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Abstract

Suppose that a target distribution can be approximately sampled by a low-depth decision
tree, or more generally by an efficient cell-probe algorithm. It is shown to be possible to
restrict the input to the sampler so that its output distribution is still not too far from
the target distribution, and at the same time many output coordinates are almost pairwise
independent.

This new tool is then used to obtain several new sampling lower bounds and separations,
including a separation between AC0 and low-depth decision trees, and a hierarchy theorem
for sampling. It is also used to obtain a new proof of the Patrascu-Viola data-structure
lower bound for prefix sums, thereby unifying sampling and data-structure lower bounds.
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1 Introduction and our results

Obtaining computational lower bounds is a fundamental agenda in theoretical computer science,
see for example the textbooks [Juk12, AB09]. One of the most famous lower bounds is the AC0
lower bound for computing the parity function, which separates small AC0 circuits from models
that can compute parity. Another direction that has received much attention is the relationship
between AC0 and low-depth decision trees. The simple Or function on n bits requires decision
trees of depth n to be computed exactly, but the picture is more subtle and useful when we
consider average-case computation, that is we allow errors on a small fraction of inputs. Indeed,
switching lemmas [FSS84, Ajt83, Yao85, Hås87, SBI04, Raz15, BIS12, IMP12, Hås14] can be
interpreted as non-trivial simulations of small AC0 circuits by decision trees. On the other hand,
functions such as Tribes (see, e.g., [O’D14]), computable by a polynomial-size DNF circuits,
require large-depth decision trees, even on average.

In this work we study lower bounds and separations in the setting of sampling. This is a
challenging generalization of average-case complexity, where we seek to bound the resources
required to sample approximately a target distribution, given random bits. The study of sampling
lower bounds [Vio12b, LV12, Vio14, DW11, BIL12a, BCS14, Vio12c, Vio20, CGZ21] has seen
significant activity and progress in the last ten years; for a survey talk see [Vio]. This study has also
had impact on other areas. For example, it has had an impact on breakthrough constructions of
two-source extractors: the papers [CZ16, Li16, CS16, Coh16, BDT16] build on models or results
from the study of sampling lower bounds. Also, sampling lower bounds have been used to obtain
data-structure lower bounds [Vio12b]. In fact, jumping ahead, this paper will further develop this
connection to data structures.

Sampling lower bounds for AC0, roughly corresponding to the classical result mentioned above
that Parity is not in AC0, have been obtained in [LV12, Vio14, BIL12a, Vio20]. All these lower
bounds share common techniques. Interestingly, essentially no technique was known to obtain
separations within AC0. The main goal and motivation for this paper is thus to develop new
techniques for sampling lower bounds, and apply them to obtain separations within AC0, in
particular separating decision-tree from AC0 samplers and obtaining a hierarchy theorem (see
Corollary 9). In addition, the new technique is used to “unify” sampling and data-structure lower
bounds, that is, to obtain data-structure lower bounds as a consequence of sufficiently strong
sampling lower bounds.

The model. The main computational model in this work is a generalization of the decision-tree
model known as the cell-probe model [Yao81]. Here the input is divided into words (a.k.a. cells)
of w bits, the output is a tuple of queries, and each query can be computed by making q probes
into the input, adaptively. This model is extensively studied in algorithms, where w corresponds
to the register size and q to time. We note that for w = 1 each output query is computed by a
decision tree of depth q. For larger w each query is also computed by a tree but each internal
node probes a word and has 2w children. Because we have several trees of depth q, one for each
output query, we refer to the algorithm as to a depth-q forest. We place no restriction on the
number of input words, which we indicate with N. But for concreteness one can replace N with
any large enough integer – as we do later in the proofs. We summarize the model and its key
parameters:
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Definition 1. We say that f : WN → Σm is a depth-q forest with word size w and output
alphabet Σ if W = {0, 1}w and f = (f1, f2, . . . , fm) where each fi : WN → Σ is a depth-q
decision tree where the variables are over W , each internal node has |W | children, and the leaves
are labeled with elements from Σ.

The main goal of this paper is to show that a target distributions S over Σm is hard to sample
by a low-depth forest. We measure the distance between distributions X and Y over D using
statistical ( a.k.a. total variation, L1) distance

∆(X, Y ) := max
T⊆D
|P[X ∈ T ]− P[Y ∈ T ]|.

So the lower-bound goal is to show ∆(f(UWN), S) is large, where UWN is the uniform distribution
over WN. In general for a set H we write UH for the uniform distribution over H, and simply U
when H is clear from the context.

Previous sampling lower bounds. Before this work, essentially the only sampling lower
bounds in the cell-probe model, or even in the decision-tree model, were those that followed
from the sampling lower bounds for AC0 circuits [LV12, Vio14, BIL12a, Vio20] – using the fact
that a depth-q tree can be written as a DNF with width qw. This was unsatisfactory for several
reasons. First, the AC0 lower bounds only hold for sampling pseudorandom objects, such as
extractors or error-correcting codes. Second, they obviously cannot be used to prove separations
within AC0.

1.1 Our results

In this work we prove new sampling lower bounds and use them to derive a number of new
separations. We emphasize that our results are new even for decision trees, corresponding to
word size w = 1. However, we obtain stronger results by considering larger word size. Similarly,
the lower bounds we prove were not known even for statistical distance Ω(1). But in fact we
prove stronger bounds, where the statistical distance is exponentially close to 1. Via technically
simple connections, the first of which was pointed out in [Vio12b], this generality enables several
applications discussed below. In particular, jumping ahead, it will allow us to unify sampling and
data-structure lower bounds.

First we obtain a sampling lower bound for the distribution Rank(U{0,1}m) where Rank is
defined next.

Definition 2. For x ∈ {0, 1}m define Rank(x) as the string y ∈ {0, 1, . . . ,m}m where yi :=∑
j≤i xj is the rank of i.

Example 3. Rank(0, 1, 0, 1) = (0, 1, 1, 2).

Theorem 4. Let f : WN → {0, 1, . . . ,m}m be a depth-q forest with word size w ≥ logm. Then

∆(f(UWN),Rank(U{0,1}m)) ≥ 1− 2 · 2−m/wO(q)
.

Throughout this paper, the notation O(.) and Ω(.) denotes absolute constants.
It follows from [Yu19], which builds on [Pǎt08], that this bound is tight. In particular, we can

sample Rank(U) with depth q = O(w)/ logw and constant statistical distance
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This result can also be interpreted as a negative result for sampling random walks on graphs.
Consider the graph G over {0, 1, . . . ,m} where the neighbors of Node i are {i, i + 1}. Note
that Rank(U) is the sequence of nodes visited during the walk with edge choices U . Theorem 4
proves a lower bound for sampling this random walk. Note that as the graph is fixed, this result
applies even if the algorithm depends on the graph.

Next we consider the predecessor problem.

Definition 5. For x ∈ {0, 1}m define Pred(x) as the string y ∈ {0, 1, . . . ,m}m where yi :=
max{j : j ≤ i and xj = 1} is the predecessor of i. (Say yi = 0 if there is no j ≤ i with xj = 1.)

