
Affine Extractors for Almost Logarithmic Entropy

Eshan Chattopadhyay∗

Cornell University
eshan@cs.cornell.edu

Jesse Goodman∗

Cornell University
jpmgoodman@cs.cornell.edu

Jyun-Jie Liao∗

Cornell University
jjliao@cs.cornell.edu

June 3, 2021

Abstract

We give an explicit construction of an affine extractor (over F2) that works for affine sources
on n bits with min-entropy k ≥ log n · (log log n)1+o(1). This improves prior work of Li
(FOCS’16) that requires min-entropy at least poly(log n).

Our construction is based on the framework of using correlation breakers and resilient func-
tions, a paradigm that was also used by Li. On a high level, the key sources of our improvement
are based on the following new ingredients: (i) A new construction of an affine somewhere
random extractor, that we use in a crucial step instead of a linear seeded extractor (for which
optimal constructions are not known) that was used by Li. (ii) A near optimal construction of
a correlation breaker for linearly correlated sources. The construction of our correlation breaker
takes inspiration from an exciting line of recent work that constructs two-source extractors for
near logarithmic min-entropy.

1 Introduction

The area of randomness extraction is concerned with producing truly random bits from defective
sources of randomness. The motivation for this area stems from the fact that naturally occurring
sources of randomness are typically defective, but applications in areas such as cryptography and
distributed computing crucially require access to truly uniform bits.

A lot of research has gone into modeling weak sources of randomness, starting with early work
of von Neumann [vN51] who considered the problem of extracting randomness from a stream of
independent, biased bits. By now, the standard way of measuring the quality of a weak source X
is using the notion of min-entropy defined as H∞(X) = minx log(1/Pr[X = x]). Note that for a
distribution X on {0, 1}n, we have 0 ≤ H∞(X) ≤ n. We define an (n, k)-source to be a distribution
on n bits with min-entropy at least k.

We are now ready to define the notion of an extractor for a class of sources. We measure the
quality of the output of the extractor using the notion of statistical distance between distributions
D1 and D2 (on some universe Ω) defined as |D1 −D2| := 1

2

∑
x ∈Ω |D1(x)−D2(x)|.

Definition 1.1 (Deterministic extractors). An extractor Ext : {0, 1}n → {0, 1}m with error ε for
a class of sources X satisfies the property that for any X ∈ X , we have |Ext(X)−Um| ≤ ε.

∗Supported by NSF CAREER award 2045576

1

 

ISSN 1433-8092 

Electronic Colloquium on Computational Complexity, Report No. 75 (2021)



A folklore result from the 80’s rules out the possibility of an extractor (even with a single bit
output) for the class of (n, k)-sources, for any k ≤ n−1. Given this impossibility result, research on
random extraction over the last four decades can be broadly classified into two directions: (i) Seeded
extraction: the assumption in this setting is that the extractor has access to an independent seed
that can be used to extract randomness from source [NZ96]. An impressive line of work have led to
efficient constructions of seeded extractors with optimal parameters [LRVW03, GUV09, DKSS13].
(ii) Seedless (or Deterministic) extraction: here one makes additional assumption on the source X
that enables the possibility of randomness extraction. Some examples include the class of bit-fixing
sources1 [CGH+85], sources sampled by a computationally bounded algorithms [TV00, KZ07], and
sources that comprise of multiple independent sources [CG88, BIW06].

In this paper we focus on the setting of deterministic extraction2, and in particular, we study
the problem of randomness extraction from affine sources defined as follows.

Definition 1.2 (Affine sources). Fix a finite field F of size q, and parameters n, k. An (n, k)q-affine
source X is uniform over some (unknown) affine subspace of dimension k in Fn. In other words,
there exists linearly independent vectors v1, . . . , vk in Fn such that X is the distribution obtained by
sampling λ1, . . . , λk uniformly and independently from F, and outputting v0 +

∑k
i=1 λi · vi, for some

v0 ∈ Fn.

We note that extracting from affine sources falls into the line of investigation that studies
extraction from sources sampled by computationally bounded algorithm (since each output bit is
computationally restricted to be an affine function of the input randomness, namely the λi’s).

Thus, an affine extractor AffExt : Fn → {0, 1}m for entropy k and error ε is such that for
any (n, k)q-affine source X (over F, where q = |F|), we have |AffExt(X) − Um| ≤ ε. For intuition
consider the case of m = 1: in this case, an affine extractor is simply a 2-coloring of Fn such that
every dimension k affine subspace of Fn is almost evenly colored.

A probabilistic argument shows the existence of excellent affine extractors: for example, setting
the error ε to a constant and the output m = k − O(1), a random function is an affine extractor
for min-entropy k > 2 log n. However, for applications it is desirable to find explicit constructions
of such extractors (i.e., an extractor that has running time which is polynomial in the parameters
n, q).

Prior work on explicitly constructing affine extractors can be classified into two settings de-
pending on the size of the field:

• Large field setting (q = poly(n)): In this setting, Gabizon and Raz [GR08] in fact constructed
an affine extractor for lines (i.e., k = 1)3. More generally, they showed how to extract most
of the entropy out of any (n, k)q-affine source in this large field setting. A construction with
improved error was given by Bourgain, Dvir, and Leeman [BDL16] assuming q is a prime,
and further that q − 1 does not have too many prime factors.

• Small field setting (q = O(1)): The task of constructing affine extractors is generally more
challenging as the field size gets smaller. In the setting of q = O(1), Bourgain [Bou07],
and subsequent works of Yehudayoff [Yeh11] and Li [Li11] gave explicit constructions for

1such sources have an unknown set of random coordinates
2see the excellent survey by Shaltiel [Sha04] for results on seeded extraction
3when n is large enough compared to q, the Hales-Jewett theorem rules out the possibility of an extractor for

lines.

2



k ≥ n/
√

log logn. DeVos and Gabizon [DG10] obtained a trade-off between the field size and
entropy, and gave explicit affine extractors for q = Ω((n/k)2) for fields with characteristic
Ω(n/k), thus requiring linear entropy (i.e., k = Ω(n)) for extraction from affine sources on
fields with constant characteristic.

A vastly improved result was obtained by Li [Li16] who gave an explicit affine extractor that
works for q = 2 (which is generally considered the hardest setting) and k ≥ C(log n)C , for
some large enough constant C.

1.1 Our Result

Our main result is a further improvement over the result of Li [Li16], and thus nearly matching the
random construction, in terms of the min-entropy requirement.

Theorem 1. For any constant ε > 0, there exists a constant C > 0 such that for all n, k ∈ N such
that k ≤ n, there exists an efficient construction of an extractor AffExt : Fn2 → {0, 1} with error ε
for (n, k)2-affine sources with min-entropy k ≥ C · log n · log logn · (log log log n)6.

One drawback of our construction compared to [Li16] is the error of our extractor: while we
can only achieve constant error, the construction in [Li16] achieves polynomially small error. We
leave it as an interesting open question to reduce the error of our extractor construction.

1.2 Applications of Affine Extractors

The class of affine sources naturally generalize (oblivious) bit-fixing sources [CGH+85], where a
bit-fixing source has some unknown set of random coordinates and the other coordinates are fixed
to constants. Extractors for bit-fixing sources have applications in exposure resilient cryptography
[CGH+85, KZ07]. In fact, this generalization of bit-fixing sources to affine sources played a key
role in obtaining the best known extractors for bit-fixing sources [Rao09].

Affine extractors have found applications in deterministic extraction from many other models
of weak sources. Viola [Vio14] proved that sources sampled by small circuits are close to a convex
combination of affine sources (and thus an affine extractor can be used to extract from such circuit
sources). In a recent work, Chattopadhyay and Goodman [CG20] proved a similar result for
sources sampled by algorithms with limited memory [KRVZ06]. Such small-space sources are
known to capture a wide variety of weak source models that have been considered for randomness
extraction, including finite Markov chain sources [Blu86], symbol-fixing sources [KZ07], and (short)
independent sources. Ben-Sasson and Zewi [BSRZ15] demonstrated another application by showing
how to use any affine extractor to construct low-error two-source extractors in a black-box way under
plausible conjectures in additive combinatorics. Cohen and Tal [CT15] used affine extractors to
extract randomness from variety sources, which are distributions that are uniform on the set of
common zeroes of a system of polynomial equations. Thus, affine extractors provide a unifying way
to construct extractors for a wide range of well-studied models of weak sources.

Finally, another application of affine extractors over F2 is to circuit lower bounds–a breakthrough
work of Find, Golovnev, Hirsch, and Kulikov [FGHK16] prove the best known Boolean circuit lower
bound (roughly 3.01n) for an affine extractor (with 1 bit output) that works for entropy k = o(n).4

4in fact, they prove the lower bound for a weaker object known as an affine disperser which roughly satisfies the
property that it is non-constant on any affine subspace of dimension k

3



2 Proof Overview

On a very high level, our construction follows the framework in [CZ19], which has been used to
construct deterministic extractors in many recent works. The framework works as follows: given
a source X, we first convert it into a non-oblivious bit-fixing (NOBF) source, which is a source on
N = poly(n) bits such that N −N δ of them are t-wise independent (see Definition 4.25). Then we
apply an extractor for NOBF source to get the output.

