′ > 0 by
repeating the same protocol independently for some O(1) times, and outputting the most
frequent output.

The two-sided error communication complexity is simply called the randomized communica-
tion complexity. It is denoted by Rε(f) and is defined as the smallest communication cost
CC(πR) of a probabilistic protocol that computes f with two-sided error at most ε. We set
ε = 1/3 as the standard error, and denote

R(f) = R 1
3
(f).

• One-sided error: In this setting the protocol is only allowed to make an error if f(x, y) = 1.
In other words, for every x, y with f(x, y) = 0, we have

Pr
R

[πR(x, y) = 0] = 1,

and for every x, y with with f(x, y) = 1, we have

Pr
R

[πR(x, y) 6= f(x, y)] ≤ ε.

Again the choice of ε is not important so long as ε ∈ (0, 1) because the probability of error can
be reduced from ε to εk by repeating the same protocol independently k times and outputing 1
only when at least one of the repetitions outputs 1. We denote by R1

ε (f) the smallest CC(πR)
over all protocols πR with one-sided error of at most ε. We set ε = 1/3 as the standard error,
and denote

R1(f) = R1
1
3

(f).

• Zero error: In this case the protocol is not allowed to make any errors. For every x, y, we
must have PrR[πR(x, y) 6= f(x, y)] = 0. In this setting, CCavg(·) is considered, as CC(·) leads
to the same notion of complexity as the deterministic communication complexity. We denote

R0(f) = inf CCavg(πR),

over all such protocols.

Note that one can convert a zero-error protocol π with average cost c to a one-sided error
protocol π′ with cost 3c, by terminating the protocol after at most 3c steps, and outputting 0 in
the case where the protocol is terminated prematurely. The protocol π′ clearly does not make
any errors on 0-inputs. Furthermore, since the average cost of π is c, by Markov’s inequality, the
probability that the protocol π′ is terminated prematurely is at most 1

3 . We conclude

R(f) ≤ R1(f) ≤ 3 R0(f).

Obviously, R(f),R1(f),R0(f) are all bounded by D(f).
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2.3 Query complexity

In Section 2.2, we introduced various models of communication complexity. In this section we
discuss query complexity. Let X be a finite set, often endowed with a product structure, most
commonly X = {0, 1}n. In query complexity, a function f : X → {0, 1} is fixed, and a player, who
does not know the input x, wants to find out the value of f(x) by making queries about x. The goal
is to minimize the number of queries. Depending on what type of queries are allowed, we arrive
at different models of query complexity. The most natural setting is to have f : {0, 1}n → {0, 1}.
Denoting the input x = (x1, . . . , xn) ∈ {0, 1}n, we consider three important types of queries, each
leading to a different model of query complexity.

• The coordinate queries xi for i ∈ {1, . . . , n}.

• The parity queries ⊕i∈Sxi, which are the xor of the coordinates in S, for S ⊆ [n].

• The and queries
∏
i∈S xi, for S ⊆ [n].

Note that, similar to communication complexity, a protocol in each of these models corresponds
to a binary tree where each internal node is labeled with a query, and the computation branches
according to the output of these queries. The leaves are labeled with the output of the protocol.
When only coordinate-queries are allowed, these trees are simply called decision trees. The parity
decision trees, and and-decision trees, respectively correspond to parity queries and and queries.

The cost of such a protocol is the maximum number of queries made on an input, which is equal
to the depth of the tree. Such trees naturally correspond to Boolean functions, and the decision tree
complexity dt(f), the parity decision tree complexity dt⊕(f), and the and-decision tree complexity
dt∧(f) are defined as the smallest depth required for the function f .

A randomized protocol is simply a distribution over deterministic protocols, and the notions
of cost, average cost, zero-error, one-sided error, and two-sided error are defined analogous to
communication complexity. The complexity measures corresponding to zero-error, one-sided error,
and two-sided error are denoted respectively by rdt0, rdt1, rdt.

In the and-query model, we denote these by rdt∧0 , rdt∧1, rdt∧, and in the parity query model
by rdt⊕0 , rdt⊕1, rdt⊕.

In the simple decision tree model of coordinate queries, a theorem of Nisan [Nis91] shows that
all these parameters are qualitatively equivalent, in fact with polynomial dependencies.

Proposition 2.6 (Coordinate Query Equivalencies [Nis91]). For every Boolean function f : {0, 1}n →
{0, 1}, we have

rdt(f) ≤ rdt1(f) ≤ 3 rdt0(f) ≤ 3 dt(f) ≤ 81 rdt(f)2.

In light of Proposition 2.6, from the point of view of this article, the case of the coordinate query
has been completely resolved. However, as we shall see later, in both the xor and and models,
there are examples for which the randomized query complexity is O(1), while the deterministic
query complexity is Ω(n). We discuss the xor-model in Section 4, and the and-model in Section 5.

2.4 Lifting theorems

Let G be a finite group. Every function f : G→ C defines a matrix

F : G×G→ C, F : (x, y) 7→ f(y−1x). (7)
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These constructions sometimes allow us to lift lower-bounds on the query complexity to lower-
bounds on the communication complexity. Similarly, one can relate results regarding the function
spaces on G to the setting of the matrix spaces on G×G.

The study of lifting theorems have been a very active and successful area of theoretical computer
science, particularly in the past two decades [RM97, CKLM19, HHL18, GPW18, GLM+16, GPW17,
GKPW17]. Not all these lifting theorems follow the above f(y−1x) framework , nevertheless they
generally fit the theme of translating a query complexity result regarding functions f : X → {0, 1}
to the communication complexity bounds on the matrices F that are constructed from f .

The xor lift. The case of G = Zn2 in (7) is closely related to the parity query complexity. The
group operation on Zn2 corresponds to the point-wise xor operation on {0, 1}n, and hence for a
given function f : {0, 1}n → {0, 1}, Equation (7) translates to F⊕(x, y) = f(x ⊕ y). The Fourier
transform of f carries important information about the matrix F⊕. Indeed Fourier characters are
the eigenvectors of F⊕, Fourier coefficients of f are their corresponding eigenvalues, and as a result

rk(F⊕) = rk⊕(f), (8)

where rk⊕(f) denotes the number of non-zero Fourier coefficients of f .
The relation between parity query complexity parameters of f and their corresponding com-

munication complexity parameters of F⊕ has been studied extensively [HHL18, TWXZ13, Zha14,
ZS10, MS20, MO09].

Note that for x, y ∈ {0, 1}n,

⊕i∈S(x⊕ y)i = (⊕i∈Sxi)⊕ (⊕i∈Syi) ,

which in particular allows one to translate every party decision tree to a communication protocol.
Namely, every time that a query ⊕i∈S has been made in the parity decision tree, in the communi-
cation setting, the players can individually compute the two bits ⊕i∈Sxi and ⊕i∈Syi and exchange
them to find out the answer to the query on x⊕ y. It follows that D(F⊕),R0(F⊕),R1(F⊕), R(F⊕)
are bounded respectively by 2 dt⊕(f), 2 rdt⊕0 (f), 2 rdt⊕1(f), 2 rdt⊕(f).

The difficult part of establishing a lifting theorem is indeed bounding the query complexity in
terms of the communication complexity. We will discuss these in Section 4.

The and lift. In this case, we will work with the semigroup ({0, 1}n,∧) where ∧ corresponds to
the pointwise product. Namely,

x ∧ y = (x1y1, . . . , xnyn),

and the lifted function is defined as

F∧(x, y) = f(x ∧ y).

Similar to the xor setting, one easily shows that D(F∧),R0(F∧),R1(F∧), R(F∧) are bounded re-
spectively by 2 dt∧(f), 2 rdt∧0 (f), 2 rdt∧1(f), 2 rdt∧(f). We will discuss the and-lift in detail in
Section 5.

2.5 Approximate norms and randomized complexity, a general approach

The study of randomized complexity classes is often naturally linked to approximate norms. For
every matrix norm ‖ · ‖ and every ε > 0, we define a corresponding ε-approximate norm for real
matrices M as

‖M‖ε = inf{‖N‖ : |M(x, y)−N(x, y)| ≤ ε ∀x, y},
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where in the infimumm N is a real matrix of the same dimensions as M .
Similarly, for every norm ‖ · ‖ on the space of real-valued functions f : X → R, we define the

ε-approximate version of the norm as

‖f‖ε = inf{‖g‖ : ‖f − g‖∞ ≤ ε, g : X → R}.

We also define the notion of the approximate S-rank similarly:

rkε(S , f) = min{rk(S , g) : ‖f − g‖∞ ≤ ε, g : X → R},

where we are using the notation of Definition 2.2.
We use rkε(M) to denote the ε-rank of a real matrix M , which is the minimum rank over

real matrices that approximate every entry of M to within an additive ε. Similar to randomized
complexity measures, the choice of ε is not very important, as changing ε could only affect the value
of the approximate-rank of a Boolean matrix polynomially [KS07].