Unlike Rank, it turns out that Pred can be sampled efficiently. Specifically, there is a
depth-O(1) forest sampling Pred(U) with statistical distance 1/poly(m). This is just because
the predecessor of i can be computed by inspecting the bit positions from i − q log n to i of x,
except with error probability 1/nq.

Loosely inspired by works in data-structure lower bounds [PT06], we prove a lower bound
under a different distribution, which is tailored for the applications below. This lower bound is
really a lower bound for a “direct-product” version of Pred, where r instances have to be solved
simultaneously. In fact, the bound holds even for the colored version, where items have colors
and we just need to return the color of the predecessor. It is more transparent to define this
problem and state our results for it.

Definition 6. For an r ×m matrix M with entries in {−, #̂,  ̂} we define the r ×m Colored-
Multi-Predecessor matrix CMPred(M) with entries in {#̂,  ̂,#, } as follows. For any i, j we
define CMPred(M)i,j to be:

Mi,j if Mi,j 6= −,
 if the predecessor of j on row i is  ̂ (that is, there is j′ < j such that Mi,j′ =  ̂ and for

every k such that j′ < k < j we have Mi,k = −), and
# otherwise.
The distribution Π on r×m matrices is defined as follows, for m divisible by wr. Divide row

i = 1, 2, . . . , r in consecutive blocks of wi elements. For each block, pick a uniform element, and
assign to it a uniform element from {#̂,  ̂}. All the other elements are set to −.

Example 7. CMPred

([
−  ̂ − #̂
− −  ̂ −

])
=

[
#  ̂  #̂
# #  ̂  

]
.

Working with the alphabet {#̂,  ̂,#, } allows us to reconstruct M from CMPred(M),
slightly simplifying the argument.

Theorem 8. There exists a constant c such that for r = cq the following holds.
Let f : WN → ({#̂,  ̂,#, }r)m be a depth-q forest with word size w ≥ logm.
Let Π be an r ×m random matrix as in Definition 6.
Then ∆(f(UWN),CMPred(Π)) ≥ 1− 2 · 2−m/wO(q)

.

Motivation for studying CMPred(Π): New separations. The problem CMPred(Π) is
designed to be easy to sample with a little more resources than we prove lower bounds for. Thus
the theorem gives two separations. First, we obtain a probe-hierarchy for sampling: for any q
there is an explicit problem that can be sampled exactly with O(q) probes, but only very poorly
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with q. Second, the same problem can be also sampled by an explicit, polynomial-size DNF. Such
results were not known even for word size w = 1, statistical distance 0.01 rather than close to 1,
and AC0 instead of DNF.

Proving hierarchies and separations among various restricted computational models is a main
research agenda of theoretical computer science. We consider them in the context of sampling.
For example, it is a classical result that small DNF circuits can compute functions that require
decision trees of large depth, even on average. Our results strengthen this separation substantially.

Corollary 9. For every q there exists a distribution S ⊆
(
{0, 1}O(q)

)m
such that for any depth-q

forest f with word size w we have ∆(f(UWN), S) ≥ 1 − 2 · 2−m/wO(q)
. But S can be sampled

(with distance 0) by both
(1) An explicit depth-O(q) forest; and
(2) An explicit poly(m)-size DNF.

The distribution in this corollary is CMPred(Π). To sample it, we can identify row i of Π
with a string of log2(2 · wi)m/wi

bits, indicating the choice of color and element (2 · wi ≤ O(m)
possibilities) for each of the m/wi blocks. Color i of query j can be computed from these bits
probing O(1) words. Repeating this for i = 1, 2, . . . , r gives (1) in the corollary. (2) is similar.

Previous attempts to establish a separation between forests and AC0 circuits resulted in
(i) Theorem 1.4 in [Vio12b] which applies to randomness-efficient samplers, achieves constant
statistical distance, and has w = 1, and (ii) Theorem 3 in [Vio20] which applies to non-adaptive
samplers. It is an open question whether Rank can be sampled by polynomial-size AC0 circuits.
Recent results [Yu19] building on [Pǎt08] imply that it can be sampled with O(logm) probes and
constant statistical distance, which gives quasi -polynomial size AC0.

Data structures A (static) data-structure problem is a map f : {0, 1}n → Σm, where m
queries over alphabet Σ are to be answered about n bits of data. A data-structure with word
size w for this problem are two functions g : {0, 1}n → {0, 1}n+r, h : {0, 1}n+r → Σm where g
is arbitrary and h is a depth-q forest with word size w such that f = h ◦ g. That is, we seek to
store the n bits of data into n+ r bits so that the queries can be computed fast. Note that the
n+ r bits are divided in words of w bits. We call r the redundancy of the data structure, and we
focus on the succinct regime r = o(n). Many papers are devoted to proving lower bounds in this
regime, including [GM07, Vio12a, Gol09, PV10, LY20]; and it is shown in [Vio19] that improving
on the long-standing bounds in [GM07] would yield new circuit lower bounds.

The paper [Vio12b] pointed out a technically simple connection between samplers and data-
structures: any data structure can be used to sample the distribution f(U) by a depth-q forest
with statistical distance 1−2−r. Simply fill the n+r bits uniformly and run the query algorithms.
A data structure is equivalent to the special case of samplers which just use n+r input bits. But
samplers can use any number of input bits, and many samplers in the literature do use (1+Ω(1))n
input bits, for example to sample noise vectors, subsets, or permutations, cf. [Vio12b].

Hence, the sampling lower bounds above imply data-structure lower bounds. Theorem 4 gives
a new proof of the data-structure lower bound for Rank from [PV10], which was recently shown
to be tight in [Yu19], building on [Pǎt08]. This new proof shows that the lower bound applies
even to samplers. Informally, this suggests that the “reason” why the lower bound for Rank
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holds is not that the input is “compressed,” but rather that low-depth forests simply cannot
generate the type of dependencies in Rank, regardless of their input.

The program of proving data-structure lower bounds via sampling was suggested a decade ago
[Vio12b], but the only previous cell-probe lower bound obtained this way is for error-correcting
codes and follows from the AC0 lower bounds [LV12, BIL12b]. This paper shows that this program
is feasible for problems such as Rank.

Similarly, we obtain a data-structure lower bound for CMPred. Also, the sampling hierarchy
in Corollary 9 translates to a data-structure hierarchy. Hierarchies in data structures have been
considered since the 90’s. [Mil99] gives a non-explicit problem where increasing the redundancy
by one bit makes the probe time jump from constant to linear. We give explicit problems where
increasing the probe time q by a constant factor makes the redundancy shrink from almost linear
to zero. Previous bounds such as [PV10] imply such a result for q about logm. We achieve a
broader range including q = O(1). To the best of our knowledge, such a result does not appear
in the literature.

Corollary 10. [Data-structure hierarchy] For every q and m there exists an explicit function
f : {0, 1}m → ({0, 1}O(q))m which has a data structure with word size w, redundancy zero, and
making O(q) probes, but such that any data-structure with word size w making q probes requires
redundancy r ≥ m/wO(q).

The sampling viewpoint is not essential for the data-structure lower bound for CMPred or
for Corollary 10: just like Rank, they can be proved without referring to sampling.

