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Abstract

PPSZ, for long time the fastest known algorithm for k-SAT, works by going
through the variables of the input formula in random order; each variable is then
set randomly to 0 or 1, unless the correct value can be inferred by an efficiently
implementable rule (like small-width resolution; or being implied by a small set of
clauses).

We show that PPSZ performs exponentially better than previously known, for
all k ≥ 3. For Unique-3-SAT we bound its running time by O(1.306973n), which is
somewhat better than the algorithm of Hansen, Kaplan, Zamir, and Zwick.

All improvements are achieved without changing the original PPSZ. The core idea
is to pretend that PPSZ does not process the variables in uniformly random order,
but according to a carefully designed distribution. We write “pretend” since this can
be done without any actual change to the algorithm.
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1 Introduction

Satisfiability is a central problem in theoretical computer science. One is given a Boolean
formula and asked to find a satisfying assignment, that is, setting the input variables to
0 and 1 to make the whole formula evaluate to 1. Or rather, determine whether such an
assignment exists. A particular case of interest is CNF-SAT, when the input formula is in
conjunctive normal form—that is, the formula is an AND of clauses; a clause is an OR of
literals; a literal is either a variable x or its negation x̄. If every clause contains at most k
literals, the formula is called a k-CNF formula, and the decision problem is called k-SAT.

Among worst-case algorithms for k-SAT, two paradigms dominate: local search algo-
rithms like Schöning’s algorithm [15] and random restriction algorithms like PPZ (Paturi,
Pudlák, and Zane [9]) and PPSZ (Paturi, Pudlák, Saks, and Zane [8]). Both have a string
of subsequent improvements: Hofmeister, Schöning, Schuler, and Watanabe [6], Baumer
and Schuler [1], and Liu [7] improve Schöning’s algorithm. Hertli [5] and Hansen, Kaplan,
Zamir, and Zwick [3] improve upon PPSZ.

For large k, both paradigms achieve a running time of the form 2n(1−c/k+o(1/k)),
where c is specific to the algorithm (c = 1 for PPZ; c = log2(e) ≈ 1.44 for Schöning;
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c = π2/6 ≈ 1.64 for PPSZ). Interestingly, the running time of completely different ap-
proaches like the polynomial method (Chan and Williams [2]) is also of this form. This
gave rise to the Super-Strong Exponential Time Hypothesis (Vyas and Williams [16]),
which conjectures that the “c/k” in the exponent is optimal; for example, it conjectures
that a running time of 2n(1−log(k)/k) is impossible.

This paper presents an improvement of PPSZ. However, it is not an improvement
of the algorithm but of its analysis. We show that the exact same algorithm performs
exponentially better than previously known. Informally, PPSZ works by going through
the variables in random order π; inspecting each variable x, it tosses an unbiased coin to
determine which value to assign, unless there is a set of at most w clauses that implies
a certain value for x. Take w = 1 and this is exactly PPZ; take w = ω(1) and this
is PPSZ (the exact rate by which w grows turns out to be immaterial for all currently
known ways to analyze the algorithm). Our idea is to pretend that the ordering π is
not chosen uniformly but from a carefully designed distribution D. This increases the
success probability of PPSZ by some “bonus”, which depends on D. It seems surprising
that this can be done without actually changing the algorithm but it turns out to be
just a straightforward manipulation, which we formally explain below in (2). There
is a price to pay in terms of how much D differs from the uniform distribution: the
success probability incurs a penalty of 2−KL(D||U), where KL(D||U) is the Kullback-Leibler
divergence from the uniform distribution U to D. We focus on Unique-k-SAT, where the
input formula has exactly one satisfying assignment. A “lifting theorem” by Steinberger
and myself [12] shows that improving PPSZ for Unique-k-SAT automatically yields a
(smaller) improvement for general k-SAT problem (without changing the algorithm).

The idea of analyzing PPSZ assuming some non-uniform distribution D on permu-
tations and paying a price in terms of KL(D||U) is not new. It is explicit in [12] and
implicit in [4] and [8]. However, all previous applications use this to deal with the case
that sat(F ), the set of satisfying assignments, contains multiple elements; furthermore, in
[12, 4, 8], the distribution D is defined solely in terms of sat(F ) and ignores the syntactic
structure of F itself. In particular, in the special case that F has a unique solution, D
reverts to the uniform distribution. This paper is the first work that exploits the structure
of F itself to define a distribution D on permutations, and uses this to prove a better
success probability for the Unique-SAT case.

1.1 Analyzing PPSZ: permutations and forced variables

We will now formally describe the PPSZ algorithm. Let F be a formula, x a variable,
and b ∈ {0, 1}. A formula F implies (x = b) if every satisfying assignment of F sets x to
b. For example, (x ∨ y) ∧ (x ∨ ȳ) implies (x = 1) but neither (y = 0) nor (y = 1). For an
integer w, we say F w-implies (x = b) if there is a set G of at most w clauses of F such
that G implies (x = b).

The PPSZ algorithm with strength parameter w. Let w = w(n) be some fixed,
slowly growing function. Given a CNF formula F and a permutation π, we define
ppsz(F, π) as follows: go through the variables x1, . . . , xn in the order prescribed by
π. In each step, when handling a variable x, check whether (x = b) is w-implied by F for
some b ∈ {0, 1}. If so, set x to b (i.e., replace every occurrence of x in F by b). Otherwise,
set x randomly to 0 or 1, with probability 1/2 each. We define ppsz(F ) to first choose a
uniformly random permutation π and then call ppsz(π, F ).
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It should be noted that Paturi, Pudlák, Saks, and Zane in [8] formulated a stronger
version of PPSZ, which tries to infer (x = b) using bounded-width resolution. The notion
of w-implication is weaker, and a close look at their proof shows that they never use
properties of resolution beyond those already possessed by w-implication. We assume
that α = (1, . . . , 1) is the unique satisfying assignment of F . This is purely for notational
convenience.

Definition 1. Let π be a permutation and x a variable. Let A ⊆ V be the set of variables
coming before x in π, and let F ′ := F |A 7→1 be the restricted formula obtained from F
by setting every variable y ∈ A to 1. If F ′ w-implies (x = 1) then we say x is forced
under π and write Forced(x, π) = 1; otherwise we say x is guessed under π and write
Forced(x, π) = 0. Let Forced(π) :=

∑
x∈V Forced(x, π).

Observation 2 ([8]). Suppose we run PPSZ with a fixed permutation π. Then ppsz(F, π)
succeeds, i.e., finds α, with probability exactly 2−n+Forced(π).

Taking π to be a random permutation we get

Pr[ppsz(F ) succeeds] = E
π

[
2−n+Forced(π)

]
(1)

≥ 2−n+Eπ [Forced(π)] ,

which follows from Jensen’s inequality applied to the convex function t 7→ 2t. We are now
in a much more comfortable position: E[Forced(π)] =

∑
x Pr[Forced(x, π) = 1], and we

can analyze this probability for every variable individually. Indeed, this is what Paturi,
Pudlák, Saks, and Zane [8] did: they showed that Pr[Forced(x, π) = 1] ≥ sk − o(1)
if F is a k-CNF formula with exactly one satisfying assignment. Here sk is a number
defined by the following experiment: let T∞k−1 be the complete rooted (k − 1)-ary tree;
pick π : V (Tk−1)∞ → [0, 1] at random and delete every node u with π(u) < π(root).
Then sk is the probability that the root is contained in a finite component. The o(1)-
term converges to 0 as w tends to infinity; thus, the growth rate of w only influences how
fast this o(1) error term vanishes, but (as far as we know) does not materially influence
the success probability of PPSZ. We conclude:

Theorem 3 ([8]). If F is a k-CNF formula with a unique satisfying assignment, then

Pr[ppsz(F ) succeeds] is at least 2−n+skn−o(n). Furthermore, sk = π2

6k + o(1/k).

1.2 Previous improvements

The analysis of Paturi, Pudlák, Saks, and Zane runs into trouble if F contains multiple
satisfying assignments. In their original paper [8] they presented a workaround; unfor-
tunately, this was somewhat technical and, for k = 3, 4, exponentially worse than the
bound of Theorem 3. It was a breakthrough when Hertli [4] gave a very general analysis
of PPSZ showing that the “Unique-SAT bound” also holds in the presence of multiple
satisfying assignments. Curiously, his proof takes the result “Pr[Forced(x, π)] = sk−o(1)”
more or less as a black box and does not ask how such a statement would have been ob-
tained. Steinberger and myself [12] later simplified Hertli’s proof and obtained a certain
unique-to-general lifting theorem that is also important for our work:

Theorem 4 ([8]). If the success probability of PPSZ is at least 2−n+skn+εn on k-CNF for-
mulas with a unique satisfying assignment, for some ε > 0, then it is at least 2−n+skn+ε′n

on k-CNF formulas with multiple solutions, too, for some (smaller) ε′ > 0).
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Concerning the Unique-SAT case, Hertli [5] designed an algorithm that is a variant
of PPSZ and achieves a success probability of 2−n+s3n+ε n for 3-CNF formulas with a
unique satisfying assignment. Unfortunately, this ε is tiny, and his approach is extremely
specific to 3-SAT, with no clear path how to generalize it to k-SAT. A result by Qin
and Watanabe [11] strengthened Hertli’s result a bit. More recently, Hansen, Kaplan,
Zamir, and Zwick [3] published a biased PPSZ, a version of PPSZ in which some guessed
variables are decided by a biased coin; which variables and how biased, that depends on the
structure of the underlying formula. In contrast to Hertli’s, their improvement is “visible”:
for 3-SAT, it improves the success probability from 1.3070319−n from Theorem 3 to
1.306995−n. Also, it works for all k (although the authors do not work out the exact
magnitude of the improvement).

All this runs against the backdrop that we do not even fully understand the true
success probability of PPSZ. Chen, Tang, Talebanfard, and myself [14] have shown that
there are instances on which PPSZ has exponentially small success probability. Just how
exponentially small has been tightened by Pudlák, Talebanfard, and myself [10]: we now
know that PPSZ has success probability at most 2−(1−2/k−o(1/k))·n on certain instances,
provided our parameter w is not too large; if you prefer PPSZ using small-width resolution,
then this holds provided your width bound is really small, like c ·

√
log logn [13].

1.3 Our contribution

We show that the success probability of PPSZ on k-CNF formulas is exponentially larger
than 2−n+skn. In particular,

Theorem 5 (Improvement for all k). For every k ≥ 3 there is εk > 0 such that the
success probability of PPSZ on satisfiable k-CNF formulas is at least 2−n(1−sk−εk).

Theorem 6 (Improved success probability for 3-SAT). The success probability of PPSZ
on 3-CNF formulas with a unique satisfying assignment is at least 1.306973−n.

Our improvement for Unique 3-SAT is roughly fifty percent larger than that of Hansen,
Kaplan, Zamir, and Zwick [3]. This is of course nice but its importance should not be
overstated. Also, for general k, it is not clear which approach gives better bounds; both
approaches, in the words of [3], “only scratch the surface”. Crucially, neither approach

improves on the asymptotic π2

6 -factor in the behavior of the savings sk for large k.
Which approach has the greater potential? We believe our approach is simpler since it

only focuses on the analysis and leaves the underlying algorithm unchanged. This seems
like a limitation but actually gives us a certain freedom: we can exploit information
gleaned from the formula, even if that information is by itself NP-hard to compute.

1.4 Organization of the paper

We outline our general idea, analyzing PPSZ under some non-uniform distribution on
permutations, in Section 2. Section 3 introduces the notions of critical clause trees and
“cuts” in those trees. This is mainly a review of critical clause trees as defined in [?];
however, since we will manipulate these trees extensively, we introduce more abstract
and robust versions, called “labeled trees” and cuts therein. Section 4 contains our im-
provement for general k. With the notation introduced in Section 3, this will be rather
short. We emphasize that we strive for succinctness above all else for general k; we took
no effort to optimize our improvement aimed for the simplest possible proof that some
improvement is possible. Everything from Section 5 on deals exclusively with the case of
Unique-3-SAT.
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2 Brief overview of our method

2.1 Working with a make-belief distribution on permutations

Our starting point is to take a closer look a the application of Jensen’s inequality:

E
π

[
2−n+Forced(π)

]
≥ 2−n+Eπ [Forced(π)] .

This would be tight if X := Forced(π) was the same for every permutation π. But maybe
certain permutations are “better” than others. The idea is to define a new distribution
D on permutations, different from the uniform distribution, under which “good” permu-
tations have larger probability, thus Eπ∼D[X] > Eπ∼U [X]. Sadly, we have no control
over the distribution of permutations: firstly, we promised not to change the algorithm;
secondly, and more importantly, defining D will require some information that is itself
NP-hard to come by. There is a little trick dealing with this. Generally speaking, if we
want to bound the expression EQ

[
2X
]

from below but the obvious bound from Jensen’s

inequality, 2EQ[X], is not good enough for our purposes, we can replace Q by our favorite
P but have to pay a price. Formally:

E
Q

[
2X
]

=
∑
ω∈Ω

Q(ω)2X(ω) =
∑
ω∈Ω

P (ω) · Q(ω)

P (ω)
2X(ω)

= E
ω∼P

[
2
X(ω)−log2

P (ω)
Q(ω)

]
≥ 2EP

[X]−Eω∼P log2
P (ω)
Q(ω)

= 2EP [X]−KL(P ||Q) . (2)

Here, KL(P ||Q) :=
∑

ω P (ω) log2

(
P (ω)
Q(ω)

)
is the Kullback-Leibler divergence from Q to

P . If Q and P are continuous distributions (over Ω = [0, 1]n, for example) with density

functions fQ and fP , then (2) still holds, for KL(P ||Q) :=
∫

Ω fP (ω) log2

(
fP (ω)
fQ(ω)

)
. This

trick is not new: it plays a crucial rule in [12], and, if you look close enough, also in
Hertli [4]; it appears, in simpler form, already in [8]. However, in [12, 4, 8], the distribu-
tion P is defined only to make “liquid variables” (variables x for which F |x=0 and F |x=1

are both satisfiable) come earlier in π and do not take the syntactic structure of F into
account: they define P purely in terms of sat(F ), the space of solutions, whereas our
P will depend heavily on the structure on F as a 3-CNF formula. Our work is the first
to apply this method to improving PPSZ on formulas with a unique satisfying assignment.

2.2 Good make-belief distributions for PPSZ—a rough sketch

How can we apply this idea to the analysis of PPSZ? The challenge is to find a distribution
D under which Eπ∼D[Forced(π)] is larger than under the uniform distribution. Since we
assume that F has the unique satisfying assignment α = (1, . . . , 1), we can find, for every
variable x, a critical clause of the form (x ∨ ȳ ∨ z̄).1 Critical clauses play a crucial role
in [8] and [3] as well. Imagine we change the distribution on permutations such that y
tends to come a bit earlier than under the uniform distribution. It is easy to see that this
can only decrease E[Forced(y, π)] (which is bad) and only increase E[Forced(a, π)] for all

1Our informal outline assumes k = 3 to keep notation simple.
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other variables. In particular, it increases E[Forced(x, π)] (which is good). Now assume
the literal ȳ appears in a disproportionally large number of critical clauses. Then the
beneficial effect of pulling y to the front of π outweighs its adverse effect. Thus, if there is
a linear number of variables, each of which appears in a large number of critical clauses,
then the success probability of PPSZ is larger than the baseline. This is what we call the
“highly irregular case” below.

The other extreme would the “perfectly regular case”, namely that every variable x
has exactly one critical clause and that every negative literal ȳ appears in exactly two
critical clauses. In this case, we find a matching M , i.e., a set of disjoint pairs of variables
such that {y, z} ∈ M implies that (x ∨ ȳ ∨ z̄) is a critical clause of F , for some variable
x. We then adapt the distribution on permutations such that the location of y and z
is positively correlated—either they both tend to come late or they both tend to come
early. This will have both (easily quantifiable) beneficial effects and (more difficult to
quantify) adverse effects. However, we will see that the adverse effects can only be large
if Eπ∼U [Forced(π)] is already larger than skn under the uniform distribution.

Indeed, to obtain a stronger improvement for k = 3, we show that M need not be a
matching, i.e., we allow the pairs in M to overlap. In this context, we define a certain
class of distributions that might be of independent interest: for a graph G we can define
a distribution on functions π : V (G)→ [0, 1] such that π(u) and π(v) follow a prescribed
distribution D� on [0, 1]2 whenever {u, v} is an edge and are independent and uniform
otherwise. The existence of such a distribution depends the prescribed distribution D�

and on the graph G (in particular the number of edges in G).

3 Critical clause trees, labeled trees, and cuts

3.1 The Critical Clause Tree

We assume that α = (1, . . . , 1) is the unique satisfying assignment. That means that for
every variable x, we can find a clause of the form (x∨ ȳ2∨· · ·∨ ȳk). This is called a critical
clause. If there are several to pick from, we ask x to select one to be its canonical critical
clause. For an integer h ∈ N, a critical clause tree of x of height h is a rooted tree Tx of
height at most h with a bunch of additional information: every node u of Tx has a variable
label varlabel(u); if the depth of u is less than h, it has a clause label clauselabel(u). The
tree is constructed as follows:

• Initialize Tx as consisting of a single root node, and set varlabel(root) = x.

• While some node u of Tx of depth less than h does not have a clause label yet:

1. Let αu be the assignment arising from α by setting to 0 all the variables y that
appear as variable labels on the path from the root to u (including both root
and u). Let a := varlabel(u). In particular, αu(a) = 0.

2. Pick a clause C that is violated by αu (this exists since α is the unique satisfying
assignment), and set clauselabel(u) := C.

3. For each negative literal z̄ ∈ C, create a new child of u and give it variable
label z. Note that u has at most k − 1 children.

This tree is central to the analysis in [8] and also [3]. The depth of a node u in a tree T
is the length of the path from the root to u; we abbreviate it as dT (u) or simply d(u) if
T is understood. It is a (k − 1)-ary tree: every node has at most k − 1 children.
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Observation 7. If u is a proper ancestor of v in Tx, then varlabel(u) 6= varlabel(v).

In Point 2, we might have several clauses to choose from; we define the canonical
critical clause tree of x of height h to be the critical clause tree Tx constructed as above,
but adhering to the following tie-breaking rule in Point 2:

Canonical critical clause rule. In Point 2, if the canonical critical
clause of varlabel(u) is violated by αu, pick it as clauselabel(u); otherwise,
pick the lexicographically first violated clause.

In the canonical clause tree Tx, we call a node v canonical if, for every node u on the path
from the root to v (including root and v), varlabel(u) has exactly one critical clause, and
this clause is clauselabel(u). Let u be a maximal non-canonical node in Tx (i.e., closest to
the root), and a = varlabel(u). There are two reasons why u can be non-canonical: (1)
the variable a has two or more critical clauses; (2) the clause label C := clauselabel(u) is
not a critical clause (it has at least two positive literals, like (x ∨ a ∨ b̄), for example). In
the latter case, u has at most k − 2 children in Tx. Case (1) motivates the definition of
the set TwoCC ⊆ V , the set of variables that have two or more critical clauses.

A path in Tx is a sequence u0, . . . , ut where each ui is the parent of ui+1. That is, we
never go up and then down again. By Observation 7, no variable can appear twice or
more on a path in Tx. Critical clause trees are important because of the following lemma:

Lemma 8 ([8]). Suppose w ≥ (k − 1)h+1, where w is the strength parameter of PPSZ.
For a permutation π, let A be the set of variables coming before x in π. If every path from
the root of Tx to a leaf at depth h contains a variable in A,2 then Forced(x, π) = 1.

From now on, we take h = h(n) to be the largest integer such that w ≥ (k−1)h+1 and
let every canonical critical clause tree be one of height h. Note that limn→∞ h(n) = ∞
because limn→∞w(n) =∞.

3.2 Labeled trees and cuts

We will extensively manipulate critical clause trees. Thus, it makes sense to define a
generalized version:

Definition 9. A labeled tree is a rooted tree T , possibly infinite, in which

1. each node u has a label varlabel(u) ∈ L in some label set L ⊇ V ;

2. no label appears twice on a path; that is, if u is a proper ancestor of v in T , then
varlabel(u) 6= varlabel(v);

3. each node is marked either as canonical or non-canonical; if u is non-canonical then
so are all of its children;

4. each leaf of T is marked as either a safe leaf or an unsafe leaf.

A safe path in T is a path starting at the root that either ends at a safe leaf or is infinite.
We write Can(Tx) to denote the set of canonical nodes in Tx. Furthermore, all labeled
trees appearing in this paper are (k − 1)-ary: each node has at most k − 1 children.

2or rather, contains a node whose variable label is in A
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A critical clause tree of height h becomes a labeled tree by simply marking leaves
at depth h as safe leaves and all other leaves as unsafe leaves. From now on, instead of
viewing π as a permutation of the variables V , we view it as a placement π : V → [0, 1]. If π
is sampled from some continuous distribution (for example the uniform distribution), then
π is injective with probability 1 and defines a permutation, by sorting the variables from
low-π to high-π. In fact, our π is defined on all labels, i.e., it is a function π : L→ [0, 1].

Definition 10 (Cut and Cutr). Let T be a labeled tree, x the label of its root, and
r ∈ [0, 1]. The event Cutr(T ) is an event in the probability space of all placements,
defined as follows: mark a non-root vertex u as dead if π(varlabel(u)) < r and alive
otherwise; mark root as alive. Then Cutr(T ) is defined to be the event that every safe
path in T contains at least one dead node. Cut(T ) is the event Cutπ(x)(T ), i.e., all nodes
u with π(varlabel(u)) < π(x) are marked dead.

The following observation is simply Lemma 8, framed in the new terminology:

Observation 11. Suppose w ≥ (k − 1)h+1. If Cut(Tx) happens then Forced(x, π) = 1.

For r ∈ [0, 1], let wCutr(T ) (“weak cut”) be defined as Cutr(T ), only that we addition-
ally mark the root as dead if π(x) < r. Note that there is no corresponding event wCut(T ).
Weak cuts only make sense with respect to a particular r ∈ [0, 1]. Cutr and wCutr are
intimately related: wCutr(T ) = [π(root) < r ∨ Cutr(T )]; if T1, . . . , Tl are the subtrees of
T rooted at the children of the root, then Cutr(T ) = [wCutr(T1) ∧ · · · ∧ wCutr(Tl)].

A particularly important example of a labeled tree is T∞k−1. This is simply an infinite
complete (k−1)-ary tree: every node has k−1 children, and there are no leaves. All nodes
have distinct labels. If k is understood, we simply write T∞. If π is sampled uniformly
at random and independently, then

Q(k)
r := Pr[Cutr(T

∞
k−1)] =

(
Pr[wCutr(T

∞
k−1)]

)k−1

P (k)
r := Pr[wCutr(T

∞
k−1)] = r ∨ Pr[Cutr(T

∞
k−1)] ,

where we define a ∨ b := a + b − ab for a, b ∈ [0, 1]. It is a well-known result from the

theory of Galton-Watson branching processes that Q
(k)
r and P

(k)
r are the smallest roots

in [0, 1] of the equations Q = (r + (1− r)Q)k−1, and P = r ∨ P k−1, respectively.

Proposition 12. For r ≥ k−2
k−1 it holds that Q

(k)
r = P

(k)
r = 1. On the interval

[
0, k−2

k−1

]
,

P
(k)
r is convex and r ≤ P (k)

r ≤ k−1
k−2 ·r. Also on that interval, Q

(k)
r ≤

(
k−1
k−2 · r

)k−1
≤ e rk−1.

For k = 3, we can give explicit solutions, on which we will heavily rely in the analysis
for 3-SAT:

Q(3)
r =


(

r
1−r

)2
if r < 1/2

1 if r ≥ 1/2

and

P (3)
r =

{
r

1−r if r < 1/2

1 if r ≥ 1/2

Again, if k is understood, we will simply write Qr and Pr. Paturi, Pudlák, Saks, and
Zane proved the following fact:

Lemma 13 ([8]). Let Tx be a critical clause tree of height h. Then Pr[Cutr(Tx)] ≥
Q

(k)
r − Error(r, h), for some function Error(r, h) that converges to 0 as h → ∞, and

Pr[Cut(Tx) ≥ sk − o(1), where sk :=
∫ 1

0 Q
(k)
r dr.
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4 Improvement for general k

4.1 The highly irregular case

We asked each variable to pick one of its critical clauses to be its canonical critical clause.
This defines a directed graph on V : if the canonical critical clause of x is (x∨ȳ1∨· · ·∨ȳk−1),
we create arcs (x, y1), . . . , (x, yk−1). This graph is the critical clause graph, short CCG.
This graph has (k− 1)n arcs, and every vertex has out-degree k− 1. Let indeg(x) denote
the in-degree of x in CCG. For a set Y ⊆ V , let e(x, Y ) be the number of arcs (x, y) with
y ∈ Y . Let two sets X,Y let e(X,Y ) :=

∑
x∈X e(x, Y ). We fix some integer k′ ≥ k, to be

determined later, and call a variable x heavy if indeg(x) ≥ k′. Let Heavy be the set of
all heavy variables.

Theorem 14. There is a constant cBonusHeavy > 0, depending only on k and k′, such
that Pr[PPSZ succeeds] ≥ 2−n+skn+cBonusHeavy·indeg(Heavy)−o(n).

Proof. First, we define new distribution D on placements π : V → [0, 1]. We fix some
differentiable γ : [0, 1]→ R+

0 such that γ(0) = γ(1) = 0 and let φ := γ′ be its derivative.
We fix some ε > 0 such that 1 + εφ(r) ≥ 0 for all r ∈ [0, 1]. Let Dγ

ε be the distribution
on [0, 1] that has density function 1 + φ(r). Let D be the distribution on placements
π : V → [0, 1] that samples π(x) ∈ [0, 1] uniformly for all x 6∈ Heavy and π(x) ∼ Dγ

ε for
all x ∈ Heavy. For heavy x it holds that Pr[π(x) < r] =

∫ r
0 (1+ εφ(s)) ds = r+ εγ(r) > r.

Loosely speaking, heavy variables x tends to come earlier in π ∼ D than non-heavy ones.
Consequently, for heavy x, we expect Pr[Forced(x, π)] to be smaller under D than under
the uniform distribution:

Lemma 15. If x ∈ Heavy then Prπ∼D[Forced(x, π)] is at least∫ 1

0
Q(k)
r (1 + εφ(r)) dr − o(1) = sk − εcHeavy − o(1)

for some cHeavy that depends only on γ and k, but not on k′.

If x 6∈ Heavy but has an arc (x, y) for some y ∈ Heavy, we expect Pr[Forced(x, π)]
to be larger under D, and in fact

Lemma 16. If x 6∈ Heavy then Prπ∼D[Forced(x, π)] is at least

sk + ε cHeavyChild e(x,Heavy)− o(1)

where e(x,Heavy) is the number of arcs (x, y) with y ∈ Heavy and cHeavyChild =∫ 1
0 γ(r)P

(k)
r

(
1−Q(k)

r

)
dr, which only depends on γ and k but not on k′.

It is well-known from the theory of Galton-Watson branching processes that Q
(k)
r < 1

for all r < k−2
k−1 and therefore P

(k)
r

(
1−Q(k)

r

)
> 0 on the interval

[
0, k−2

k−1

]
. Thus, it

is easy to choose some function γ and some ε > 0 such that Dγ
ε is a distribution and

cHeavyChild > 0. The exact shape of γ is not important in this part of the paper, where
we only aim to show that some improvement is possible; when trying to prove a substantial
improvement for k = 3, we will choose γ more carefully.

Proof of Lemma 16. Let y1, . . . , yk−1 be the labels of the children of the root of Tx and
Ti be the subtree of Tx rooted at yi. Similar to the proof of Lemma 7 in [8], we can
assume that all nodes of Tx have distinct variable labels. Also, for every variable z 6∈

10



{y1, . . . , yk−1}, it holds that Pr[π(z) < r] ≥ r. This means we can assume (pessimistically)
that π(z) is uniform over [0, 1]. Since all labels are distinct, we have Pr[Cutr(Tx)] =∏k−1
i=1 Pr[wCutr(Ti)] and

Pr[wCutr(Tyi)] = Pr[π(yi) < r] ∨ Pr[Cutr(Ti)]

= (r + εγ(r)[yi ∈ Heavy]) ∨ Pr[Cutr(Ti)]

≥ (r + εγ(r)[yi ∈ Heavy]) ∨ (Qr − o(1))

= r + εγ(r)[yi ∈ Heavy] + (1− r − εγ(r)[yi ∈ Heavy]) (Qr − o(1))

= r + (1− r)Qr + εγ(r)(1−Qr)[yi ∈ Heavy]− o(1)

= Pr + εγ(r)(1−Qr)[yi ∈ Heavy]− o(1) .

Therefore,

Pr[Cutr(Tx)] ≥
∏
y:x→y

(Pr + εγ(r)(1−Qr)[y ∈ Heavy])− o(1)

≥ (Pr)
k−1 +

∑
y:x→y

εγ(r)Pr(1−Qr)[y ∈ Heavy]− o(1)

= Qr + εγ(r)Pr(1−Qr)e(x,Heavy)− o(1) .

Since π(x) is uniform over [0, 1], the lemma follows from integrating the above expression
over [0, 1].