A general strategy to construct an NOBF source from multiple independent sources was initiated
in [Li13]. The strategy works by first taking a strong seeded extractor, which is a function Ext
that takes d bits of extra randomness (i.e. a seed) S and convert X into a close-to-uniform string
Ext(X,S), with high probability over the seed S (see Definition 4.5). Since in reality we do not have
such a seed S, we enumerate over all D = 2d possibility of the random seed and get a somewhere-
random source (SR-source), which is a collection of D different strings such that most of them
are close to uniform. However, note that the strings which are close to uniform are arbitrarily
correlated with each other. The second step is to take another independent source to “break the
correlation” between these uniform strings and make them t-wise independent. A function which
can complete this task is called a correlation breaker [Coh16a]. Recent constructions of such object
employ a technique known as alternating extraction [DP07], which uses strong seeded extractor as
a building block.

The setting of affine extractor is trickier since there is only one source. At a first glance it
doesn’t seem like the above framework can be used to construct an affine extractor. However, Li
[Li16] showed that this framework still can be used based on the crucial observation, originating
in the work of Rao [Rao09]: if the strong seeded extractor Ext that we use is a linear function, for
every fixing of the seed (such extractors are called linear seeded extractor), then there is still some
“implicit independence” between the output Y = Ext(X) and the original source X. Specifically,
X can be written in the form A + B such that A has some entropy and is independent of (B,Y).
Then [Li16] showed that if we again use linear seeded extractors to construct the correlation breaker
then it’s possible to exploit this implicit independence.

However, the affine extractor in [Li16] requires polylog(n) entropy because of the following
reasons. First, to extract from a NOBF source, [Li16] used the derandomized Ajtai-Linial resilient
function [CZ19, Mek17, Li16] in the last step, which requires the source to have poly-logarithimic
entropy. Second, the correlation breaker in [Li16] also requires Ω(log2 n) entropy to work. In fact,
even the state-of-the-art correlation breakers for independent sources [CGL16] required Ω(log2 n)
entropy at the time, while in [Li16] the correlation breaker needs to work for two sources with
linear correlation, which is even harder. Finally, many steps in this construction require a strong
linear seeded extractor. However, the known constructions of strong linear seeded extractor usually
require at least polylog(n) entropy. Specifically, note that this framework heavily relies on strong
linear seed extractor for two different purposes:

1. To convert X into a SR-source,

2. To construct the correlation breaker.

In both cases we need the error of extractor to be 1/poly(n), and in the first case we further need
the seed to have length d = O(log(n)) to make sure that there are only 2d = poly(n) possibilities
of seed to enumerate (since otherwise the running time of the affine extractor we construct will not
be polynomial). The most commonly used strong linear seeded extractor is perhaps the Trevisan’s

4



extractor [Tre01, RRV02], but it requires a seed of length at least log2(n) in this setting. The
extractor constructed in [Li16], while having O(log(n)) seed length, requires the source to have
logc(n) entropy for some constant c > 4.

2.1 Bypassing the linear seeded extractor barrier

To solve the problem of not having a good enough linear seeded extractor, we take different ap-
proaches in the two cases. We first discuss the task of turning X into a SR-source, and explain the
construction of our correlation breaker in Section 2.2.

In both cases, our starting point is a simple construction of strong linear seeded extractor which
works as follows. To extract m uniform bits, our first step is to apply a strong lossless condenser on
X: this is a function that takes a seed and converts X into a shorter source X′ of length O(m) while
still having roughly m bits of entropy. Using GUV condenser [GUV09], this step requires a seed
of length O(log(n/ε)) where ε is the error, and such condenser can also be made linear [Che10].
Our second step is to apply a linear universal hash function on X′ and get a m-bit uniform string
by Leftover Hash Lemma [HILL99]. This “condense-then-hash” extractor has optimal entropy
requirement, but the seed length is O(m+ log(n)).

Now recall that in the first step we need the seed length to be O(log n), which means using
this condense-then-hash extractor, we can only extract a string Y of length O(log n). However,
this is not enough for a correlation breaker to work, even if we use the state-of-the-art correlation
breaker for independent sources [Li19] (recall, we have to deal with the harder case of the linearly
correlated sources).

To solve this problem, our observation is that while |Y| = O(log n) is not enough for a correlation
breaker to work, we require Y to be only slightly longer. In particular, we need m = |Y| =
O(c(n) · log n) for some slow growing function c = c(n). (We will see that we can take c = log log(n)
when discuss correlation breaker in Section 2.2.) Our idea is to use a recursive approach based on
block-source extraction combined with a error reduction trick at the end, as follows:

• As before, we first use the GUV condenser to condense the source X into a source X′ of
length n′ = O(m) and entropy 0.9n′. In other word, X′ has entropy rate 0.9. This requires a
seed of length O(log(n/ε)).

• Next, we cut X′ into two blocks, and a standard argument shows that each block still have
entropy rate 0.8, even when conditioned on the other block. Then again we apply GUV
condenser on each block to condense the entropy rate to 0.9, but this time we use one seed to
condense both blocks. Intuitively this works because GUV condenser is strong (which can be
considered as “success with high probability” and hence we can apply union bound on both
blocks). Besides, note that this time the seed length is only O(log(m/ε)).

• We again divide each block into two halves and get four blocks in total, and use one extra seed
O(log(m/ε)) to condense all four blocks. By repeat this step for log(c) times we eventually
get c blocks, each having entropy roughly O(log(n)).

• Finally we use another seed of length O(log(n/ε)) to sample a linear hash function and
extract from every block. The total seed length is O(log(n) + log(c) log(m/ε)), which is

5



O(log(n)+log(c) log(1/ε)) since m is short.5 Now we get an extractor of seed length O(log(n)),
but with error ε = n−O(1/ log(c)), which is slightly larger than what we need.

• To solve this problem, we apply the error reduction scheme in [BDT17], which reduces the
error to 1/poly(n) but only increase the seed length by a constant factor. A drawback of this
scheme is for every seed we get A different outputs such that only one of them is guaranteed
to be uniform. In other word, we get a somewhere random extractor instead of an extractor.

We note that the weaker notion of a somewhere random extractor (instead of an extractor) suffices
in our scheme of constructing affine extractors. Informally, we follow the approach of [BDT17],
and apply correlation breakers on all outputs of the somewhere random extractor. Using idea in
[Coh16a], we can simply merge these strings by taking the parity of these strings after we break
their correlation.

Another possible concern is the following. In [BDT17] they start from error 1/poly(n), and
reduce it to 1/nC for any constant C, and thus get the parameter A (the number of different
outputs) to be a constant. In our setting, we start from error slightly larger than 1/poly(n), and
thus require A = O(log(c)). So, in our construction, we need a correlation breaker which breaks the
correlation between more strings. This implies that we need the output of our somewhere extractor,
Y to be longer, and thus it increases the seed length of our extractor correspondingly. Nevertheless,
we only need to increase the length of Y by a factor of A2. Since A only has logarithmic dependence
on the length of Y, this will not be a problem.

2.2 Correlation breaker for linearly correlated source

In this section, we give a brief description of the main ideas that go into our correlation breaker
construction, assuming some familiarity with techniques that are used in recent constructions of
correlation breakers. In Section 3, we present a much more detailed account of our correlation
breaker construction.

Many recent works successfully construct correlation breakers for independent sources with
error 1/poly(n) which only require log1+o(1)(n) entropy [CL16a, Coh16b, Li17, Coh17, Li19]. In
fact, the state-of-the-art construction by Li [Li19] only requires O(log n · log logn

log log logn) entropy. As
we pointed out above, if we try to adapt these constructions to the setting of linearly correlated
source using Trevisan’s extractor or the linear seeded extractor in [Li16], the entropy requirement
is at least log2(n).

A natural idea is to use the linear seeded extractor, based on the “condense-then-hash” approach
discussed in Section 2.1, in the correlation breaker construction. It turns out that this is almost
sufficient, except for one problem: the seed length of the condense-then-hash extractor is larger than
the output length by a constant factor. This is a problem in all known approaches of constructing
correlation breaker. Specifically, all the constructions of correlation breaker is based on alternating
extraction which works as follows. First, take a small slice of Q1 from Y, and compute W1 =
Ext(X,Q1). Next, compute Q2 = Ext(Y,W1). Then compute W2 = Ext(X,Q2), and so on. Now
note that if we take Ext to be the condense-then-hash extractor, then after O(log log n) rounds the
length actually decreases by a O(polylog(n)) factor.

5In fact, our final seed length is O(log(n) + log2(c) log(1/ε)), since we need to condense each block into entropy
rate 1−1/ log(c) to make sure that we don’t lose too much entropy when dividing blocks. We ignore this in the proof
overview for simplicity.

6



To solve the above problem, we observe that it’s actually not necessary to use a strong linear
seeded extractor all the time. To see why this is the case, first we recap why a linear seeded
extractor needs to be used when we consider linearly correlated source. Recall that X can be
written as A + B, where A is independent of B,Y. Now let LExt denote a strong linear seeded
extractor, and Ext be another strong seeded extractor. If we take a slice Q from Y and compute
W = LExt(X,Q), then W = WA + WB, where WA = LExt(A,Q) and WB = LExt(B,Q). Now
note that conditioned on the fixing of Q, WA is uniform with high probability and is independent
of WB. Therefore W is also uniform with high probability. When extracting from the Y side, we
again use the fact that W can be written as WA + WB where WA is uniform and independent of
(WB,Y). Note that conditioned on WB, W should still be uniform and independent of Y, and
Y only loses a small amount of entropy (proportional to the length of WB). This ensures that
Ext(Y,W) is still uniform with high probability over W if Y has enough entropy. Now observe
that this argument doesn’t require Ext to be linear.

