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Abstract

We identify two new big clusters of proof complexity measures equivalent
up to polynomial and log n factors. The first cluster contains, among others,
the logarithm of tree-like resolution size, regularized (that is, multiplied by
the logarithm of proof length) clause and monomial space, and clause space,
both ordinary and regularized, in regular and tree-like resolution. As a conse-
quence, separating clause or monomial space from the (logarithm of) tree-like
resolution size is the same as showing a strong trade-off between clause or
monomial space and proof length, and is the same as showing a super-critical
trade-off between clause space and depth. The second cluster contains width,
Σ2 space (a generalization of clause space to depth 2 Frege systems), both
ordinary and regularized, as well as the logarithm of tree-like size in the sys-
tem R(log). As an application of some of these simulations, we improve a
known size-space trade-off for polynomial calculus with resolution. In terms
of lower bounds, we show a quadratic lower bound on tree-like resolution size
for formulas refutable in clause space 4. We introduce on our way yet another
proof complexity measure intermediate between depth and the logarithm of
tree-like size that might be of independent interest.

1 Introduction

With the rise of computer science, questions like “can we solve a problem?” got a
quantitative counterpart: “how hard is it to solve a problem?”. Proof complexity
deals with the quantitative version of “can we prove a theorem?”, namely, the
question “how hard is it to prove a theorem?”. The systematic study of the latter
question for propositional proof systems started with Cook and Reckhow [13], where
its fundamental role in complexity theory was identified.

The most natural, arguably also the most important, measure of the complex-
ity of a proof is its size, and indeed, much of the research in propositional proof
complexity has concentrated on proof size lower bounds. But given in particular
their role in proof systems of practical significance, several other natural complex-
ity measures have been considered, and that has led to a considerable line of study
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about relations between them (simulations), lack of relations thereof (separations)
and the inherent impossibility of optimizing two different measures at once (trade-
offs). To aid further discussion, let us review those measures and previous results
that are most pertinent to this work.

A measure that directly emerged from the study of proof size lower bounds
is width; the width of a resolution proof is the number of literals in the largest
clause occurring in the proof. Its importance was accentuated by Ben-Sasson and
Wigderson [8], by showing that a short resolution proof can be transformed into a
narrow one; in particular, for tree-like resolution proofs,

W (F ` ⊥) ≤ logST (F ` ⊥) +W (F ), (1.1)

and for general resolution proofs,

W (F ` ⊥) ≤ O
(√

n logSR(F ` ⊥)
)

+W (F ). (1.2)

Here W (F ` ⊥), ST (F ` ⊥) and SR(F ` ⊥) stand for the minimum width,
tree-like size and DAG-like size respectively of refuting an unsatisfiable CNF F
in resolution; similar notation is employed throughout the paper. By W (F ), we
denote the maximum width of a clause in F itself.

Space complexity for propositional proofs was introduced in [17, 1]. Esteban
and Torán [17] showed that a short tree-like resolution proof can be transformed
into a resolution proof of small clause space:

CSpace(F ` ⊥) ≤ logST (F ` ⊥). (1.3)

Atserias and Dalmau [2] demonstrated the first instance of the relationship between
space and width, showing that a resolution proof having small clause space can be
transformed into a narrow one:

W (F ` ⊥) ≤ CSpace(F ` ⊥) +W (F ). (1.4)

Constructive versions of their result were given by Filmus et al. [19] and Razborov
(unpublished), see also Kraj́ıček [26, Theorem 5.5.5]. It is worth noting that (1.3)
and (1.4) taken together provide a refinement of (1.1) and that, viewed this way,
we relate two sequential measures (tree-like size and width) with a space measure
as an intermediate. We will see more examples of such an interplay in this paper.

More recently, Bonacina [9] showed that for total space in resolution (measured
as the sum of widths of clauses in a configuration) we have

W (F ` ⊥) ≤ O
(√

TSpace(F ` ⊥)
)

+W (F ), (1.5)

and Galesi et al. [20] showed a weakened version of (1.4), but for the analogue of
clause space in stronger proof systems operating with polynomials (or in fact even
arbitrary Boolean functions of monomials):

W (F ` ⊥) ≤ O
(

(MSpace(F ` ⊥))2
)

+W (F ). (1.6)
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Regularized1 versions µ∗ of space complexity measures are defined by multi-
plying the measure in question µ by the logarithm of the proof length; these were
considered e.g. by Ben-Sasson [4] and Razborov [34]. The latter paper also contains
a suggestion that the “right” level of precision when comparing measures of this
kind are up to polynomial and log n factors;2 we will henceforth call two measures
equivalent if they simulate each other in this sense. The paper [34] identified a big
cluster of ordinary and regularized space complexity measures, including total and
variable space, that are all equivalent to proof depth in resolution. One notable
measure that defied this classification was (regularized) clause space.3

Our contributions

In this paper we identify two other big clusters of equivalent complexity measures
not covered by the results in [34]. The cumulative picture combining both previ-
ously known and new results is summarized in Figure 1. There, an arrow is to be

logSR

W ≈ logST,R(log) ≈ Σ2Space ≈ Σ2Space∗

MSpace

CSpace

logST ≈ TCSpace ≈ RCSpace

≈ CSpace∗ ≈ MSpace∗

DP

D ≈ TSpace ≈ TSpace∗ ≈ VSpace∗

VSpace

Figure 1: Simulations

interpreted as an inequality, and ≈ as equality, both up to polynomial and log n

1The paper [34] used the word “amortized” but Sam Buss pointed out to us that it is somewhat
misleading in this context.

2Note that the size/length measures appear in this set-up under a logarithm. Hence this
corresponds to quasi-polynomial simulations in the Cook-Reckhow framework.

3A technical remark: [34, Theorem 3.2] does not apply to clause space as it is not bounded
from below by the number of variables.
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factors. To improve readability, we have omitted the argument F ` ⊥.

Let us briefly explain this picture. The first new cluster is centered around the
logarithm of tree-like resolution size. Given the proof method of the simulation (1.3)
in [17], it can be obviously strengthened in two directions: by replacing the left-
hand side with clause space in tree-like resolution or by replacing it with regularized
clause space. Tree-like clause space in resolution was shown to be equivalent to the
logarithm of tree-like size in the same paper [17, Corollay 5.1]; in other words, after
this replacement in the left-hand side, the bound (1.3) becomes tight, within the
precision we are tolerating.

We show that the second variant, that is regularized clause space, is also equiv-
alent to the logarithm of tree-like resolution size, and this result extends to also
include regularized monomial space to the same cluster. Given that [17, Corollay
5.1] also holds for (ordinary) clause space in regular resolution [17, Corollary 4.2],
this means that all these space measures turn out to be equivalent to each other
and to the log of tree-like resolution size. We also remark (given the results above,
this readily follows from definitions) that regularized versions of the clause space in
tree-like or regular resolution are also in this cluster.

The question of whether (ordinary) clause space also belongs here is what we
consider to be a major, and most likely very difficult, open problem. But since it
has turned out to be closely related to several other threads in proof complexity,
we prefer to keep the momentum and defer further discussion to the concluding
Section 5.