We can prove Theorem 14 by summing over all variables. First, observe that e(V \
Heavy,Heavy) = e(V,Heavy) − e(Heavy,Heavy) ≥ indeg(Heavy) − e(Heavy, V ) ≥
indeg(Heavy) − k|Heavy|, and therefore (ignoring the o(1) term for notational conve-
nience)∑

x∈V PrD[Forced(x, π)]− sk n
ε

≥ −cHeavy|Heavy|+ cHeavyChild

∑
x 6∈Heavy

e(x,Heavy)− o(n)

≥ −cHeavy|Heavy|+ cHeavyChilde(V \Heavy,Heavy)

≥ −cHeavy|Heavy|+ cHeavyChild (indeg(Heavy)− k|Heavy|)
= cHeavyChild indeg(Heavy)− (cHeavy + kcHeavyChild)|Heavy|

≥
(
cHeavyChild −

cHeavy + kcHeavyChild

k′

)
indeg(Heavy) ,

where the last inequality follows from the fact that indeg(Heavy) ≥ k′|Heavy|. Since
neither cHeavy nor cHeavyChild depend on k′, we can choose k′ sufficiently large and make
sure the expression in the parenthesis is some c > 0. This shows that ED[Forced(π)] ≥
skn− o(n) + ε c indeg(Heavy). Finally, using (2), we see that

− log2 Pr[PPSZ succeeds] ≤ n− skn+ o(n)− ε c indeg(Heavy) + KL(D||U) .

Since all values π(x) are independent under both D and U , the Kullback-Leibler diver-
gence becomes additive, and KL(D||U) = KL(Dγ

ε ||U[0,1]) · |Heavy|, where U[0,1] is the
uniform distribution on [0, 1].

Proposition 17. KL(Dγ
ε ||U[0,1]) ≤ log2(e) ε2Ψ for Ψ :=

∫ 1
0 φ

2(r) dr.
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Proof. We abbreviate t := εφ(r). By definition of KL for continuous distributions, we
have

ln(2) KL(Dγ
ε ) =

∫ 1

0
(1 + t) ln(1 + t) dr ≤

∫ 1

0
(1 + t)t dr =

∫ 1

0
t dr +

∫ 1

0
t2 dr = ε2

∫ 1

0
φ2(r) dr

where the last equality follows from
∫ 1

0 φ(r) dr = γ(1)− γ(0) = 0.

By choosing ε sufficiently small (depending only on γ and k) we can ensure that
ε c indeg(Heavy) − log2(e) ε2Ψ = cBonusHeavy indeg(Heavy) for some cBonusHeavy > 0.
Thus, − log2 Pr[PPSZ succeeds] ≤ n − skn + o(n) − cBonusHeavyindeg(Heavy), which
proves Theorem 14.

4.2 Privileged variables—when Pr[Forced(x, π)] is already larger

There are some abnormal cases that will interfere with our analysis below. Luckily, all
those cases will imply that the variables involved already have a substantially higher
probability of being forced.

Definition 18. A variable x is called privileged if (1) x has at least two critical clauses or
it has a critical clause tree Tx such that (2) there is a variable y that appears simultaneously
at depth 1 and 2 or (3) Tx has fewer than (k − 1)2 nodes at depth 2. Let Privileged be
the set of all privileged variables.

Lemma 19. There is some cPrivileged > 0, depending only on k, such that Pr[Forced(x, π)] ≥
sk + cPrivileged− o(1) for all privileged variables x, where o(1) converges to 0 as w grows.

See Lemma A.2 in the appendix for a proof. The proof is rather straightforward. It
uses some concepts and techniques we will extensively rely on in our analysis for 3-SAT.
Thus, the reader who plans to venture into the 3-SAT analysis might just as well start by
reading the proof of the above lemma.

4.3 The almost regular case

Theorem 14 already gives us an exponential improvement over the old analysis of PPSZ
provided that indeg(Heavy) is large (linear in n). In this section, we will come up with
a corresponding bound that works well if indeg(Heavy) is small. The final bound will
then follow from a meet-in-the-middle argument.

Lemma 20. There is a collection G of canonical critical clauses such that no two clauses
in G share a variable and |G| ≥ n−indeg(Heavy)

kk′ . Here, k′ is the parameter chosen in the
definition of Heavy.

Proof. Let C be the set of all canonical critical clauses. Greedily pick a clause C ∈ C,
add it to G, and delete from C all clauses C ′ that share a variable with C (this obviously
includes C itself). Repeat this step for as long as possible.

How many clauses does each step remove from C? Let x1, . . . , xk denote the variables
of C. For sure we remove the canonical critical clauses of x1, . . . , xk. Additionally, we
remove, for each 1 ≤ i ≤ k, all canonical critical clauses containing x̄i. This removes
at most a total of k +

∑
x∈var(C) indeg(x) clauses. Thus, the total number of canonical
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critical clauses removed in this process is at most

∑
C∈G

k +
∑

x∈var(C)

indeg(x)


≤|G|k +

∑
C∈G

∑
x∈var(C)
x 6∈Heavy

(k′ − 1) +
∑
C∈G

∑
x∈var(C)
x∈Heavy

degin(x)

≤|G|k + |G|k(k′ − 1) + indeg(Heavy) = |G|kk′ + indeg(Heavy) .

On the other hand, the process ends when all clauses have been removed. Since there are
exactly n canonical critical clauses, it removes exactly n clauses, and therefore |G|kk′ +
indeg(Heavy) ≥ n. Solving for |G| proves the lemma.

We take a set G of canonical critical clauses as guaranteed by the lemma. We form
a collection M ′ of disjoint pairs of variables by selecting, for each C ∈ G, two negative
literals ȳ, z̄ ∈ C and adding {y, z} to M ′.3 Call x a parent of {y, z} if the canonical
critical clause of x contains the literals ȳ and z̄. Note that this name makes sense since
in the canonical critical clause tree Tx of x, the root has two children with labels y and
z, respectively. Every {y, z} ∈ M ′ has at least one parent. We form a final collection
M ⊆ M ′ of pairs by removing each pair {y, z} with parent x from M ′ if at least one of
x, y, z is in Privileged. Each privileged variable x is “responsible” for the removal of at
most two elements from M ′: one if the canonical clause of x happens to be in G; one if
there is some x′ with {x, x′} ∈M ′. Therefore,

|M | ≥ n− indeg(Heavy)

kk′
− 2 |Privileged| . (3)

We denote the set of all parents x of some {y, z} ∈M by ParentM.

Theorem 21. For every c > 0 and k ≥ 3 there is some c′ > 0 such that if |M | ≥ cn then
Pr[PPSZ succeeds] ≥ 2−n+skn+c′n−o(1).

From here, the proof of Theorem 5 is simple. Let c1 be a small constant, depending
on k. If |indeg(Heavy)| ≥ c1n then we can apply Theorem 14. If |Privileged| ≥ c1n
we can apply Lemma 19. Otherwise, (3) implies that |M | ≥ c2n for some c2 depending
on c1 and k, and c2 > 0 if c1 is small enough. We can now apply Theorem 21 and are
done. This proves Theorem 5. It remains to prove Theorem 21.

Proof of Theorem 21. The upshot of Lemma 19 and Theorem 14 is that the success prob-
ability of PPSZ is exponentially larger than 2−n+skn if at least one of |Privileged| and
indeg(Heavy) has size Ω(n). If this is not the case, then we can assume that |Privileged|
is very small, and that |M | is of size Ω(n), by Lemma 20. At first reading of what follows,
it might even be helpful to think of Privileged as being empty.

4.4 Using disjoint pairs to define a distribution

We choose some ρ ≤ k−2
k−1 , to be determined later. Define γ : [0, 1]→ R+

0 by

γ(r) :=

{
r(ρ− r) if r ≤ ρ
0 if r ≥ ρ.

3For k = 3, the clause C contains exactly two negative literals; for larger k, we select two literals
arbitrarily.
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Let φ := γ′ and extend this via φ(ρ) := −ρ. Observe that φmin := minr∈[0,1] φ(r) = −ρ.

We fix some ε > 0. Let Dγ,�
ε be the distribution on [0, 1] × [0, 1] whose density at (r, s)

is 1 + εφ(r)φ(s). This really is a density, provided that 1 + εφ(r)φ(s) ≥ 0 for all r and
s. Let D be the distribution on placements that samples (π(y), π(z)) ∼ Dγ,�

ε for each
{y, z} ∈M and samples π(x) ∈ [0, 1] uniformly for each remaining variable. All samplings
are done independently. We define δ = δ(r) := ε|φmin|γ(r) = εργ(r).

Lemma 22. Let r ∈ [0, 1]. Then

Pr
D

[Cut(Tx) | π(x) = r] ≥ Qr −Damage(r) + Benefit(r) · 1x∈ParentM − o(1) ,

where

Damage(r) := (k − 1)(1− r)P k−2
r δQ′r (4)

Benefit(r) := εγ2(r)(1−Qr)2P k−3
r−δ . (5)

and the o(1) converges to 0 as h grows.

Proof. The proof works by constructing an easy-to-analyze tree and distribution that
serve as a pessimistic estimate for Cutr(Tx). First, we make a simple but important
observation about M and the labels in Tx:

Observation 23. Let u be a node of depth 1 in Tx and y = varlabel(u). Then {x, y} 6∈M .

Proof. Suppose {x, y} ∈M , for the sake of contradiction, and let a be their parent. So Ta
contains two nodes X,Y at depth 1 with labels x and y, respectively. What is the clause
label CX of node X in Ta? First, if it is Cx, the canonical critical clause of x, then X has
a child with label y, since ȳ ∈ Cx. Second, if it is not Cx but is some critical clause, it
must be a critical clause for x or a, meaning that x or a has at least two critical clauses.
Third, if CX is not a critical clause, then CX has at most k − 2 negative literals and X
has at most k − 2 children. In either case, at least one of a and x is privileged, meaning
we would have eliminated {x, y} from M . This is a contradiction.

This observation has two important consequences:

Observation 24. Suppose x 6∈ ParentM and let y1, . . . , yk−1 be the labels of the depth-
1-nodes in Tx. Then π(x), π(y1), . . . , π(yk−1) are independent and uniform under D.

Observation 25. Suppose x ∈ ParentM is a parent of {y, z} ∈M . Let y, z, v1, . . . , vk−3

be the labels of the depth-1-nodes in Tx. Then π(x), (π(y), π(z)), π(v1), . . . , π(vk−3) are
independent under D, the pair (π(y), π(z)) has distribution Dγ,�

ε , and the other k − 2
variables are uniform over [0, 1].

The upshot is that we completely understand the distribution of π(l) for the labels
on the level 0 and 1 of Tx. Starting from level 2 downwards, the distribution can become
complicated, so we resort to a pessimistic estimate:

Observation 26. Let v be a variable and let τ : V \{v} → [0, 1] be a particular placement
of all other variables. Let r ∈ [0, 1]. Then PrD[π(v) < r | τ ] ≥ r − δ, for δ = δ(r) :=
ε|φmin|γ(r).

Proof. If v is not contained in any pair of M , then PrD[π(v) < r |τ ] = r. If {v, w} ∈ M
then PrD[π(v) < r |τ ] = Pr

Dγ,�ε
[π(v) < r ||π(w) = τ(w)] = r + εγ(r)φ(τ(w)) ≥ r −

ε|φmin|γ(r).
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4.5 Two pessimistic distributions

Fix r ∈ [0, 1] and let T∞ be the complete infinite (k − 1)-ary tree in which all labels
are distinct. Since all the labels are distinct, we take the liberty of writing π(v) instead
of π(varlabel(v)) for a node v in T∞. We specify two distributions DM and DM̄ on
placements L→ [0, 1]. First, we set Pr[π(v) < r] := r− δ under both DM̄ and DM for all
nodes v of depth at least 2 in T∞. Second, we let y1, . . . , yk−1 be the nodes of depth 1 in
T∞ and sample all π(yi) ∈ [0, 1] uniformly and independently under DM̄ . Under DM , we
sample π(y3, . . . , yk−1) uniformly and independently but sample (π(y1), π(y2)) ∼ Dγ,�

ε .
This does not fully specify a distribution on placements L→ [0, 1] but it does specify the
joint distribution of the events [π(v) < r]. Since we are only interested in Pr[Cutr(Tx)],
this is enough. Note that we also do not need to specify a distribution for π(x).

Observation 27. If x 6∈ M then Pr[Cut(Tx) | π(x) = r] ≥ PrDM̄ [Cutr(T
∞)] − o(1). If

x ∈M then Pr[Cut(Tx) | π(x) = r] ≥ PrDM [Cutr(T
∞)]− o(1).

The o(1)-term comes from the fact that Tx is a critical clause tree of of height h,
whereas T∞ is an infinite tree.

Proposition 28. PrDM [Cutr(T
∞)] ≥ PrDM̄ [Cutr(T

∞)] +Benefit(r) for Benefit(r) =

εγ2(r)(1−Qr)2P k−3
r−δ as defined in (5).

Proof. Let T1, . . . , Tk−1 be the subtrees of T∞ rooted at the nodes of depth 1. Let
τ : L \ {y1, y2} be a partial placement. Observe that the distribution of τ is the same
under DM and DM̄ . We call τ critical if Cutr(T1) and Cutr(T2) do not happen but
wCutr(T3), . . . ,wCutr(Tk−1) do happen. Note that this can be determined by looking at
τ alone. Furthermore, PrDM [Cutr(T

∞) | τ ] = PrDM̄ [Cutr(T
∞) | τ ] if τ is not critical.

This follows from the fact that the marginal distributions of π(y1) and π(y2) are uniform
under DM . If τ is critical then

Pr
DM̄

[Cutr(T
∞) | τ ] = Pr

DM̄
[π(y1) < r ∧ π(y2) < r] = r2 ,

Pr
DM

[Cutr(T
∞) | τ ] = Pr

DM
[π(y1) < r ∧ π(y2) < r] = r2 + εγ2(r) .

The probability that τ is critical is

Pr[¬Cutr(T1)] · Pr[¬Cutr(T2)] ·
k−1∏
i=3

Pr[wCutr(Ti)] ≥ (1−Qr)2P k−3
r−δ ,

and therefore

Pr
DM

[Cutr(T
∞)] = Pr

DM̄
[Cutr(T

∞)] + εγ2(r) Pr[τ is critical]

≥ Pr
DM̄

[Cutr(T
∞)] + εγ2(r)(1−Qr)2P k−3

r−δ .

This completes the proof.

Proposition 29. PrDM̄ [Cutr(T
∞)] ≥ Qr − Damage(r) for Damage(r) = (k − 1)(1 −

r)P k−2
r δQ′r as defined in (4).

Proof. If r ≥ k−2
k−1 then δ = 0, Damage = 0, and Pr[π(v) < r] = r for every node v in

T∞. Both sides of the inequality evaluate to 1.
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Otherwise, let T1, . . . , Tk−1 be the subtrees of T∞ rooted at the depth-1-nodes of T∞.
Since PrDM̄ [π(v) < r] = r − δ for all nodes v of T∞ of depth 2 or greater, it holds that

PrDM̄ [Cutr(Ti)] = Qr−δ for 1 ≤ i ≤ k − 1. Since Qr is convex on
[
0, k−2

k−1

]
, this is at least

Qr − δQ′r. Next,

Pr
DM̄

[wCutr(Ti)] = r ∨ Pr
DM̄

[Cutr(Ti)] ≥ r ∨ (Qr − δQ′r)

= r + (1− r)(Qr − δQ′r) = Pr − (1− r)δQ′r

= Pr

(
1− (1− r)δQ′r

Pr

)
,

and

Pr
DM̄

[Cutr(T
∞)] =

k−1∏
i=1

Pr
DM̄

[wCutr(Ti)]

≥ P k−1
r

(
1− (1− r)δQ′r

Pr

)k−1

≥ P k−1
r

(
1− (k − 1)(1− r)δQ′r

Pr

)
= Qr − (k − 1)(1− r)P k−2

r δQ′r .

This completes the proof.

From here on, we estimate for x 6∈ ParentM:

Pr
D

[Cut(Tx) | π(x) = r] ≥ Pr
DM̄

[Cutr(T
∞)]− o(1) (by Observation 27)

≥ Qr −Damage(r)− o(1) (by Proposition 29)

and for x ∈ ParentM:

Pr
D

[Cut(Tx) | π(x) = r] ≥ Pr
DM

[Cutr(T
∞)]− o(1) (by Observation 27)

≥ + Pr
DM̄

[Cutr(T
∞)] + Benefit(r)− o(1) (by Proposition 28)

≥ Qr −Damage(r) + Benefit(r)− o(1) .
( by Proposition 29)

This concludes the proof of Lemma 22.

We obtain a lower bound on PrD[Cut(Tx)] by integrating the bound in Lemma 22
over r:

Pr[Cut(Tx)] ≥ sk −Damage + Benefit · 1x∈ParentM − o(1) , (6)

where Damage =
∫ 1

0 Damage(r) dr and Benefit =
∫ 1

0 Benefit(r) dr. To simplify the
integration, we will first give an upper bound on Damage(r) and a lower bound on
Benefit(r).

Proposition 30. The following bounds hold:

Damage ≤ O(ερ2k) (7)

Benefit ≥ Ω(ερk+1) , (8)

where the O hides factors depending solely on k and terms of order ρa for a ≥ 2 k + 1,
and the Ω hides factors depending solely on k and terms of order ρb for b ≥ k + 2.
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Proof. We remind the reader of the definitions of Damage and Benefit in (4) and (5):

Damage(r) = (k − 1)(1− r)P k−2
r δQ′r

Benefit(r) = εγ2(r)(1−Qr)2P k−3
r−δ

Both Benefit(r) and Damage(r) vanish for r ≥ ρ. Thus, we can replace
∫ 1

0 by
∫ ρ

0 . We
will first bound Benefit(r). On the interval [0, ρ], γ(r) = r(ρ− r), and 1−Qr ≥ 1−Qρ,
and Pr−δ ≥ r − δ = r(1− ερ(ρ− r)). Therefore,

Benefit(r) ≥ εr2(ρ− r)2(1−Qρ)2rk−3 (1− ερ(ρ− r))k−3

≥ 1

2
εrk−1(ρ− r)2 ,

for sufficiently small ε and ρ (smaller than a value depending solely on k). Integrating
this over r ∈ [0, ρ] shows (8).

Next, we bound Damage(r) from above. It holds that r ≤ Pr ≤ k−1
k−2r, where the first

inequality follows immediately from Pr = r ∨ Qr, and the second follows from the fact

that Pr is convex on
[
0, k−2

k−1

]
, P0 = 0, and P k−2

k−1
= 1. Third, we compute Q′r = (P k−1

r )′ =

(k − 1)P k−2
r P ′r ≤ (k − 1)

(
k−1
k−2

)k−2
rk−2P ′r. To bound P ′r, observe again that P ′r ≤ P ′k−2

k−1

,

where P ′k−2
k−1

is the left derivative since Pr is not differentiable at r = k−2
k−1 . To determine

the left derivative, recall that P = Pr satisfies the equation

P = P k−1 + (1− P k−1)r

and therefore

r = r(P ) =
P − P k−1

1− P k−1
.

For P → 1, the derivative of P 7→ r(P ) converges to k−2
2(k−1) (compute the derivative of r(P )

and apply l’Hôpital’s rule twice; then substitute P = 1). Thus, for r → k−2
k−1 , the derivative

P ′r converges to the inverse thereof, to 2(k−1)
k−2 . Thus, Q′r ≤ (k − 1)

(
k−1
k−2

)k−2
rk−2 2(k−1)

k−2 .

Altogether,

Damage(r) = (k − 1)(1− r)P k−2
r δQ′r

≤ (k − 1)(1− r)
(
k − 1

k − 2

)k−2

rk−2ερr(ρ− r)(k − 1)

(
k − 1

k − 2

)k−2

rk−2 2(k − 1)

k − 2

= Ckε(1− r)r2k−3ρ(ρ− r)

for some constant Ck depending only on k. Integrating over r ∈ [0, ρ] yields (7).

Combining (6) with the bounds (7) and (8) and summing over all x ∈ V , we obtain

∑
x∈V

Pr
D

[Cut(Tx)] ≥ skn−O(ερ2k)n+ Ω(ερk+1)|M | − o(n) . (9)

Finally, to bound the success probability of PPSZ using the distribution D, we need
to bound KL(D||U) from above. By additivity of KL, we see that KL(D||U) = |M | ·
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KL(Dγ,�
ε ||U�), where U� denotes the uniform distribution on [0, 1]× [0, 1]. The density

of Dγ,�
ε at r, s is 1 + εφ(r)φ(s), and therefore

KL(Dγ,�
ε ||U2) =

1

ln(2)

∫
[0,1]2

(1 + εφ(r)φ(s)) ln(1 + εφ(r)φ(s)) ds dr

≤ 1

ln(2)

∫
[0,1]2

(1 + εφ(r)φ(s))εφ(r)φ(s)) ds dr

=
1

ln(2)

∫
[0,1]2

ε2φ2(r)φ2(s) ds dr

=
ε2

ln(2)

(∫ 1

0
φ2(r) dr

)2

=
ε2ρ3

3 ln(2)
.

Thus, using (2), we conclude that the success probability of PPSZ is 2−n+skn+gain where

gain ≥ Ω(ερk+1)|M | −O(ε2ρ3)|M | −O(ερ2k)n .

Choosing ε = ρk−3, this is Ω(ρ2k−2)|M | − O(ρ3k−3)n. Thus, if |M | ≥ cn, we can choose
a sufficiently small ρ, depending on k and c, and make it become at least skn + c′n, for
some constant c′ depending on c and k. This concludes the proof of Theorem 21.

5 Outline of the case k = 3

For k = 3 we significantly refine the above approach. The proof of Theorem 6 will be
quite tedious, involving several numerical calculations. In this section, we sketch the ideas
that qualitatively differ from our proof above.

First, we turn things in the “highly irregular case” somewhat upside down. Rather
than pulling heavy variables towards the front of π, we will push “light” variables towards
the back. A variable x is “light” if the negative literal x̄ occurs in fewer than two canonical
critical clauses. This is more powerful but requires a series of counter-measures to balance
beneficial and detrimental effects.

Second, we refine our crude notion of “privileged variables”. For two variables y, z we
define a quantity called LabelDensity(z, Ty), which measures how often and where the
variable z appears in the canonical critical clause tree Ty of y. Roughly speaking, this
counts all nodes of Ty that have label z but discounts a node at depth d by a factor rd.
The idea then is if (x∨ȳ∨ z̄) is the canonical critical clause of x and LabelDensity(z, Ty)
is large, we expect every node u of Ty with label z to correspond to a node u′ of Tx of
label z, and dTx(u′) = dTy(u) + 1, since we expect Tx to contain a subtree (more or less)
isomorphic to Ty. Introducing a positive correlation between π(y) and π(z) will increase
Pr[Cut(Tx)] but will decrease Pr[Cut(Ta)] whenever y appears as an ancestor of z (or
vice versa) in Ta. It turns out that the damage to Pr[Cut(Ta)] is roughly proportional
to LabelDensity(z, Ty); if this is small, we decide to live with the damage. If it is too
large, we argue that the ubiquity of label z in Tx already ensures that Pr[Cut(Tx)] is
larger than s3. This bonus is again proportional to LabelDensity(z, Ty), and thus this
lends itself to a meet-in-the-middle argument.

Third, and maybe most interestingly, we do not require that the pairs {y, z} ∈ M ,
on which we introduce positive correlation, be disjoint, but allow them to overlap. This
means that M forms the edge set of a graph. We can introduce appropriate positive
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correlations as long as this graph consists of small paths and cycles. For this, we define
a distribution on functions π : V (G) → [0, 1] such that (π(u), π(v)) follow some pre-
described distribution Dγ,�

ε whenever {u, v} is an edge of G but π(u) is still uniform over
[0, 1] even when we condition on the values of all non-neighbors of u. The existence of
such a distribution is somewhat surprising but can in fact be described by a very simple
formula.

5.1 Canonical nodes and clause tree similarity

Recall the definition of TwoCC, the set of variables that have two or more critical clauses.
For k = 3, we will slightly generalize this definition, for technical reasons.

Definition 31. Let F̃ be the CNF formula F plus all 3-clauses that can be inferred from
pairs of 3-clauses of F ; for example, if F contains (x ∨ ȳ ∨ z̄) and (a ∨ x̄ ∨ ȳ), then F̃
additionally contains (a ∨ ȳ ∨ z̄). Let TwoCC be the set of variables that contain at least
two critical clauses in F̃ .

Note that we could easily adapt PPSZ to add all those clauses in a pre-processing step;
in fact, in its original wording in [8], the algorithm does perform a pre-processing step,
adding all clauses which can be derived by resolution of bounded width. However, since
we stated PPSZ in terms of w-implication rather than in terms of small-width resolution
(these two versions are called weak and strong PPSZ, respectively), and we promised not
to change the algorithm at all, we are not allowed to add a pre-processing step. Still,
note that the w-implication mechanism emulates it: if something is w-implied by F̃ , it is
2w-implied by F ; thus, simply increasing w by a factor of two subsumes this preprocessing
step.

Next, we classify each node in a critical clause tree as canonical or non-canonical. Let
u be a node in the critical clause tree Tx, and let root(Tx) = u0, u1, . . . , ud = v be the
path from the root to v, and let zi := varlabel(ui), so z0 = x. Furthermore, let Ci be the
clause label of ui.

Definition 32 (Canonical nodes). The node u in Tx is called a canonical node if for all
0 ≤ i ≤ d, (1) zi 6∈ TwoCC and (2) the clause label of ui is the canonical critical clause
of zi. Otherwise, we call u a non-canonical node. We denote the set of canonical nodes
of Tx by Can(Tx).

Note that all ancestors of a canonical node are canonical. The notion of canonical
nodes is important because the canonical part of critical clause trees looks similar:

Lemma 33 (CCT similarity lemma). Let Tx be the canonical critical clause tree for Tx,
u a node in Tx, v a descendant of u in Tx, and a := varlabel(u), b := varlabel(v). If v
is canonical in Tx, then there is a corresponding node v′ in Ta, the canonical clause tree
of variable a, and the path from u to v has the same variable label sequence as the path
from root(Ta) to v′ in Ta. In particular, varlabel(v′) = b. Furthermore, v′ is canonical.

19



x

a

b

Tx

a

b

Ta

path p

path p′

CCT similarity: if the bold node of Tx with label b is canonical, then Ta contains a
“copy” p′ of p with the same variable and clause labels.

The lemma is restated and proved as Lemma A.1 in the appendix.

6 Almost regular and highly irregular formulas

Recall the critical clause digraph CCG defined in Section 4.1: its vertex set is V , the set
of variables; for every variable x, if the canonical critical clause of x is (x ∨ ȳ ∨ z̄), we
create arcs (x, y) and (x, z). Each vertex (variable) has out-degree 2, giving a total of
2n arcs. It also has average in-degree 2, although some variables might have in-degree
0, 1, or 3 or more. For i ∈ N0, let IDi be the set of variables x with degin(x) = i. Let
ID0,1 = ID0 ∪ ID1.

We define the sibling graph SG = (V,E), an undirected multigraph on the set of
variables V : for every x ∈ V , let (x ∨ ȳ ∨ z̄) be its canonical critical clause. We add the
edge {y, z} to E. Note that |E| = n (counting parallel edges by their multiplicity). What
is degG(y)? It is the number of variables x in whose canonical critical clause y appears;
thus, it is degin(y), its in-degree in the (directed) critical clause graph. The next lemma
is a more precise version of Lemma 20.

Lemma 34. There is a set H ⊆ E(SG) of maximum degree 2 (i.e., H consists of paths
and cycles) with |H| ≥ n− |ID1| − 2 |ID0|.

See Lemma A.3 in the appendix for a proof. From here on, our path is as follows: we
distinguish between the “almost regular” case, when |ID1| + 2 |ID0| is small, the sibling
graph SG = (V,E) is “almost 2-regular”, and we can find a large maximum-degree-
2 subgraph (V,H); and the “highly irregular” case, when |ID1| + 2 |ID0| is large. In
either case, we define an appropriate make-believe distribution D and show that PPSZ
outperforms its earlier analysis. The particular definition of D relies on the set H ⊆
E(SG) in the almost regular case and on the sets ID0 and ID1 in the highly irregular
case. Note that H, ID0, ID1 are by themselves hard to compute.4

Theorem 35 (PPSZ on almost regular formulas). Let H ⊆ E(SG) be a subset of edges
of the sibling graph such that (V,H) has maximum degree 2. Then the success probability
of PPSZ is at least 2−n+s3n+gain1−o(n) for

gain1 ≥
|H|

10118
− n

41391
.

4To be honest, we have not formally proved hardness; but it seems plausible that even deciding whether
a particular clause is a critical clause is coNP-hard.
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Theorem 36 (PPSZ on highly irregular formulas). The success probability of PPSZ is
at least 2−n+s3n+gain2−o(n)

gain2 ≥
|ID1|+ 2 |ID0|

1380
,

where IDi is the set of variables with in-degree i in the critical clause graph.