Based on this observation, we can do the alternating extraction in an “asymmetric” way: when
we extract from X, we use the condense-then-hash extractor, which takes a dX -bit seed and output
a uniform string with dY bits. Note that dX = c·dY for some constant c > 1. Then when we extract
from Y, we use a optimal non-linear strong seeded extractor (e.g. the GUV extractor [GUV09])
which takes a dY -bit seed and output dX bits. Now there is one remaining problem: the recent
constructions of correlation breaker usually use more complicated sub-protocols as the building
blocks. All these sub-protocols are also based on alternating extractions, and hence it is plausible
that they can be instantiated with the condense-then-hash extractor using the idea above. However,
it appears cumbersome to rework all the sub-protocols in this way, and in particular it is not clear
how to combine them together without loss of parameters. Nevertheless, we observe that the idea
above works for a more general setting of sub-protocols. That is:

• If a sub-protocol f is a function on X and takes a seed from Y, f should be linear.

• If a sub-protocol g is a function on Y and takes a seed from X, g doesn’t need to be linear,
but should work properly when Y is a weak source.

Usually the second case is easier to deal with: the same construction (or a slight change) of sub-
protocols should still work most of the time. Therefore the construction will be simple if we
minimize the amount of sub-protocols in the first case.

In fact, in our construction, all the functions we need in the first case are simply strong seeded
extractors, and thus we can replace them with the condense-then-hash extractor. However, it is still
not clear how to use previous results in a black-box fashion. Thus, we give a much more detailed
explanation of the main ideas of our correlation breaker construction in Section 3. We formally
present and prove our construction in Section 6.

2.3 Extracting from NOBF source

The final step is to extract from an NOBF source Z on N bits that we obtain from the affine
source X, first by converting it into an SR-source and then applying the correlation breaker. The
derandomized Ajtai-Linial function [AL93, CZ19, Mek17] was shown to be an extractor for such
sources with at least N −N/ log2N good bits. However, this extractor needs min-entropy at least
polylog(n) in the NOBF source, since good bits are required to be poly(log n)-wise independent.

7



To circumvent this barrier, we recall a result of Viola [Vio14], who proved that majority can
extract from an O(1)-wise independent NOBF source with constant error. Thus, this is better
suited for our goal of constructing affine extractors for near logarithmic entropy. In fact, this
resilient function is also used in recent constructions of two-source extractors that work for near
logarithmic min-entropy based on the two-source framework of Ben-Aroya, Doron, and Ta-Shma
[BDT17]. However, to use the majority function we require the NOBF source Z to have at least
N − N δ good bits, for δ < 1/2. In fact, as pointed out in [BDT17], δ = 1/2 is actually a barrier
in the two-source setting if we create the SR-source using a seeded extractor, and their approach
is based on the use of condensers for this task.

Interestingly, in our setting to produce such a SR-source from the affine source X, since we
just need a linear-seeded extractor that is required to work for affine sources, one can use the
probabilistic method to show that a random construction can be used. However, we do not have
explicit constructions of such optimal linear seeded extractors. Instead, we show that our somewhere
random extractor from Section 2.1 can be used to construct the SR source with desired parameters.

2.4 Summary of construction

Finally we summarize our construction. Given an affine source X, we run the following steps to
extract a bit:

1. Take a strong linear seeded somewhere random extractor LSRExt with seed length d =
O(log n), and for every s ∈ {0, 1}d compute (Ys,1, . . . ,Ys,A) := LSRExt(X, s).

2. Take a correlation breaker ACB and compute Zs,j := ACB(X,Ys,j , (s, j)) for every s ∈
{0, 1}d, j ∈ [A]. Here (s, j) serves as an “advice” to ACB (more details can be found in the
next section).

3. For every s ∈ {0, 1}d, compute Ps :=
⊕A

j=1 Zs,j .

4. Compute the majority of P1, . . . ,P2d .

Organization. In Section 3, we present a detailed explanation of the main ideas that are in our
correlation breaker construction. Section 4 contains some notations and some standard results from
previous works which we frequently use throughout the paper. Section 5 contains the construction
of the strong linear seeded extractor with error slightly larger than 1/poly(n), along with the error
reduction scheme. We present the formal construction and proof of our correaltion breaker in
Section 6. Finally, in Section 7 we prove our main theorem, where we show how these building
blocks are combined together to yield an affine extractor.

3 Correlation-Breaking Games

In this section, we present detailed explanation of the main ideas used in our correlation breaker.
We explain these ideas using a few (related) two-party games that we introduce below. We hope
this discussion provides more intuition to the readers to parse our more involved proofs in Section 6.

Recall that our goal is to use a source X, that is independent or linearly correlated (defined in
Section 3.9), to break the correlation between poly(n) strings Y1, . . . ,YD and make them t-wise
independent. The high level idea is that we compute the same function f , that is called as a

8



correlation breaker, on X and every Yi, to produce strings Z1 = f(X,Y1), . . . ,ZD = f(X,YD).
The property we desire from f is the following: if there is a set T ⊂ [D], such that for any i ∈ T , Yi

is uniform, then for any distinct i1, . . . , it from T , the random variable Zi1 looks uniform conditioned
on {Zij}tj=2. For constructing the function f , it helps to think of it as a two-party game that we
discuss in detail below.

Given the above discussion, it is enough to consider the following setting: let Y be a uniform,
and let Y1,Y2, . . . ,Yt be random variables that are arbitrarily correlated with Y. Yi is called
the i-th tampering of Y. As before, let X be a random variable that is independent (or linearly
correlated) with Y, {Yi}ti=1. We want to construct a correlation breaker f with the guarantee that
the output f(X,Y) is uniform conditioned on the outputs computed using all of its t tampering
{f(X,Yi)}ti=1. Before discussing how to construct correlation breakers, we first introduce some
convenient notation.

As alluded above, a useful perspective is to think of the computation of the correlation breaker
as a two-party communication between X and Y. This is because of the following reason: if Z is
the transcript of a two-party communication between X and Y, then X↔ Z↔ Y forms a Markov
chain. This ensures that at any point of the computation we have two independence sources X,Y
to work with, conditioned on any fixing of Z. Therefore each time one party can send a message
as an independent randomness to help the other party complete some tasks. However, Z leaks
some information about X, and Y; so ideally we want the length of Z, i.e. the communication
complexity, to be as small as possible.

We introduce some convenient notation.
Notations: Throughout this paper, we use Y[t] to denote all the t tampering of Y, and for

any set S ⊆ [t] such that S = {i1, . . . , ik}, we also use YS to denote a collection Yi1 , . . . ,Yik . For
any random variable R computed, we use Ri to denote the i-th tampered version of R which is
computed using Yi.

In Sections 3.1 to 3.8, we discuss the two-party games and relevant techniques that are used in
recent constructions of correlation breakers for independent sources, in increasing order of complex-
ity. Along the way, we explain how we adapt some of these techniques to construct our correlation
breaker in the linearly correlated setting. In Section 3.9, we define the correlation breaking game
in the linearly correlated setting, and in Section 3.10 we summarize our construction.

We start with describing the correlation breaking game in the independent source setting, in
the more general case that X also has its tampered versions X1, . . . ,Xt.

3.1 Correlation-breaking game for independent sources

The setup is as follows: Quentin has a source X which is uniform and Wendy has a source Y which
has some entropy. Further, Quentin and Wendy hold some tampered sources (X1,X2, . . . ,Xt) and
(Y1,Y2, . . . ,Yt) respectively such that X[t] can be arbitrarily correlated with X and Y[t] can be
arbitrarily correlated with Y. The assumption is that (X,X[t]) is independent of (Y,Y[t]). Quentin
and Wendy are going to run a two-party game as follows. The game starts with a public transcript
Z and some “tampered transcripts” (Z1, . . . ,Zt) which are all empty at the beginning. They need
to choose a deterministic two-party communication protocol P , which is a sequence of deterministic
function (f1, g1, f2, g2, . . . ) so that in the first round Quentin sends a message Q1 := f1(X,Z), and
then Q1 is added to the transcript Z. In the next round Wendy sends a message W1 := g1(Y,Z),
and then W1 is added to the transcript Z. They keep sending messages computed with f2, g2, . . .
until the protocol ends. However, there are also t “tampered communications” run in parallel.

9



When Quentin sends Q1 := f1(X,Z), a tampered message Qj
1 := f1(Xj ,Zj) is also sent and added

to the tampered transcript Zj for every j ∈ [t]. Similarly when Wendy sends a message there will
also be t tampered messages sent simultaneously. At the end of the protocol, one of the party
computes a output, which we denote as R = P (X,Y), and R will not be added to the transcript
Z. Quentin and Wendy win the game if R is uniform conditioned on all the tampered output R[t]

where Rj = P (Xj ,Yj) and all the (tampered) transcripts Z,Z[t].