Communication protocols. Above we considered one application of proving sampling lower
bounds with large error, close to 1, namely data-structure lower bounds. The large statistical
distance corresponded to redundancy. In this paper we put forth another application to communi-
cation protocols. Here the large statistical distance corresponds to communication. We consider
the following communication protocols: we associate to each output query a party. In addition to
probing input cells as before, the parties also communicate. We define the model and then state
our result. The result is an easy corollary and our main goal here is to give another interpretation
of sampling lower bounds with large statistical distance.

Definition 11. A sampler protocol over Σm with word size w, q probes, and c total communi-
cation is a communication protocol among m parties. The parties share a public random string
of cells of w bits each. At each point in time, the protocol specifies which Party i is to go next.
Party i can either probe a cell, broadcast communication, or output a value in Σ and stop. The
action of Party i at time t depends only on the values of the cells Party i probed in previous
times, and on the communication transcript. The output of the protocol is the tuple of elements
output by the parties.

Note that q is a bound on the number of probes made by each party, while c is a bound on
total communication. To get a sense of the parameters, consider for example Rank(U). We
can sample it with no error with 1 probe and communication n/w (each party probes a different
cell and broadcasts it – then the players sample exactly). And as we remarked earlier, it can also
be sampled with o(logm) probes and no communication, up to constant error. We obtain the
following lower bound, which interpolates between these two extremes.
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Corollary 12. Let Π be a sampler protocol with word size w, q probes, and communication c
whose output has statistical distance δ from Rank(U). Then c ≥ m/wO(q) + log(1− δ)−O(1).

2 Techniques

Our results rely on a new proof technique which we call the cell-probe separator and which is
a main technical contribution of this work. Roughly speaking, this separator result says that if
f : WN → Σm is a low-depth forest whose output distribution is close to a target distribution S
over Σm, then we can restrict the input space to a subset D ⊆ WN such that when the input
to f comes from D, many trees in the output distribution f(D) are nearly pairwise independent,
and at the same time the output distribution is still not very far from the target S. This latter
feature will be formalized by requiring that f(D) is supported on a subset of the support of S,
and has entropy almost equal to that of S.

A critical feature of the separator is that the number of trees that are guaranteed to be almost
pairwise independent in f(D) is much larger than the entropy gap between f(D) and S. Formally,
for a sufficiently spaced-out increasing sequence of integers t0, t1, . . ., the separator will guarantee
that for some value k there is a set Dk = D and tk trees that are nearly pairwise independent
over f(Dk), while the entropy gap is only about tk−1. (The separator can also guarantee almost
`-wise independence for ` > 2, but we only need ` = 2 in our results.)

After some definitions we state the separator.

Definition 13. [Almost pairwise independence] Jointly distributed random variables X, Y are
ε-independent if (X, Y ) is ε-close in statistical distance to (X, Y ′) where Y ′ has the same distri-
bution of Y and is independent from X.

The min-entropy H∞(X) of a random variable X is mina log2(1/P[X = a]).

Notation. To avoid clutter in the more technical exposition of the results, we adopt the con-
vention that for a set S we also denote by S the uniform distribution US over S. The meaning will
be clear from the context. For example, we shall simply write ∆(f(WN), S) for ∆(f(UWN), US).

Theorem 14. [Sampling separator] There exists an integer c ≥ 1 such that the following holds:
Hypothesis: Let f : WN → Σm be a depth-q forest with word size w. Let α ≤ 1/c. Let

t0, t1, . . . be a sequence of integers with ti ≥ ti−1 · cqw/α for every i. Let S ⊆ Σm be a set and
suppose that ∆(f(WN), S) ≤ 1− 2−t0 where 2−t0 ≥

√
8/|S|.

Conclusion: There exists k, 1 ≤ k ≤ O(q/α), Dk ⊆ WN, and tk indices T ⊆ [m] such that:
(0) H∞(f(Dk)) ≥ H∞(S)− tk−1 ·O(qw/α)2;
(1) The support of f(Dk) is contained in S;
(2) For every i, j ∈ T the random variables (fi(Dk), fj(Dk)) are O(α)-independent.

For example, we can set ti = m/wa(q/α)−bi which for suitable a, b and q, w ≤ log n satisfies
the hypothesis.
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Proof sketch of the separator. First we need to understand what it means for ∆(f(WN), S)
to be at most 1− ε. One special case in which this happens is if the distribution f(WN) is equal
to the uniform distribution over S with probability ε, and otherwise is say a fixed value. Our first
Lemma 15 shows that this special case, more or less, is in fact the general case. Specifically, we
can condition the input to f on an event of probability about ε so that, if D is the resulting set
of inputs, f(D) is supported inside of S, and the entropy of f(D) is almost maximum.

At this point we forget S and our goal is to further restrict D so that we have many pairwise
independent queries, and at the same time we do not lose too much in output entropy.

First we apply the so-called fixed-set lemma from [GSV18]. This lemma shows that it is
possible to moderately restrict D to a subset D1 ⊆ D so that no low-depth tree can distinguish
D1 from a product distribution R.

At this point, we ask if in f(D1) there are many (t1) queries (a.k.a. trees) such that any two
of them intersect probes with probability ≤ α. Here we say that two trees intersect probes if
there exists i such that both trees probe word i.

If the answer is positive: we argue that we are done. Let us explain why that is the case.
First, we can write the probability that two queries probe the same word as a low–depth tree.
By the fixed-set lemma, this probability is the same over D1 and over the product distribution
R. However, over a product distribution two queries are independent unless they probe the same
word, hence over R two queries are α-independent, and it follows that the same is true over D1.

We note that our use of the fixed-set lemma is different from [GSV18]. In the latter paper
it was used to argue that the input to a tree looks uniform. By contrast, we use it to establish
pairwise independence among trees, and critically we use it to bound the probability that two
trees probe the same word.

If the answer is negative: In this case, by a version of simple “covering arguments” which are
widespread since at least the sunflower lemma [ER60], there is a small set T of trees such that
any other tree intersects probes with some tree in the set with probability ≥ α. Now the idea is
to fix the probes of the trees in T to obtain a new input D2 over which the total expected probe
time is reduced. Then again we can apply the fixed-set lemma, and iterate the argument.

This fixing of the probes in T is inspired by a fixing that occurs in the data-structure lower
bound for Rank [PV10]. However, we note that our argument is different. The proof in [PV10]
selects trees in a structured way, with a precise sequence of “gaps.” By contrast, our selection
comes from the covering argument and is, at this stage, unstructured: we simply count queries.
More generally, the proof in [PV10] proceeds by an encoding argument, as is typical in data-
structure lower bounds, which is tailored to the problem at hand. The separator avoids that and
allows us to establish an intrinsic property of efficient samplers and data structures.

This concludes the informal overview. The formal proof is in Section 3.