We define irr := |ID1|+2 |ID0|
n as a measure of how irregular the critical clause graph

is. Combining the two theorems, we see that the success probability of PPSZ is at least
2−n+s3n+gain−o(n), for

gain := n ·max

(
|H|/n
10118

− 1

41391
,

irr

1380

)
≥ n ·max

(
1− irr

10118
− 1

41391
,

irr

1380

)
(by Lemma 34)

≥ n

15218
.

Thus, the success probability of PPSZ is at least Ω (1.306973−n), which proves Theo-
rem 6.

6.1 Intuition behind the proofs

The proofs of Theorem 35 and Theorem 36 are both rather technical, involving lots of
calculations, but rest on a handful of simple ideas. To understand the idea behind the
proof of Theorem 36, suppose we sample π(x) not uniformly but from some distribution
D under which π(x) tends to be larger; that is, x tends to come later in the permutation.
This increases Pr[Cut(Tx)] but decreases Pr[Cut(Ta)] for all critical clause trees Ta where
x appears as a non-root label. If x ∈ ID0,1, there should not be too many of those: after
all, there is at most one a with (a, x) ∈ E(CCG). However, although we know that x has
at most one “parent” in CCG, we have no control over the number of “grandparents”, i.e.,
variables b with (b, a), (a, x) ∈ E(CCG). To remedy the detrimental effect on Tb, we make
sure that π(a) tends to be a bit smaller than under the uniform distribution. Overall,
we choose these biases such that the effect on Tx is beneficial (it increases Pr[Cut(Tx)]),
a bit detrimental on Ta, and neutral on Tb. It turns out that the beneficial effect on Tx
is larger than the detrimental effect on Ta. And since there is at most one such a (since
x ∈ ID0,1), the overall net effect is beneficial.

The idea behind the proof of Theorem 35 is more complex. We choose the distribution
D such that, whenever {y, z} ∈ H, the pair (π(y), π(z)) are positively correlated but both
marginal distributions are uniform over [0, 1]. If x ∨ ȳ ∨ z̄ is the canonical critical clause
of x, this turns out to increase Pr[Cut(Tx)] by some amount. Unfortunately, if y appears
“above” z in some other critical clause tree Ta, the effect is detrimental, i.e., it decreases
Pr[Cut(Ta)]. We have to resort to a meet-in-the-middle argument: if Ta includes only few
positively correlated ancestor-descendant pairs with labels y, z, the detrimental effect will
be small; if there are many such pairs in Ta, then Tx will contain many, too, meaning the
label z appears often in Tx. We can show that this has a beneficial effect on Tx. Of course,
we have to add those effects for all pairs {y, z} ∈ H. We are lucky: the detrimental effects
turn out to be roughly additive, while the beneficial effects are roughly super-additive.

The next two sections are devoted to prove Theorem 35 (Section 7) and Theorem 36
(Section 8). We should note that Theorem 35 is much more difficult to prove; however,
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we feel that the “almost regular case” is the more interesting one, also closer to what we
suspect are worst-case instances. Therefore, we decide to prove Theorem 35 first.

7 The regular case: if H is large

This section contains the proof of Theorem 35. Recall the set H in the theorem, a set
of edges in the sibling graph with that (V,H) has maximum degree 2. Also, recall the
definition of TwoCC ⊆ V , the set of variables that have two or more critical clauses. We
say an edge {y, z} in the sibling graph is TwoCC-free if y 6∈ TwoCC and z 6∈ TwoCC and,
for all x ∈ V whose canonical critical clause is (x∨ ȳ∨ z̄), also x 6∈ TwoCC. Let Hfree ⊆ H
be the set of all TwoCC-free edges in H.

Observation 37. |Hfree| ≥ |H| − 3 |TwoCC|.

Indeed, let x ∈ TwoCC and (x∨ ȳ ∨ z̄) be its critical clause. The variable x is respon-
sible for at most three edges of H becoming “un-free”: {y, z} (if this happens to be in
H), and {x, x′} for each of the at most two neighbors x′ of x in H.

7.1 Label Density

Let y, z be variables and Ty the critical clause tree of y. We need some way to quantita-
tively measure how prominently z features in Ty. To this end, we define the label density
of z in Ty, denoted LabelDensity(z, Ty), by

LabelDensity(z, Ty, r) :=
∑

v∈Can(Ty)
varlabel(v)=z

(1− 2 r)2

(1− r)3
· rd(v)+1 (10)

LabelDensity(z, Ty) :=

∫ 1/2

0
LabelDensity(z, Ty, r) dr , (11)

where d(v) := dTy(v) is the depth of v in Ty (i.e., the distance from v to the root of Ty).
Note that the sum in (10) goes over all canonical nodes of Ty whose variable label is z.
We choose some threshold Thr > 0. Our final choice will be Thr := 2

0.9·10118 ≈
1

4553 .
Using Thr and the notion of label density, we define disjoint subsets of Hfree called Hhigh,
Hlow, and Hrest: For each edge {y, z} ∈ Hfree such that LabelDensity(z, Ty) ≥ Thr
or LabelDensity(y, Tz) ≥ Thr, insert {y, z} into Hhigh. Next, for each {y, z} ∈ Hhigh,
assume without loss of generality that LabelDensity(z, Ty) ≥ Thr; note that there is
at most one other edge {z, z′} ∈ Hfree; if there is one, add this edge {z, z′} to Hrest. The
set Hfree \ Hhigh \ Hrest consists of cycles and paths and has at least |Hfree| − 2 |Hhigh|
edges, since |Hrest| ≤ |Hhigh|; we can remove a 1

18 -fraction of Hfree \Hhigh \Hrest to make
sure that the remaining edges form connected components with at most 17 edges each.
Let Hlow be the set of remaining edges, and observe that

18

17
|Hlow|+ 2 |Hhigh|+ 3 |TwoCC| ≥ |H| (12)

Informal synopsis of what follows. We want to define a distributionD on placements
π : V → [0, 1] under which π(y) and π(z) are positively correlated if {y, z} ∈ Hlow and
independent otherwise. How will this affect the probabilities Pr[Cut(Ta)]? As a yardstick,
the positive correlation will boost Pr[Cut(Ta)] if y, z appear as siblings in Ta, i.e., children
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of the same parent, and in particular if y, z are the children of the root. Thus, it will in
particular boost Pr[Cut(Tx)] when (x ∨ ȳ ∨ z̄) is the canonical critical clause of x. It will
be straightforward to quantify this boost.

The are two challenges to this approach. First, the positive correlation between π(y)
and π(z) will decrease Pr[Cut(Ta)] if y is an ancestor of z in Ta (to be more precise, if
there are nodes u, v in Ta with varlabel(u) = y and varlabel(v) = z), or vice versa. The
magnitude of this detrimental effect will be stronger the closer v is to the root of Ta.
This points to a way to bound this effect: if u has not one but many descendants with
label z, then we will see that the label z appears very frequently in Ty, too (formalized in
the CCT similarity lemma, Lemma 33; this in turn means that LabelDensity(z, Ty) is
large; if it is greater than Thr then {y, z} is in Hhigh, so π(y), π(z) are independent. In
this case, we will show that Pr[Cut(Tx)] gets a direct boost from z appearing very often
in Tx.

The second problem is that we want π(y), π(z) to be independent if {y, z} 6∈ Hlow. The
naive approach would be to make sure Hlow is a set of paths and then, on each Hlow-path
x0, . . . , xt, make the π(xi) form a Markov chain such that π(xi−1) and π(xi) are positively
correlated in the way we want. This approach has two drawbacks; first, π(y) and π(z)
will be dependent whenever y, z lie on the same H-path; second, if the original Hlow is a
set of 3-cycles, for example, we would lose 1/3 of all edges to make sure it becomes a set
of paths. This approach is possible but makes us lose quite a bit of oomph. Instead, we
define a “not-quite Markov chain”; given a distribution D2 on [0, 1]× [0, 1] and a graph G,
we define a distribution DG on functions π : V (G)→ [0, 1] such that π(u), π(v) follow D2

if {u, v} ∈ E and are independent and uniform if not. The distribution DG will possess
all the independence properties we need. However, it works only if the number of edges
in G is small enough. For our choice of D2, “small enough” means “at most 17”. This is
why we make sure that every connected component of Hlow has at most 17 edges.

For the rest of this section, we will do five things: in Section 7.2 we define the dis-
tribution D; in Sections 7.3 and 7.4 we bound the detrimental effects should z be a
descendant of y in some other critical clause tree Ta; Section 7.5 quantifies how much the
positive correlation of π(y) and π(z) boosts Pr[Cut(Tx)] ; Section 7.6 quantifies the boost
to Pr[Cut(Tx)] if LabelDensity(z, Ty) is large; Section 7.7 analyzes the cut probability
of Tx if x ∈ TwoCC; finally, in Section 7.8, we put the bounds of the four earlier sections
together and prove Theorem 35.

7.2 The distribution D on placements π : V → [0, 1]

Let γ : [0, 1] → R+
0 be a continuous function with γ(0) = γ(1) = 0. Let φ := γ′ be its

derivative. We are fine with γ failing to be differentiable, as long as this happens for only
a constant number of points. For example, γ may be piecewise linear.

7.2.1 Dγ,�
ε on [0, 1]× [0, 1]

Definition 38. For ε ∈ R, let Dγ
ε be the distribution on [0, 1] with probability density

1 + εφ(r) and cumulative probability distribution PrX∼Dγε [X < r] = r + εγ(r). Let Dγ,�
ε

be the distribution on [0, 1]× [0, 1] whose density at (x, y) is 1 + εφ(x)φ(y).

Note that
∫ 1

0 φ(x) dx = γ(1) = 0 and therefore 1 + εφ(x) and 1 + εφ(x)φ(y) are indeed
probability densities, provided that they are non-negative for all values x, y.

Proposition 39. Suppose (X,Y ) ∼ Dγ,�
ε and r ∈ [0, 1]. Then
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1. Pr[X < r] = r and similarly Pr[Y < r] = r.

2. Pr[X,Y < r] = r2 + εγ2(r).

3. Pr[X < r | Y = b] = r + εφ(b)γ(r) .

4. Pr[X < r | Y ≥ r] = r − εγ2(r)
1−r .

The proof of this proposition is straightforward. In our application, we choose

γ(r) :=

{
r(1− 2 r)3/2 if r ≤ 1/2,

0 if r > 1/2.
(13)

Note that γ(r) is continuous differentiable, and φ(r) := γ′(r) is continuous. One checks
that −1/

√
5 ≤ φ(r) ≤ 1 for all r ∈ [0, 1]. We will also choose some ε ≤ 0.13, and

thus 1 + εφ(x) and 1 + εφ(x)φ(y) are really probability density functions on [0, 1] and
[0, 1] × [0, 1]. Still, we will try to keep definitions and statements as general as possible;
if something only holds for this particular choice of γ(r), we will explicitly say so.

7.2.2 DG: Extending Dγ,�
ε to paths and cycles

Our goal is to define a distribution D on placements π : V (Hlow) → [0, 1] such that
(π(y), π(z)) ∼ Dγ,�

ε whenever {y, z} ∈ V (Hlow), and “somewhat independent” otherwise.
The obvious way to do so would be to make Hlow a collection of paths (by removing
one edge per cycle) and, for each path u0, . . . , ut, define a Markov chain by sampling
x0 ∈ [0, 1] uniformly at random and xi from [0, 1] with density f(xi) := 1+ εφ(xi−1)φ(xi),
then setting π(ui) := xi. This has two drawbacks: first of all, it is not clear how to build a
Markov chain on a cycle; second, non-neighbors like xi and xi−2 will not be independent;
these “second-degree dependencies” can in theory be dealt with but turn out to be very
nasty in practice.

Instead, we define something that could be described as a “first-degree approximation”
of a Markov chain, and which generalizes nicely to cycles and, in fact, general graphs. For
a graph G = (V,E), we define a distribution DG for X = (Xv)v∈V ranging over [0, 1]V

with density function

fDG(x) = 1 + ε
∑

{u,v}∈E(G)

φ(xu)φ(xv) . (14)

This is a density function provided that it is non-negative everywhere. For our particular
choices γ(r) as defined in (13) and ε ≤ 0.13, one checks that this holds provided that
|E| ≤ 17. For each connected component C of Hlow (which is either a path or a cycle
and has at most 17 edges) we sample π independently with density fDC . The following
theorem lets us compute conditional probabilities under DG:

Theorem 40. Let Av ⊆ [0, 1] for v ∈ V (G) be non-empty intervals; let V (G) = K ] I
and EI := {{u, v} ∈ E | u, v ∈ I}. Then

Pr[Xk ∈ Ak ∀k ∈ K | Xi ∈ Ai ∀i ∈ I] =
∏
k∈K

µ(Ak) ·

(
1 + ε

∑
{u,v}∈E\EI TuTv

1 + ε
∑
{u,v}∈EI TuTv

)
,

where µ is the Lebesgue measure on [0, 1] and Tu := Ex∈Au [φ(x)], the expectation being
taken with respect to the uniform distribution on Au.
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See Theorem B.1 in the appendix for a proof. Intuitively, the product
∏
k∈K µ(Ak)

is what the probability were under the uniform distribution, i.e., when ε = 0; pretending
that the denominator in the fraction above is 1, the theorem basically states that the
probability of

∏
Ak is influenced only by edges touching K.

Corollary 41. The marginal distribution of Xu under DG is the uniform distribution; if
{u, v} ∈ E(G), then the marginal distribution of (Xu, Xv) under DG is Dγ,�

ε .

Proof. The first part follows from the second, by an additional marginalization step; to
see why the second part is true, we compute the marginal distribution of (Xu, Xv) by
setting I = V \ {u, v}, Aw := [0, 1] for all w ∈ I, and Au, Av as we like; we apply the
theorem and observe that the w ∈ I could just as well not be there: it is the same under
DG as it would be if G consisted of a single edge {u, v}, i.e., under Dγ,�

ε . Since the
distribution of (Xu, Xv) is characterized by the probability of sets Au × Av for Au, Av
being intervals,5 this concludes the proof.

The following corollary describes an important special case and is proved as Corol-
lary B.2 in the appendix:

Corollary 42. Let u ∈ V (G) and Au := [0, r]; for each other v ∈ V \ {u}, suppose Av is
one of {r}, [0, r], [r, 1], or [0, 1]. Define T−v = min(0, Tv). Then

Pr[Xu ∈ Au | Xv ∈ Av for all other v] ≥ r +
εγ(r)

∑
v:{u,v}∈E T

−
v

1− 2
25 ε(|E| − 1)

. (15)

holds for our particular choice γ(r) = r(1 − 2 r)3/2. Furthermore, if |E(G)| ≤ 17 and
ε ≤ 0.13, this is at least

r + 1.2 εγ(r)
∑

v:{u,v}∈E

T−v .

7.2.3 The divergence from uniform to DG

For this section, define md := E[φd(x)]. This is the dth moment of φ if we view φ(X) as
a random variable with X uniform over [0, 1]. Note that m1 = 0. We write fKL(ε) :=
(1− ε) ln(1− ε) + ε.

Lemma 43. If |φ(x)| ≤ 1 for all x ∈ [0, 1] then KL(Dγ
ε ||U) ≤ m2

ln(2) · fKL(ε). Using

ln(1− ε) ≤ −ε− ε2/2, this is at most to m2
2 ln(2)(ε2 + ε3).

See Lemma B.3 for a proof. Next, consider the distribution DG described above. We
want to bound KL(D||U) in terms of ε and t.

Lemma 44. Let G be a cycle or a path, consisting of at most t edges. For γ(r) =
r(1− 2 r)3/2, φ(r) = γ′(r), ε ≤ 0.13, and t ≤ 17, it holds that KL(DG||U) ≤ 0.0064 ε2t.

For the curious reader who wants to experiment with different choices for γ(r), here
is a more general but non-rigorous version. Let m2 := Ex∈[0,1][φ

2(x)]. Then KL(D||U)

should be bounded by
ε2tm2

2
2 ln(2) times something only a bit larger than 1. The “only a bit”

depends on ε, t, and the choice of γ. See Lemma B.4 for a proof.

5Technically, we should specify that DG is a probability distribution on [0, 1]V with the σ-algebra being
the Borel sets; in practice, all sets we are interested in are intervals, anyway.
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7.2.4 Using DG to sample placements π

As stated before, we start sampling π ∼ D by sampling it independently on every con-
nected component of Hlow. Next, for all x ∈ V \ TwoCC \ V (Hlow), sample π(x) ∈ [0, 1]
uniformly and independently. It remains to sample π(x) for x ∈ TwoCC. We define

γTwoCC(r) := max
(

0, 40r7/2(1− 2 r)2
)
, (16)

and sample π(x) ∼ DγTwoCC
ε independently for each x ∈ TwoCC. This completes the

description of D.

Why this particular choice? Why do we choose γ(r) = r (1− 2 r)3/2? For one, note
that Qr = Pr[Cutr(T

∞)] becomes 1 for r ≥ 1/2; thus, there is no point in distorting the
distribution of π(x) in the range [1/2, 1]. Second, we need γ(0) = γ(1) = 0 otherwise
1 + εφ(x)φ(y) is not a density function on [0, 1]× [0, 1]. So it’s a natural choice to make
γ(r) = 0 for all r ∈ [1/2, 1] and thus keep π(x) uniform on [1/2, 1]. Third, and least
obvious, bounding the detrimental effects that a positive correlation between π(y) and
π(z) has on Pr[Cutr(Ta)] becomes harder as r grows; for our method of bounding those
effects, we need that φ(r) = γ′(r) vanishes at r = 1/2. The factor (1 − 2 r)3/2 turns out
to work. In fact, the 3/2 in the exponent could be replaced by a different constant, but
1 or less would not allow us to bound the detrimental effects, and too large a constant
would reduce the beneficial effects. Other than that, we have not checked whether the
constant 3/2 is optimal, neither whether the general shape of γ(r) can be improved.

As for the weird choice γTwoCC(r) = 40r7/2(1 − 2 r)2, it will simply turn out to be
good enough; that is, with that choice, variables in TwoCC do not make any trouble, and
the worst case of the analysis happens for TwoCC = ∅. Tinkering with γ might very
well improve the eventual running time result; tinkering with γTwoCC most likely will not.
Next, we need to bound KL(D||U).

Lemma 45. For our particular choice of γ and γTwoCC, ε ≤ 0.13, and every component
of Hlow having at most 17 edges, the Kullback-Leibler divergence KL(D||U) from U to D
is at most

KL(D||U) ≤ 0.0064 ε2|Hlow|+
5

48 ln(2)
fKL(ε) |TwoCC|

Proof. D is independent on every connected component of Hlow and on every variable
outside V (Hlow). Since KL is additive for independent random variables, we get

KL(D||U) =
∑

x∈TwoCC

KL(DγTwoCC
ε ||U) +

∑
C:connected

component of Hlow

KL(DC ||U)

≤ m2(φTwoCC)

ln(2)
· fKL(ε)|TwoCC|+ 0.0064 ε2

∑
C:connected

component of Hlow

|E(C)| ,

by Lemma 43 and 44, wherem2(φTwoCC) :=
∫ 1

0 φ
2
TwoCC(r) dr = 5

48 for our choice γTwoCC(r) =

40r7/2(1− 2 r)2. This concludes the proof.

7.3 Disentangling the tree

Throughout this section, let x ∈ V and (x ∨ ȳ ∨ z̄) be its canonical critical clause. Let L
be the left child of the root of Tx and R the right child. Without loss of generality, we
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assume that varlabel(L) = y and varlabel(R) = z. Let u, v be two nodes in Tx. If v is a
descendant of u and {varlabel(u), varlabel(v)} ∈ Hlow, we say v is a subordinate of u and
write v C u.

We fix some r ∈ [0, 1] and bound Pr[Cutr(Tx)] from below. If r ≥ 1/2 then γ(r) = 0
and the events [π(z) < r] are independent and have probability r, for all variables. This
implies Pr[Cutr(Tx)] ≥ 1− oh(1) as under the uniform distribution, by Lemma 13. Thus,
we focus on r < 1/2.

Removing correlations in Tx. Fix some r < 1/2. To make Pr[Cutr(Tx)] easier to
analyze, we take Tx through a series of careful transformation steps, each not increasing
Pr[Cutr(Tx)]. In every step, we pick a node of v of Tx and give it a fresh label lv. We
have to be careful: if v C u for some nodes u in Tx, then varlabel(v) and varlabel(u) are
correlated in D, and this correlation has adverse effects—it decreases Pr[Cutr(Tx)]; to
take this into account, we have to give the new label a “drag” δv. That is, Pr[π(lv) < r]
should not be r but r − δv. To state things formally, we define

δroot := 1.2 εγ(r) max(0,−φ(r)) (17)

δnon-root :=
1.2 εγ2(r)

1− r
(18)

For every node v of Tx with varlabel(v) 6∈ TwoCC, set

δv :=
∑
u:vCu

{
δroot if u is the root

δnon-root if u is not the root .
(19)

For every v with varlabel(v) ∈ TwoCC, set δv := −εγTwoCC(r). We define

δmax := max (2δnon-root, δnon-root + δroot)

= 1.2 εγ(r) max

(
2 γ(r)

1− r
,
γ(r)

1− r
− φ(r)

)
. (20)

Since Hlow has maximum degree 2, the sum in (19) has at most two terms, at most one
of them being δroot. It follows that δv ≤ δmax for all nodes v.

We define DeCorr(Tx, r) to be the tree obtained from Tx by assigning a fresh label lv
to each node v in Tx and setting Pr[π(lv) < r] := r−δv. Note that we do not need to fully
specify the distribution of π(lv); it is enough to specify Pr[π(lv) < r] since we are only
interested in the event Cutr, for fixed r. The notation DeCorr stands for “de-correlate”.

Lemma 46. Pr[Cutr(Tx)] ≥ Pr[Cutr(DeCorr(Tx, r))].

The impatient reader may skip the proof and go straight to Section 7.3.1.

Proof. We assign new labels step by step. We start with T0 := Tx.

1. Suppose there is a node v that is a subordinate of two nodes u and w, i.e., v C u,
v Cw. Let a = varlabel(u), b = varlabel(v), c = varlabel(w), so {a, b}, {b, c} ∈ Hlow.
We define Ti+1 by giving v a fresh label b′ and sample π(b′) independently such that
Pr[π(b′)] = r − δv. Looking at the definition of δv in (19), we see that

δv =

{
2 δnon-root if neither a nor c is x

δroot + δnon-root if x ∈ {a, c} .
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Let τ be a random variable that includes the values π(root) and, for all labels l
except b and b′, the information whether π(l) < r or π(l) ≥ r.

Claim. Pr[Cutr(Ti) | τ ] ≥ Pr[Cutr(Ti+1) | τ ].

Proof. Under τ , the event Cutr(Ti+1) becomes a monotone Boolean function f(zb, zb′)
in the variables zb := 1[π(b)<r] and zb′ := 1[π(b′)<r]. Since Ti can be obtained from
Ti+1 by replacing b′ by b, the event Cutr(Ti) becomes f(zb, zb) under τ . The claim
is equivalent to Pr[f(zb, zb) = 1] ≥ Pr[f(zb, zb′) = 1], all conditioned on τ . We check
all possibilities what f could be.

(a) If f(zb, zb′) does not depend on b′ (for example, if f ≡ 1, meaning Cutr(Tx)
happens regardless of π(b), π(b′); or f ≡ 0, meaning Cutr(Tx) does not happen,
regardless of π(b), π(b′); or f ≡ zb, meaning Cutr(Tx) happens if and only if
π(b) < r, regardless of π(b′)), then these two probabilities are obviously equal.

(b) If f(zb, zb′) = zb ∧ zb′ , then obviously

Pr[Cutr(Ti) | τ ] = Pr[zb] ≥ Pr[zb ∧ zb′ ] = Pr[Cutr(Ti+1) | τ ] .

(c) If f(zb, zb′) = zb ∨ zb′ then... Wait, this cannot happen: by Observation 7, the
nodes labeled b and b′ form an antichain in Ti+1 and thus Cutr(Ti+1) cannot
become an OR of them.

(d) This leaves the (most interesting) case that f(zb, zb′) = zb′ . We have to show
that Pr[π(b) < r | τ ] ≥ Pr[π(b′) < r | τ ]. The latter is r − δv by construction,
as π(b′) is independent of everything.

It remains to show that Pr[π(b) < r | τ ] ≥ r− δv. In the spirit of Corollary 42,
we define an interval Al for each label as: Ax := {r}; Ab := [0, r]; for l 6= x, b,
set Al = [0, r] if π(l) < r and Al = [r, 1] if π(l) ≥ r; note that τ contains
all necessary information on π to define the Al. We apply Corollary 42 and
conclude that

Pr[Cutr(Ti) | τ ] = Pr[π(b) < r | τ ]

= Pr[π(b) ∈ Ab | π(l) ∈ Al for all l 6= b]

≥ r + 1.2 εγ(r)(T−a + T−c ) . (21)

Let C be the connected component of Hlow that contains b. We can apply
Corollary 42 since D is independent on all connected components of Hlow; that
is, conditioning on π(l) ∈ Al for some l 6∈ C has no effect and can be ignored.
Also, the connected component C of Hlow is a path or a cycle, so b does not
have any neighbors in C besides a and c. Recall that T−a = Es∈Aa [φ(s)]. If
Aa = [0, r] then Es∈Aa [φ(s)] = γ(r)/r > 0 and T−a = 0; If Aa = [r, 1] then

1.2 εγ(r)T−a = −γ2(r)
1−r = −δnon-root; if Aa = {r} (happens if a = x, the root

label of Tx) then Ta = φ(r) and 1.2 εγ(r)T−a = 1.2 εγ(r) min(φ(r), 0) = −δroot.
This holds analogously for T−c . Thus, (21) is at least r − δv.

This proves the claim.

We repeat Step 1 until all nodes v with v C u,w have received a fresh label.
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2. Suppose v is a subordinate of exactly one node u: v C u. Among all such nodes
that have not yet received a fresh label, let v be a minimal such node, i.e., as far
from the root as possible. Let a = varlabel(u) and b = varlabel(v). Let c be the
other neighbor of b in Hlow (if there is one; if there isn’t, the following proof will
only become simpler). Note that no ancestor of v has label c, otherwise v C u,w
and we would be in Point 1. No descendant of v has label c; otherwise, some w
would have w C v and w would fall under Point 1 or under Point 2; the latter case
would contradict minimality of v. As before, we assign v a fresh label b′ and set
Pr[π(b′) < r] = r − δv, where

δv =

{
δroot if a = x

δnon-root if a 6= x

Let τ be a random variable that includes the values π(root) and, for all labels l
except b and b′ and c, the information whether π(l) < r or π(l) ≥ r.

Claim. Pr[Cutr(Ti) | τ ] ≥ Pr[Cutr(Ti+1) | τ ].

Proof. Under τ , the event Cutr(Ti+1)|τ becomes a monotone Boolean function
f(zb, zb′ , zc) and Cutr(Ti)|τ becomes f(zb, zb, zc), where zl = 1[π(l)<r]. We list all
cases what f could be; we skip the trivial cases where f(zb, zb′ , zc) does not depend
on zb′ .

(a) f(zb, zb′ , zc) = zb′ . We define the intervals Al as in Point 1d; however, for l = c
we set Ac = [0, 1] since our condition τ does not reveal anything on c, i.e., we
do not condition on c. The rest of the argument is the same, and as in (21) we
see that Pr[Cutr(Ti) | τ ] is at least

Pr[Cutr(Ti) | τ ] = Pr[π(b) < r | τ ]

≥ r + 1.2 εγ(r)(T−a + T−c )

= r + 1.2 εγ(r)T−a (since Ac = [0, 1])

= r − δv

Thus, Pr[Cutr(Ti) | τ ] ≥ r − δv = Pr[π(b′) < r] = Pr[Cutr(Ti+1)].

(b) f depends only on b′ and c; since no ancestor of u has label c, this means
f(zb′ , zc) = zb′ ∧ zc. In this case we extend τ to τ ′ by additionally revealing
whether π(c) < r. If no then then f(zb′ , zc) = f(zb, zc) = 0, and Cutr(Ti),
Cutr(Ti+1) both do not happen; if π(c) < r then Pr[f(zb′ , zc) = 1 | τ ′] =
Pr[π(b′) < r | τ ′] and we are back in Point 2a, just with Ac := [0, r]; we
repeat the above computation, arriving at (21), this time noting that Tc =

Es∈[0,r][φ(s)] = γ(r)
r > 0 and thus T−c = 0, as well.

(c) f depends only on zb′ and zb; then f(zb, zb′) = zb∧zb′ and Pr[Cutr(Ti+1) | τ ] =
Pr[zb′ ∧ zb] ≤ Pr[zb] = Pr[Cutr(Ti)] holds trivially.

(d) f depends on all three. We claim that f(zb, zb′ , zc) is either zb′ ∧ zb ∧ zc or
zb′ ∧ (zb ∨ zc). More generally, observe that no restriction of f is of the form
zb ∨ zb′ or zb′ ∨ zc, since no ancestor or descendant of v has label b or c.
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Proposition 47. Let f(z1, . . . , zn) be a monotone Boolean function that de-
pends on z1 and such that no restriction of f is of the form z1 ∨ zi, for any
i ≥ 2. Then f(z1, . . . , zn) = z1 ∧ g(z2, . . . , zn) for some monotone Boolean
function g.

