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Abstract

We show that given a quantum measurement, for an overwhelming majority of pure states,
no meaningful information is produced. This is independent of the number of outcomes of
the quantum measurement. Due to conservation inequalities, such random noise cannot be
processed into coherent data.

1 Introduction

Quantum information theory studies the limits of communicating through quantum channels. In
[Hol73], the Holevo bound was proven, providing an upper bound on the amount of classical infor-
mation shared between two parties that can prepare and measure mixed states. The Holevo bound
states that only n bits of classical information can be accessed from n qubits. The main result
of this paper shows the limitations of the algorithmic content of measurements of pure quantum
states. Given a measurement apparatus E, there is only a tiny fraction of quantum pure states
on which E’s application produces coherent information. This is independent of the number of
measurement outcomes of E.

In this paper we introduce a novel definition of algorithmic information between probabilities.
This definition uses the information of two strings x and y, i(x : y), defined in Section 3.

Definition. The amount of algorithmic information between two probabilities p and q over Σ∗ is
i(p : q) = log

∑
x,y∈Σ∗ 2i(x : y)p(x)q(y).

If a probability p has low self information i(p : p) then it has no meaningful information.
Generally speaking, such probabilities either have high measure for simple strings and/or very low
measure over complex strings. As shown in the appendix, the information between two probabilities
is conserved over randomized transformations. Therefore there are no means to increase the self-
information of a probability.

In quantum mechanics, given a quantum state |ψ〉, a measurement, or POVM, E produces a
probability measure E |ψ〉 over strings. This probability represents the classical information pro-
duced from the measurement. The exact structure of POVMs is described in Section 5. The main
theorem of this paper states that given a measurement E, for an overwhelming majority of quantum
states |ψ〉, the probability produced will have no meaningful information, i.e. i(E |ψ〉 : E |ψ〉) is
negligible.

Theorem. Let Λ be the uniform distribution on the unit sphere of an n qubit space. Relativized to
POVM E,

∫
2i(E|ψ〉:E|ψ〉)dΛ = O(1).
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2 Related Work

For information about the history and foundation of algorithmic information theory, we refer readers
to the textbooks [DH10] and [LV08]. There are several definitions that model the algorithmic
content of a quantum state. In [BvL01], the complexity of a quantum state is equal to the size of
the smallest quantum Turing machine that can approximate the state to a given fidelity. In [MB05],
the algorithmic complexity of a quantum state is equal to the minimal length of an encoding of
the preparation of the state through quantum gates. In [Gac01], the algorithmic entropy of a
quantum state is measured by the negative logarithmic of the state multiplied by a universal lower
computable semi-density matrix. In [Vit00], the entropy of a pure quantum state is equal to
the classical complexity of an elementary approximating state plus the negative logarithm of their
fidelity. A quantum version of Brudno’s theorem was proven in [BKM+06]. Randomness for infinite
quantum spin chains, called quantum Martin Löf random sequences, was introduced in [NS19]. An
infinite version of algorithmic entropy can be found at [BOD14].

3 Conventions

We use Σ∗ to denote finite strings. The length of a string x ∈ Σ∗ is ‖x‖. For positive real function
f , <+ f , >+ f , and =+ f is used to represent < f +O(1), > f +O(1), and = f ±O(1). In addition
∗
<f ,

∗
>f denote < f/O(1), > f/O(1). The terms

∗
=f denotes

∗
<f and

∗
>f . The encoding of x ∈ Σ∗

is 〈x〉 = 1‖x‖0x.
For strings x, y ∈ Σ∗, the output of algorithm T on input x and auxiliary input y is denoted

Ty(x). An algorithm T is prefix free if for strings x, y, s ∈ Σ∗, 6= ∅, if Ty(x) halts then Ty(xs) does
not halt. There exists a universal prefix free algorithm U , where for all prefix-free algorithms T ,
there exists a t ∈ Σ∗, where for all x, y ∈ Σ∗, Uy(tx) = Ty(x). This U is used to define Kolmogorov
complexity, with K(x/y) = min{‖p‖ : Uy(x) = p}. The universal probability of x ∈ Σ∗, conditional
to y ∈ Σ∗, is m(x/y) =

∑
{2−‖p‖ : Uy(p) = x}. The algorithmic information between two strings

is i(x : y) = K(x) + K(y)−K(x, y). The expression “relativized to an elementary object” seen in
theorems is equivalent to saying there is an encoding of the elementary object on an auxiliary tape
of the universal algorithm U .

We use Hn to denote a Hilbert space with n dimensions, spanned by bases |β1〉 , . . . , |βn〉. A
qubit is a unit vector in the Hilbert space G = H2, spanned by vectors |0〉, |1〉. To model n qubits,
we use a unit vector in H2n , spanned by basis vectors |x〉, where x is a string of size n.

A pure quantum state |ψ〉 of length n is a unit vector in H2n . Its corresponding element in the
dual space is denoted by 〈ψ|. The conjugate transpose of a matrix A is A∗. The tensor product of
two matrices A and B is A⊗ B. Tr is used to denote the trace of a matrix, and for Hilbert space
HX ⊗HY , the partial trace with respect to HY is TrY .