Comparison with switching lemmas. Switching lemmas [FSS84, Ajt83, Yao85, Hås87, SBI04,
Raz15, IMP12, Hås14] show that small-width DNF simplify under random restrictions. Since a
depth-q decision tree over alphabet {0, 1}w can be written as a DNF with width qw, switching
lemmas apply to our model too. A main difference between switching lemmas and our separator
lemma is that the former restrict the input space aggressively, for example fixing all but but a
constant fraction of the input bits, while our separator lemma restricts the input moderately, for
example fixing a small, sub-linear number of input words. This distinction is critical, since our
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problems are easy for DNF.

Comets. Having established the separator, there remains to use it to prove lower bounds. Our
approach is based on a combinatorial object that we call comet. A c-comet is a triple of integers
where the first two, the comet’s tail, are c times farther apart than the last two, the comet’s
head. We can imagine the sun at position∞: Blown by solar winds, comet tails point away from
the sun.

The following example shows two 4-comets: (5, 20, 23) and (40, 80, 90):

1 5 10 20 23 30 40 45 60 80 90 100 = m

We show in Section 4 that any large set of integers contains many non-overlapping c-comets,
for large enough c. In the proofs of the sampling lower bounds (Sections 6 and 7), this result is
applied to the tk trees given by the separator theorem. Because the entropy gap of Dk and S
is, as remarked earlier, much less than tk, it follows that we can find among the trees a comet
that is “random,” that is, roughly, the query outputs have a lot of entropy. However, we prove
that this is impossible, because over f(Dk) the queries are nearly independent, but we show that
they are not so in (any restriction of) the target distribution. Here is where we use the geometry
of comets: the long tail will impose correlations on the head of the comet. The way this is
formalized depends on the problem. For CMPred, we can find blocks in Π which are just a
little longer than comets’ heads, guaranteeing correlations between the queries in the head. For
Rank the argument is a little more complex because a query depends on the entire prefix, so we
shall need to guarantee that the bits corresponding to the comet have sufficiently high entropy
even conditioned on the prefix.

2.1 Conclusion and open problems

This paper adds new tools to the study of sampling lower bounds, especially the separator theo-
rem. Using them, a number of new lower bounds and separations are obtained. Several natural
questions remain open. One is separating adaptive from non-adaptive samplers. Another is prov-
ing cell-probe lower bounds for sampling other distributions, such as permutations, cf. [Vio20].
The parameters of the separator do not seem strong enough for the latter goal; in brief, one
would need to set α too small.

These new tools can also be used to generalize previous data-structure lower bounds, such as
the one for Rank [PV10], to sampling lower bounds. This additional information could be useful
in understanding which techniques are suitable for further progress. For example, Membership
[Mil99, Tho13] is a long-standing problem in data structures which asks to store a subset of [m] of
size say m/4 so that membership queries can be computed fast. It is interesting to note that the
corresponding sampling problem is easy: we can sample somewhat well the uniform distribution
over these subsets in time O(1) using 2m input bits. (Simply taking the And of adjacent pairs
of bits will generate exactly the uniform distribution over m iid variables each coming up 1 with
probability 1/4; and this distribution has statistical distance only 1−Ω(1/

√
m) from the subsets.)

Hence, unlike Rank, a strong lower bound for Membership must exploit that the input length
is bounded, and this might indicate why this problem is harder than Rank.
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3 Proof of the separator Theorem 14

First we need to understand what it means to have slightly non-trivial statistical distance. Let P
be a distribution over Σm. One way in which P can have statistical distance ≤ 1− ε from S is if
P is distributed like S with probability ε, and it is say fixed with probability 1 − ε. In this case,
P has actually very high entropy (log2 |S|) conditioned on an event of probability ε. The next
lemma shows that this in fact always happens.

Lemma 15. Let P be a distribution over Σm and let S ⊆ Σm. Suppose that ∆(P, S) ≤ 1− ε,
where ε ≥

√
8/|S|. Then there is a subset S0 ⊆ S of probability PP [S0] = Ω(ε) such that the

distribution P conditioned on P ∈ S0 has min-entropy ≥ H∞(S)−O(log 1/ε).

Proof. We also write P for the random variable distributed according to P . Collect all the
elements of S in increasing order of mass until right before collecting cumulative mass ε/2. Note
we don’t collect all of S, for else P[P ∈ S] ≤ ε/2 and ∆(P, S) ≥ 1 − ε/2, contradicting the
hypothesis.

Let β be the mass of the next element of S. Let S0 be the collected elements, S1 the rest of S,
and T the complement of S. By definition, P[P ∈ S0] < ε/2, and so P[P ∈ S1

⋃
T ] ≥ 1− ε/2.

Also for every x ∈ S1 we have P[P = x] ≥ β and so |S1| ≤ β−1. Combining these bounds with
the assumption we have

1− ε ≥ ∆(P, S) ≥ P[P ∈ S1 ∪ T ]− |S1|
|S|
≥ 1− ε/2− β−1

|S|
and so β ≤ 2/(ε|S|).
Because we did not include in S0 an element of mass β, and we only stop when we reach ε/2,

the mass of S0 is ≥ ε/2− β ≥ ε/2− 2/(ε|S|). If ε ≥
√

8/|S| this mass is at least ε/4.
For any x ∈ S0 using the above bound on β we obtain

P[P = x|P ∈ S0] =
P[P = x]

P[P ∈ S0]
≤ β

ε/4
≤ 8

ε2|S|
,

as desired.

The above lemma allows us to “forget” about S and focus on f . We need to show that
we can restrict the input to a large subset such that many output trees are nearly independent.
This is the content of the following theorem. To avoid having to think about infinite sets, in the
remainder of the proof we set the input to the sampler to W s for an integer s. This is without
loss of generality, since obviously any forest of fixed depth can only access a finite number of
input words.

We define the (entropy) loss of a subset D′ ⊆ D to be log2(|D|/|D′|). So if D′ contains half
the elements of D the loss is one.

Theorem 16. There exists an integer c ≥ 1 such that the following holds:
Hypothesis: Let f : W s → Σm be a depth-q forest with word size w. Let α ≤ 1/c. Let

t0, t1, . . . be a sequence of integers with ti ≥ ti−1 · cqw/α for every i. Let D ⊆ W s be a set with
loss ≤ t0.

Conclusion: There exists k, 1 ≤ k ≤ O(q/α), Dk ⊆ D, and tk indices T ⊆ [m] such that:
(1) The loss of Dk ⊆ D is ≤ tk−1 · (qw/α)2;
(2) For every i, j ∈ T the random variables fi(Dk), fj(Dk) are O(α)independent.

9



Let us first show how this gives the separator Theorem 14.

Proof. [Proof of Theorem 14 from Theorem 16.] We apply Lemma 15 to P = f(U). Given
S0 ⊆ S from the lemma, we let D ⊆ W s be the preimage of S0 according to f . By the lemma,
|D|/|W |s ≥ Ω(2−t0), that is, the loss of D ⊆ W s is t0 + O(1). Moreover, H∞(f(D)) ≥
log |S| −O(t0).

We now apply Theorem 16 to this set D and the sequence t0 + O(1), t1, t2 . . .. We can
adjust the constant c so that this satisfies the hypothesis. The theorem gives Dk ⊆ D with loss
≤ tk−1 · (qw/α)2.

