
SOS LOWER BOUND FOR EXACT PLANTED CLIQUE
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Abstract. We prove a SOS degree lower bound for the planted clique

problem on Erdös-Rényi random graphs G(n, 1/2). The bound we get

is degree d = Ω(ε2 logn/ log logn) for clique size ω = n1/2−ε, which

is almost tight. This improves the result of [BHK+19] on the “soft”

version of the problem, where the family of equality-axioms generated

by x1 + ...+ xn = ω was relaxed to one inequality x1 + ...+ xn ≥ ω.

As a technical by-product, we also “naturalize” previous techniques

developed for the soft problem. This includes a new way of defining

the pseudo-expectation and a more robust method to solve the coarse

diagonalization of the moment matrix.

1. Introduction

1.1. The problem and the proof system. Whether one can find a max-

clique in a random graph G ∼ G(n, 1/2) efficiently and be correct with high

probability has been a long-standing open problem in computational com-

plexity since [Kar76]. In [Jer92, Kuč95], a relaxed formulation as the planted

clique problem was introduced: if we further plant a random clique of size

ω � log n to G, can it be efficiently recovered? Information-theoretically

this is possible, since w.h.p. the largest clique in G has size (2 + o(1)) log n.

While computationally, the average-case hardness of this problem is still

widely believed even after it has been intensively studied and has inspired

research directions in an extremely wide range of fields (just to mention

a few: cryptography [ABW10], learning theory [BR13], mathematical fi-

nance [ABBG11], computational biology [PS+00]). So far, the best known

polynomial-time algorithm is for ω = Ω(
√
n) [AKS98], which is a so-called

spectral algorithm (see e.g. [HKP+17]).

The sum-of-squares (SOS) hierarchy [Sho87, Par00, Las01] is a stronger

family of semidefinite programming (SDP) algorithms which, roughly speak-

ing, is SDP on the extended set of variables {xi(1)...xi(d) | i1, ..., id ∈ [n]} ac-

cording to the degree parameter d, and it can be significantly more powerful

than spectral algorithms and traditional SDP (see e.g. [BBH+12, HKP+17]).

Recent years have witnessed rapid development on SOS-based algorithms

which turn out to provide a characterization of a wide class of algorithmic

techniques—for a list of evidence, we refer the reader to the survey [BS14]

and the introduction of [HKP+17]. The SOS proof system is the natural
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2 SOS LOWER BOUND FOR EXACT PLANTED CLIQUE

proof-theoretic counterpart of these algorithms, also known as the Posi-

tivstellensatz system [GV01]: it works with polynomials over R, and given

polynomial equalities (axioms) f1(x) = 0, ..., fk(x) = 0 on x = (x1, ..., xn), a

proof (that is, a refutation of the existence of a solution) is

−1 =

k∑
i=1

fiqi +
∑
j

r2
j in R[x1, ..., xn]

where q1, ..., qm and r1, ... are arbitrary polynomials on x1, ..., xn over R.

Under certain conditions, in particular when all variables are boolean (x2
i =

xi), such an refutation always exists if the axioms are contradictory. The

degree-d SOS proof system is this plus a degree limitation

max
i,j
{deg(fi) + deg(qi), 2 deg(rj)} ≤ d.

See [O’D17, RW17] for the relation between SOS proofs and SDP algorithms.

The average-case hardness of the clique problem has a very simple form in

proof complexity: for G ∼ G(n, 1/2), can the proof system efficiently refute

the existence of a size-ω (� log n) clique w.h.p.? Note the system cannot

just say “No” but must search for a certificate—a proof. A lower bound here

would automatically give the hardness on any class of algorithms based on

the proof system. Given that the decision version of the spectral algorithm

of [AKS98] corresponds to a degree-2 SOS proof, a SOS degree lower bound

would bring us a much better understanding of the hardness of the problem.

The standard formulation is the following.

Definition 1.1. Given an n-vertex simple graph G and a number ω, the

Clique Problem for degree-d SOS proof system has the following axioms.

(1.1)

(Boolean) x2
i = xi ∀i ∈ [n]

(Clique) xixj = 0 ∀{i, j} non-edge

(Size) x1 + ...+ xn = ω

To confirm no ω-clique exists is to give a SOS refutation of the above. The

SOS system has the so-called duality: to show degree lower bound it suffices

to consider pseudo-expectation and moment matrix 1. With boolean variables

(which is our case), this can be demonstrated on multi-linear polynomials.

Let X≤a = {xS | S ⊆ [n], |S| ≤ a} for any a.

Definition 1.2. A degree-d pseudo-expectation for the Clique Problem

on G is a map Ẽ : Xd → R satisfying the following four constraints when

extended by R-linearity.

(Default) Ẽx∅ = 1(1.2)

(Clique) ẼxS = 0, ∀S : |S| ≤ d, G|S non-clique(1.3)

(Size) Ẽ

(
(x1 + ...+ xn)xS

)
= ω · ẼxS ∀S : |S| ≤ d− 1(1.4)

1The name is simplified; more cautiously, it should be called the pseudo-moment matrix.
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where in (1.4), xA ·xB := xA∪B. For the last constraint, define the moment

matrix M to be the
( [n]
≤d/2

)
×
( [n]
≤d/2

)
matrix2 with expression M(A,B) =

ẼxA∪B for all |A|, |B| ≤ d/2, then:

(1.5) (PSDness) M is positive semi-definite.

It is not hard to see that if a degree-d pseudo-expectation exists then

there is no degree-d SOS refutation.

A relaxation of the problem was studied in [BHK+19]: decide whether

there exists Ẽ as in Definition 1.2 except by one change—replace Size Con-

straints by one weaker inequality Ẽ(x1+...+xn) ≥ ω. Henceforth, we call the

Clique Problem (Def. 1.1) Exact Clique and this relaxation Non-Exact

Clique.3 We will study their average-case hardness over G ∼ G(n, 1/2).

How to deal with the exact problem is a subtle but important open prob-

lem. On the problem itself, lower bounds on the “weak” formulation indeed

gave the important algorithmic message—an integrality gap for many SOS-

based optimization algorithms—but still, they do not rule out the possibility

that SOS can efficiently refute x1 + ...+ xn = k for each individual large k,

and the distinction between “weak” and “strong” formulations also involves

how one thinks the SOS SDP optimization problem should be formulated.

Perhaps more importantly, it is about the limit of existing methods for

proving average-case SOS lower bounds. Current techniques from the so-

called pseudo-calibration heuristic [BHK+19] tend to deal successfully with

“soft” constraints (i.e. inequalities, or usually just one bound on a single

pseudo-expectation value) while being poor at handling “hard” constraints

(i.e. equalities). Finding techniques to deal with the latter is thus in need.

Progress toward this goal is made in [KOS18] for random CSPs, where the

number of hard constraints is at most two4. Their method is to break

such constraint(s) into local ones and satisfy each using real, independent

distributions. For “inherently more rigid” problems like Exact Clique (whose

hard constraints are “almost everywhere”), however, it seems unlikely a

similar strategy could work.

Lastly, there are concrete applications of lower bounds on Exact Clique.

Such a lower bound can give by reduction lower bounds for other problems,

e.g. for the approximated Nash-Welfare, and potentially for the coloring

problem and stochastic block models [KOS18, KM18].

1.2. Previous work. For upper bounds, if ω = Ω(
√
n) then degree-2 SOS

can refute Exact Clique with high probability [FK00]. On the other hand,

if ω > d ≥ 2.1 log n, a degree-d SOS refutation for Exact Clique is not hard

2d is always assumed to be even.
3There is no “planted clique” in the problem’s formulation, but traditionally, the problem
is still called the planted clique problems due to the algorithmic motivation behind.
4One on the objective value of the CSP, and/or one on the Hamming weight of x.
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to see; since we have not been able to find it in the literature, we include it

as Observation 1.1 below.

For lower bounds, for Exact Clique, [FK03] showed that the weaker system

d-round Lovasz-Schrijver can refute it only when ω = O(
√
n/2d); [MPW15]

proved degree-d lower bound on SOS for ω = Õ(n1/d), and this bound on

ω was improved to Õ(n1/3) for d = 4 [DM15] and Õ(n
1

bd/2c+1 ) for general d

[HKP+18]. For Non-Exact Clique, [BHK+19] proved the almost tight lower

bound d = Ω(ε2 log n) for ω = n1/2−ε, ε > 0 arbitrary (could depend on n).

Observation 1.1. (Upper bound for Exact Clique if ω > d = 2.1 log n)

Note (x1 + ... + xn)d = ωd modulo the Size Axiom. The LHS can be multi-

linearly homogenized to degree-d by xS = 1
ω−|S|

∑
i/∈S xS∪{i} by this axiom

again, after which w.h.p. all terms are 0 by Clique Axioms, as there is no

size-2.1 log n clique in G ∼ G(n, 1/2) w.h.p.. This gives the contradiction

0 = 1. Note this proof is actually in the weaker Nullstellensatz system (for

definition see e.g. [BIK+96]).

1.3. Results of the paper. Our main result is the following.

Theorem 1. Let ε > 0 be any parameter, ω = n1/2−ε. W.p. > 1− n−4 logn

over G ∼ G(n, 1
2), any SOS refutation of Exact Clique requires degree at

least ε′ log n/ log logn, where ε′ = min{ε2, 1
402
}/2000.

We also have the following result. It does not allow to improve the lower

bound but provides a new, hopefully simplifying, perspective on certain

techniques that were used for the non-exact problem.

Theorem 2. (Informal) For the Non-Exact Clique problem,

(1). There is a way to define the correct pseudo-expectation from simple

incidence algebra on the vertex-set;

(2). For the resulting moment matrix M , there is a weakened version of

the quadratic equation M = NN> whose solvability is given by, and actu-

ally equivalent to, a general graph-decomposition fact from which a “first-

approximate” diagonalization of M can be deduced.

2. Key technical ideas

The two results use almost completely different ideas, so we treat them

separately in the proof overview:

• Theorem 1: section 2.1 to 2.4.

• Theorem 2: section 2.5.

The presentation of this section is structured for mathematical clarity. On

the other hand, the following picture may provide a clearer bird’s-eye view,
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where “· · · ” means the corresponding section(s) in the text:

Pseudo-expectation design: A common idea (in below)

→ Non-exact case (2.5 first half · · · 3.1)

→ Exact case (2.1 · · · 3.2).

Proving PSDness: Recursive factorization refresh (5.1, 5.3)

→ Lower bound proof (2.1 to 2.4 · · · 6).

And a “naturalizing” result that can be read independently:

How to deduce the “coarse” diagonalization (2.5 second half · · · 5.2).

Let’s start with a common idea. Suppose we deal with degree-d SOS,

ω = n1/2−ε where ε > 0 is small. To construct pseudo-expectations on size

≤ d-subsets of [n], as is usual in complexity theory, we take a parameter

τ � d (think of d � τ � log n) and make the construction for all size

≤ τ -subsets first, in hope to later have a good control on its behavior on

size ≤ d subsets. This idea is most clearly demonstrated in the nonexact

case (section 3.1.2); it is also the reason for the τ -parameter in (2.1) below.

2.1. The exact pseudo-expectation. We define the pseudo-expectation

for Exact Clique now. To satisfy Size Constraints (1.4), a natural way is to

generate Ẽ in a top-down fashion: fix ẼxS for all |S| = d first, denoted as

vector Ẽdx, then recursively set

ẼxS ←
1

ω − |S|
∑
i/∈S

ẼxS∪{i} ∀|S| < d.

The Clique Constraints (1.3) can be satisfied if ẼdxS factors through the

clique function on S. Inspired by the non-exact case (Lemma 3.1), we use

Fourier characters and consider

(2.1) ẼxS =
∑

T :|V (T )∪S|≤τ

F (|V (T ) ∪ S|) · χT ∀S : |S| = d

for some function F . We call F a d-generating function.5 Thus

ẼxS =
1(

w−d+u
u

) ∑
T :|V (T )∪S|≤τ

χT ·
[ u∑
c=0

(
|V (T ) ∪ S| − d+ u

c

)(
n− |V (T ) ∪ S|

u− c

)

· F (|V (T ) ∪ S|+ u− c)
]

where u := d− |S|, for all S with |S| ≤ d.

One key novelty we bring is the following choice

(2.2) F (x) =
(x+ 8τ2)!

(8τ2)!
· (ω
n

)x.

5To be distinguished from the usual generating functions for sequences.
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With this F , the resulting moment matrix, denoted by M̃ , is:

M̃(A,B) =
∑

T :|V (T )∪A∪B|≤τ

M̃(A,B;T )χT ∀A,B : |A|, |B| ≤ d/2

where M̃(A,B;T ) =

(2.3)

1(
ω−d+u

u

)[ u∑
c=0

(
|V (T ) ∪A ∪B| − (d− u)

c

)(
n− |V (T ) ∪A ∪B|

u− c

)

·
(
|V (T ) ∪A ∪B|+ u− c+ 8τ2

)
!

(8τ2)!
· (ω
n

)|(V (T )∪A∪B)|+u−c︸ ︷︷ ︸
F
(
|V (T )∪A∪B|+u−c

)
]
,

again u = |A ∩B|.

This seemingly mysterious choice of F is ultimately for proving PSDness of

M̃ , which can be seen after a series of technical transformations (Remark 2.2,

3.3). It will be very interesting to know if there is a priori an explanation of

it. See Remark 3.2, 6.2 for why the “traditional” choices from the literature,

which simulate some plant-distributions, seem cannot work here.

2.2. An Hadamard decomposition and Euler transform. For the Ex-

act Clique problem, by a standard SOS homogeneity reduction (Lemma 4.1)

it suffices to prove PSDness of the
( [n]
d/2

)
×
( [n]
d/2

)
principal minor of M̃ .

Denote this minor by M . One unpleasant feature of M is that in its

expression (2.3), the parameter u = |A ∩ B| appears in a deeply nested

way. To make a PSDness analysis on M (in particular, get a clue of how to

diagonalize it), we resolve this intricacy by two steps. First,

(2.4) M =

d
2∑
c=0

mc ◦Mc

where mc, Mc are matrices s.t. for all |I|, |J | = d/2,

(2.5) mc(I, J) =
1(

ω−d+u
u

)ωu−c where u denotes |I ∩ J |;

(2.6)

Mc(I, J) =


∑

T :|V (T )∪I∪J |≤τ
χT ·Mc(|I ∩ J |, |V (T ) ∪ I ∪ J |), if |I ∩ J | ≥ c;

0, o.w.

whose coefficients are

Mc(u, a) =

(
a− (d− u)

c

)(
n− a
u− c

)
n−(u−c) (a+ u− c+ 8τ2)!

(8τ2)!
(
ω

n
)a,

where u = |I ∩ J |, a = |V (T ) ∪ I ∪ J |. We will analyze mc,Mc’s separately.
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The “harder” part is Mc. To further remove the dependence on |I ∩J | in
Mc(I, J), out second step is to consider a decomposition

(2.7) Mc =
∑

R∈(
[n]

≤ d2
)

MR
c

where for each R the matrix MR
c is supported on rows and columns whose

index contains R. To derive the expression ofMR
c , we use Euler transform:

if x(·), y(·) are two sequences defined on N s.t. x(m) =
∑m

l=0

(
m
l

)
y(l) for all

m, then x(·) is called the Euler transform of y(·), and the inverse transform

is given by y(m) =
∑m

l=0(−1)m−l
(
m
l

)
x(l). Now apply the inverse Euler

transform to Mc(u, a) in the above6 on u (fixing c, a), we get:

(2.8)

Yc(r, a) =


r∑
l=c

(−1)r−l
(
r
l

)(
a+l−d
c

)(
n−a
l−c
)
n−(l−c) (a+l−c+8τ2)!

(8τ2)!
, if r ≥ c;

0 , o.w.

In summary, the following lemma can be proved.

Lemma 2.1. (ΣΠ-decomposition of M)

M =

d
2∑
c=0

mc ◦

 ∑
R∈( [n]

≤d/2)

MR
c

 =
∑

R∈( [n]
≤d/2)

 |R|∑
c=0

mc ◦MR
c

(2.9)

where each mc is by (2.5), and each MR
c has the following expression.

(1) MR
c = 0 if |R| < c;

(2) If R 6⊆ I ∩ J , MR
c (I, J) = 0;

(3) If |R| ≥ c and R ⊆ I ∩ J , then

MR
c (I, J) =

∑
T :|V (T )∪I∪J |≤τ

MR
c (I, J ;T )χT

where, if denote a = |V (T ) ∪ I ∪ J |,

(2.10) MR
c (I, J ;T ) = (

ω

n
)a · Yc(|R|, a) (defined by (2.8)).

(4) For all 0 ≤ c ≤ r ≤ d/2 and 0 ≤ a ≤ τ , |Yc(r, a)| < τ5τ .

Intuition for analysis. The intuition behind decomposition (2.9) is that,

the first factor mc is decreases in c and m0 is very positive; while for every

fixed R, MR
0 is positive and other MR

c ’s (c > 0) are not too large. This is

expounded by the following two lemmas.

Lemma 2.2. For each c = 0, ..., d/2,

(2.11) m0 = ωm1 = ... = ω
d
2m d

2
� d

2ω
Id.

6A subtle but important point is that Mc(u, a) is partial (i.e. defined only when u ≥
c, a− (d− u) ≥ c), and we need to extend it to (u, a) ∈ N2—see Def. 6.1.
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Lemma 2.3. (Main Lemma) In decomposition (2.9), w.p. > 1−n−5 logn

the following hold. For all R ∈
( [n]
≤d/2

)
, let PR = {I ∈

( [n]
d/2

)
| R ⊆ I}, the

following holds.

(1). MR
0 � n−ddiag(C̃l)PR×PR ;(2.12)

(2). ± ω−cMR
c � n−c/6 ·MR

0 , ∀0 < c ≤ |R|.(2.13)

These two lemmas immediately implyM(G) � n−d−1diag(C̃l(G))( [n]
d/2)×( [n]

d/2)
w.h.p., and Theorem 1 is an easy corollary of this (Cor. 6.1, 6.2).

The proof of Lemma 2.2 is relatively easy using Johnson schemes (see

Lemma 6.1). Below we show how to prove the Main Lemma.

2.3. Recursive factorization: an extension. Fix any c,R (|R| ≥ c). To

prove the Main Lemma, an important step is to derive an approximate diag-

onalization of MR
c , where we will use the recursive factorization technique

from [BHK+19]. This technique will be refreshed, formalized and extended

properly for our use in section 5.3.

For now, we give a first-approximate factorization of MR
c then apply

this technique to get a refined diagonalization by Lemma 2.4.

The next definition in full (Definition 6.3) mentions many terms about a

graph-theoretic structure; we omit the details here.

Definition 2.1. (Side factors) Fix R ∈
( [n]

≤ d
2

)
. For i = 0, 1, ..., τ let LR,i

be the matrix of dimension
([n]
d
2

)
×
( [n]

≤ d
2

)
defined by equation (6.20) (the ex-

act content is not important for now). Call L̃R = (LR,0, ..., LR,τ ) the left

factor, and (L̃R)> the right factor.

We use these factors to give a PSD factorization in the form MR =

L̃R (−)
(
L̃R
)>

. The starting point is a coarse, “first approximate” factoriza-

tion. In the definition below, Tm simply means an edge-set and mSepA,B(Tm)

is the set of all minimal separators of vertex-sets A,B (Def. 4.6). Let Dτ

be the diagonal matrix diag
(

(ωn )
|A|
2

)
⊗ Id{0,...,τ}×{0,...,τ}.

Definition 2.2. For any R ∈
( [n]
≤d/2

)
define the index set

SR = {(A, i) ∈
(

[n]

≤ d/2

)
× {0, ..., τ} | A ⊇ R, |A|+ i ≥ d

2
}.

For c = 0, ..., |R|, define QRc,0 to be the {0, ..., τ} × {0, ..., τ}-blocked matrix,

each block of dimension
( [n]
≤d/2

)
×
( [n]
≤d/2

)
: it is supported on SR×SR, expressed
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by QRc,0

(
(A, i), (B, j)

)
=

(2.14) ∑
Tm:|V (Tm)∪A∪B|≤τ
A,B∈mSepA,B(Tm)

(
ω

n
)|V (Tm)∪A∪B|− |A|+|B|

2 ·Yc
(
|R|, |V (Tm) ∪A ∪B|+ (i+ j)

)︸ ︷︷ ︸
defined by (2.8)

·χTm

Then we call L̃R ·
(
Dτ ·QRc,0 ·Dτ

)
·
(
L̃R
)>

the first approximate factor-

ization of MR
c .

Lemma 2.4. (Recursive factorization; informal) For any R ∈
( [n]
≤d/2

)
and

0 ≤ c ≤ |R|, we have the following decomposition.

(2.15) MR
c = L̃R ·

[
Dτ

(
QRc,0 −QRc,1 + ...±QRc,d

)
Dτ

]
·
(
L̃R
)>

+ ERc .

Here, all QRc,k’s (k = 0, 1, ..., d) are supported within SR×SR with expression

QRc,k

(
(A, i), (B, j)

)
=

∑
Tm:|V (Tm)∪A∪B|≤τ

qRc,k(Rm, i, j) · χTm

where Rm denotes the triple (A,B;Tm), and the coefficients qRc,k(·, i, j)’s are

symmetric w.r.t. shapes, satisfying

(2.16) |qRc,k(Rm, i, j)| ≤ τ5τ · ( ω

n1−ε )
s−p+k/3 ∀(i, j)

where s = |A|+|B|
2 , p is the max number of vertex-disjoint paths from A to B

in Rm.

Moreover, the “error” ERc (G) is supported within rows and columns that

contains R and is clique in G, and w.p. > 1− n−9 logn,
∥∥ERc ∥∥ < n−ετ/2.

Remark 2.1. In this factorization, the middle matrices Q’s have a “tensored-

dimension” with (τ+1), i.e. it is a (τ+1)×(τ+1)-blocked matrix, each block

(roughly) of dimension
( [n]
≤d/2

)
×
( [n]
≤d/2

)
. This reflects a key difference (at least

technically) between Exact Clique and the non-exact case; see Remark 6.2.