For positive semi-definite matrices A and B, we say B � A, if A − B is positive semi-definite.

For functions f whose range are Hermitian matrices, we use
∗
<f and

∗
> f to denote � f/O(1) and

� f/O(1). We use
∗
= f to denote

∗
<f and

∗
> f .

Density matrices are used to represent mixed states, and are self-adjoint, positive definite ma-
trices with trace equal to 1. Semi-density matrices are density matrices except they may have a
trace in [0,1].

Pure and mixed quantum states are elementary if their values are complex numbers with rational
coefficients, and thus they can be represented with finite strings. Thus elementary quantum states
|φ〉 and ρ can be encoded as strings, 〈|φ〉〉 and 〈ρ〉, and assigned Kolmogorov complexities K(|φ〉),
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K(ρ) and algorithmic probabilities m(|φ〉) and m(ρ). They are equal to the complexity (and
algorithmic probability) of the strings that encodes the states.

More generally, a complex matrix A is elementary if its entries are complex numbers with
rational coefficients and can be encoded as 〈A〉, and has a Kolmogorov complexity K(A) and
algorithmic probability m(A).

In [Gac01], a universal lower computable semi-density matrix, µ was introduced. It can be
defined (up to a multiplicative constant) by µ =

∑
elementary |φ〉m(|φ〉 /n) |φ〉 〈φ| , where the sum-

mation is over all n qubit elementary pure quantum states.
We say a semi-density matrix ρ is lower computable if there a program p ∈ Σ∗ such that when

given to the universal Turing machine U , outputs, with or without halting, a finite or infinite
sequence of elementary matrices ρi such that ρi � ρi+1 and limi→∞ ρi = ρ. If U reads ≤ ‖p‖ bits
on the input tape, then we say p lower computes ρ. From [Gac01] Theorem 2, if q lower computes

ρ, then m(q/n)ρ
∗
< µ.

We say a semi-density matrix ρ ⊗ σ is upper computable if there a program p ∈ Σ∗ such that
when given to the universal Turing machine U , outputs, with or without halting, a finite or infinite
sequence of elementary matrices ρi ⊗ σi such that ρi+1 ⊗ σi+1 � ρi ⊗ σi and limi→∞ ρi ⊗ σi =
ρ ⊗ σ. If U reads ≤ ‖p‖ bits on the input tape, then we say p upper computes ρ ⊗ σ. The upper
probability of an upper computable mixed state A⊗ B is defined by m(A⊗ B/x) =

∑
{m(q/x) :

q upper computes A⊗B}.

4 Information

Let CC⊗D be the set of all upper computable matrices (tests) of the form A ⊗ B, where Tr(A ⊗
B)(C ⊗ D) ≤ 1. Let CC⊗D =

∑
A⊗B∈CC⊗D

m(A ⊗ B/n)(A ⊗ B) be an aggregation of upper
computable C ⊗D tests of the form A⊗B, weighted by their upper probability. The information
between semi-density matrices A and B is I(A : B) = log TrCµ⊗µ(A⊗B).

Proposition 1 I(2−n : 2−n) = O(1).

Proof. 1 ≥ TrCµ⊗µ(µ⊗ µ)
∗
> TrCµ⊗µ(2−nI ⊗ 2−nI)

∗
> 2I(2

−nI:2−nI).
�

Lemma 1 Let Λ be the uniform distribution on the unit sphere of an n qubit space.∫
2I(|ψ〉 : |ψ〉)dΛ = O(1).

Proof. Using [Gac01] Section 5 and [BvL01] Section 6.3, we have that
∫
|ψ〉〈ψ| ⊗ |ψ〉 〈ψ| dΛ =∫

|ψψ〉〈ψψ| dΛ =
(

2n+1
2

)−1
P , where P is the projection onto the space of pure states |ψψ〉. Using

Proposition 1,

∫
2I(|ψ〉 : |ψ〉)dΛ =

∫
TrCµ⊗µ |ψ〉〈ψ| ⊗ |ψ〉 〈ψ| dΛ = TrCµ⊗µ

∫
|ψ〉〈ψ| ⊗ |ψ〉 〈ψ| dΛ

= TrCµ⊗µ

(
2n + 1

2

)−1

P
∗
< TrCµ⊗µ2−2nI

∗
= 2I(2

−nI:2−nI) = O(1).

�
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5 Measurements

A POVM E is a finite set of positive definite matrices {Ek} such that
∑

k Ek = I. For a given density
matrix σ, a POVM E induces a probability measure over strings, where Eσ(k) = TrEkσ. This can
be seen as the probability of seeing measurement k given quantum state σ and measurement E. An
elementary POVM has each Ek being elementary. We introduce a novel definition to algorithmic
information theory, the amount of algorithmic mutual information between two probabilities.

Definition 1 (Information, Probabilities)
For probabilities p and q over Σ∗, i(p : q) = log

∑
x,y∈Σ∗ 2i(x : y)p(x)q(y).