Observe that the support of f(Dk) is contained in S, because the support of f(D) is S0 ⊆ S
and Dk ⊆ D.

To verify the bound on H∞(f(Dk)), note that

P[f(D) = x] ≥ P[f(Dk) = x]|Dk|/|D|.

Taking inverses and then logs we obtain

log(1/P[f(D) = x]) ≤ log(1/P[f(Dk) = x]) + log(|D|/|Dk|).

The left-hand side is at least H∞(f(D)) ≥ log |S| − O(t0). While log(|D|/|Dk|) ≤ tk−1 ·
(qw/α)2. Hence,

log(1/P[f(Dk) = x]) ≥ log |S| −O(t0)− tk−1 · (qw/α)2,

for any x. The result follows.

3.1 Proof of Theorem 16

The main technical lemma is the following one, which is like Theorem 16 but the requirement of
independence is replaced by others easier to work with.

Lemma 17. Theorem 16 holds if we replace (2) with:
(2’) for every i, j ∈ T : the probability over Dk that fi(Dk) and fj(Dk) don’t make all distinct

probes is ≤ α, and
(2”) there exists a product distribution R over words (that is, the words are independent)

such that for every depth-2q tree g, g(Dk) and g(R) are α-close.

Lemma 18. (2’) and (2”) in Lemma 17 imply (2) in Theorem 16.

Proof. Let X = Dk. Think of (fi(X), fj(X)) as the output of the tree g obtained by appending
fj to the leaves of fi. Note that g makes 2q probes, possibly repeated. By (2”), there is a
product distribution R such that g(X) and g(R) are α-close. Also, the probability that g repeats
a probe over X is α-close to the probability that it repeats it over R. Here we use that this
probability can be written as the probability that a tree d of depth 2q outputs 1, and that the
output distributions of d over X and R are α-close.

By this and (2’) the probability that g repeats a probe over R is ≤ α. Because R is product,
as long as probes are not repeated the output distribution does not change if we answer the first
q probes with R1 and the next q probes with R2 where R1, R2 are iid copies of R. This shows
that (fi(X), fj(X)) is O(α)-close to (fi(R

1), fj(R
2)). Using again (2”), we can replace each

Ri with X i, where X1, X2 are iid copies of X. This gives that (fi(X), fj(X)) is O(α)-close to
(fi(X

1), fj(X
2)). Adjusting constants concludes the proof.
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3.2 Proof of Lemma 17

We use the following fixed-set lemma from [GSV18].

Lemma 19. [[GSV18], Lemma 3.14.] Let B ⊆ W s be a subset with loss ≤ b, where W =
{0, 1}w. There exists B1 ⊆ B and a product distribution R such that B1 and R are α-
indistinguishable by depth-2q decision trees. Moreover, the loss of B1 ⊆ W s is ≤ b ·O(wq/α).

For completeness we include the proof in Appendix A.
We begin by applying this lemma to D obtaining D1 ⊆ D with loss t0 ·O(wq/α). This is the

beginning of Iteration 1.
At the beginning of Iteration k we shall always have a subset Dk ⊆ D with loss ≤ tk−1 ·

(qw/α)2, and the conclusion of the fixed-set lemma holds on Dk. In the iteration, collect as
many trees as possible such that for any two of them, the probability over Dk that they intersect
probes is ≤ α. If you have tk, the conclusion of the lemma holds and we are done.

Otherwise, you have a collection of tk trees such that any other tree will intersect a probe
with one of those t with probability α. Now the idea is to go to a further subset of Dk to reduce
the average probe time. Simultaneously, we should control loss.

Write Y for the tkq probes made by the tk trees in Dk. This is done according to a canonical
order, and is a valid definition because the first probe of a tree is fixed, the second is fixed once
the first is, and so on. (If the trees make fewer probes, we can include some dummy probes to
have exactly tkq.)

Support size. Let Dk,y be the strings in Dk with Y = y. We have

EY [|Dk|/|Dk,Y |] =
∑
y

P[Y = y]
|Dk|
|Dk,y|

=
∑
y

1 = |W |tkq.

By Markov’s inequality PY [|Dk|/|Dk,Y | ≥ M ] ≤ |W |tkq/M . And so with probability ≥ 1 −
W tkq/M over Y we have |Dk,Y | ≥ |Dk|/M .

Intersection. For a tree fi let Ii be the indicator random variable of the event that tree fi
intersects probes with at least one of the tk trees collected. Because P[Ii = 1] ≥ α for every i,
we have

EDk

∑
i∈[m]

Ii

 ≥ αm.

Hence

EYEDk,Y

m−∑
i∈[m]

Ii

 ≤ (1− α)m.

So by Markov’s inequality the probability over Y that the inner expectation is larger than
(1−α/2)m will be at most (1−α)/(1−α/2) ≤ (1−α/2). Hence, with probability ≥ α/2 over
the choice of Y , we have

EDk,Y

m−∑
i∈[m]

Ii

 ≤ (1− α/2)m;
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that is, EDk.Y

[∑
i∈[m] Ii

]
≥ αm/2.

Combining the arguments. Selecting M = 2|W |tkq/α above, and by a union bound, there
is a value ȳ so that the expected probe time over Dk,ȳ is reduced by αm/2, because the probes
in ȳ do not need to be made anymore; and at the same time |Dk,ȳ| ≥ |Dk| ·αW−tkq/2. That is,
we increase the loss by

≤ log(1/α) + wtkq + 1.

Recall that the loss of Dk is tk−1 · (qw/α)2.
Note that Dk,ȳ is still uniform over its support, since it is Dk conditioned on a particular

choice for tkq words. Even though the words are chosen adaptively in Dk, once we condition on
a particular value, their locations are fixed.

Fixed-set lemma. To enter the next iteration, we apply the fixed-set lemma to Dk,ȳ to obtain
Dk+1. This application multiplies the loss by O(wq/α), bringing the loss of Dk+1 ⊆ D to

O(wq/α) · (tk−1 · (qw/α)2 + log(1/α) + wtkq + 1).

To enter the next iteration we need this loss to be at most tk · (qw/α)2. Dividing by wq/α
we need to verify that

O(tk−1 · (qw/α)2) +O(log 1/α) +O(wtkq) +O(1) ≤ tk · qw/α.

We claim that each term on the left-hand side is at most one-fourth of the right-hand side.
For the first term we use the hypothesis that tk ≥ tk−1 · cqw/α for a large enough c, and for the
third we use that α ≤ 1/c and pick c large enough.

Number of iterations. At each iteration we are reducing the expected sum of probe times by
αm/2. Note if this sum goes to zero then the conclusion of the lemma holds. Because we start
with a sum of ≤ qm, we can have at most O(q/α) iterations.

4 Comets

In this section we define comets and prove a comet-finding lemma which will be used in our
sampling lower bound.

Definition 20. A d-comet is a triple of indices (i, j, k) from [m] with i < j < k such that
j − i ≥ d(k − j). We call (j, k) the head and (i, j) the tail. A set of comets {(ih, jh, kh)}h is
disjoint if the intervals [ih, kh] are disjoint.