2.4. Proving PSDness: encounter with Hankel matrices. With Lemma

2.2 and the recursive factorization lemma 2.4 at hand, the following is the

key step towards the Main Lemma.

Lemma 2.5. W.p. > 1− n−8 logn over G, the following holds.

(1). ∀R ∈
( [n]
≤d/2

)
,

QR0,0 −QR0,1 + ...±QR
0, d

2

� τ−7τ · diag
(

C̃l
)
SR×SR

where recall SR = {(A, i) ∈
( [n]
≤d/2

)
× {0, ..., τ} | A ⊇ R, |A|+ i ≥ d

2}.
(2). ∀R, 0 < c ≤ |R|

±ω−c
(
QRc,0 −QRc,1 + ...±QR

c, d
2

)
� n−c/4 · diag

(
C̃l
)
SR×SR

.
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To prove this lemma, modulo somewhat standard steps (three Lemmas

6.8, 6.9, 6.10) the final technical challenge is:

Show the positiveness of E[QR0,0] (Corollary 6.3).

We describe below how this is done. After simplification, the real task is to

analyze the positiveness of the following matrix7:

(2.17)
r∑
l=0

(−1)r−l
(
r
l

)
l!
·Hτ, l+8τ2 for any 0 ≤ r ≤ d/2

where {Hm,t} is the family of (m+ 1)× (m+ 1)-matrices

Hm,t(i, j) = (i+ j + t)! ∀0 ≤ i, j ≤ m.

This is a special family of the so-called Hankel matrices whose (i, j)th ele-

ment depends only on i+j. General Hankel matrices seem to arise naturally

in moment problems but they are notoriously wild-behaving in many aspects

(see e.g. [Tyr94]). Fortunately enough, for the special family here we can

manage to get a relatively fine understanding; we term this family factorial

Hankel matrices. The key observation is that they have a concrete recur-

sive diagonalization (Proposition 6.2), resulting in the following property.

Proposition 2.1. If parameters m, t, r satisfy

(2.18) t+ 1 > 8 ·max{r2,m},

then Hm,t+1 � 2r2Hm,t.

Remark 2.2. The condition (2.18) in the above proposition is the reason

of the “8τ2” in the numerator of F , (2.2).

With this proposition, it is relatively easy to complete the proof of the

Lemma 2.5, hence the Main Lemma.

This completes the proof overview of Theorem 1.

2.5. Ideas for Theorem 2. In this subsection, we demonstrate how to

“naturalize” certain techniques that were used for the lower bounds of Non-

Exact Clique.

On defining the pseudo-expectation. (section 3.1) Previously the pseudo-

expectation is obtained via the so-called pseudo-calibration method. We

show how to define the same Ẽ in very different terms via the incidence

algebra on the vertex-set, which can also be regarded as a simple refinement

of the construction in [FK03].

The ζ-matrix on [n] is the 2[n]×2[n] 0-1 matrix with ζ(A,B) = 1 iff A ⊆ B.

We observe that ζ reveals the basic linear structure of the true expectation

on cliques in the case of a single planted clique, and we use ζ to define Ẽ.

That is, we define a degree-τ approximate-distribution vector pτ (G) first—it

approximates the real planted-clique distribution, with a standard twist so

7The subscripts are not exactly as in the problem but suffice to demonstrate the spirit.
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as to be supported on cliques in G (3.8)—then take the vector ζd,τ ·pτ (G) as

Ẽx (Def. 3.3). Here, (·)τ means to truncate the matrix or vector to indices

whose size ≤ τ . In this way, Ẽ inherits the linear structure posed by ζ too.

On deducing the first-approximate diagonalization. (section 5) We

deduce a “coarse” diagonalization of the resulting moment matrix from Ẽ

in above. The deduction has two steps: 1. Analyze the expectation of

the matrix; 2. The (imaginary) diagonalization of the matrix is in essence

a quadratic equation, which we weaken to a proper “modular” version and

solve the latter. We call step 2 the mod-order analysis (section 5.2), whose

underlying idea is inspired by and similar to the more broad dimension-

analysis in physical sciences: weaken the equation to its most significant

part in a well-defined way (Def. 5.2). One ingredient towards defining the

weakening is the norm information on certain pseudo-random matrices (the

graphical matrices).

The resulting weakened equation has a nice structure to work with (Lem.

5.2, Cor. A.1). Using standard techniques for studying algebraic equations—

actually a simple polarization (Appendix A.2)—we can deduce a solvability

condition for the polarized equation, which translates to the existence of

a general graph-theoretic structure (equation (A.19) and Fact A.1). The

“coarse” diagonalization is then formulated based on this structure.

To demonstrate this equation in more detail, it suffices to concentrate on

the
( [n]
d/2

)
×
( [n]
d/2

)
-minor of the moment matrix, denoted by M ′:

M ′(I, J) =
∑

T :|V (T )∪I∪J |≤τ

(
ω

n
)|V (T )∪I∪J |χT , ∀I, J : |I| = |J | = d/2.

Step 1: expectation. By using Johnson schemes as in [MPW15], we

get an explicit decomposition E[M ′] = CC> where C is
( [n]
d/2

)
×
( [n]
≤d/2

)
, and

actually with a fine understanding of the spectrum of E[M ′].

Step 2: mod-order analysis. Given E[M ′] = CC> from Step 1, ideally

we hope to solve the quadratic matrix equation

(2.19) M ′ = NN>

in N with E[N ] = C, and N extending C by non-trivial Fourier characters.

Two observations about (2.19) follow.

(1) Order in ω
n . Entries of M ′ all have a clear order in ω

n . Like in fixed-

parameter problems, we treat ω
n as a distinguished structural parameter and

try to solve the correct power of ω
n in N first.

(2) Norm-match. A closer look into CC> shows

(2.20)
∥∥∥CrC>r ∥∥∥ ≈ (d/2r

)
· (ω
n

)d−rnd/2−r, r = 0, ..., d/2,
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where assume C = (C0, ..., Cd/2), each Cr having column dimension
(

[n]
r

)
.

Assume N = (N0, ..., Nd/2). Then we expect NrN
>
r to concentrate around

CrC
>
r for each r, and so expect the norm of the non-constant part of NrN

>
r

to be bounded by (2.20). Under this expectation, the known tight norm

bounds on related matrix pieces would tell us, for each possible appearing

term in N , the least order of ω
n in its coefficient.

With these observations, we can weaken equation (2.19) to a simple “mod-

ular version” that is more informative about the (imaginary) solution N .

Namely, abstract (ωn ) as a fresh variable α and work in ring R[α, {χT }],
consider

(2.21)

(M ′ mod high order) = (N mod high order) · (N> mod high order)

where “order” means power of α (think of α as an “infinitesimal”). We call

(2.21) the mod-order equation and its analysis the mod-order analysis. For

details see Definition 5.2.

We feel that this approach leads us more naturally to the realization of

using the graph-theoretic structure beyond guesses, and the simple general

idea behind the mod-order analysis might hopefully find other applications.

2.6. Structure of the paper. In section 3 we define the pseudo-expectations

and show Theorem 2(1). In section 4 we recall some fundamental tools for

analysis. In section 5 we refresh the technique of recursive factorization and

show Theorem 2(2). With all preparations in place, in Section 6 we prove

the main Theorem 1. The paper is concluded in section 7 with open prob-

lems.

Notation. I, J,A,B, S will be used to denote vertex-sets, and T for edge-

sets. E(S) :=
(
S
2

)
. G denotes a simple graph on the vertex-set [n]. “T ⊆

E([n])” will be omitted in summation when there is no confusion. Finally,

we use y(n) = O(x(n)) to mean that there is some absolute constant c s.t.

y(n) ≤ cx(n) for all n.

Parameter regime. Throughout the paper,

ε = any positive parameter (wlog ε <
1

40
);

ω = n1/2−4ε;

τ =
ε

200
log n/ log log n;

d =
ε

100
τ.

3. Pseudo-expectations

In this section, we define the pseudo-expectations. As a warm-up we start

with the non-exact problem, then move on to the exact case.
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3.1. Non-exact case: a new perspective. Given a graph G we can think

of a degree-d pseudo-expectation as assigning a number ẼxS to each subset

S ⊆ [n] of size ≤ d, so that the resulting vector Ẽx looks indistinguishable to

the expectation resulted from the case when a random-ω clique is planted,

from the view of degree-d SOS. As explained at the beginning of section 2,

to make up such an assignment we first go beyond to slightly larger subsets

of size τ . We define an “approximate distribution” on size ≤ τ -cliques in G

then use it to generate pseudo-expectation on all size ≤ d-subsets.

3.1.1. ζ-function and Möbius inversion. Given n-vertex graph G, let p(G) ∈
R2[n] be the max-clique-indicator vector, then

q(G) := ζ · p(G)

is a vector supported exactly on all cliques in G, where ζ is the 2[n] × 2[n]

matrix

(3.1) ζ(A,B) = 1 iff A ⊆ B, ∀A,B ⊆ [n].

In particular, if G itself is a single clique then q(G) is the clique-indicator.

We will use ζa,b to denote the submatrix of ζ on rows
([n]
≤a
)

and columns([n]
≤b
)
, and use similar notation on all related vectors.

Consider the plant-situation where G is indeed a single random clique.

Suppose its distribution is represented by a plant-distribution vector pplant ∈
R2[n] . Let the output-expectation qout be indicator-vector of cliques in G in

expectation. Then

(3.2) qout = ζ · pplant.

We call such a pair (pplant, qout) a plant-setting.

Definition 3.1. (Two plant-settings) The exact plant-setting (p0, q0) is:

(3.3) p0(S) =
1(
n
ω

) if |S| = ω and 0 otherwise,

and

(3.4) q0(S) = (ζp0)(S) =

(n−|S|
ω−|S|

)(
n
ω

) .

I.e. in this setting a random size-ω subset is chosen to be the planted clique.

The independent plant-setting (p1, q1) is:

(3.5) p1(S) = (
ω

n
)|S|(1− ω

n
)n−|S| ∀S ⊆ [n],

and

(3.6) q1(S) = (ζp1)(S) = (
ω

n
)|S|.

I.e. any vertex is included in the planted clique w.p. ω
n independently.
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Thus the matrix ζ reveals the basic linear relations between (pplant, qout).

It is upper-triangular (with row- and column-indices ordered in a size-

ascending way), invertible, and the inverse is the Möbius inversion matrix:

ζ−1(A,B) = (−1)|B\A| if A ⊆ B, and 0 otherwise.

Note (ζa,a)
−1 = (ζ−1)a,a for all a ≤ n. Moreover, if let the pseudo-expectation

be defined as Ẽx = p ∈ R2[n] for some vector p, then the “full” 2[n] × 2[n]

moment matrix is

(3.7) MSOS = ζdiag(p)ζ>.

In particular, if p is a nonnegative vector then MSOS is immediately PSD.

3.1.2. The non-exact pseudo-expectation.

Idea. Given any G, we will first construct a degree-τ “approximate plant-

distribution” pτ (G), which simulates the plant-distribution (Def. 3.1) in the

sense that they give similar output-expectations. We also require pτ (G) to

be supported on size ≤ τ -cliques in G. Then we can take Ẽx = ζd,τ · pτ (G)

so that the result inherits the linear structure posed by ζ.

What is this pτ (G)? From the view of approximation it seems taking

ζ−1
τ,τ (q1)τ would suffice, while to make it supported on cliques, same as in

[FK03] we add a clique-indicator factor:

(3.8) pτ (G)(S) =
(

2|(
S
2)|ClS(G) · ζ−1

τ,τ (q1)τ

)
(S) ∀S ⊆ [n] of size ≤ τ

where ClS(·) is the clique indicator function and 2|(
S
2)| is for re-normalization.

Definition 3.2. ∀S ⊆ [n], the normalized clique-indicator is function

(3.9) C̃lS(G) := 2|(
S
2)|ClS(G).

C̃l(G) denotes the (column) vector of them over a family of S’s, which will

always be clear from the context.

Definition 3.3. The non-exact pseudo-expectation is

(3.10) Ẽnonexact = ζd,τ · pτ (G) = ζd,τ · (C̃l(G) ◦ ζ−1
τ,τ ) · (q1)τ ∈ R([n]

≤d)

where “◦” is the Hadamard product8.

In short, Ẽnonexact refined the construction in [FK03] by one step: factor

through size-τ subsets (in the only non-trivial way) so that the size-d output

inherits linear relations posed by ζ.

The resulting moment matrix is

(3.11) Mnonexact(G) = ζd/2,τ · diag (pτ (G)) · (ζd/2,τ )>,

similarly as (3.7).

8In general (M1 ◦M2) ·M3 6= M1 ◦ (M2 ·M3), but they are equal if M1 is a column vector.
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Remark 3.1. Ẽnonexact looks like a true expectation on cliques in G, namely,

if pτ (G) were nonnegative then the PSDness of Mnonexact(G) would be im-

mediate. Alas, this is not true by computation9. That the PSDness could

still possibly hold is because ζd/2,τ in (3.11) is degenerate.

Lemma 3.1. (Theorem 2(1)) For all S ⊆ [n] s.t. |S| ≤ d,

(3.12) ẼnonexactxS =
∑

T :|V (T )∪S|≤τ

(
ω

n
)|V (T )∪S|χT .

Proof. Note C̃lS =
∑

T⊆E(S) χT for all S. Now for S, S′ with appropriate

size bound,(
C̃l ◦ ζ−1

τ,τ

)
(S, S′) =

{∑
T∈E(S) χT · (−1)|S

′\S|, if S ⊆ S′

0, o.w.
;

(
ζd,τ · (C̃l ◦ ζ−1

τ,τ )
)

(S, S′) =
∑

S′′:S⊆S′′⊆S′

 ∑
T⊆E(S′′)

χT · (−1)|S
′\S′′|


=

∑
T :V (T )∪S⊆S′

χT ·

 ∑
S′′:V (T )∪S⊆S′′⊆S′

(−1)|S
′\S′′|


=

∑
T :V (T )∪S⊆S′

χT · δS′=V (T )∪S =
∑

T :V (T )∪S=S′

χT .

Therefore, ẼnonexactxS =(
ζd,τ · (C̃l ◦ ζ−1

τ,τ )(q1)τ

)
(S) =

∑
S′:|S′|≤τ

 ∑
T :V (T )∪S=S′

χT · (
ω

n
)|S
′|


=

∑
T :|V (T )∪S|≤τ

χT · (
ω

n
)|V (T )∪S|

for all S with |S| ≤ d. �

3.2. The exact case. In this subsection, we give a generic way to generate

possible pseudo-expectations that satisfy Size Constraints (1.4). The idea

is to define ẼxS in a top-down fashion: fix ẼxS for all |S| = d first, then

recursively set

(3.13) ẼxS ←
1

ω − |S|
∑
i/∈S

ẼxS∪{i}

for smaller-sized S’s. If denote by Ẽdx the vector of the assignments for S’s

s.t. |S| = d, then this amounts to multiplying Ẽdx by the following matrix.

9One intuition, suggested by a reviewer, is that any true expectation on cliques has ob-
jective value

∑n
i=1 xi = O(logn) w.h.p.. Now if pτ (G) were nonnegative then it would be

almost a distribution since Ẽnonexact(xφ) ≈ 1 (which is not too hard to check by (3.12)),

but its objective value n
1
2
−ε is too big.
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Definition 3.4. The d-filtration matrix Fild,=d, of dimension
([n]
≤d
)
×
([n]
d

)
,

is:

(3.14) Fild,=d(A,B) =


(ω−|A|
d−|A|

)−1
, if A ⊆ B (where |B| = d);

0, otherwise.

Definition 3.5. Given vector Ẽdx which assigns a value to each d-subset

S ⊆ [n], the exact pseudo-expectation generated by Ẽdx is

(3.15) Ẽx := Fild,=d · Ẽdx.

Lemma 3.2. The pseudo-expectation in Definition 3.5 satisfies the Size

Constraints (1.4), regardless of the choice of Ẽdx.

Proof. For any S ∈
([n]
<d

)
, take a vector vS ∈ R([n]

≤d)

vS(S′) =


ω − |S|, if S′ = S;

−1, if S′ ⊇ S and |S′\S| = 1;

0, otherwise

then it suffices to show v>S Fild,=d = 0. But this is a direct check. �

The Ẽ generated like so should further satisfy:

(1) Clique Constraints (1.3);

(2) PSDness Constraint (1.5);

(3) Default Constraint (1.2) (so far we only have ω · Ẽx∅ = Ẽx1 + ...+

Ẽxn).

Item (3) is not a problem as long as Ẽx∅ > 0, since we can always rescale

everything by (Ẽx∅)
−1 without affecting other constraints.

Remark 3.2. (Example) The following construction seems natural. Com-

bining Def. 3.5 with the perspective from section 3.1.2, we can take (3.10)

with the exact plant-setting (p0, q0), followed by multiplying Fild,=d:

ẼexamplexS = Fild,=d ·
(
ζd,τ · (C̃l(G) ◦ ζ−1

τ,τ ) · (q0)τ

)
.

Actually, it can be easily checked that it satisfies Clique Constraints; it also

has a nice expression in Fourier characters. By some computation which we

omit here, modulo provably negligible error the resulting matrix is

Mexample(I, J) =
∑
T :

|V (T )\(I∪J)|≤τ−d

χT ·

(n−|V (T )∪I∪J |
ω−|V (T )∪I∪J |

)(
n
ω

) .

The only problem, however, is that we don’t know how to prove the PSDness.

Despite a transparent similarity to the previous expression (3.12), a similar

proof breaks down seriously here, and the main reason is the loss of nice

arithmetic structure when changing from function (ωn )x to
(n−xω−x)
(nω)

. See also

Remark 6.2.
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3.3. The exact pseudo-expectation. Now we pinpoint an exact pseudo-

expectation in Definition 3.5. With the idea stated in detail in the overview

(section 2.1), we give the construction directly.

We take the pseudo-expectation for |S| = d in the form

ẼxS =
∑

T :|V (T )∪S|≤τ

χT · F (|V (T ) ∪ S|)

for some function F . F is called a d-generating function. Then for general

|S| ≤ d, (3.14) gives:

(3.16)

ẼxS =
1(

w−d+u
u

) ∑
T :|V (T )∪S|≤τ

χT ·
[ u∑
c=0

(
|V (T ) ∪ S| − d+ u

c

)(
n− |V (T ) ∪ S|

u− c

)

· F (|V (T ) ∪ S|+ u− c)
]

where we have let u := d− |S|.

Lemma 3.3. Any exact pseudo-expectation generated by (3.16) satisfies the

Clique and Size Constraints (1.3),(1.4).

Proof. For Clique Constraints, note (3.16) only depends on |V (T ) ∪ S|, so

by grouping terms ẼxS =
∑

T :|V (T )∪I∪J |≤τ M(I, J ;T )χT factors through

C̃lI∪J =
∑

T⊆E(I∪J) χT . I.e., M(I, J)(G) = 0 if C̃lI∪J(G) = 0.

It satisfies Size Constraints by Lemma 3.2. �

Now we pinpoint a choice of the d-generating function.

Definition 3.6. (Exact d-generating function)

F (x) :=
(x+ 8τ2)!

(8τ2)!
· (ω
n

)x.

Remark 3.3. As is said in the proof overview, the design of F , especially

its first factor, is technical and the ultimate goal is to make the resulting M

positive. The numerator (x + 8τ2)! will be used in Proposition 6.3, where

the term 8τ2 can be replaced by larger polynomials in τ . The (8τ2)! in

denominator is added just for convenience (see Remark 3.4).

Definition 3.7. The exact moment matrix M̃ is

M̃(A,B) =
∑

T :|V (T )∪A∪B|≤τ

M̃(A,B;T )χT ∀|A|, |B| ≤ d/2
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where M̃(A,B;T ) =

(3.17)

1(
ω−d+u

u

)[ u∑
c=0

(
|V (T ) ∪A ∪B| − (d− u)

c

)(
n− |V (T ) ∪A ∪B|

u− c

)

·
(
|V (T ) ∪A ∪B|+ u− c+ 8τ2

)
!

(8τ2)!
· (ω
n

)|(V (T )∪A∪B)|+u−c︸ ︷︷ ︸
f
(
|V (T )∪A∪B|+u−c

)
]

and where u = |A ∩B|.

Remark 3.4. In (3.17), the “most significant” factor is (ωn )|V (T )∪A∪B| ·ω−c,

if notice
(n−|V (T )∪A∪B|

u−c )
(ω−d+uu )

ωun−(u−c) has 0th-order in ω, n. One thing to keep in

mind is that other factors like (|V (T )∪A∪B|+u−c+8τ2)!
(8τ2)!

are qualitatively smaller

than ω, within our parameter regime.

4. Preparations

In this section, we prepare some necessary tools for studying the matrices.

4.1. Homogenization for Exact Clique. With the Size Constraints (1.4)

satisfied, any moment matrix can be reduced to its
( [n]
d/2

)
-principal minor,

which is slightly more convenient to work with. The following homogeneity

trick is standard in the SOS literature.

Given any degree-d moment matrix MdSOS(G) that satisfies the Size Con-

straints (1.4), let M(G) be its principal minor on
( [n]
d/2

)
×
( [n]
d/2

)
.

Lemma 4.1. MdSOS(G) is PSD ⇔ M(G) is PSD.

Proof. The ⇒ part is trivial. Now suppose MdSOS is not PSD, then

(4.1) ∃a ∈ R( [n]
≤d/2) a>MdSOSa = −1.

With the presence of boolean constraints (i.e. define Ẽ(x2
i · p) := Ẽ(xi · p)

for all i and all polynomial p of degree ≤ d− 2), this is equivalent to

(4.2) Ẽ(g2) = −1

where g = a>x =
∑
|S|≤d/2 aSxS is multi-linear. Now substitute every xS

(|S| < d) in (4.2) by the corresponding linear combination of {xS′ | |S′| = d}
from (3.13). This does not affect the value of (4.2) since Ẽ satisfies these

constraints. We get

(4.3) Ẽ(g2
1) = −1

for some multi-linear, degree-d/2 homogeneous g1. Now translate (4.3) back

(assume g1 = bTx, x = (xS)|S|=d/2) to b>Mb = −1, we see that M is not

PSD. �
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4.2. Concentration bound on polynomials. The following is standard.