Theorem 2 in the appendix proves conservation of information of probabilities transformed by
random channels. A channel f : Σ∗ × Σ∗ → R, such that f(·|x) is a probability for all x ∈ Σ∗,
transforms a probability p by fp(x) =

∑
y f(x|y)p(y). Conservation occurs over f , i(fp : q) <+

i(p : q).

Lemma 2 Relativized to POVM E, i(E |ψ〉 :E |ψ〉) <+ I(|ψ〉 : |ψ〉).

Proof. Since z(k) = TrµEk is lower semi-computable and
∑

k z(k) < 1, m(k/n)
∗
> TrµEk, and

so 1 > 2K(k/n)−O(1)TrµEk. So νi,j = 2K(i/n)+K(j/n)−O(1)(Ei ⊗ Ej) ∈ Cµ⊗µ, with m(νi,j/n)
∗
>

m(i, j/n).

I(|ψ〉 : |ψ〉) = log
∑

A⊗B∈Cµ⊗µ

m(A⊗B/n)(A⊗B)(|ψ〉 〈ψ| |ψ〉 〈ψ|)

>+ log Tr
∑
ij

νi,jm(νi,j/n)(|ψ〉 〈ψ| |ψ〉 〈ψ|)

>+ log
∑

2K(i/n)+K(j/n)m(i, j/n)E |ψ〉 (i)E |ψ〉 ((j)

>+ i(E |ψ〉 :E |ψ〉).

�
Note that the number of qubits n is simple relative to E, thus the complexity terms in the proof

are relativized to n. An implication of Lemma 2 is that most pure quantum states have almost
no self classical information. That is for an overwhelming majority of pure quantum states, the
probabilities induced by a measurement will have negligible self information, as shown in Theorem
1.

Theorem 1 Let Λ be the uniform distribution on the unit sphere of an n qubit space. Relativized
to POVM E,

∫
2i(E|ψ〉:E|ψ〉)dΛ = O(1).

Proof. By Lemma 2, 2I(|ψ〉:|ψ〉)
∗
> 2i(E|ψ〉:E|ψ〉). From Lemma 1,

∫
2I(|ψ〉:|ψ〉)dΛ = O(1). The in-

tegral
∫

2i(E|ψ〉:E|ψ〉)dΛ is well defined because 2i(E|ψ〉:E|ψ〉) = Tr
∑

i,j νi,j2
−K(i,j)(|ψ〉 〈ψ| ⊗ |ψ〉 〈ψ|),

which can be integrated over Λ. �

Theorem 1 says that given a measurement apparatus, the overwhelming majority of pure states,
when measured, will produce classical probabilities with no self-information, i.e. random noise.
Theorem 2 shows that there is no randomized way to process the probabilities to produce more
self-information, i.e. process the random noise.
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A Conservation of Information Between Probabilities

In this section, we show that the information between probabilities cannot be increased through
randomized transformations. We recall that information i was introduced in Section 5, where for
probabilities p and q, i(p : q) =

∑
x,y 2i(x:y)p(x)q(y). The information between strings x, y ∈ Σ∗ is

i(x : y) = K(x) + K(y) −K(x, y). A probability p is transformed by channel f : Σ∗ × Σ∗ → R≥0,
by fp(x) =

∑
y f(x|y)p(y). For channel f , f(·|y) is a conditional probability given y ∈ Σ∗.

Lemma 3 ([Lev84]) For x, y, z ∈ Σ∗, i(x : y) <+ i((x, z) : y).

Lemma 4 Let ψd be a semi-measure, lower computable relative to d ∈ Σ∗. For a, b ∈ Σ∗∑
c∈Σ∗ 2i((a,c):b)ψa(c)

∗
< 2i(a:b).

Proof. This requires a slight modification of the proof of Proposition 2 in [Lev84]. We need to

show m(a, b)/(m(a)m(b))
∗
>
∑

c(m(a, b, c)/(m(b)m(a, c)))ψa(c), or
∑

c(m(a, b, c)/m(a, c))m(c|a)
∗
<

m(a, b)/m(a), since m(c|a)
∗
> ψa(c). Rewrite it

∑
c m(c|a)m(a, b, c)/m(a, c)

∗
< m(a, b)/m(a) or∑

c m(c|a)m(a)m(a, b, c)/m(a, c)
∗
< m(a, b). The latter is true since m(c|a)m(a)

∗
< m(a, c) and∑

c m(a, b, c)
∗
< m(a, b). �

Theorem 2 For probabilities p and q, relativized to channel f , i(fp : q) <+ i(p : q).

Proof. Using Lemma 3,

i(fp : q) = log
∑
x,y

2i(x:y)
∑
z

f(x|z)p(z)q(y) <+ log
∑
y,z

q(y)p(z)
∑
x

2i((z,x):y)f(x|z).

Using Lemma 4,

i(fp : q) <+ log
∑
z,y

q(y)p(z)2i(z:y) =+ i(p : q).

References
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