Lemma 21. [Comet-finding] A subset of {1, 2, . . . ,m} of size m/`b contains ≥ m/`b+c+O(1)

disjoint `c-comets where the head lengths are all in [`h, `h+1] for some integer h ≤ b+ c+O(1),
for any m, b ≤ `, c ≤ `, and ` ≥ logm.
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Proof. Let d = `c. First we claim that any subset of size n := d logm + 2 contains a d-comet.
Let the elements in the set be a1, a2, . . . in increasing order. If (a1, a2, a3) is not a d-comet then
a3 − a2 > (a2 − a1)/d, and so a3 − a1 = a3 − a2 + a2 − a1 ≥ (a2 − a1)(1 + 1/d). Then again if
(a1, a3, a4) is not a d-comet we have a4−a3 ≥ (a3−a1)/d and so a4−a1 ≥ (a3−a1)(1+1/d) ≥
(a2 − a1)(1 + 1/d)2. If we continue this way n − 2 times, we obtain an ≥ (1 + 1/d)n−2 > m,
which is a contradiction.

Now divide the t := m/`b elements of the given set into consecutive blocks of size n. By the
previous paragraph, each block contains a comet. Hence we have ≥ t/n− 1 disjoint d-comets.

At least half of these comets have heads of length ≤ O(mn/t) = `b+c+O(1), otherwise half
the comets have heads longer than that, and we run out of space. Let Ci be the subset of these
comets whose head length is in [`i, `i+1). We only need to consider i ≤ b + c + O(1). Hence,
there exists i = h and

Ω

(
t

n

)
1

b+ c+O(1)
≥ m

`b+c+O(1)

disjoint comets with head lengths in [`h, `h+1), using that both b and c are ≤ `.

5 A lemma about entropy

In this section we quickly recall a basic result about entropy which will be used in our sampling
lower bounds. The entropy H of a random variable X is defined as H(X) :=

∑
x Pr[X =

x] · lg(1/Pr[X = x]). The conditional entropy H(X|Y ) := Ey∈YH(X|Y = y) (cf. Chapter 2 in
[CT06]).

Lemma 22. Let Z = (Z1, . . . , Zk) where Zi is supported over a set Si, and let
∑

i log |Si| = M .
Suppose H(Z) ≥M − a. There is a set G ⊆ [k] of size |G| ≥ k − a/ε such that for any i ∈ G
we have

H(Zi|Z1Z2 . . . Zi−1) ≥ log |Si| − ε.

In particular, Zi is 4
√
ε close to uniform over Si.

Proof. By the chain rule for entropy ([CT06], Equation 2.21)∑
i≤k

(log |Si| −H(Zi|Z1Z2 . . . Zi−1)) ≤ a.

Applying Markov inequality to the non-negative random variable log |Si| −H(Zi|Z1Z2 . . . Zi−1)
(for random i ∈ [k]), we have

Pi∈[k][log |Si| −H(Zi|Z1Z2 . . . Zi−1) ≥ ε] ≤ a/(k · ε),

yielding the desired G.
The “in particular” part holds because conditioning reduces entropy: H(Zi) ≥ H(Zi|Z1Z2 . . . Zi−1)

( [CT06], Equations 2.60 and 2.92) and then applying Pinsker’s inequality ([CK82], Chapter 3;
Exercise 17).
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6 Proof of Theorem 8

We can assume that q ≤ w, for else the statistical bound is trivial and the theorem is true. We
apply Theorem 14 with α = 1/10 and the sequence

ti := m/wc0(q/α)−c1i,

for constants c0, c1 to be set later. For large enough c1 this satisfies the hypothesis of the
theorem that ti ≥ ti−1 · cqw/α. We also need to show that 2−t0 ≥

√
8/|S|, where |S| is the

number of matrices Π in the definition of CMPred. This is true since |S| ≥ 2Ω(m/w).
Let k, Dk, and tk be as provided by the theorem. Recall that

H∞(f(Dk)) ≥ H(Π)− tk−1 ·O(qw/α)2.

Finding comets among trees. The theorem provides t := tk = m/wc0(q/α)−c1k trees. Apply-
ing the Comet-Finding Lemma 21 with c = 3 and ` = w ≥ logm gives a set of

t′ := m/wc0(q/α)−c1k+O(1)

disjoint w3-comets, where the head lengths are in [wh, wh+1) for some h ≤ c0(q/α)+O(1). Note
that to apply the lemma we need that c0(q/α) ≤ w. This is guaranteed since w ≥ logm and
q = O(logm)/ log logm for else the conclusion of the theorem holds trivially.

We shall get a contradiction looking at the row of the matrix corresponding to blocks of
length wh+2; the other rows can be ignored.

A random comet. To each of the above t′ comets we associate three relevant, consecutive
blocks. Of these, the middle block is the first block that intersects the head of the comet. Note
that:

– the relevant blocks cover the head of the comet, since the blocks have length wh+2 while
the head has length ≤ wh+1.

– the relevant blocks of different comets are disjoint, since the tails of each comet have length
≥ wh · w3, while the blocks relevant to a comet are contained in an interval of length 3wh+2

intersecting the head.
Note that from CMPred(Π) we can reconstruct Π, and moreover f(Dk) is in the range of

CMPred. Hence we can define

X := CMPred−1(f(Dk))

and we have H(X) = H(f(Dk)). Let Bi be the portion of X in the three blocks relevant to
comet i, in our current set of t′ comets. Recall that in row h+2 of the CMPred distribution Π,
each block is given by a variable uniform over a support of size 2 · wh+2. Hence Bi is a random
variable uniform over its support Supp(Bi) of size (2 · wh+2)3.

We want to argue that one such variable is close to uniform in our distribution f(Dk). Indeed,
recall from the beginning of the proof that

H(X) ≥ H∞(f(Dk)) ≥ H(Π)− tk−1 ·O(qw/α)2.
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Since H(X, Y ) ≤ H(X) +H(Y ) for any random variables X, Y , we have that,

H(B1, B2, . . . , Bt′) ≥ t′ log |Supp(Bi)| − tk−1 ·O(qw/α)2.

By Lemma 22, each Bi is α-close to uniform, except for those in a “forbidden” set of size
tk−1 ·O(q2w2/α4).

Now for the critical point, t′ is larger than the size of this forbidden set. This is true because
we only lost wO(1) factors, so it suffices to make the constant c1 large enough in the definition
of the sequence ti. Formally,

tk−1 ·O(q2w2/α4) = (m/wc0(q/α)−c1(k−1)) ·O(q2w2/α4)

which is smaller than t′ = m/wc0(q/α)−c1k+O(1) for c1 large enough. Here we are using that
q ≤ O(logm)/ log logm,w ≥ logm,α = Θ(1).

Breaking correlation in the random comet. At this point we have a w3-comet (p, i, j)
where the head length (j − i) is in [wh, wh+1] and

(1) The answers to queries i and j are α-independent, and
(2) the relevant blocks are α-close to uniform.
In the query answers consider just the color corresponding to row h+ 2 for query i and j. Let

them be C(i) and C(j).
Because the relevant blocks are α-close to uniform, for any color c we have both P[C(i) =

c] ≤ 1/2 + α and P[C(j) = c] ≤ 1/2 + α. Also, because C(i) and C(j) are α-independent, we
have P[C(i) = C(j)] ≤ 1/2 + 2α.