3.2 Alternating extraction

It is easy to see that Quentin and Wendy can never win the correlation-breaking game if X1 = X
and Y1 = Y, since this implies R1 = R. However, it is possible to win a weaker game which
we call a look-ahead game. In this game, Quentin and Wendy need to output multiple messages
R1,R2, . . . ,R`. We say a message R has look-ahead property [DW09] if R is uniform conditioned
on all the transcripts Z,Z[t] (but not necessarily on the tampered output R[t]). Quentin and Wendy
win the look-ahead game if the output R has the look-ahead property. Winning the look-ahead
game with one output is actually not very interesting since Quentin can just output a prefix of
X while all the transcripts are empty. Now consider the `-look-ahead game so that Quentin and
Wendy need to sequentially compute and send R1, . . . ,R` such that every Ri satisfies the look-
ahead property at the moment it is computed. Note that the transcripts of Ri contain the previous
outputs R1, . . . ,Ri−1 and their tampered versions. This game is winnable with the alternating
extraction [DP07] protocol, which works as follows. Observe that at any moment of the game,
(X,X[t]) ↔ (Z,Z[t]) ↔ (Y,Y[t]) is a Markov chain. Moreover, conditioned on (Z,Z[t]), Y only
loses roughly (t+ 1)` bits of entropy where ` is the total length of messages from Wendy (and its
tampered version). Therefore, if Y has high enough entropy at the beginning, it will still have some
entropy remaining if the total length of messages (i.e. the communication complexity) from Wendy
is not too long. If Quentin sends a string Q1 = f(X,Z) which is uniform condition on (Z,Z[t]) (i.e.
Q1 satisfies the look-ahead property), then Wendy can also get a uniform string W1 = Ext(Y,Q1)
conditioned on (Z,Z[t]) by applying a seeded extractor. Moreover, if Ext is strong, W1 remains

uniform even after (Q1,Q
[t]
1 ) is added to (Z,Z[t]), since the entropy of W1 purely comes from

Y. Therefore, W1 also satisfies the look-ahead property. This observation gives the alternating
extraction protocol: Quentin sends Q1 which is a prefix of X, Wendy sends W1 := Ext(Y,Q1),
Quentin sends Q2 := Ext(X,W1), and so on. As long as X and Y still have enough entropy left,
every message sent in this protocol satisfies the look-ahead property. The entropy requirement is
roughly O(`t log n). (This log n is the seed length of each randomness extractor.)

3.3 Breaking correlation with advice

Now we change the correlation-breaking game a little bit to get a actually winnable game. Suppose
Quentin and Wendy further get some advice (α, α1, . . . , αt) ∈ [2a] such that α 6= αj for every
j ∈ [t]. Then the actual communication is run with a protocol Pα chosen from a family of protocols
{P1, . . . , P2a}. Moreover, for every j ∈ [t], the j-th tampered communication is run with the
protocol Pαj . Since the actual protocol is different from all the tampered protocol, now it’s possible
that R is independent of R[t] even if X = Xj and Y = Yj for every j ∈ [t]. This is called correlation
breaker with advice [CGL16, Coh16c]. In fact, consider the family of protocol such that Pi runs
alternating extraction for i rounds and output the i-th message from Wendy. Then if α > αj for
every j ∈ [t], the output R := Pα(X,Y) is actually independent of R[t] := Pα[t](X[t],Y[t]) by the

10



look-ahead property. This idea first came in [Li13]. When the order of advice is unknown, there
was a beautiful idea in [Coh16a] called “flip-flop” which resolves the issue. However, note that with
only this idea X and Y need entropy roughly O(2a · t log n), and hence the protocol is only good
enough when a is small (e.g. 1 bit).

3.4 Merging independence

To reduce the entropy requirement, a nice property of strong seeded extractor comes to the rescue.
The property is called independence preserving. Suppose there is a source Y and a seed Q, and
each of them have a tampered version Y1,Q1. Now suppose Q is uniform conditioned on Q1.
Then if one applies a seeded extractor and get Ext(Y,Q), this string is also uniform conditioned
on Ext(Y1,Q1). Too see why this is true, note that when conditioned on Q1 and Ext(Y1,Q1), Q
is still uniform and independent of Y, while Y only loses a small amount of entropy. Therefore
Ext(Y,Q) is still uniform. In other word, Ext(Y,Q) preserves the independence of Q from its
tampering Q1. This idea was used in [Li13] to get a better entropy requirement, which is only
linear in a. We will see more details later. Besides, Ext can also preserve the independence on
the other side: if Y has high entropy conditioned on Y1, then Ext(Y,Q) is uniform conditioned
on Ext(Y1,Q1). This can be proved using a similar argument. Based on this observation, [CS16]
suggested a protocol which works as follows.6 Suppose Quentin has two uniform strings X1,X2

such that either X1 is independent of X1
1 or X2 is independent of X1

2. Let Q1 be a prefix of X1.
Now they can do two rounds of alternating extraction to compute W1 = Ext(Y,Q1) and then
R = Ext(X2,W1). The output R should be independent of R1 by the independence-preserving
property. In other word, they merge X1,X2 and preserve the independence of X1 or X2 from
their tampered version. It’s also possible to merge ` strings X1, . . . ,X` by doing more rounds of
alternating extraction [CL16a]. This protocol is called a non-malleable independence-preserving
merger (NIPM) [CS16, CL16a].

In this paper we show that a stronger property holds, which we call independence merging. That
is, suppose there exist S, T ⊆ [t] such that X is uniform and independent of XS , and Y has high
min-entropy conditioned on YT . Then by taking a prefix Q of X and compute W = Ext(Y,Q), W
is actually uniform conditioned on WS∪T . In other word, the strong seeded extractor Ext merges
the independence of X and Y from their tampered versions. To prove this, we can simply apply
the argument in both cases of independence preserving together. Therefore, we can use the same
alternating extraction protocol to merge the independence of X1,X2, . . . ,X` from their tampered
versions, even if the independence is scattered on multiple different Xi. This stronger property will
help us deal with the t-tampering case directly.

3.5 Strongness of protocols

Suppose R is the output of some two-party communication protocol P (X,Y), Z is the transcript,
and suppose R is computed by Wendy using some deterministic function g(Y,Z). Then (X,X[t])↔
(Z,Z[t])↔ (R,Y,Y[t]) forms a Markov chain. In all the two-party games we consider in this paper,
R is uniform conditioned on the transcripts (Z,Z[t]) and some of the tampered output. Therefore
even if the whole source X (and X[t]) is sent by Quentin and added to the transcript, R is still
uniform. In other word, the protocol P is strong in X. Now observe that when a protocol P is

6The proof of this protocol actually first came in [CL16a]. [CS16] suggested this protocol but didn’t prove it and
used a different protocol instead.

11



strong in X, we can actually re-design P in the following way: Quentin simply sends X, and Wendy
simulates the output of P using X,Y. When the protocol is re-designed in this way we say X is the
seed of the protocol. Similarly we can let Wendy sends Y and Quentin simulates P if P is strong in
Y. It’s also not hard to switch the strongness of a protocol using the idea of alternating extraction:
if Wendy produces the output R, we can let Wendy send R and let Quentin output Ext(X,R)
instead. Now the protocol becomes strong in Y. The advantage of strongness is we can run many
different protocols in parallel. That is, suppose Wendy holds many correlated source Y1, . . . ,Yr,
Quentin holds X and another source Q correlated with X, and they want to run many protocols
P1(Q,Y1), . . . , P`(Q,Y`). Then Quentin can simply send Q (and Q[t]) and let Wendy simulate
everything. This ensures that the total communication complexity is low, so that the source X in
Quentin’s hand only loses roughly (t+1)|Q| bits of entropy regardless of how many protocols there
are. Besides, Wendy doesn’t lose any entropy. This idea plays a crucial role in [CL16a] and the
followup works.

Another advantage of strongness is, if we let Quentin send his whole source in a look-ahead
game, Wendy doesn’t need to send any of her output. Therefore all of Wendy’s outputs W1, . . . ,W`

remain uniform but still have the look-ahead property (i.e. Wi is uniform conditioned on
W1, . . . ,Wi−1 and their tampering). Therefore these strings can be saved for later use. This
is called a look-ahead extractor [DW09]. There’s only one drawback: to run any protocol based on
alternating extraction, usually the length of |Q| needs to be proportional to t. Therefore if we need
X to still have some entropy left after sending Q, the total entropy requirement for X becomes
proportional to t2. Nevertheless t is usually small compared to other parameters so this is not a
big deal.

3.6 Correlation breaker based on somewhere independence

Now we are ready to introduce the general strategy for the correlation-breaking game. First Quentin
and Wendy run a 2-look-ahead extractor and create two strings W0,W1 on Wendy’s side. Now
suppose the the advice is α ∈ {0, 1}a, and we use αj to denote the j-th bit of α. For every j ∈ [a],
define V2j−1 := Wαj and V2j := W1−αj . Note that the pair (V2j−1,V2j) is defined in the “flip-
flop” way [Coh16a] so that it will either be (W0,W1) or (W1,W0), depending on αj . If αj 6= αij , in

the position V2j−αj where W1 is placed, the corresponding tampered version V1
2j−αj

should be Wi
0.

Therefore we get independence of W1 from Wi
0 based on the look-ahead property. Now observe

that V1, . . . ,V2a is somewhere-independent [CS16] from their tampering. That is, for every i ∈ [t]
there exists some j ∈ [2a] such that Vj is independent from Vi

j . If they then use the independence
merging protocol described above to merge these strings, they get R which is uniform conditioned
on R[t], and hence win the correlation-breaking game. The entropy requirement is proportional to
O(a) instead of 2a. Moreover, the entropy requirement can be further improved by running the
independence merging protocol in parallel. That is, if they merge every two strings in parallel and
repeat for log(2a) rounds, eventually all the strings will be merged into one which collects all the
independence. Intuitively the entropy requirement is proportional to log(a). This is the main idea
in [CL16a]. However, as pointed out in [Li17], there were two obstacles in [CL16a] which prevented
them from getting O(log a) dependence. We explain each of them in the next two paragraphs
respectively.