Our second cluster is presided by resolution width. First, we introduce a natural
analogue of clause space in DNF resolution that we call Σ2 space. This can be seen
as an extension of clause space to depth 2 Frege systems; indeed, the restriction of
Σ2 space to depth 1 Frege is precisely clause space, and its restriction to k-DNF
resolution, for constant k, coincides, up to a constant factor, with the concept of
space that has been studied before for such systems (see e.g. [16, 7]). In our model,
configurations are arbitrary sets of DNFs, and we charge k for every individual
k-DNF in the memory. Clearly, Σ2Space ≤ CSpace and Σ2Space∗ ≤ CSpace∗.
Then we strengthen the Atserias-Dalmau bound (1.4) by replacing CSpace with
Σ2Space and continue to show that both ordinary and regularized versions of Σ2

space are actually equivalent to resolution width. Thus, remarkably, the difficult
open question on whether we have a strong trade-off between space and length for
clause space gets a relatively easy negative solution for a stronger proof system. We
have also been able to locate in this cluster another interesting size measure: the
size of tree-like proofs in the system R(log), which gives a somewhat unexpected
generalization of (1.1). We have not been able to retrieve the equivalence of width
and tree-like size in R(log) from the literature in exactly this form but it is implicit
in Lauria [27] and, with a bit of effort, can be traced back as far as Kraj́ıček [24].

It is worth noting that some of the simulations in this cluster work only in the
syntactical setting. This comes in contrast with what happens with the other two
clusters: all simulations involving clause, monomial, variable and total space, also
work in a purely semantic setting. For example, in case of monomial space we
can allow arbitrary Boolean functions of monomials as memory configurations and
allow any number of sound inferences to be performed at once in each step.
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We use (some of) these simulations to prove:

1. There are unsatisfiable CNFs F of size O(n) with S(F ` ⊥) ≤ O(n), W (F `
⊥) ≤ O(1) and MSpace∗(F ` ⊥) ≥ Ω(n/ log n) (Theorem 4.1).

This is an improvement on the previously known bounds MSpace∗(F ` ⊥) ≥
Ω(n1/4) from [23] and MSpace∗(F ` ⊥) ≥ n1/2/(log n)O(1) in [22]. Unlike
these previous results, our proof is remarkably simple.

2. There are unsatisfiable CNFs F of size O(n) with CSpace(F ` ⊥) = 4 and
ST (F ` ⊥) ≥ Ω(n2/ log n) (Theorem 4.6).

This is a first, admittedly modest, step toward separating clause space and,
say, tree-like size; as we already said, we will discuss this question in more
details in Section 5. It is for this proof that we need the last unexplained
entry DP on Figure 1: it stands for positive depth, and it is a one-sided
version of depth. We also remark that the space bound in this result is
optimal. More precisely, we make a relatively simple observation (Theorem
4.2) that CSpace(F ` ⊥) ≤ 3 if and only if F is “essentially Horn” in which
case it will possess a linear size tree-like resolution refutation.

Finally, let us briefly summarize what is known (to the best of our knowledge) in
terms of separating the measures in Figure 1. Let us start with “true” separations,
i.e. separations that work modulo polynomial overheads and log n factors. From
now on, for proof complexity measures µ1, µ2 we will use the notation µ1 � µ2 to
stand for µ1(F ` ⊥) ≤ (µ2(F ` ⊥) log n)O(1) for any CNF F in n variables; µ1 ≈ µ2

is the same as µ1 � µ2 ∧ µ2 � µ1. Clearly � is transitive, and this implies that ≈
is an equivalence relation and � imposes a partial order on its equivalence classes.

Bonet and Galesi [10] proved that W 6� logSR. More precisely, there are
constant width formulas F of size O(n3) such that SR(F ` ⊥) ≤ O(n3) and W (F `
⊥) ≥ Ω(n). Ben-Sasson [4] proved that VSpace 6� CSpace, and after negating the
variables in his formulas, this works two more levels up on Figure 1. Namely, there
are constant-width formulas F of size O(n) such that VSpace(F ` ⊥) ≥ Ω(n/ log n)
while DP (F ` ⊥) ≤ O(1). This also provides a separation between DP and
D that, though, is much easier to prove directly [35, Theorem 4.6]. Without
negating the variables, it is easy to see that Ben-Sasson’s proof actually gives
DP (F ` ⊥) ≥ Ω(n/ log n), thus separating DP from logST and hence from the
whole middle cluster. Again, it is also easy to see this directly. Ben-Sasson, H̊astad
and Nordström [30, 6] separated clause space from width; while it is believed that
their formulas should also have large monomial space complexity, the questions
of separating clause space from monomial space, as well as monomial space from
width are widely open.

Separating space complexity measures from their own regularized versions ap-
pear to be a very daunting task in general. As follows from Figure 1, for variable
space this is equivalent to separating it from depth [35]. A quadratic separation
between VSpace and VSpace∗ was proved in [34, Section 6], with a disappointingly
elaborate proof. Nothing is known in terms of separating CSpace from (the cluster
of) CSpace∗: Theorem 4.6 makes a progress in that direction, but it is admittedly
rather modest. Nothing seems to be known for CSpace vs. MSpace, and our struc-
tural picture provides a good heuristic explanation of the difficulty of this question:
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it would also separate MSpace from MSpace∗. Finally, in the very recent paper
by the first author (in preparation), a quadratic separation between width and
monomial space has been established using methods very different from those in
[6].

The paper is organized as follows. After giving the necessary definitions in Sec-
tion 2, in Section 3 we refine (many simulations do not actually involve a polynomial
overhead or extra log n factors) and prove the relations of Figure 1. In Section 4
we prove items 1 and 2 above. The paper is concluded with a few remarks and
open problems in Section 5.

2 Preliminaries

A literal is a propositional variable x or its negation x. We let x
def
= x. A clause

is a disjunction (possibly empty) of literals over distinct variables, and a term is a
conjunction (possibly empty) of such literals. For a clause C = `1 ∨ · · · ∨ `w, we

define the term C
def
= `1∧· · ·∧`w; similarly for a term t = `1∧· · ·∧`w, t

def
= `1∨· · ·∨`w.

The width of a clause or a term is the number of literals it contains. A CNF formula
is a conjunction of clauses, and a DNF formula is a disjunction of terms. The width,
W (F ), of a CNF or DNF formula F is the width of the largest clause or term it
contains. A CNF or DNF formula of width at most w is called w-CNF or w-DNF
respectively. Clauses may be alternatively viewed as 1-DNFs, but the latter class
is slightly larger as tautological 1-DNFs like x ∨ x are allowed.

A partial (truth) assignment (often called restriction) is a mapping from a
subset V of all propositional variables to {0, 1}; it is naturally extended to the

negations of the variables in V by α(x)
def
= α(x). The result of applying a partial

assignment α to a CNF formula F is another CNF formula F |α, obtained by deleting
from F all literals ` such that α(`) = 0 and deleting all clauses containing a literal
` such that α(`) = 1. Similarly for DNF formulas. F |α is called the restriction of
F to α. For a formula F , we write α |= F if every total extension of α satisfies F
or, in other words, if F |α is semantically equal to 1. For a set of formulas S, α |= S
means α |=

∧
F∈S F , and for two sets of formulas S and T , we write S |= T if all

total assignments satisfying every formula in S also satisfy every formula in T . For
a clause C, we denote by αC the minimal partial assignment such that αC |= C.