Approximate norms and randomized protocols, a general approach. Suppose we are
given a function f : Z → {0, 1}, and we are interested in complexity of f in a randomized model of
computation M . Here M could be the communication complexity model, in which case we think
of Z = X × Y, or any of the query complexity models discussed above, in which case Z = {0, 1}n.

Consider also the set of all the deterministic (query or communication) protocols π, each com-
puting a corresponding function π : Z → {0, 1}. Furthermore, the cost of every deterministic
protocol π, denoted by cost(π) ∈ N, is the worst-case number of queries or communicated bits used
by the protocol over the set of all inputs. This defines the deterministic complexity of a function f
as

DM (f) := inf{cost(π) : π(z) = f(z) ∀z ∈ Z}.

A randomized protocol πR is a probability distribution over deterministic protocols πr, and the
cost of a randomized protocol is defined to be the maximum cost of a deterministic protocol in its
support. This leads to the notion of the randomized complexity of a function f :

RM
ε (f) := inf{cost(πR) : Pr

R
[πR(z) 6= f(z)] ≤ ε ∀z ∈ Z}.

The following lemma provides a connection between the randomized complexity and a suitable
notion of approximate norm.

Lemma 2.7 (Equivalence of RM
ε (f) and ‖f‖S ,ε). Consider the setting described above. Let S be a

spanning subset of functions Z → D, and ε ∈ (0, 1
2) be a parameter.

(i) If there exists an increasing function κ : R+ → R+ such that for every function f : Z → {0, 1},

‖f‖S ≤ κ(DM (f)),

then
‖f‖S ,ε ≤ κ(RM

ε (f)).

(ii) If every h ∈ S satisfies
DM (h) ≤ c,

then

RM
ε (f) ≤ 32c log(2/ε)

(1− 2ε)2
‖f‖2S ,ε.
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Proof. (i) Consider a randomized protocol πR of cost at most c that computes f with two-sided
error at most ε. Then

‖ER[πR]− f‖∞ ≤ ε,
while by convexity

‖f‖S ,ε ≤ ‖ER[πR]‖S ≤ ER [‖πR‖S ] ≤ max
r
‖πr‖S ≤ max

r
κ(DM (πr)) ≤ max

r
κ(cost(πr)) = κ(RM

ε (f)),

as desired.
(ii) Let δ = 1−2ε

4 , and let λi ∈ C and hi ∈ S be such that for f ′ =
∑k

i=1 λihi, we have
‖f − f ′‖∞ ≤ ε+ δ, and

L :=
k∑
i=1

|λi| ≤ ‖f‖S ,ε.

We will convert this to a randomized protocol.
For every i, define λ′i := λi

|λi| , so that |λ′i| = 1. Pick g randomly from {λ′1h1, . . . , λ
′
khk} according

to the probability distribution

Pr
[
g = λ′ihi

]
=

|λi|∑k
i=1 |λi|

.

Note that E[g] = f ′/L, and furthermore ‖g‖∞ ≤ 1 by our assumption about S . Let N =

2δ−2L2 log(2/ε) = 32L2 log(2/ε)
(1−2ε)2 , and g1, . . . , gN be i.i.d. copies of g, and define G̃ = L

N

∑N
i=1 gi.

For every z ∈ Z, by applying Hoeffding’s inequality (Lemma 2.1) to the real part of G̃, we have

Pr
[
| re(G̃(z))− re(f ′(z))| ≥ δ

]
< 2 exp

(
− 2δ2

4N · (L/N)2

)
≤ ε,

where the last inequality is by the choice of N . Next, let G be the Boolean rounding of G̃, that is
G(z) = 1 if and only re(G̃(z)) ≥ 1/2. Noting that | re(f ′(z))− f(z)| ≤ ε+ δ, we have

Pr[G(z) 6= f(z)] ≤ Pr

[
| re(G̃(z))− re(f ′(z))| ≥ 1

2
− ε− δ

]
≤ Pr

[
| re(G̃(z))− re(f ′(z))| ≥ δ

]
≤ ε.

Note that by our assumption each hi can be computed at cost at most c. Since G̃(z) can be
computed by rounding a linear combination of N such hi’s, it can be computed at cost cN . This
concludes the statement.

Next we apply Lemma 2.7 to specific models of query and communication complexity.

Corollary 2.8. For ε > 0, let cε = log(1/ε)
(1−2ε)2 . We have

(a) and-query model:

log3 ‖f‖Mon,ε ≤ rdt∧ε (f) ≤ O
(
cε · ‖f‖2Mon,ε

)
.

(b) xor-query model:
log2 ‖f‖A,ε ≤ rdt⊕ε (f) ≤ O

(
cε · ‖f‖2A,ε

)
.

(c) Randomized communication complexity:

log2 ‖F‖µ,ε ≤ Rε(F ) ≤ O
(
cε · ‖F‖2µ,ε

)
,

which, in particular, implies

log2 ‖F‖γ2,ε ≤ Rε(F ) ≤ O
(
cε · ‖F‖2γ2,ε

)
,
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Proof. (a) and-query model: Z = {0, 1}n, and S = M on.

Later in Proposition 5.1, we will prove that ‖f‖Mon ≤ 3dt∧(f). Hence the lower bounds follows
from Lemma 2.7 (i).

The upper bound follows directly from Lemma 2.7 (ii), as for every hS :=
∏
i∈S xi ∈ M on,

dt∧(hS) = 1.

(b) xor-query model: Z = {0, 1}n, and S = {χS}S⊆[n], the set of characters of Zn2 .

By Cauchy-Schwarz inequality ‖f‖A ≤
√

rk⊕(f) · ‖f‖L2(Z) ≤
√

rk⊕(f), which combined with

Proposition 4.1 below, gives ‖f‖A ≤ 2dt⊕(f). Now Lemma 2.7 (i) yields the lower bound.

The upper bound follows from Lemma 2.7 (ii), noting that dt⊕(χS) = 1 for all S ⊆ [n].

(c) Randomized Communication Complexity: Z = X × Y, S = Rect .

A communication protocol of cost c provides a partition of F into at most 2c monochromatic
rectangles, and thus ‖F‖µ ≤ 2D(F ). Now the lower bound follows from Lemma 2.7 (i).

The upper bound follows from Lemma 2.7 (ii) by noting that D(h) = O(1) for every h ∈ Rect .

2.6 Important examples: Equality, Greater-Than, Threshold Functions

In this section, we review the properties of some specific examples of matrices and functions. These
will be used in later sections.

As usual denote by Jn the n× n all-one matrix. We start from the identity matrix.

Example 2.9 (Identity Matrix, Equality Function). The n × n identity matrix In, and its com-
plement In := Jn − In satisfy the following.

(i) See [KN97, Example 3.9]:
R0(In) = R0(In) = Θ(log(n)).

(ii) See [KN97, Example 3.9]:

R1(In) = Θ(log(n)), and R1(In) = O(1),

In particular, R(In) = O(1).

Next, we consider the greater-than matrix, where all the entries on the diagonal and below it
are 0, and all the entries above the diagonal are 1.

Example 2.10 (Greater-than). The n × n greater-than matrix GTn, defined as GTn(i, j) = 1 if
and only if i < j, and its complement GTn := Jn −GTn satisfy the following.

(i) See [KN97, Exercise 3.10]:

R1(GTn) = Ω(log(n)), and R1(GTn) = Ω(log(n)).

In particular
R0(GTn) = R0(GTn) = Ω(log(n)).

(ii) See [Vio15, RS15]:
R(GTn) = Ω(log log(n)).
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Finally, we turn to threshold functions. For an integer k ≥ 0, define the threshold function
thrk : {0, 1}n → {0, 1} as thrk(x) = 1 if and only if

∑n
i=1 xi ≥ k. We will also write thrk = 1− thrk.

Denote the xor and and-lifts of thrk as Thr⊕k (x, y) = thrk(x⊕y) and Thr∧k (x, y) = thrk(x∧y),
respectively. Recall that rk⊕(f) denotes the number of non-zero Fourier coefficients of a function
f : {0, 1}n → {0, 1}, which is also equal to the rank of F⊕(x, y) := f(x⊕ y).

Lemma 2.11 (Threshold function in the xor-model). For every 0 ≤ k ≤ n, we have

(i) rdt⊕(thrk) ≤ rdt⊕1(thrk) = 2O(k). In particular, R(Thr⊕k ) = 2O(k).

(ii) We have rk⊕(thrk) = rk(Thr⊕k ) ≥ 2n/2, and consequently dt⊕(thrk) = Ω(n).

Proof. (i) The randomized protocol will first randomly partition {1, . . . , n} into sets S1, . . . , Sk,
where each element j ∈ [n] is uniformly and independently assigned to one of the k sets. Next, for
each i ∈ [k], pick a subset Ti ⊆ Si uniformly at random, and query ⊕j∈Tixj . Output 1 if all the
queries are 1, and output 0 otherwise.