Proof. Since f is monotone, there is a unique way to write it as a minimal
monotone CNF formula F = C1 ∧ . . . Cm, i.e., such that no clause C of F
is contained in another clause D. Since f depends on z1, there is a clause
containing z1, without loss of generality C1. If C1 = (z1) then no other clause
C ′ of F contains z1 (by minimality) and F = z1 ∧ (C2 ∧ · · · ∧Cm), and we are
done. Otherwise, without loss of generality C1 = (z1 ∨ z2 ∨ · · · ∨ zk). Let ρ be
the restriction that sets z3, . . . , zk to 0 and zk+1, . . . , zn to 1. Under ρ, the first
clause C1 becomes z1 ∨ z2. Let Ci be any other clause. By minimality, there
is some zj ∈ Ci \ C1, i.e., j ≥ k + 1. Thus ρ(zj) = 1 and Cj is satisfied. This
means that F |ρ = z1 ∨ z2, contradicting the assumption that no restriction of
f is z1 ∨ zi.

The proposition shows that f(zb, zb′ , zc) is either f(zb, zb′ , zc) is either zb′∧zb∧zc
or zb′ ∧ (zb ∨ zc), since we assume that it depends on all three variables. If
f(zb, zb′ , zc) is zb′ ∧zb∧zc then Cutr(Ti)|τ is zb∧zb∧zc and the claim obviously
holds. If f(zb, zb′ , zc) is zb′ ∧ (zb∨ zc) then Cutr(Ti)|τ = f(zb, zb, zc) = zb∧ (zb∨
zc) = zb. We see that

Pr[Cutr(Ti+1) | τ ] = Pr[zb′ ∧ (zb ∨ zc) | τ ]

≤ Pr[zb′ | τ ] = r − δv .

On the other hand, Pr[Cutr(Ti)|τ ] = Pr[zb | τ ] = Pr[π(b) < r | τ ]; we have
already seen in Point 2a that this is at least r − δv.

This proves the claim.

We repeat Step 2 until every subordinate v has received a new label.

3. Pick any label b := varlabel(v) ∈ V (Hlow) that still appears in Ti. Let a and c be
the neighbors of b in Hlow (again, if b has only one neighbor then pretend c does not
exist; the subsequent proof will only become simpler). Neither a nor c appears as
the label of an ancestor or descendant of some v with varlabel(b); however, a might
appear as an ancestor of c (since a, c are not neighbors in Hlow, unless a, b, c form a
triangle in Hlow). This makes this step less obvious than one may assume.

We form Ti+1 by replacing every occurrence of b by a fresh label b′ and setting
Pr[π(b′) < r] = r; that is, we set δv = 0 for all v with varlabel(v) = b. We let
τ contain the values π(l) for all labels except a, b, c and b′ (yes, now we can af-
ford to reveal the precise value of π(l)). Under τ , Cutr(Ti+1) becomes a monotone
Boolean function f(za, zb′ , zc),

6 and Cutr(Ti) becomes f(za, zb, zc). If f(za, zb, zc)
does not depend on zb, we are done. Otherwise, since a, c never appear at ancestors
or descendants at a b-labeled node, we can apply Proposition 47 and conclude that
f(za, zb, zc) = zb ∧ g(za, zc).

6we replaced all occurrences of b by b′, so b does not occur anymore in Ti+1
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Case 1. g(za, zc) is not za∨zc. Then it is is either 1 or za or zc or za∧zc (it cannot be
0 since then f would not depend on zb, and we have already handled that case). Each
of these cases can be equivalently described as π(a) ∈ Aa, π(b) ∈ Ab, and π(c) ∈ Ac
for intervals AaAb, Ac; for example if g(za, zc) = za ∧ zc then f(za, zb, zc) = 1 if
and only if π(a) ∈ [0, r], π(b) ∈ [0, r] and π(c) ∈ [0, r]; if g(za, zc) = za then
f(za, zb, zc) = 1 if and only if π(a) ∈ [0, r], π(b) ∈ [0, r] and π(c) ∈ [0, 1]. In all
cases, Ab = [0, r]. The condition τ can be described by π(l) ∈ Al for Al := {τ(l)}.
We apply Theorem 40 with K = {a, b, c} and I being the remaining variables in
their connected component of Hlow, and see that

Pr[Cutr(Ti) | τ ] = Pr[π(k) ∈ Ak ∀k ∈ K | π(l) ∈ Al ∀i ∈ I]

= µ(Aa)µ(Ab)µ(Ac) ·

(
1 + ε

∑
{u,v}∈E\EI TuTv

1 + ε
∑
{u,v}∈EI TuTv

)

We partition the set E \EI into two parts: the first part contains {a, b} and {b, c},
the second part Erest contains the rest. Since a, c are the only neighbors of b in
Hlow, no edge in Erest is incident to b. Furthermore, µ(Ab) = µ([0, r]) = r, and the
terms TaTb and TbTc are non-negative: each Au is either [0, r] or [0, 1], and thus Tu
is either γ(r)

r or 0. Thus, the above is at least

r µ(Aa)µ(Ac) ·

(
1 + ε

TaTb + TbTc +
∑
{u,v}∈Erest

TuTv

1 + ε
∑
{u,v}∈EI TuTv

)

≥r µ(Aa)µ(Ac) ·

(
1 + ε

∑
{u,v}∈Erest

TuTv

1 + ε
∑
{u,v}∈EI TuTv

)
(22)

Next, we compute Pr[Cutr(Ti+1) | τ ] by observing that [π(b′) < r] is independent
of everything; we set Ab = [0, 1] (since we do not condition on anything; b has
disappeared), which makes Tb vanish. We apply Theorem 40 and get

Pr[Cutr(Ti+1) | τ ] = Pr[π(b′) < r] · Pr[π(a) ∈ Aa, π(c) ∈ Ac | π(l) ∈ Al ∀i ∈ I]

= r · µ(Aa)µ(Ac) ·

(
1 + ε

∑
{u,v}∈Erest

TuTv

1 + ε
∑
{u,v}∈EI TuTv

)
= (22) .

Thus, Pr[Cutr(Ti) |τ ] ≥ Pr[Cutr(Ti+1) |τ ].

Case 2. g(za, zc) = za∨zc. This is more uncomfortable since zb∧(za∨zc) = 1 cannot
be described as π(a) ∈ Aa, π(b) ∈ Ab, π(c) ∈ Ac. At least we know that some node u
with varlabel(u) = a is an ancestor or descendant of some w with varlabel(w) = c.
This means that {a, c} 6∈ Hlow since we would be in Step 2 otherwise. In other
words, a, b, c do not form a triangle in Hlow, and Erest does not contain {a, c}. We
write

zb ∧ (za ∨ zc) = 1⇐⇒ π(b) ∈ [0, r] ∧ π(a) ∈ [0, r] ∧ π(c) ∈ [0, r] or

π(b) ∈ [0, r] ∧ π(a) ∈ [0, r] ∧ π(c) ∈ [r, 1] or

π(b) ∈ [0, r] ∧ π(a) ∈ [r, 1] ∧ π(c) ∈ [0, r]

and apply Theorem 40 to each of these three cases. Noting that Ta = γ(r)
r if
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Aa = [0, r] and Ta = −γ(r)
1−r if Aa = [r, 1], we get

Pr[Cutr(Ti) | τ ] = Pr[π(b) < r ∧ (π(a) < r ∨ π(c) < r) | τ ]

= r3 ·

1 + ε

γ2(r)
r2 + γ2(r)

r2 +
∑
{u,v}∈Erest

TuTv

1 + ε
∑
{u,v}∈EI TuTv


+ r2(1− r) ·

1 + ε

γ2(r)
r2 + −γ2(r)

r(1−r) +
∑
{u,v}∈Erest

TuTv

1 + ε
∑
{u,v}∈EI TuTv


+ (1− r)r2 ·

1 + ε

−γ2(r)
r(1−r) + γ2(r)

r2 +
∑
{u,v}∈Erest

TuTv

1 + ε
∑
{u,v}∈EI TuTv


Next, we compute Pr[Cutr(Ti+1) | τ ], noticing that Pr[π(b′) < r] = r, independently
of everything else, and setting Ab = [0, 1], making Tb vanish; by Theorem 40 we get

Pr[Cutr(Ti+1) | τ ] = r · Pr[π(b) ∈ [0, 1] ∧ (π(a) < r ∨ π(c) < r) | τ ]

= r3 ·

(
1 + ε

∑
{u,v}∈Erest

TuTv

1 + ε
∑
{u,v}∈EI TuTv

)

+ r2(1− r) ·

(
1 + ε

∑
{u,v}∈Erest

TuTv

1 + ε
∑
{u,v}∈EI TuTv

)

+ (1− r)r2 ·

(
1 + ε

∑
{u,v}∈Erest

TuTv

1 + ε
∑
{u,v}∈EI TuTv

)

Taking the difference Pr[Cutr(Ti) | τ ]−Pr[Cutr(Ti+1) | τ ], we notice that the 1-term
in all three parentheses cancel out, and similarly

∑
{u,v}∈Erest

TuTv; the denominator
is the same in all cases, and therefore

(1 + ε
∑

{u,v}∈EI

TuTv) · (Pr[Cutr(Ti) | τ ]− Pr[Cutr(Ti+1) | τ ])

=r3

(
γ2(r)

r2
+
γ2(r)

r2

)
+ 2 r2(1− r)

(
γ2(r)

r2
+
−γ2(r)

r(1− r)

)
=2(1− r)γ2(r) ≥ 0 .

This shows that Pr[Cutr(Ti) | τ ] ≥ Pr[Cutr(Ti+1) | τ ]. We repeat this step until
every b ∈ V (Hlow) has been replaced by a new label b′

4. Note that by now no b ∈ V (Hlow) appears in Ti. This means that the values π(l) are
independent for all labels appearing in Ti. Still, some labels might appear multiple
times. Let b be a label in Ti that appears multiple times, and pick a node v with
varlabel(v) = b. We form Ti+1 by giving v a new label b′ and setting Pr[π(b′) <
r] := Pr[π(b) < r]. Formally, we set Pr[π(b′) < r] = r−δv for δv := r−Pr[π(b) < r].
Note that δv is 0 if b 6∈ TwoCC, and δv = −εγTwoCC(r) if b ∈ TwoCC.

Let τ contain the values π(l) for all labels l except b′ and b. We claim that
Pr[Cutr(Ti) | τ ] ≥ Pr[Cutr(Ti+1) | τ ]. Under Cutr(Ti+1) becomes f(zb, zb′) and
Cutr(Ti) becomes f(zb, zb). If f(zb, zb′) is 0 or 1 or zb then f(zb, zb′) = f(zb, zb). If
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f(zb, zb′) is zb′ then

Pr[Cutr(Ti) | τ ] = Pr[π(b) < r | τ ]

= Pr[π(b) < r] (since π(b) is independent)

= Pr[π(b′) < r] (by our choice)

= Pr[π(b′) < r | τ ] (since π(b′) is independent)

= Pr[Cutr(Ti+1) |τ ] .

If f(zb, zb′) = zb ∧ zb′ then f(zb, zb′) ≤ f(zb, zb) for all values zb, zb′ and the claim is
obvious. Finally, as in all cases above, f(zb, zb′) cannot be zb ∨ zb′ since the vertices
labeled b in Ti form an antichain.

We repeat this step until no label appears more than once in Ti.

5. Once all nodes except the root have received a new label, stop the process.

Note that the final tree is exactly DeCorr(Tx, r) as defined above. This completes the
proof of Lemma 46.

Note that Point 4, the case that π is independent of all labels but labels appear mul-
tiple times, is exactly the setting Lemma 7 in Paturi, Pudlák, Saks, and Zane [8]. They
used the famous FKG inequality; in fact, from Point 4 one can easily extract a proof of
the FKG inequality, at least for the special case of monotone Boolean functions.

Of course, we can interrupt the above process anytime, for example if we do want some
nodes to keep their shared label, or two variables to keep their correlated distribution.
Just that the resulting tree will not be DeCorr(Tx, r) but some “intermediate” version
thereof.

7.3.1 Making T infinite

For technical reasons, we need some additional clean-up steps. They are mostly dealing
with the fact that DeCorr(Tx, r) is finite, whereas we would like to deal with infinite
trees. We pick some h′ with 1� h′ � h.

1. If some node v with h′ ≤ d(v) ≤ h − 1 has fewer than two children, add new
children until it has two. Make them safe leaves if their depth is h and unsafe leaves
otherwise. This does not increase Pr[Cutr]. Repeat this step for as long as possible.

2. Set δv := δmax for all nodes v with depth h′ < d(v) ≤ h, i.e., Pr[π(varlabel(v)) <
r] = r − δmax. This does not increase Pr[Cutr].

Next, we take the resulting tree and “extend it to infinity”. This will increase
Pr[Cutr(T )], but only by o(1):

Lemma 48 (Extending T to infinity). Let T be a labeled tree of height h in which all
safe leaves have depth h, r̃ ≤ r < 1/2 be some fixed numbers, and π be a distribution on
placements on labels such that for every node v of depth greater than h′, the following holds:
(1) the label lv is not shared by any other node; (2) π(lv) is independent of everything
else; (3) Pr[π(lv) < r] = r̃; (4) v has exactly two children if d(v) ≤ h− 1, and it is a safe
leaf if d(v) = h.

Construct T ′ from T by replacing each safe leaf v by a copy of T∞, so T ′ has no safe
leaves anymore. We set Pr[π(l) < r] := r̃ for all new labels. Then

Pr[Cutr(T )] ≥ Pr[Cutr(T
′)]− 2hrh−h

′
. (23)
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See Lemma C.1 for a proof. One thing to observe is that the lemma does not assume
anything about the first h′ levels of the tree, neither on the distribution of π on the
labels on those layers. Note that the error term in (23) is (2r)h−h

′ · 2h′ . Thus, for every
fixed r < 1/2, we can find some slowly growing function h′ such that Pr[Cutr(Tx)] ≥
Pr[Cutr(T

′)]− o(1). The tree T ′ is of the following form:

1. Up to height h′, it looks exactly like DeCorr(Tx, r), and also the distribution of π
looks the same on those label.

2. A node v of height at least h′ has exactly two children.

3. Pr[π(v) < r] ≥ r − δmax for all v.

4. It has no safe leaves.

h′

h

DeCorr(Tx, r)

h′

T’
top looks the same

ad infinitum

Pr[π(l) < r] ≥ r − δmax

Pr[π(l) < r] = r − δmax

safe leaves only here

n
o

leaves
h
ere

From DeCorr(Tx, r) to the partially infinite tree T ′

7.3.2 Dealing with bad biases: the biased nodes lemma

We say a label l has a bad bias if Pr[π(l) < r] = r − δl for some δl > 0. We need to
study how a bad bias at one or several nodes of T decreases the cut probability. For this,
let T be an infinite complete binary labeled tree in which all labels are distinct, and let
r ∈ [0, 1/2] be fixed. Let W be a finite set of nodes not containing the root, and suppose
we have some δv ∈ [0, δmax] for each v ∈W , and δv = 0 for all v ∈ V (T ) \W . Let D be s
distribution under which Pr[π(v) < r] = r − δv. For a non-root node v, define Dv to be
the same distribution, except that Pr[π(v) < r] = r. That is, we replace by bias δv by
0. It should be clear that PrD[Cutr(T )] is smaller than PrDv [Cutr(T )]. The next lemma
shows that it cannot be much smaller:

Lemma 49 (Biased Node lemma). If v is a maximal node in W , i.e., no proper ancestor
of v is in W , then

Pr
D

[Cutr(T )] ≥ Pr
Dv

[Cutr(T )]− δv ·
1−Qr−δmax

1− r
· rd . (24)

where d := dT (v).

See Lemma C.2 for a proof. Applying the lemma over and over again to all nodes
v ∈ W clears all such nodes of their biases, leaving us with the uniform distribution on
all non-root nodes.

Corollary 50 (Biased nodes corollary). If W is finite then

Pr
D

[Cutr(T )] ≥ Qr −
1−Qr−δmax

1− r
·

∑
v∈V (T )\{root}

δvr
dT (v)
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Furthermore, for our particular choices of γ(r), ε ≤ 0.13, and δmax as defined in (20), it
holds that 1−Qr−δmax ≤ 1.02 (1−Qr).

We obtain the “furthermore” part by noting that Qr−δmax is decreasing in ε and
verifying it numerically for ε = 0.13.

7.3.3 When varlabel(u) ∈ TwoCC or u has an only child

Recall the tree T ′ we have so far. In T ′, all labels are distinct and π(l) is independent
for all labels l; T ′ does not have safe leaves (it is possibly an infinite tree). Every node
u has a bias δu, meaning Pr[π(varlabel(u)) < r] = r − δu. For a Let u be a node in T ′

and Tu the subtree of T ′ rooted at u. Denote by CleanSubtree(T ′, u) the tree obtained
from T ′ by replacing Tu with a copy of T∞, and setting δw = 0 for all nodes in that new
copy. In this section, we will show that Pr[Cutr(T

′)] ≥ Pr[Cutr(CleanSubtree(u, T ′))]
if (1) u has at most one child or (2) δu = −εγTwoCC(r). We apply this cleanup step over
and over again as long as there is a node satisfying condition (1) or (2); we denote the
resulting tree by T ′′. Recall the definition of Can(Tx), the set of canonical nodes of Tx;
every non-canonical node v of Tx has an ancestor u such that u has at most one child or
varlabel(u) ∈ TwoCC. This means that all non-canonical nodes v will be replaced by this
clean-up step and thus δv = 0 in T ′′.

Proposition 51 (TwoCC cleanup). If T ′ is as above and δu = −εγTwoCC(r), then
Pr[Cutr(T

′)] ≥ Pr[Cutr(CleanSubtree(u, T ′))], for our specific choices of γTwoCC(r) =
40r7/2(1− 2 r)2, γ(r) = r(1− 2 r)3/2, and ε ≤ 0.13.

See Proposition C.3 for a proof. Overall, the exact choice of γTwoCC is not very crucial.
It must be large enough to satisfy (57); besides that, it should not be too large: indeed,
γTwoCC being large means that, under D, variables a ∈ TwoCC tend to come early; this
depresses Pr[Forced(a)]; this is okay since TwoCC-variables have a “natural advantage” by
virtue of their having two critical clauses; however, if γTwoCC is too large, this advantage
will be all eaten up. Also, γTwoCC should not be too steep, since otherwise KL(DγTwoCC

ε ||U)
becomes too large. Our choice of γTwoCC is simply a hand-crafted polynomial that ticks
both boxes, and is pretty arbitrary beyond that. Next, we deal with nodes that have only
one child—or none at all, i.e., unsafe leaves.

Proposition 52 (One-child cleanup). Suppose T ′ is as above and u has at most child.
Furthermore, suppose that δu ≤ δmax for all nodes u, and r(1 − 2 r) ≥ 2 δmax. Then
Pr[Cutr(T

′)] ≥ Pr[Cutr(CleanSubtree(u, T ′))].

See Proposition C.4 for a proof. Note that the condition r(1 − 2 r) ≥ 2 δmax holds
for our choice of γ = r (1 − 2 r)3/2 and ε ≤ 0.13 (for what it’s worth, it even holds for
all ε ≤ 1). We apply Propositions 51 and 52 wherever applicable (strictly speaking, it
is enough to apply it to every maximal node u among those with varlabel(u) ∈ TwoCC
or u having an only child). Denote the resulting tree by CleanUp(Tx, r). Let us pause
for a minute and look at the shape of T ′. It is an infinite binary tree, and all nodes
have distinct labels. The event [π(varlabel(v)) < r] has probability r − δv, where δv is as
defined in (19) if v is a canonical node and δv = 0 if v is a non-canonical node or a new
node (meaning newly created in the process of CleanUp(Tx, r)).

7.4 General but pessimistic lower bound on Pr[Cut(Tx)]

Let T ′r := CleanUp(Tx, r).
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Lemma 53. If x 6∈ TwoCC then PrD[Cut(Tx)] ≥
∫ 1

0 PrD[Cutr(T
′
r)] ≥ s3−o(1)−1.1 εThr.

Proof. For now, fix some r < 1/2 and write T ′ := CleanUp(Tx, r).
7 The tree T ′ and

the distribution on its labels is sufficiently simple so we can analyze Pr[Cutr(T
′)]. Note

that δv > 0 only if v is a canonical node of Tx, where δv is as defined in (19). There
are only finitely many canonical nodes (since Tx itself is finite), and thus we can apply
Corollary 50. Writing d(v) := dTx(v) to denote the depth of a node v in Tx, we get

Pr
D

[Cutr(T
′)] ≥ Qr − 1.02

1−Qr
1− r

∑
v∈Can(Tx)
v not root

δvr
d(v) (25)

= Qr − 1.02
1− 2 r

(1− r)3

∑
v∈Can(Tx)
vCroot

δrootr
d(v) (26)

− 1.02
1− 2 r

(1− r)3

∑
v∈Can(Tx)
v not root
vCroot

∑
u∈V (Tx)
u not root

vCu

δnon-rootr
d(v) . (27)

Let us work on the first sum. Recall that by definition, a node v ∈ Can(Tx) has vCroot(Tx)
if {varlabel(v), x} ∈ Hlow. Writing x′ ∼ x as a shorthand for {x′, x} ∈ Hlow, we get

1.02
1− 2 r

(1− r)3

∑
v∈Can(Tx),vCroot

δrootr
d(v)

=1.02
1− 2 r

(1− r)3

∑
x′∼x

∑
v:varlabel(v)=x′

δrootr
d(v)

=
1.02 δroot

1− 2 r
·
∑
x′∼x

(1− 2 r)2

(1− r)3

∑
v:varlabel(v)=x′

rd(v)

=
1.02 δroot

r(1− 2 r)
·
∑
x′∼x

(1− 2 r)2

(1− r)3

∑
v:varlabel(v)=x′

rd(v)+1

=
1.02 δroot

r(1− 2 r)

∑
x′∼x

LabelDensity(x′, Tx, r) (as defined in (10))

≤0.28 ε
∑
x′∼x

LabelDensity(x′, Tx, r)

where we numerically verify that 1.02 δroot
r(1−2 r) ≤ 0.28 ε for all r. The sum in (27) is slightly

more subtle to bound:

1.02
1− 2 r

(1− r)3

∑
v∈Can(Tx)
v not root
vCroot

∑
u∈V (Tx)
u not root

vCu

δnon-rootr
d(v)

=1.02
1− 2 r

(1− r)3

∑
u∈Can(Tx)
u not root

∑
v∈V (Tx)
vCu

δnon-rootr
d(v)

=
1.02 δnon-root

1− 2 r

∑
u∈Can(Tx)
u not root

rd(u) · (1− 2 r)2

(1− r)3

∑
v∈Can(Tx),vCu

rd(v)−d(u)

7For r ≥ 1/2 we already know that Pr[Cutr(T
′)] = 1.
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We apply Lemma 33 to observe that summing over canonical nodes v C u is at most as
much as summing over v′ ∈ Ta, where Ta is the canonical clause tree of a := varlabel(u).
The above sum is at most

1.02 δnon-root

1− 2 r

∑
u∈Can(Tx)
u not root

a:=varlabel(u)

rd(u) · (1− 2 r)2

(1− r)3

∑
v′∈Can(Ta)
v′Croot(Ta)

rdTa (v)

=
1.02 δnon-root

1− 2 r

∑
u∈Can(Tx)
u not root

a:=varlabel(u)

rd(u)−1 ·
∑
b∼a

(1− 2 r)2

(1− r)3

∑
v′∈Can(Ta)

varlabel(v′)=b

rdTa (v)+1

=
1.02 δnon-root

1− 2 r

∑
u∈Can(Tx)
u not root

a:=varlabel(u)

rd(u)−1 ·
∑
b∼a

LabelDensity(b, Ta, r) . (28)

where LabelDensity(xi, Tx, r) is as defined in (10).

Proposition 54. 1.02 δnon-root
1−2 r rd−1 ≤ 4.896 ε

(
1
2

)d (d+1)d+1

(d+3)d+3 for all r ∈ [0, 1/2].

We prove this as Proposition C.5 in the appendix. Putting things together, we con-
clude that

Pr[Cutr(T
′)] ≥ Qr − 0.28 ε

∑
x′∼x

LabelDensity(x′, Tx, r)

− 4.896 ε
∑

u∈Can(Tx)
u not root

a:=varlabel(u)

(
1

2

)d(u) (d(u) + 1)d(u)+1

(d(u) + 3)d(u)+3

∑
b∼a

LabelDensity(b, Ta, r)

Note that the marginal distribution of π(x) is uniform under D, and π(x) is independent
of everything else in T ′; we get Pr[Cut(Tx)] by integrating over r (we will drop the o(1)
for notational convenience):

Pr[Cut(Tx)] ≥
∫ 1

0
Pr[Cutr(Tx)] dr ≥

∫ 1

0
Pr[Cutr(T

′)] dr − o(1)

≥ s3 − 0.28 ε
∑
x′∼x

LabelDensity(x′, Tx)

− 4.896 ε
∑

u∈Can(Tx)
u not root

a:=varlabel(u)

(
1

2

)d(u) (d(u) + 1)d(u)+1

(d(u) + 3)d(u)+3

∑
b∼a

LabelDensity(b, Ta)

Note that {a, b} ∈ Hlow means, by construction, that LabelDensity(b, Ta) ≤ Thr,
and similar for {x′, x} ∈ Hlow. Therefore, the terms LabelDensity(·, T·) in the above
expression are all at most Thr. Furthermore, there are at most two variables x′ with
x′ ∼ x, and at most two b with b ∼ a (note that Hlow has maximum degree 2), meaning
the first sum and the inner sum of the second sum are at most 2Thr each. Since for each
integer d ≥ 1 there are at most 2d nodes u ∈ Can(Tx) of depth d, we get
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Pr[Cut(Tx)] ≥ s3 − 0.56 εThr− 9.792 εThr
∞∑
d=1

(d+ 1)d+1

(d+ 3)d+3

≥ s3 − 0.56 εThr− 0.54 εThr (see Proposition C.6)

= s3 − 1.1 εThr .

This concludes the proof of Lemma 53.

7.5 The case that x 6∈ TwoCC and {y, z} ∈ Hlow

This is arguably the heart of this paper, where the improvement from introducing cor-
relations between variables shows up. With the work done in the previous sections, this
will go rather painlessly.

Lemma 55. For our choice γ(r) = r(1−2 r)3/2 and ε ≤ 0.13, it holds that PrD[Cut(Tx)] ≥
s3 − o(1)− 1.1 εThr + ε

∫ 1/2
0 γ2(r)(1−Qr)2 ≥ s3 − o(1)− 1.1 εThr + 0.001687 ε.

Proof. As before, let (x ∨ ȳ ∨ z̄) be the critical clause of x, and L and R be the left
and right children root(Tx), respectively. Without loss of generality, varlabel(L) = y and
varlabel(R) = z. Let TL be the subtree of Tx rooted at L and TR the one rooted at R.

Proposition 56. If {y, z} ∈ Hlow, then {x, y}, {x, z} 6∈ Hlow.

Proof. Suppose, for the sake of contradiction, that {x, y} ∈ Hlow. This means that there
is a variable a such that (a ∨ x̄ ∨ ȳ) is its canonical critical clause. If a 6= z, then this
clause, together with (x ∨ ȳ ∨ z̄) implies the clause (a ∨ ȳ ∨ z̄), meaning that a has two
critical clauses (recall that we included these “derived” critical clauses in our definition
of TwoCC). This is a contradiction because it would remove the {x, y} from Hfree, thus
it would never end up in Hlow.

If a = z then F contains Cx = (x ∨ ȳ ∨ z̄) and Cz = (z ∨ x̄ ∨ ȳ). Since (1, . . . , 1) is
the unique satisfying assignment, the assignment α[x = z = 0] must violate some clause
distinct from Cx and Cz; if this is a critical clause for x, then x has two critical clause, a
contradiction as observed above; if it is critical for z, then z has two critical clauses, also
leading to {y, z} being removed from Hfree. It could be a clause of the form (x ∨ z ∨ b̄).
In the latter case, (x∨ z ∨ b̄) and (x∨ ȳ∨ z̄) together imply the clause (x∨ ȳ∨ b̄), whether
y = b or not, and again x has two critical clauses.