Resolution is a proof system operating with clauses. Its inference rules are:

C

C ∨D
,

C ∨ x D ∨ x
C ∨D

. (2.1)

The leftmost one is called the weakening rule; the rightmost one is called the
resolution rule. We refer to the variable x in an application of the resolution
rule as the variable being resolved. One of the reasons to include the (redundant)
weakening rule is that it makes resolution proofs closed under restricting by a
partial assignment.

The width W (π) of a resolution proof π is defined as the maximum width of
a clause in it, and the width W (F ` ⊥) is usually defined as the minimum width
W (π) of a resolution refutation π of F . This definition, however, is ill-suited for
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those CNFs that themselves have large width, like the pigeonhole principle. We
have found it way more natural and convenient to work with its slightly modified
version used in [21] that we will denote by W (`F ⊥). It is defined as follows.

Instead of just allowing the clauses C of F as axioms, we allow them to partic-
ipate in the form of the following more general F -cut rule:

D ∨ `1 . . . D ∨ `r
D

, (2.2)

where `1 ∨ . . . ∨ `r is a clause of F . In case some D ∨ `j contains contradictory
literals, it is removed from the premises. In particular, when D = C, the list of
premises becomes empty so the clauses of F are still available as axioms.

It is easy to see that

W (`F ⊥) ≤W (F ` ⊥) ≤W (`F ⊥) +W (F )− 1

hence the difference between the standard definition and ours becomes immaterial
when W (F ) is small, and it does not have any noticeable impact on the size of a
refutation.

One immediate advantage of this definition is that if we replace W (F ` ⊥) with
W (`F ⊥) in (1.1), (1.2), (1.4), (1.5) or (1.6), we need not keep the annoying terms
W (F ) any more, they just disappear. Simulations on Figure 1 will work without
any restrictions on the width of the refuted CNF. More advantages of a similar
flavor will become clear later, see Theorems 3.4 and 4.2 in particular.

Let us also remark that resolution with the F -cut rule is nothing else but
Gentzen’s sequent calculus with only atomic cuts, restricted to proving sequents of
the form C1, . . . , Cm →, where C1, . . . , Cm are clauses.

DNF resolution, or depth 2 Frege, is the straightforward extension of resolution
where we allow, apart from variables in the resolution rule, also formulas of depth
14 to be resolved. DNF resolution operates with DNF formulas. Its axioms and
inference rules are:

x ∨ x
,

G

G ∨H
,

G ∨ t1 H ∨ t2
G ∨H ∨ (t1 ∧ t2)

,
G ∨ t H ∨ t

G ∨H
,

where G and H are DNF formulas and t, t1, t2 and t1 ∧ t2 are terms. The leftmost
rule is the weakening rule in this context, and the rightmost rule is called the
cut rule. The remaining rule allows us to deal with ∧ connectives, and is called
∧-introduction.

For a non-decreasing function f : N → N, R(f) is the subsystem of DNF
resolution where each DNF in a proof of size s is required to have width at most
f(s). R(k) for k a constant is usually denoted by Res(k) (thus, resolution is Res(1)).
DNF resolution and R(f) were first introduced in [25].

Next, we would like to consider systems for manipulating terms. The syntactic
details of such systems will not matter for our results, but for concreteness, let us
present a prominent system of algebraic flavor originally introduced in [12]. We

4For this reason, some authors use the term “depth 1 Frege” for DNF resolution; we prefer to
stick to the convention under which depth refers to lines in a Hilbert-style proof.
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will actually use an extension, proposed in [1], called polynomial calculus with res-
olution and abbreviated as PCR. PCR works with a fixed field F. Clauses/terms
are represented as monomials. The syntactic objects PCR operates with are poly-
nomials in F[x1, . . . , xn, x1, . . . , xn], represented as linear combinations over F of
monomials, and a proof line P is to be interpreted as asserting that P = 0. The
axioms and inference rules of the system are:

`2 − `
,

`+ `− 1
,

P Q

αP + βQ
,

P

`P
,

where ` ∈ {x1, . . . , xn, x1, . . . , xn}, P,Q ∈ F[x1, . . . , xn, x1, . . . , xn] and α, β ∈ F.

In each of the above systems, non-logical axioms are given as a set of clauses S,
viewed as a CNF formula (in PCR, a clause C = `1 ∨ · · · ∨ `k ∈ S is represented as
the monomial `1 . . . `k). We refer to the number of formulas appearing in a proof
as its size. A proof of the unsatisfiability of F , or a refutation of F , is a derivation
of a syntactic contradiction, denoted by ⊥, from the clauses of F . In resolution
and DNF resolution ⊥ is the empty clause; in PCR, it is the polynomial 1.

We can view proofs as DAGs, by drawing edges from premises to conclusions in
applications of the inference rules. If a proof DAG is a tree, that is every formula
or polynomial in it is used as a premise at most once, then we say that the proof
is tree-like. The size of a tree-like proof is the number of its leaves, and its depth
is the length of its longest root-to-leaf path. We will also consider a one-sided
version of depth, which we call positive depth. The positive depth of a tree-like
resolution proof is the maximum number of negative literals introduced along a
root-to-leaf path. We denote tree-like size, depth and positive depth by ST , D and
DP respectively.

To define space complexity measures, we need to consider a different topology,
namely view a proof as a sequence of memory configurations [17, 1]. A memory
configuration will be a set of clauses in resolution, a set of DNF formulas in DNF
resolution, or a set of polynomials in PCR. In a proof from a CNF F then, to go
from a memory configuration to the next we may do one of the following:

Axiom Download: add a clause of the formula F , or a logical axiom of the system
we are working with;

Erasure: delete a clause/DNF formula/polynomial, or

Inference: add the result of applying an inference rule to formulas in the current
configuration.

A proof in configurational form is said to be tree-like if, whenever a formula is used
as a premise in an inference rule, it is immediately erased from the memory.

The clause space of a configuration in resolution is the number of clauses it
contains, its variable space the number of distinct variables it contains, and its
total space the total number of literals, counting repetitions, it contains. For DNF
resolution, we will be interested in what we call Σ2 space of a configuration. The
Σ2 space of a configuration M = {G1, . . . , Gs} is defined as the sum of widths:

Σ2Space(M)
def
= W (G1) + . . . + W (Gs). For PCR, we will consider the monomial

space, which is the number of distinct monomials in a configuration.
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For a space measure µ on configurations and a proof π = M1, . . . ,Mt, we
naturally let µ(π)

def
= max {µ(Mi) | 1 ≤ i ≤ t}. As in [34], we will also consider

regularized versions µ∗ defined as µ∗(π)
def
= µ(π) · log |π|,5 where |π| is the number t

of configurations in π.
Finally, for a complexity measure µ on proofs, we write µ(F ` G) for the min-

imum value of µ(π), taken over all proofs of G from F ; if such a proof does not
exist, we set µ(F ` G) to be ∞. In most cases, the measure µ clearly suggests
what the underlying proof system should be. For example, W (F ` ⊥) is the mini-
mum width of a resolution refutation of F , and MSpace∗(F ` ⊥) is the minimum
regularized monomial space of a PCR refutation (in configurational form) of F .
ST (F ` ⊥) shall mean the minimum size of a tree-like resolution refutation of F .
We shall use the notation ST,R(f)(F ` ⊥) to mean the minimum size of a tree-like
R(f)-refutation of F . TCSpace(F ` ⊥) is the minimum clause space taken over all
tree-like configurational refutations of F in resolution. Likewise, RCSpace(F ` ⊥)
stands for the clause space in regular resolution, i.e. the subsystem of resolution
where we require that a variable cannot be resolved more than once on any path
in (the DAG resulting from the expansion of) the configurational proof π.