12



3.7 Preparing seeds for sub-protocols

The strategy we described above runs many independence merging protocols in parallel for log(a)
rounds. In the i-th round Quentin needs to prepare a seed Qi with enough entropy conditioned on
the transcripts. The strategy in [CL16a] is to take a prefix of X as Qi in each round. However,

suppose in the first round Quentin sends a prefix Q1. Then there are t-tampered messages Q
[t]
1 sent

at the same time. Therefore X loses about (t+ 1)|Q1| entropy. In the next round, to ensure that
the prefix Q2 of X still have some entropy, the length of Q2 needs to be O(t|Q1|). Therefore the
entropy requirement for X grows exponentially in the number of rounds. To solve this problem,
[Li17] observed that they can first run a `-look-ahead extractor which is strong in Y to help Quentin
prepare ` = O(log a) look-ahead strings Q1,Q2, . . . ,Q`. Then in the i-th round Quentin simply
sends Qi.

In our setting of linearly correlated sources (discussed below in Section 3.9), we find it slightly
cumbersome to define a look-ahead protocol strong in Y because of the linear correlation between
sources. Therefore, we take a slightly different strategy: we construct NIPM in the way that it can
take a uniform seed Q1 and merge every two weak sources (V1,V2), (V3,V4), . . . , (V2a−1,V2a)
into uniform strings W1, . . . ,Wa. Then before the start of next round, we take a prefix P of
W1 and extract Q2 = Ext(X,P). If P is short compared to each Wi, then each Wi should still
have enough entropy, and the merging process can continue. Essentially this is like running the
look-ahead protocol “on the fly”.

3.8 Entropy recycling

Second, when merging a block (V1,V2) into a single source W using the alternating extraction
protocol described above, the length of W is only β|V1| for some constant β < 1. Therefore
the entropy requirement for Y also grows exponentially in the number of rounds. To solve this
problem, [Li19] observed that one can try to “recycle entropy” from Y, which actually contains all
the entropy Wendy currently has. Since Y can contain entropy much larger than |V1|, it is possible
to recover the length of W to |V1|. [Li19] did this by using an extra seed from Quentin as a buffer
to extract from Y.

However, as we pointed out in the previous paragraph, preparing multiple seeds for Quentin
using look-ahead extractor is cumbersome in the linearly correlated source setting. Therefore we
choose to embed this approach into each NIPM sub-protocol.7 That is, we change the proto-
col NIPM(Q, (V1,V2)) to NIPMrec(Q, (V1,V2,Y)) in the following way. First, run the original
NIPM(Q, (V1,V2)) to get P which merges the independence of V1 and V2. Suppose P is computed
on Wendy’s side. Then Wendy sends P to Quentin, Quentin sends S = Ext(Q,P) to Wendy, and
Wendy computes W = Ext(Y,S) as output. Note that this protocol is still strong in X. Moreover,
if P is uniform conditioned on PT for some T ⊆ [t], then based on the independence preserving
property of strong seeded extractor, W should still be uniform conditioned on WT . Therefore if
the entropy of Q can afford one more round of alternating extraction, NIPMrec preserves every
property we want for NIPM, but also has output length |W| = |V1|.

7Another way used in [Li19] to do this is to let Quentin prepare a longer seed and only use a small part of it to run
the NIPM. Then this longer seed will still have some leftover entropy after the NIPM is finished, and hence can be
used as a buffer for entropy recycling. However this raises the entropy requirement by a O(t) factor, which actually
matters in our setting since t = ω(1).

13



3.9 Two-party games for linearly correlated sources

Finally we state how to modify the definition of correlation-breaking game to work for (X =
A+B,Y) where (A,A[t]) is independent of (B,B[t],Y,Y[t]), A has some entropy and Y is uniform.
In this modified game, Quentin holds A, and Wendy holds (B,Y). Besides, there are two transcripts
(and their t tampered versions): the normal transcript Z, and a “write-only” transcript ZB. Then
Quentin and Wendy run the game as if they are simulating a two-party communication between X
and Y. This works as follows. First, whenever Quentin wants to send or output Q = f(X,Z), f
must be a linear function for any fixed Z, and Wendy must send QB = f(B,Z) first. Besides, QB

will be added to the write-only transcript ZB. After receiving QB, Quentin sends or outputs Q =
f(A,Z) + QB, and then Q is added to the transcript Z. Second, Wendy’s message should always
be in the form g(Y,Z) for some deterministic function g, which means Wendy doesn’t have access
to B (except when helping Quentin compute f(X,Z)). Then we want the output R to be uniform

conditioned on (R[t],Z,Z[t],ZB,Z
[t]
B ). Note that (A,A[t]) ↔ (Z,Z[t],ZB,Z

[t]
B ) ↔ (Y,Y[t],B,B[t])

is always a Markov chain.
Effectively this modified game is similar to a normal game between A and Y, except for two

things. First, f must be linear. In our construction we actually make sure that every function
f Quentin uses is simply a strong linear seeded extractor. Second, whenever Quentin wants to
send a message to help Wendy run some protocols, Wendy is forced to send QB which leaks some
information about her source. This means every source Wendy holds in hand loses some entropy.
Nevertheless, we will make sure that every sub-protocol Wendy simulates still works even if she
only has weak sources. Finally, another slight difference on Wendy’s side is she can only run some
deterministic function using Q = QA + QB instead of QA. But this is not a problem, since QB

is independent of QA conditioned on the transcripts, which means the conditional entropy of Q
is the same as QA. Besides, Q is still independent from Wendy’s side since QB is already in the
transcript.

3.10 Summary of our correlation breaker construction

Finally we summarize our construction of a correlation breaker using the two-party game setting
in Section 3.9. We use the following building blocks:

• A strong linear seeded extractor LExt, which is the “condense-then-hash” extractor
(Lemma 4.9).

• A 2-look-ahead extractor laExt, which takes a weak source Y and an independent uniform

seed Q, then outputs two strings (R0,R1) such that R1 is uniform conditioned on (R0,R
[t]
0 )

(Lemma 6.3).

• A NIPM which takes two weak sources V1,V2, a entropy pool Y and an independent uni-
form seed Q, then output a string W which merges the independence of V1,V2 from their
tampering (Lemma 6.5).

Given a source X = A + B, a uniform seed Y, their tampering A[t],B[t],Y[t] such that (A,A[t])
is independent of (B,B[t],Y,Y[t]), an advice α ∈ {0, 1}a and the tampered advice α[t] 6= α, the
construction works as follows:

1. Wendy sends W0 which is a prefix of Y.

14



2. Wendy sends Q0B = LExt(B,W0), then Quentin sends Q0 = LExt(X,W0) =
LExt(A,W0) + Q0B.

3. Wendy computes (R1,R0) = laExt(Y,Q0), and get a sequence of 2a somewhere-independent
strings V = (V1, . . . ,V2a) by assigning each string to be R0 or R1 based on α (see the
discussion in Section 3.6 or a formal proof in Lemma 6.6).

4. Repeat the following steps for i from 1 to log(2a):

I Wendy sends Wi which is a prefix of V1.

II Wendy sends QiB = LExt(B,Wi), then Quentin sends Qi = LExt(A,Wi) + QiB

III Wendy merges each pair (V2j−1,V2j) into a single string Vj with the NIPM, using Qi

as the uniform seed and Y as the entropy pool. Note that the number of strings in V
decreases by a factor of 2 after this step.

5. Now there is only one string in V. Output V, which is uniform conditioned on V[t].

Note that the construction above has the following features:

• The only message from Quentin is the uniform seed Qi in each round, which is computed by
a strong linear seed extractor. The length of Qi should be O(t log(n)) for each sub-protocol
to work.

• In each round Wendy sends a message Wi as the seed of Quentin’s extraction, and also QiB to
help Quentin compute Qi. Both of these messages has length O(|Qi|) and cause the sources
in Wendy’s hand to lose O(t |Qi|) bits of entropy. However, both the look-ahead extractor
and the NIPM still work even if Wendy only has weak sources.

Finally observe that in each of the O(log(a)) rounds, both parties need to send a message of
length O(t log(n)). Since in each round there are t tampered messages sent simultaneously, the
entropy requirement of each side is O(t2 log(a) log(n)). Moreover, the length of each |Vj | need
to be O(t |Qi|) = O(t2 log(n)) to tolerate the entropy loss in each round, so there is an extra
O(t3 log(n)) entropy requirement on Y in the look-ahead extractor. Nevertheless, this is dominated
by O(t2 log(a) log(n)) in our application.

4 Preliminaries

Notations and Conventions. The logarithm in this paper is always base 2. For every n ∈
N, define [n] = {1, 2, . . . , n}. We sometimes abuse notation and treat distributions and random
variables as the same. We always write a random variable/distribution in boldface font. We use
Supp(X) to denote the support of a distribution. We use Un to denote the uniform distribution
on {0, 1}n, and when Un appears with other random variables in the same joint distribution, then
Un is considered to be independent of other random variables. Sometimes we simply write the
uniform distribution as U if the length n is not relevant and is clear in the context. When there’s
a sequence of random variables X1,X2, . . . ,Xt in the context, we sometimes take a set S ⊆ [t] and
use XS to denote the sequence of random variables using index in S as subscript, i.e. {Xi}i∈S . We
also use similar notation for index on superscript. We use X<i to denote (X1, . . . ,Xi−1) and X≤i
to denote (X1, . . . ,Xi). If X0 is defined in the context, then X0 is also included in X<i and X≤i.