If thrk(x) = 0, then we will always correctly output 0, as in this case there always exists i such
that x|Si is all zeros. On the other hand, if thrk(x) = 1, with probability at least k!

kk
≥ e−k, every

Si will contain at least one 1. Conditioned on the prior event, with probability at least 2−k every
query satisfies ⊕j∈Tixj = 1, in which case the protocol correctly outputs 1. Thus, the probability
of error is at most 1− (2e)−k. Finally, by standard error-reduction, repeating this procedure 2O(k)

times can reduce the error to at most 1/3. We conclude that there is a constant ck = 2O(k) such
that rdt⊕1(thrk) = ck.

(ii) First note that fixing the values of variables can only decrease the size of the support of the
Fourier transform. Now if k ≤ n/2, then setting k−1 of the variables to 1 will result in the function
that is 1 everywhere except on 0. This restricted function has a full Fourier support, which is of
size 2n−k+1 ≥ 2n/2. Similarly, if k ≥ n/2, then setting n− k of the variables to 0 yields a function
which is 0 everywhere except on 1. Hence this function has a full Fourier support, which is of size
2k ≥ 2n/2.

Next, Proposition 4.1 from below implies

dt⊕(thrk) ≥
1

2
log rk⊕(thrk) ≥

n

4
.

The threshold functions are also important instances for the and-query model.

Lemma 2.12 (Threshold functions in and-model [KLMY20, Example 6.3]). We have

(i) dt∧(thrk) ≥ log
(
n
k

)
∼ n ·H( kn), where H is the binary entropy function.

(ii) rdt∧(thrn−k) = rdt∧(thrn−k) ≤ rdt∧1(thrn−k) = 2O(k).

In particular, R(Thr∧n−k) = 2O(k).

Proof. (i) Consider an and-decision tree T computing thrk. It suffices to show that T has at least(
n
k

)
leaves. Let

([n]
k

)
denote the set of all elements of Hamming weight exactly k. Note that if the

output of a query ∧i∈S is the same for two elements x, y ∈ {0, 1}n, then the query will also return

the same value for x∧ y. This shows that the computation in T for two distinct x, y ∈
([n]
k

)
cannot

lead to the same leaf, as then x∧y must also lead to the same leaf, but 1 = thrk(x) 6= thrk(x∧y) = 0.
(ii) Note that thrn−k(x) = 1 if and only if x ∈ {0, 1}n contains at least k + 1 0’s. We partition

[n] uniformly at random into k+ 1 sets S1, . . . , Sk+1, and query ∧j∈Sixj for i ∈ [k+ 1]. If all of the
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queries return 0, we output 1, and otherwise we output 0. This protocol is always correct on inputs
x with thrn−k(x) = 0, and furthermore for inputs with thrn−k(x) = 1, the probability of error is at

most 1− (k+1)!
(k+1)k+1 ≤ 1− ek+1. The claim now follows from standard error reduction.

Finally, we prove a lower-bound on the Fourier algebra norm of threshold functions.

Lemma 2.13 (Fourier algebra norm of threshold functions). For k ≤ n/2, we have

e−(k−1)

√√√√k−1∑
i=0

(
n

i

)
≤
∥∥thrk

∥∥
A
≤

√√√√k−1∑
i=0

(
n

i

)
.

In particular, by Corollary 3.9, the same bounds hold for ‖Thr
⊕
k ‖ntr = ‖Thr

⊕
k ‖γ2.

Proof. Define p : {−1, 1}n → R as

p(y) =
∑
S⊆[n]
|S|≤k−1

∏
i∈S

yi,

and note that p(y) =
∑

x∈{0,1}n thrk(x)χTy(x) = 2nt̂hrk(Ty), where Ty = {i : yi = −1}. Hence,

‖thrk‖A =
1

2n

∑
y

|p(y)| = ‖p‖L1({−1,1}n).

By Parseval

‖p‖L2({−1,1}n) =

√√√√k−1∑
i=0

(
n

i

)
,

and furthermore, since deg(p) ≤ k− 1, by generalization of Khintchine’s inequality to degree k− 1
polynomials ([O’D14, Theorem 9.22]), we have

e−(k−1)‖p‖L2({−1,1}n) ≤ ‖p‖L1({−1,1}n) ≤ ‖p‖L2({−1,1}n).

3 Main results: General matrices

We start by proving the results that apply to general Boolean matrices. Later, in Section 4 and
Section 5, we study special classes of xor and and-matrices.

3.1 Blocky matrices and blocky-rank

As we have discussed earlier, EQ provides a separation between deterministic communication com-
plexity and randomized communication complexity, in both one-sided and two-sided error models.
Now suppose that we equip the players, Alice and Bob, with an equality oracle. To be more precise,
we allow these protocols to have query nodes v, on which the players map their inputs to strings
αv(x) and βv(y), respectively, and the oracle will broadcast the value of EQ(αv(x), βv(y)) to both
players. This will contribute only 1 to the communication cost. Note that the usual communicated
bits can also be simulated by oracle queries. For example, if it is Alice’s turn to send a bit av(x),
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then they can use the query EQ(av(x), 1) to transmit this bit to Bob. Hence, in this model, we can
assume that all the communication is done through oracle queries.

Obviously, having access to an equality oracle, Alice and Bob can solve EQ deterministically at
cost O(1), namely by querying the oracle for EQ(x, y).

Let DEQ(M) denote the smallest cost of a deterministic protocol with equality oracle for the
matrix M .

Proposition 3.1. Let M : X × Y → {0, 1} be a matrix. Then

1

2
log rk(Blocky ,M) ≤ DEQ(M) ≤ rk(Blocky ,M),

and
1

2
log ‖M‖Blocky ≤ DEQ(M).

Proof. We first prove DEQ(M) ≤ rk(Blocky ,M). Let k = rk(Blocky ,M). We construct an EQ-oracle

protocol for f . In advance, Alice and Bob agree on a decomposition M =
∑k

i=1 λiMi, where Mi is
a blocky matrix and λi ∈ R for i ∈ [k]. Since each blocky matrix Mi corresponds to an EQ query,
for an input (x, y) Alice and Bob make k queries to the oracle to determine M1(x, y), . . . ,Mk(x, y).
At this point both Alice and Bob can compute M(x, y) =

∑k
i=1 λiMi(x, y).

For the lower bounds, let d = DEQ(M). Consider a leaf ` in the EQ-oracle protocol tree
computing M and let P` denote the path of length k` ≤ d from the root to `. Note that each non-
leaf node v in the tree corresponds to a query to the equality oracle, and each such query corresponds
to a blocky matrix Bv. For the matrix Mv, define B1

v = Bv and B0
v = Bv = JX×Y −Bv.

Suppose P` = v1, v2, . . . , vk` , `, and consider the matrix

MP` := B
σv1
v1 ◦B

σv2
v2 ◦ . . . ◦B

σvk`
vk`

,

where σvi ∈ {0, 1} and σvi = 1 if and only if the edge (vi−1, vi) is labeled by 1. Hence, after
simplification, MP` can be written as a sum of at most 2d summands with ±1 coefficients, where
each summand is a Schur product of at most kl blocky matrices. Observe that the Schur product
of two blocky matrices is a blocky matrix. Thus, MP` can be written as a sum of at most 2d blocky
matrices with ±1 coefficients.

Summing over all the leaves that are labeled by 1, we get

M =
∑

` is a 1-leaf

MP` .

As the number of leaves is bounded by 2d, and each MP` is a ±1 linear combination of at most 2d

blocky matrices, it follows that rk(Blocky ,M) ≤ 22d and ‖M‖Blocky ≤ 22d.

Combining the two inequalities, we have the following useful relation

1

2
log ‖M‖Blocky ≤ rk(Blocky ,M). (9)

The opposite direction turns out to be equivalent to Conjecture III.

Conjecture 3.2. There exists κ : R+ → R+ such that for a Boolean matrix M ,

rk(Blocky ,M) ≤ κ(‖M‖Blocky).
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Proposition 3.3. Conjecture 3.2 and Conjecture III are equivalent.

Proof. Conjecture III =⇒ Conjecture 3.2: Conjecture III implies that there is a function τ : R+ →
R+ such that M can be written as a sum of τ(‖M‖µ) blocky matrices with ±1 coefficients. By
Equation (4) and Equation (5), ‖M‖µ ≤ 4‖M‖ν ≤ 8‖M‖Blocky . Hence,

rk(Blocky ,M) ≤ τ(8 · ‖M‖Blocky).

Conjecture 3.2 =⇒ Conjecture III: By the proof of Proposition 3.1, M can be written as a
sum of 22 DEQ(M) blocky matrices with ±1 coefficients. If Conjecture 3.2 is true, then for some
κ : R+ → R+,

DEQ(M) ≤ rk(Blocky ,M) ≤ κ(‖M‖Blocky). (10)

Now, by the assumption of Conjecture III, ‖M‖µ ≤ c for some constant c. Recall from Equation (5)
that ‖M‖Blocky ≤ 2‖M‖ν ≤ 2‖M‖µ, so ‖M‖Blocky ≤ 2c. Combining this with Equation (10), we

conclude that M can be written as a sum of kc := 22κ(c) blocky matrices with ±1 coefficients.