3 Simulations

In this section we state (as we already noted, in many cases we do not have to
introduce polynomial overheads and log n factors) and prove all new non-trivial
simulations on Figure 1.

3.1 Tree-like resolution size and regularized monomial space

First we show that logST in resolution, TCSpace, RCSpace, CSpace∗ and MSpace∗,
are all equal up to polynomial and log n factors. Our main new contribution is the
following simulation. (The second item is included since it allows us to shave off the
log n factor with little additional work, and this will give a slightly better bound
in Theorem 4.1.)

Theorem 3.1. For any unsatisfiable CNF formula F over n variables,

logST (F ` ⊥) ≤ 2MSpace∗(F ` ⊥) log(n+ 1),

TCSpace(F ` ⊥) ≤ 2 (MSpace∗(F ` ⊥) + 1) .

Proof. The proof is analogous to the construction in [34] showing that depth is
upper bounded by regularized variable space. Let M1, . . . ,Mt be a refutation of
F in configurational form, of monomial space s. We show, by induction on d, that
for every interval [i..j] ⊆ [1..t] with j > i, j − i ≤ 2d, and for every clause D
such that αD |= Mi and αD |= ¬Mj , it holds that ST (F ` D) ≤ (n + 1)ds and,
moreover, the assumed tree-like resolution proof can be carried out in clause space
at most ds + 2. The theorem follows by taking [1..j] := [1..t], d := dlog te and
D := ⊥.

5All logarithms in this paper have base 2.
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Base case. Suppose that d = 0, so that j = i+ 1. The statement is vacuously true
except when the step consists in downloading an axiom C from F , simply because
in all other cases we have Mi |=Mi+1 and hence D with the specified properties
does not even exist. Let D be a clause for which αD |=Mi and αD |= ¬(Mi∪{C}).
Then we necessarily must have αD |= ¬C, which is equivalent to saying that D is
a weakening of C.

Inductive step. Suppose that d > 0, let [i..j] ⊆ [1..t] be any interval with j−i ≤ 2d,
j > i + 1, and let D be a clause such that αD |= Mi and αD |= ¬Mj . Set k :=
i+d(j−i)/2e, so that k−i ≤ 2d−1 and j−k ≤ 2d−1. Let the list m1, . . . ,ms contain
all monomials occurring in Mk. For a clause A and a monomial m = `1 . . . `r,
consider the tree shown in Figure 2 designating a derivation of A in resolution;
it is obtained from the obvious decision tree deciding m by reversing edges and
weakening the result by A. Denote this tree by TA;m.

A

A ∨ `1 A ∨ `1

A ∨ `2 A ∨ `1 ∨ `2
...

A ∨ `1 ∨ · · · ∨ `r−1

A ∨ `r A ∨ `1 ∨ · · · ∨ `r

Figure 2: The tree TA;m

Let us now describe the required tree-like resolution proof of D. Start with
TD;m1 . To every leaf of TD;m1 labelled by a clause D′, append the tree TD′;m2 .
Continue this process for all m1, . . . ,ms. If at any point during this construction, a
forbidden disjunction containing a variable and its negation occurs, then we delete
that node and contract at its parent. The resulting tree T has at most (n + 1)s

leaves, and each of its leaves is labelled by a clause E such that αE |= Mk or
αE |= ¬Mk. From the induction hypothesis, there are tree-like resolution proofs
of all those clauses from F , of size (n + 1)(d−1)s. Therefore, there is a tree-like
resolution proof of D from F of size (n+ 1)ds.

To see that this proof can be carried out in clause space at most ds+ 2, notice
that the proof designated by T can be carried out in clause space s+2. Proceed with
this proof, and whenever a clause at its leaves is downloaded, keep all current clauses
in memory (there are at most s of them — the maximum clause space is hit when
the parent of two leaves is brought to memory), and derive it in clause space at most
(d− 1)s+ 2. The fact that such a derivation exists is guaranteed by the induction
hypothesis. The resulting proof has clause space at most s+(d−1)s+2 = ds+2.

Remark 3.1. As we already remarked in the introduction, the above construction
works for any sound system whose configurations are Boolean functions of mono-
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mials. In particular, it works for the purely semantic system called functional
calculus [1]. Even more generally, it works for any proof system in which small
configurations have low decision tree complexity.

For the rest of the relations, we claim that for an unsatisfiable CNF formula F
over n variables, we have

RCSpace(F ` ⊥) ≤ TCSpace(F ` ⊥)

≤ logST (F ` ⊥) + 2

≤ 2 (MSpace∗(F ` ⊥) log(n+ 1) + 1)

≤ 2 (CSpace∗(F ` ⊥) log(n+ 1) + 1)

≤ 2 (RCSpace∗(F ` ⊥) log(n+ 1) + 1)

≤ 2
(

(RCSpace(F ` ⊥))2 log(n+ 1) log(2n) + 1
)
.

The first inequality follows from the observation that every tree-like refutation can
be pruned to the regular form, and this operation does not increase its space. The
second inequality is [17, Theorem 2.1], and the third is Theorem 3.1. The fourth
and the fifth inequalities are obvious. Finally, the last inequality follows from
[17, Corollary 4.2]. Namely, Esteban and Torán showed that if π is a resolution
refutation, in configurational form, of clause space s and depth d, then

|π| ≤
(
d+ s

s

)
. (3.1)

Taking π to be a regular resolution refutation of minimum clause space, we get,
since a regular refutation must have depth at most n,

RCSpace∗(F ` ⊥) ≤ (RCSpace(F ` ⊥))2 log(2n).

As a byproduct, we get that TCSpace ≈ RCSpace. This comes in sharp contrast
with the situation for size, where there is an exponential separation between tree-
like and regular resolution [5].

Also, somewhat surprisingly, instead of amortizing by the logarithm of size,
we could also use much weaker amortization by the logarithm (!) of depth, and
the resulting measure will still be in this cluster. This allows us to re-cast the
main open problem of whether CSpace ≈ CSpace∗ in terms of the existence of a
super-critical (in the sense of [33]) trade-off between clause space and depth.

The remaining (non-trivial) simulation on Figure 1 involving this cluster is:

Theorem 3.2. For any unsatisfiable CNF formula F ,

TCSpace(F ` ⊥) ≤ DP (F ` ⊥) + 2.

Proof. The argument is a refinement of the argument in [17] showing that tree-like
clause space is bounded by depth. We show, by induction on T, that if T is a
tree-like resolution proof of a clause E from F of positive depth d, then there is a
tree-like resolution proof, in configurational form, of E from F of clause space at
most d+ 2.
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If T has size at most 2, then d ≤ 1, and TCSpace(F ` ⊥) ≤ 3. Otherwise, let
T1 and T2 be the subproofs of T proving the two clauses E1 and E2 respectively
from which E is derived via an application of the resolution rule and possibly
applications of the weakening rule. One of T1 and T2, say T1, must have positive
depth at most d− 1. From the induction hypothesis, there is a tree-like proof π1 of
E1 of clause space at most d+ 1, and a tree-like proof π2 of E2 of clause space at
most d+ 2. Deriving first E2 using π2, and then, keeping E2 in memory, deriving
E1 using π1, we get a proof of E of clause space at most d+ 2.