Lemma 4.2. Suppose a < log n, and p is a polynomial

p =
∑

T : |V (T )|=a

c(T )χT cT ∈ R

and C > 0 is a number s.t. |c(T )| ≤ C for all T . Then W.p. 1 − n−10 logn

over G,

(4.4) |p(G)| < C · na/22a
2
n4 log logn.

Proof. Power-estimation. For all k ∈ N, (we can think of a < k = o(n/a))

(4.5) p2k =
∑

T1,...,T2k: |V (Ti)|=a

c(T1)...c(T2k)χT1 · ... · χT2k

Take expectation of (4.5). Each E[χT1 ...χT2k(G)] 6= 0 (i.e. equals 1) iff every

edge appears even times in T1, ..., T2k, which implies |V (T1 ∪ ... ∪ T2k)| ≤
1
2 · 2ka = ka. There are at most ka

(
n
ka

)
< nka many choices of such V (T1 ∪

...∪T2k). For each choice, there are in turn at most
(
ka
a

)
·2(a2) < (ka)a ·2a2/2

many ways to choose each Ti. Therefore,

E[p2k] ≤ C2k ·nka
(

(ka)a2a
2/2
)2k

:= N2k where N = Cna/2 · (ka)a ·2a2/2.

By Markov inequality, Pr
[
p2k > (2N)2k

]
< 2−2k. Take k := 10 log2 n, we

get that w.p. > 1− n−10 logn,

|p(G)| < 2N < C · na/22a
2
n4 log logn

for all large enough n. �

4.3. Norm concentration of pseudo-random matrices. Now we state

a concentration bound on pseudo-random matrices which, like in almost all

previous work on the subject, will be a fundamental tool for us.

The pseudo-random matrices refer to the graphical matrices ([MP16]).

Intuitively, such a matrix collects Fourier characters of all embeddings of

a fixed “shape”. Definition 4.1, 4.3 below are implicit in [MP16, MPW15,

HKP15] and is termed explicitly in [BHK+19].

Definition 4.1. A ribbon R is a (ordered) triple (A,B;T ) where A,B are

vertex-sets and T is an edge set. A,B are called the left and right vertex set

of R. The size of R is

|V (R)| = |V (T ) ∪A ∪B|.

By definition, a ribbon R = (A,B;T ) as a graph always has no isolated

vertex outside of A ∪B.

Definition 4.2. We say R = (A,B;T ) is left-generated if every vertex

in V (R) is either in B or can be reached by paths10 from A without touching

B. Being right-generated is symmetrically defined.

10We always stick to the convention of including degenerate paths (one-point path).
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Definition 4.3. For ribbon (A,B;T ), if further A∪B is totally-ordered, it

is called a shape. Denote a shape by U = (A,B;T ). As before, V (U) =

A ∪B ∪ V (T ), and its size is |V (U)|.

When fixing an underlying vertex-set [n], a ribbon R within vertex set [n]

can always be regarded as shapes, with the induced ordering on vertices. So

in this setting, we may speak of the shape of R and interchangeably use R

to denote shapes.

Definition 4.4. A real-valued function f defined on a set of ribbons within

vertex-set [n] is called symmetric with respect to shapes, if whenever

R and R′ are of the same shape then f(R) = f(R′).

Definition 4.5. ([MP16]) Fix an n, and a shape U = (A,B;T ) Define the

graphical matrix of shape U to be the following 2[n] × 2[n]-matrix MU.

Call a map φ : V (U)→ [n] proper if φ is injective and respects the order on

A ∪B, then

∀I, J ⊆ [n], MU(I, J) =
∑

T : ∃proper φ s.t.
φ(A)=I,φ(B)=J,φ(T )=T ′

χT ′

(= 0 if no such φ exists). Here, φ on T means the natural induced map on

edges.

Theorem 3. (Norm bounds on MU)([MP16], [BHK+19]) For any shape

U = (A,B;T ) of size t < log n, w.p. > 1− n−10 logn over G,

(4.6) ‖MU(G)‖ ≤ n
t−p
2 · 2O(t) · (log n)O(t+p−2r)

where r = |A∩B|, p is the maximum number of vertex-disjoint paths between

(A,B) in U. Moreover, this bound is tight up to polylog(n)-factors, for all

MU with the described parameters ([MP16], Thm 38]).

Moreover, under the same notation, if further denote s = |A|+|B|
2 then

(4.7) ‖MU(G)‖ ≤ n
t−p
2 · 2O(t) · (log n)O(t−s).

Theorem 3 is proved by a careful estimation of the trace-power E[tr(M2k
U )]

(for some k > 0), which we omit here. Its “moreover” part follows from (4.6)

since t ≥ |A ∪B| = 2s− r, p ≤ s, so

t+ p− 2r ≤ t+ s− 2(2s− t) = 3(t− s).

Remark 4.1. Theorem 3 and its proof is a far-reaching generalization of

that of the concentration bounds on polynomials, Lemma 4.2. Namely, if

take special shapes in the form U = (A,A;T ), then the corresponding matrix

MU is diagonal, so estimating its norm is equivalent to estimating absolute

values of the diagonals which are polynomials.

4.4. Some general notions on graphs. We finish our preparation with

some general graph-theoretic notions.
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Definition 4.6. (Vertex-separator) Given graph H and two vertex-subsets

A,B ⊆ V (H), call S ⊆ V (H) an (A,B)-vertex-separator if any path11

from A to B in H must pass through S. Let

sA,B(H) := min{|S| | S is an (A,B)-vertex-separator}.

A vertex-separator achieving this minimum is a min-separator. mSepA,B(H)

denotes the set of all min-separators.

This definition naturally applies to ribbons R = (A,B;T ), by using the

graph H as on V (T )∪A∪B with edge-set T . In that case we can write the

corresponding size and set of the min-separators as

sA,B(T ), mSepA,B(T ) or mSep(R).

Menger’s theorem: For any finite graph H, sA,B(H) equals to the maxi-

mum number of vertex-disjoint paths from A to B in H.

Definition 4.7. For ribbon R = (A,B;T ), let us define its reduced size

to be

(4.8) eA,B(T ) := |V (T ) ∪A ∪B| − sA,B(T ).

The reduced size is double of the exponent in n in the bound of Theorem

3, hence is the controlling parameter of the norm of the graphical matrix.

5. Non-exact case PSDness: a refreshing

In this section, we review and refresh the proof techniques for the non-

exact problem. In section 5.1 and 5.2, we show Theorem 2(2) via the so-

called mod-order analysis, which gives a conceptually different approach to

the techniques. In section 5.3, we formalize the recursive factorization in a

convenient language and extend it properly for later use.

Declaration. Section 5.2 is only for Theorem 2(2). The reader can safely

skip it if she wants to proceed directly to the proof of Theorem 1.

Notation. Thoughout section 5, M ′ denotes the
([n]
d
2

)
×
([n]
d
2

)
-minor12 of the

non-exact moment matrix.

(5.1) M ′(I, J) =
∑

T :|V (T )∪I∪J |≤τ

(
ω

n
)|V (T )∪I∪J |χT ∀I, J ∈

(
[n]

d/2

)
.

Goal of section 5. Diagonalize M ′ approximately, such that the difference

matrix is negligible (w.h.p. when plugging G).

5.1. Step 1: Diagonalization of E[M ′].

11Same as in the previous footnote. In particular, every vertex-separator contains A∩B.
12Strictly speaking, PSDness of this minor is not sufficient as we do not have a homogeneity
reduction in non-exact case. Nevertheless, it suffices to demonstrate the idea.
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Proposition 5.1. E[M ′] = CC>, where C is the
( [n]
d/2

)
×
( [n]
≤d/2

)
-matrix

(5.2) C = (ζ>)d/2,≤d/2 · diag

(√
t(|A|)

)
A∈( [n]

≤d/2)

and t(r) = (1−O(dωn )) · (ωn )d−r for all r = 0, ..., d/2.

This can be shown by a similar calculation as in [MPW15], as below.

Definition 5.1. (See e.g. [Del73]) Fix parameters n, k. A Johnson scheme

J is an
([n]
k

)
×
([n]
k

)
-matrix that satisfies J(I, J) = J(I ′, J ′) whenever |I∩J | =

|I ′ ∩ J ′|.

It can be checked that (fix n, k) all Johnson schemes are symmetric ma-

trices and form a commutative R-algebra, so they are simultaneously diag-

onalizable. In below we fix n and k = d/2. An obvious R-basis for Johnson

schemes is D0, ..., Dd/2 where

(5.3) Dr(I, J) =

{
1, if |I ∩ J | = r

0, o.w.
∀I, J ∈

(
S

d/2

)
.

Another basis which we denote by J0, ..., Jd/2 is

(5.4) Jr(I, J) =

(
|I ∩ J |
r

)
, ∀I, J ∈

(
[n]
d
2

)
.

J0, ..., Jd/2 are PSD matrices since

(5.5) Jr =
∑

A⊆[n],|A|=r

uAu
>
A where uA ∈ R([n]k ), uA(B) = 1A⊆B.

Clearly Jd/2 = Id. More generally, we have:

Fact 1. (See e.g. (4.29) in [Del73]) The Johnson schemes (for (n, d/2))

have shared eigenspace-decomposition R( [n]
d/2) = V0 ⊕ ...⊕ Vd/2, and

Jr =

d
2⊕
i=0

λr(i) ·Πi for r = 0, ..., d/2

where Πi is the orthogonal projection to Vi w.r.t. the Euclidean inner prod-

uct, and the eigenvalues are

λr(i) =

(d
2 − i
r − i

)(
n− d

2 − i
d
2 − r

)
, 0 ≤ i ≤ d

2
.

Lemma 5.1. E[M ′] =
∑d/2

r=0 t(r)Jr where each t(r) = (1−O(dωn )) · (ωn )d−r.

Proof. By definition, E[M ′] =
∑d/2

r=0(ωn )d−rDr. Note each Dr decomposes as

(5.6) Dr =

d/2∑
r′=r

(−1)r
′−r
(
r′

r

)
· Jr′
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since RHS(I, J) =
d/2∑
r′=r

(−1)r
′−r(r′

r

)(|I∩J |
r′

)
=
|I∩J |∑
r′=r

(−1)r
′−r(|I∩J |

r

)(|I∩J |−r
r′−r

)
=(|I∩J |

r

)
· 1|I∩J |=r = 1|I∩J |=r. So together,

(5.7)

E[M ′] =

d/2∑
r=0

(
ω

n
)d−r

 d/2∑
r′=r

(−1)r
′−r
(
r′

r

)
Jr′


=

d/2∑
r′=0

Jr′ ·

(
r′∑
r=0

(
ω

n
)d−r(−1)r

′−r
(
r′

r

))

=

d/2∑
r′=0

Jr′ · (
ω

n
)d−r

′
(1− ω

n
)r
′

which proves the lemma. �

By Lemma 5.1 and (5.5), if let t(r) = (ωn )d−r
′
[1− ω

n ]r
′

then

E[M ′] =
∑

A:|A|≤d/2

t(|A|)uAu>A=(ζ>)d/2,≤d/2 · diag

(
t(|A|)

)
· ζ≤d/2,d/2 = CC>,

where used that the matrix (ζ>)d/2,≤d/2 has columns {uA | |A| ≤ d/2}. This

proves Proposition 5.1.

5.2. Step 2: Mod-order analysis toward “coarse” diagonalization.

Given E[M ′] = CC>, ideally we hope to continue to solve for

(5.8) M ′ = NN>

with E[N ] = C, and N extending C by non-trivial Fourier characters. Also,

we restrict ourselves to symmetric solutions w.r.t. shapes (Def. 4.4).

Toward this goal, we define and study a relaxed equation first (Definition

5.2). Let us start with its motivation.

(1) Order in ω
n . Entries of M ′ all have a clear order in ω

n . Like in fixed-

parameter problems, we treat ω
n as a distinguished structural parameter and

try to solve the correct power of ω
n in terms in N .

(2) Norm-match. Let’s have a closer look into

E[M ′] = CC> =

d/2∑
r=0

(1−O(
dω

n
)) · (ω

n
)d−rJr.

By fact 1, each Jr b has norm
(
d/2
r

)
· nd/2−r so

(5.9)
∥∥∥CrC>r ∥∥∥ ≈ (d/2r

)
· (ω
n

)d−rnd/2−r, r = 0, ..., d/2.

We expect Nr(Nr)
> to concentrate around Cr(Cr)

>, so the norm of the

“random” part, i.e. matrix of nontrivial Fourier characters in Nr(Nr)
>, is

expected to be bounded by (5.9). The tight bound from Theorem 3 tells

how this may happen, which we review below.
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It will be convenient to use a scaling of variables: let

L = (L0, ..., L d
2
) = (Nr · (

ω

n
)
−|A|

2 )0≤r≤ d
2
,

then

(5.10) M ′ = L·diag
(

(
ω

n
)|A|
)
·L> with E[L] = ( Cr ·(

ω

n
)−r/2 )r=0,1,...,d/2.

Now suppose

Lr(I, A) =
∑

small T

βI,A(T )χT , A ∈
(

[n]

r

)
where assume as in (1), an order of ω

n can be separated:

(5.11) βI,A(T ) = (
ω

n
)x︸ ︷︷ ︸

main-order term

· ( factor � n

ω
and � ω

n
).

Fix I, A, T , we are looking for the condition on x in order to have the

expected norm control on Lr(
ω
n )r(Lr)

>. Ignore for a moment the cross-

terms, such a single graphical matrix square in Lr(
ω
n )rL>r is

(
ω

n
)2xR(I,A;T ) · (

ω

n
)r ·R>(I,A;T )

which has norm13

/ (
ω

n
)2x+r · neI,A(T ) · 2O(|V (T )∪I∪A|) · (log n)>0

by Theorem 3. Here recall eI,A(T ) = |V (T )∪ I ∪A| − sI,A(T )(≥ |I| − |A| =
d
2 − r). Compare this with (5.9), we need (ωn )2xneI,A(T ) <

(
d/2
r

)
( ω√

n
)d/2−r.

If think of 2d as qualitatively smaller than any positive constant power of

ω, n, the natural bound to put is x ≥ eI,A(T ) which actually is the limit

requirement when logω
logn →

1
2 . Suggested by this, we will set the restriction

x ≥ eI,A(T ) right from the start in the relaxed equation.

The above motivation leads to the following definition. Take a ring A by

adding fresh variables α and χT ’s to R, where T ranges over subsets of
(

[n]
2

)
and they only satisfy relations {χT ′ · χT ′′ = χT : T ′ ⊕ T ′′ = T}.

Definition 5.2. The mod-order equation is

(5.12) Lα · diag
(
α|A|

)
· (Lα)> = Mα mod (∗)

on the
( [n]
d/2

)
×
( [n]
≤d/2

)
matrix variable Lα in ring A, where

Mα(I, J) :=
∑

T :|V (T )∪I∪J |≤τ

α|V (T )∪I∪J |χT ,

13Here the matrix is naturally truncated from 2[n] × 2[n], which doesn’t change anything
since the original matrix is always 0 elsewhere.
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and mod (∗) is the modularity, which means position-wise mod the ideal(
{α|V (T )∪I∪J |+1χT }, {χT : |V (T ) ∪ I ∪ J | > τ}

)
.

Moreover, if denote Lα(I, A) =
∑

T βI,A(T )χT where βI,A(T ) ∈ R[α], then14

(5.13) αeI,A(T ) | βI,A(T ) ∀I, A, T.

We are interested in solutions that are symmetric, i.e. βI,A(T ′) = βJ,B(T ′′)

whenever (I, A;T ′), (J,B;T ′′) are of the same shape.

The following is the key observation. Its proof demonstrates how to make

deductions from the mod-order equations efficiently, and is presented in

Appendix A.1.

Lemma 5.2. (Order match) If a product α|A| · βI,A(T ′) · βJ,A(T ′′) from the

LHS of (5.12) is nonzero mod (∗), then both of the following hold:

A is a min-separator for both (I, A;T ′), (J,A;T ′′);(5.14) (
V (T ′) ∪ I ∪A

)
∩
(
V (T ′′) ∪ J ∪A

)
= A.(5.15)

Moreover, (5.14), (5.15) imply that

A is a min-separator of (I, J ;T ) (where T = T ′ ⊕ T ′′);(5.16)

|V (T ′) ∪ I ∪A|, |V (T ′′) ∪ J ∪A| ≤ τ.(5.17)

By this lemma, in an imagined solution we can assume βI,A(T ′) 6= 0 only

when it satisfies its part in conditions (5.14), (5.17).

Using this information, plus a further technique of polarization, we can

deduce the following Proposition 5.2 which is the main takeaway of the anal-

ysis here. A graph-theoretic fact (the “in particular” part below) appears

exactly as the solvability condition. For deductions see Appendix A.2.

Fact 2. ([Esc72]) For any ribbon (I, J ;T ), the set of all min-separators,

mSepI,J(T ), has a natural poset structure: min-separators A1 ≤ A2 iff

A1 separates (I, A2;T ), or equivalently as can be checked, iff A2 separates

(J,A1;T ). The set is actually a lattice under this partial-ordering: ∀A1, A2 ∈
mSepI,J(T ) their join and meet exist. In particular, there exist unique min-

imum and maximum.

Denote the minimum by Sl(I, J ;T ) and the maximum by Sr(I, J ;T ),

which is the “leftmost” and “rightmost” min-separator, respectively.

Proposition 5.2. (Mod-order diagonalization) Let

Lα(I, A) :=
∑

T ′: |V (T ′)∪I∪A|≤τ
A=Sl(I,A;T ′)
T ′∩E(A)=∅

(I,A;T ′) left-generated (Def. 4.2)

αeI,A(T ′)χT ′ ,

14Recall eI,A(T ′) is the reduced size |V (T ′) ∪ I ∪A| − sI,A(T ′) (Def. 4.7).
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Q0,α(A,B) :=
∑

Tm: |T∪A∪B|≤τ
A,B∈mSepA,B(Tm)

αeA,B(Tm)χTm

(Tm to indicate “middle”). Then

(5.18) Lα · [diag
(
α
|A|
2

)
·Q0,α · diag

(
α
|A|
2

)
] · L>α = Mα mod (∗)

where recall (∗) means ideal ({α|V (T )∪I∪J |+1χT }, {χT : |V (T )∪ I ∪J | > τ})
position-wise on each (I, J).

Equation (5.18) is slightly weaker than a solution to (5.12) but is sufficient

for all use. In particular, it gives the first-approximate diagonalization of

the matrix M ′, recast as Definition 5.3 below. This shows Theorem 2(2).

5.3. Recursive factorization. In this subsection, we give a formalization

and extension of the recursive factorization technique, which is used to refine

the coarse diagonalization from Step 2 above. We give some new notions

that are convenient and extendable to matrix products (Def. 5.5, 5.6), along

with some simplification (Lem. 5.4) and refinement (Prop. 5.4) for later use.

First, the coarse diagonalization (5.18) can be recast in R[{χT }]-matrices

as below.

Definition 5.3. Let L be the
([n]
d
2

)
×
( [n]

≤ d
2

)
-matrix

(5.19) L(I, A) :=
∑

T ′: |V (T ′)∪I∪A|≤τ
A=Sl(I,A;T ′)
T ′∩E(A)=∅

(I,A;T ′) left-generated

(
ω

n
)|V (T ′)∪I∪A|−|A|χT ′ ,

and Q0 be the
( [n]

≤ d
2

)
×
( [n]

≤ d
2

)
-matrix

(5.20) Q0(A,B) :=
∑

Tm:|Tm∪A∪B|≤τ
A,B∈mSepA,B(Tm)

(
ω

n
)|V (Tm)∪A∪B|χTm .

Finally, let

(5.21) D := diag
(

(
ω

n
)
|A|
2

)
A∈( [n]

≤d/2)
.

We call L(DQ0)L> the first-approximate diagonalization of M ′.

Despite of its name (“approximate”), the difference

(5.22) M ′ − L(DQ0D)L>

is, however, far from negligible. This is where the recursive factorization

will be applied, and in the end it will give

(5.23) M ′ = L · [D · (Q0 −Q1 +Q2...±Qd/2) ·D] · L> + E

for some negligible error-matrix E.
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Remark 5.1. Use of D is superficial in (5.22), (5.23); we keep it so that

the middle matrices Qi are better-positioned. The LD here corresponds to

the “L” matrix in [BHK+19].

Let us start with some necessary notions.

5.3.1. More notion on graphs.

Definition 5.4. ([BHK+19] Def. 6.515) For any ribbon R = (I, J ;T ), its

canonical decomposition is a ribbon-triple

(Rl,Rm,Rr) = ((I, A;Tl), (A,B;Tm), (B, J ;Tr))

determined uniquely by the following. A = Sl(I, J ;T ), B = Sr(I, J ;T ).

V (Rl) is A unioned with the set of vertices reachable by paths from I in T

without touching A, and Tl = T |V (Rl)\E(A). Similarly, V (Rr) is B unioned

with the set of the vertices reachable from J in T without touching B, and

Tr = T |V (Rr)\E(B). Finally, Tm = T\(T ′ t T ′′).
Rl, Rm, Rr are called the left-, middle-, right- ribbon of R, respec-

tively.

Remark 5.2. (Properties of the canonical decomposition) A few properties

follow from the definition of the canonical decomposition of R = (I, J ;T ).

A = Sl(I, A;Tl), B = Sr(B, J ;Tr)

(so they are unique separator of Rl,Rr, respectively);

Tl ∩ E(A) = ∅ = Tr ∩ E[A];

Rl is left-generated, Rr is right-generated (Def. 4.2);

A,B ∈ mSepA,B(Tm) (so |A| = |B|).
The above four are about each of Rl, Rm, Rm (the “inner” conditions).

Moreover, there is the intersection property on pairs of them (the “outer”

conditions)16:

V (Rl) ∩ V (Rm) ⊆ A, V (Rm) ∩ V (Rr) ⊆ B, V (Rl) ∩ V (Rr) ⊆ A ∩B

which implies

(5.24) e(Rl) + |V (Rm)|+ e(Rr) = |V (R)|.