3.1.1 Relation to randomized communication complexity and Conjecture I

Proposition 3.4. For a function f : X × Y → {0, 1},

R(f) ≤ O(DEQ(f) · log DEQ(f)).

Proof. Suppose d := DEQ(f). An EQ oracle protocol tree of depth d can be used to design a
randomized protocol for f : The parties simply simulate the tree, where at each node the equality
oracles are simulated (up to some error probability) via an efficient randomized communication
protocol for EQ. By a simple union bound, to ensure that the final error is bounded by 1/3, it suffices
to use randomized equality protocols with error at most 1

3d . Recall that by Example 2.9, R(EQ) =
O(1), and thus R 1

2c
(EQ) ≤ O(c). As a result, R 1

3d
(EQ) ≤ O(log d) and R(f) ≤ O(d log d).

It follows from this, and Proposition 3.1 that

R(f) ≤ O(rk(Blocky , f) · log rk(Blocky , f)). (11)

The function Thr
⊕
2 from Lemma 2.11 demonstrates that the opposite relation is not true – small

randomized communication does not imply having a small rk(Blocky , ·). Indeed, by Lemma 2.11 (i),

R(Thr
⊕
2 ) = R(Thr⊕2 ) = O(1). On the other hand, since the γ2 norm of every blocky matrix is at

most 1, by Equation (9), we have

rk(Blocky ,Thr
⊕
2 ) ≥ 1

2
log ‖Thr

⊕
2 ‖Blocky ≥

1

2
log ‖Thr

⊕
2 ‖γ2 ,

and by Lemma 2.13, we have
log ‖Thr

⊕
2 ‖γ2 ≥ Ω(log n).

Remark. By the above discussion, Thr
⊕
2 witnesses a gap of O(1) vs. Ω(log(n)) between randomized

communication complexity and deterministic communication complexity with access to equality
oracle. The difference between these two parameters had also been studied in [CLV19], where a
function on n bits with R(f) = O(log n) and DEQ(f) = Ω(n) is exhibited. However, the separation
of [CLV19] was not ruling out a dimension-free relation between these parameters.
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As Equation (11) shows, randomized communication complexity can be bounded by a function
of blocky-rank, and thus it is natural to wonder whether a relaxation of Conjecture I holds for
matrices bounded blocky-rank, or equivalently DEQ(·) = O(1). It is not hard to see that this is
indeed true.

Lemma 3.5. If an n × n matrix M satisfies rk(Blocky ,M) ≤ c, then M has a monochromatic
rectangle of size δcn× δcn, where δc > 0 only depends on c.

Proof. We prove by induction on c that the statement is true with δc ≥ 3−c. As the base case we
first show that every n× n blocky matrix has an n/3× n/3 monochromatic rectangle. Suppose B
is a blocky matrix with blocks X1 × Y1, . . . , Xt × Yt. We assume without loss of generality that
|∪iXi| ≥ 2n/3, as otherwise ([n]\ ∪i Xi)× [n] contains an n/3× n/3 all-zero rectangle. Moreover,
note that if for some i ∈ [t], |Xi| ≥ n/3, then one of Xi × Yi or Xi × [n]\Yi contains an n/3× n/3
monochromatic rectangle. Now, suppose that for all i, |Xi| < n/3. This implies that there is k such
that

∑k
i=1 |Xi| ∈ (n/3, 2n/3). Note that both (∪i≤kXi)×([n]\ ∪i≤k Yi) and ([n]\ ∪i≤k Xi)×(∪i≤kYi)

are monochromatic rectangles, and furthermore one of them contains an n/3×n/3 monochromatic
rectangle.

Now suppose that M is an n×n matrix such that M =
∑m

i=1 λiBi, where Bi are blocky matrices.
By the base case, Bm has an n/3× n/3 monochromatic rectangle X × Y . Then

M ′ := (M − λmBm)|X×Y =
m−1∑
i=1

λiBi|X×Y ,

which shows rk(Blocky ,M ′) ≤ c−1. Consequently, M ′ has an |X|
3c−1 × |Y |

3c−1 monochromatic rectangle,
which translates to an n

3c ×
n
3c monochromatic rectangle in M .

Lemma 3.5 combined with the lower bound from Proposition 3.1 implies that a weaker version
of Conjecture I holds where instead of assuming bounded randomized communication complexity,
one makes the stronger assumption that DEQ(·) = O(1).

3.2 Zero-error complexity and approximate-rank are qualitatively equivalent to
rank

In this section, we prove that both approximate-rank, and zero-error randomized communication
complexity are qualitatively equivalent to the rank, and deterministic communicating complexity.

It is known that, allowing a loss of O(log log(n)), the gap between the zero-error randomized
communication complexity, and the deterministic communication complexity of an n × n matrix
M can be at most quadratic [KN97, Exercise 3.15]:

Ω(
√

D(M)− log log(n)) ≤ R0(M) ≤ D(M).

The above bound does not provide a dimension-free equivalence between D(M) and R0(M) due
to the O(log log(n)) term which is from applying Newman’s lemma to convert zero-error private
randomness to zero-error public randomness. To obtain a dimension-free equivalence, we use a
different method.

Our approach is to find copies of submatrices that have large zero-error randomized communi-
cation complexity in every high-rank Boolean matrix. The following key lemma states that if the
rank of a Boolean matrix is sufficiently large, then it must contain, as a submatrix, a large copy of
at least on of the four matrices: the identity matrix Ik, its complement Ik, greater-than function
GTk, or its complement GTk.
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Lemma 3.6 (Key lemma for zero-error and approximate-rank). Let M be a Boolean matrix of
rank r, and let k = log5(r)/4. Then M contains a copy of at least one of Ik, Ik, GTk, or GTk as
a submatrix.

Proof. The proof is similar to the proof of the existence of Ramsey numbers. Let R(k1, k2, k3, k4)
be the smallest r such that every Boolean matrix of rank r, contains a copy of at least one of Ik1 ,
Ik2 , GTk3 , or GTk4 . We will show by induction that

R(k1, k2, k3, k4) ≤ 5k1+k2+k3+k5 . (12)

The base cases are when ki = 1 for some i ∈ {1, . . . , 4}, in which case R(k1, k2, k3, k4) ≤ 2, as any
matrix of rank 2 must contain both 0 and 1 entries, and thus must contain, as a submatrix, a copy
of each of I1, I1,GT1,GT1.

To prove the induction step, assume ki ≥ 2 for all i ∈ [4], and consider a Boolean matrix
M = [aij ]m×n of rank at least 5k1+k2+k3+k4 . Since M contains both 0’s and 1’s, we may assume
without loss of generality that the n-th column contains both 0’s and 1’s. This partitions the rows
of the matrix into two non-empty sets:

R0 = {i ∈ [m] : ain = 0} and R1 = {i ∈ [m] : ain = 1}.

Let a ∈ {0, 1} be chosen such that Ra× [n] corresponds to the submatrix with the larger rank, that
is

rk(M |Ra×[n]) ≥ rk(M)/2.

By permuting the rows if necessary, we can assume that m 6∈ Ra, or equivalently amn 6= a. Define

C0 = {j ∈ [n] : amj = 0} and C1 = {j ∈ [n] : amj = 1}.

Let M00 be the submatrix of M on (R0 ∩ [m − 1]) × (C0 ∩ [n − 1]), and define M01,M10,M11

similarly (see Figure 2).
For a matrix N , let mI(N) denote the largest k such that N contains a copy of Ik. Define

mI(N), mGT(N), and mGT(N) similarly.
If amn = 1, then

mI(M) ≥ mI(M00) + 1, and mGT(M) ≥ mGT(M01) + 1,

since one can use the last row and the last column to extend those submatrices in M00 and M01 to
larger ones in M . Note also that in this case, since a = 0,

rk(M00) + rk(M01) ≥ rk(M |R0×[n]) ≥ rk(M)/2,

which implies that either

rk(M00) ≥ 5k1+k2+k3+k4−1 ≥ R(k1 − 1, k2, k3, k4),

or
rk(M01) ≥ 5k1+k2+k3+k4−1 ≥ R(k1, k2, k3, k4 − 1).

In both cases, the induction hypothesis yields the desired bound Equation (12).
Similarly if amn = 0, then

mI(M) ≥ mI(M11) + 1, and mGT(M) ≥ mGT(M10) + 1,
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and in this case, since a = 1, we obtain

rk(M10) + rk(M11) + 1 ≥ rk(M |R1×[n]) ≥ rk(M)/2,

which implies
rk(M10) ≥ 5k1+k2+k3+k4−1 ≥ R(k1, k2, k3 − 1, k4),

or
rk(M11) ≥ 5k1+k2+k3+k4−1 ≥ R(k1, k2 − 1, k3, k4).