3.2 Resolution width and Σ2 space

The simulations for our second cluster will depend upon the following “locality”
property of DNF resolution.

Lemma 3.3. Let α be a partial assignment. For each of the inference rules of
DNF resolution, if both premises contain a term satisfied by α, then α satisfies
some term in the conclusion.

The main theorem of this section says that as long as we transition from depth
1 Frege to depth 2 Frege, then not only width continues to be smaller than space,
but in fact it becomes (almost) equal to it. As a historical remark, an extension
of the Atserias-Dalmau bound (1.4) for the case of Res(k) is sketched in [19], and,
although it is not stated explicitly, it is also apparent in [16].

Theorem 3.4. For any unsatisfiable CNF formula F ,

1

5
Σ2Space(F ` ⊥) ≤W (`F ⊥) ≤ Σ2Space(F ` ⊥).

Proof. LetM1, . . . ,Mt be a DNF resolution refutation of F , of Σ2 space s. We will
construct an increasing sequence T1, . . . ,Tt of derivations in the system “resolution
plus the F -cut rule (2.2)”. The property we are going to maintain is that for every
clause D labelling a leaf of Ti, either D is a weakening of a clause C in F (call
such a leaf an axiom leaf) or the following holds:

1. for every G ∈Mi, αD satisfies some term of G;

2. W (D) ≤ Σ2Space(Mi).

T1 has one vertex labelled by the empty clause. Now suppose we have con-
structed Ti−1 such that 1 and 2 hold for all non-axiom leaves. For every such leaf
v labelled by a clause D, do the following.

Axiom Download : Suppose thatMi =Mi−1∪{C}, where C = `1∨· · ·∨`r is either
a clause of F (viewed as a 1-DNF) or a logical axiom x ∨ x. If C and D contain
conflicting literals, then item 1 is automatically satisfied and we do nothing at this
leaf. Next, C ⊆ D would have implied that C is a clause of F which is impossible
since we have assumed that the leaf is non-axiom. Thus, there exists at least one
j ∈ [r] such that `j 6∈ D, and for any such j we add to v a child labelled by D ∨ `j .
This will be an application of the F -cut rule if C is a clause or of the resolution
rule if C is x ∨ x.
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Erasure: Suppose that Mi ⊆ Mi−1. Then add to v a single child labelled by a
clause E ⊆ D such that W (E) ≤ Σ2Space(Mi) and for every G ∈Mi, αE satisfies
some term of G.

Inference is immediately taken care of by Lemma 3.3, D does not change.

Since ⊥ ∈ Mt, Tt may not contain any non-axiom leaves and hence defines a
refutation. Also, it is clear from the construction and property 2 above that any
clause D appearing in it must satisfy W (D) ≤ max1≤i≤t Σ2Space(Mi) = s. Hence
W (`F ⊥) ≤ s.

For the converse inequality, suppose that C1, . . . , Ct is a refutation in the system
“resolution plus the F -cut rule”, of width w. For every i ∈ [t], set

Gi :=
i∨

j=1

Cj .

Each Gi is a w-DNF. For our small space refutation, we will first derive Gt, then
Gt−1 ∨Ct, then Gt−1, then Gt−2 ∨Ct−1, and so on, until we get the empty clause.
Notice that Gi−1 ∨ Ci is either a tautology with an obvious derivation in DNF
resolution, or Ci is a clause of F . In the latter case, we can immediately derive
Gi−1 ∨ Ci. Otherwise, Ci will be the result of applying either the resolution rule
or the weakening rule or F -cut rule to some clauses among C1, . . . , Ci−1. In either
case, it can be checked that Gi−1∨Ci has a tree-like proof of Σ2 space at most 3w,
and therefore the proof above can be carried in Σ2 space at most 5w.

Remark 3.2. The second part of this proof implies that a posteriori, DNF resolu-
tion will retain its power in terms of space even if we restrict the formula space
(the maximum number of DNFs in a configuration) to a constant. This in turn
immediately implies, also a posteriori, that we can balance our definition of Σ2

space replacing in it W (G1) + . . .+W (Gs) with s ·max(W (G1), . . . ,W (Gs)), and
the resulting measure will still be equivalent to Σ2 space. We are not aware of a
direct proof of this simulation by-passing width.

Next, we show how to control the length of a proof, ruling out for DNF resolu-
tion strong length-space trade-offs conjectured for variable, clause and monomial
space.

Corollary 3.5. For any unsatisfiable CNF formula F with n variables,

Σ2Space∗(F ` ⊥) ≤ O
(

(Σ2Space(F ` ⊥))2 log n
)
.

Proof. Let s := Σ2Space(F ` ⊥). By the first part of Theorem 3.4, F has a width
O(s) resolution refutation with the additional F -cut rule. Then we apply to it
the construction from the second part its proof in which we can clearly assume
t ≤ nO(s) (since all clauses in the sequence can be assumed to be different). By an
easy inspection, the length of the resulting refutation will still be nO(s). Therefore,

Σ2Space∗(F ` ⊥) ≤ O(s2 log n).

13



The following is known for space in regular or tree-like resolution (see [18]
or Section 3.1 above), is trivial for variable or total space and is wide open for
clause and monomial space (again, see Section 5 for a more thorough discussion).
Remarkably, Corollary 3.6 is about a measure that is below (smaller than) clause
space unlike the known cases mentioned above.

Corollary 3.6. If F has a constant Σ2 space refutation, then it has a refutation
of constant Σ2 space and polynomial length.

Proof. The refutation constructed in the proof of Corollary 3.5 will in our case also
have constant Σ2 space.

Let us finally deal with the remaining measure, tree-like proofs in R(log). (Re-
call that an R(log) refutation of a formula F is a DNF resolution refutation of size
s in which every term has width at most log s.)

Theorem 3.7. Let F be an unsatisfiable CNF formula over n variables. Then

Σ2Space(F ` ⊥)1/2 ≤ logST,R(log)(F ` ⊥) ≤ O(W (`F ⊥) log n).

Proof. For the upper bound, let π be a resolution refutation of F of width w :=
W (`F ⊥). Apply to it the construction in the second part of the proof of Theorem
3.4 once again. By inspection (cf. the proof of Corollary 3.5), this refutation is tree-
like, has size nO(w) and every term occurring in it has width at most w. Padding
it with dummy formulas if necessary, we can assume that it has size ≥ 2w which
makes it into a tree-like R(log) refutation of the required size.

For the lower bound, the argument is an adaptation of the argument in [17]
showing (1.3). Namely, by pebbling, a tree-like proof T of size s > 1 can be turned
into a proof in configurational form, where each configuration contains at most log s
formulas occurring in T. If T is a refutation in R(log), then all terms occuring in
T have width at most log s, so the resulting refutation has Σ2 space (log s)2.

4 Size-space trade-offs and tree-like size lower bounds

4.1 A size-space trade-off for PCR

One application of the results of the previous section is that they easily allow us
to show trade-offs between regularized clause or monomial space and size.

It is known [23, 22] that there are formulas F of size Θ(n) that have a resolution
refutation of size O(n) (and thus a O(n) refutation in the stronger system PCR),
but

MSpace∗(F ` ⊥) ≥ n1/2/(log n)O(1).

Theorem 3.1 immediately gives the following improvement.