15



4.1 Statistical Distance

Definition 4.1. Let D1,D2 be two distributions on the same universe Ω. The statistical distance
between D1 and D2 to be

∆ (D1; D2) := max
T⊆Ω

(D1(T )−D2(T )) =
1

2

∑
s∈Ω

|D1(s)−D2(s)| .

We say D1 is ε-close to D2 if ∆(D1; D2) ≤ ε, which is also denoted by D1 ≈ε D2. Specifically,
when there are two joint distributions (X,Z) and (Y,Z) such that (X,Z) ≈ε (Y,Z), we sometimes
write (X ≈ε Y) | Z for short.

We frequently use the following standard properties.

Lemma 4.2. For every distribution D1,D2,D3 on the same universe, the following properties hold:

• For any distribution Z, ∆ ((D1,Z); (D2,Z)) = Ez∼Z [∆ (D1|Z=z; D2|Z=z)].

• For every function f , ∆ (f(D1); f(D2)) ≤ ∆ (D1; D2).

• ∆ (D1; D3) ≤ ∆ (D1; D2) + ∆ (D2; D3). (triangle inequality)

4.2 Extractors and Condensers

Definition 4.3 (min-entropy). Let X be a distribution on some finite universe Ω. The min-entropy
of X is

H∞(X) := min
x∈Supp(X)

(
log

(
1

Pr [X = x]

))
.

We say a distribution X over {0, 1}n is a (n, k)-source if H∞(X) ≥ k.

Definition 4.4 (conditional min-entropy). For joint distribution (X,Z), the conditional min-
entropy of X given Z is

H∞(X | Z) := min
z∈Supp(Z)

(H∞(X|Z=z)) .

Definition 4.5. A function Ext : {0, 1}n × {0, 1}d → {0, 1}m is called a (k, ε)-seeded extractor if
for every independent X,Y such that X is a (n, k)-source and Y = Ud,

Ext(X,Y) ≈ε Um.

We say Ext is a (k, ε)-strong seeded extractor if

(Ext(X,Y) ≈ε Um) | Y.

Definition 4.6. A function Con : {0, 1}n×{0, 1}d → {0, 1}m is called a (k, k′, ε)-strong condenser
if for every independent X,Y such that X is a (n, k)-source and Y = Ud, there exists Z such that

(Con(X,Y) ≈ε Z) | Y

and H∞(Z | Y) ≥ k′. If k′ = k then we say Con is a (k, ε)-strong lossless condenser.

16



We say Ext is linear if for every s ∈ {0, 1}d, Ext(·, s) is a linear function over F2. Similarly we
say Con is linear if for every s ∈ {0, 1}d, Con(·, s) is a linear function over F2. In this paper, we
use the strong lossless condenser in [GUV09], which can be made linear as observed in [Che10].

Lemma 4.7 ([GUV09],[Che10]). For every n ∈ N, k ≤ n, ε > 0 and α > 0, there is an explicit
(k, ε)-strong linear lossless condenser LCon : {0, 1}n × {0, 1}d → {0, 1}m such that d = (1 +
1
α) log(nk/ε) +O(1) and m = (1 + α)k + d.

We also use the strong seeded extractor based on Leftover Hash Lemma, which can also be
made linear:

Lemma 4.8 ([HILL99]). For every n ∈ N, k ≤ n, ε > 0, there is an explicit (k, ε)-strong linear
seeded extractor LHL : {0, 1}n × {0, 1}d → {0, 1}m such that d = n and m = k − 2 log(1/ε).

By the above lemmas we can construct a simple strong linear seeded extractor which has
O(log(n/ε)) seed length if the output length is also O(log(n/ε)).

Lemma 4.9 (condense-then-hash extractor). For every n ∈ N, k ≤ n, ε > 0, there is an explicit
(k, ε)-strong linear seeded extractor LExt : {0, 1}n×{0, 1}d → {0, 1}m such that k = m+ 2 log(1/ε)
and d = 2m+ 8 log(n/ε) +O(1).

Proof. Define LExt(x, (s1, s2)) := LHL(LCon(x, s1), s2), where LHL : {0, 1}n′ × {0, 1}d2 → {0, 1}m
is the (k, ε/2)-strong linear seeded extractor from Lemma 4.8 and LCon : {0, 1}n × {0, 1}d1 →
{0, 1}n′ is the (k, ε/2)-strong linear lossless condenser from Lemma 4.7 by taking α = 1. Ob-
serve that for every (n, k)-source X and independent seed Y = Ud1 , there exists Z such that
(LCon(X,Y),Y) ≈ε/2 (Z,Y) and H∞(Z | Y) ≥ k. Therefore

(LExt(X, (Y,Ud2)),Y,Ud2) ≈ε/2 (LHL(Z,Ud2),Y,Ud2) ≈ε/2 (Um,Y,Ud2).

Observe that LExt is linear. Therefore LExt is a (k, ε)-strong linear seeded extractor. Finally we
calculate the seed length. Note that d1 = 2 log(nk/ε) +O(1) and d2 = n′ = 2k + d1 . Therefore

d = d1 + d2 = 2(k + d1) ≤ 2(m+ 2 log(1/ε) + 2 log(n2/ε) +O(1)) ≤ 2m+ 8 log(n/ε) +O(1).

Finally we also need the GUV extractor (which is non-linear):

Lemma 4.10 ([GUV09]). There exists constants β, cGUV > 0 such that for every n ∈ N, k ≤ n,
ε > 2−βk, there is an explicit (k, ε)-strong seeded extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m such
that d = cGUV log(n/ε) and m = k/2.

4.3 Average Conditional Min-entropy

We also use the following relaxed notion of conditional min-entropy which is sometimes more
convenient.

Definition 4.11 ([DORS08]). For joint distribution (X,Z), the average conditional min-entropy
of X given Z is

H̃∞(X | Z) := − log

(
E
z∼Z

[
max
x

(Pr [X = x | Z = z])
])

.

17



Lemma 4.12 ([DORS08]). Let X,Y,Z be random variables. Then

H̃∞(X | (Y,Z)) ≥ H̃∞(X | Z)− log(Supp(Y)).

Lemma 4.13 ([DORS08]). Let X,Z be random variables. For every ε > 0,

Pr
z∼Z

[
H∞(X|Z=z) ≥ H̃∞(X | Z)− log(1/ε)

]
≥ 1− ε.

Lemma 4.14 ([DORS08]). Let ε, δ > 0 and X,Z be a random variables such that H̃∞(X | Z) ≥
k + log(1/δ). Let Ext : {0, 1}n × {0, 1}d → {0, 1}m be a (k, ε)-seeded extractor. Then

(Ext(X,Ud) ≈ε+δ Um) | Z.

4.4 Markov Chain

Definition 4.15. Let X,Y,Z be random variables. We say X↔ Z↔ Y forms a Markov chain if
X and Y are independent conditioned on any fixing of Z.

Note that X and Y are symmetric in the above definition. Therefore all the properties stated
below should also hold for its symmetric variant. Besides, all the properties stated below hold for
the degenerate case that X is empty.

In this paper we are not considering Markov chain as a sequence of events. Instead, we just
borrow the definition to model the setting of two-party communication. That is, suppose there are
two parties holding independent random variables X and Y respectively. Each time one of the
party sends a new message based on their own random variable and all the messages sent before.
If one consider Z as all the messages sent (i.e. the transcript), then X ↔ Z ↔ Y is actually a
Markov chain. This can be formalized by the following lemma, for which we omit the proof since
it’s straightforward by definition.

Lemma 4.16. If X ↔ Z ↔ Y is a Markov chain, then for every deterministic function f , let
W = f(X,Z). Then

• (X,W)↔ Z↔ Y is a Markov chain.

• X↔ (W,Z)↔ Y is a Markov chain.

Sometimes we use “W is a deterministic function of X (conditioned on Z)” to refer to the first
item, and “fix W” to refer to the second item.

The following two lemmas are straightforward and will usually be used implicitly.

Lemma 4.17. If X↔ Z↔ Y is a Markov chain and (Y ≈ε U) | Z, then (Y ≈ε U) | (Z,X).

Lemma 4.18. If X↔ Z↔ Y is a Markov chain, then H̃∞(X | Z) = H̃∞(X | (Z,Y)).

The following lemma is a direct corollary of [Li15, Lemma 3.20].

Lemma 4.19. Let (X,W)↔ Z↔ Y be a Markov chain. Suppose there exists a joint distribution

(W̃,Z) such that (W̃ ≈ε W) | Z. Then there exists a joint distribution (X,W̃,Z,Y) such that

(W̃ ≈ε W) | (Z,X,Y)

and (X,W̃)↔ Z↔ Y forms a Markov chain.

18



The following lemma is by embedding Lemma 4.17 into [CS16, Lemma 3.11].