Again in both cases, the induction hypothesis implies Equation (12) as desired.
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Figure 2: The matrix M with the row partitions R0 and R1, the column partitions C0 and C1, and
the respective submatrices M00,M01,M10 and M11. When amn = 1, as shown in the left figure, a
copy of Ik in M00 can be extended to Ik+1, and a copy of GTk in M01 to GTk+1. When amn = 0,
as in the right figure, a copy of Ik in M11 can be extended to Ik+1, and a copy of GTk in M10 to
GTk+1.

It was proved in [GS19] that for every Boolean matrix M , rkε(M) = Ω(log(rk(M))). This com-
bined with Lemma 3.6 shows that zero-error randomized communication complexity, approximate
rank, and rank are all qualitatively equivalent.

Theorem 3 (Equivalence between zero-error, rank, and approximate rank). There exist a constant
c > 0, such that for every Boolean matrix M , we have

c log rk(M) ≤ R0(M) ≤ rk(M), (13)

and furthermore for every ε < 1/2, there exists a constant cε > 0 such that

cε log rk(M) ≤ rkε(M) ≤ rk(M). (14)

Proof. Equation (14) is due to [GS19].
The upper bound in (13) follows from R0(M) ≤ D(M). It remains to prove the lower-bound in

(13). By Lemma 3.6, we are guaranteed to find a copy of Ik, Ik, GTk, or GTk as a submatrix in
M , where k = 1

4 log5 rk(M). By Example 2.9 and Example 2.10, all the four matrices Ik, Ik, GTk,
GTk have zero-error randomized communication complexity Ω(log k), which yields the lower-bound
of (13).
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3.3 One-sided error complexity

In this section, we consider one-sided error randomized protocols, and study the structure of ma-
trices M that satisfy R1(M) = O(1). As in the case of two-sided error randomized communication,
the identity matrix (Example 2.9) shows that there is a gap between rank and one-sided error
randomized communication complexity. The xor lift of the threshold function also witnesses such
a gap; for a constant k, we have R1(Thr⊕k ) = O(1) and rk(Thr⊕k ) ≥ 2Ω(n) by Lemma 2.11. These
examples demonstrate that even for matrices with uniformly bounded one-sided error randomized
communication complexity we cannot hope to obtain a full structure through bounded rank. There-
fore, similar to the theme of Conjecture I, we focus on finding a highly structured object in such
matrices.

Theorem 4 (Conjecture I for one-sided error). For every c > 0, there exists a constant δc > 0
such that if the one-sided error randomized communication complexity R1(M) of an n× n Boolean
matrix M is bounded by c, then it contains an all-zero or all-one δcn× δcn submatrix.

Proof. Let t be a constant to be determined later. Assume n > 2
c
t
+1, as otherwise the claim is

trivial with δc = 2−
c
t
−1. Fix a small constant 0 < ε < 2−

2c
t
−4. We will assume |supp(M)| < εn2,

as otherwise we can find a large all-one submatrix as follows: Given a one-sided error randomized
protocol πR for M with communication at most c, there is a fixing of the randomness r, so that
S = {(x, y) | πr(x, y) = 1} satisfies |S| ≥ εn2/3, where πr is a deterministic protocol. As πR is
a one-sided error protocol, we have S ⊆ supp(M). Since πr is deterministic, then it provides a
partitioning of S into at most 2c all-one submatrices. As a result, M has an all-one submatrix of
size at least εn2

3·2c .
Let S be the maximal subset of supp(M) such that for any distinct pairs (x1, y1), (x2, y2) ∈ S,

x1 6= x2 and y1 6= y2. Let r = |S|, and note that if r ≤ 2
c
t , then from the maximality of S it follows

that deleting all the rows and columns involved in S from M will remove all the 1 entries from M .
So the resulting submatrix of M will be all-zero and will have size at least (n−2

c
t )×(n−2

c
t ) ≥ 1

4 ·n
2.

Thus, we may assume r > 2
c
t .

Denote k = 2
c
t . By Example 2.9, the identity matrix is hard for one-sided randomized commu-

nication, more precisely R1(Ik) > τ log k for some constant τ > 0. Fixing t = τ , we get R1(Ik) > c.
This means that M cannot contain a copy of the k × k identity matrix as a submatrix. Thus,

every k × k submatrix of M that contains k entries from S must also have at least one 1-entry
outside of S – call such entries off-diagonal 1’s. Let m be the number of such off-diagonal 1’s in
M . The number of k × k submatrices of M that have k entries from S is

(
r
k

)
, and each of these

submatrices have at least one off-diagonal 1. In this process, each off-diagonal 1 in M is counted
in at most

(
r−2
k−2

)
many submatrices. Hence,

m ≥
(
r
k

)(
r−2
k−2

) ≥ r2

4k2
.

Now, if r ≥ 2
√
εk · n, then m ≥ εn2, hence |supp(M)| ≥ εn2, which is a contradiction to our

assumption of |supp(M)| < εn2. So, r < 2
√
εk ·n. In this case, by deleting all the rows and columns

of S from M , we obtain an all-zero rectangle of size at least (n− 2
√
εk · n)2 = (1− 2

√
εk)2 · n2. To

sum up, by taking δc = 1− 2
√
ε · 2c/t, we get that there is an all-zero rectangle of size at least δ2

cn
2.

3.4 Idempotent Schur multipliers. An infinite version of Conjecture III

Let X and Y be two countable sets. Recall that a matrix MX×Y is a Schur multiplier, if A 7→M ◦A
defines a map B(H1,H2)→ B(H1,H2). In Theorem 2, we saw that M is a contractive idempotent
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of the algebra of Schur multipliers if and only if M ∈ Blocky .
Consequently, if a Boolean matrix MX×Y can be written as a linear combination of finitely many

contractive idempotent Schur multipliers, then by the triangle inequality it is a Schur multiplier.
More precisely, if M =

∑t
i=1 λiMi is Boolean valued and each Mi is contractive, then M is an

idempotent Schur multiplier as M ◦M = M , and ‖M‖m ≤
∑t

i=1 |λi|. This leads to the following
conjecture.

Conjecture 3.7. A matrix M , finite or infinite, is an idempotent Schur multiplier if and only if
M is Boolean and can be written as a linear combination of finitely many contractive idempotent
Schur multipliers.

A simple compactness argument shows that Conjecture 3.7 is equivalent to Conjecture III.

Theorem 5. Conjecture 3.7 and Conjecture III are equivalent.

Proof. By the equivalence of the norms ‖ ·‖µ and ‖ ·‖m, Conjecture III can be rephrased as follows:
For every constant c, there exists a constant kc such that if a finite Boolean matrix M satisfies

‖M‖m ≤ c, then there exists kc blocky matrices Bi and signs σi ∈ {−1, 1} such that

M =

kc∑
i=1

σiBi.

Conjecture 3.7 =⇒ Conjecture III: If Conjecture III is not true, then there must exist an infinite
sequence of finite Boolean matrices {Mi}i∈N with ‖Mi‖m ≤ k for all i, such that Mi cannot be
expressed as a ±1-linear combination of at most i contractive idempotent Schur multipliers. Then
M = ⊕i∈NMi would be an idempotent Schur multiplier, but for every i ∈ N it cannot be expressed
as a ±1-linear combination of i idempotent contractions. Since M is Boolean, it follows that M
cannot be expressed as a linear combination of at most a finite number of idempotent contractions.

Conjecture III =⇒ Conjecture 3.7: LetM be an idempotent Schur multiplier onB(`2(X ), `2(Y)),
and consider a nested sequence X1 ⊆ X2 ⊆ X3 . . . of finite subsets of X , and a nested sequence
Y1 ⊆ Y2 ⊆ Y3 . . . of finite subsets of Y such that X × Y =

⋃
Xi × Yi. Let Mi = 1Xi×Yi ◦M , which

can be interpreted as a Schur multiplier on B(`2(Xi), `2(Yi)). Since our sequences are nested, for
every i < j, we have

1Xi×Yi ◦Mj = Mi. (15)

Furthermore, ‖Mi‖m ≤ ‖1Xi×Yi‖m · ‖M‖m ≤ ‖M‖m, and thus by Conjecture III, there is a
constant t, depending only on ‖M‖m, such that Mi =

∑t
k=1 σi,kNi,k for idempotent contractions

Ni,k. Furthermore by (15) for every j > i,

Mi =

t∑
k=1

σj,k (1Xi×Yi ◦Nj,k) .

For a fixed i and k, since Ni,k, and 1Xi×Yi ◦Nj,k for all j, are supported on the finite set Xi × Yi,
by restricting to a sub-sequence i1 < i2 < i3 < . . ., we can assume without loss of generality that
for every j ≥ i we have

1Xi×Yi ◦Nj,k = Ni,k.