Theorem 4.1. For every n ≥ 0, there is a formula F of size Θ(n) that has a
resolution refutation of size O(n), width O(1), and such that

MSpace∗(F ` ⊥) ≥ Ω (n/ log n) .
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Proof. [5] demonstrates the existence of an O(1)-CNF F that has resolution refu-
tations of size O(n), width O(1), and such that logST (F ` ⊥) ≥ Ω(n/ log n). In
fact, [5] shows that Ω(n/ log n) is also the lower bound on the number of points
the Delayer can score in the Prover-Delayer game of [32] played on F . Now, it is
proved in [18] that this number of points is precisely equal to TCSpace(F ` ⊥) and
then the result immediately follows from the second inequality in Theorem 3.1.

Echoing remarks made in [23, Section 1.2], we do not know of any non-trivial
upper or lower bounds on the monomial (or, for that matter, clause) space of the
formulas from [5]. We defer further discussion to Section 5.

4.2 Trade-offs between positive depth and tree-like size for Horn
formulas and tree-like size lower bounds

We would like next to focus on tree-like size lower bounds for resolution attained for
formulas with small clause space. We will show that a tree-like resolution refutation
of a Horn formula actually describes a pebbling strategy, the space and time of the
strategy being the positive depth and size respectively of the proof. This gives
a more transparent version of the result of [5] used in the proof of Theorem 4.1,
which moreover has a natural generalization allowing us to prove some tree-like
lower bounds for formulas of small clause space.

4.2.1 Horn formulas—basics

Horn formulas, that include pebbling formulas, have seen a plethora of applications
in proof complexity over the past two decades, including separating resolution size
from tree-like resolution size [5], separating width from variable space and clause
space [4, 6, 7], separating depth from tree-like clause space [35], and giving trade-
offs [4, 7, 23, 3], to name a few.

A CNF formula is called Horn if every clause in it has at most one non-negated
variable. Equivalently, a Horn formula is a set of implications involving variables,
with at most one variable at the right hand side of the implication. An implication
of the form x1, . . . , xk → y is asserting that if all the xi’s are true, then y is true;
x1, . . . , xk → is asserting that one of the xi’s is false, → y is asserting that y is
true, and → is a contradiction.

The following result states that Horn formulas make up, in a certain sense, the
easiest class of formulas for proof complexity. For its purposes, it is convenient to
define a slightly modified version CSpace(`F ⊥) of the clause space, in the same
vein we defined W (`F ⊥) above. Namely, we replace the three standard rules with
the following

Three-in-one rule: from a configuration M, infer any configuration M∗ ⊆M∪
F ∪ {C}, where C is obtained from clauses in M, F via an inference rule.

Theorem 4.2. Let F be a CNF formula. The following are equivalent:

1. F contains an unsatisfiable CNF sub-formula resulting from a Horn formula
by negating some of its variables;
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2. CSpace(F ` ⊥) ≤ 3;

3. CSpace(`F ⊥) ≤ 1;

4. W (`F ⊥) ≤ 1.

Proof. For 1 =⇒ 2, we can w.l.o.g. assume that F itself is an unsatisfiable Horn
formula. We show, by induction on the number of variables n, that it can be refuted
in clause space 3. The base case is trivial. Now, suppose that n > 0, and let y be
a variable such that F contains the clause → y. Such a clause must exist, for if
every clause contained a negated variable, then we could satisfy F by setting every
variable to false. Setting y := 1, we get an unsatisfiable Horn formula F |y:=1 with
n− 1 variables. From the induction hypothesis, there is a clause space 3 refutation
of F |y=1. Weakening every clause in it by y gives us a space 3 proof of y from F .
Now we only have to download y and infer ⊥.

For 2 =⇒ 3, let M1, . . . ,Mt be a space 3 refutation of the formula F ; we
can assume w.l.o.g. that it does not contain weakening rules. Consider a path in
the corresponding refutation tree of maximum possible length, say Ci ∈ Mti (0 ≤
i ≤ h) are such that t0 < . . . < th = t, C0 is an axiom, Ch = ⊥ and for i ≥ 1,
Ci is obtained by resolving Ci−1 with some Di−1 ∈ Mti−1. It remains to show
that Di−1 is actually an axiom for any i ≥ 1. For i = 1 this follows from the
maximality of the chosen path. For i ≥ 2, we have Mti−1 = {Ci−2, Di−2, Ci−1}.
Therefore Ci−1 is consistent (and hence not resolvable) with the two other clauses
in Mti−1 . All clauses that may have been inferred in Mti−1+1, . . . ,Mti must have
Ci−1 as one of their premises and, as a consequence, are also not resolvable with
Ci−1. Hence the only clauses in those configurations that may be resolvable with
Ci−1 (in particular, Di−2) are the axioms.

The implication 3 =⇒ 4 is proven by an argument similar to the first part
of the proof of Theorem 3.4. Namely, a space 1 refutation of minimum length in
the three-in-one model must necessarily be a sequence {C1}, . . . , {Ct}, where C1 is
obtained by resolving two clauses in F and Ci+1 is obtained by resolving Ci with
a clause in F . The non-axiom leaves of the tree Ti will simply be all those literals
among `i1, . . . , `i,ri , where Ci = `i1 ∨ . . . ∨ `iri that are not axioms of F . It is
routinely to check that, as in the proof of Theorem 3.4, Ti is a resolution derivation
using the F -cut rule.

Finally, for 4 =⇒ 1, we again proceed by induction on the number of variables
n of F . The base case is trivial. Suppose that n > 0. The fact that there is a
width 1 refutation of F , forces F to have a one literal clause (since the refutation
must start somewhere), say `. Setting ` := 1, we get a width 1 refutation of F |`:=1.
From the induction hypothesis, a sub-formula G of F |`:=1 is unsatisfiable Horn up
to negating some variables. Let Ĝ be the corresponding sub-formula of F ; Ĝ is
obtained from G by restoring ` to some of its clauses. Then Ĝ∧` is an unsatisfiable
Horn sub-formula of F .

4.2.2 Tree-like resolution proofs as pebbling strategies

The paper [4] shows that a configurational resolution refutation π of the so-called
pebbling contradiction PebG on a graph G defines a pebbling strategy on G, of time
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at most |π| and space equal to the variable space VSpace(π). These are strategies
in the so-called black-white game of [14]. We shall show that a tree-like resolution
proof T of any Horn formula H defines a pebbling strategy of time equal to the size
of T and space essentially equal to the positive depth of T. These are strategies in
the more basic black-only pebbling game that in the case H = PebG corresponds
to the black-only pebbling game on G. They were considered by Urquhart [35] who
showed how to relate them to ordinary depth. Thus, in a sense, our Proposition
4.3 below can be viewed as a (far-reaching) refinement of his result.

The rules of the black-only pebbling game, played on a Horn formula H, are as
follows. There is a limited amount of pebbles. Pebbles are placed on the variables
of H according to the rules:

1. A pebble can be placed on a variable y if x1, . . . , xk → y is a clause of H, and
all x1, . . . , xk have pebbles on them. In particular, a pebble can be always
placed on any variable y such that → y is a clause of H.

2. A pebble can be removed from a variable at any time.

A configuration of the pebbling game is a set of the variables of H. A pebbling
strategy is a sequence of configurations, each resulting from the previous one by
one of the rules above. We say that a pebbling strategy refutes H if it ends with a
configuration where for some clause x1, . . . , xk → of H, all variables x1, . . . , xk are
pebbled. Note that if H is unsatisfiable, then such a clause must exist.