The upshot is that x is not a neighbor of y nor z in Hlow, which implies the following:

Proposition 57. The marginal distribution of (π(y), π(z)), conditioned on π(x) = r, is
still Dγ,�

ε :

See Proposition C.7 for a proof. For fixed r, write T ′′ = T ′′(r) := CleanUp(Tx, r),
the same as defined in the last section (although it is called T ′ in the last section). We
could of course argue as before and conclude that

Pr
D

[Cut(Tx)] ≥
∫ 1

0
Pr
D

[Cutr(T
′′)] dr − o(1) ≥ s3 − o(1)− 1.1 εThr ,

but this would defeat its purpose since we want to show that PrD[Cut(Tx)] > s3, and
by a significant margin. Instead, we define a “partially cleaned-up tree” T ′ by taking T ′′
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and putting the variables y, z back as labels of L and R. To put it differently, we run
the procedure CleanUp(Tx) but, while executing DeCorr, we stop short of assigning
L and R a fresh label. It takes a minute of thought to see that this is still “legal”, i.e.,
PrD[Cutr(Tx)] ≥ PrD[Cutr(T

′)]− o(1).
In T ′, the values π(l) are independent for all labels except y, z. In particular, the

events Cutr(T
′
L) and Cutr(T

′
R) are independent (note that Cutr(T ) does not depend on

the label of the root of T , whereas wCutr(T ) does). Also, they are independent of the
pair (π(y), π(z)). Therefore,

Pr
D

[Cutr(T
′)] = Pr

D
[Cutr(T

′
L) ∧ Cutr(T

′
R]

+ Pr
D

[¬Cutr(T
′
L) ∧ Cutr(T

′
R)] · Pr[π(y) < r]

+ Pr
D

[Cutr(T
′
L) ∧ ¬Cutr(T

′
R)] · Pr[π(z) < r]

+ Pr
D

[¬Cutr(T
′
L) ∧ ¬Cutr(T

′
R)] · Pr[π(y), π(z) < r]

= Pr
D

[Cutr(T
′
L) ∧ Cutr(T

′
R]

+ Pr
D

[¬Cutr(T
′
L) ∧ Cutr(T

′
R)] · r

+ Pr
D

[Cutr(T
′
L) ∧ ¬Cutr(T

′
R)] · r

+ Pr
D

[¬Cutr(T
′
L) ∧ ¬Cutr(T

′
R)] · (r2 + εγ2(r)

by Proposition 39. Since π(l) is independent on all labels in T ′′ = CleanUp(Tx), the
fully cleaned-up tree, we see that

Pr
D

[Cutr(T
′′)] = Pr

D
[Cutr(T

′′
L) ∧ Cutr(T

′′
R]

+ Pr
D

[¬Cutr(T
′′
L) ∧ Cutr(T

′′
R)] · r

+ Pr
D

[Cutr(T
′′
L) ∧ ¬Cutr(T

′′
R)] · r

+ Pr
D

[¬Cutr(T
′′
L) ∧ ¬Cutr(T

′′
R)] · r2 .

Note that Cutr(T
′
L) and Cutr(T

′′
L) the same events, since T ′L and T ′′L differ only in the

label of their root (y in the case of T ′L, some fresh label in the case of T ′′L), and similarly
Cutr(T

′
R) = Cutr(T

′
R). Thus,

Pr
D

[Cutr(T
′)] = Pr

D
[Cutr(T

′′)] + εγ2 Pr
D

[¬Cutr(T
′′
L) ∧ ¬Cutr(T

′′
R)] .

The trees T ′′L, T
′′
R have no leaves (they are infinite binary trees), all their have distinct

labels, π is independent on them, and Pr[π(varlabel(v)) < r] = r − δv ≤ r for all nodes v
in them. Therefore Pr[Cutr(T

′′
L)],Pr[Cutr(T

′′
L)] ≤ Qr and

Pr
D

[Cutr(T
′) ≥ Pr

D
[Cutr(T

′′)] + εγ2(1−Qr)2 .

Integrating over r = π(x), we get

Pr
D

[Cut(Tx)] ≥
∫ 1

0
Pr
D

[Cutr(T
′′)] dr + ε

∫ 1/2

0
γ2(1−Qr)2

≥ s3 − o(1)− 1.1 εThr + ε

∫ 1/2

0
γ2(r)(1−Qr)2 ,

by Lemma 53 from the previous section (observe that our T ′′ here is the same as the
T ′ = CleanUp(Tx, r) from the last section). This concludes the proof of Lemma 55.

39



7.6 The case that x 6∈ TwoCC and {y, z} ∈ Hhigh

For technical reasons, let Tx be a critical clause tree of height h′, where h′ is sufficiently
large compared to h, but still a slowly growing function in n.

Lemma 58. PrD[Cut(Tx)] ≥ s3 − o(1)− 1.1 εThr + 0.9Thr.

Intuition. Without loss of generality, LabelDensity(z, Ty) ≥ Thr.
That is, many nodes of Ty have label z and they are close to the root. We will
show that this means, in general, that Tx has not only a child labeled z (the
right child), but z occurs also very often in the left subtree of Tx. This gives
a significant boost to Cut(Tx).

Proof. Let L and R be the left and right child of the root of Tx, respectively, such that
varlabel(L) = y and varlabel(R) = z. Let TL and TR be the subtrees of Tx rooted at
L and R, respectively. If {y, z} ∈ Hhigh, then without loss of generality, z is the dense
variable of {y, z}, meaning LabelDensity(z, Ty) ≥ Thr and z 6∈ V (Hlow). Thus, π(z)
is independent of everything else under D. Let Az be the set of u ∈ Can(Ty) that carry
label z. We would like to argue that we can “find a copy” of Az in TL. After all, TL
should look a lot like Ty. This is, however, not true in general, but morally, it can only
fail in our favor. To be more precise:

Proposition 59 (Copy of Az in TL). There is an antichain A′z of nodes in Ty that is
“above Az”, i.e., for every u ∈ Az, there is u′ ∈ A′z such u′ is a (not necessarily proper)
ancestor of u.

Additionally, there are disjoint sets Bz, B1 ⊆ V (TL) such that Bz∪B1 is an antichain,
and a bijection Φ : A′z → (Bz ∪B1) such that for every u ∈ A′z:

1. the Ty-path from root(Ty) to u and the TL-path from L to Φ(u) have the same length
and the same label sequence;

2. if Φ(u) ∈ Bz then varlabel(u) = varlabel(Φ(u)) = z;

3. if Φ(u) ∈ B1 then varlabel(u) = varlabel(Φ(u)) 6= z and Φ(u) has at most one child
in Tx.

Furthermore, for all v ∈ B1 ∪Bz, all proper ancestors of v are canonical.

Proof. For each u ∈ Az ⊆ V (Ty), we try to find a corresponding u′ ∈ V (TL). To do this,
walk along the path p from root(Ty) to u, and let y = l0, l1, . . . , ld = varlabel(u) be the
labels along this path. Try to find a corresponding path p′ in Tx, starting at L, with
the same label sequence. Formally, let d′ be maximum such that Tx contains a path p′

of canonical nodes starting at L with label sequence l0, l1, . . . , ld′ . Such a d′ exists since
varlabel(L) = y = l0.

If d′ = d then p′ is a “copy” of p in TL. We let u′ be its endpoint, add u to A′z, u
′ to

Bz, and set Φ(u) = u′.
If d′ < d, let v be the (d′)th node on p (start counting at 0) and let v′ be the endpoint

of p′. By assumption, v is a canonical node in Ty; let a := varlabel(v) = ld′ and (a∨ b̄∨ c̄
be its canonical critical clause. Without loss of generality, ld′+1 = b. The key question is:
why did the construction of Tx not use the clause (a ∨ b̄ ∨ c̄) as clause label of v′? The
only reason can be that αv′ , the assignment label of node v′, satisfies it; but αv violates
it, by construction of Ty. Since αv′ and αv differ only in αv′(x) = 0 and αv(x) = 1. Thus,
x ∈ {b, c}. What is clauselabel(v′)? It cannot be a critical clause, otherwise a would
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have two critical clauses, putting it in TwoCC, contradicting the assumption that v is a
canonical node. Thus, it must be some non-critical clause, meaning that v′ has at most
one child. We put v into A′z and v′ into B1 and set Φ(v) = v′.

This figure illustrates the statement of Proposition 59.

y

a b

u v

x zc z

y

a b

u v

dc z

x

z

F = xȳz̄, yāb̄, aūv̄, uc̄z̄, vx̄z̄, yad̄, . . .

Az

B1

A′
z

Bz

From now on, throughout this section, fix the set Bz, B1 as in the proposition. They
will allow us to argue that PrD[Cut(Tx)] is significantly larger than s3. As in the previous
section, jumping right away to T ′′ := CleanUp(Tx, r) would delete what we gain from Bz
and B1. We have to define a “partially cleaned up version” T ′: we apply the procedure
CleanUp(Tx) but

1. If v ∈ B1, let w be its only child. Do clean up the subtree Tw but do not add
another child to v; v should still have only one child in T ′. Do assign v a fresh label
l with PrD[π(l) < r] = r − δv, though.

2. if v ∈ Bz, leave its label z; don’t assign a fresh label.

Observation 60. Let T ′ be the result of the partial cleanup procedure. Then PrD[Cut(Tx)] ≥
PrD[T ′]− o(1).

Let r be fixed. When analyzing Pr[Cutr(T
′)], we want to quantify by how much a

node with an only child or an additional node with label z (besides R) boosts Cutr(T
′).

To this end, we define a “one-child bonus” and a “multiple-label bonus”:

OCB(d, r) :=
r(1− 2 r)− 2 δmax(1− r)

(1− r)2
·
(
r − δmax

1− r

)d
, (29)

MLB(d, r) :=
(1− 2 r)2 r

(1− r)3
·
(
r − δmax

1− r

)d−1

. (30)

Lemma 61. Let r < 1/2 and T ′′ := CleanUp(Tx, r). Then

Cutr(T
′) ≥ Cutr(T

′′) +
∑
v∈B1

OCB(dTx(v), r) +
∑
v∈Bz

MLB(dTx(v), r) .

Proof. Order the elements in B1 arbitrarily; set T0 := T ′; for 1 ≤ i ≤ |B1|, construct Ti
from Ti−1 as follows: let u be the ith node of B1; replace Tu, the subtree of Ti−1 rooted at
u, by Tu′ , a fresh copy of T∞, and set δw = 0 for all nodes in Tu′ , i.e., Pr[π(w) < r] = r.
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Lemma 62 (Bonus from only child). Let d = dTx(u) be the distance from the root to u.
Then Pr[Cutr(Ti−1)] ≥ Pr[Cutr(Ti)] + OCB(d, r).

This is proved as Lemma C.8 in the appendix. Applying the lemma for i = 1, . . . , |B1|,
we conclude that

Pr
D

[Cutr(T|B1|)] ≥ Pr
D

[Cutr(T
′)] +

∑
v∈B1

OCB(d) . (31)

What does TB1 look like? It is an infinite binary tree, all nodes have two children,
and all nodes have distinct labels except those in Bz ∪ {R}, which are all labeled z. All
non-canonical nodes and all newly introduced nodes have δv = 0, i.e., Pr[π(v) < r] = r.

Next, wee get rid of the multiple labels z: Order the elements of Bz arbitrary and let
T ′0 := TB1 . For |B1| + 1 ≤ i ≤ |B1| + |Bz|, let u be the (i − |B1|)th element of Bz and
construct T ′i from T ′i−1 by giving u a fresh label l, and set δu = 0, i.e., Pr[π(l) < r] = r.
Let T ′′ := T|B1|+|Bz | be the final result of this procedure.

Lemma 63 (Bonus from multiple labels). Let d = dTx(u) be the distance from the root
to u. Then Pr[Cutr(T

′
i−1)] ≥ Pr[Cutr(T

′
i )] + MLB(d).

See Lemma C.9 for a proof. Applying Lemma 63 for i = |B1| + 1, . . . , |B1| + |Bz|
and combining this with (31), we get T ′′ := T|B1|+|Bz |. This completes the work of
CleanUp(Tx) since steps i = 1, . . . , |B1| + |Bz| just described simply are the steps that
we skipped in our partial cleanup version T ′. In other words, T ′′ = CleanUp(Tx).
Altogether,

Pr
D

[Cutr(T
′)] ≥ Pr

D
[Cutr(T

′′)] +
∑
v∈B1

OCB(dTx(v), r) +
∑
v∈Bz

MLB(dTx(v), r) .

This concludes the proof of Lemma 61.

Integrating over all r, we get

Pr
D

[Cut(Tx)] ≥
∫ 1

0

Pr
D

[Cutr(T
′′)] +

∑
v∈B1

OCB(d(v), r) +
∑
v∈Bz

MLB(d(v), r)

− o(1)

≥ s3 − o(1)− 1.1 εThr +
∑
v∈B1

∫ 1/2

0
OCB(d(v), r) dr +

∑
v∈Bz

∫ 1/2

0
MLB(d(v), r) dr

= s3 − o(1)− 1.1 εThr +
∑
v∈B1

OCB(d(v)) +
∑
v∈Bz

MLB(d(v))

using Lemma 53. It remains to bound the sums from below.

Lemma 64.
∑

v∈B1
OCB(d(v)) +

∑
v∈Bz MLB(d(v)) ≥ 0.9Thr.

See Lemma C.10 for a proof. We conclude that PrD[Cut(Tx)] ≥ s3−o(1)−1.1 εThr+
0.9Thr, which proves Lemma 58.
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7.7 The case that x ∈ TwoCC

Hansen, Kaplan, Zamir, and Zwick [3] proved that if x ∈ TwoCC, then we can build a
critical clause tree Tx for which PrU [Cutr(Tx)] ≥ Qr · B(r) − oh(1) for every r ∈ [0, 1],
where

B(r) :=

{
1 + (1−2r)2(1−2r+2r2)

(1−r)2 if r < 1/2.

1 if r ≥ 1/2
(32)

This holds under the uniform distribution. Under D, let us go through the labels of Tx
in some order, starting with x, namely x = l0, l1, . . . . Let

τi := (π(x),1[π(l1)<r], . . . ,1[π(li)<1]) .

For a concrete choice of τi, what is Pr[π(li+1) < r | τi]? If li+1 6∈ V (Hlow) then π(li+1) is
independent of τi and Pr[π(li+1) < r] ≥ r (note that it is equal to r unless li+1 ∈ TwoCC,
in which case it is greater than r). Otherwise, let C be the connected component of
Hlow that contains li+1. For every l ∈ V (C) \ {li+1}, define Al to be [0, 1] if l is not
in the condition τi, and otherwise Al := [0, r] if π(l) < r and Al := [r, 1] if π(l) ≥ r.
The condition τi contains this information. We apply Corollary 42 with K = {li+1},
I = V (C) \K, and Ali+1

:= [0, r], and get

Pr[π(li+1) < r | τi] ≥ r +
εγ(r)

∑
l:{li+1,l}∈E(C) T

−
v

1− 2
25 ε(|E(C)| − 1)

≥ r +
2 εγ(r)−γ(r)

1−r
1− 2

25 ε(|E(C)| − 1)

≥ r − 2.4 ε
γ2(r)

1− r
.

where the second inequality holds since Tv is either 0 or γ(r)/r or −γ(r)/(1 − r), and
li+1 has at most two neighbors in C. The third inequality holds provided that |C| ≤ 17
and ε ≤ 0.13. This means we can disentangle D by pessimistically sampling π such that

Pr[π(li) < r] = r − 2.4 εγ2(r)
1−r for all i ≥ 1, independently. Formally, define γ̃(r) := 2.4 γ2(r)

1−r
and let D′ be the distribution under which π(li) ∼ Dγ̃

−ε for every label li 6= x, and
π(x) ∼ DγTwoCC

ε . Then

Pr
D

[Tx] ≥ Pr
D′

[Tx] . (33)

We state the next theorem in slightly more general terms since we are going to re-use
it in the next chapter.

Theorem 65. Let γA, γrest : [0, 1] → R+
0 be functions in the spirit of Definition 38

and assume that γrest(r) = 0 for all r ≥ 1/2. 8 Let Tx be the critical clause tree for
x ∈ TwoCC as in (32). Let D′ be a distribution on placements that samples π(l) ∼ Dγrest

−ε ,
i.e., Pr[π(l) < r] ≥ r − εγrest(r) for every label l in Tx except x, and π(x) ∼ DγA

ε . Then

Pr
D

[Cutr(Tx)] ≥ Qr ·B(r)− 2 εrγrest(r)B(r)

(1− r)3
− oh(1) (34)

8Think of γA = γTwoCC and γrest = γ̃.
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and

Pr
D

[Cut(Tx)] ≥ Cut2CC− ε(DFS2CC + DFD2CC)− ε2JUNK2CC− o(1) . (35)

where

Cut2CC :=

∫ 1

0
QrB(r) dr = s3 +

104

3
− 50 ln(2) ≈ s3 + 0.009307

DFS2CC := −
∫ 1

0
QrB(r)φA(r) dr , (damage from selfless bias of x)

DFD2CC :=

∫ 1

0

2rγrest(r)B(r)

(1− r)3
dr , (damage from descendants’ selfish bias)

JUNK2CC :=

∫ 1

0

2rγrest(r)B(r)φA(r)

(1− r)3
dr .

Note that Cut2CC does not depend on γrest and γA, so it is simply a universal
constant, which is why we explicitly write it down.

Proof. For r ≥ 1/2, the function γrest(r) vanishes and thus PrD[π(l) < r] = r, indepen-
dently, for all labels l in the tree. Therefore, PrD[Cutr(Tx)] = 1− oh(1), and the claimed
bound holds. So let us assume that r < 1/2. Since π(a) ∼ Dγrest

−ε for all non-root labels, it
holds that Pr[π(a) < r] = r− εγrest(r). One checks that B(r) is monotonically decreasing
in r and therefore B(r − εγ(r)) ≥ B(r). Furthermore, Qr is convex on [0, 1/2] and thus
Qr−εγ(r) ≥ Qr − εγ(r)Q′r = Qr − εγ(r) 2 r

(1−r)3 . Altogether,

Qr−εγ(r) ·B(r − εγ(r)) ≥
(
Qr −

2 εrγ(r)

(1− r)3

)
·B(r) .

= Qr ·B(r)− 2 εrγ(r)B(r)

(1− r)3
.

The claimed lower bound on PrD′ [Cut(Tx)] follows from taking the bound in (34) and
taking the expectation over π(x), using the fact that π(x) has probability density 1+εφ(r)
at r.

We apply the theorem with γA(r) = γTwoCC(r) = 40r7/2(1 − 2 r)2 and γrest(r) =

γ̃(r) = 2.4 γ2(r)
1−r . Under this choice, we get

DFS2CC ≤ 0.0455

DFD2CC ≤ 0.0095

JUNK2CC ≤ −0.019 .

Plugging in these numbers into the formula in the theorem, we obtain:

Lemma 66. PrD[Tx] ≥ s3 + 0.009307− 0.055 ε. for sufficiently large h.

7.8 The success probability of PPSZ under D

Let us collect the facts established in the previous sections.

1. 18
17 |Hlow|+ 2 |Hhigh|+ 2 |TwoCC| ≥ |H|, by (12).

2. KL(D||U) ≤ 0.0064 ε2|Hlow|+ 5
48 ln(2)fKL(ε) |TwoCC|, by Lemma 45.
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Next, for each variable x, let (x ∨ ȳ ∨ z̄) be its canonical critical clause. Under D, the
following hold:

3. Pr[Cut(Tx)] ≥ s3 − 1.1 εThr + 0.001687 ε when {y, z} ∈ Hlow, by Lemma 55;

4. Pr[Cut(Tx)] ≥ s3 − 1.1 εThr + 0.9Thr when {y, z} ∈ Hhigh, by Lemma 58;

5. Pr[Cut(Tx)] ≥ s3 + 0.009307− 0.055 ε when x ∈ TwoCC, by Lemma 66;

6. Pr[Cut(Tx)] ≥ s3 − 1.1 εThr for all other x, by Lemma 53.

Pr[ppsz(F ) succeeds] = E
π

[
2−n+Forced(π)

]
( by (1))

≥ 2−n+Eπ∼D[Forced(π)]−KL(D||U) (by (2))

= 2−n+s3n+gain ,

where

gain := 0.001687 ε|Hlow|+ 0.9Thr|Hhigh|+ (0.009307− 0.055 ε)|TwoCC|
− 1.1 εThrn

− 0.0064 ε2|Hlow| −
5

48 ln(2)
fKL(ε)|TwoCC|

= (0.001687 ε− 0.006404 ε2)|Hlow|
+ 0.9Thr|Hhigh|
+ (0.009307− 0.055 ε− 0.1503 fKL(ε))|TwoCC|
− 1.1 εThrn

Setting ε = 0.1, the gain is at least

gain ≥|Hlow|
9555

+ 0.9Thr|Hhigh|+
|TwoCC|

335
− 0.11Thrn

≥
18
17 |Hlow|+ 0.9 · 10118Thr|Hhigh|+ 10118

335 |TwoCC|
10118

− 0.11Thrn

We set Thr := 2
0.9·10118 ≤

1
4553 so 0.9 · 10118 ·Thr ≥ 2 and

gain ≥
18
17 |Hlow|+ 2 |Hhigh|+ 3 |TwoCC|

10118
− n

41391

≥ |H|
10118

− n

41391
,

where the last inequality follows from (12). This completes the proof of Theorem 35.

8 If there are many low-degree variables

As before TwoCC be the set of all variables that have two or more critical clauses. Addi-
tionally, let IDi be the set of variables in V \TwoCC that have in-degree i in the critical
clause graph.

45



Theorem (Theorem 36, restated). The success probability of PPSZ is at least 2−n+s3n+gain2−o(n)

gain2 ≥
|ID1|+ 2 |ID0|

1380
,

where IDi is the set of variables with in-degree i in the critical clause graph.

Proof. Let γID0,1 : [0, 1] → R+
0 be a function in the spirit of Definition 38 and φID0,1 its

derivative. The idea is to sample

π(x) ∼ D
γID0,1

−ε ,

i.e., with density fπ(x)(r) = 1 − εφID0,1(r) whenever x ∈ ID0,1 := ID0 ∪ ID1. This means
that x tends to come later in π; indeed, Pr[π(x) < r] = r − εγID0,1(r). This is good for
Pr[Cut(Tx)] but bad for every critical clause tree Ta that contains x. We will offset this
damage by sampling π(y) biased towards smaller values whenever (y, x) is an arc in the
critical clause graph, i.e., if y is a “parent” of x. To make this formal, we choose another
function γpID0,1

, the pID0,1 standing for parent of ID0,1 and sample

π(y) ∼ D
γpID0,1
ε

whenever y is the parent of some x ∈ ID0,1. To complicate things, a variable y can have
no, one, or two children in ID0,1; it could itself be in ID0,1. Thus, we define a function
γx for every variable x separately. To this end, let Ix be the indicator variable that is
1 if x ∈ ID0,1 and 0 otherwise. We also need a function γTwoCC(r) to handle variables
x ∈ TwoCC. This γTwoCC(r) is not the 40r7/2(1− 2 r)2 from the previous section.

Definition 67. For each variable x, define γx : [0, 1]→ R by

γx(r) :=

{
−γID0,1(r)Ix + γpID0,1

(r)(Iy + Iz) if x 6∈ TwoCC and (x ∨ ȳ ∨ z̄) is its critical clause

γTwoCC(r) if x ∈ TwoCC .

Then let D be the distribution on placements that samples each variable x independently
from Dγx

ε independently.

The functions γID0,1(r), γpID0,1
(r) are defined to be 0 for r ≥ 1/2; for r < 1/2, they

are defined by

γID0,1(r) := 10 r2(1− 2 r)2 (36)

γpID0,1
(r) :=

61

6
r3(1− 2 r)2 , (37)

γTwoCC(r) := 20 r3(1− 2 r) . (38)

We denote their derivatives by φID0,1 , φpID0,1
, and φTwoCC, respectively.

8.1 Pr[Forced(x)] if x 6∈ TwoCC

Roughly speaking, we will show that PrD[Cut(Tx)] is minimized if Tx is a full binary
tree; no TwoCC-variables occur in it; no variables besides possibly x, y, z are in ID0,1.
Then PrD[Cut(Tx)] might differ from PrU [Cut(Tx)] (under the uniform distribution) due
to three factors: first, if x ∈ ID0,1 then π(x) tends to be large, giving more weight to
Pr[Cutr(Tx)] for large r; the effect is beneficial, i.e., it increases the cut probability;
second, if y ∈ ID0,1, then then π(y) tends to be larger, which has a detrimental effect
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on PrD[Cut(Tx)]; third, additionally if y ∈ ID0,1, then π(x) gets a certain selfless bias,
i.e., tends to be smaller (by Definition of γx in Definition 67), which further decreases
PrD[Cut(Tx)]. The second and third effect of course also exist when z ∈ ID0,1. These
effects are “almost” additive, and motivate the following definitions:

Definition 68. The following expressions quantify the benefits and damages from the
biases as described above. The concrete numbers hold for our concrete choices of γID0,1

and γpID0,1
.

BFS := −
∫ 1

0
φID0,1(r)Qr dr , ( “benefit from selfish bias”)

= 380 ln(2)− 790

3
≥ 0.06259

DFC :=

∫ 1

0
γID0,1(r)Pr(1−Qr) dr , (“damage from children’s selfish bias”)

=
915

4
− 330 ln(2) ≤ 0.01144

DFS := −
∫ 1

0
φpID0,1

(r)Qr dr , ( “damage from selfless bias”)

=
1586 ln(2)

3
− 52765

144
≤ 0.0202

DFB := DFC + DFS (“damage from both”)

=
596 ln(2)

3
− 19825

144
≤ 0.03163 .

Furthermore, we define

JUNK1 := max

(
0,−

∫ 1

0
φID0,1(r)γID0,1(r)Pr(1−Qr) dr

)
= 46800 ln(2)− 227075

7
≤ 0.00235

JUNK2 := max

(
0,

∫ 1

0
φpID0,1

(r)γID0,1(r)Pr(1−Qr) dr
)

8767591

192
− 65880 ln(2) ≤ 0.000184

JUNK := JUNK1 + 2 JUNK2 .

These terms quantify the extent to which the three described effects fail to be additive.

Theorem 69. Let x 6∈ TwoCC and let (x ∨ ȳ ∨ z̄) be its critical clause. Then

Pr
D

[Cut(Tx)] ≥ s3 + εIxBFS− ε(Iy + Iz)DFB− ε2Ix(Iy + Iz)JUNK1 − ε2(Iy + Iz)
2JUNK2 − o(1)

The impatient reader may skip the proof and continue directly in Section 8.2.

Proof of Theorem 69. Consider a critical clause tree Tx. Several variable labels in it
might have a selfish bias (they tend to have high π-values) or a selfless bias (they tend
to have low π-values). The next lemma argues that these biases cancel out, except for
any biases of the root and its two children. To put it differently, in the worst case, no
variables occurring in Tx are in TwoCC, and no variables beyond possibly the root and
its children are in ID0,1. To state the lemma formally, we need to define a distribution
DB on placements.
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Definition 70. Let T∞ be the infinite binary tree, and B ⊆ V (T∞). For each node
u ∈ V (T∞), define

γBu (r) := −γID0,1(r)[u ∈ B] + γpID0,1
(r)([v ∈ B] + [w ∈ B]) ,

where v, w are the two children of u in T∞. Let DB be the distribution that samples
π(u) ∼ Dγu

ε independently for every node.

Lemma 71. Let x ∈ V \TwoCC and let (x∨ ȳ ∨ z̄) be its unique critical clause. Let T∞

be the infinite binary tree, and let root(T∞), L,R denote the root of T∞, its left child, and
its right child. . Define B ⊆ V (T∞) by adding root(T∞), L, and R to B if x ∈ ID0,1,
y ∈ ID0,1, and z ∈ ID0,1, respectively. Then PrD[Cut(Tx)] ≥ PrDB [T∞]− o(1).

Proof. First, we fix r ∈ [0, 1]] and bound Pr[Cutr(Tx)] from below. If r ≥ 1/2 then
Pr[π(l) < r] ≥ r for all labels (in fact with equality except for TwoCC-variablees). Thus,
Pr[Cutr(Tx)] = 1− o(1) if r ≥ 1/2, and we are done.

From now on, fix some r < 1/2. We take Tx through a sequence of transformation
steps, each of which does not increase Pr[Cutr] (or only by o(1)). Let T be Tx in the
beginning. First, in a procedure similar to (but easier than) CleanUp in the previous
section, we can assign each node v of T a fresh label with the same distribution, i.e.,
γv := γvarlabel(v).

9 This does not increase Pr[Cut(T )] at all (this can actually also be seen
as a a direct application of Lemma 7 from [8]).

Again as in the previous section, we can “normalize” T from level h′ downwards: we
make sure every node u of depth at least h′ has two children (so T becomes infinite) and
π(u) is uniform over [0, 1]. This increases Pr[Cut] only by o(1).

Once T has this infinite shape, we can clean up TwoCC-variables and nodes with only
one child. This is similar to the proofs in Section 7.3.3. As in that section, we denote by
CleanSubtree(T ′, u) the tree obtained from T ′ by replacing Tu with a copy of T∞ with
fresh labels. Note that π(l) is independent and uniform over [0, 1] for each fresh label.

Lemma 72 (TwoCC-cleanup in the irregular case). Let T be the (by now) infinite tree
described above. Suppose u is a node in T with γu = γTwoCC. Then Pr[Cutr(T )] ≥
Pr[Cutr(CleanSubtree(u, T )), provided that γTwoCC(r) ≥

2 rγID0,1

1−2 r .

This is proved as Lemma ?? in the appendix. The condition in the lemma justifies
our particular choice for γTwoCC: the above inequality is satisfied with equality.

Lemma 73. Let T be the (by now) infinite tree described above. Suppose u is a node in
T with an only child v. Then Pr[Cutr(T )] ≥ Pr[Cutr(CleanSubtree(u, T )), provided
that ε ≤ 4

5 .