By restricting to further sub-sequences we can assume this is true for all i, and furthermore for
every k, there exists a σk ∈ {−1, 1} such that σj,k = σk for all j. To summarize: for all k, and
j > i,

1Xi×Yi ◦Nj,k = Ni,k, (16)
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and moreover σj,k = σk for all j, k.
For k ∈ {1, . . . , t}, define the matrix Nk = [Nk(x, y)]x∈X ,y∈Y as

Nk(x, y) = Ni,k(x, y),

where i is any index such that (x, y) ∈ Xi × Yi. This is well-defined since X × Y =
⋃
Xi × Yi, and

(16).
Note that Nk is an idempotent contractive Schur multiplier, since, for example, it obviously

does not contain any 2 × 2 submatrix with exactly three 1’s. Moreover M =
∑t

k=1 σkNk, which
finishes the proof.

3.5 Group lifts

In this section we focus on the matrices of the form F (x, y) = f(y−1x), where f : G→ {0, 1}, and
G is a finite group. We start by showing that for any finite group G, the Fourier algebra norm of
f coincides with the normalized trace norm of its lift F (x, y) = f(y−1x).

Proposition 3.8. Let G be a finite group, and f : G → C. Let the matrix F : G × G → C be
defined as F (x, y) = f(y−1x). We have

‖f‖A = ‖F‖ntr :=
1

|G|
‖F‖tr.

Proof. Note that the Fourier algebra norm is defined through its dual. The proof will rely on the
fact that the dual of the trace norm is the operator norm ‖ · ‖L2(G)→L2(G).

Let h : G→ C, and the matrix H be its lift H(x, y) = h(y−1x). For ν : G→ C, note that

Lhν(x) =
1

|G|
∑
y∈G

h(y−1x)ν(y) =
1

|G|
∑
y∈G

H(x, y)ν(y) =
1

|G|
Hν(x).

Hence,
‖Lhν‖L2(G)

‖ν‖L2(G)
=
‖Lhν‖`2(G)

‖ν‖`2(G)
=
‖Hν‖`2(G)/|G|
‖ν‖`2(G)

,

which shows

‖Lh‖L2(G)→L2(G) =
1

|G|
‖H‖`2(G)→`2(G).

Now note that

〈f, h〉L2(G) =
1

|G|2
〈F,H〉 ≤ 1

|G|2
‖F‖tr‖H‖`2(G)→`2(G) = ‖F‖ntr‖Lh‖L2(G)→L2(G),

which shows that
‖f‖A = sup

{
〈f, h〉 : ‖Lh‖L2(G)→L2(G) ≤ 1

}
≤ ‖F‖ntr.

On the other hand, let H : G×G→ C be such that

‖H‖`2(G)→`2(G) = 1 and ‖F‖tr = 〈F,H〉,

and let H̃ : G×G→ C be the following symmetrization of H:

H̃(x, y) = Ez∼GH(zx, zy).
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By convexity
‖H̃‖`2(G)→`2(G) ≤ ‖H‖`2(G)→`2(G) = 1.

Define h : G → C by h(x) = H̃(x, 1), and note that for every y and x, h(y−1x) = H̃(y−1x, 1) =
H̃(x, y). Since F (zx, zy) = F (x, y) = f(y−1x) for all z, we have

〈F,H〉 = 〈F, H̃〉 = |G|2〈f, h〉L2(G)

≤ |G|2‖f‖A‖Lh‖L2(G)→L2(G)

= |G|‖f‖A‖H̃‖`2(G)→`2(G)

≤ |G|‖f‖A,

this shows ‖F‖ntr ≤ ‖f‖A and completes the proof.

Davidson and Donsig [DD07] by applying a theorem of Mathias [Mat93] showed that ‖M‖ntr =
‖M‖m if the entries of M are invariant under a transitive group action.

Theorem 6 ([DD07]). Let X be a finite set with a transitive group action G on X . Suppose that
the matrix MX×X belongs to the commutant of the action G, or equivalently M(x, y) = M(gx, gy)
for all g ∈ G. Then

‖M‖ntr = ‖M‖m = ‖M‖γ2 .

Combining Proposition 3.8 and Theorem 6, we obtain the following corollary.

Corollary 3.9. Let G be a finite group, f : G → C, and F : G × G → C be its lift defined as
F (x, y) = f(y−1x). We have

‖F‖m = ‖F‖γ2 = ‖F‖ntr = ‖f‖A.

This corollary combined with the non-Abelian version of Cohen’s idempotent theorem settles
Conjecture II and Conjecture III for matrices of the form F (x, y) = f(y−1x).

Theorem 7. Conjecture II and Conjecture III are true for for the class of functions F : G×G→
{0, 1} of the form F (x, y) = f(y−1x), where G is a finite group, and f : G→ {0, 1}.

Proof. By Corollary 3.9,
‖F‖m = ‖F‖γ2 = ‖F‖ntr = ‖f‖A.

Suppose that ‖f‖A < c. By the general version of Cohen’s idempotent theorem [San11, Theorem
1.2], there is some constant k = kc, subgroups H1, . . . ,Hk ⊆ G, elements a1, . . . , ak ∈ G, and signs
σ1, . . . , σk ∈ {−1, 1} such that

f =

k∑
i=1

σi1Hiai .

Then

F (x, y) =

k∑
i=1

σi ×

 ∑
b∈Hi\G

1Hb(x)1a−1
i Hb(y)

 ,

and note that each Bi(x, y) :=
∑

b∈Hi\G 1bHai(x)1bH(y) is a blocky matrix as desired.
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4 xor-functions

Recall that the xor-lift of a function f : {0, 1}n → {0, 1} is defined as F⊕ : {0, 1}n×{0, 1}n → {0, 1}
with F⊕ : (x, y) 7→ f(x⊕ y).

Since xor-lift is special case of the group lift for G = Zn2 , by Theorem 7, both Conjecture II,
and Conjecture III are true for xor functions.

4.1 Structure for bounded query complexity

Let f : {0, 1}n → {0, 1}, and consider the complexity measures

rdt⊕(f) ≤ rdt⊕1(f) ≤ 3 rdt⊕0 (f),

and dt⊕(f). We shall study the structure of the function if we assume a uniform bound on each of
these measures.

Deterministic and zero-error randomized case. The Fourier spectrum of a Boolean function
plays an important role in understanding these parameters. The Fourier rank of f , denoted rk⊕(f),
is simply the number of non-zero Fourier coefficients of f . The Fourier rank is also commonly
referred to as Fourier sparsity in literature. Note that denoting G = Zn2 , using the notation of
Definition 2.2, we have

rk⊕(f) = rk(Ĝ, f).

Proposition 4.1 (Equivalence between zero-error and deterministic complexities). For f : {0, 1}n →
{0, 1}, D(F⊕), rk(F⊕), R0(F⊕), dt⊕(f), rk⊕(f), and rdt⊕0 (f) are qualitatively equivalent. More pre-
cisely, we have

1

2
log rk⊕(f) ≤ dt⊕(f) ≤ rk⊕(f), (17)

and there are constants c1, c2, c3 > 0 such that

D(F⊕) ≤ 2 dt⊕(f) ≤ c1 ·D(F⊕)6 ≤ c2 · rk(F⊕)6 ≤ 2c3·R0(F⊕) ≤ 22c3 rdt⊕0 (f) ≤ 22c3 dt⊕(f). (18)

Proof. Equation (17): Each parity query ⊕i∈Sxi corresponds to querying the value of the corre-
sponding character χS(x). In particular, if the Fourier spectrum of f is supported on at most c
characters, then the value of f(x) will be determined from the value of these characters, and thus
dt⊕(f) ≤ rk⊕(f).

For the other direction, the indicator function of every leaf of a depth d parity decision tree is
determined by the value of d characters and thus has Fourier rank at most 2d. Since the number
of leaves is bounded by 2d, we obtain rk⊕(f) ≤ 22d.

Equation (18): The first inequality is the straightforward simulation of a parity decision tree
by a communication protocol as discussed in Section 2.4, namely the fact that Alice and Bob can
simulate an xor-query ⊕S(x ⊕ y) by two bits of communication ⊕S(x) and ⊕S(y). The second
inequality is the parity lifting theorem of [HHL18], and the third inequality is a property of
deterministic communication complexity Proposition 2.5. The fourth inequality is Theorem 3. The
fifth inequality is again the simulation of parity decision trees by communication protocols. The
final inequality is trivial since rdt⊕0 (f) ≤ dt⊕(f).

Remark. To prove the equivalences stated in Proposition 4.1, instead of dt⊕(f) ≤ c1 · D(F⊕)6, it
would have sufficed to use the weaker but trivial inequality dt⊕(f) ≤ rk⊕(f) = rk(F⊕) ≤ 2D(F⊕).
However, the lifting theorem of [HHL18] provides stronger bounds.
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One-sided randomized case. In Lemma 2.11 we saw that for a fixed integer k, the threshold
function thrk satisfies rdt⊕1(thrk) ≤ ck for some constant ck depending on parameter k, while
dt⊕(thrk) = Ω(n). This shows that for xor-query model the one-sided error case is not qualitatively
equivalent to the zero-error and the deterministic case.