Proposition 4.3. Let H be an unsatisfiable Horn formula. A tree-like resolution
refutation T of H of size s and positive depth d can be converted into a pebbling
strategy that, starting with the empty configuration, refutes H in at most s steps
and using at most d+ 1 pebbles.

Proof. We begin with a slight modification of our refutation. Namely, viewing T
as a decision tree, its nodes naturally correspond to partial assignments, and for
the clause C sitting at the node α, we have α |= ¬C. Let us replace C with the
maximal clause satisfying this property. This will give us a refutation, of the same
size and positive depth, in which the resolution rule (2.1) is reduced to

C ∨ x C ∨ x
C

(4.1)

and leaves are labelled by weakenings of axioms in H.
This refutation need not necessarily consist of Horn formulas even if the original

one did so. Nonetheless we will still represent clauses in the sequential form S → T ,
where S, T are disjoint sets of variables, like at the beginning of Section 4.2.1. Note
that |S| ≤ d for any clause S → T appearing in T.

We shall now show by induction that every subtree of T deriving a clause
S → T , leads to a pebbling strategy that, starting with pebbles on all variables of
S and using at most d+ 1 pebbles, either refutes H, or ends with a configuration
which has pebbles on all variables of S and on one variable of T . Thus, if T is
empty then the former must occur and, in particular, the strategy corresponding
to the empty sequent → will start with no pebbles on the variables of H and will
refute H.
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Suppose that S → T is at a leaf. If there are variables x1, . . . , xk in S such
that x1, . . . , xk → is a clause of H, then that leaf describes a strategy that, starting
with pebbles on all variables in S, immediately refutes H. Otherwise, there must
be variables x1, . . . , xk in S and a variable y in T such that x1, . . . , xk → y is a
clause of H. Then the strategy of that leaf is to put a pebble on y. Since |S| ≤ d,
the number of pebbles used is at most d+ 1, as required.

If S → T is not at a leaf, then consider its left and right subtrees T1 and T2

proving S, x→ T and S → T, x respectively (cf. (4.1)). The strategy corresponding
to S → T is defined as follows. First follow T2’s strategy. If that strategy either
refutes H or places a pebble on one of T ’s variables, then we are done. Otherwise,
when the strategy of T2 is concluded, there are pebbles on S and x. Remove all
other pebbles and follow the strategy of T1. The bound d + 1 on the number of
pebbles used at any moment follows from the same bound for T1 and T2.

Clearly, the number of steps of the pebbling strategy corresponding to → is at
most the size of T, and the required bound on the number of pebbles was already
noticed.

Remark 4.1. The proof of Proposition 4.3 relies on an intuitionistic interpretation
of the resolution rule. In the intuitionistic tradition, the denotational view of
assigning truth values is, philosophically, nonsense. A proposition is “true” if it is
provable, and a proof of e.g. a formula S → T is a construction that given proofs of
all the elements of S produces a proof of some element in T . What Proposition 4.3
says is that a tree-like resolution derivation of S → T precisely describes such a
construction, assuming that proofs of all the clauses of H are known. Moreover
this construction will be economical in the number of steps and memory if the size
and the positive depth respectively of the proof are small. Let us further notice,
that although Proposition 4.3 is stated for Horn formulas, it really is general; it
could be stated, with minimal modifications, for arbitrary CNFs.

4.2.3 Tree-like size lower bounds

The following theorem turns pebbling time-space trade-offs for a Horn formula H
into tree-like size lower bounds for its substituted version H[∨2]. We formulate it
in a somewhat general form, to account for various kinds of pebbling trade-offs in
the literature.

Recall that the substituted version F [∨2] of a CNF F (x1, . . . , xn) is defined by
replacing xi with yi∨ zi for mutually distinct variables {y1, z1, . . . , yn, zn}, followed
by converting the result back to the CNF form in the straightforward way.

Theorem 4.4. Let H be an unsatisfiable Horn formula on n variables. Suppose
that every pebbling strategy that refutes H in s steps and using d pebbles, starting
with no pebbles on its variables, satisfies

(d− 1) · f(s) ≥ g(n)

for non-decreasing positive functions f, g. Then

f(t) log t ≥ g(n),

where t
def
= ST (H[∨2] ` 0).
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Proof. Create a probability space of partial assignments by choosing independently
for every variable x of H, which was substituted by y ∨ z, one of y and z with
probability 1/2 and setting it to zero. Note that for any α from this space, H[∨2]|α
is identical to H up to renaming its variables and hence T|α is a refutation of
H, again up to renaming variables. Let T be an arbitrary tree-like resolution
refutation of H[∨2] of size t represented as in the proof of Proposition 4.3, that
is with weakenings at the leaves only. Let σ1, . . . , σk be all clauses S → T with
|S| ≥ g(n)/f(t) occurring as a leaf in T. We have that

P

[
k∨
i=1

(σi|α 6= 1)

]
≤

k∑
i=1

P [σi|α 6= 1] ≤ k2−g(n)/f(t) ≤ t2−g(n)/f(t).

If f(t) log t < g(n), then the above probability is smaller than 1, which means
that there is a point α in our sample space such that T|α is a tree-like resolution
refutation of size at most t and positive depth ≤ g(n)/f(t). This, from Proposi-
tion 4.3, gives a pebbling strategy that refutes H in t steps using d pebbles, where
(d− 1) · f(t) < g(n).

Recall that for a DAG G, the pebbling contradiction PebG is defined as the
Horn formula consisting of all clauses S → x, where x ∈ V (G) and S is the set of
all its immediate predecessors, as well as the clauses x→ for any sink x. Plugging
into Theorem 4.4 various DAGs from the literature with known bounds on their
pebbling complexity and various functions f , we can get several corollaries.

The first is a simplified proof of the separation by Ben-Sasson et al.

Corollary 4.5 [5]. There are formulas of size O(n) having DAG-like resolution
refutations of size O(n), every tree-like resolution refutation of which requires size
exp(Ω(n/ log n)).

Proof. This is by setting f := 1 in Theorem 4.4, and using the graphs of [31] having
constant in-degree and requiring Ω(n/ log n) pebbles to pebble.

The next result was promised in the introduction. It should be compared with
Theorem 4.2.

Theorem 4.6. There are formulas of size O(n) having tree-like resolution refu-
tations of clause space 4, every tree-like resolution refutation of which has size
Ω(n2/ log n).

Proof. This is by setting f(t) := t in Theorem 4.4, and using the graphs of
[28, Theorem 2.3.2] having linear size and exhibiting a dt ≥ Ω(n2) trade-off.
These graphs can be pebbled using 3 pebbles, and that immediately gives that
CSpace(PebGn [∨2] ` ⊥) ≤ O(1). By being more careful, however, we can bring
the space down to the minimum possible value, namely 4, for which a super-linear
lower bound on tree-like resolution size is possible.