This follows directly from Proposition 52 in the previous section. We just have to
check the parameters: in this section, δmax = εγID0,1(r), and a simple calculation shows
that the condition r(1− 2 r) ≥ 2 δmax, required by Proposition 52, holds.

We apply the operation CleanSubtree(u, T ) whenever applicable. In the resulting
tree T , every node has two children (it is a T∞), and γv 6≡ 0 only for “old” nodes v that
already existed in Tx and are canonical. We define a subset B ⊆ V (T ) as follows: for each
node u ∈ V (T ), add u to B if (1) it is an old node, i.e., already exists in Tx and has not
been replaced in the above procedure; and (2) its old variable label a := varlabelTx(u) is

9Once all labels are distinct, there is no need to distinguish between labels and nodes; we simply assume
that v is the label of v, and thus can write γv instead of γvarlabel(v).
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in ID0,1. We will now compare γu, the “bias” of node u inherited from Tx through the
transformations, to γBu , the bias according to Definition 70.

Proposition 74. γu(r) ≥ γBu (r).

Proof. Let v and w be the left and right child of u in T . If u is a new node, created
during the cleanup process above, then v and w are new nodes, too, and both sides of the
inequality are 0. So assume from now on that u is an old node, and let a := varlabelTx(u).
Note that a is canonical since otherwise the node u (and all its descendants) would have
been replaced by new nodes, using Lemma 72 and Lemma 73. So a has a unique critical
clause (a ∨ b̄ ∨ c̄) and the children of u in Tx have labels b (left child) and c (right child).
We see that

γu = −γID0,1(r)[a ∈ ID0,1] + γpID0,1
(r) ([b ∈ ID0,1] + [c ∈ ID0,1])

γBu = −γID0,1(r)[u ∈ B] + γpID0,1
(r) ([v ∈ B] + [w ∈ B]) .

We already assume that u is an old node, and thus u ∈ B if and only if a ∈ ID0,1,
meaning the indicator variables [a ∈ ID0,1] and [u ∈ B] are equal. Next, we will show
that [v ∈ B] ≤ [b ∈ ID0,1] and similar for w and c.

Indeed, if v is a new node, then trivially 0 = [v ∈ B] ≤ [b ∈ ID0,1]. Otherwise, what
is its old label? We already observed that u is a canonical node in Tx and its left child in
Tx has label b. So varlabelTx(v) = b, and [v ∈ B] = [b ∈ ID0,1]. The same holds for w and
c. Since all γ’s are non-negative for all r ∈ [0, 1], this proves the proposition.

Note that we need the fact that u is canonical; otherwise, we could not guarantee any
relation between the label of its children in Tx and the variables in its critical clause. This
is why we have to handle TwoCC-variables and nodes with an only child separately and
need to go through the pains of proving Lemma 72 and Lemma 73.

We conclude that PrD[π(u) < r] ≥ PrDB [π(u) < r] and therefore can bound PrD[Cutr(T )] ≥
PrDB [Cutr(T )]. This is good since PrDB [Cutr(T )] can be evaluated purely in terms of B,
and we can completely forget about the original Tx and its labels. In what follows, we
will show that we can reduce the set B until it contains nothing except possibly the root
of T and its children, while not increasing PrDB [Cutr(T )].

Lemma 75. Let v be a node in B of maximum distance from the root. If that distance
is at least 2, then

Pr
DB

[Cutr(T )] ≥ Pr
DB\{v,w}

[Cutr(T )] ,

where w is the sibling of v in T (the other child of the parent of u).

Proof. Let u be the parent of v and w the other child of u. By assumption, the depth of v
is at least two, so u is not the root. For brevity, we write D1 := DB and D2 := DB\{v,w}.
Let Tu be the subtree of T rooted at u. It suffices to show that PrD1 [wCut(Tu)] ≥
PrD2 [wCut(Tu)]. For t ∈ {u, v, w} write It := [t ∈ B]. Note that

γBv = −γID0,1(r)Iv (since the children of v are not in B)

γBw = −γID0,1(r)Iw (since the children of w are not in B)

γBu = −γID0,1(r)Iu + γpID0,1
(r)(Iv + Iw)

γB\{v,w}u = −γID0,1(r)Iu .
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For t ∈ {u, v, w} define δt so that PrD1 [π(t) < r] = r − δt; additionally define δnew
u such

that PrD2 [π(u) < r] = r − δnew
u . Note that PrD2 [π(v) < r] = r and similar for w, so no

need to define δnew
v . We check that

δnew
u = εγID0,1(r)Iu

δv = εγID0,1(r)Iv

δw = εγID0,1(r)Iw

δu = δnew
u − εγpID0,1

(r)(Iv + Iw) .

With this notation, the “new” cut probability is

Pr
D2

[wCutr(Tu)] = Pr
D2

[π(u) < r ∨ Cutr(Tu)]

= (r − δnew
u ) ∨Qr (since everything is unbiased below u)

= (r − δnew
u ) + (1− r + δnew

u )Qr

= r − δnew
u + (1− r)Qr + δnew

u Qr

= Pr − δnew
u (1−Qr) . (39)

The “old” probability PrD1 [wCutr(Tu)] is a bit more tedious to compute. Analogous to
(39), we obtain

Pr
D1

[wCutr(Tv)] = Pr − δv(1−Qr) ,

Pr
D1

[wCutr(Tw)] = Pr − δw(1−Qr) ,

and therefore

Pr
D1

[wCutr(Tu)] = (r − δu) ∨ Pr
D1

[Cutr(Tu)]

= (r − δu) ∨
(

Pr
D1

[wCutr(Tv)] · Pr
D1

[wCutr(Tw)]

)
= (r − δu) ∨ ((Pr − δv(1−Qr)) · (Pr − δw(1−Qr)))
= (r − δu) ∨

(
Qr − (δv + δw)(1−Qr)Pr + δvδw(1−Qr)2

)
= r − δu + (1− r + δu)

(
Qr − (δv + δw)(1−Qr)Pr + δvδw(1−Qr)2

)
= r − δu + (1− r)Qr − (1− r)(δv + δw)(1−Qr)Pr + δuQr

+ (1− r + δu)δvδw(1−Qr)2 − δu(δv + δw)(1−Qr)Pr
= Pr − (1−Qr)(δu + rδv + rδw) (since (1− r)Pr = r)

+ (1− r + δu)δvδw(1−Qr)2 − δu(δv + δw)Pr(1−Qr) .

We compute the difference between “old” and “new”:

Pr
D1

[wCutr(Tu)]− Pr
D2

[wCutr(Tu)] = (1−Qr)(δnew
u − δu − rδv − rδw)

+ (1− r + δu)δvδw(1−Qr)2 − δu(δv + δw)Pr(1−Qr)
= (1−Qr)ε(Iv + Iw)(γpID0,1

(r)− rγID0,1(r)) (40)

+ (1− r + δu)δvδw(1−Qr)2 − δu(δv + δw)Pr(1−Qr)
(41)

Since γpID0,1
(r) ≥ rγID0,1(r) for all r, the expression in (40) is non-negative. Morally,

(40) is linear in ε while (41) is quadratic; so even if (41) is negative, it should not matter
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too much. However, to rigorously show that the overall difference is non-negative, we
distinguish a couple of cases.

Case 1. u 6∈ B. Then the second term of (41) vanishes since δu = 0; the first term
is non-negative: the factor (1− r + δu) is a probability and is therefore non-negative; δv
and δw are both at most 0, so δvδw ≥ 0.

Case 2. u ∈ B and v, w 6∈ B. Then (41) vanishes.

Case 3. u, v, w ∈ B. Then δv = δw > 0. Dividing by 1 − Qr and δv, we see that
(41) ≥ 0 if and only if

(1− r + δu)δv(1−Qr)− 2 δuPr ≥ 0 (42)

We assume that Iu = Iv = Iw = 1, and therefore δu = εγID0,1−2 εγpID0,1
. If δu is negative,

then both summands of (42) are non-negative (we check that 1− r+ δu is always positive
for r ≤ 1/2 and ε ≤ 1, by a wide margin). If δu is positive, then

(42) ≥ (1− r)δv(1−Qr)− 2δuPr

= (1− r)(1−Qr)εγID0,1 − 2 εPr

(
γID0,1 − 2γpID0,1

)
≤ (1− r)(1−Qr)εγID0,1 − 2 εPr

(
γID0,1 − 2 rγID0,1

)
,

where the last inequality follows since γpID0,1
(r) = 61

60 · r · γID0,1(r) ≥ r · γID0,1(r).
We divide this by εγID0,1(r), which is positive, and continue:

(1− r)(1−Qr)− 2Pr(1− 2 r) =
(1− r)(1− 2 r)

(1− r)2
− 2r(1− 2 r)

1− r

=
(1− 2 r)− 2 r(1− 2 r)

1− r

=
(1− 2 r)2

1− r
> 0 .

This shows that (42) ≥ 0 and therefore (41) ≥ 0.

Case 4. Iu = 1 and exactly one of Iv, Iw = 1. Say Iv = 1 and Iw = 0. The difference
is

(40) + (41) = (1−Qr)ε(γpID0,1
(r)− rγID0,1(r))− δuδvPr(1−Qr)

= (1−Qr)ε(γpID0,1
(r)− rγID0,1(r))− ε2γID0,1(γID0,1 − γpID0,1

)Pr(1−Qr) .

We divide this by (1−Qr)εγID0,1 , which is positive, keeping in mind that
γpID0,1

(r)

γID0,1
= 61 r

60 ,

and the above becomes

r

60
− ε(γID0,1 − γpID0,1

)Pr

≥ r

60
− ε(γID0,1 − rγID0,1)Pr (since γpID0,1

(r) ≥ rγID0,1(r))

=
r

60
− εrγID0,1 , (since Pr = r

1−r )

which is non-negative if and only if εγID0,1(r) ≤ 60. Since γID0,1(r) = 10 r2(1−2 r)2 ≤ 10
256

for all 0 ≤ r ≤ 1/2, this holds for all ε ≤ 256
600 . This concludes the proof of Lemma 75.
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We apply Lemma 75 as long as B contains a node of depth at least 2. Once there is
no such node anymore, we conclude that B does not contain any node outside the root
and its children. This completes the proof of Lemma 71.

Informally, Lemma 71 states that biases cancel and we can pretend that TwoCC = ∅
and Tx contains no ID0,1-variables except possibly x, y, z. After applying Lemma 71, we
are left analyzing PrDB [T∞]. Notation becomes simpler if we assume that the root, left
child, and right child of T∞ have labels x, y, z, respectively. Then B is simply {x, y, z} ∩
ID0,1. Things are now simple enough to calculate PrDB [Cut(T∞)]. We abbreviate γ1 :=
γID0,1 and γ2 := γpID0,1

. With this notation,

Pr[π(y) < r] = r − εγ1(r)Iy =: r − δy ,
Pr[π(z) < r] = r − εγ1(r)Iz =: r − δz ,
Pr[π(x) < r] = r − εγ1(r)Ix + εγ2(r)(Iy + Iz) =: r − δx , (43)

and Pr[π(l) < r] = r for all other labels l; all probabilities are under DB. Denote by Ty
and Tz the subtrees of T∞ rooted at y (i.e., the left child of the root) and z, respectively.

Pr
DB

[Cutr(T
∞)] = Pr[π(y) < r ∨ Cutr(Ty)] · Pr[π(z) < r ∨ Cutr(Tz)]

=
∏

l∈{y,z}

(r − δl + (1− r + δl)Qr)

=
∏

l∈{y,z}

(r + (1− r)Qr − δl(1−Qr))

=
∏

l∈{y,z}

(Pr − δl(1−Qr))

= Qr − (δy + δz)Pr(1−Qr) + δyδz(1−Qr)2

≥ Qr − (Iy + Iz)εγ(r)Pr(1−Qr) ,

since δy, δz ≥ 0. We get PrDB [Cut(T∞)] from by taking the expectation of the above with
r = π(x); we have to be aware that π(x) is not uniform if Ix = 1. That is, we integrate
the above expression, multiplied with the density of π(x). The density of π(x) at r is
γ′x(r), which can be obtained by differentiating (43):

1− εφ1(r)Ix + εφ2(r)(Iy + Iz) ,

where φi(r) := γ′i(r) for i = 1, 2. Writing Q̄r := 1−Q(r), we see that PrDB [Cut(T∞)] is∫ 1

0

(
Qr − εγ1(r)PrQ̄r(Iy + Iz)

)
(1− εφ1(r)Ix + εφ2(r)(Iy + Iz)) dr

= s3 − ε(Iy + Iz)

∫ 1

γ1(r)PrQ̄r dr − εIx
∫ 1

0
φ1(r)Qr dr + ε(Iy + Iz)

∫ 1

φ2(r)Qr dr

+ ε2Ix(Iy + Iz)

∫ 1

0
φ1(r)γ1(r)PrQ̄r dr − ε2(Iy + Iz)

2

∫ 1

0
φ2(r)γ1(r)PrQ̄r dr .

Using the notation from Definition 68, we can write

Pr
DB

[Cut(T∞)] ≥ s3 + εIxBFS− ε(Iy + Iz)(DFB)− ε2Ix(Iy + Iz)JUNK1 − ε2(Iy + Iz)
2JUNK2

This finishes the proof of Theorem 69.
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8.2 Summing over all x ∈ V \ TwoCC

Next, we sum the expression in Theorem 69 over all x 6∈ TwoCC: for succinctness,
we separately sum terms constant, linear, and quadratic in ε, respectively. Summing up
s3−o(1) gives at least s3(n−|TwoCC|)−o(n). The most interesting part is the one linear
in ε. Recall that y, z are the other variables in x’s canonical critical clause (x ∨ ȳ ∨ z̄);
that is, they are the variables for which (x, y), (x, z) are arcs in the critical clause graph.
We write x→ y, x→ z for succinctness.∑

x∈V \TwoCC

(
IxBFS−

∑
y:x→y

IyDFB

)

=|ID0,1| · BFS−
∑

x∈V \TwoCC

∑
y:x→y

IyDFB

=|ID0,1| · BFS−DFB
∑
y∈V

Iy
∑

x∈V \TwoCC

[x→ y]

=|ID0,1| · BFS−DFB
∑

y∈ID0,1

∑
x∈V \TwoCC

[x→ y] (since Iy = 0 if y 6∈ ID0,1)

≥|ID0,1| · BFS−DFB
∑

y∈ID0,1

degin(y) (“≥” since some x : x→ y might be in TwoCC)

=|ID0,1| · BFS− |ID1| ·DFB . (since degin(y) is 1 if y ∈ ID1 and 0 if y ∈ ID0)

Next, let us sum up the terms with factor ε2JUNK1:∑
x∈V \TwoCC
Cx=:(x∨ȳ∨z̄)

Ix(Iy + Iz) =
∑

x∈V \TwoCC

∑
y:x→y

IxIy

= the number of arcs within ID0,1 in the critical clause graph

≤ |ID1| ,

where the last inequality holds since every arc (x, y) within ID0,1 has y ∈ ID1, and by
definition of ID1 the variable y has at most one such incoming arc. Finally, the coefficient
of ε2JUNK2 is ∑

x∈V \TwoCC
Cx=:(x∨ȳ∨z̄)

(Iy + Iz)
2 =

∑
x∈V \TwoCC

( ∑
y:x→y

Iy

)2

≤
∑

x∈V \TwoCC

2
∑
y:x→y

Iy (since the inner sum is at most 2)

= 2
∑
y

∑
x∈V \TwoCC

x→y

Iy

≤ 2
∑
y

∑
x∈V :x→y

Iy = 2
∑

y∈ID0,1

degin(y) = 2 |ID1| .

Altogether, we get ∑
x 6∈TwoCC

Pr
D

[Cut(Tx)] ≥ s3(n− |TwoCC|)− o(n)

+ ε (|ID0,1|BFS− |ID1|DFB)

− ε2|ID1| (JUNK1 + 2 JUNK2) . (44)
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8.3 Pr[Forced(x)] is large when x has two critical clauses.

Note that Pr[π(l) < r] = r − εγl(r) ≥ r − εγID0,1(r) holds for every label l in Tx, and
π(x) ∼ DγTwoCC

ε . We can directly apply Theorem 65 with γA = γTwoCC and γrest = γID0,1

and conclude that

Pr
D

[Cut(Tx)] ≥ s3 + Bonus2CC− ε(DFS2CC + DFD2CC)− ε2JUNK2CC− o(1) .

(45)

with

Bonus2CC :=

∫ 1

0
QrB(r) dr − s3 =

104

3
− 50 ln(2) ≈ 0.009307

DFS2CC := −
∫ 1

0
QrB(r)φTwoCC(r) dr ,

=
39094

3
− 18800 ln (2) ≤ 0.16634

DFD2CC :=

∫ 1

0

2rγID0,1(r)B(r)

(1− r)3
dr ,

= 11420 ln (2)− 23747

3
≤ 0.074135

JUNK2CC :=

∫ 1

0

2rγID0,1(r)B(r)φTwoCC(r)

(1− r)3
dr

=
17923400

7
− 3694000 ln (2) ≈ 0.03125

8.4 Success Probability of PPSZ in terms of TwoCC and ID0,1

The overall success probability of PPSZ can now be bounded as follows:

log2 Pr[ppsz succeeds] = log2 E
π

[
2−n+

∑
x Pr[Forced(x,π)]

]
≥ log2 E

π

[
2−n+

∑
x Pr[Cut(Tx)]

]
≥ −n+

∑
x

Pr
D

[Cut(Tx)]−KL(D||U) (46)

Since D acts independently on all variables, computing KL(D||U) should be straight-
forward; still, it causes a slight headache since variables come in seven “flavors”, meaning
γx is chosen among seven possible functions. To be more precise, j = 0, 1, 2 we define

A1,j := {x ∈ ID0,1 | exactly j of x’s children are in ID0,1}
A0,j := {x ∈ V \ (ID0,1 ∪ TwoCC) | exactly j of x’s children are in ID0,1}

Looking back at Definition 67, we see that γx = −iγID0,1 + j · γpID0,1
=: γi,j when x ∈ Ai,j

In particular, γx = 0 for x ∈ B0,0, so π(x) is uniform, and these variables contribute

nothing to KL. We define φi,j(r) := γ′i,j(r) dr, Ψi,j :=
∫ 1

0 φ
2
i,j(r), and Di,j := D

γi,j
ε . With

this notation, we can write

KL(D||U) =

1∑
i=0

2∑
j=0

KL(Di,j ||U) · |Ai,j |+ KL(DγTwoCC
ε ||U) · |TwoCC|
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Using Lemma 43 we obtain that

KL(Di,j) ≤
Ψi,j

ln(2)
· fKL(ε)

for fKL(ε) = (1 − ε) ln(1 − ε) + ε. One checks that Ψ1,2 ≤ Ψ1,1 ≤ Ψ1,0 for our choice of
γID0,1 and γpID0,1

. Therefore,

2∑
j=0

KL(DA1,j ||U) · |A1,j | ≤
fKL(ε)

ln(2)

(
ΨA1,0 |A1,0|+ ΨA1,1 |A1,1|+ ΨA1,2 |A1,2|

)
≤fKL(ε)

ln(2)
·ΨA1,0 |A1,0 ∪A1,1 ∪A1,2| =

fKL(ε)

ln(2)
·ΨA1,0 |ID0,1| . (47)

For A0,j , note that

ΨA0,j =

∫ 1

0
φ2
A0,j

(r) dr = j2ΨA0,1

and therefore

2∑
j=0

KL(DA0,j ||U) · |A1,j | ≤
fKL(ε)

ln(2)

2∑
j=0

ΨA0,j

=
fKL(ε)

ln(2)
ΨA0,2

(
1

4
|A0,1|+ |A0,2|

)
≤ fKL(ε)

2 ln(2)
ΨA0,2 (|A0,1|+ 2 |A0,2|)

≤ fKL(ε)

2 ln(2)
ΨA0,2 |ID1| . (48)

To see why the last inequality holds, note that A0,j is, by definition, the set of x ∈
V \TwoCC that are not in ID0,1 but have j arcs into ID0,1. Thus, the expression |A0,1|+
2 |A0,2| is at most the number of arcs in the critical clause graph going from outside ID0,1

into ID0,1 (at most since some arcs might come from TwoCC-variables). This number is
at most |ID1|. To determine KL(DγTwoCC

ε ||U), we cannot apply Lemma 43 directly since
it requires |φ| ≤ 1. In fact, φTwoCC(r) is −5 for r = 1/2, and this is its maximal absolute
value. Thus, |15φTwoCC(r)| ≤ 1, and therefore

KL(DγTwoCC
ε ||U) = KL(D

γTwoCC/5
5 ε ||U) ≤ fKL(5 ε)

ln(2)

1

25
ΨTwoCC (49)

for ΨTwoCC :=
∫ 1

0 φ
2
TwoCC(r) dr = 15

14 . Adding (47), (48), and (49) gives

KL(D||U) ≤ fKL(ε)

ln(2)

(
Ψ1,0|ID0,1|+

Ψ0,2

2
|ID1|

)
+
fKL(5 ε)

25 ln(2)
ΨTwoCC|TwoCC| (50)

=
fKL(ε)

ln(2)

(
5

21
|ID0,1|+

3721

90720
|ID1|

)
+
fKL(5 ε)

25 ln(2)

15

14
|TwoCC|

This bound is more or less tight (up to the slack in Lemma 43: it might so happen that
(1) no ID0,1-variable x has an out-neighbor y ∈ ID0,1; (2) ID1-variables occur in “pairs”,
i.e., if (x, y), (x, z) the out-arcs of x, then y ∈ ID1 if and only if z ∈ ID1. In this scenario,
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A1,1 = A1,2 = A0,1 = ∅, |A1,0| = |ID0,1|, and |A0,2| = |ID0,1|/2. Combining (50), (44),
and (46), we see that the “gain” log2 Pr[success] + n− s3n is at least

ε(|ID0,1|BFS− |ID1|DFB)− ε2|ID1|JUNK− fKL(ε)

ln(2)

(
ΨA1,0 |ID0,1|+

ΨA0,2

2
|ID1|

)
+

(
Bonus2CC− ε(DFS2CC + DFD2CC)− ε2JUNK2CC− fKL(5 ε)

25 ln(2)

15

14

)
|TwoCC|

= |ID1|
(
ε(BFS−DFB)− ε2JUNK−

ΨA1,0 + ΨA0,2/2

ln(2)
fKL(ε)

)
+ |ID0|

(
εBFS−

fKL(ε)ΨA1,0

ln(2)

)
+

(
Bonus2CC− ε(DFS2CC + DFD2CC)− ε2JUNK2CC− fKL(5 ε)

25 ln(2)

15

14

)
|TwoCC|

≥ |ID1|
(
0.030966 ε− 0.0028 ε2 − 0.4027 fKL(ε)

)
+|ID0| (0.06259 ε− 0.344fKL(ε))

+|TwoCC|
(
0.009307− 0.2405 ε− 0.03125 ε2 − 0.06183 fKL(5 ε)

)
For ε = 0.029, this is at least

|ID1|
1380

+
|ID0|
600

+
|TwoCC|

617
≥ |ID1|+ 2 |ID0|+ 2 |TwoCC|

1380

This completes the proof of Theorem 36.
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A Proofs from Section 3, 4, and 6

Lemma A.1 (CCT similarity lemma, Lemma 33, restated). Let Tx be the canonical
critical clause tree for Tx, u a node in Tx, v a descendant of u in Tx, and a := varlabel(u),
b := varlabel(v). If v is canonical in Tx, then there is a corresponding node v′ in Ta,
the canonical clause tree of variable a, and the path from u to v has the same variable
label sequence as the path from root(Ta) to v′ in Ta. In particular, varlabel(v′) = b.
Furthermore, v′ is canonical.

Proof. Let u = u0, . . . , ut = v be the path from u to v in Tx, and li = varlabel(ui). Since
v is canonical in Tx, each variable li on that path has exactly one canonical clause Cli .
Furthermore, again by definition of canonical-ness, the assignment αui violates Cli ; recall
that αui is the assignment obtained from α = (1, . . . , 1) by flipping all variable labels on
the path from root(Tx) to ui, including both endpoints.

We will now construct a corresponding path root(Ta) = u′0, u
′
1, . . . , u

′
t of canonical

nodes in Ta such that varlabel(u′i) = varlabel(ui). We start with u′0 := root(Ta). Note
that varlabel(u′0) = varlabel(u0) = a. Suppose u′0, . . . , u

′
i have been defined, i ≤ l. What

is the clause label of u′i? Recall the assignment αui , which violates Cli . What is αu′i? It
is the assignment obtained from α = (1, . . . , 1) by flipping all variable labels on the path
from root(Ta) = u′0 to u′i. Thus, the set of flipped variables in αu′i is a subset of that in
αui ; in other words, αu′i(l) ≥ αui(l) for every variable l. This means that αu′i violates Cli ,
as well. We conclude that the clause label of u′i is Cli , and therefore u′i is canonical, too.

If i = t, we are done; otherwise, we have to find a suitable u′i+1 in Ta. Write Cli =
(li ∨ ȳ ∨ z̄). The process constructing the critical clause trees creates two children for ui
and labels them y and z; without loss of generality, the child ui+1 has label y. Similarly,
when constructing Ta, it uses Cl to create two children for u′i+1 and labels them y and z.
We now set u′i+1 to be that child that has label y.

Lemma A.2 (Lemma 19, restated). There is some cPrivileged > 0, depending only on
k, such that Pr[Forced(x, π)] ≥ sk + cPrivileged− o(1) for all privileged variables x, where
o(1) converges to 0 as w grows.

Proof. We show that there are constants c1, c2, c3 > 0, depending only on k, such that
Pr[Forced(x, π)] ≥ sk+ci−o(1) whenever x is privileged due to reason (i) in Definition 18.

The case of privileged variables of type (1), i.e., those having at least two critical
clauses, has already been addressed in the full versions of [3]. However, for the sake
of completeness we will also discuss this case. We will introduce some operations on
labeled trees T that never increase Pr[Cutr(T )]. As a most simple example, suppose
u is a node in T and not a safe leaf; form T ′ by adding a new child v to u. Then
Pr[Cutr(T )] ≥ Pr[Cutr(T

′)], regardless of the label of v. This follows immediately from
the definition of Cutr.
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x x

u u

v

← safe leaves →
Attaching additional descendants to u will not increase Pr[Cutr(T )].

This operation allows us to reduce case (3) to case (2). Indeed, suppose Tx has fewer
than (k− 1)2 nodes at depth 2. Let Y1, . . . , Yk−1 be the children of the root of Tx and let
y1, . . . , yk−1 be their respective labels. By assumption, some child Yi has at most k − 2
children. Create a new node Z, attach it as an additional child to Yi, and give it label y1.
The resulting tree T ′ is a labeled tree, every node has at most k − 1 children, and label
y1 occurs at depths 1 (at Y1) and at depth 2 (at Z), so T ′ is of type (2).

Next, we (almost) reduce case (1) to case (2). Suppose x has two critical clauses, C =
(x∨ȳ1, . . . , ȳk−1) and D = (x∨z̄1, . . . , z̄k−1). Note that k ≤ |{y1, . . . , yk−1, z1, . . . , zk−1}| ≤
2(k − 1). Suppose for the moment that it is less than 2(k − 1), i.e, some variable yi also
appears in D. Without loss of generality, y1 = z1. Also, the two clauses are distinct, so
let us assume that yk−1 does not appear in D. We will construct a (non-canonical) critical
clause tree T ′x for x that is of type (2). Use C as clause label for the root. Note that this
creates k−1 nodes Y1, . . . , Yk−1 at depth 1 with labels y1, . . . , yk−1. The assignment label
of Yk−1 is α[yk−1 7→ 0], which violates D; here we use the fact that D does not contain
yk−1. Thus, we can use D as clause label of node Yk−1, which in turn creates k− 1 nodes
at depth 2, one of which has label z1. Now recall that y1 = z1 by assumption, so this
label occurs once at depth 1 and somewhere at depth 2, and Tx is of type (2).

Summarizing, we are left with privileged variables of type (2) and those with two
critical clauses C,D that share no variable besides x. Let us deal with type (2) first.
We start with a proposition stating that assigning “fresh labels” to a node of T cannot
increase Pr[Cutr(T )]. This can be seen as an alternative proof of Lemma 7 in [8] that
bypasses the FKG inequality for monotone Boolean functions (in fact, implicitly reproves
it).

Proposition 76. Let T be a labeled tree and suppose the values {π(l)}l∈L are independent.
Let u be a node in T with label z. Form a new tree T ′ by assigning u a fresh label z′ and
making π(z′) follow the same distribution as π(z), but independent of everything else.
Then Pr[Cut(T )] ≥ Pr[Cut(T ′)]

Proof. We show that Pr[Cutr(T )] ≥ Pr[Cutr(T
′)] for all r ∈ [0, 1]. Let τ : L \ {z, z′} →

[0, 1] be a placement of all labels except z and z′. In fact, we claim that Pr[Cutr(T ) | τ ] ≥
Pr[Cutr(T

′) | τ ] holds for all τ . Under the partial placement τ , the event Cutr(T
′)

becomes some monotone Boolean function f(b, b′) in the Boolean variables b := [π(z) < r]
and b′ := [π(z) < r′], and Cutr(T ) becomes f(b, b). This holds since T can be obtained
from T ′ by merging the labels z and z′. Now under our distribution on placements,
π(z) and π(z′) follow the same distribution and therefore Pr[b = 1] = Pr[b′ = 1]. This
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means that Pr[f(b, b′) = 1] = Pr[f(b, b) = 1] unless f depends on both variables; the only
monotone functions depending on both b and b′ are b ∧ b′ and b ∨ b′. If f(b, b′) = b ∧ b′
then Pr[Cutr(T

′) | τ ] = Pr[b ∧ b′] ≤ Pr[b] = Pr[Cutr(T )] and our claim holds. Finally,
f(b, b′) = b ∨ b′ cannot hold: the set of nodes in T ′ with label z or z′ form an antichain,
by Point 2 of Definition 9.