Proposition 4.2. For every Boolean function f : {0, 1}n → {0, 1}, there exists an affine subspace
V of co-dimension rdt⊕1(f) such that f is constant on V .

Proof. Consider a one-sided randomized parity decision tree AR with randomness R that could
only make errors when f(x) = 1. Suppose that f 6≡ 0, as otherwise we can take V = {0, 1}n. Pick
x ∈ f−1(1). Since PrR[AR(x) = 1] > 0, there is a fixing of randomness R = r, such that Ar is a
deterministic parity decision tree satisfying Ar(x) = 1. That is, x leads to a leaf of Ar labeled with
1, and the leaf corresponds to an affine subspace V of codimension ≤ rdt⊕1(f). Moreover, since Ar
does not make errors on f−1(0), then V ∩ f−1(0) = ∅ or, equivalently, f |V ≡ 1.

Two-sided error case. Next we turn to two-sided error. We saw in Corollary 2.8 that the
randomized parity decision tree complexity and the approximate Fourier algebra norm of f are
qualitatively equivalent. These parameters are also qualitatively equivalent to the randomized
communication complexity of the parity lift.

Proposition 4.3. For f : {0, 1}n → {0, 1} and ε ∈ (0, 1
2), Rε(F⊕), rdt⊕ε (f), and ‖f‖A,ε are

qualitatively equivalent. More precisely,

log ‖f‖A,ε ≤ rdt⊕ε (f) ≤ O
(
cε‖f‖2A,ε

)
, (19)

1

2
log ‖f‖A,ε ≤ Rε(F⊕) ≤ O

(
cε‖f‖2A,ε

)
, (20)

where cε = log(1/ε)
(1−2ε)2 , and

Rε(F⊕) ≤ 2 rdt⊕ε (f) ≤ O
(
cε2

4 Rε(F⊕)
)
. (21)

Proof. Observe that a parity lift is a y−1x-group lift for G = Zn2 , and thus by Corollary 3.9, we
have ‖F⊕‖γ2,ε = ‖f‖A,ε. Hence Equation (19) and Equation (20) have already been proven in
Corollary 2.8.

The first inequality in Equation (21) is the standard simulation of a parity decision tree by a
communication protocol. The second inequality in Equation (21) is a direct consequence of the
upper-bound in Equation (19) and the lower-bound in Equation (20).

Remark. Note that Equation (19) provides an exponential lifting theorem for the randomized parity
decision tree model. It is conjectured in [HHL18] that this can be improved to rdt⊕(f) ≤ R(F⊕)O(1),
which remains an intriguing open problem.

Next, we observe that for the class of xor-functions, Conjecture IV would imply Conjecture I.

Proposition 4.4. For the class of xor functions,

Conjecture IV ⇒ Conjecture I.

Proof. Suppose that R(F⊕) ≤ c. It follows then from Equation (20) that

‖f‖A,ε ≤ 22c.

Now if Conjecture IV is true, then f would be constant on a large subspace V ⊆ Zn2 . Then V × V
would be a large monochromatic rectangle in F⊕.
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5 and-functions

In this section we focus on and-functions F∧(x, y) := f(x∧y). As we saw in Section 4, investigating
the Fourier expansion of f : {0, 1}n → {0, 1} was extremely useful for understanding the properties
of their xor -lifts. This is chiefly because Fourier characters are multiplicative with respect to the
xor operation, and thus the Fourier transform naturally translates to an expansion of the matrix
F⊕ as a linear combination of rank-one matrices. When studying the and-lifts, the representation
of f as a multilinear polynomial over the reals plays a similar role since monomials are multiplicative
with respect to the and operation. More precisely, using the notation xS =

∏
i∈S xi, the polynomial

representation

f(x) =
∑
S⊆[n]

λSx
S ,

translates to
F∧(x, y) = f(x ∧ y) =

∑
S⊆[n]

λSx
SyS .

Equivalently,

F∧ =
∑
S⊆[n]

λSmSm
t
S ,

where mS(x) = xS . Since for each S, mSm
t
S is a rank-1 matrix, and mS for S ⊆ [n] are linearly

independent, then rk(F∧) is equal to the number of non-zero coefficients λS , which by the notation
of Section 2.1 is denoted by rk(M on, f). In other words,

rk(F∧) = rk(Mon , f). (22)

We obtain the following simple proposition, which establishes the equivalence of several param-
eters related to the and-lift.

Proposition 5.1 (Equivalence between zero-error and deterministic complexities). For f : {0, 1}n →
{0, 1}, the parameters dt∧(f), rdt∧0 (f), rk(Mon , f), ‖f‖Mon , rk(F∧), D(F∧), and R0(F∧) are all qual-
itatively equivalent. More precisely, there exists a constant c > 0 such that

log rk(Mon , f) ≤ D(F∧) ≤ 2 dt∧(f) ≤ 2rk(Mon , f) = 2rk(F∧) ≤ 2cR0(F∧) ≤ 22c·rdt∧0 (f) ≤ 22c·rk(Mon,f),

and
rk(Mon , f) ≤ ‖f‖Mon ≤ 3dt∧(f).

Proof. Recall rk(F∧) = rk(Mon , f). Thus the inequality log rk(Mon , f) ≤ D(F∧) is the well-known
rank lower bound of Proposition 2.5, and the inequality D(F∧) ≤ 2 dt∧(f) is the straightforward
simulation of an and-decision tree by a communication protocol, discussed in Section 2.4.

The inequality dt∧(f) ≤ rk(Mon , f) follows from the fact that the value of a monomial can be
determined by making one and-query.

By Theorem 3, there exists a constant c > 0 such that

rk(F∧) ≤ 2cR0(F∧) ≤ 22c rdt∧0 (f),

and the last inequality in the first equation follows from R0(F∧) ≤ 2 rdt∧0 (f) ≤ 2 dt∧(f) ≤
2rk(Mon , f).

The inequality rk(Mon , f) ≤ ‖f‖Mon follows from the easy and well-known fact that the coeffi-
cients in the polynomial representation of f are all integers.

34



It remains to prove ‖f‖Mon ≤ 3dt∧(f). We use induction on d = dt∧(f). The base case for d = 0
is trivial, as ‖f‖Mon is at most 1 for every constant Boolean function f . For the induction step,
consider an and-decision tree of depth d computing f , and suppose that the top node of the tree
queries xS , and branches accordingly to compute f1 and f2. Now

f(x) = xS · f1(x) + (1− xS) · f2(x),

and since dt∧(f1), dt∧(f2) ≤ d− 1, we have

‖f‖Mon ≤ ‖f1‖Mon + ‖xSf2‖Mon + ‖f2‖Mon ≤ 3 · 3d−1 = 3d.

We conjecture that the exponential equivalence between D(F∧) and dt∧(f) in Proposition 5.1
can be improved to a polynomial equivalency. Recently, [KLMY20] proved dt∧(f) = O(D(f∧)3 log n),
but due to the log(n) factor, their statement comes short of establishing this conjecture.

Now, let us turn to randomized communication complexity and its related matrix parameters
such as the trace and the γ2 norm. Unlike Fourier characters, the monomials in the polynomial
representation are not orthogonal, and thus the coefficients in the polynomial representation of f
do not correspond to the eigenvalues of F∧. This makes relating the spectral properties of F∧ to
similar properties of f difficult. For example, unlike the F⊕ case, we do not know how to verify
Conjecture II or Conjecture III for matrices of the form F∧. Similarly, we do not know how to relate
the randomized communication complexity assumption of Conjecture I to an assumption about
rdt∧. Contrast this with the xor case where we have established that R(F⊕), ‖F⊕‖γ2,ε, ‖f‖A,ε, and
rdt⊕(f) are all qualitatively equivalent. We conjecture however that a similar statement is true for
the and-functions.

Conjecture 5.2. There exist an increasing function κ : R+ → R+ such that for every f : {0, 1}n →
{0, 1},

rdt∧(f) ≤ κ(R(F∧)).

Interestingly in the case of the and-functions, we know how to establish the analogue of Con-
jecture IV.

Theorem 8. Suppose f : {0, 1}n → {0, 1} satisfies rdt∧(f) ≤ d. Then, there exists a set J ⊆ [n]
of size at most 3d+1, such that f is constant on {x : xJ = 0}.

We will prove Theorem 8 in Section 5.1, but first, let us state the following corollary.

Corollary 5.3. Conjecture 5.2, if true, would imply that Conjecture I is true for F∧ matrices.

Proof. It would follow from Conjecture 5.2 that if R(F∧) ≤ c, then rdt∧(f) ≤ κ(c). Then by
Theorem 8, f is constant on V = {x : xJ = 0}, where |J | ≤ 3κ(c)+1. Consequently, F∧ is constant

on V × V , which is a δ2n × δ2n combinatorial rectangle with δ = 2−|J | ≥ 2−3κ(c)+1
.