More precisely, the above graphs have the following form. They contain two
directed vertex-disjoint paths, let us call them U and L, and there are additional
edges from vertices of U to vertices of L (see Figure 3). Moreover, the indegree
of any vertex in D is two, that is, there are no two vertices in U both with edges
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u1 u2 u3 u4 u5
· · ·

un−1 un

v1 v2 v3 v4 v5

· · ·
vn−1 vn

Figure 3: The form of the graphs giving the trade-off in Theorem 4.6

to the same vertex in D. Let G be such a graph, and let H
def
= PebG be the

corresponding Horn formula. Call the variables of the path U , u1, . . . , un and the
variables of L, v1, . . . , vn as in Figure 3, and suppose that to obtain H[∨2], ui is
substituted by xi∨ yi and vi by zi∨wi. We first note that any clause xi∨ yi can be
derived in clause space 3. This is because the formula resulting by negating all the
variables of PebU [∨2] is Horn, so by Theorem 4.2, CSpace(PebG[∨2] ` xi ∨ yi) ≤ 3.
Notice that the derivations provided by Theorem 4.2 are tree-like. To show the
bound CSpace(H[∨2] ` ⊥) ≤ 4, we need to show, having derived zi−1∨wi−1, how to
derive zi∨wi. Suppose that uj∨vi−1∨vj is a clause of H, so that xj∨zi−1∨zi∨wi,
xj ∨wi−1 ∨ zi ∨wi, yj ∨ zi−1 ∨ zi ∨wi and yj ∨wi−1 ∨ zi ∨wi are clauses of H[∨2].
Notice that

CSpace


(zi−1 ∨ wi−1) ∧

(xj ∨ yj) ∧
(xj ∨ zi−1 ∨ zi ∨ wi) ∧
(yj ∨ zi−1 ∨ zi ∨ wi)

` wi−1 ∨ zi ∨ wi

 ≤ 4.

In this derivation, all premises are immediately removed from memory after they
are used as premises in an inference. Similarly, we have

CSpace


(wi−1 ∨ zi ∨ wi) ∧

(xj ∨ yj) ∧
(xj ∨ wi−1 ∨ zi ∨ wi) ∧
(yj ∨ wi−1 ∨ zi ∨ wi)

` zi ∨ wi

 ≤ 4.

Running the first derivation, deleting everything from memory except zi−1∨zi∨wi
and then running the second derivation, deriving xj ∨yj in clause space 3 whenever
it is downloaded in these derivations, we get the desired clause space 4 derivation
of zi ∨ wi.

By using the construction from [28, Theorem 4.2.6] and the superconcentra-
tor graphs of [15], Theorem 4.6 can be further generalized to a lower bound
(n/ log n)Ω(k) on the tree-like resolution size of refuting formulas with clause space
k. We skip the details as they are straightforward but the result still falls very short
of the ultimate goal. Let us further notice that the fact that the space 4 refutation
in Theorem 4.6 is tree-like might be interesting, as typically tree-like resolution size
lower bounds have been proven in the literature based on the prover-delayer game
of [32], which also gives a lower bound for the clause space of tree-like resolution
refutations (cf. Theorem 4.1).
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5 Concluding remarks

We showed that logST , CSpace∗ and MSpace∗ are equivalent up to polynomial and
log n factors, demonstrating a picture perfectly analogous to the picture involving
D, VSpace∗ and TSpace∗ in [34]. The most important question remains (widely)
open:

Problem 5.1. Is it true that CSpace ≈ logST or MSpace ≈ logST ? Recall for
comparison that logST ≈ CSpace∗ ≈ MSpace∗.

Equivalently, do there exist strong trade-offs between clause (or monomial) space
and length? It should be contrasted with trade-offs results in e.g. [7, 3], and it is a
perfect analogue of Urquhart’s question [35] about variable space vs. depth studied
in [34, Section 6]. Let us make a few more remarks about this problem.

Firstly, for very small space essentially this question was already asked in the
literature before. Namely (see e.g. [29, Open Problem 16]), are there formulas
having constant clause space refutations and with the property that any such refu-
tation must necessarily have super-polynomial length? Suitably adjusting it to our
framework:

Problem 5.2 (small space variant). Are there formulas that have (log n)O(1) clause
or monomial space refutations and with the property that any such refutation must
be of super-quasi-polynomial length exp((log n)ω(1))? Equivalently, any tree-like
resolution refutation must have super-quasi-polynomial length.

In terms of the perceived difficulty, we do not discern too much of a difference
between Problems 5.1, 5.2 and Nordström’s question. In fact, we would like to
cautiously conjecture that there are formulas F with CSpace(F ` ⊥) ≤ 5 and
CSpace∗(F ` ⊥) ≥ exp

(
nΩ(1)

)
. But the only result we were able to prove in that

direction is the rather weak Theorem 4.6.

Secondly, as suggested by Figure 1, any strong separation between monomial
space and clause space would immediately solve Problem 5.1 for monomial space.
As we consider the latter to be most likely very difficult, we take it as a good
heuristic explanation of why we have not seen any progress on the former problem
as well. But let us ask this, and one obviously relevant question, explicitly anyway:

Problem 5.3. Is it true that CSpace ≈ MSpace? Is it true that MSpace ≈W?

We note that by the result from [30, 6], at least one of these must be false. A
quadratic separation between width and monomial space has been recently proved
by the first author (manuscript in preparation). For a discussion on related topics,
see also [11, Section 7.5.5].

Finally, while all these conjectured trade-offs are very strong, they are still not
super-critical in the sense of [33] (the required lower bound on length never exceeds
2n). The inequality (3.1), however, implies that in all these questions refutation
length can be replaced with depth. Since the depth, as a stand-alone measure, is
always bounded by n, these actually are questions about the existence of a super-
critical trade-off between clause space and depth.

We have (somewhat surprisingly) proved that DNF resolution behaves very
differently from resolution with respect to space. Intermediate systems based on
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W ≈ logST,R(log) ≈ Σ2Space ≈ Σ2Space∗

CSpace

logST ≈ CSpace∗ ≈ MSpace∗ ≈ · · ·

Res(2)Space

Res(3)Space

logST,R(2) ≈ Res(2)Space∗

logST,R(3) ≈ Res(3)Space∗

...

MSpace

. .
.

Figure 4: Σ2 space and tree-like size for subsystems of DNF resolution

Res(k) for a constant k were studied in a similar context before, and it is very
natural to wonder what is the situation for those systems.

Let us first remark that for Res(k)-refutations, the definition of space from
[16, 7] (formula space) coincides with ours up to a constant factor so we need not
distinguish between the two. Then Theorem 3.1 readily generalizes to this regime
and gives

logST,Res(k) ≈ Res(k)Space∗,

extending the bottom half of Figure 1 as shown in Figure 4. The proof of Corol-
lary 3.5, however, fails for a constant k as badly as it fails for k = 1. Hence we
have one more question to ask:

Problem 5.4 (Res(k)-variant). Is there a constant k > 0 such that logST,Res(k)

≈ Res(k)Space or at least logST,Res(k) � CSpace?

Let us also mention that as k increases, both hierarchies, logST,Res(k) (and,
hence, also Res(k)Space∗) and Res(k)Space are proper ([16] and [7], respectively).
This excludes the dual version of Remark 3.2: while the formula space of DNF
resolution refutations can be reduced to constant, this is not true for the widths of
individual formulas in the memory.

The relation between VSpace and CSpace is also unknown in one direction (the
opposite one is taken care of by [4]). Let us re-iterate the problem posed e.g. in
[34]:

Problem 5.5. Is it true that CSpace � VSpace?
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Just as with the questions of similar nature discussed above, a negative answer
would also imply a separation between VSpace and VSpace∗, hence we can expect
it to be very difficult.
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