The canonical decomposition can be reversely described as follows.

Definition 5.5. (Inner and outer canonicality) For a triple of ribbons in

the form

(Rl,Rm,Rr) =

(
(I, A;Tl), (A,B;Tm), (B, J ;Tr)

)
15Similar notions actually appeared implicitly in the mod-order analysis (cf. condition
(5.14), (5.15)), while here they appear in a more “canonical” left-, middle-, right- form.
16cf. conditions (5.14), (5.15)



28 SOS LOWER BOUND FOR EXACT PLANTED CLIQUE

(Tl, Tm, Tr are arbitrary subsets of an edge-set), their ribbon-sum is ribbon

(I, J ;T ) where T = Tl ⊕ Tm ⊕ Tr.

The triple is called inner-canonical, if they satisfy the “inner” conditions:

(5.25)

A = Sl(I, A;Tl), B = Sr(B, J ;Tr),

Tl ∩ E(A) = ∅ = Tr ∩ E[A],

Rl left-generated, Rr right-generated,

A,B ∈ mSepA,B(Tm).

The triple is outer-canonical if they satisfy the “outer” condition:

(5.26) V (Rl)∩V (Rm) ⊆ A, V (Rm)∩V (Rr) ⊆ B, V (Rl)∩V (Rr) ⊆ A∩B.

The triple is a canonical triple if it is both inner- and outer- canonical.

Proposition 5.3. Canonical triples are 1-1 correspondent to their ribbon-

sum, via the canonical decomposition.

Proof. This follows by an immediate check from the definition. �

We further extend the notions to matrix products. Recall R[{χT }] is the

ring from adding fresh variables χT ’s into R for every T ⊆
(

[n]
2

)
(fixing an

n), with relations {χT ′ · χT ′′ = χT | T ′ ⊕ T ′′ = T}.

Definition 5.6. (Approximate form) Suppose matrices X,Y have rows and

columns indexed by subsets of [n] with entries in R[{χT }]; and in every entry,

each character regarded as a ribbon on distinguished sets (row, column) has

ribbon size ≤ τ . Suppose X,Y have dimensions s.t. XYX> is defined.

Every nonzero triple product (without collecting like-terms) in

(5.27) XYX>

thus has form

(5.28) X(I, A;Tl)Y (A,B;Tm)X(J,B;Tr)︸ ︷︷ ︸
nonzero in R

χTl · χTm · χTr ,

and can be identified with a ribbon-triple in the natural way, with

X(I, A;Tl)Y (A,B;Tm)X(J,B;Tr)χTl⊕Tm⊕Tr ∈ R[{χT }]

its resulting term. We say (5.28) is an outer-canonical product if the

ribbon-triple is outer-canonical, and it exceeds degree if |V (T )∪I∪J | > τ .

The approximation form of XYX> is:

(5.29) XYX> =
(
XYX>

)
can

+ (XYX>)non-can + Edeg,

or equivalently,(
XYX>

)
can

= XYX> − (XYX>)non-can − Edeg,
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where
(
XYX>

)
out-can

is the matrix collecting all terms of outer-canonical

products that do not exceed degree, (XYX>)non-can collecting all terms of

non-outer-canonical products, and Edeg collecting all rest terms.

Remark 5.3. With this language, Proposition 5.3 gives an a posteriori ex-

planation of the coarse diagonalization (Def. 5.3): M ′ = [L(DQ0D)L>]can.

5.3.2. Recursive factorization: the machinery. We start with the fol-

lowing, which is Definition 5.3 restated in the current language.

Definition 5.7. (First-approximate factorization of M ′)

(5.30) M ′ = L(DQ0D)L> − [L(DQ0D)L>]non-can − E1;deg

where E1;deg is by Def. 5.6, applied to the product L(DQ0D)L>, where the

index “1” is added for later convenience. L(DQ0D)L> is celled the first-

approximate factorization of M ′.

The high-degree error E1;deg is actually negligible in norm17 (we will prove

the analogous statement in the exact case); the main task is to analyze the

“main error”, [L(DQ0D)L>]non-can. For this, the key point of the whole

technique is

[L(DQ0D)L>]non-can itself factors through L,L> approximately, too.

I.e. ∃Q1 s.t.

(5.31) [L(DQ0D)L>]non-can = [L(DQ1D)L>]can + E′1;negl.

for some negligible E′1;negl. And we can repeat this for [L(DQ1D)L>]non-can

and so on. To describe the factorization (5.31), a generalized notion is useful.

Definition 5.8. ([BHK+19], Def. 6.9)18 A generalized ribbon is a usual

ribbon together with a new set of isolated vertices. In symbol, it is denoted

as R∗ = (A,B;T ∗) where

T ∗ = T t I,

T an edge-set, I a vertex set disjoint from V (T )∪A∪B, called the isolated

vertex-set of R∗, denoted as I(R∗). V (R∗) = V (T ) ∪ A ∪ B ∪ I. A usual

ribbon is also a generalized ribbon with I = ∅. (A,B;T ) is called the (unique)

largest ribbon in R.

Remark 5.4. I(R∗) could be different from the isolated set of the underlying

graph, as it excludes vertices in A ∪B.

Definition 5.9. A side-inner-canonical triple is

(Rl,Rm,Rr) = ((I, A;Tl), (A,B;Tm), (B, J ;Tr))

where Rl, Rr are ribbons satisfying the inner-canonical conditions on their

part (the first three of (5.25)), while Rm is just a ribbon.

17Matrices considered all have support on clique-rows and clique-columns, given G.
18It was called improper ribbon, but we feel the name here is perhaps more proper.
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The following operation is the technical core of recursive factorizations.

Definition 5.10. (Separating factorization; Def. 6.10 of [BHK+19]) Given

an side-inner-canonical tripe

(Rl,Rm,Rr) = ((I, A;Tl), (A,B;Tm), (B, J ;Tr)),

denote T = Tl ⊕ Tm ⊕ Tr, and denote by Z the multi-set of “unexpected

intersections” i.e. multi-set of vertices from (Rl ∩Rm)−A, (Rm ∩Rr)−B,

(Rl ∩Rr)− (A ∩B). Call z(Rl,Rm,Rr) = |Z| the intersection size of the

triple. It can be checked that

(5.32) |V (Rl)∪V (Rm)∪V (Rr)| = |V (Rl)|+|V (Rm)|+|V (Rr)|−|A|−|B|−z.

We further separate this triple into an “outer-canonical” one, as follows.

Define S′l to be the leftmost min-separator of (I, A∪ (Z ∩V (Rl));Tl), and

similarly S′r the right-most min-separator of (B ∪ (Z ∩ V (Rr)), J ;Tr). Note

S′l, S
′
r ⊆ V (T ) ∪ I ∪ J from definition.

Define ribbon R′l = (I, S′l;T
′
l ), whose vertex set V (R′l) is S′l unioned with

the set of vertices in Rl reachable from I by paths in Tl without touching S′l,

and T ′l is Tl\E(S′l) restricted to V (R′l). Ribbon R′r is symmetrically defined.

In particular, T ′l ∩T ′r = ∅. R∗m is the generalized ribbon (S′l, S
′
r;T

∗
m) where

T ∗m = T\(T ′l t T ′r) t I(R∗m),

I(R∗m) collecting all the rest isolated vertices:

(5.33) I(R∗m) = V (Rl) ∪ V (Rm) ∪ V (Rr) − V (T ) ∪ I ∪ J.

The resulting (R′l,R
∗
m,R

′
r) is called the separating factorization of ribbon

triple (Rl,Rm,Rr), which we denote as

(5.34) (Rl,Rm,Rr)→ (R′l,R
∗
m,R

′
r).

Remark 5.5. (Properties of separating factorization) Some natural proper-

ties follow. Let (Rl,Rm,Rr)→ (R′l,R
∗
m,R

′
r) in the same notation as above.

(1).The resulting triple (R′l, R
∗
m,R

′
r) is side-inner-canonical and outer-

canonical (i.e. their pair-wise vertex intersections are within the correspond-

ing S′l, S
′
r and S′l ∩ S′r). So the corresponding ribbon triple (from replacing

R∗m with its largest ribbon) is canonical and is disjoint from I(R∗m).

(2). R′l ⊆ Rl, and S′l separates (V (R′l), V (Rl) − V (R′l)) in Rl. In par-

ticular, we can talk about the part of Rl to the right of S′l, which is disjoint

from R′l and actually can be easily checked to be in R∗m. Similar fact holds

for Rr.

(3). Since S′l separates (I, A) in Rl, and A is the unique min-separator of

Rl, there are |A| many vertex-disjoint paths from A to S′l in Rl. Similarly

for Rr.

Lemma 5.3. (Lemma 6.14, 7.14 of [BHK+19]) Suppose (Rl,Rm,Rr) →
(R′l,R

∗
m,R

′
r). In the same notation as in Definition 5.10,

(1). |S′l|+ |S′r| ≥ |A|+ |B|+ 1;
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(2).19 If further denote s = |A|+|B|
2 , p′ the maximum number of vertex-

disjoint paths from S′l to S′r in R∗m, and p the maximum number of vertex-

disjoint paths from A to B in Rm, then

2(s′ − s) + (p− p′) + |I(R∗m)| ≤ z(Rl,Rm,Rr).

Proof. (1). By definition there must be some unexpected pair-wise intersec-

tion between (Rl,Rm,Rr). In either of the three cases of breaking (5.26),

∃v ∈ Z that is in V (Rl) − A or in V (Rr) − B. WLOG suppose the first

happens. Then S′l 6= A since v can be reached from I without passing A by

the left-generated condition on Rl. Similarly, if |S′l| = |A| then it is A as

A is the unique min-separator separating (I, A), so this is impossible. Thus

S′l > A.

(2). We refer the reader to its proof in the original paper. �

Now we apply the above machinery to the target, L(DQ0D)L>.

5.3.3. Apply the machinery. Conceptually, the separating factorization

tells us how to “cancel” the terms in [L(DQ0D)L>]non-can using L,L>.

Namely, in L(DQ0D)L>, any product from (Rl,Rm,Rr) (Def.5.6) that is

non-outer-canonical results in a term in [L(DQ0D)L>]non-can at (I, J), and

we can cancel it by the product from its separating factorization (R′l,R
∗
m,R

′
r):

take R′l at position (I, S′l) in L, R′r at position (S′r, J) in L>, and the largest

ribbon of R∗m at (S′l, S
′
r) in a new middle matrix DQ1D. I.e., we cancel it

by −[L(DQ1D)L>]can.

Of course, there are other triples whose separating factorization result

in the same (R′l, largest ribbon of R∗m, R′r) so we need to collect them all

in DQ1D. More seriously, the (I, S′l)th entry of L is actually a sum of

different R′ls, so we need to make sure that this cancellation works for them

simultaneously in multiplication.

The following is what insures the simultaneous cancellation can work. It

is stated in a refined version that is more than needed here (i.e. we further

distinguish different (i, j) parameters), but this will be needed in the exact

case (Lemma 6.6).

Proposition 5.4. (Solvability condition)(cf. Claim 6.12 in [BHK+19]) Fix

(I, J, S′l, S
′
r), and a generalized ribbon R∗m on (S′l, S

′
r). Let (R′l,R

′
r) be inner-

canonical left and right ribbons with distinguished sets (I, S′l), (S
′
r, J) respec-

tively, as in Definition 5.5. Let (R′′l ,R
′′
r) be another such ribbon pair, with

the same reduced size

e(R′l) = e(R′′l ), e(R
′
r) = e(R′′r).

19Recall in our setting Rm is always a ribbon, without any isolated vertex.
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(Or the same size, equivalently.) Then for every fixed tuple (i, j, z) the fol-

lowing holds: there is an 1-1 matching between ribbon-triples

(Rl,Rm,Rr) s.t.

{
(Rl,Rm,Rr)→ (R′l,R

∗
m,R

′
r),

(e(Rl), e(Rr), z(Rl,Rm,Rr)) = (i, j, z).
(5.35)

and

(Rl,Rm,Rr) s.t.

{
(Rl,Rm,Rr)→ (R′′l ,R

∗
m,R

′′
r),

(e(Rl), e(Rr), z(Rl,Rm,Rr)) = (i, j, z).
(5.36)

Moreover, this matching fixes every middle Rm.

Proof. We give a reversible map from the set of (5.35) onto the set of (5.36).

Take a (Rl,Rm,Rr) from (5.35). By Remark 5.5 (2), the part of Rl to the

right of S′l is in R∗m hence is disjoint from both R′l and R′′l . Similarly for R′r,

Rr. Now take the map

(Rl,Rm,Rr) 7→ (φ(Rl),Rm, φ(Rr))

where φ(Rl) replace R′l to R′′l within Rl, and φ(Rr) replaces R′r to R′′r within

Rr. Clearly R∗m, thus Rm, is unchanged. Also, as R′l, R
′′
l have the same size

by assumption, by the disjointness above this replacement operation keeps

the size of Rl. Moreover, Rl, φ(Rl) have the same right distinguished set

which is the unique min-separator of both, so e(Rl) = e(φ(Rl)). Similarly

for Rr, φ(Rr), so the parameter (i, j) is unchanged by φ. The intersec-

tion parameter z is unchanged too, since the changed part is disjoint from

Z(Rl,Rm,Rr). Finally, the inverse map is given the same way by changing

the role of (R′l,R
′
r) and (R′′l ,R

′′
r). �

The following lemma will be repeatedly used.

Lemma 5.4. (One round of factorization) Let L be as (5.19), and Q be any( [n]
≤d/2

)
×
( [n]
≤d/2

)
-matrix with entries

(5.37) Q(A,B) =
∑

Tm: |V (Tm)∪A∪B|≤τ

(
ω

n
)|V (Rm)|q(Rm) · χTm

where Rm denotes (A,B;Tm), and q(·) is a function symmetric w.r.t. shapes.

Define matrix Q′,E′negl as follows so that

(5.38) (LQL>)non-can = (LQ′L>)can + E′negl

holds. First, let

(5.39) Q′(A,B) =
∑

Tm: |V (Tm)∪A∪B|≤τ

(
ω

n
)|V (Rm)|q′(Rm) · χTm

where q′(Rm) is as follows. Fix any Rm = (A,B;Tm) and let t = |V (Rm)| ≤
τ , s = |A|+|B|

2 . For every generalized ribbon R∗m that contains Rm as its

largest ribbon and |V (R∗m)| ≤ τ , fix a ribbon pair (R′l,R
′
r) s.t. (R′l,R

∗
m,R

′
r) is

the separating factorization for some ribbon triple with |V (R′l)|, |V (R′r)| ≤ τ
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(if there is none, exclude this R∗m in the summation below). Then let

(5.40)

q′(Rm) =
∑

R∗m: gen. ribbon on (A,B)
|V (R∗m)|≤τ

largest ribbon is Rm

(
ω

n
)|I(R

∗
m)| · q′′(R∗m), where

q′′(R∗m) =
∑

1≤z≤d/2

∑
P=(Rl,R,Rr): side-inn. can.

P→(R′l,R
∗
m,R

′
r) for the fixed R′l,R

′
r

z(P)=z

(
ω

n
)z · q(R).

Note q′(Rm) doesn’t depend on the choice (R′l,R
′
r) by Proposition 5.4, and

q′(·) is also symmetric w.r.t. shapes. Now define E′negl s.t. (6.32) holds.

Then the conclusions are:

(1). W.p. > 1− n−9 logn over G,
∥∥∥E′negl

∥∥∥ ≤ max{q(A,B;T )} · n−ετ ;

(2). If there is a number C for which

(5.41) ∀Rm |q(Rm)| ≤ C · ( ω

n1−ε )
s−p

where p denotes the maximum number of vertex-disjoint paths between A,B

in Rm.20 Then

∀Rm |q′(Rm)| ≤ C · ( ω

n1−ε )
s−p+1/3.

Proof. We compare [LQ′L>]can with [LQL>]non-can as step (0), then prove

(1), (2).

(0). For any fixed (I, J), recall [LQL>]non-can(I, J) is

(5.42) ∑
(Rl,Rm,Rr): side. inn. can.

non-outer-can.
all three have size ≤τ

(
ω

n
)|V (Rl)|+|V (Rm)|+|V (Rr)|−|A|−|B|q(Rm)χTl⊕Tm⊕Tr

where we denoted the distinguished sets of Rm by (A,B) when Rm is given.

For each (Rl,Rm,Rr) in it, there is a unique (R′l,R
∗
m,R

′
r) that is its sepa-

rating factorization: (Rl,Rm,Rr)→ (R′l,R
∗
m,R

′
r). There are two cases.

First case: |V (R∗m)| ≤ τ . In this case, there is the corresponding term

(5.43) (
ω

n
)|V (R′l)|+|V (R′m)|+V (R′r)|−|S′l |−|S

′
r| · (ω

n
)z+|I(R

∗
m)| · q(R′m)χT ′l⊕T ∗m⊕T ′r

in (LQ′L>)can(I, J), where R′m denotes the largest ribbon of R∗m and χT ∗m
means the character from R′m, and z ≥ 1 is the intersection size of (Rl,Rm,Rr).

Recall for the separating factorization, T ′l ⊕ T ∗m ⊕ T ′r = Tl ⊕ Tm ⊕ Tr and

|V (Rl) ∪ V (Rm) ∪ V (Rr)| = |V (R′l)|+ |V (R∗m)|+ |V (R′r)| − |S′l| − |S′r|
= |V (Rl)|+ |V (Rm)|+ |V (Rr)| − |A| − |B| − z

Also, |V (R∗m)| = |V (R′m)| + |I(R∗m)|. Together we have that the coefficient

in (5.43) equals the one in (5.42) from (R′l,R
∗
m,R

′
r).

20This is also sA,B(Tm) by Menger’s theorem; we use p here for appliance with applying
Lemma 5.3(2).
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Conversely, by definition of Q′ and (5.40) and Prop. 5.4 every outer-

canonical product in LQ′L> corresponds uniquely to a side inner-canonical

triple (Rl,Rm,Rr) in the above case. Therefore, E′negl by definition collects

all terms in the next case.

Second case: |V (R∗m)| > τ . By the above explanation, E′negl(I, J) =

(5.44) ∑
(Rl,Rm,Rr): side. inn. can.

non-outer-can.
all three has size ≤τ
resulting |V (R∗m)|>τ

(
ω

n
)|V (Rl)|+|V (Rm)|+|V (Rr)|−|A|−|B|q(Rm)χTl⊕Tm⊕Tr .

where we omit writing the obvious condition that Rl (Rr) has its left (right)

vertex set as I (J).

(1). Take a triple (Rl,Rm,Rr) in (5.44). Recall

|V (Rl)|+ |V (Rm)|+ |V (Rr)| − |A| − |B| = |V (Rl) ∪ V (Rm) ∪ V (Rr)|+ z

= |V (T ) ∪ I ∪ J |+ |I(R∗m)|+ z.

Also |I(R∗m)| ≤ z + d/2 as a quick corollary of Lemma 5.321. Fix an T =

Tl⊕Tm⊕Tr and a > τ−|V (T )∪I∪J |, we upper bound the number of triples

in (5.44) resulting in (ωn )|V (T )∪I∪J |+a ·χT (ignoring q(Rm) for the moment):

to create such a triple, we need to choose a set as I(R∗m) of size ≤ a/2 + d/4

since a is intended to be |I(R∗m)|+ z so a ≥ 2I(R∗)− d/2; then to decide the

triple over the fixed vertex set there are < 33τ · 23(τ2) many ways. Together,

the coefficient of χT in (5.44) has absolute value smaller than the following:

let B0 = max{q(·)},

B0 · (
ω

n
)|V (T )∪I∪J |+a · n(a+d)/222τ2

= B0(
ω

n1−2ε
)|V (T )∪I∪J | (n−2ε

)|V (T )∪I∪J | · ( ω√
n

)a · nd/222τ2

≤ B0(n−1/2)|V (T )∪I∪J | · n−2ε(|V (T )∪I∪J |+a)nd/222τ2 (ω ≤ n1/2−4ε)

≤ B0(n−1/2)|V (T )∪I∪J | · n−1.5ετ

the last step by |V (T ) ∪ I ∪ J | + a > τ by the case condition and that

d < ετ/10, 22τ < nε/10. Also, all χT appearing in (5.44) has |V (T )| ≤ 3τ .

So by Lemma 4.2, for fixed (I, J), w.p. > 1− n−10 logn

|E′negl(I, J)| <
3τ∑
a=0

B0n
−a/2n−1.5ετ · na/2n4 log logn2a

2
< n−1.4ετ .

By union bound over |{(I, J)}| < nd, w.p. > 1 − n−9 logn
∥∥∥E′negl

∥∥∥ < nd ·
n−1.4ετ < n−ετ .

21Actually it can be shown that |I(R∗m)| ≤ z but we don’t need this.
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(2). Fix an Rm. By (5.40),

q′(Rm) =
∑
z,R∗m:

largest ribbon =Rm

(
ω

n
)|I(R

∗
m)|+z

∑
P=(Rl,R,Rr): side-inn. can.

P→(R′l,R
∗
m,R

′
r) for the fixed R′l,R

′
r

z(P)=z

q(R).

For a fixed R∗m, there are no more than 8zτ < nεz many triples in the second

summation (recall R′l,R
′
r is fixed), as after fixing whether each vertex appears

in each of the three ribbons and fixing A,B ⊆ R∗m as distinguished sets of R,

we only need to assign possible edges that appear in more than once in the

original triple, and it can be checked that such an edge must has at least one

end in the already fixed (multi-set) Z of size ≤ z. Further, by Lemma 5.3(2)

and condition (6.36), the second summation in above in absolute value is

≤ nεz(ω
n

)z+|I(R
∗
m)||q(R)| ≤ (

ω

n1−ε )
2(s′−s)+(p−p′)+2|I(R∗m)| · C(

ω

n1−ε )
s−p

≤ C · (ω
n

)2|I(R∗m)| · ( ω

n1−ε )
s′−p′+1/2

where (s, p) denotes the corresponding parameter for each R and (s′, p′) for

Rm, and the last step uses s′ − s ≥ 1/2 from Lemma 5.3(1). Finally, in

the outer sum, for fixed i0 there are < ni0 many ways to choose R∗m s.t.

|I(R∗m)| = i0, and 1 ≤ z ≤ 3τ . So together,

|q′(Rm)| ≤ 3τ

d/2∑
i0=0

C · ni0(
ω

n
)2i0 · ( ω

n1−ε )
s′−p′+1/2 ≤ C · ( ω

n1−ε )
s′−p′+1/3.