To summarize, in the case of F∧, the missing step for establishing Conjecture I is a dimension-
free lifting theorem for randomized communication complexity (i.e. Conjecture 5.2), since we know
how to deduce structure from a uniform bound on randomized query complexity. In contrast, in
the case of F⊕ such a lifting theorem is known, but we do not know how to establish structure from
a uniform bound on randomized query complexity (i.e. Conjecture IV).
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5.1 Proof of Theorem 8

By Corollary 2.8,

log3 ‖f‖Mon,ε ≤ rdt∧ε (f) ≤ O
(
‖f‖2Mon,ε ·

log(1/ε)

(1− 2ε)2

)
. (23)

Theorem 8 now follows from the first inequality and the following lemma.

Lemma 5.4. For every f : {0, 1}n → {0, 1}, there exists a set J ⊆ [n] of size at most 3‖f‖Mon,1/3,
such that f is constant on {x : xJ = 0}.

Proof. Let p =
∑

S⊆[n] λSx
S be a multilinear polynomial satisfying ‖p− f‖∞ ≤ 1

3 and ‖p‖Mon = d.
Consider the partial ordering on the Boolean cube where x � y if for every i, xi ≤ yi. Under

this ordering, pick a minimal w ∈ {0, 1}n such that f(0) 6= f(w). This means that for every v ≺ w,
f(v) = f(0). Pick an arbitrary j such that wj = 1, and let v = w − ej , where ej denotes the jth
standard vector. Note that |f(w) − f(v)| = 1, and as a result |p(w) − p(v)| ≥ 1/3, which means
that ∑

S⊆w:S3j
|λS | ≥

1

3
,

where S ⊆ w means S ⊆ {i : wi = 1}. Consequently, ‖p|xj=0‖Mon ≤ ‖p‖Mon − 1
3 . Thus

‖f |xj=0‖Mon,1/3 ≤ ‖f‖Mon,1/3 −
1

3
.

We include j in J and repeat the above process, replacing f with f |xj=0. Since ‖ · ‖Mon,1/3 ≥ 0, this
process can be repeated for at most 3‖f‖Mon,1/3 times, after which we will end up with a constant
function.

5.2 Randomized and-decision trees: One-sided and two-sided error

Let us briefly discuss rdt∧1 and rdt∧. The example of the threshold function, as discussed in
Example 2.10, shows that the one-sided and the two-sided error case are not qualitatively equivalent
to the deterministic case. In particular, for f = thrn−1, Example 2.10 shows that

R(F∧) ≤ 2 rdt∧(f) ≤ 2 rdt∧1(f) = O(1), while dt∧(f) = dt∧(f) = Ω(log(n)).

On the other hand, in Theorem 8, we showed that if rdt∧(f) ≤ d, then there exists a set J ⊆ [n]
of size at most 3d+1, such that f is constant on {x : xJ = 0}. Thus for and-functions we know
how to prove the analogue of Proposition 4.2, even for two-sided error.

6 Forbidden substructures: A proof-barrier for Conjectures I,
II, III

In this section, we discuss a proof barrier, which shows that the techniques used for proving Cohen’s
idempotent theorem, as well as many similar structural results cannot establish Conjectures I,
II, and III. Such proofs are based on forbidding substructures. For instance, to prove Cohen’s
idempotent theorem for f : Zn2 → {0, 1}, one uses the fact that the function gr : Zr2 → {0, 1},
defined as gr(x) = 1 iff |x| = 1, satisfies ‖gr‖A = Ω(

√
r). Consequently, if ‖f‖A ≤ c, then no

restriction of f to any affine subspace of dimension k = kc = O(c2) can be isomorphic to gk. One
then uses the fact that f does not have a copy of this forbidden substructure to obtain general
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structural results about f . The proof of Cohen’s theorem, even for more general groups, follows
the same approach.

Similarly, in Lemma 3.6, we showed that every Boolean matrix of high rank must contain as
a submatrix one of the four matrices Ik, Ik, GTk, or GTk, each with large zero-error randomized
communication complexity. In other words, we used these four matrices as forbidden substruc-
tures for matrices that have small zero-error randomized communication complexity. For one-sided
error, in Theorem 4 we used the forbidden matrix Ik. Note that even Sherstov’s pattern-matrix
method [She11], which has been used successfully to lower-bound several complexity measures of
various important matrices, is based on finding certain highly symmetric patterns in them.

One may suspect that a similar approach could also be used to establish Conjectures I, II, and
III. Namely, one needs to find a suitable list of matrices with high randomized communication
complexity, high trace norm, or high γ2 norm, and show that if a Boolean matrix M does not
contain any of them as a submatrix, then it must have the desired structure. We prove that this
approach fails as there are matrices that cannot be handled by this proof technique.

Theorem 9. . For every sufficiently large n, there exists an n × n Boolean matrix M with the
following properties.

(i) Every n1/4 × n1/4 submatrix F of M satisfies

‖F‖ntr ≤ ‖F‖γ2 ≤ 4, and R(F ) = O(1).

(ii) M does not contain any monochromatic rectangles of size n0.99 × n0.99.

One interesting related proof that does not follow the forbidden substructure approach is the
purely spectral proof of Shpilka, Tal, and Volk [STV17] for the fact that every f : Zn2 → {0, 1}
with ‖f‖A ≤ c is constant on an affine subspace of co-dimension kc. This obviously follows from
Cohen’s theorem, but [STV17] obtained stronger bounds on kc.

Before stating the proof of Theorem 9, we will set up and prove an auxiliary lemma on the
blocky-rank of matrices that correspond to forests. A matrix M : X × Y → {0, 1} naturally
corresponds to a bipartite graph GM with bipartition X ∪ Y, where there is an edge between
vertices x ∈ X and y ∈ Y if and only if M(x, y) = 1. Note that the bipartite graph corresponding
to a blocky matrix M is an edge-disjoint union of vertex-disjoint complete bipartite graphs.

Recall that a graph is called a forest if it does not contain any cycles. A connected forest is
called a tree.

Lemma 6.1. Let M be a finite Boolean matrix corresponding to a forest. Then M is a sum of two
blocky matrices.

Proof. As mentioned above, a blocky matrix corresponds to an edge-disjoint union of vertex-disjoint
complete bipartite graphs. Hence it suffices to show that the edges of every forest can be partitioned
into two sets, each forming a disjoint union of complete bipartite graphs. Obviously, it suffices to
prove this for a tree as a forest is a disjoint union of trees. Let v be an arbitrary vertex of the tree,
and for i = 0, 1, . . ., let Li be the set of the vertices that are in distance i from v. To complete the
proof note that the edges between Li and Li+1 for even values of i form one blocky matrix, and
similarly the edges between Li and Li+1 for odd values of i form the other blocky matrix.

Proof of Theorem 9. Set p = n0.05

n , and select a random n × n matrix M = [mij ] by setting each
entry to 1 with probability p and independently of other entries. It suffices to show that with
probability 1− o(1) both (i) and (ii) hold.
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(i) Let k = n1/4. We will show that every nk × nk submatrix F of M can be written as a
sum of four blocky matrices. Then R(F ) = O(1) immediately follows from Equation (11), and
‖F‖ntr ≤ ‖F‖γ2 ≤ 4 follows from the fact that the γ2-norm of a blocky matrix is at most 1.

We first prove that with probability 1 − o(1), for every r, t ≤ k, every r × t submatrix of
M contains a row or a column with at most two 1’s. Note that the statement is trivial when
min(r, t) ≤ 2. Fix r, t > 2, and assume without loss of generality that r ≤ t. The probability that
there is an r× t submatrix such that each of its t columns contains at least three 1’s is bounded by(

N

r

)(
N

t

)((
r

3

)
p3

)t
≤ nrnt(r3p3)t ≤ (n2p3t3)t ≤

(
n0.15

n1/4

)t
≤ o(n−1/2).

Thus by a union bound over all choices of r, t ≤ k, the probability that there is r, t ∈ [k] and
an r× t submatrix where every column contains at least three 1’s is bounded by o(k2n−1/2) which
is o(1) as desired.

Now suppose that every r × t submatrix F of M contains a row or a column with at most
two 1’s. We will show that in this case, every such F is a disjoint union of two forests, and by
Lemma 6.1 M is a sum of four blocky matrices. Consider a row (or a column) with at most two
1’s, and let e1 and e2 be the edges corresponding to these (at most) two entries. Removing this row
from F will result in a smaller submatrix, which by induction hypothesis, can be written as the
union of two forests F1 and F2. Now F can be decomposed into the union of two forests F1 ∪ {e1}
and F2 ∪ {e2}.

(ii) Let K = n0.99. The expected number of monochromatic rectangles of size K×K is at most

2n × 2n ×
(
pK

2
+ (1− p)K2

)
≤ 22N (2e−pK

2
) ≤ 21+2n−pK2+1 = 22+2n−n0.98+0.05

= o(1).
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