Now let T be a labeled tree to which (2) applies, i.e., some variable y appears at depth
1 and 2 in Tx. Let Y1, Y2 be those two nodes with label y. We apply the proposition to
all nodes except Y1 and Y2. Second, we add new children to nodes of depth less than h
until all such nodes have exactly k− 1 children, and all the (k− 1)h nodes at depth h are
safe leaves. Call this tree T . From the proposition and the discussion above, it follows
that Pr[Cutr(Tx)] ≥ Pr[Cutr(T )]. In a last step, give a fresh label y1 to Y1 and y2 to Y2,
and call the resulting tree T ′. In T ′, all nodes have distinct labels, and we know what

Pr[Cutr(T
′)] is: it is Q

(k−1)
r − o(1).10 We also know that Pr[Cutr(T )] ≥ Pr[Cutr(T

′)]
by the above proposition. Now, however, we have to take a closer look at the proof
of the proposition since we want to show that Pr[Cutr(T )] is significantly larger than
Pr[Cutr(T

′)].

x

y1

y2

wk−1

z2 zk−1

w2 . . .

. . .

The tree T ′: all labels are distinct.

In T ′, we denote the node with label w2 by W2; that with label z2 by Z2, and so on. Since
T ′ and T has the same node set, we use this notation for the nodes in T , too. Furthermore,
for a node u, we denote the subtree of T (or T ′) rooted at node u by Tu (or T ′u). As in the
proof of the proposition, we fix some partial placement τ : L \ {y1, y2, y} → [0, 1]. As we
have seen in the proof, Pr[Cutr(T ) | τ ] ≥ Pr[Cutr(T

′) |τ ] holds for every such τ . Call τ
good if the following holds: (1) π(w2) ≥ r; (2) π(z2), . . . , π(zk−1), π(w3), . . . , π(wk−1) < r;
(3) ¬Cutr(TY1) and ¬Cutr(TY2). The events described in (1–3) are independent; those
in (1) and (2) happen with probability exactly (1 − r)r2k−5. Those in (3) happen with
probability at least (1−Qr)2.

Under a good τ , the Cutr(T
′) becomes [π(y1) < r∧π(y2) < r] and has probability r2,

and Cutr(T ) becomes [π(y) < r], which has probability r. Therefore,

Pr[Cutr(T )]− Pr[Cutr(T
′)] ≥ Pr[τ is good] · (r − r2)

≥ (1− r)r2k−5(1−Qr)2(r − r2) = (1− r)2r2k−4(1−Qr)2 .

Putting everything together and integrating over r, we conclude that

Pr[Cut(Tx)] ≥ sk − o(1) +

∫ 1

0
(1− r)2r2k−4(1−Qr)2 dr .

10We will write Qr instead of Q
(k−1)
r from now on since k is understood.
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It is clear that the integral is some positive constant depending solely on k.

We are left with the case that x has two critical clauses C = (x ∨ ȳ1, . . . , ȳk−1) and
D = (x ∨ z̄1, . . . , z̄k−1), and yi 6= zj for all 1 ≤ i, j ≤ k − 1. It is clear that x is forced if
all yi come before x or all zi come before x. Therefore,

Pr[Forced(x, π) | π(x) = r] ≥ rk−1 + rk−1 − Pr[all yi and all zi come before x]

≥ 2 rk−1 − r2k−2 .

On the other hand, by focusing solely on the canonical critical clause tree of x, we can
apply Lemma 13 and conclude that

Pr[Forced(x, π) | π(x) = r] ≥ Qr − o(1) ,

(we write Qr instead of Q
(k)
r since k is understood), and therefore

Pr[Forced(x, π) = 1] ≥
∫ 1

0
max(2 rk−1 − r2k−2, Qr) dr − o(1)

= sk − o(1) +

∫ 1

0
max

(
0, 2 rk−1 − r2k−2 −Qr

)
dr .

It remains to show that the latter term is positive for a substantial range of r ∈ [0, 1].
We claim that if r is sufficiently small, Qr is only a tiny factor larger than rk−1. Indeed,
From Proposition 12, we know that Qr ≤ e rk−1, thus Pr = r ∨Qr = r + (1− r)e rk−1 =

r(1 + e(1 − r)rk−2) and in turn Qr = P k−1
r ≤

(
r + e rk−1

)k−1
= rk−1

(
1 + e rk−2

)k−1
<

rk−1ee(k−1)rk−2
. We check that ee(k−1)rk−2 ≤ 1.5 for all k ≥ 3 and r ≤ 1/16. Therefore,∫ 1

0
max

(
0, 2 rk−1 − r2k−2 −Qr

)
dr ≤

∫ 1/16

0

(
2 rk−1 − r2k−2 − 1.5 rk−1

)
dr

=

∫ 1/16

0

(
1

2
rk−1 − r2k−2

)
dr

and the latter is some positive constant c1 depending only on k.

Lemma A.3 (Lemma 34, restated). There is a set H ⊆ E(SG) of maximum degree 2
(i.e., H consists of paths and cycles) with |H| ≥ n− |ID1| − 2 |ID0|.

Proof of Lemma 34. For each vertex x in SG with degSG(x) ≥ 3, mark degSG(x) − 2 of
its incident edges (choose them arbitrarily). Let H be the set of unmarked edges. The
number of marked edges is at most∑

x:degSG(x)≥3

(degSG(x)− 2)

The total number of edges is n, thus
∑

x∈V degSG(x) = n, and

0 =
∑
x

(deg(x)− 2) =
∑

x:degSG(x)≥3

(degSG(x)− 2)− |ID1| − 2 |ID0| ,

We conclude that the number marked edges is at most∑
x:degSG(x)≥3

(degSG(x)− 2) = |ID1|+ 2 |ID0| .

Thus, |H| ≥ n−|ID1|−2 |ID0|, and the maximum degree in H is obviously at most 2.
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B Proofs concerning the construction of D

Theorem B.1 (Theorem 40, restated). Let Av ⊆ [0, 1] for v ∈ V (G) be non-empty
intervals; let V (G) = K ] I and EI := {{u, v} ∈ E | u, v ∈ I}. Then

Pr[Xk ∈ Ak ∀k ∈ K | Xi ∈ Ai ∀i ∈ I] =
∏
k∈K

µ(Ak) ·

(
1 + ε

∑
{u,v}∈E\EI TuTv

1 + ε
∑
{u,v}∈EI TuTv

)
,

where µ is the Lebesgue measure on [0, 1] and Tu := Ex∈Au [φ(x)], the expectation being
taken with respect to the uniform distribution on Au.

Proof. If some Ak, k ∈ K has zero measure (Ak is a point) then both sides are 0. For
simplicity, let’s assume all intervals have positive measure, including the Ai, i ∈ I; the
case Ai = {r} can then be obtained by taking a limit.

As a small notational trick, define A′v to be [0, 1] if v ∈ K and Av if v ∈ I. Then the
conditional probability is the fraction

Pr[Xv ∈ Av ∀v ∈ V ]

Pr[Xv ∈ A′v ∀v ∈ V ]

Let us work on the numerator. We define the Cartesian product A :=
∏
v∈V Av and let

µ be the Lebesgue measure on [0, 1] and [0, 1]d in general. Note that Tu = Ex∈Au [φ(x)] =∫
Au
φ(x) dx/µ(Au). Then

Pr[Xv ∈ Av ∀v ∈ V ]

µ(A)
=

∫
A(1 + ε

∑
{u,v}∈E φ(xu)φ(xv) dx

µ(A)

= E
x∈A

1 + ε
∑
{u,v}∈E

φ(xu)φ(xv)


= 1 + ε

∑
{u,v}∈E

TuTv .

Let us work on the denominator similarly. We defineA′ :=
∏
v∈V A

′
v and T ′u := Ex∈A′u [φ(u)].

Note that T ′u = Tu if u ∈ I and T ′u = 0 if u ∈ K. We get

Pr[Xv ∈ A′v ∀v ∈ V ]

µ(A′)
= 1 + ε

∑
{u,v}∈E

T ′uT
′
v .

Finally, the conditional probability is

Pr[Xv ∈ Av ∀v ∈ V ]

Pr[Xv ∈ A′v ∀v ∈ V ]
=

1 + ε
∑
{u,v}∈E TuTv

1 + ε
∑
{u,v}∈E T

′
uT
′
v

· µ(A)

µ(A′)

=
∏
k∈K

µ(Ak) ·
1 + ε

∑
{u,v}∈E TuTv

1 + ε
∑
{u,v}∈E T

′
uT
′
v

=
∏
k∈K

µ(Ak) ·
1 + ε

∑
{u,v}∈E TuTv

1 + ε
∑
{u,v}∈EI TuTv

(since T ′u = Tu · 1u∈I)

=
∏
k∈K

µ(Ak) ·

(
1 +

ε
∑
{u,v}∈E\EI TuTv

1 + ε
∑
{u,v}∈EI TuTv

)
This completes the proof of the theorem.

62



Corollary B.2 (Corollary 42, restated). Let u ∈ V (G) and Au := [0, r]; for each other
v ∈ V \ {u}, suppose Av is one of {r}, [0, r], [r, 1], or [0, 1]. Define T−v = min(0, Tv).
Then

Pr[Xu ∈ Au | Xv ∈ Av for all other v] ≥ r +
εγ(r)

∑
v:{u,v}∈E T

−
v

1− 2
25 ε(|E| − 1)

. (51)

holds for our particular choice γ(r) = r(1 − 2 r)3/2. Furthermore, if |E(G)| ≤ 17 and
ε ≤ 0.13, this is at least

r + 1.2 εγ(r)
∑

v:{u,v}∈E

T−v .

Proof. We apply Theorem 40 with K = {u} and I = V \ {u} and Av as in the corollary
and see that

Pr[Xu ∈ Au | Xv ∈ Av ∀v ∈ I] = r

(
1 + ε

∑
v:{u,v}∈E TuTv

1 + ε
∑
{v,w}∈EI TvTw

)

= r +
εγ(r)

∑
v:{u,v}∈E Tv

1 + ε
∑
{v,w}∈EI TvTw

(since Tu = γ(r)
r )

≥ r +
εγ(r)

∑
v:{u,v}∈E T

−
v

1 + ε
∑
{v,w}∈EI TvTw

.

If u is an isolated vertex in G than this is obviously equal to r and the theorem holds.
Otherwise, observe that the the numerator is at most 0; it remains to bound the denom-
inator from below. Consider a single term TvTw. There are four possible choices for Av,
and similar for Aw. Note that Tv is φ(r), γ(r)

r , −γ(r)
1−r , and 0 if Av is {r}, [0, r], [r, 1], and

[0, 1], respectively. This makes a total of sixteen combinations; however, most of them
are obviously non-negative (for example if Av = Aw or one of them is [0, 1]); there are
only three values for TvTw that are not obviously non-negative:

1. TvTw = γ(r)
r ·

−γ(r)
1−r , if Av = [0, r] and Aw = [r, 1], or vice versa;

2. TvTw = φ(r) · γ(r)
r , if Av = {r} and Aw = [0, r], or vice versa;

3. TvTw = φ(r) · −γ(r)
1−r , if Av = {r} and Aw = [r, 1], or vice versa.

One checks that all three functions are at least −2/25, with equality achieved by φ(r) · γ(r)
r

and r = 3/10. There are at most |E| − 1 terms in the denominator since u is incident
to at least one v ∈ I, and therefore the denominator is at least 1 − 2

25 ε(|E| − 1). This
completes the proof of Corollary 42.

Lemma B.3 (Lemma 43, restated). If |φ(x)| ≤ 1 for all x ∈ [0, 1] then KL(Dγ
ε ||U) ≤

m2
ln(2) · fKL(ε). Using ln(1− ε) ≤ −ε− ε2/2, this is at most to m2

2 ln(2)(ε2 + ε3).

Proof. By definition, if fQ(z), fP (z) are the probability densities of Q and P , then

D(P ||Q) = E
z∼P

[
log2

(
fP (z)

fQ(z)

)]
.
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In our case, Q is the uniform distribution on [0, 1] and P has density fP (x) = 1+εφ(x)The
divergence is

D (Dγ
ε ||U) =

1

ln(2)

∫
x
(1 + εφ(x)) ln(1 + εφ(x)) dx (52)

Write t := εφ(x). Using the Taylor expansion of ln(1 + t), we see that

(1 + t) ln(1 + t) = (1 + t)

∞∑
n=1

(−1)n+1 t
n

n

=
∞∑
n=1

(−1)n+1 t
n

n
+
∞∑
n=1

(−1)n+1 t
n+1

n

=
∞∑
n=1

(−1)n+1 t
n

n
+
∞∑
k=2

(−1)k
tk

k − 1

= t+
∞∑
n=2

tn · (−1)n ·
(

1

n− 1
− 1

n

)

= t+

∞∑
n=2

(−1)n

n(n− 1)
· tn .

Thus, (52) becomes

1

ln(2)

∫
x
εφ(x)) dx+

∞∑
n=2

(−1)n

ln(2)n(n− 1)

∫
x
εnφn(x) dx

The first sum is εm1 = 0. The second sum equals

∞∑
n=2

(−1)nεn

ln(2)n(n− 1)

∫
x
φn(x) dx

≤
∞∑
n=2

εn

ln(2)n(n− 1)

∫
x
|φn(x)| dx

≤
∞∑
n=2

εn

ln(2)n(n− 1)

∫
x

∣∣φ2(x)
∣∣ dx (since φ(x) ≤ 1)

=
m2

ln(2)

∞∑
n=2

εn

n(n− 1)
.

It remains to find a closed form for
∑∞

n=2
xn

n(n−1) .

Claim.
∑∞

n=2
xn

n(n−1) = (1− x) ln(1− x) + x = fKL(x) for all |x| < 1.

Proof. Both sides converge / are defined for |x| < 1. We compare the Taylor series. For
x = 0, both sides vanish, so the constant terms agree. Differentiating both sides, we get∑∞

n=2
xn−1

n−1 on the left side and − ln(1−x) on the right side. Both first derivatives vanish
for x = 0, so the linear terms agree as well. Finally, differentiating once more, the right
side becomes 1

1−x and the left side becomes
∑∞

n=2 x
n−2. This is a geometric series and

equals 1
1−x for all |x| < 1.
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Plugging in this closed form, we get the claimed formulas in Lemma 43.

Lemma B.4 (Lemma 44, restated). Let G be a cycle or a path, consisting of at most
t edges. For γ(r) = r(1 − 2 r)3/2, φ(r) = γ′(r), ε ≤ 0.13, and t ≤ 17, it holds that
KL(DG||U) ≤ 0.0064 ε2t.

Proof. This is more challenging than if D were the Markov chain outlined above. We
use the estimate ln(1 + z) ≤ z − z2/2 + z3/3, which holds for all z ∈ R, and write
z = z(x) = ε

∑t
i=1 φ(xi−1)φ(xi) for brevity. By definition of KL, we have

ln(2)KL(D||U) =

∫
(1 + z(x)) ln(1 + z(x)) dx

≤
∫

(1 + z)(z − z2/2 + z3/3) dx

=

∫ (
z +

z2

2
− z3

6
+
z4

3

)
dx ,

where the integral is always over the whole space [0, 1]V . We will therefore replace
∫

by E,
referring to the distribution that samples each xi independently and uniformly over [0, 1].
This change is of course purely notational but we feel that E is slightly more intuitive
than

∫
. We define md := E[φd(x)] and check that m2 = 3

32 , m3 = 12
385 , and m4 = 9

224 , for

our choice of γ(r) = r(1− 2 r)3/2. We integrate / take the expectation of each of the four
terms above separately. For the linear term z we get

E[z(x)] = E

ε ∑
{u,v}∈E

φ(xu)φ(xv)

 = ε
∑
{u,v}∈E

E[φ(xu)]E[φ(xv)] = 0 .

For z2/2 we get

E
[
z2

2

]
=
ε2

2
E

 ∑
{u,v}∈E

φ(xu)φ(xv)

2
=
ε2

2

∑
{u,v},{u′,v′}∈E

E [φ(xu)φ(xv)φ(xu′)φ(xv′)] .

If {u, v} 6= {u′, v′} then u 6∈ {u′, v′} without loss of generality, and φ(xu) is independent
of the other three terms in the expectation; thus, we can factor E[φ(xu)] out and see that
the whole term vanishes. Thus, only terms for {u, v} = {u′, v′} remain:

ε2

2

∑
{u,v}∈E

E
[
φ(xu)2φ(xv)

2
]

ε2

2

∑
{u,v}∈E

E
[
φ(xu)2

]
E
[
φ(xv)

2
]

=
ε2

2
t
(
E
[
φ(x)2

])2
=
ε2tm2

2

2
.

To facilitate computation of the cubic and quartic terms below, let’s put this argu-
ment in a more general context: for a tuple F = (e1, . . . , ei) of edges in E, let TF :=
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E
[∏i

i=1

∏
u∈ei φ(xu)

]
. Let degF (u) denote the number of edges e in F incident to u. We

calculate

TF = E

[∏
e∈F

∏
u∈e

φ(xi)

]

= E

 ∏
u∈V (G)

(φ(xu))degF (u)


=

∏
u∈V (G)

E
[
(φ(xu))degF (u)

]
=

∏
u∈V (G)

mdegF (u) .

Note that m1 = E[φ(x)] = 0; let us say vertex i is exposed in F if degF (i) = 1, thus

TF = 0 if F has an exposed vertex. In the above calculation of E
[
z2

2

]
, the multiset F

consisted of only two edges, e and e′. It is obvious that F has an exposed vertex unless
e = e′.

Next, let us analyze the degree-3-terms (−z3/6):

E
[
−z3

6

]
=
−ε3

6
E

 t∑
{u,v}∈E

φ(xu)φ(xv)

3 =
−ε3

6

∑
e,f,g∈E

T(e,f,g)

What is T(e,f,g)? If e = f = g = {u, v} then u and v have degree 3 in F , and TF = m2
3. If

G is a triangle and e, f, g are all distinct (for which there are 3! = 6 possibilities), then all
u ∈ V have degF (u) = 2, and TF = m3

2. Otherwise, F has an exposed vertex and TF = 0.
We conclude that

E
[
−z3

6

]
=

{
−ε3

6

(
3m2

3 + 6m3
2

)
if G is a triangle,

−ε3 tm2
3

6 else.

In both cases, this is negative. Finally, z4/3:

E

[
z4

3

]
=
ε4

3

∑
e,f,g,h

T(e,f,g,h)

Case 1. G is not a triangle and not a 4-cycle.

It is easy to see that F = (e, f, g, h) is either of the form (1) (e, e, e, e), i.e., contains
one edge four times or (2) (e, f, e, f) for e 6= f or a permutation thereof, or (3) has an
exposed vertex. Form (1) occurs t times (once for every e) and contributes a total of tm2

4,
since u and v have degree 4 in F , for e = {u, v}. For each set {e, f} of two edges, form (2)
appears six times (choose the two positions of e). This makes a total of

(
t
2

)
· 6 = 3 t(t− 1)

times form (2) appears. Form (2) can, however, appear in two sub-forms: either (2.1) the
edges e, f can be incident or (2.2) they are not. Note that the number of sets {e, f} that
are of form (2.1) is t− 1 if G is a path and t if G is a cycle. If term Te,f,g,h of form (2.1),
say Te,e,f,f with e = {u, v} and f = {v, w} then degF (u) = degF (w) = 2 and degF (v) = 4

66



and therefore Te,e,f,f = m2
2m4. If it is of form (2.2) then four vertices are involved, each

of degree 2, and Te,e,f,f = m4
2. Therefore,

E
[
z4

3

]
=
ε4

3
·

{
tm2

4 + 3 (t− 1)
(
2m4m

2
2 + (t− 2)m4

2

)
if G is a t-path

tm2
4 + 3 t

(
2m4m

2
2 + (t− 3)m4

2

)
if G is a t-cycle

One checks that the expression for the t-cycle is at least the expression for the t-path;
the key inequality here is m2

2 ≤ m4, which follows from setting Y := φ2(x) and observing
that m2

2 = (E[Y ])2 ≤ E
[
Y 2
]

= m4. We conclude that

E
[
z4

3

]
≤ ε4 t

3
·
(
m2

4 + 6m4m
2
2 + 3 (t− 3)m4

2

)
. (53)

Adding the quadratic and quartic term (the cubic one is negative), and using the fact
that t ≤ 17, we conclude that

ln(2)KL(D||U) ≤ ε2tm2
2

2
+
ε4 t

3
·
(
m2

4 + 6m4m
2
2 + 42m4

2

)
(since t ≤ 17)

= ε2t

(
m2

2

2
+ ε2

m2
4 + 6m4m

2
2 + 42m4

2

3

)
(54)

≤ 0.004434 ε2t ,

where the last inequality uses ε ≤ 0.13. This implies that KL(D||U) ≤ 0.0064 ε2t.

Case 2. G is a triangle. Then we get the same as in (53) plus some cases not
accounted for. If (3) F := (e, f, g, h) = (e, e, e, f) or a permutation therefore, then one
endpoint of f is exposed and TF = 0. If (4) F := (e, f, g, h) = (e, e, f, g) then no endpoint
is exposed (since e, f, g are the three edges of the triangle). The three points have degree
3, 3, and 2 in F , respectively, and thus TF = m2

3m2. How many such tuples F are there?
There are three ways to choose one edge to occur twice in F . Once this has been chosen,
say e appears twice, it remains to choose where in the 4-tuple F the two other edges, f
and g appear; there are 4 · 3 = 12 choices for this, making a total of 36 tuples F in which
exactly one edge of e, f, g appears twice. Thus,

E
[
z4

3

]
=
ε4

3

(
3m2

4 + 18m4m
2
2 + 36m2

3m2

)
=
ε4t

3
(m2

4 + 6m4m
2
2 + 12m2

3m2) . (if G is triangle)

Adding things up, we see that

ln(2)KL(D||U) ≤ ε2tm2
2

2
+
ε4t

3
(m2

4 + 6m4m
2
2 + 12m2

3m2)

= ε2t

(
m2

2

2
+ ε2

m2
4 + 6m4m

2
2 + 12m2

3m2

3

)
≤ 0.00443 ε2t , (since ε ≤ 0.13)

which again implies KL(D||U) ≤ 0.0064 ε2t.

Case 3. G is a four-cycle. In addition (53), we get some extra terms as well. If (3)
F := (e, f, g, h) = (e, e, e, f) or some permutation thereof, i.e., some edge has multiplicity
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3, then f has at least one exposed vertex, and TF = 0. If (4) exactly one edge has
multiplicity 2, so F = (e, e, f, g) or a permutation thereof then F has at least one exposed
vertex, and TF = 0, as well. The case F = (e, e, f, f), i.e, two edges appear twice each,
has already been accounted for in (53) as form (2). We get an additional term if (5) all
edges are distinct: F = (e, f, g, h); in this case, all vertices have degree 2, and TF = m4

2.
There are of course 4! tuples of this form, and thus

E
[
z4

3

]
=
ε4

3

(
4m2

4 + 24m4m
2
2 + 12m4

2 + 24m4
2

)
(if G is 4-cycle)

Altogether, if G is a 4-cycle we get that

ln(2)KL(D||U) ≤ ε2tm2
2

2
+
ε4

3

(
4m2

4 + 24m4m
2
2 + 36m4

2

)
= ε2t

(
m2

2

2
+ ε2

m2
4 + 6m4m

2
2 + 9m4

2

3

)
≤ the expression in (54) .

Thus, the bound in the lemma also holds for the 4-cycle. This concludes the proof.

C Proofs for Section 7

Lemma C.1 (Extending T to infinity; Lemma 48, restated). Let T be a labeled tree of
height h in which all safe leaves have depth h, and for every node v of depth greater
than h′, the following hold: (1) its label lv is not shared by any other node; (2) π(lv) is
independent of everything else; (3) rmin ≤ Pr[π(lv) < r] ≤ rmax (think of rmin and rmax

being close to r); (4) v has exactly two children if d(v) ≤ h − 1, and it is a safe leaf if
d(v) = h.

Construct T ′ from T by replacing each safe leaf v by a copy of T∞, so T ′ has no safe
leaves anymore. All new nodes get δv = 0, i.e., Pr[π(l) < r] = r for all new labels. Then

Pr[Cutr(T )] ≥ Pr[Cutr(T
′)]− 2hr̃h−h

′
.

Proof. Let T0 := T . Enumerate the leaves of T0 as i = 1, . . . , L, with L ≤ 2h. Form Ti+1

from Ti by replacing the ith leaf with a copy of T∞, and let T ′ := TL.

Claim. For r ∈ [0, 1/2], PrD[Cutr(Ti)] ≥ PrD[Cutr(Ti+1)]− r̃h−h′ .

Proof. Let v be the (i+ 1)th leaf of T . That is, v is a leaf in Ti but the root of a copy of
T∞ in T∞. Besides that, Ti and Ti+1 are identical. Let τ be an assignment to all labels
of Ti except v. Note that under τ , the events Cutr(Ti) and Cutr(Ti+1) either (1) both
become ∅, i.e., neither happens regardless of π(v); (2) both become Ω, i.e., both happen
regardless of π(v); or (3) Cutr(Ti) becomes [π(v) < r] and Cutr(Ti+1) becomes wCut(Tv),
where Tv is the copy of T∞ rooted at v in Ti+1. Say v is pivotal under τ if (3) happens.
Observe that

Pr
D

[Cutr(Ti+1)]− Pr
D

[Cutr(Ti)] = Pr
τ∼D

[v is pivotal under τ ] ·
(

Pr
D

[wCut(Tv)]− Pr
D

[π(v) < r]

)
≤ Pr

τ∼D
[v is pivotal under τ ] · (Pr̃ − r̃) . (55)

What has to happen for v to be pivotal under τ? Let root = u0, u1, . . . , uh = v be the
path from the root to v; for h′ + 2 ≤ i ≤ h, let wi be the child of ui−1 that is not ui, i.e.,
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wi is an “aunt” of v. This exists since ui−1 has depth at least h′ and thus has exactly
two children. Let Twi be the subtree of T rooted at wi. Observe that for v to be pivotal
under τ , the following are necessary:

1. π(uh′+1), . . . , π(uh−1) ≥ r and

2. wCutr(Twh′+2
), . . . ,wCutr(Twh)

These events are independent and happen with probability

Pr[v is pivotal under τ ] =
h−1∏

i=h′+1

Pr[π(ui) ≥ r] ·
h∏

i=h′+2

Pr[wCutr(Twi)]

= (1− r̃)h−h′−1 ·
h∏

i=h′+2

Pr[wCutr(Twi)]

≤ (1− r̃)h−h′−1 · (Pr̃)h−h
′−1

= r̃h−h
′−1 .

To justify the inequality, note that in Twi , every node either has two children or is a safe
leaf. Thus, the event wCutr is less likely in Twi than in the infinite binary tree, where it
is Pr̃. The last inequality follows because Pr̃ = r̃

1−r̃ whenever r̃ ≤ 1/2. We see that

(55) ≤ r̃h−h′−1(Pr̃ − r̃) = r̃h−h
′ · r̃

1− r̃
≤ r̃h−h′ .

This proves the claim.

Iterating the claim over all L ≤ 2h leaves, we see that PrD[Cutr(T0)] ≥ PrD[Cutr(TL)]−
2hr̃h−h

′
, which proves the lemma.

Lemma C.2 (Biased node lemma, Lemma 49, restated). If v is a maximal node in W ,
i.e., no proper ancestor of v is in W , then

Pr
D

[Cutr(T )] ≥ Pr
Dv

[Cutr(T )]− δv ·
1−Qr−δmax

1− r
· rd .

where d := dT (v).

Proof of the lemma. Conceptually, this is similar to the proof of the claim within the proof
of Lemma 48. Let τ be a placement to all labels except v.11 Note that the distribution of
τ is identical under D and under Dv. Under the partial placement τ , the event Cutr(T )
either (1) happens regardless of π(v), (2) does not happen, regardless of π(v), or (3)
becomes [π(v) < r]. We say v is pivotal under τ if (3) happens. If v is pivotal under τ
then PrD[Cutr(T ) | τ ] = r − δv and PrDv [Cutr(T ) | τ ] = r. Therefore,

Pr
Dv

[Cutr(T )]− Pr
D

[Cutr(T )] = δv Pr
τ∼D

[v is pivotal under τ ] .