�

Now we can apply Lemma 5.4 to [L(DQ0D)L>]non-can: in (5.30) let Q←
(DQ0D), we get

[L(DQ0D)L>]non-can = [L(DQ1D)L>]can + E′1;negl

for some Q1 and E′1;negl. Then we can repeat this on [L(DQ1Q)L>]non-can

and so on, to get a final recursive approximate factorization of M :

(5.45)

M ′ = L

(
D(Q0 −Q1 +Q2 − ...±Qd)D

)
L> −

(
E1;deg − ...± E1+d;deg

)
+

(
E′1;negl + ...+ E′d;negl

)
.

Here it implicitly used the following.

Proposition 5.5. ([BHK+19] Claim 6.15) Qd+1 = 0.

Proof. First we show by induction: ∀k, in Qk every appearing ribbon Rm =

(A,B;Tm) has |A| + |B| ≥ k. Case k = 0 is trivial. From k to k + 1,

by Lemma 5.4 every R′m = (A′, B′;T ′m) in Qk+1 is the largest ribbon of

some R∗m in the separating factorization of some non-outer-canonical triple

in L(DQkD)L>. Suppose that triple has the middle part Rm = (A,B;Tm).

Then by the inductive hypothesis |A| + |B| ≥ k, and by Lemma 5.3(1)
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|A′| + |B′| ≥ |A| + |B| + 1 ≥ k + 1, and the induction is completed. For

k = 1 + d, no ribbon can satisfy this while having both distinguished sets in( [n]
d/2

)
. �

We have completed the recursive factorization technique for later use.

Remark 5.6. PSDness of M ′ would follow from (5.45) by a few last steps22.

This part is standard, and similar arguments will be given for the exact case

(section 6) so we omit it here.

6. PSDness of the exact pseudo-expectation

Notation. HenceforthM exclusively refers to the d/2-homogeneous minor

of the moment matrix M̃ in Definition 3.7.

The main theorem of this section is the following.

Theorem 4. W.p. > 1− n−5 logn, M(G) � n−d−1diag
(

C̃l(G)
)

( [n]
d/2)×( [n]

d/2)
.

Corollary 6.1. W.p. > 1− n−5 logn, Ẽx∅ > 0.

Proof. By construction (3.13), Ẽx∅ =
(ω−d/2d−d/2)

(ωd)(
d
d/2)

∑
S:|S|=d/2

ẼxS =
(ω−d/2d−d/2)

(ωd)(
d
d/2)

Tr(M),

and by Theorem 4 this is positive with high probability. �

Theorem 1 is a quick corollary of Theorem 4: for our pseudo-expectation

from Definition 3.7, its moment matrix is PSD by Theorem 4 and Lemma

4.1; it satisfies the Default Constraint by Corollary 6.1 and the discussion

above Remark 3.2; and it satisfies the Clique and Size Constraints by Lemma

3.2. The degree-d lower bound follows.

The rest of section 6 is for proving Theorem 4. We first reduce it to the

main lemma (Lemma 6.3) in the next subsection, then prove that lemma.

6.1. An Hadamard product and Euler transform. For proving The-

orem 4, we want to factor the matrix M into an XYX> form as in the

non-exact case. The first problem is that, unlike in the non-exact situa-

tion, here in the expression of M(I, J) (Def. 3.7), the appearance of the

parameter

u = |I ∩ J |
makes a similar factorization of terms unlikely23. As a first step towards

resolving this issue, in this subsection, we express M in a ΣΠ-form (6.15)

where in each leaf matrix, the dependence on u is removed. In later subsec-

tions, we will factor each such leaf matrix.

22As noted previously, this is not yet the PSDness of the moment matrix as we do not
have the homogeneous reduction in non-exact case. A full proof is just similar, though.
23It doesn’t appear in the non-exact case (5.1) at all.
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6.1.1. Hadamard product. By definition (3.17), in M(I, J) the coefficient

before χT can be re-written as

(6.1)

M(I, J ;T ) =
u∑
c=0

[
1(

ω−d+u
u

)ωu−c·
·
((

a− (d− u)

c

)(
n− a
u− c

)
n−(u−c) (a+ u− c+ 8τ2)!

(8τ2)!
(
ω

n
)a
)

︸ ︷︷ ︸
:=Mc(u,a)

]

where again u = |I ∩ J |, a = |V (T ) ∪ I ∪ J |. This means M is a sum of

Hadamard products

(6.2) M =

d
2∑
c=0

mc ◦Mc

where mc, Mc are matrices: for all |I|, |J | = d/2,

(6.3) mc(I, J) =
1(

ω−d+u
u

)ωu−c u = |I ∩ J |

(6.4)

Mc(I, J) =


∑

T :|V (T )∪I∪J |≤τ
χT ·Mc(|I ∩ J |, |V (T ) ∪ I ∪ J |) , if |I ∩ J | ≥ c;

0 , o.w.

Remark 6.1. It is important to note that we defined mc to be supported on

all (I, J), while let Mc(I, J) = 0 if |I ∩ J | < c, so (6.2) still holds. The use

of this is in Lemma 6.1 below.

The intuition behind decomposition (6.2) is that the second factor Mc is

“close” to each other for varying c, while the first factor mc is qualitatively

decreasing in c. This, if true, would make it possible for us to concentrate

on showing the PSDness in the main case c = 0.

The next lemma proves the second half of the above intuition. The other

half will be stated more precisely as the Main Lemma 6.3.

Lemma 6.1. For each c = 0, ..., d/2,

mc = ω−c
d/2∑
k=0

bk · Jk

where Jk’s are the Johnson basis (5.4), bk/k! ∈ [ d2ω , 1 + 2dk
ω ]. In particular,

(6.5) m0 = ωm1 = ... = ω
d
2m d

2
� 1

ω
Id.

Proof. By definition, mc = ω−c
d/2∑
l=0

ωl

(ω−d+ll )
Dl, where matricesDl (l = 0, ..., d/2)

are the simple basis of Johnson schemes (5.3). By basis-change (5.6), mc =
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ω−c
d/2∑
k=0

Jk ·k!

 k∑
l=0

(−1)k−l ·
[

ω

ω − (d− l)
· ... · ω

ω − (d− 1)
· 1

(k − l)!

]
︸ ︷︷ ︸

:=fk(l), which is 1/k! if l=0

. For

fixed k, fk(l) is increasing in l so
k∑
l=0

(−1)k−lfk(l) ≥ fk(k) − fk(k − 1) >

d/2
ω · (1 + d/2

ω )k−1 ≥ d
2ω . Note for k = d/2, Jd/2 = Id so we get (6.5). �

6.1.2. Euler transform. Fixing c, now we look into the second factor Mc

in (6.2). For fixed (I, J ;T ), again denote u = |I ∩ J |, a = |V (T ) ∪ I ∪ J |.
By (6.1)

(6.6) Mc(u, a) =

(
a− (d− u)

c

)(
n− a
u− c

)
n−(u−c) (a+ u− c+ 8τ2)!

(8τ2)!
(
ω

n
)a

is the coefficient of χT in Mc(I, J) for c ≤ u, which is a partial function.

Definition 6.1. (Extended Mc(u, a)) For fixed c ≥ 0, the function Mc(u, a)

in (6.6) is partial, defined for (u, a) ∈ N2 s.t.

u ≥ c, u+ a ≥ d+ c.

It can be naturally extended to N2 by letting

(6.7)

(
n− a
u− c

)
= 0 if u < c,

and using the usual convention on binomial coefficients(
−m
k

)
= (−1)k ·

(
m+ k − 1

k

)
∀0 < m, 0 ≤ k;(6.8) (

m

k

)
= 0 ∀0 ≤ m < k(6.9)

on the expression Mc(u, a) (6.6). We will still use Mc(u, a) to mean this

extended function.

In particular,
(
m
0

)
= 1 for all m ∈ Z; if 0 ≤ a − (d − u) < c then

Mc(u, a) = 0 since
(
a−(d−u)

c

)
= 0.

To further remove the dependence on u = |I∩J |, consider a decomposition

(6.10) Mc =
∑

R∈(
[n]

≤ d2
)

MR
c

where for each R ∈
( [n]

≤ d
2

)
the matrix MR

c is supported on rows and columns

whose index contains R. More explicitly, for any (I, J ;T ) let a = |V (T ) ∪
I ∪ J |, suppose

(6.11) MR
c (I, J) :=


(ωn )a

∑
T :|V (T )∪I∪J |≤τ

Yc(|R|, a) · χT , if R ⊆ I, J ;

0 , o.w.
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for some function Yc(u, a) to be chosen, then comparing for every tuple

(I, J ;T ) we see that equation (6.10) is equivalent to that for any fixed c, a:

(6.12)
u∑
r=0

(
u

r

)
Yc(r, a)(

ω

n
)a = Mc(u, a).

This suggests to take Yc(u, a) ·(ωn )a to be the inverse Euler transform (w.r.t.

variable u) of the extended function Mc(u, a).

Fact 3. 24 If x(m), y(m) are two sequences defined on N s.t.

∀m x(m) =

m∑
l=0

(
m

l

)
y(l),

then x(m) is called the Euler transform of y(m), whose inverse transform

is

∀m y(m) =

m∑
l=0

(−1)m−l
(
m

l

)
x(l).

Definition 6.2. (Coefficients in MR
c ) For every fixed c, define

(6.13)

Yc(r, a) =


r∑
l=c

(−1)r−l
(
r
l

)(
a+l−d
c

)(
n−a
l−c
)
n−(l−c) (a+l−c+8τ2)!

(8τ2)!
, if r ≥ c;

0 , o.w.

Then as a clear-up summary, we get:

Lemma 6.2. (The Hadamard-product decomposition of M)

M =

d
2∑
c=0

mc ◦

 ∑
R:R∈( [n]

≤d/2)

MR
c

(6.14)

=
∑

R∈( [n]
≤d/2)

 |R|∑
c=0

mc ◦MR
c


︸ ︷︷ ︸

:=MR

(6.15)

where each mc is as in Lemma 6.1 and each MR
c has the following expression.

(1) MR
c = 0 if |R| < c;

(2) If R 6⊆ I ∩ J , MR
c (I, J) = 0;

(3) If |R| ≥ c and R ⊆ I ∩ J ,

MR
c (I, J) =

∑
T :|V (T )∪I∪J |≤τ

MR
c (I, J ;T )χT

24The fact itself can be seen as an application of ζ-matrix and its inverse.
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where, if denote a = |V (T ) ∪ I ∪ J |,
(6.16)

MR
c (I, J ;T ) =

(
ω

n
)a
|R|∑
l=c

(−1)|R|−l
(
|R|
l

)(
a+ l − d

c

)(
n− a
l − c

)
n−(l−c) (a+ l − c+ 8τ2)!

(8τ2)!︸ ︷︷ ︸
Yc(|R|,a), (6.13)

.

(4) For all 0 ≤ c ≤ r ≤ d/2 and 0 ≤ a ≤ τ ,

|Yc(r, a)| < τ5τ .

Proof. (1), (2), (3) is definition. To check (6.14) i.e. Mc =
∑

RM
R
c , we

check for every (I, J ;T ) where |I| = |J | = d/2, |V (T ) ∪ I ∪ J | ≤ τ . Let

u = |I ∩ J |, a = |V (T ) ∪ I ∪ J |, then note a− (d− u) ≥ 0, and

∑
R:

MR
c (I, J ;T ) =

∑
R:R⊆I∩J

MR
c (I, J ;T ) = (

ω

n
)a
|I∩J |∑
r=0

(
|I ∩ J |
r

)
Yc(r, a).

By the Euler transform and (6.12), the RHS equals the extended Mc(u, a).

Thus, we only need to see Mc(u, a) = 0 if further u < c or a − (d − u) < c

(in particular, in such cases c > 0), and this is by (6.7), (6.9).

For (4),

|Yc(u, a)| =

∣∣∣∣∣
r∑
l=c

(−1)r−l
(
r

l

)(
a+ l − d

c

)[(n− a
l − c

)
n−(l−c)](a+ l − c+ 8τ2)!

(8τ2)!

∣∣∣∣∣
< r · 2r · (2τ)r · 1 · (9τ2)2τ < τ5τ

where note r ≤ d/2� τ in our parameter regime. �

Lemma 6.3. (Main Lemma) In the decomposition (6.15), w.p. > 1 −
n−5 logn the following hold. For all R ∈

( [n]
≤d/2

)
, let PR = {I ∈

( [n]
d/2

)
| R ⊆ I},

(1).

(6.17) MR
0 � n−ddiag(C̃l)PR×PR ;

(2).

(6.18) ± ω−cMR
c � n−c/6 ·MR

0 , ∀0 < c ≤ |R|.

Corollary 6.2. (Theorem 4) W.p. > 1− n−5 logn over G,

M(G) � n−d−1diag(C̃l(G))( [n]
d/2)×( [n]

d/2)
.

Proof. For eachR, by definitionMR =
|R|∑
c=0

mc◦MR
c . Suppose the situation in

Lemma 6.3 happens, which has probability > 1−n−5 logn. Since Hadamard
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product with a PSD matrix presevres PSDness (the Schur product theorem),

|R|∑
c=1

mc ◦MR
c �

|R|∑
c=1

mc ◦
(
ωcn−c/6 ·MR

0

)
(Lemma 6.3(2))

=

 |R|∑
c=1

n−c/6 ·m0

 ◦MR
0 (Lemma 6.1)

� n−1/6m0 ◦MR
0

Similarly,
|R|∑
c=1

mc ◦MR
c � −n−1/6m0 ◦MR

c . So

MR � (1−n−1/6)m0◦MR
0 � n−d−1diag(C̃l)PR×PR (Lem. 6.1 and 6.3(2)).

Apply this to (6.15),

(6.19)
M = M∅ +

∑
∅6=R∈( [n]

≤d/2)

MR � M∅ � n−d−1diag(C̃l)( [n]
d/2)×( [n]

d/2)
.

�

The rest of section 6 is devoted to proving the Main Lemma 6.3, completed

in subsection 6.7. The key ingredient is Lemma 6.7, stated in section 6.4.

The statement requires the recursive factorization of each MR
c , which we

show as Lemma 6.5 in the upcoming subsections 6.2 and 6.3.

6.2. The first-approximate factorization of MR
c . In this subsection and

the next, we factorize each matrixMR
c in (6.15) by the recursive approximate

factorization.

Terminology established in section 5.3 will be used. We start by defining

the first-approximate factorization (cf. Definition 5.7).

Definition 6.3. Fix R ∈
( [n]

≤ d
2

)
. For every i = 0, 1, ..., τ define the left-i-

factor LR,i to be the matrix of dimension
([n]
d
2

)
×
( [n]

≤ d
2

)
,

(6.20) LR,i(I, A) =



0 , if R 6⊆ I ∩A;∑
T : |V (T )∪I∪A|≤τ
A=Sl(I,A;T )
T∩E(A)=∅

(I,A;T ) left-generated
eI,A(T )=i

(ωn )iχT , o.w.

(LR,j)> is called the right-j-factor. Call L̃R = (LR,0, ..., LR,τ ) the left fac-

tor, (L̃R)> the right factor. Note these matrices do not depend on “c”.

Definition 6.4. Let Dτ denote the constant diagonal matrix

diag
(

(
ω

n
)
|A|
2

)
A:|A|≤d/2

⊗ Id{0,...,τ}×{0,...,τ}
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of dimension

(( [n]
≤d/2

)
× (τ + 1)

)
×
(( [n]
≤d/2

)
× (τ + 1)

)
.

Definition 6.5. (Goal factorization of MR
c ) Our goal is to find a middle

matrix QRc of dimension((
[n]

≤ d
2

)
× (τ + 1)

)
×
((

[n]

≤ d
2

)
× (τ + 1)

)
s.t. the following factorization approximately holds:

(6.21) MR
c ≈ (LR,0, ..., LR,τ )︸ ︷︷ ︸

L̃R

·
(
Dτ ·QRc ·Dτ

)
· (LR,0, ..., LR,τ )>︸ ︷︷ ︸(

L̃R
)>

Remark 6.2. Unlike in the non-exact case (section 5.3), here we factorize

MR
c by further distinguishing a parameter pair in {0, ..., τ}× {0, ..., τ}. The

reason is that in (6.13), or more broadly in any exact pseudo-expectation

generated by the method in section 3.2, the parameter

a = |V (T ) ∪ I ∪ J |

appears nestedly in an essential way.

Fixing (I, J ;T ), previously the coefficient (3.12) is intended as

(
ω

n
)a = (

ω

n
)e(Rl)+|V (Rm)|+e(Rr)

as in Remark 5.2, which naturally factors into the left, middle, right terms.

Here, however, there are terms like
(
a+l−d
c

)
·
(
n−a
l−c
)

that are not log-additive

in a. Also, the reason we chose the d-generating function as in Def. 3.6 is

exactly to prove the positiveness of E[QR0,0] in this harder situation. This is

eventually made clear by Prop. 6.3 and Cor. 6.3.

To approach the goal decomposition (6.21), in the coefficients in MR
c

(6.16) we separate the main factor

(
ω

n
)a = (

ω

n
)e(Rl) · (ω

n
)|V (Rm)| · (ω

n
)e(Rr)

into left, right, and middle factors as before, while leave the factor Yc(r, a)

for the middle matrix QRc

(
(·, el), (·, er)

)
to bear , where the index (el, er)

has the natural intended meaning.

Definition 6.6. (First-approximate factorization by QRc,0) Define QRc,0 to be

the {0, ..., τ}×{0, ..., τ}-block matrix, each block of dimension
( [n]
≤d/2

)
×
( [n]
≤d/2

)
,

that is 0 outside of the principal minor

(6.22)

SR × SR, SR = {(A, i) ∈
(

[n]

≤ d/2

)
× {0, ..., τ} | A ⊇ R, |A|+ i ≥ d

2
},
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and in this principal minor, QRc,0

(
(A, i), (B, j)

)
=

(6.23) ∑
Tm:|V (Tm)∪A∪B|≤τ
A,B∈mSepA,B(Tm)

(
ω

n
)|V (Tm)∪A∪B|− |A|+|B|

2 ·Yc
(
|R|, |V (Tm) ∪A ∪B|+ (i+ j)

)︸ ︷︷ ︸
defined by (6.13)

·χTm

Correspondingly, define

L̃R ·
(
Dτ ·QRc,0 ·Dτ

)
·
(
L̃R
)>

to be the first approximate factorization of MR
c .

Some remarks on the definition of QRc,0 follow.

Remark 6.3. (Intended meaning of parameters in QRc,0)

(1). The set SR (6.22) is defined independently of c, where the condition

|A|+ i ≥ d/2 is natural because of the intended meaning of i: it is intended

as |V (T ′)\A| ≥ |I| − |A| for some ribbon (I, A;T ′) in L̃R. If |A| + i < d/2

the corresponding column in L̃R is always 0. Similarly for j.

(2). By definition, QRc,0 is supported only on those ((A, i), (B, j)) ∈ SR ×
SR with |A| = |B|.

(3). Regarding (6.23), as before by Remark 5.2, in “canonical” situations

i.e. for outer-canonical products in L̃R ·
(
Dτ ·QRc,0 ·Dτ

)
·
(
L̃R
)>

,

|V (Tm) ∪A ∪B|+ (i+ j) = |V (T ) ∪ I ∪ J |

for ribbons (I, J ;T ) that take (A,B;Tm) as the middle part of its canonical

decomposition and for which e(Rl) = i, e(Rr) = j.

Recall the terminology on the XYX>-type matrix product, Def 5.6.

Lemma 6.4. (QRc,0 indeed gives the first-approximation) Fix R, c ≤ |R|.
For every (I, J ;T ) s.t. |V (T ) ∪ I ∪ J | ≤ τ and R ⊆ I ∩ J , there is exactly

one outer-canonical product in the XYX>-type matrix product

(6.24) L̃R ·
(
Dτ ·QRc,0 ·Dτ

)︸ ︷︷ ︸
Y

·
(
L̃R
)>

which corresponds to the canonical decomposition of (I, J ;T ), and which

gives term

MR
c (I, J ;T )χT .

Proof. Suppose R ⊆ I∩J . First, note every triple in (6.24) is inner-canonical

by definition of L̃R, QRc,0, so all outer-canonical triples there 1-1 correspond

to their triple-product (I, J ;T ) via the canonical decomposition.

Fix an (I, J ;T ) and its canonical decomposition, where |V (T ) ∪ I ∪ J | ≤
τ . (I, A;T ′) appears exactly once in L̃R(I, A) in block LR,el , where el =

eI,A(T ′); similarly for (J,B;T ′′) and er = eJ,B(T ′′). And further there is

exactly one outer-canonical product in (6.24) corresponding to this triple,
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with coefficient

(6.25) LR,el(I, A;T ′) · (ω
n

)
|A|
2 ·QRc,0(A,B;Tm) · (ω

n
)
|B|
2 · LR,er(J,B;T ′′).

By definition (6.20), (6.23), if a := |V (T )| ∪ I ∪ J ≤ τ then the above

coefficient is

(
ω

n
)a · Yc(|R|, a) = MR

c (I, J ;T ),

by comparing (6.13) and (6.16), noticing that

a = |V (T ) ∪ I ∪ J | (#)
= el + |V (Tm) ∪A ∪B|+ er,

where (#) is by canonicality. This proves the lemma. �

Definition 6.7. (First error-matrices) Let Ec,1;negl be the matrix of the sum

of all outer-canonical products in (6.24) that exceeds degree, i.e. the resulting

|V (T ) ∪ I ∪ J | > τ.