However, C(i) and C(j) are in fact highly correlated. The only event in which P[C(i) 6= C(j)]
is if the head of the comet contains an element. The head has length ≤ w

h+1
. The blocks have

length wh+2. If the variables in the blocks were uniform, the chance that the head contains an
element is ≤ 1/w. The block is only α-close to uniform, so this probability is ≤ 1/w+α. Hence,
P[C(i) = C(j)] ≥ 1− 1/w − α. For α = 1/10, this is larger than the above value of 1/2− 2α,
concluding the proof.

Reducing CMPred to Pred. We quickly recall this reduction to justify the claim made in
the introduction that we obtain a lower bound for Pred under a suitable distribution. Given
x, y ∈ {0, 1}m we create z ∈ {0, 1}m

3

such that (Pred(x)i,Pred(y)i) depends only on (and
therefore can be reduced to computing) Pred(z)j. Let x ⊗ y be the m ×m matrix where the

i, j coordinate is xi · yj. We can also think of this as a vector z in m2 listing the elements in
the matrix in row order. Note that (Pred(x)m,Pred(y)m) is the same as Pred(z)m2 written
in base m. However to compute (Pred(x)i,Pred(y)i) for i < m this doesn’t quite work. One
simple fix is to zero-out part of the matrix. Define x ⊗i y to be the same as x ⊗ y except that
only the top-left i× i sub-matrix may be non-zero; Then (Pred(x)i,Pred(y)i) can be obtained
from Pred(x⊗i y)i·m2 . Hence we can reduce two instances x and y of Pred to the instance
(x⊗1 y, x⊗2 y, . . .). Repeat ` times for 2` instances.
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7 Proof of Theorem 4

We can assume that q ≤ logm, for else the statistical statistical bound is trivial and the theorem
is true. We apply the separator Theorem 14 with α = 1/1000 and the sequence

ti := m/wc0(q/α)−c1i,

for constants c0, c1 to be set later. For large enough c1 this satisfies the hypothesis of the
theorem that ti ≥ ti−1 · cqw/α. The hypothesis that 1− 2−t0 ≥

√
8/|S| =

√
8/2m holds as well

since |S| = 2m.
Let k and Dk be as given by the theorem. Let

X := Rank−1f(Dk).

Note that this is a valid definition because f(Dk) is in the range of Rank, and the latter is 1-1.
The separator theorem guarantees that H∞(f(Dk)) ≥ m− t′k−1, where

t′k−1 := tk−1 ·O(q2w2/α4).

Hence also H(X) ≥ m− t′k−1.

Comets. We now apply the comet-finding Lemma 21 to the tk = m/wc0(q/α)−c1k trees given
by the separator. For c = 1, the lemma gives a set of

t′k := m/wc0(q/α)−c1k+O(1)

disjoint w-comets. We shall only use that they are 100-comets, and their head lengths will not
be relevant now. We want to find a comet whose outputs are “sufficiently random.”

Define a := t′k−1 and b := t′k.
Partition X into b consecutive blocks, where each block contains exactly one comet and

intersects no others. Let Z1, Z2, . . . , Zb be the blocks, and let |Zi| = si with
∑

i si = m.
Applying Lemma 22 we find ≥ b− a/ε blocks i such that H(Zi|Z1Z2 . . . Zi−1) ≥ si − ε. We set
ε = 1/w (a sufficiently small constant would be enough), and we verify that b−a/ε ≥ 1, yielding
at least one block i∗ such that

H(Zi∗|Z1Z2 . . . Zi∗−1) ≥ si∗ − ε. (1)

The inequality b− a/ε ≥ 1 is true because we only lost wO(1) factors, so it suffices to make
the constant c1 large enough in the definition of the sequence ti. Formally,

b

a
=

tk
tk−1

· 1

O(q2w2/α4) · wO(1)
≥ wc1

wO(1)
> w100.

The inequalities holds for c1 large enough and using q ≤ logm,w ≥ logm,α = Θ(1).
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Breaking correlation in the random comet. Hence we now have a comet (p, i, j) that is
contained in an interval Zi∗ such that:

(1) Equation 1 holds, and
(2) fi(Dk), fj(Dk) are α-independent.
The next lemma directly contradicts this and concludes the proof.

Lemma 23. Let X1, X2, . . . , Xm be 0− 1 random variables, and (p, i, j) a c-comet for a suffi-
ciently large c. Let ` := i− p and d := j − i.

Suppose that

H(Xp+1, Xp+2, . . . , Xj|X1, X2, . . . , Xp) ≥ `+ d− 1/c.

Then there exists an integer t such that

PX
[
Rank(j) ≥ t+ `/2 + d/2 + c1/3

√
d
]
≥ 1/10, and

PX [Rank(i) < t+ `/2] ≥ 1/10, but

PX
[
Rank(j) ≥ t+ `/2 + d/2 + c1/3

√
d
∧

Rank(i) < t+ `/2
]
≤ 1/1000(� 1/10 · 1/10).

Proof. Let us start with the last inequality, because we can prove it without getting our hands
on t. The probability is at most

PX

[
j∑

k=i+1

Xk ≥ d/2 + c1/3
√
d

]
.

By Pinsker’s inequality ([CK82], Chapter 3; Exercise 17) the distribution of Xi+1, Xi+2, . . . , Xj

is 4/
√
c close to the uniform U1U2 . . . Ud. Hence the above probability is

≤ Pr
U

[
d∑

k=1

Uk ≥ d/2 + c1/3
√
d

]
+ 4/
√
c ≤ 1/2000 + 4/

√
c ≤ 1/1000.

where the second inequality follows from Chebyshev’s inequality for sufficiently large c.
We now verify the first two inequalities in the conclusion of the lemma. Let Y := X1, X2, . . . , Xp

stand for the prefix, and Z := Xp+1, Xp+2, . . . , Xj for the `+ d high-entropy variables. Let

A := {y ∈ {0, 1}p : H(Z|Y = y) ≥ `+ d− 2/c}

be the set of prefix values conditioned on which Z has high entropy. We claim that P[Y ∈
A] ≥ 1/2. This is because, applying Markov Inequality to the non-negative random variable
`+ d−H(Z|Y = y) (for y chosen according to Y ),

P[Y 6∈ A] = Py∈Y [`+ d−H(Z|Y = y) > 2/c]

≤Ey∈Y [`+ d−H(Z|Y = y)]/(2/c)

=(`+ d−H(Z|Y ))/(2/c) ≤ (1/c)/(2/c) = 1/2.