We will now prove an upper bound on Prτ∼D[v is pivotal under τ ]. As before, let root =
u0, u1, . . . , ud = v be the path from the root to v. For 1 ≤ i ≤ d, let wi be the child of
ui−1 that is not ui, i.e., wi is an aunt of v, and let Twi be the subtree of T rooted at wi.
We observe that v is pivotal under τ if and only if

11Strictly speaking, v is a node, not a label; however, since all labels are distinct, we can ignore this
distinction.
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1. π(u1), . . . , π(ud−1) ≥ r;

2. wCutr(Tw1), . . . ,wCutr(Twd) happen;

3. Cutr(Tv) does not happen.

These events are independent. Their probabilities are

1. Pr[π(ui) ≥ r] = 1− r for all 1 ≤ i ≤ d− 1; this holds since v is maximal in W , and
thus ui 6∈W and δui = 0;

2. Pr[wCutr(Twi)] ≤ Pr = r
1−r since Pr[π(l) < r] ≤ r − δl ≤ r for all labels in T , all

nodes have distinct labels, and Twi is an infinite complete binary tree;

3. Pr[¬Cutr(Tv)] = 1−Pr[Cutr(Tv)] ≤ 1−Qr−δmax . This holds since Tv is a complete
infinite binary tree and Pr[π(w) < r] < r − δmax for all nodes w in Tv

Multiplying everything together, we see that

Pr
Dv

[Cutr(T )]− Pr
D

[Cutr(T )] = δv Pr
τ∼D

[v is pivotal under τ ]

= δv(1− r)d−1 ·
(

r

1− r

)d
· (1−Qr−δmax)

= δv
1−Qr−δmax

1− r
rd .

This concludes the proof of Lemma 49.

Proposition C.3 (TwoCC-cleanup; Proposition 51, restated). If T ′ is as above and
δu = −εγTwoCC(r), then Pr[Cutr(T

′)] ≥ Pr[Cutr(CleanSubtree(u, T ′))], for our specific
choices of γTwoCC(r) = 40r7/2(1− 2 r)2, γ(r) = r(1− 2 r)3/2, and ε ≤ 0.13.

Proof. First of all, it is enough to prove that Pr[wCutr(Tu)] ≥ Pr[wCutr(T
∞)] = Pr.

Since Pr[wCutr(Tu)] = (r− δu)∨Pr[Cutr(Tu)] (for our “real-numbers” ∨ meaning a∨ b =
a+ b−ab), it makes sense to bound Pr[Cutr(Tu)] from below. We can assume every node
in Tu has exactly two children; if not so, keep on adding children. Also, we assume that
δv ≥ 0 for all non-root nodes of Tu; if not, we simply change δv to 0. These steps only
decrease Pr[Cutr(Tu)]. Writing d(v) to denote the depth of v in Tu, we apply Corollary 50
and get

Pr[Cutr(Tu)] ≥ Qr − 1.02
1−Qr
1− r

·
∑

v∈V (Tu)\{u}

δvr
d(v) , (56)

Note that we proved Corollary 50 only for finite sets W ; the sum in (56) is infinite but
only finitely many nodes have δv 6= 0. Let us work on the sum in (56). We partition
V (Tu) \ {u} into A ] B as follows: consider a node v; if δv > 0 then v is an “old” node,
already existing in Tx, and therefore it has a label b = varlabelTx(v) ∈ V . If {b, x} ∈ Hlow

(equivalently, in our notation, if vC root(Tx), put it into A; otherwise (including the case
δv = 0), put it into B. In words, A contains all proper descendants v of u that have a bias
δv > 0 because they (more properly: their original labels) are neighbors with x in Hlow.
Since x has at most two neighbors x1, x2 in Hlow, the set A can be partitioned into two
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antichains A = A1 ]A2. Note that δv ≤ δroot + δnon-root for all v ∈ A, and δv ≤ 2 δnon-root

for all v ∈ B, and therefore∑
v∈V (Tu)\{u}

δvr
d(v) ≤ (δroot + δnon-root)

∑
a∈A

rd(v) + 2 δnon-root

∑
b∈B

rd(v)

= (δroot + δnon-root)
∑
a∈A

rd(v) + 2 δnon-root

∑
b∈A∪B

rd(v) − 2 δnon-root

∑
a∈A

rd(v)

= (δroot − δnon-root)
∑
a∈A

rd(v) + 2 δnon-root

∑
b∈A∪B

rd(v)

≤ δroot

∑
a∈A

rd(v) + 2 δnon-root

∑
b∈A∪B

rd(v) .

We bound the second sum by

∑
b∈A∪B

rd(v) ≤
∞∑
d=1

2drd =
2 r

1− 2 r
,

since A ∪ B contains at most 2h nodes at depth h, and none at depth 0 (remember that
the root u of Tu is not in A ∪ B). To bound the first one, we need the following simple
proposition:

Proposition 77. Let T be a binary tree and A an antichain of nodes in T , and r ≤ 1/2.∑
v∈A r

dT (v) ≤ 1.

We apply this proposition to the antichains A1 and A2 and see that
∑

a∈A r
d(v) ≤ 2.

Putting everything together,

(56) ≥ Qr − 1.02
1−Qr
1− r

·
∑

v∈V (Tu)\{u}

δvr
d(v)

≥ Qr − 1.02
1−Qr
1− r

· 2 δroot

− 1.02
1−Qr
1− r

· 2 δnon-root
2 r

1− 2 r

≥ Qr −
2.04

(1− r)3
((1− 2 r)δroot + 2 rδnon-root) (since 1−Qr = 1−2 r

(1−r)2 )

=: Qr − loss .

For the reader who is interested in technical details, the reason we used the fact that A
is the union of two antichains is to preserve the 1 − 2 r factor in front of δroot; this is
important since δroot behaves “less nicely” as r → 1/2 than δnon-root. We can now bound
Pr[wCutr(Tu)]:

Pr[wCutr(Tu)] ≥ (r − δu) ∨ (Qr − loss)

= r − δu + (1− r + δu) (Qr − loss)

= r − δu + (1− r)Qr − (1− r)loss + δuQr − δuloss

≥ r − δu + (1− r)Qr − (1− r)loss + δuQr (since δu ≤ 0)

= Pr − δu(1−Qr)− (1− r)loss .

71



We have to show that this is at least Pr[wCutr(T
∞)] = Pr, which holds if and only if

−δu(1−Qr) ≥ (1− r)loss ⇐⇒

εγTwoCC(r)
1− 2 r

(1− r)2
≥ (1− r) 2.04

(1− r)3
((1− 2 r)δroot + 2 rδnon-root) ⇐⇒

εγTwoCC(1− 2 r) ≥ 2.04 ((1− 2 r)δroot + 2 rδnon-root) ⇐⇒

εγTwoCC(1− 2 r) ≥ 2.04 · 1.2 εγ(r)

(
(1− 2 r) max(0,−φ(r)) +

2 rγ(r)

1− r

)
by the definition of δroot and δnon-root in (17) and (18). Solving for γTwoCC, this holds if
and only if

γTwoCC(r) ≥ 2.04 · 1.2 γ(r)

(
max(0,−φ(r)) +

2 rγ(r)

(1− r)(1− 2 r)

)
. (57)

We verify numerically that this holds for our specific choice of γ(r) = r(1 − 2 r)3/2 and
γTwoCC(r) = 40r7/2(1− 2 r)2. This concludes the proof of Proposition 51.

Proposition C.4 (One-child cleanup; Proposition 52, restated). Suppose T ′ is as above
and u has at most child. Furthermore, suppose that δu ≤ δmax for all nodes u, and
r(1− 2 r) ≥ 2 δmax. Then Pr[Cutr(T

′)] ≥ Pr[Cutr(CleanSubtree(u, T ′))].

Proof. As with the previous proposition, it suffices to prove Pr[wCutr(Tu)] ≥ Pr[wCutr(T
∞)] =

Pr. Suppose u has exactly one child (the case that it has none is even easier), and call it
v. Observe that wCutr(Tu) = [π(u) < r] ∨ wCutr(Tv). Since Pr[π(l) < r] ≥ r − δmax for
all labels in Tu, the following simple lower bound on Pr[wCutr(Tv)] holds:

Pr[wCutr(Tv)] ≥ Pr−δmax

≥ Pr − δmaxP
′
r (since Pr is convex)

= Pr −
δmax

(1− r)2
.

Now we can bound Pr[wCutr(Tu)]:

Pr[wCutr(Tu)] = Pr[π(u) < r ∨ wCutr(Tv)]

≥ (r − δmax) ∨
(
Pr −

δmax

(1− r)2

)
= r − δmax + (1− r − δmax)

(
Pr −

δmax

(1− r)2

)
= r − δmax + (1− r)Pr − δmaxPr −

(1− r)δmax

(1− r)2
+

δ2
max

(1− r)2

≥ r − δmax + (1− r)Pr − δmaxPr −
(1− r)δmax

(1− r)2

= 2 r − 2 δmax

1− r
( since Pr = r

1−r )

We have to show that this is at least Pr[wCutr(T∞)] = Pr = r
1−r . Indeed,

2 r − 2 δmax

1− r
− r

1− r
=

2 r(1− r)− 2 δmax − r
1− r

=
r(1− 2 r)− 2δmax

1− r
.

This is non-negative if and only if r(1 − 2 r) ≥ 2 δmax, which holds by assumption. This
proves Proposition 52.
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Proposition C.5 (Proposition 54, restated). 1.02 δnon-root
1−2 r rd−1 ≤ 4.896 ε

(
1
2

)d (d+1)d+1

(d+3)d+3 .

Proof. By the definition of δnon-root in (18), we get

1.02 δnon-root

1− 2 r
rd−1 =

1.02 · 1.2 εγ2(r)

(1− 2 r)(1− r)
rd−1

=
1.224 εr2(1− 2 r)3

(1− 2 r)(1− r)
rd−1

≤ 2.448 εrd+1(1− 2 r)2 (since 1− r ≥ 1/2)

By basic calculus, the function rd+1(1− 2 r)2 is maximized for r = 1
2 ·

d+1
d+3 , at which point

it becomes (
1

2

)d+1(d+ 1

d+ 3

)d+1( 2

d+ 3

)2

= 2

(
1

2

)d (d+ 1)d+1

(d+ 3)d+3
.

This proves the proposition.

Proposition C.6.
∑∞

d=1
(d+1)d+1

(d+3)d+3 ≤ 0.0544.

Proof. Write ad := (d+1)d+1

(d+3)d+3 and observe that ad = 1
(d+1)2

(
1− 2

d+3

)d+3
< e−2

(d+1)2 =: bd.

Therefore,

∞∑
d=1

ad =

∞∑
d=1

bd +

∞∑
d=1

(ad − bd)

= e−2

(
π2

6
− 1

)
+

∞∑
d=1

(ad − bd)

< e−2

(
π2

6
− 1

)
+

N∑
d=1

(ad − bd)

for any finite N , since ad − bd < 0. Plugging in N = 100 and evaluating this numerically
proves the proposition.

Proposition C.7 (Proposition 57, restated). The marginal distribution of (π(y), π(z)),
conditioned on π(x) = r, is still Dγ,�

ε :

Proof. It is enough to show that Pr[π(y) ∈ Ay∧π(z) ∈ Az | π(x) = r] has the right distri-
bution for all intervals Ay, Az, since intervals generate the whole σ-algebra of measurable
sets. We apply Theorem 40 with K = {y, z}, I = V \ K, Ax := {r}, and Av := [0, 1]
for all variables v ∈ V \ {x, y, z}; the latter choice reflects the fact that no condition is
imposed on π(v). By Theorem 40 we see that

Pr[π(y) ∈ Ay, π(z) ∈ Az | π(x) = r] = µ(Ay)µ(Az) ·

(
1 + ε

∑
{u,v}∈E\EI TuTv

1 + ε
∑
{u,v}∈EI TuTv

)
= µ(Ay)µ(Az) · (1 + εTyTz) .
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Why does this hold? Every edge {u, v} ∈ EI contains some v ∈ V \ {x, y, z} with
Av = [0, 1] and therefore Tv = 0. The denominator becomes 1. As for the numerator,
note that an edge {u, v} ∈ E \EI is either {y, z}; or it contains again some v 6∈ {x, y, z}.
Thus, all terms except TyTz vanish. We continue:

µ(Ay)µ(Az) · (1 + εTyTz) = µ(Ay)µ(Az) ·

(
1 + ε

∫
Ay
φ(s) ds

µ(Ay)
·
∫

(Az)φ(t) dt

µ(Az)

)

= µ(Ay)µ(Az) + ε

∫
Ay

∫
Az

φ(s)φ(t) dt ds

=

∫
Ay

∫
Az

(1 + εφ(s)φ(t)) dt ds

= Pr
(π(y),π(z))∼Dγ,�ε

[π(y) ∈ Ay ∧ π(z) ∈ Az] .

This proves the proposition.

Lemma C.8 (Bonus from only child; Lemma 62, restated). Let d = dTx(u) be the distance
from the root to u. Then Pr[Cutr(Ti−1)] ≥ Pr[Cutr(Ti)] + OCB(d, r).

Proof. Let u be the ith node of B1 in our enumeration. We assume that u has exactly
one child; the case that u has no child (i.e., is an unsafe leaf) is even better for us. Let
root = u0, u1, . . . , ud = u be the path from the root to u. For 1 ≤ j ≤ d, let let wj be
the child of uj−1 that is not uj . Note that u0, . . . , ud−1 are canonical in Tx and thus have
exactly two children in Tx and thus in T ′x and Ti−1, as well. By Twj we denote the subtree
of Ti−1 rooted at wj . Finally, let v be the only child of u in Ti−1.

z′u2

ud−1

w2

w3

wd

u1
w1

u

x

v

Tu′ is a complete binary tree in Ti

u has one child v in Ti−1

u′

Let τ ∼ D be a placement of all labels except those of Tu and Tu′ . Under τ , the events
Cutr(Ti−1) and Cutr(Ti) either (1) both become Ω (they both happen, regardless of
what happens below u) or (2) both become ∅ (they both don’t happen, regardless of
what happens below u), or (3) Cutr(Ti−1) becomes wCutr(Tu) and Cutr(Ti) becomes
wCutr(Tu′). Call τ good if (3) happens. Note that Pr[π(l) < r] ≥ r − δmax =: r̃ for every
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label l in Tu. For a good τ , we get

Pr
D

[Cutr(Ti−1) | τ ] = Pr
D

[wCutr(Tu)] = Pr[π(u) < r ∨ wCutr(Tv)]

≥ r̃ ∨ Pr̃ = r̃ + (1− r̃) r̃

1− r̃
= 2 r̃

Pr
D

[Cutr(Ti) | τ ] = Pr
D

[wCutr(Tu) = Pr =
r

1− r
.

Let ∆ denote the difference between those quantities:

Pr
D

[Cutr(Ti−1) | τ ]− Pr
D

[Cutr(Ti) | τ ] ≥ 2 r̃ − r

1− r
=
r(1− 2 r)− 2 δmax(1− r)

1− r
=: ∆ .

We conclude that

Pr[Cutr(Ti−1)]− Pr[Cutr(Ti)] ≥ Pr[τ is good] ·∆ .

Second, we compute the probability that τ is good. Note that τ is good if and only if

1. π(u1), . . . , π(ud−1) ≥ r;

2. wCutr(Tw1), . . . ,wCutr(Twd) happen.

The events under Point 1 are independent, and each happens with probability 1−r+δui ≥
1− r. Those under Point 2 might not be independent, as the label z might occur in many
of them. Still, they are monotone boolean functions in the events [π(l) < r] and thus are
positively correlated, which follows easily from the FKG inequality. Therefore, it holds
that

Pr
D

[wCutr(Tw1), . . . ,Pr
r

(Twd)] ≥
d∏
i=1

Pr
D

[wCutr(Twi)] (by FKG)

≥ (Pr̃)
d = (Pr−δmax)d

≥
(
Pr − δmaxP

′
r

)d
(since Pr is convex)

=

(
r

1− r
− δmax

(1− r)2

)d
and

Pr[τ is good] ≥ (1− r)d−1 ·
(

r

1− r
− δmax

(1− r)2

)d
Thus,

Pr[Cutr(Ti−1)]− Pr[Cutr(Ti)] = Pr[τ is good] ·∆

≥ (1− r)d−1 ·
(

r

1− r
− δmax

(1− r)2

)d
· r(1− 2 r)− 2 δmax(1− r)

1− r

=

(
r − δmax

1− r

)d
· r(1− 2 r)− 2 δmax(1− r)

(1− r)2

= OCB(d, r) (as defined in (29))

This proves Lemma 62.
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Lemma C.9 (Bonus from multiple labels; Lemma 63, restated). Let d = dTx(u) be the
distance from the root to u. Then Pr[Cutr(T

′
i−1)] ≥ Pr[Cutr(T

′
i )] + MLB(d).

Proof. As before, let u be the (i − |B1|)th element of Bz and root = u0, . . . , ud = u be
the path from the root to u. For 1 ≤ i ≤ d, let wi be the child of ui−1 that is not ui.
Consider a placement τ to all labels of T ′i and T ′i−1 except z and l. Under τ , the events
Cutr(T

′
i−1) and Cutr(T

′
i ) either

1. both become Ω (both happen regardless of z and l) or

2. both become ∅ (both do not happen regardless of z and l) or

3. both become [π(z) < r], or

4. Cutr(T
′
i ) becomes [π(z) < r ∧ π(l) < r] and Cutr(T

′
i−1) becomes [π(z) < r].

Note that “5. Cutr(T
′
i ) becomes [π(z) < r ∨ π(l) < r]” is impossible since Bz ∪ {R} is an

antichain. Let us call τ good if Point 4 happens. If τ is not good, then Pr[Cutr(T
′
i−1) | τ ] =

Pr[Cutr(T
′
i ) | τ ]. If τ is good, then

Pr[Cutr(T
′
i ) | τ ]− Pr[Cutr(T

′
i−1) | τ ] = Pr[π(z) < r]− Pr[π(z) < r ∧ π(l) < r] = r(1− r) .

We call τ excellent if the following things happen:

1. ¬Cutr(T
′
w1

) and ¬Cutr(T
′
ud

) happen under τ ;

2. τ(u1), . . . , τ(ud−1) ≥ r;

3. for 2 ≤ i ≤ d, the event wCutr(T
′
wi) either happens under τ or becomes [π(z) < r]

under τ

Note that if τ is excellent, then Cutr(T
′
i ) and Cutr(T

′
i−1) happen if and only if π(z) < r

and π(varlabel(ud) < r. Since ud has label z in T ′i−1 but label l in T ′i , this means that
τ is good. What is the probability that τ is excellent? Note that τ is independent on
all labels, and all labels of T ′i−1, T ′i are distinct except z. Thus, the events described in
Points 1–3 are independent, and therefore

1. Pr[¬Cutr(T
′
w1

) ∧ ¬Cutr(T
′
ud

)] ≥ (1−Qr)2, since Pr[τ(a) < r] ≤ r for all labels a.

2. Pr[τ(u1), . . . , τ(ud−1)] ≥ (1− r)d−1 for the same reason.

3. Evaluating the probability that wCutr(T
′
wi) becomes Ω or [π(z) < r] is slightly more

subtle. Since π(z) is independent of τ , we get

Pr
τ,π(z)

[wCutr(T
′
wi)] = Pr

τ
[wCutr(T

′
wi) happens under τ ]

+ Pr
τ

[wCutr(T
′
wi) becomes [π(z) < r] under τ ] · Pr[π(z) < r]

≤ Pr
τ

[wCutr(T
′
wi) happens under τ ]

+ Pr
τ

[wCutr(T
′
wi) becomes [π(z) < r] under τ ] .

Thus, the probability that wCutr(T
′
wi) happens becomes or [π(z) < r] under τ is at

least PrD[wCutr(T
′
wi)], which is at least Pr−δmax ≥ Pr − δmax

(1−r)2 . We conclude that

Point 3 happens with probability at least
(
Pr − δmax

(1−r)2

)d−1
.
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Multiplying all probabilities, we get

Pr[Cutr(T
′
i−1)]− Pr[Cutr(T

′
i )] ≥ Pr[τ is excellent] · r(1− r)

≥ (1−Qr)2(1− r)d−1

(
r

1− r
− δmax

(1− r)2

)d−1

r(1− r)

= (1−Qr)2

(
r − δmax

1− r

)d−1

r(1− r)

= MLB(d, r) (as defined in (30))

This concludes the proof of Lemma 63.

Lemma C.10 (Lemma 64, restated).
∑

v∈B1
OCB(d(v))+

∑
v∈Bz MLB(d(v)) ≥ 0.9Thr.

Proof of Lemma 64. Recall that through the bijection Φ, every v ∈ B1 ∪Bz corresponds
to some a node v ∈ A′z in Ty, and dTx(v) = dTy(u) + 1. If u ∈ A′z ∩ Az then Φ(u) ∈ Bz.
Otherwise, if u ∈ A′z \ Az then Φ(u) ∈ B1. Abbreviating d(u) := dTy(u) (since a node
should “know in which tree it lives”), we get∑
v∈B1

OCB(d(v)) +
∑
v∈Bz

MLB(d(v)) =
∑

u∈A′z∩Az

MLB(d(u) + 1) +
∑

u∈A′z\Az

OCB(d(u) + 1)

If u ∈ A′z \ Az then u is an ancestor of several w ∈ Az; let Auz be this set. Note that
(A′z ∩ Az) ∪

⋃
u∈A′z\Az A

u
z is a partition of Az. Also note that OCB(d+ 1) ≤ 1

2 OCB(d),
which is obvious from the fact that r ≤ 1/2 and the definition of OCB. The following
proposition is easily proved by induction:

Proposition C.11. If f : N0 → R+
0 is a function such that f(d+ 1) ≤ f(d)/2 and Au is

an antichain of descendants of u in some binary tree, then f(d(u)) ≥
∑

w∈Au f(d(w)).

With this proposition, we see that the above sum equals∑
u∈A′z∩Az

MLB(d(u) + 1) +
∑

u∈A′z\Az

∑
w∈Auz

OCB(d(w) + 1)

≥
∑
u∈Az

min (MLB(d(u) + 1),OCB(d(u) + 1)) (58)

Proposition C.12. Provided that ε ≤ 0.1, it holds that

OCB(d) =

∫ 1/2

0
OCB(d, r) dr ≥ 0.88 ·

∫ 1/2

0

r(1− 2 r)

(1− r)2
· rd dr =: OCB∗(d)

MLB(d) =

∫ 1/2

0
MLB(d, r) dr ≥ 0.9 ·

∫ 1/2

0

(1− 2 r)2

(1− r)3
· rd dr =: MLB∗(d)

Proof. As a reminder, we copy the definitions of OCB and MLB:

OCB(d, r) :=
r(1− 2 r)− 2 δmax(1− r)

(1− r)2
·
(
r − δmax

1− r

)d
, (as defined in (29))

MLB(d, r) :=
(1− 2 r)2 r

(1− r)3
·
(
r − δmax

1− r

)d−1

. (as defined in (30))
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We start with the first integral. Referring to the definition of δmax in (20) and to our

promise that ε ≤ 0.1, we can verify numerically that r(1−2 r)−2 δmax(1−r)
(1−r)2 ≥ 0.95 r(1−2 r)

(1−r)2 .

We set η(r) := δmax
1−r and s(r) = r − η(r) and abbreviate f(r) := r(1−2 r)

(1−r)2 . With this

notation, we conclude that

OCB(d) =

∫ 1/2

0
OCB(d, r) dr ≥ 0.95

∫ 1/2

0
f(r)(s(r))d dr .

Claim. f(r) ≥ 0.98 · f(s(r)).

This can easily be verified numerically. Using the claim, we see that

OCB(d) ≥ 0.95 · 0.98

∫ 1/2

0
f(s(r))(s(r))d dr .

Claim. s′(r) ≤ 1.05 for r ∈ [0, 1/2], provided ε ≤ 0.13.

This can also be checked numerically. Technically, since δmax is defined by a maximum,

the function s(r) fails to be differentiable at r = 5−
√

13
6 ≈ 0.2324. However, this is a single

point and thus does not affect the integral. The above integral is at least

0.95 · 0.98

1.05

∫ 1/2

0
f(s(r))(s(r))ds′(r) dr =

0.95 · 0.98

1.05

∫ 1/2

0
f(s)sd ds ≥ OCB∗(d) .

This proves the bound for the first integral.

For the second integral, we use the same η(r), s(r). Writing g(r) = (1−2 r)2

(1−r)3 , we get

∫ 1/2

0

(1− 2 r)2 r

(1− r)3
·
(
r − δmax

1− r

)d−1

dr ≥
∫ 1/2

0
g(r) · (s(r))d dr

≥
∫ 1/2

0
g(r) · (s(r))ds′(r) 1

s′(r)
dr

≥ 1

1.05
·
∫ 1/2

0
g(r) · (s(r))ds′(r) dr ,

using the above claim that s′(r) ≤ 1.05. We need to bound g(r) from below.

Claim. g(r) ≥ 0.945 · g(s(r)).

Altogether, the integral is at least

0.945

1.05
·
∫ 1/2

0
g(s(r)) · (s(r))ds′(r) dr =

0.945

1.05
·
∫ 1/2

0
g(s)sd ds

≥MLB∗(d) .

This shows the bound for the second integral, and proves the proposition.

Proposition C.13. The following inequalities hold:

1. For d ≥ 5, it holds that OCB∗(d) ≥MLB∗(d).

78



2. For d ≤ 4, OCB∗(d),MLB∗(d) ≥ 1
1150 ≥ Thr.

Proof. The second point can simply be verified numerically. The first one can be verified
up for any fixed value of d. Beyond that, we need to proceed symbolically. As in the

previous proof, let f(r) := r(1−2 r)
(1−r)2 and g(r) := (1−2 r)2

(1−r)3 . Note that 0 ≤ f(r), g(r) ≤ 1.

Furthermore, it is straightforward to check that g(r) ≤ 1
2 f(r) for all θ := 0.45 ≤ r ≤ 1/2.

Intuitively, for large d, the factor rd in the integrand pulls the bulk of the mass of the

integral
∫ 1/2

0 g(r)rd dr beyond θ, where g(r) ≤ f(r)/2 holds. More formally, observe that∫ θ

0
g(r)rd ≤

∫ θ

0
rd =

θd+1

d+ 1
.

Set rmin := 1
2
d−1
d+1 and rmax := 1

2
d+1
d+3 . For rmin ≤ r ≤ rmax, it holds that

g(r)rd ≥ (1− 2 r)2rd ≥
(

2

d+ 3

)2(d− 1

d+ 1

)d
2−d

The factor
(
d−1
d+1

)d
increases in d and is at least 1/10 for d ≥ 2. Thus, the above term is

at least

4

10

1

(d+ 3)2
2−d .

For all d ≥ 19, it holds that rmin ≥ θ, and therefore∫ 1/2

θ
g(r)rd dr ≥

∫ rmax

rmin

g(r)rd dr

≥ (rmax − rmin)
2

5

1

(d+ 3)2
2−d

=
2

(d+ 3)(d+ 1)

2

5

1

(d+ 3)2
2−d

≥ 4

5

2−d

(d+ 1)(d+ 3)3
.

Comparing
∫ θ

0 g(r)rd dr to
∫ 1/2
θ g(r)rd dr, we see that∫ θ

0 g(r)rd dr∫ 1/2
θ g(r)rd dr

≤
θd+1

d+1

4
5

2−d

(d+1)(d+3)3

≤ (2 θ)d · 5 θ(d+ 3)3

4
.

Since 2 θ < 1/2 and does not depend on d, the above expression converges to 0 and is at
most 1/10 for all d ≥ 162. Thus,

MLB∗(d) = 0.9

∫ 1/2

0
g(r)rd dr = 0.9

(∫ θ

0
g(r)rd dr +

∫ 1/2

θ
g(r)rd dr

)

≤ 0.9 · 11

10
·
∫ 1/2

θ
g(r)rd dr

≤ 1

2 · 0.88

∫ 1/2

θ
0.88 f(r)rd dr (by choice of θ)

≤ 1

2 · 0.88

∫ 1/2

0
0.88 f(r)rd dr (integrand is non-negative)

=
1

2 · 0.88
OCB∗(d) .

79



This shows that OCB∗(d) ≥ MLB∗(d) for all d ≥ 162. For all smaller values of d, we
verify the inequality by numerical computation. This concludes the proof.

There are two cases. IfAz contains some u with dTy(u) ≤ 3 then (58) ≥ min(MLB(4),OCB(4)) ≥
Thr, and the statement of Lemma 64 holds. Otherwise,

(58) ≥
∑
u∈Az

min (MLB(d(u) + 1),OCB(d(u) + 1))

≥
∑
u∈Az

min (MLB∗(d(u) + 1),OCB∗(d(u) + 1))

≥
∑
u∈Az

MLB∗(d(u) + 1) (since d(u) + 1 ≥ 5)

= 0.9 ·
∑
u∈Az

∫ 1/2

0

(1− 2 r)2

(1− r)3
· rd(u)+1 dr

= 0.9 · LabelDensity(z, Ty) ,

for LabelDensity as defined in (11), since Az is by definition the set of canonical nodes
in Ty that have label z. By assumption, {y, z} ∈ Hhigh and thus the label density is at
least Thr. This concludes the proof of Lemma 64.
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