Let [L̃R · (DτQRc,0D
τ ) · (L̃R)>]non-can be the matrix of the sum of all products

that is non-outer-canonical.

Lemma 6.4 can be restated in the terminology of approximate form (Def.

5.6): ∀R ∈
( [n]
≤d/2

)
and 0 ≤ c ≤ |R|,

MR
c = [L̃R ·

(
DτQRc,0D

τ
)
·
(
L̃R
)>

]can

Equivalently,

(6.26)

MR
c = L̃R ·

(
DτQRc,0D

τ
)
·
(
L̃R
)>
−[L̃R ·

(
DτQRc,0D

τ
)
·
(
L̃R
)>

]non-can−ERc,1;deg.

As we will see, the crucial fact is that the error matrix Ec,1;main factorizes

through L̃R, (L̃R)> approximately too, as in the non-exact case. In the next

subsection, we show how the recursive factorization method works here in

an extended form.

6.3. Recursive factorization: exact case. The main result of this sub-

section is the following lemma.

Lemma 6.5. (Recursive approximate factorization; exact case) For any

fixed R ∈
( [n]
≤d/2

)
and 0 ≤ c ≤ |R|, we have the following decomposition.

(6.27) MR
c = L̃R ·

[
Dτ

(
QRc,0 −QRc,1 + ...±QRc,d

)
Dτ

]
·
(
L̃R
)>

+ ERc ,

where:

(1). All QRc,k’s are supported on the principal minor SR×SR, where recall

SR = {(A, i) ∈
(

[n]

≤ d/2

)
× {0, ..., τ} | A ⊇ R, |A|+ i ≥ d/2}.

(2). QRc,0 is by Definition 6.6;
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(3). ∀1 < k ≤ d/2, QRc,k is a (τ + 1) × (τ + 1)-block-matrix with the

(i, j)-block

(6.28) QRc,k

(
(A, i), (B, j)

)
=

∑
Tm:|V (Tm)∪A∪B|≤τ

qRc,k(Rm, i, j) · χTm

(within SR×SR), where we naturally denote Rm = (A,B;Tm); these qRc,k(·, i, j)’s
are symmetric w.r.t. shapes, and

(6.29) ∀(i, j) |qRc,k(Rm, i, j)| ≤ τ5τ · ( ω

n1−ε )
s−p+k/3,

where as usual s = |A|+|B|
2 , p is the max number of vertex-disjoint paths from

A to B in Rm.

(4). For any G, ERc (G) is supported within rows and columns that is clique

in G and contains R. Moreover, w.p. > 1− n−9 logn,

(6.30)
∥∥ERc ∥∥ < n−ετ/2.

Proof of Lemma 6.5

Like before, the key is to look at one round of the factorization. The

following lemma is strictly parallel to Lemma 5.4. Again fix R ⊆
( [n]
d/2

)
,

c ≤ |R|; for convenience denote n1 :=
( [n]
d/2

)
× (τ + 1) in the following.

Lemma 6.6. (One round of factorization; exact case)

Let L̃R be from Def. 6.3, QR be any n1×n1-matrix supported on SR×SR
and

(6.31) QR((A, i), (B, j)) =
∑

Tm: |V (Tm)∪A∪B|≤τ

(
ω

n
)|V (Rm)|q(Rm, i, j) · χTm

where Rm denotes (A,B;Tm), and q(·, i, j) is symmetric w.r.t. shapes for

any fixed (i, j). Now we define matrix Q′,E′negl so that the following holds:

(6.32) [L̃R ·Q · (L̃R)>]non-can = [L̃R ·Q′ · (L̃R)>]can + E′negl.

Namely, let Q′ be supported on SR × SR,

(6.33) Q′((A, i), (B, j)) =
∑

Tm: |V (Tm)∪A∪B|≤τ

(
ω

n
)|V (Rm)|q′(Rm, i, j) · χTm

where the coefficients q′(Rm, i, j) are as follows. Fix any Rm = (A,B;Tm)

and (i, j). Let t = |V (Rm)| ≤ τ , s = |A|+|B|
2 . For every generalized ribbon

R∗m that contains Rm as its largest ribbon and |V (R∗m)| ≤ τ , fix any a ribbon

pair (R′l,R
′
r) so that (R′l,R

∗
m,R

′
r) is the separating factorization for some

ribbon triple, |V (R′l)|, |V (R′r)| ≤ τ and

(6.34) (e(R′l), e(R
′
r)) = (i, j).
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If there is no such choice, exclude this R∗m in the summation below. Then:

(6.35)

q′(Rm, i, j) =
∑

R∗m: gen. ribbon on (A,B)
|V (R∗m)|≤τ

largest ribbon is Rm

(
ω

n
)|I(R

∗
m)| · q′′(R∗m, i, j) where

q′′(R∗m, i, j) =
∑

(z,i1,j1):
1≤z≤d/2

∑
P=(Rl,R,Rr): side-inn. can.

P→(R′l,R
∗
m,R

′
r) for the fixed R′l,R

′
r

z(P)=z, e(Rl)=i1,e(Rr)=j1

(
ω

n
)z · q(R, i1, j1).

Note q′′(Rm, i, j) doesn’t depend on the choice (R′l,R
′
r) by (the full of)

Proposition 5.4. Thus q′(·, i, j) is also symmetric w.r.t. shapes.

E′negl is defined s.t. (6.32) holds. Then the conclusions are:

(1). W.p. > 1− n−9 logn over G,∥∥E′negl

∥∥ ≤ max{q(·)} · n−ετ ;

(2). If there is a number C for which

(6.36) ∀Rm, i, j |q(Rm, i, j)| ≤ C · (
ω

n1−ε )
s−p

where p denotes the maximum number of vertex-disjoint paths between A,B

in Rm, then

∀Rm, i, j |q′(Rm)| ≤ C · ( ω

n1−ε )
s−p+1/3.

Proof. (of Lemma 6.6) The proof is almost the same as that of Lemma 5.4;

we point out and explain the differences below.

The support condition (i.e. supported on SR×SR) doesn’t affect anything

since L̃R itself is automatically 0 on columns and rows that are not in SR.

As step (0) like before, we expand [L̃R · Q′ · (L̃R)>]can to compare with

[L̃R · Q · (L̃R)>]non-can term-wise, using Prop. 5.4. Here, notice that when

(i, j) and R∗m are fixed, the size of any choice of (R′l,R
′
r) satisfying (6.34)

are also fixed, so the proposition is applicable. The comparison for order

on (ωn ) between the two is exactly the same as in step (0) of the proof of

Lemma 5.4, and the conclusion is that the matrix E′negl collects all terms in

[L̃R ·Q · (L̃R)>]non-can whose R∗m in the separating factorization exceeds size

τ , i.e. E′negl(I, J) =

(6.37)∑
i,j

∑
(Rl,Rm,Rr): side. inn. can.

non-outer-can.
all three has size ≤τ

|V (R∗m)|>τ, (e(Rl),e(Rr))=(i,j)

(
ω

n
)|V (Rl)|+|V (Rm)|+|V (Rr)|−|A|−|B|q(Rm, i, j)χT

where T = Tl ⊕ Tm ⊕ Tr, and we omit writing the default requirement that

Rl (Rr) has the left (right) distinguished vertex set I (J).

The numerical conclusions (1), (2) follow from the same estimates as in

Lemma 5.4 (after (5.44) there). We only point out that, for (1), the estimate
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there is actually loose enough s.t. with even an extra (1 + τ)2-factor (from

union bound on blocks) it is still smaller than n−ετ . �

Now we can prove Lemma 6.5.

Proof. (for Lemma 6.5) Apply the one-round factorization Lemma 6.6 to

[L̃R ·
(
DτQRc,iD

τ
)
·
(
L̃R
)>

]non-can

for i = 0, we get QRc,1, E′1;negl (for ease of notation, we hide the index R, c

for this negligible matrix). Then repeat this for i = 1 we get Ec,1;deg, QRc,2,

and E′2,negl. Continuing this, as the result we get the recursive factorization

(6.38)

MR
c =L̃R ·

[
Dτ
(
QRc,0 −QRc,1 + ...±QRc,d

)
Dτ
]
·
(
L̃R
)>
−(

ERc,1;deg − ERc,2;deg + ...± ERc,d;deg

)
+
(
E′1;negl + ...+ E′d;negl

)
.

Again, here it uses that QRc,d+1 = 0, by the same proposition 5.5.

(1). All QRc,k is supported within SR × SR by definition of each round

(Lemma 6.6);

(2). By definition.

(3). The coefficients of each QRc,k (k = 0, 1, ..., d), {qRc,k(·, i, j)} is always

symmetric w.r.t. shapes from Lemma 6.6. Moreover, from definition (6.23),

∀Rm, i, j |qRc,0(Rm)| = |Yc(|R|, |Rm|)| ≤ τ5τ

where the last one is by Lemma 6.2(4). Since QRc,0 is special in that for all

Rm = (A,B;Tm) appearing in it, there are |A| = |B| many vertex-disjoint

paths between A,B in Rm, i.e. s = p, where as usual when Rm is fixed

we use s = |A|+|B|
2 and p denotes the max number of vertex-disjoint paths

between A,B. So the above can be equivalently written as

(6.39) ∀Rm, i, j |qRc,0(Rm)| ≤ (
ω

n1−ε )
s−pτ5τ .

Now use Lemma 6.6(2), where notice the “q(·)” in there corresponds to qRc,k
here, since the “Q” matrix isDτQRc,kD so the “(ωn )|V (Rm)|q(·)” is (ωn )|V (Rm)|−s·
(ωn )s · qRc,k. As the result, we get the recursive bound

∀Rm, i, j |qRc,k(Rm, i, j)| ≤ τ5τ · ( ω

n1−ε )
s−p+k/3.

(4). First, when plugged in any G, both

MR
c and L̃R ·

[
Dτ

(
QRc,0 −QRc,1 + ...±QRc,d

)
Dτ

]
·
(
L̃R
)>

are supported within clique rows and columns that contain R by their def-

inition. So it must be the case for their difference, ERc , too. Next we only

need to give the norm bound. By (6.38), the final error matrix is

ERc = −
(
ERc,1;deg − ERc,2;deg + ...± ERc,d;deg

)
+
(
E′1;negl + ...+ E′d;negl

)
.
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Note by Lemma 6.6(2), by induction all |qRc,k| < τ5τ . For each E′k;negl, by

Lemma 6.6(1) w.p. > 1− n−9 logn,
∥∥∥E′k;negl

∥∥∥ < τ5τn−ετ < n−0.9ετ .

As for ERc,k;deg, recall by definition 5.6 on (I, J) it is the sum of outer-

canonical products in L̃R ·
(
DτQRc,i−1D

τ
)
·
(
L̃R
)>

(I, J) s.t. |V (T )∪I∪J | >
τ . So

ERc,k;deg(I, J) =
∑

(Rl,Rm,Rr):
semi-inn.can.

outer.can.
|V (T )∪I∪J |>τ

(
ω

n
)|V (T )∪I∪J | · qRc,k−1(Rm, e(Rl), e(Rr))χT

where as usual s = s(Rm) is the average of its two side vertex-sets, T =

Tl ⊕ Tm ⊕ Tr, and in the summation Rl (Rr) should have I (J) as the left

(right) set. Note the above uses |V (T ) ∪ I ∪ J | = el + er + |V (Rm)| from

the outer- and semi-inner- canonicality. Moreover, any fixed (I, J ;T ) can

come from at most 33τ triples as their vertex set union is |V (T ) ∪ I ∪ J | by

canonicality. Since 3τ ≥ |V (T )∪ I ∪ J | > τ and w.h.p. |qRc,k−1(·)| < τ5τ , use

Lemma 4.2 and we get that w.p. > 1− n−10 logn,∣∣ERc,k;deg(I, J)
∣∣ < τ6τ ·

3τ∑
c=0

(
ω

n
)max{τ,c} · (nc/22c

2
n4 log logn) < n−2ετ .

So by union bound over (I, J),
∥∥∥ERc,k;deg

∥∥∥ < n−d/4n−2ετ < n−ετ w.p. >

1− n−9.5 logn.

Together, sum the two and by union bound over k, we get that w.p.

> 1− n−9 logn,
∥∥ERc ∥∥ < n−ετ/2. �

6.4. Positiveness the middle matrices: proof overview. Now we use

the approximate decomposition of MR
c ’s to prove the Main Lemma 6.3.

Recall for each R, c ≤ |R|, by Lemma 6.5

MR
c = L̃R ·

Dτ

(
QRc,0 −QRc,1 + ...±QRc,d

)
︸ ︷︷ ︸

:=QRc

Dτ

 · (L̃R)> + ERc .

The key is the following lemma. Recall SR = {(A, i) ∈
( [n]
≤d/2

)
× {0, ..., τ} |

A ⊇ R, |A|+ i ≥ d
2}.

Lemma 6.7. W.p. > 1− n−8 logn over G, the following holds.

(1). ∀R ∈
( [n]
≤d/2

)
,

QR0,0 −QR0,1 + ...±QR
0, d

2

� τ−7τ · diag
(

C̃l
)
SR×SR

,

where recall SR = {(A, i) ∈
( [n]
≤d/2

)
× {0, ..., τ} | A ⊇ R, |A|+ i ≥ d

2}.
(2). ∀R, 0 < c ≤ |R|

±ω−c
(
QRc,0 −QRc,1 + ...±QR

c, d
2

)
� n−c/4 · diag

(
C̃l
)
SR×SR

.
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The proof of Lemma will span the upcoming three subsections, completed

at the end of section 6.6. The Main Lemma 6.3 then follows by standard

steps (section 6.7).

Proof plan for Lemma 6.7. Fix an R ∈
( [n]
≤d/2

)
. We will prove the lemma

by three ingredients: Corollary 6.5, Lemma 6.9, Lemma 6.10.

Corollary 6.5 (in section 6.5, 6.6): Positiveness of QR0,0. This is the last

real technical challenge. We use a natural “structural part + pseudo-random

part” decomposition ofQR0,0 (Def. 6.9), aiming to show that on their common

support, the structural part is positive enough and the pseudo-random part

is small enough in norm. The main difficulty here is in analyzing E[QR0,0]

which, ultimately, is about the choice of generating function F in Definition

3.6.

Lemma 6.9, 6.10 (section 6.6): Other QRc,k’s (k > 0 or c > 0), when timed

with ω−c, are small and appropriately supported. These two lemmas are

proved by standard means.

We will follow this plan in the next two subsections. Here we end this

subsection with two definitions for preparation.

Definition 6.8. Let the root diagonal-clique matrix be

(6.40) DCl(A,B) =

{
0 , if A 6= B;

2−(|A|2 )/2 · C̃lA = 2−(|A|2 )/2∑
T⊆E[A] χT , o.w.

of dimension
( [n]
≤d/2

)
×
( [n]
≤d/2

)
, so that D2

Cl(A,A) = C̃l(A) for all A ∈
( [n]
d/2

)
.

Define

(6.41) Dτ
Cl := DCl⊗ Id{0,...,τ}×{0,...,τ}.

which is also diagonal.

Definition 6.9. The structural-pseudorandom decomposition of QR0,0
is

(6.42) QR0,0 = Dτ
Cl · E[QR0,0] ·Dτ

Cl +
(
QR0,0 −Dτ

Cl · E[QR0,0] ·Dτ
Cl

)
,

where the summand Dτ
Cl · E[QR0,0] · Dτ

Cl is called the structural part, and

the summand
(
QR0,0 −Dτ

Cl · E[QR0,0] ·Dτ
Cl

)
the pseudo-random part.

6.5. Positiveness of E[QR0,0].

Proposition 6.1. (Expression of E[QRc,0]) Fix R ∈
( [n]
≤d/2

)
and 0 ≤ c ≤ |R|.

let r = |R|. Recall SR is defined by (6.22).

(1). E[QRc,0] is supported on the blockwise partial-diagonals

{
(

(A, i), (A, j)

)
∈ SR × SR}.

(i.e. requires R ⊆ A and |A|+ min{i, j} ≥ d/2)
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(2). For all

(
(A, i), (A, j)

)
∈ SR × SR, E[QRc,0]

(
(A, i), (A, j)

)
=

(6.43)

r∑
l=c

(−1)r−l
(
r
l

)
(l − c)!

(
|A|+ i+ j + l − d

c

)(|A|+ 8τ2 + (l − c) + (i+ j)

)
!

(8τ2)!

+O

(
τ1.5τ

n

)
.

In particular, for c = 0,

(6.44)

E[QR0,0]

(
(A, i), (A, j)

)
=

r∑
l=0

(−1)r−l
(
r
l

)
l!
·

(
|A|+ 8τ2 + l + (i+ j)

)
!

(8τ2)!
+O

(
τ1.5τ

n

)
.

(3). For every A ∈
( [n]
≤d/2

)
let 1A,A be the

( [n]
≤d/2

)
×
( [n]
≤d/2

)
-matrix with a

single 1 on position (A,A). Then

(6.45) E[QR0,0] =
∑

A⊆( [n]
≤d/2)

A⊇R

1A,A ⊗

[(
r∑
l=0

(−1)r−l
(
r
l

)
l!
· P|A|+l

)
+ ERA

]

where, for every fixed A, P|A|+landE
R
A are (τ + 1) × (τ + 1)-matrices both

supported on the principal minor {i | d/2 − |A| ≤ i ≤ τ} × {i | d/2 − |A| ≤
i ≤ τ} with the following property:

(6.46)
∥∥ERA∥∥ < τ2τ

n
,

and

(6.47) P|A|+l(i, j) =

(
|A|+ l + 8τ2 + (i+ j)

)
!

(8τ2)!
, d/2− |A| ≤ i, j ≤ τ.

Proof. For (1), the constant terms in (6.23) correspond to Tm = ∅, which is

nonzero only when A = B for A,B in SR.

For (2), from definition (6.23) we notice again Tm = ∅ and A = B.

E[QRc,0((A, i), (A, j))] = Yc( |R|︸︷︷︸
:=r

, |A|+ i+ j︸ ︷︷ ︸
:=a

), which expands to:

r∑
l=c

(−1)r−l
(
r

l

)(
a+ l − d

c

)
︸ ︷︷ ︸

Def. 6.1

(
n− a
l − c

)
n−(l−c) (a+ l − c+ 8τ2)!

(8τ2)!
.(6.48)

Now use(
n− a
l − c

)
n−(l−c) =

1

(l − c)!
(n− a)...(n− a− (l − c) + 1)

nl−c
=

1

(l − c)!
(1−O(d2/n))
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and∣∣∣∣(rl
)(

a+ l − d
c

)(
n− a
l − c

)
n−(l−c) (a+ l − c+ 8τ2)!

(8τ2)!

∣∣∣∣ < (4d)d · (9τ2)d < τ τ

to (6.48), we get (6.43). Further, in (6.48) when c = 0 we have
(
a+l−d

0

)
= 0

regardless of a + l − d (any value of it, positive, negative or 0). And the

same analysis gives (6.44).

For (3), each ERA has dimension (τ+1)×(τ+1) and each entry is absolutely

< τ1.5τ/n from part (2). �

Remark 6.4. (Specialty of c = 0). Comparing E[QR0,0] and E[QRc,0] (6.43),

(6.44), the specialty of the case c = 0 is that the factor
(|A|+l−d

0

)
is always

1, which is important for E[QR0,0] to be positive. In cases c > 0,
(|A|+l−d

c

)
might be 0 or negative depending on the order between 0, c, |A|+l−d, making

E[QRc,0] possibly not PSD.

Definition 6.10. For every m, t ∈ N, define the factorial Hankel matrix

to be

(6.49) Hm,t(i, j) = (i+ j + t)! ∀0 ≤ i, j ≤ m.

The following is our key observation on the structure of these matrices.

Proposition 6.2. (Almost common decomposition of {Hm,t})
(1). The matrix family {Hm,t} have decomposition

Hm,t = Lm ·
(
Nm,t ·Dm,t · (Nm,t)

>
)
· (L>m)

where Lm, Dm,t are diagonal, Nm,t is lower-triangular

Lm(i, i) = i! Dm,t(i, i) =

t∏
t′=1

(i+ t′) Nm,t(i, j) =

(
i+ t

i− j

)
In particular, Lm is independent of t, and Hm,t is positive.

(2). Let Jm denote the (1 +m)× (1 +m) lower-triangular Jordan block

Jm(i, j) =

{
1 , if i = j or i = j + 1;

0 , o.w.

Then the “left factors” Nm,t satisfy the recursive relation

(6.50) Nm,t+1 = Nm,t · Jm.

Proof. This follow from a direct inspection. �

Proposition 6.3. If parameters m, t, r satisfy

(6.51) t+ 1 > 8 ·max{r2,m}

then

Hm,t+1 � 2r2Hm,t.

Proof. By Proposition 6.2 it suffices to show that under (6.51),

Jm ·Dm,t+1 · J>m � 2r2Dm,t.
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Equivalently, we need to compare the quadratic forms for fixed m:

(6.52) qt+1(x) := (x>Jm)Dm,t+1(J>mx) v.s. qt(x) := 2r2 · x>Dm,tx

where x> = (x0, ..., xm) is the formal variable row-vector. Define polynomi-

als

α(y) = 2r2
t∏

t′=1

(y + t′), β(y) =
t+1∏
t′=1

(y + t′).

By definition of Dm,t, Jm,

qt+1(x) =
m∑
i=0

β(i)(xi + xi+1)2, xm+1 := 0;

qt(x) =
m∑
i=0

α(i)x2
i .

To compare the two, note

qt+1(x) =
m∑
i=0

β(i) · (xi + xi+1)2 =

m∑
i=0

[
α(i)x2

i +

(
β(i)− α(i)

)
· (xi +

β(i)

β(i)− α(i)
xi+1)2 − β(i)2

β(i)− α(i)
x2
i+1

]
So if for 0 ≤ i ≤ m let

(6.53) bi = 1− α(i)

β(i)
− β(i− 1)

β(i)

1

bi−1
, b0 = 1− α(0)

β(0)
,

then

(6.54) qt+1(x) =
m∑
i=0

α(i)x2
i︸ ︷︷ ︸

qt(x)

+
m∑
i=0

β(i)bi · (xi +
1

bi
xi+1)2.