Lemma 4.20. Let X ↔ Z ↔ (Y,W) be a Markov chain such that (Y ≈δ Ud) | Z and H̃∞(X |
Z) ≥ k + log(1/ε). Let Ext : {0, 1}n × {0, 1}d → {0, 1}m be a (k, ε)-strong seeded extractor. Then

(Ext(X,Y) ≈2ε+δ Um) | (Z,Y,W).

4.5 Affine Sources

The following lemma from [Rao09, Li11] shows the implicit independence between an affine source
X and any of its linear function L(X).

Lemma 4.21 ([Rao09, Li11]). Let X be any random variable sampled from a (n, k)-affine source,
and let L : {0, 1}n → {0, 1}m be any linear function. Then there exist independent random variables
A,B such that

• X = A + B.

• There is a bijection between B and L(X)

• H∞(A) ≥ k −m

We also use the following lemma from [Rao09].

Lemma 4.22 ([Rao09]). Let LExt : {0, 1}n×{0, 1}d → {0, 1}m be a (k, ε)-strong linear condenser.
Then for every (n, k)-affine source X,

Pr
s∼Ud

[LExt(X, s) is uniform] ≥ 1− 2ε.

4.6 Dispersers

Definition 4.23. We say a function Γ : [N ] × [D] → [M ] is a (K, ε)-disperser if for every set
X ⊆ [N ] with |X| ≥ K, the set Γ(X) := {Γ(x, y) | x ∈ X, y ∈ [D]} satisfies

|Γ(X)| ≥ εM.

We use the following disperser from [Zuc07].

Lemma 4.24 ([Zuc07]). For every constant δ > 0 and ε = ε(n) > 0, there exists an efficient family
of (K = N δ, ε)-disperser Γ : [N = 2n]× [D]→ [M ] such that D = O( n

log(1/ε)) and M =
√
K.

4.7 Non-oblivious bit-fixing sources

Definition 4.25. A distribution X = (X1,X2, . . . ,Xn) on {0, 1}n is called (t, γ)-wise independent
if for every subset S ⊆ [n] of size t,

XS ≈γ Uq.

If γ = 0 we simply say X is t-wise independent.

Lemma 4.26 ([AGM03]). If X on {0, 1}n is (t, γ)-wise independent, then X is ntγ-close to a
t-wise independent distribution.

19



Definition 4.27. A distribution X = (X1,X2, . . . ,Xn) on {0, 1}n is called a (q, t, γ)-non-oblivious
bit-fixing (NOBF) source if there exists a set Q s.t. |Q| ≤ t and X[n]\Q is (t, γ)-wise independent.

In [Vio14], Viola proved that the majority function is an extractor for (q, t, 0)-NOBF source.
Combining the result with Lemma 4.26 gives the following lemma.

Lemma 4.28. Let Maj : {0, 1}n → {0, 1} be the majority function such that Maj(x) = 1 iff
∑

i xi ≥
dn/2e. Then there exists a constant C4.28 such that for every (q, t, γ)-NOBF source X ∈ {0, 1}n,

∆ (Maj(X); U1) ≤ C4.28

(
log t√
t

+
q√
n

)
+ ntγ.

5 Strong Linear Somewhere Random Extractor

In this section, we show how to construct a strong linear seeded somewhere random extractor with
seed length d = O(log n) and error ε = 1/poly(n), with entropy requirement linear in the output
length m = c(n) log n. This object takes a seed in [D = 2d] and produce a “somewhere random”
source. That is, given an affine source X and a seed S, the object produce A different outputs
LSRExt(X,S, 1), . . . ,LSRExt(X,S, A) such that with high probability over S one of the output
should be uniform. The formal definition is in the following theorem. Note that the definition
below is equivalent to saying the error ε is D−(1−δ). We choose this formulation because it is more
well suited for for our application.

Theorem 5.1. There exists a constant β5.1 which satisfies the following. For every constant δ5.1 >
0, there exists a constant C5.1 such that every n ∈ N and every c = c(n) < 2

3√logn, there an explicit
function LSRExt : {0, 1}n × [D]× [A]→ {0, 1}c logn such that

• D ≤ nC5.1

• A ≤ C5.1 log2(c(n))

• For every fixed s ∈ [D], z ∈ [A], the function LSRExts,z(x) := LSRExt(x, s, z) is linear.

• For every (n, β5.1c log(n))-affine source X, there exists a subset B ⊆ [D] of size at most Dδ5.1

such that for every s ∈ [D]\B, ∃z ∈ [A] s.t. LSRExt(X, s, z) is uniform.

To prove this theorem, we first construct a strong linear seeded extractor with O(log n) seed
length and O(m) entropy requirement, but the error will be slightly larger than 1/poly(n). This
extractor relies on “block-source condensing” using strong condenser, which is similar to the stan-
dard block-source extraction trick. We first prove a block-source condensing lemma in Section 5.1,
and then show how to construct the extractor in Section 5.2. Finally we show how to adapt an
error reduction technique from [BDT17] to our setting, and obtain the desired linear somewhere
random extractor for affine source with error 1/poly(n). This is presented in Section 5.3.

5.1 Block-source condensing

First we define a block source.

Definition 5.2 ([CG88]). (X1,X2, . . . ,Xt) ∈ ({0, 1}n)t is called a (t, n, k)-block source if for every
i ∈ [t] , H∞(Xi | X1, . . . ,Xi−1) ≥ k.

20



It is well-known that a high-entropy source is close to a block source.

Lemma 5.3 ([GW97]). Let X be a (2n, 2n −∆)-source. Divide X into two blocks X = X1 ◦X2,
each having n bits. Then (X1,X2) is ε-close to a (2, n, n−∆− log(1/ε))-block source.

By induction we have the following corollary.

Corollary 5.4. Let X = (X1, . . . ,Xt) be a (t, 2n, 2n−∆)-source. Define Split(X) = (Y1, . . . ,Y2t)
such that for every i ∈ [t], Xi = Y2i−1 ◦Y2i and Y2i−1,Y2i have n bits each. Then Split(X) is
tε-close to a (2t, n, n−∆− log(1/ε))-block source.

Next we prove the block-source condensing lemma.

Lemma 5.5 (block-source condensing). Let X = (X1,X2, . . . ,Xt) be a (t, n, k)-source and Con :
{0, 1}n × {0, 1}d → {0, 1}m be a (k, k′, ε)-strong condenser. Let Y = Ud. Define

BlockCon(X,Y) := (Con(X1,Y),Con(X2,Y), . . . ,Con(Xt,Y)).

Then (Y,BlockCon(X,Y)) is tε-close to a distribution (Y,Z1,Z2, . . . ,Zt) such that (Z1, . . . ,Zt)
is a (t,m, k′)-block source conditioned on any fixing of Y.

Proof. Let Xi = (X1, . . . ,Xi). We prove by induction that for every 0 ≤ i ≤ t, there exists
(Zi+1, . . . ,Zt) such that

(Xi,Y,Con(Xi+1,Ud), . . . ,Con(Xt,Ud)) ≈(t−i)ε (Xi,Y,Zi+1, . . . ,Zt) (1)

and (Zi+1, . . . ,Zt) is a (t− i,m, k′)-block source conditioned on any fixing of Xi,Y. Note that the
i = 0 case is what we want to prove in this lemma.

The base case i = t is trivial. Now assume there exists (Zi+1, . . . ,Zt) which satisfies the
induction hypothesis. We show that there exists Zi such that

(Xi−1,Y,Con(Xi,Y), . . . ,Con(Xt,Y)) ≈(t−i+1)ε (Xi−1,Y,Zi, . . . ,Zt) (2)

and (Zi,Zi+1, . . . ,Zt) is a (t− i+ 1,m, k′)-block source conditioned on any fixing of Xi−1,Y. First
note that Xi has min-entropy at least k conditioned on any fixing of Xi−1. By the definition of
strong condenser and by Lemma 4.19, there exists Zi such that

(Xi−1,Xi,Y,Con(Xi,Y),Zi+1, . . . ,Zt) ≈ε (Xi−1,Xi,Y,Zi,Zi+1, . . . ,Zt), (3)

H∞(Zi | Xi−1,Y) ≥ k′ and Zi ↔ (Xi,Y)↔ (Zi+1, . . . ,Zt) is a Markov chain. Since (Zi+1, . . . ,Zt)
is a (t − i,m, k′)-block source conditioned on any fixing of (Xi,Y), it’s still a (t − i,m, k′)-block
source after further fixing Zi. Therefore (Zi, . . . ,Zt) is a (t− i+ 1,m, k′)-block source conditioned
on any fixing of (Xi−1,Y). By adding Con(Xi,Y) to (1), applying triangle inequality with (3) and
then removing Xi, we get (2).

5.2 Strong linear seeded extractor with slightly sub-optimal error

As described in Section 2, we first construct a strong linear seeded extractor with error ε and output
length c log n using seed length O(log n+ log2(c) log(1/ε)).

21



Theorem 5.6. For every c = c(n) < 2
3√logn and every ε = ε(n) > 0, there exists a family

of explicit (k, ε)-strong linear seeded extractor LExt : {0, 1}n × {0, 1}d → {0, 1}c logn such that
k = O(c log(n) + c log(c) log(1/ε)) and d = O(log(n) + log2(c) log(1/ε)).