Note that for every y ∈ A we have, by definition, that the (`+d)-bit random variable (Z|Y = y)
has entropy at least `+ d− 2/c, and so by Pinsker’s inequality ([CK82], Chapter 3; Exercise 17)
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the random variable (Z|Y = y) is (ε := 4
√

2/c)-close to uniform over {0, 1}`+d. Therefore, for
any subset S ⊆ A, the random variable

(Z|Y ∈ S) is ε-close to uniform over {0, 1}`+d. (2)

Now define t to be the largest integer such that

P [Y ∈ A ∧Rank(p) ≥ t] ≥ 1/4. (3)

Since by definition of t we have P[Y ∈ A ∧Rank(p) ≥ t+ 1] < 1/4, we also have

P [Y ∈ A ∧Rank(p) ≤ t] ≥ 1/2− 1/4 = 1/4. (4)

We obtain the desired conclusions as follows, denoting by U1, U2, . . . , uniform and independent
0− 1 random variables. The first probability in the conclusion of the lemma is at least

P
[
Rank(j) ≥ t+ (`+ d)/2 +

√
`/c1/6

]
because ` ≥ c ˙·d.
Writing Rank(j) as the sum of the first p bits and the rest, the above probability is at least

P[
∑
k≤`+d

Zk ≥ (`+ d)/2 +
√
`/c1/6|Y ∈ A ∧Rank(p) ≥ t] · P[Y ∈ A ∧Rank(p) ≥ t].

The second factor is ≥ 1/4 by (3). Also by (2) in the first factor we can replace the Zk with
uniform bits changing the probability by at most ε. Hence the first factor is at least

P[
∑
k≤`+d

Uk ≥ (`+ d)/2 +
√
`/c1/6]− ε.

In turn the probability is

≥ 1/2−
√
`/c1/6 ·Θ(1/

√
`) ≥ 1/2−Θ(1/c1/6)

using an estimate of the central binomial coefficient provided e.g. in [CT06], Lemma 17.5.1.
Overall, the first probability in the conclusion of the lemma is(

1/2−Θ(1/c1/6)− ε
)

(1/4) ≥ 1/10

for large enough c.
We now turn to the second probability in the conclusion of the lemma. Proceeding in a similar

way, this probability is at least

P

[∑
k≤`

Zk < `/2
∣∣∣Y ∈ A ∧∑

k

Yk ≤ t

]
· P

[
Y ∈ A ∧

∑
k

Yk ≤ t

]

≥

(
P

[∑
k≤`

Uk < `/2

]
− ε

)
· (1/4) ≥ (1/2− ε) · (1/4) ≥ 1/10

for all sufficiently large c. Here the second inequality uses (2) and (4).
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8 Proof of Corollary 12

We claim that there is a depth-q f : W s → Σm such that the statistical distance between f(U)
and S is at most 1− Ω(1− δ)/2c. Then the result follows from the sampling lower bounds.

To prove the claim, consider fixing the communication transcript of the protocol to i. Because
the communication is fixed, each party can be implemented as a depth-q forest. If the protocol
dictates Party j to send a message that does not match i, Party j outputs any value and stops.
Let C = 2c and consider the C forests fi where each fi corresponds to the protocols run with
fixed communication transcript i. The result now follows from the next lemma, letting Pi be the
output distribution of fi, and Qi(x) the probability that f outputs x using transcript i.

Lemma 24. Let P be a distribution and S a set. Suppose P (x) =
∑C

i=1Qi(x) where each
Qi(x) ∈ [0, 1] but

∑
xQi(x) = 1 is not required. Suppose ∆(P, S) = δ. Define Pi to be

the probability distribution with Pi(x) = Qi(x) and the remainder 1 −
∑

xQi(x) mass is put
arbitrarily.

Then there exists i such that ∆(Pi, S) ≤ 1− ε where ε := 0.1 · (1− δ)/C.

Proof. We use that
∆(A,B) =

∑
x:A(x)≥B(x)

A(x)−B(x).

Suppose there exists i such that ∑
x:Qi(x)≤S(x)

Qi(x) ≥ ε.

Then ∆(Pi, S) =
∑

x:Pi(x)≤S(x) S(x)− Pi(x) ≤ 1− ε and we are done.
Let

Ti := {x ∈ S : Qi(x) ≥ 1/|S|} ⊆ S.

By above each Qi puts mass at most ε outside of Ti. Now we show that the mass in Ti is con-
centrated on few points. Suppose |Ti| ≥ ε|S| for some i. Then ∆(Pi, S) =

∑
x:S(x)≤Pi(x) Pi(x)−

S(x) ≤ 1−
∑

x∈Ti 1/|S| ≤ 1− ε and we are done.
Now we can contradict the hypothesis. Let

T := {x ∈ S : P (x) ≥ 1/|S|} ⊆ S.

Note that Ti ⊆ T for every i. Hence each Qi contributes ≤ ε|S| elements to T via Ti, and
further contributes ε mass to distribute for others. With mass α we obtain ≤ α|S| elements such
that P (x) ≥ S(x). Hence |T | ≤ Cε|S|+ Cε|S| = 2Cε|S|.

Let α, β, γ be respectively the masses that P puts outside of S, in T , and in S \ T . Note
that γ ≤ Cε, since each Qi puts ≤ ε mass on S \ Ti. We have

∆(P, S) =
∑

x:P (x)≥S(x)

P (x)− S(x) = α + β −
∑
x∈T

S(x) ≥ α + β − 2Cε.

We have α + β = 1− γ ≥ 1− Cε.
Hence we get

δ ≥ ∆(P, S) ≥ 1− 3Cε,

as desired.
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A Proof of the fixed-set Lemma 19

Begin with R equal to the uniform distribution over W s. If there are q words and q values such
that the probability of getting those values in B is larger than (1 + α)/W q then we fix them to
those values, in both B and R. Now we have subsets of W s−q, the loss has decreased by an
additive log2 1/(1 + α) = Ω(α), and we repeat the process.

Because the initial loss was b, this process stops after O(b/α) iterations. In the end, the loss
inside the final universe is at most b, since we never increase loss. With respect to the original
universe, because we fixed O(qb/α) words, the loss is at most O(wqb/α) + b ≤ b ·O(wq/α).

Let B1 and R be the distributions when the process stops. Consider any tree g : W s → {0, 1}
of depth q. Let P be the collection of paths in g leading to the output 1. Note that each path
p ∈ P corresponds to q input words and q values for them. Write PX [p] for the probability of
following path p under distribution X. By above we have PB1 [p] ≤ (1 +α)/W q = (1 +α)PR[p].

Hence

P[g(B1) = 1] =
∑
p∈P

PB1 [p] ≤
∑
p∈P

(1 + α)PR[p] = (1 + α)P[g(R) = 1].

And so in particular P[g(B1) = 1] ≤ P[g(R) = 1] + α.
Repeating the argument with 0 and 1 swapped yields the lemma for trees with boolean

alphabet. To prove the lemma for a tree g′ with arbitrary alphabet, reduce to the case of boolean
alphabet in the following standard way. Suppose that the statistical distance between g′(R) and
g′(B1) is > α. This means that there exists a set T such that

|P[g′(R) ∈ T ]− P[g′(B1) ∈ T ]| > α.

Define tree g with boolean output as g(x) := 1 iff g′(x) ∈ T ; note this just amounts to changing
the labels of the leaves of g′. Now the left-hand side of the inequality above can be written as

|P[g(R) = 1]− P[g(B1) = 1]|
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and this contradicts the result for trees with boolean outputs and concludes the proof of the
lemma.
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