Claim 6.1. In (6.53), for all i ≤ m we have bi > 1/2.

Proof. (of the claim) By definition, b0 = 1− 2r2

(t+1) and

(6.55) bi = 1− 2r2

(t+ 1 + i)
− i

(t+ 1 + i)
· 1

bi−1
, i ≥ 1.

Use induction for the claim: b0 = 1− 2r2

t+1 > 1/2 by (6.51). For 1 ≤ i ≤ m,

bi = 1− 2r2

t+ 1 + i
− i

t+ 1 + i
· 1

bi−1

≥ 1− 2r2

t+ 1
− m

t+ 1
· 2 > 1/2 by (6.51) and the inductive hypothesis.

�

By (6.54) and positiveness of each bi (Claim 6.1), qt+1(x) ≥ qt(x). The

lemma is proved. �
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Now we apply Proposition 6.3 to matrices P|A|+l (6.47). Note

P|A|+l =
1

(8τ2)!
Hτ−(d/2−|A|), d−|A|+8τ2+l

where A is fixed, l varies; below, we regard P|A|+l as a matrix on its support.

Corollary 6.3. (Positiveness of E[QR0,0]) In the decomposition (6.45) of

E[QR0,0],

(6.56)

(
r∑
l=0

(−1)r−l
(
r
l

)
l!
· P|A|+l

)
+ ERA � diag

(
τ−6τ

)
0≤i≤τ−(d/2−|A|)

where we naturally regarded matrices as on their support

{i | d/2− |A| ≤ i ≤ τ)}2 ∼= {0, ..., τ − (d/2− |A|)}2.

In particular, by (6.45)

(6.57)

E[QR0,0] �
∑

A⊆( [n]
≤d/2)

A⊇R

1A,A ⊗ diag
(
τ−6τ

)
d/2−|A|≤i≤τ = diag

(
τ−6τ

)
SR×SR

where recall SR = {(A, i) | R ⊆ A, |A|+ i ≥ d/2}.

Proof. The “in particular” part is straightforward from (6.56) by checking

the support, and that tensoring with a nonzero PSD matrix preserves the

relation �. In below we prove for (6.56).

Fix A, let

(6.58) τ0 = τ − (d/2− |A|), t0 = d− |A|+ 8τ2.

Then

(6.59)
r∑
l=0

(−1)r−l
(
r
l

)
l!
· P|A|+l =

1

(8τ2)!
· (Xr +Xr−2 + ...)

where, ∀0 ≤ v ≤ br/2c,

Xr−2v =

(
r

r−2v

)
(r − 2v)!

·
(
Hτ0,t0+r−2v −

(r − 2v)2

(2v + 1)︸ ︷︷ ︸
≤r2

Hτ0,t0+r−2v−1

)
, Hτ0,−1 := 0.

Since t0 > 8 max{r2, τ0}, by Proposition 6.3

Xr−2v �
(

r
r−2v

)
(r − 2v)!

·max{1

2
Hτ0,t0+r−2v, r

2Hτ0,t0+r−2v−1} ∀0 ≤ v ≤ r/2.

So in (6.59), in particular,

(6.60)
r∑
l=0

(−1)r−l
(
r
l

)
l!
· P|A|+l �

1

(8τ2)!
·Hτ0,t0

Prop. 6.2
= L

(
Nt0 ·

Dt0

(8τ2)!
· (Nt0)>

)
L

where we temporarily abuse the notation by omitting the index τ0 in the

RHS.
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Using the following claim, we can finish the proof of (6.56):

RHS of (6.60) � L · diag
(
τ−5τ

)
0≤i≤τ0 · L (by Claim 6.2)

� diag
(
τ−5τ

)
0≤i≤τ0 ,

while by Proposition 6.1 (3),∥∥ERA∥∥ < τ2τ

n
< τ−6τ (parameter regime).

So LHS of (6.56) � diag
(
τ−5τ − τ−6τ

)
0≤i≤τ0 � RHS of (6.56). �

Claim 6.2. In notation of Corollary 6.3, the following hold.

N−1
t0

(i, j) = (−1)i−j
(
i+ t0
i− j

)
0 ≤ i, j ≤ τ0;(6.61)

Nt0 ·
Dt0

(8τ2)!
· (Nt0)> � diag

(
τ−5τ

)
0≤i≤τ0 .(6.62)

Proof. For (6.61), multiply this matrix with Nt0 then the (i, j)th entry is∑
j≤k≤i

(−1)i−k
(
i+ t0
i− k

)(
k + t0
k − j

)
=

i′∑
k′=0

(−1)i
′−k′
(
i′ + j + t0
i′ − k′

)(
k′ + j + t0

k′

)
where i′ = i − j, k′ = k − j. To see this is identity matrix, use generating

functions: let Dm[(1 + x)a] denote the coefficient of xm in (1 + x)a, m ≥
0, a ∈ Z, the above RHS is

(−1)i
′

i′∑
k′=0

Di′−k′ [(1 + x)i
′+j+t0 ] ·Dk′ [(1 + x)−(t0+j+1)]

=(−1)i
′
Di′ [(1 + x)i

′+j+t0−(t0+j+1)] = (−1)i
′
Di′ [(1 + x)i

′−1] = 1i′=0.

For (6.62), it is equivalent to

(6.63)
Dt0

(8τ2)!
� N−1

t0
· τ−5τ · (N−1

t0
)>.

To upper bound the RHS, let a0 = τ−5τ , consider the quadratic form

(6.64) x>N−1
t0
· a0 · (N−1

t0
)>x = a0

τ0∑
j=0

y2
j ,

where by (6.61),

yj =
(
x>N−1

t0

)
j

=

τ0∑
i=j

(−1)i−j
(
i+ t0
i− j

)
xi.
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By Cauchy-Schwartz, y2
j ≤ τ0 ·

∑τ0
i=j

(
i+t0
i−j
)2
x2
i , so

RHS of (6.64) = a0

τ0∑
j=0

y2
j ≤ a0

τ0∑
i=0

x2
i ·

τ0

i∑
j=0

(
i+ t0
i− j

)2


<

τ0∑
i=0

(
τ−5τ · (9τ2)2i+2

)
x2
i .

Now (6.63) follows since for each i, in the LHS of (6.63)

Dt0(i, i)

(8τ2)!
≥ (8τ2)−(d/2−|A|) (by definition)

> τ−2d > τ−5τ · (9τ2)2i+2

using i ≤ τ0 < τ , d� τ . So (6.63) holds. �

We get the main conclusion of this subsection:

Corollary 6.4. (Positiveness of the structural part of QR0,0 (Def. 6.9))

Dτ
Cl · E[QR0,0] ·Dτ

Cl︸ ︷︷ ︸
stractural part of QR0,0

� τ−6τ · diag
(

C̃l
)
SR×SR

.

Proof. It follows from Corollary 6.3 and that D2
Cl(A,A) = C̃l(A) for all A

in Definition 6.8. �

6.6. Rest bounds: QRc,ks. In this subsection, we bound the rest matrices:

QR0,0 −Dτ
Cl · E[QR0,0] ·Dτ

Cl︸ ︷︷ ︸
pseudo−random part of QR

0,0 (Def. 6.9)

, QR0,k (k > 0), ω−c ·QRc,k (c > 0, k ≥ 0)

by three Lemmas 6.8, 6.9, 6.10, respectively, which would prove Lemma 6.7.

The arguments are quite standard but somewhat lengthy, as one needs to

be careful on the block structure and the support of the matrices.

Definition 6.11. (0-1 diagonal-clique matrix) Recall the matrix Dτ
Cl from

Def. 6.8. Denote by D′ its 0-1 valued version, i.e. D′ is also diagonal and

has entries

D′((A, i), (A, i)) = ClA, ∀A ∈
(

[n]

≤ d/2

)
∀0 ≤ i ≤ τ.

Lemma 6.8. (Bound on pseudo-random part of QR0,0) W.p. > 1− n−9 logn

the following holds: ∀R ∈
( [n]
≤d/2

)
,

(6.65) ± (QR0,0 −Dτ
Cl · E[QR0,0] ·Dτ

Cl︸ ︷︷ ︸
pseudo−random part of QR0,0

)(G) � n−ε · diag
(

C̃l(G)
)
SR×SR
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Proof. Fix R. For simplicity, in this proof abbreviate:

Qps := QR0,0 −Dτ
Cl · E[QR0,0] ·Dτ

Cl =
(
Qps,(i,j)

)
0≤i,j≤τ

(“ps” for pseudo-random), which is a (τ + 1)× (τ + 1)-block matrix.

In block (i, j), by Def. 6.6 and Prop. 6.1, Qps,(i,j) is supported within

Si,j × Si,j where Si,j := {A | |A|+ min{i, j} ≥ d/2}.

And for each A 6= B,

(6.66)

Qps,(i,j)(A,B) = QR0,0((A, i), (B, j)) =∑
Tm: |V (Tm)∪A∪B|≤τ
A,B∈mSepA,B(Tm)

(
ω

n
)|V (Tm)∪A∪B|− |A|+|B|

2 · q(A,B;Tm) · χTm ;

and

(6.67)

Qps,(i,j)(A,A) =
∑

Tm: 1≤|V (Tm)\A|≤τ−|A|

(
ω

n
)|V (Tm)∪A|−|A| · q(A,A;Tm) · χTm .

Here we have abbreviated q(A,B;Tm) := Y0

(
|R|, |V (Tm)∪A∪B|+(i+ j)

)
((6.23)) and have omitted the indices |R|, i + j when they are fixed. Two

properties we need:

q(A,B;Tm) depends only on |V (Tm) ∪A ∪B| when fixing (A,B);(6.68) ∣∣∣∣q(A,B;Tm)

∣∣∣∣ < τ5τ (by Lemma 6.2 (4)).(6.69)

By (6.68), Qps,(i,j)(A,B) always factors through ClA∪B and so also through

ClAClB. In particular,

(6.70) Qps = D′ ·Qps ·D′

where D′ is the 0-1 diagonal-clique matrix (Definition 6.11).

Claim 6.3. W.p. > 1− n−9.5 logn the following holds:

∀(i, j) ±Qps,(i,j) ≺ n−1.1ε · diag
(

2(|A|2 )
)
SR
min{i,j}×S

R
min{i,j}

where SRa := {A ∈
( [n]
≤d/2

)
| |A|+ a ≥ d/2}.

The lemma follows from this claim and (6.70). Namely, consider a differ-

ent decomposition of Qps as follows. For every b ∈ [0, d2 ], let

Ib := {i | d/2− b ≤ i ≤ τ}

and Qps;b be the principal minor Wb :=
(
PRb × Ib

)
×
(
PRb × Ib

)
of Qps (0

elsewhere), where PRb = {A ⊆ [n] | R ⊆ A, |A| = b}. Then we have

{((A, i), (B, j)) ∈ SR × SR | 0 ≤ |A| = |B| ≤ d/2} =
d/2
t
b=0

Wb.



SOS LOWER BOUND FOR EXACT PLANTED CLIQUE 57

Since QRc,0 is supported only on those ((A, i), (B, j)) ∈ SR×SR that satisfies

|A| = |B| (Remark 6.3(2)), in particular for c = 0 we have

(6.71) Qps =

d/2∑
b=0

Qps;b.

Each Qps;b is block-wise in blocks Ib × Ib, each block a principal minor of

Qps,(i,j). So by Claim 6.3 w.p. > 1−n−9.5 logn any (±) such a block ≺ n−1.5ε ·
diag

(
2(b2)

)
([n]b )×([n]b )

, so±Qps;b ≺ τ2·n−1.5εdiag
(

2(b2)
)
Wb

≺ n−εdiag
(

2(b2)
)
Wb

.

Hence by (6.71) and the union bound over b, ±Qps ≺ n−εdiag
(

2(|A|2 )
)
SR×SR

w.p. 1 − n−9 logn. Finally, insert this to the middle of (6.70), where notice

C̃lA = 2(|A|2 ) · ClA, ClA = Cl2A, we get (6.65). �

Proof. (of Claim 6.3) We use the norm bounds from section 4. Fix (i, j),

consider

Qdiag
ps,(i,j) and Qoff

ps,(i,j) = Qps,(i,j) −Q
diag
ps,(i,j).

Diagonal part. For Qdiag
ps,(i,j), by (6.67) for any (A,A) in the support (i.e.

|A|+ i ≥ d/2, |A|+ j ≥ d/2),

Qdiag
ps,(i,j)(A,A) = C̃lA·

 ∑
Tm: 1≤|V (Tm)\A|≤τ−|A|

Tm∩E[A]=∅

(
ω

n
)|V (Tm)\A|q(A,A;Tm) · χTm


︸ ︷︷ ︸

:=g(A)

.

For every fixed A in support, this g(A) can be bounded by norms of diagonal

graphical matrices, as follows. First, q(A,A;Tm) depends only on |V (Tm)\A|
(we have fixed R, i, j, A), so temporarily denote it as q(|V (Tm)\A|). For

every 1 ≤ v ≤ τ − |A|, let Uv1, ...,U
v
h(v) be all different shapes (A,A;T ) (Def.

4.5) s.t. T ∩ E[A] = ∅ and |V (T )\A| = v. Clearly,

(6.72) h(v) ≤ 2|A|v+v2 since we required T ∩ E[A] = ∅.

So w.p. > 1− n−9.6 logn all of the following hold:

|g(A)| =
∣∣∣∣τ−|A|∑
v=1

(
ω

n
)vq(v) ·

(h(v)∑
x=1

∑
Tm:(A,A;Tm) has

shape Uvx

χTm

︸ ︷︷ ︸
=MUvx

(A,A) by Def. 4.5

)∣∣∣∣

≤
τ−|A|∑
v=1

(
ω

n
)vq(v) ·

h(v)∑
x=1

∥∥MUvx

∥∥ (each MUvx
is diag.)

≤
τ−|A|∑
v=1

(
ω

n
)vτ5τ

h(v)∑
x=1

∥∥MUvx

∥∥ (by (6.69))



58 SOS LOWER BOUND FOR EXACT PLANTED CLIQUE

<
τ∑
v=1

(
ω

n
)vτ5τ · 2|A|v+v2 · n

v
2 2O(|A|+v) (by (6.72) and Thm. 3)

an in our parameter regime this is

<

τ∑
v=1

n−3εv · nεv < n−1.2ε.

Off-diagonal part. Similarly, by symmetry of the coefficients (6.68),

Qoff
ps,(i,j) is a sum of graphical matrices. I.e. let U

s,t
1 , ...,Us,th(s,t) be the col-

lection of distinct shapes (A,B;T ) s.t. |A| = |B| = s, A 6= B, A,B ∈
mSepA,B(T ) and |V (T ) ∪ A ∪ B| = t, then by (6.66), Qoff

ps,(i,j) is a block-

diagonal matrix for blocks s = d/2 − i, ..., d/2 according to s = |A| = |B|,
the sth block being

Qoff
ps,(i,j)(s) =

∑
t: s<t≤τ

(
ω

n
)t−s

h(s,t)∑
x=1

q(Us,tx )M
U
s,t
x

where naturally we denote q(A,B;Tm) = q(Us,tx ) if (A,B;Tm) has shape

U
s,t
x . By Theorem 3, w.p. > 1− n−9.8 logn,∥∥∥Qoff

ps,(i,j)(s)
∥∥∥ ≤ ∑

s<t≤τ
(
ω

n
)t−s · h(t, s) · n

t−s
2 2O(t)(log n)O(t−s)(6.73)

Also, clearly h(t, s) ≤ 2(t2)+O(t). Therefore, with the same high probability

RHS of (6.73) ≤
∑

d/2−max{i,j}≤s≤d/2
s<t≤τ

(
ω

n
)t−s2(t2)+O(t)n

t−s
2 (log n)O(t−s)

<
∑

d/2−max{i,j}≤s≤d/2
s<t≤τ

n−2ε(t−s)2O(t)2(s2)(2t+s log n)O(t−s)

<2(s2) · n−1.9ε. (in our parameter regime)

Adding these diagonal blocks, we get that±Qoff
ps,(i,j) ≺ n−1.9ε·diag

(
2(|A|2 )

)
SR
min{i,j}×S

R
min{i,j}

.

Finally, by the union bound we get that w.p. > 1− n−9.5 logn,

±Qps,(i,j) = ±(Qdiag
ps,(i,j) +Qoff

ps,(i,j)) ≺ n−1.5ε · diag
(

2(|A|2 )
)
SR
min{i,j}×S

R
min{i,j}

,

completing the proof. �

Corollary 6.5. (Positiveness of QR0,0) For every R ∈
( [n]
≤d/2

)
, w.p. > 1 −

n−8 logn over G

QR0,0(G) � τ−6.1τ · diag
(

C̃l(G)
)
SR×SR

.

Proof. By Lemma 6.8 and Corollary 6.4, where τ−6.1τ � n−ε/10 in our

parameter regime. �
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Lemma 6.9. (Bounds on QR0,k) W.p. > 1 − n−9 logn the following holds.

For all R ∈
( [n]
≤d/2

)
and all 1 ≤ k ≤ d/2,

±QR0,k(G) � n−k/10 · diag
(

C̃l(G)
)
SR×SR

.

Proof. We will use union bound over (R, k) so fix them first. For the fixed

R, k(> 0), in this proof we abbreviate:

QR0,k ↔ Q.

Recall the definition ofQR0,k (Lemma 6.5 (3)): Q is supported within SR×SR,

(6.74) Q

(
(A, i), (B, j)

)
=

∑
Tm:|V (Tm)∪A∪B|≤τ

(
ω

n
)t−sqR0,k(Rm, i, j) · χTm .

where t = |A ∪B|, s = |A|+|B|
2 . Abbreviate qR0,k as qk. By Lemma 6.5(3),

qk(·, i, j) is symmetric w.r.t. shapes for all fixed (i, j);(6.75)

|qk(Rm, i, j)| ≤ τ5τ · ( ω

n1−ε )
s−p+k/3(6.76)

where t = |A ∪B|, s = |A|+|B|
2 , p is the maximum number of vertex-disjoint

paths from A to B in (A,B;Tm).

By symmetry of qk’s, Q((A, i), (B, j)) factors through Cl(A)Cl(B), so

(6.77) Q = D′ ·Q ·D′.

where D′ is by Definition 6.11. It suffices to show:

(6.78) w.p. > 1− n−9.5 logn ±Q ≺ n−k/10 · diag
(

2(|A|2 )
)
SR×SR

.

This is because, like in the proof of Lemma 6.8, we can insert (6.78) to the

middle of (6.77) which proves the lemma for the fixed R, k.

In below we prove (6.78). First, express each block of Q as a sum of

graphical matrices. As a block-matrix, Q = (Q(i,j))0≤i,j≤τ where Q(i,j) is

supported on those A’s s.t. |A|+i ≥ d/2. For any fixed (i, j), any (s1, s2) ∈
{0, ..., d/2}2 s.t. s1 + i ≥ d/2, s2 + j ≥ d/2, and any t ≥ max{s1, s2},
let U

t;s1,s2
1 , ...,Ut;s1,s2h(t;s1,s2) be all different shapes (A,B;T ) where |A| = s1,

|B| = s2, |V (T ) ∪A ∪B| = t. Then by (6.74) and symmetry,

Q(i,j) =
∑

(t;s1,s2)
s1+i,s2+j≥d/2
τ≥t≥s1,s2

h(t;s1,s2)∑
x=1

qk(U
(t;s1,s2)
x , i, j) ·M

U
(t;s1,s2)
x

.

This equation can be naturally viewed block-wise w.r.t. (s1, s2), i.e.

(6.79) Q(i,j) =
∑
s1,s2

s1+i,s2+j≥d/2

Q(s1,i),(s2,j)
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where

(6.80) Q(s1,i),(s2,j) :=
∑
t:

s1,s2≤t≤τ

h(t;s1,s2)∑
x=1

qk(U
(t;s1,s2)
x , i, j) ·M

U
(t;s1,s2)
x

.

Note that Q(s1,i),(s2,j) is a
(

[n]
s1

)
×
(

[n]
s2

)
-matrix on the (i, j)th block of Q.

By Theorem 3 and (6.76), w.p. > 1− n−10 logn

(6.81)∥∥Q(s1,i),(s2,j)

∥∥ ≤ ∑
t: t≤τ
t≥s1,s2

h(t; s1, s2)·(ω
n

)t−s(
ω

n1−ε )
s−p+k/3·n

t−p
2 2O(t)(log n)O(t−s)

where, as usual, s = s1+s2
2 and p is the maximum number of vertex-disjoint

paths between the two distinguished subsets in the shape. Since

h(t; s1, s2) ≤ 2(t2)+O(t) = 2(s2)+O(t)+(t+s)·(t−s),

we can bound the RHS of (6.81) (note k > 0, 2O(t) < nε/10, τ5τ < n1/30) by

(6.82)
∥∥Q(s1,i),(s2,j)

∥∥ < 2(s2) · τ5τn−k/6n−ε(t−s) < 2(s2)n−k/8.

Finally, sum over all double-blocks and use Cauchy-Schwartz. Namely, re-

gard each Q(s1,i),(s2,j) now as on SR × SR (extended by 0’s), then

(6.83) Q =
∑

(s1,i),(s2,j)
s1+i,s2+j≥d/2

Q(s1,i),(s2,j)

and for each (s1, i), (s2, j) in the summand,

±Q(s1,i),(s2,j) ≺ n−k/8 ·
(

2(s12 )Id(s1,i),(s1,i) + 2(s22 )Id(s2,j),(s2,j)

)
/2

by (6.82) and Cauchy-Schwartz. So by (6.83), w.p. > 1− n−9.5 logn,

±Q ≺ τ2n−k/8diag
(

2(|A|2 )
)
SR×SR

≺ n−k/10diag
(

2(|A|2 )
)
SR×SR

.

(6.78) is proved. �

Lemma 6.10. (Bounds on QRc,k, c > 0) W.p. > 1 − n−9 logn the following

holds: ∀(R, c, k) where R ∈
( [n]
≤d/2

)
, 0 < c ≤ |R| and 0 ≤ k ≤ d/2,

(6.84) ± ω−c ·QRc,k � n−c/3 · diag
(

C̃l
)
SR×SR

.

Proof. The proof is almost the same as the previous one (Lemma 6.9). First,

by a union bound over all such (R, c, k), it suffices to show that w.p. >

1− n−9.5 logn the inequality holds for a fixed (R, c, k); we do it below.

Fix (R, c, k) as in the condition. If k > 0 then the proof is identical to

that of Lemma 6.9 (c = 0), since the same coefficient-size condition and

symmetry condition (6.75), (6.76) hold here by Lemma 6.5, and moreover,

the matrix QRc,k is supported within SR × SR too.
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So we only need to deal with the case c > 0, k = 0, i.e. QRc,0. By Definition

6.6, the matrix is supported on SR×SR with expressionQRc,0

(
(A, i), (B, j)

)
=

(6.85) ∑
Tm:|V (Tm)∪A∪B|≤τ
A,B∈mSepA,B(Tm)

(
ω

n
)|V (Tm)∪A∪B|− |A|+|B|

2 ·Yc
(
|R|, |V (Tm)∪A∪B|+(i+j)

)
·χTm

where
∣∣Yc(|R|, |V (Tm) ∪A ∪B|+ (i+ j)

)∣∣ < τ5τ by Lemma 6.2 (4). If for

every fixed (A,B;Tm) denote t = |V (Tm)∪A∪B|, s = |A|+|B|
2 (= |A| = |B| in

this case), then the coefficient in (6.85) is bounded by (ωn )t−s ·τ5τ . Therefore,

we have the support condition, the symmetry, and the size condition on the

coefficients as in Lemma 6.9, so we can proceed exactly the same as there

till equation (6.81), where a single term in its RHS now becomes

h(t; s1, s2) · (ω
n

)t−sτ5τ · n
t−p
2 2O(t)(log n)O(t−s).

Note in (6.85) any appearing ribbon Rm = (A,B;Tm) satisfies A,B ∈
mSepA,B(Tm) so p = s (the specialty of the case k = 0). So we can replace

the bound on the RHS of (6.82) by τ32(s2) · n−3ε(t−s)τ5τ2O(t) < 2(s2)τ6τ , and

then proceed to the last line of the proof there, with the bound now being

±QRc,0 ≺ τ7τ · diag
(

2(|A|2 )
)
SR×SR

.

In particular, since c ≥ 1, ω = n
1
2
−4ε (assuming ε < 1/40) and τ7τ < n1/15,

we get ±ω−c ·QRc,0 ≺ n−c/3 · diag
(

2(|A|2 )
)
SR×SR

by our parameters. Once

again like before, using QRc,0 = D′ · QRc,0 · D′ we get that ±ω−c · QRc,0 �
n−c/3 · diag

(
C̃l
)
SR×SR

. �

Lemma 6.7 follows immediately from Corollary 6.5, Lemma 6.9, 6.10.

6.7. Last step. Now we prove the Main Lemma 6.3, hence Theorem 4. For

any fixed R, recall the notation PR = {I ∈
( [n]
d/2

)
| R ⊆ I}.

Lemma 6.3 recast: W.p. 1− n−5 logn it holds that for all R ⊆
( [n]
d/2

)
:

MR
0 � n−d · diag(C̃l)PR×PR ;(6.86)

± ω−cMR
c � n−c/6 ·MR

0 , ∀0 < c ≤ |R|.(6.87)

Further recall that Dτ = diag
(

(ωn )
|A|
2

)
A:|A|≤ d

2

⊗ Id{0,...,τ}×{0,...,τ} (Def.

6.4), and that SR = {(A, i) ∈
( [n]
≤d/2

)
× {0, ..., τ} | A ⊇ R, |A|+ i ≥ d

2}.

The following lemma will be handy.
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Lemma 6.11. ∀R ∈
( [n]
≤d/2

)
,

L̃RDτ · diag
(

C̃l
)
SR×SR

·Dτ (L̃R)> � (
ω

n
)d/2diag

(
C̃l
)
PR×PR

when evaluated on any G.

Proof. Fix any R ∈
( [n]
≤d/2

)
. Without confusion, we omit subscript SR × SR

by regarding the supports as the vertex-set [n′] = [n]−R and regarding the

corresponding matrix indices as
( [n′]
d′/2

)
or
( [n′]
≤d′/2

)
, where d′/2 = d/2− |R|. τ

is unchanged. We will still use C̃l(X) to mean C̃l(X tR) for X ⊆ [n′].

Since Dτdiag(C̃l)Dτ is nonnegative and diagonal for any G, we have

(6.88)

L̃R
(
Dτ · diag

(
C̃l
)
·Dτ

)
(L̃R)> � LR,0

(
Dτ · diag

(
C̃l
)
·Dτ

)
(LR,0)>,

where recall L̃R = (LR,0, ..., LR,τ ). Further, LR,0 = (LR,00 , ..., LR,0d′/2), where

LR,0t is the matrix on column set
(
n′

t

)
. In particular,

LR,0d/2−|R| =

(
0, ..., 0,diag

(
C̃l
)

( [n′]
d′/2)×( [n′]

d′/2)

)
since in the definition of LR,0 (Def. 6.3) only ribbons R = (I, A;T ′) with

0-reduced size can occur, and with the other conditions on it this simply

means that A = I and T ′ ⊆ E(I). This implies

RHS of (6.88) � (
ω

n
)d/2 · diag

(
C̃l
)

( [n′]
d′/2)×( [n′]

d′/2)
.

Translated back to [n] and d/2, this is exactly the bound in the lemma. �

Proof. (for Lemma 6.3) Fix R ∈
( [n]
≤d/2

)
. By Lemma 6.5, for all c ≤ |R|

(6.89) MR
c = L̃R ·

[
Dτ

(
QRc,0 −QRc,1 + ...±QRc,d

)
Dτ

]
·
(
L̃R
)>

+ ERc .

The following bounds all hold w.p. > 1 − n−8 logn from the corresponding

lemmas, and we take union bound so the overall probability is > 1−n−5 logn.

For (6.86). Fix R, we have:

MR
0 = L̃R ·

[
Dτ

(
QR0,0 −QR0,1 + ...±QR0,d

)
Dτ

]
·
(
L̃R
)>

+ ER0

� τ−7τ

[
L̃R ·Dτdiag

(
C̃l
)
SR×SR

Dτ ·
(
L̃R
)>]

+ ER0 (Lem. 6.7(1))

� τ−7τ (
ω

n
)d/2 · diag

(
C̃l
)
PR×PR

+ ER0 (Lemma 6.11)

� (τ−7τ (
ω

n
)d/2 − n−ετ/2) · diag

(
C̃l
)
PR×PR

(Lemma 6.5(4))

� n−d · diag(C̃l)PR×PR (parameter regime)
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For (6.87). Fix R, 1 ≤ c ≤ |R|, we have:

MR
c = L̃R ·

[
Dτ

(
QRc,0 −QRc,1 + ...±QRc,d

)
Dτ

]
·
(
L̃R
)>

+ ERc

� ωcn−c/4
[
L̃RDτ · diag

(
C̃l
)
SR×SR

·Dτ
(
L̃R
)>]

+ ERc (Lem. 6.7(2))

� ωcn−c/4
[
τ7τ (MR

0 − ER0 )
]

+ ERc (Lem. 6.7(1) and (6.89))

� ωcn−c/5MR
0 +

(
ωcn−c/4 + 1

)
n−ετ/2diag (Cl)PR×PR (Lem. 6.5(4))

So

ω−cMR
c � n−c/5MR

0 + 2n−ετ/2 · diag (Cl)PR×PR

� (n−c/5 + 2ndn−ετ/2)MR
0 ((6.86) and C̃l ≥ Cl)

� n−c/6 ·MR
0 (c ≤ |R| ≤ d/2 and parameter regime)

The same analysis holds for −ω−cMR
c . �

7. Concluding remarks

We established the average Ω(ε2 log n/ log logn) SOS degree lower bound

for Exact Clique with clique-size ω = n1/2−ε, which is nearly optimal in

both parameters ω, d. We also refreshed the techniques for the Non-Exact

Clique problem in hope to make them simpler and generalizable. Some open

problems follow.

1. Can we remove the log log n factor in d? Perhaps it helps to first find a

conceptual explanation of Definition 3.6.

2. How about the same problem on G(n, p), p 6= 1
2 and for suitable ω?

For Non-Exact Clique, we can define the pseudo-expectation similarly as in

section 3.1.2. Also, using the Fourier orthonormal basis

(7.1) χT =
∏
e∈T

xe − (2p− 1)

2
√
p(1− p)

∀T ⊆ E[n],

where xe(G) is the ±1-indicator of edge e, we have the corresponding version

of norm bounds in section 4 since the trace-power method works the same.

The questions is, what is the best meaningful degree lower bound for varying

p (especially small p)? How about the exact case?

3. What can be said when G is drawn from other random models, or is

pseudo-random?
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Appendix A. Deductions in mod-order analysis (section 5.2)

A.1. Set-up recap. Ring A is got by adding fresh variables α and χT ’s to

R, where T ranges over edge sets on [n], and they only satisfy the relations

{χT ′ · χT ′′ = χT whenever T ′ ⊕ T ′′ = T}. The mod-order equation is

(A.1) Lα · diag
(
α|A|

)
· (Lα)> = Mα mod (∗)

on the
( [n]
d/2

)
×
( [n]
≤d/2

)
-matrix variable Lα in ring A, where

Mα(I, J) =
∑

T :|V (T )∪I∪J |≤τ

α|V (T )∪I∪J |χT ∀I, J : |I| = |J | = d/2,
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and mod (∗) means to mod the ideal ({α|V (T )∪I∪J |+1χT }, {χT : |V (T ) ∪
I ∪ J | > τ}) position-wise on each (I, J). We call (∗) the modularity.

Moreover, if denote

L′1(I, A) =
∑
T ′

βI,A(T ′)χT ′ , βI,A(T ′) ∈ R[α]

then we require

(A.2) αeI,A(T ′) | βI,A(T ′) ∀I, A, T ′

where eI,A(T ′) is the reduced size |V (T ′) ∪ I ∪A| − sI,A(T ′) (Def. 4.7).

Expressed in terms, equations (A.1), (A.2) become the following.

(A.3)∑
A∈( [n]

≤d/2)

∑
T ′,T ′′:

T ′⊕T ′′=T

α|A| ·βI,A(T ′) ·βJ,A(T ′′) = α|V (T )∪I∪J | mod α|V (T )∪I∪J |+1

for every (I, J ;T ) with |V (T ) ∪ I ∪ J | ≤ τ , and

(A.4) αeI,A(T ′) | βI,A(T ′)

for every (I, A;T ′).

The main observation (Lemma 5.2) is the following.

Lemma A.1. (Order match) In the LHS of equation (A.3), only products

α|A| ·βI,A(T ′) ·βJ,A(T ′′) that satisfies the following are non-zero modulo (∗).

A is a min-separator for both (I, A;T ′), (J,A;T ′′);(A.5) (
V (T ′) ∪ I ∪A

)
∩
(
V (T ′′) ∪ J ∪A

)
= A.(A.6)

Moreover, (A.5), (A.6) imply that

A is a min-separator of (I, J ;T ) (where T = T ′ ⊕ T ′′);(A.7)

|V (T ′) ∪ I ∪A|, |V (T ′′) ∪ J ∪A| ≤ τ.(A.8)

Proof. Pick a term α|A| ·βI,A(T ′)·βJ,A(T ′′) form the LHS of (A.3). By (A.4),

its order in α ≥ |A|+ |V (T ′)∪I ∪A|−sI,A(T ′)+ |V (T ′′)∪A∪J |−sJ,A(T ′′).

By modularity on the RHS of (A.3), the term is non-zero only if

its order in α ≤ |V (T ) ∪ I ∪ J | and |V (T ) ∪ I ∪ J | ≤ τ

where T = T ′ ⊕ T ′′. This implies

(A.9)

|V (T ′)∪I∪A|+|V (T ′′)∪J∪A| ≤ |V (T ) ∪ I ∪ J |︸ ︷︷ ︸
1○

+ (sI,A(T ′) + sJ,A(T ′′)− |A|)︸ ︷︷ ︸
2○

Note 2○ ≤ |A| and “=” holds iff sI,A(T ′) = sJ,A(T ′′) = |A|. While the LHS

above

= |(V (T ′) ∪ I ∪A) ∪ (V (T ′′) ∪ J ∪A)|︸ ︷︷ ︸
≥|V (T )∪I∪J |= 1○

+ |(V (T ′) ∪ I ∪A) ∩ (V (T ′′) ∪ J ∪A)|︸ ︷︷ ︸
≥|A|≥ 2○

.
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Therefore, (A.9) could hold only when all “=”’s hold, which means: (1). A

is a min-separator of (I, A;T ′), (J,A;T ′′); (2). (V (T ′) ∪ I ∪ A) ∪ (V (T ′′) ∪
J ∪A) = V (T ) ∪ I ∪ J ; (3). (V (T ′) ∪ I ∪A) ∩ (V (T ′′) ∪ J ∪A) = A.

Next, we show (1),(3) imply A ∈ mSepI,J(T ) (and also (2), actually). By

(3), T ′, T ′′ could overlap only in E(A). Now T = T ′ ⊕ T ′′, so

(A.10) T = T ′ t T ′′ modulo E(A)

(also ⇒ V (T ′) ∪ V (T ′′) ⊆ V (T ) ∪ A). By (1) there are |A| many vertex-

disjoint paths p1, , , .p|A| from I to A in T ′, and similarly q1, ..., q|A| from J

to A in T ′′. These paths are also present in T by (A.10)—where it naturally

assumes every path touches A only once at its endpoint. By (3) again,

any pi, qj do not intersect beside endpoint in A so they are paired to |A|
many vertex-disjoint paths from I to J in T , all passing A (this also implies

A ⊆ V (T )∪I∪J). On the other hand, if p is a path in T from I not passing

A, then it is a path on I ∪ V (T ′) by induction using (3). Now by (3) again

we have (V (T ′) ∪ I) ∩ J ⊆ A, so p can’t reach J . So A ∈ mSepI,J(T ).

Finally, under the above implications, V (T ′) ∪ I ∪A ⊆ V (T ) ∪ I ∪ J and

similarly for V (T ′′) ∪ J ∪A, so both have size ≤ τ . �

By this lemma, we can assume that in an imagined solution, βI,A(T ′) 6= 0

only when it satisfies the conditions (A.5), (A.8) on its part. If assume fur-

ther that the solution is symmetric (which looks plausible), i.e. βI,A(T ′) =

βJ,B(T ′′) whenever (I, A;T ′), (J,B;T ′′) are of the same shape, then this

lemma is particularly informative about some special (I, J ;T )’s.

Corollary A.1. If (I, J ;T ) has a unique min-separator A, then

(A.11)
∑

T ′,T ′′: T ′⊕T ′′=T
(A.5), (A.6) hold

βI,A(T ′) · βJ,A(T ′′) = αeI,J (T )

where eI,J(T ) = |V (T )∪I∪J |−sI,J(T ). In particular, in symmetric solution,

(A.12)
∑

T1⊆E(A)

βI,A(T1 ⊕ T ′)2 = α2·eI,A(T ′)

for all (I, A;T ′) such that

(A.13) A is the unique min-separator of (I, A;T ′).

Proof. The first part is directly from Lemma 5.2. For the “in particular”

part, let (I, A;T ′) satisfy (A.13). By mirroring (I, A;T ′) through A, we

get a (J,A;T ′′) that satisfies the same condition and they together satisfy

(A.5), (A.6). There are always enough vertices in [n] to carry out this

mirroring operation. By the symmetry assumption, βI,A(T ′) = βJ,A(T ′′).

From mirroring it is not hard to see that A is the unique min-separator of

(I, J ;T = T ′ ⊕ T ′′), so for this triple (I, J ;T ) equation (A.11) holds, giving

that
∑

T1⊆E(A) βI,A(T ′ ⊕ T1)2 = α|V (T )∪I∪J |−|A| = α2(|V (T ′)∪I∪A|−|A|). �
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We can summarize what we got as follows. If let all βI,A(T ′ ⊕ T1)’s in

equation (A.12) be equal (which is a plausible assumption), then βI,A(T ′) =

2−(|A|2 )/2 · αeI,A(T ′) (take all + signs). Collecting these terms, we get the

following matrix

L′1 : L′1(I, A) =
∑

T ′: |V (T ′)∪I∪A|≤τ
(A.13) holds
T ′∩E(A)=∅

2−(|A|2 )/2 · α|V (T ′)∪I∪A|−|A|χT ′ · C̃lA

where C̃lA =
∑

T⊆E(A) χT . To see how far this is from a solution, notice

C̃l
2

A = 2(|A|2 )C̃lA and consider

(A.14) L′1 · diag
(
α|A|

)
· (L′1)> = L1 · diag

(
α|A| · C̃lA

)
· L>1

where L1 is the matrix in A as below (which is cleaner than L′1 to use).

Definition A.1. ∀I ∈
( [n]
d/2

)
, A ∈

( [n]
≤d/2

)
,

(A.15) L1(I, A) :=
∑

T ′: |V (T ′)∪I∪A|≤τ
(A.13) holds
T ′∩E(A)=∅

α|V (T ′)∪I∪A|−|A|χT ′ .

Surely L′1 is not a solution to the mod-order equation, since (A.14) equals

(mod (*)) only the part of Mα consisting of the special (I, J ;T )’s from

Corollary A.1. For a general (I, J ;T ), Lemma A.1 only says:

(A.16)
∑

A,T ′,T ′′: T ′⊕T ′′=T
A∈mSepI,J (T )

(A.5),(A.6) hold

βI,A(T ′)βJ,A(T ′′) = αeI,J (T ) mod αeI,J (T )+1.

To see how to proceed further, we inspect a further weakening: polarization.

A.2. Polarized solution. Roughly speaking, polarization weakens linear

equations about “x2
i ’s” by replacing these terms with multi-linear “xiyi’s”,

where ~y are fresh variables. Then we can plug in any “tentative” solution

~x0 to solve for ~y more easily (as the equations are linear in ~y), and see how

to modify ~x0 further.

Definition A.2. The polarized mod-order equation w.r.t. L1 is:

(A.17) L1 · diag
(
α|A| · C̃lA

)
· L>2 = Mα mod (∗)

where (∗) is the modularity in (A.1), L1 is by (A.15), L2 is the variable

matrix

(A.18) L2(I, A) =
∑

T ′: |V (T ′)∪I∪A|≤τ

β
(2)
I,A(T ′)χT ′

satisfying αeI,A(T ′) | β(2)
I,A(T ′) for all (I, A, T ′).
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In this polarized form, the essential condition (A.16) becomes

(A.19)
∑

A,T ′,T ′′: T ′⊕T ′′=T
(I,A;T ′) appears in L1

(A.5),(A.6) hold

αeI,A(T ′) · β(2)
J,A(T ′′) = αeI,J (T ) mod αeI,J (T )+1.

By (A.19), existence of a solution L2 at least requires the following condition:

for general (I, J ;T ), there always exist “(I, A;T ′) appearing in L1” and T ′′

which satisfy the condition in the LHS of (A.19). By a direct (but careful)

check, this condition is actually equivalent to an essential part of the

following graph-theoretic fact due to Escalante (its “In particular” part).

Fact A.1. ([Esc72]; also Appendix A.3 of [BHK+19]) For any ribbon (I, J ;T ),

the set of all min-separators, mSepI,J(T ), has a natural poset structure:

min-separators A1 ≤ A2 iff A1 separates (I, A2;T ), or equivalently as can

be checked, iff A2 separates (J,A1;T ). The set is further a lattice under

this partial-ordering: ∀A1, A2 ∈ mSepI,J(T ) their join and meet exist. In

particular, there exist a unique minimum and maximum.

Denote the minimum by Sl(I, J ;T ) and the maximum by Sr(I, J ;T ),

which is the “leftmost” and “rightmost” min-separator, respectively.

By this fact, some (I, A;T ′) indeed appears in (A.19) with A = Sl(I, J ;T ).

Moreover, (A.19) is naturally satisfied if take

(A.20) L2(J,A) =
∑

T ′′: |V (T ′′)∪J∪A|≤τ
A∈mSepJ,A(T ′′)

T ′′∩E(A)=∅
(J,A;T ′′) left-generated

αeJ,A(T ′′)χT ′′ .

Here, recall being left-generated means every vertex is either in A or can be

connected from J without touching A. Also, with this L2 only one product

in the LHS of (A.19) contributes to the right modulo αeI,J (T )+1. We get:

Proposition A.1. The pair (L1, L2) is a solution to the polarized mod-order

equation (A.17), (A.18).

Remove the polarization. One more use of fact A.1 actually shows that,

if move the “left-generated” condition from L2 to L1, then L2 itself effectively

factors through L1, i.e. we can replace diag(C̃l)·L>2 by some X ·L>1 in (A.17).

This is the idea behind the following proposition (Prop. 5.2 recast).

Proposition A.2. (Mod-order diagonalization) Let

Lα(I, A) :=
∑

T ′: |V (T ′)∪I∪A|≤τ
A=Sl(I,A;T ′)
T ′∩E(A)=∅

(I,A;T ′) left-generated

αeI,A(T ′)χT ′ ,

Q0,α(A,B) :=
∑

Tm: |T∪A∪B|≤τ
A,B∈mSepA,B(Tm)

αeA,B(Tm)χTm
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(where Tm indicates “middle”). Then

(A.21) Lα · [diag
(
α
|A|
2

)
·Q0,α · diag

(
α
|A|
2

)
] · L>α = Mα mod (∗)

where (∗) is the modularity in (A.1).

Proof. Given Fact A.1, we immediately have the canonical decomposition of

graphs as in Definition 5.4 and Remark 5.2. This implies that in the LHS

of (A.21) only the products from canonical triples are non-zero modulo (∗),
and they give Mα. �

Thus we get a “L1(−)L>1 ”-shape decomposition, meaning that we do not

lose much from the polarization step if recall the goal is only about PSDness.
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