Proof. Let h = log(c) and ε0 = ε
4c . Let k0, k1, . . . , kh,m0, . . . ,mh, d0, . . . , dh, dext ∈ N be

some parameters to be defined later. Given a (n, k0)-source X, first we take some uniform
seeds (Y0,Y1, . . . ,Yh), each having length d0, d1, . . . , dh respectively. Besides, we write Yi =
(Y0,Y1, . . . ,Yi) for short. Our first step is to iteratively construct X0,X1, . . . ,Xh such that for
every 0 ≤ i ≤ h,

(Yi,Xi) ≈2i+1ε0 (Yi,Zi) (4)

where Zi is a (2i,mi, ki)-block source conditioned on any fixing of Yi. To do this, first we define

X0 := LCon0(X,Y0),

where LCon0 : {0, 1}n × {0, 1}d0 → {0, 1}m0 is a (k0, ε0)-strong linear lossless condenser. Then the
i = 0 case of (4) follows by definition of strong condenser. Next, for every i ∈ [h], we define

Xi := Split(BlockConi(Xi−1,Yi)),

where Split is from Corollary 5.4 and BlockConi is the block-source condenser from Lemma 5.5
instantiated with a (ki, ε0)-strong linear lossless condenser LConi : {0, 1}mi−1×{0, 1}di → {0, 1}2mi .
Observe that conditioned on any fixing of Yi−1, by Lemma 5.5 there exists Z′i such that

(Z′i,Yi) ≈(2i−1)ε0 (BlockConi(Zi−1,Yi),Yi)

which is a (2i−1, 2mi, ki−1)-block source. By Corollary 5.4, if ki−1 ≥ mi + ki + log(1/ε0), then
conditioned on any fixing of Yi there exists a (2i,mi, ki)-block source Zi such that

(Yi−1,Yi,Xi) ≈2iε0 (Yi−1,Yi,Split(BlockConi(Zi−1,Yi)))

≈2i−1ε0 (Yi−1,Yi,Spliti(Z
′
i))

≈2i−1ε0 (Yi−1,Yi,Zi).

Then (4) holds by triangle inequality. In the last step, we take one more uniform seed Yext ∈
{0, 1}dext , and output

LExt(X, (Yh,Yext)) := BlockExt(Xh,Yext)

where BlockExt is the block-source condenser from Lemma 5.5 instantiated with a (kh, ε0)-strong
linear seeded extractor LHL : {0, 1}mh × {0, 1}dext → {0, 1}logn (note that an extractor is a special
case of condenser). By (4) and Lemma 5.5 we can conclude that LExt is a (k, ε)-strong linear
extractor with seed length d =

∑h
i=0 di + dext. Moreover, observe that LExt is linear since all the

operations in this construction are linear if Y0, . . . ,Yh,Yext are fixed.
Finally we need to set the undefined parameters and show that there exist explicit constructions

of LCon0, . . . ,LConh and LHL. First we set kh = log(n) + 2 log(1/ε0), so that LHL exists by
Lemma 4.8. Next, for every 1 ≤ i ≤ h, let LConi be the lossless condenser from Lemma 4.7
by setting α = 1

h+1 . Then 2mi = (1 + 1
h+1)ki−1 + di and di = (h + 2) log(mi−1ki−1/ε0) + O(1).

Therefore we can rewrite the condition ki−1 ≥ mi + ki + log(1/ε0) as

ki−1 ≥ 2

(
1 +

1

h

)(
ki +

di
2

+ log(1/ε0)

)
.

22



Set kh−1, . . . , k0 based on this recurrence, and use the fact that d1 ≥ · · · ≥ dh, we get that for every
0 ≤ i < h,

ki ≤
(

2

(
1 +

1

h

))h−i
(log(n) + d1 + 4 log(1/ε0)) .

Since (1+ 1
h)h < e, the entropy requirement of LExt is k0 = O(c log(n)+c log(c) log(1/ε)), assuming

thatO(h log(m0·k0·c)) = O(log n+log(c) log(1/ε)), which is true based on our parameter restriction.
Finally, for LCon0, we take the condenser from Lemma 4.7 by setting α = 1. Then we get d0 =
O(log(n/ε)) and m0 = 2k0 + d0. Therefore d1 = O(h log(k0/ε)). The total seed length of this
extractor is

d =
h∑
i=0

di + dext ≤ d0 + hd1 +mh = O(log(n) + h2 log(1/ε) + h3) = O(log(n) + log2(c) log(1/ε)).

5.3 Error reduction

We now adapt the error reduction scheme in [BDT17] to our setting, and argue that the error
reduction preserves linearity. In fact, there’s a bonus in our setting: the general scheme in [BDT17]
only gives a somewhere random condenser, but if we start with a strong linear seeded extractor and
consider only affine source, we actually get a somewhere random extractor instead of a somewhere
random condenser. The formal statement is as follows.

Lemma 5.7. Suppose there exists an explicit (k, ε)-strong linear seeded extractor LExt : {0, 1}n ×
{0, 1}d′ → {0, 1}m where ε < 1/3. Then for every constant δ > 0 there exists an explicit function
LSRExt : {0, 1}n × [D]× [A]→ {0, 1}m which satisfies the following:

• D = 2O(d′)

• A = O( d′

log(1/ε))

• For every s ∈ [D], z ∈ [A], the function LSRExts,z(x) := LSRExt(x, s, z) is linear.

• For every (n, k)-affine source X, there exists a set B ⊆ [D] of size at most Dδ such that for
every s ∈ [D]\B, there exists z ∈ [A] s.t. LSRExt(X, s, z) is uniform.

Proof. Let Γ : [D] × [A] → [D′ = 2d
′
] be the (Dδ, 3ε)-disperser from Lemma 4.24. Note that

D = 22d′/δ = 2O(d′) and A = O( logD
log(1/ε)) = O( d′

log(1/ε)). Define

LSRExt(x, s, z) := LExt(x,Γ(s, z)).

Observe that LSRExts,z is linear for every s, z since LExt is linear. It remains to prove the last
property. Let B be the set which consists of every s s.t. ∀z ∈ [A], LExt(X,Γ(s, z)) is not uniform.
By Lemma 4.22, the number of seed y ∈ [D′] such that LExt(X,Γ(s, z)) is not uniform is at most
2εD′. Therefore |Γ(B)| ≤ 2εD′ < 3εD′, which implies that |B| < Dδ.

Now we are ready to prove Theorem 5.1.

23



Proof of Theorem 5.1. Let LExt : {0, 1}n×{0, 1}d′ → {0, 1}c logn be the explicit (k, ε)-strong linear

seeded extractor from Theorem 5.6 such that ε = n
− 1

log2 c . Then k = O(c log n) and d′ = O(log n).
Now we use Lemma 5.7 to construct the function LSRExt : {0, 1}n× [D]× [A]→ {0, 1}c logn based
on LExt. Observe that D = 2O(d′) = nO(1) and A = O( d′

log(1/ε)) = O(log2 c). The last two properties
follow from Lemma 5.7 directly.

6 Correlation Breaker for Linearly Correlated Source

Informally speaking, a correlation breaker takes a source and an advice, where the advice is guar-
anteed to be different from its tampered version, and “break the correlation” between the source
and its tampered versions. That is, it outputs a uniform random string which is independent of
the tampered output. Typically the source consists of two independent sources, but in our setting
we will take two linearly correlated sources with “implicit independence”.

In this section, we construct a correlation breaker with advice for such linearly correlated
source. This primitive first appeared in [Li16] and was explicitly defined in [CL16b]. The entropy
requirement of the correlation breaker in these previous works was logC(n), for some large enough
constant C. In this section, we take inspiration from recent constructions of correlation breaker for
independent sources, and improve the entropy requirement of correlation breakers in the linearly
correlated setting to O(log1+o(1)(n)). We now state our result more formally.

Definition 6.1. We say a function ACB : {0, 1}n×{0, 1}d×{0, 1}a → {0, 1}m is a (t, k, a, ε)-advice
correlation breaker for linearly correlated sources if the following holds. Let

• A,A[t],B,B[t] be random variables on {0, 1}n and Y,Y[t] be random variables on {0, 1}d such
that (A,A[t]) is independent of (B,B[t],Y,Y[t]). Moreover, H∞(A) ≥ k and Y = Ud.

• X = A + B,Xi = Ai + Bi for every i ∈ [t]

• α, α1, . . . , αt be a-bit strings s.t. α 6= αi for every i ∈ [t].

then
(ACB(X,Y, α) ≈ε Um) | (ACB(X1,Y1, α1), . . . ,ACB(Xt,Yt, αt)).

Theorem 6.2. There exists another constant C6.2 such that for every n, t, a,m ∈ N and ε > 0,
and every k, d such that

• k ≥ C6.2t
2 log(a) log(naε )

• d ≥ C6.2

(
t2 log(a) log(naε ) + t3 log(naε ) + tm

)
and d ≤ n.

there exists ACB : {0, 1}n × {0, 1}d × {0, 1}a → {0, 1}m which is a (t, k, a, ε)-advice correlation
breaker for linearly correlated sources.

Note that when m = 1, t = O((log log log(n))2), a = O(log(n)), ε = 1/poly(n), we need

k, d ≥ O(log(n) log log(n)(log log log(n))4).

In the rest of this section, for every random variable R, we use Ri to represent their i-th tampered
version. That is, if a random variable R is defined as R := f(X1, . . . ,Xk) for some function f and
random variables X1, . . . ,Xk, then Ri := f(Xi

1, . . . ,X
i
k). If any of the Xi

j is not defined then we

assume Xi
j = Xj .

24



6.1 Key Ingredients

The following lemma is a special case of [CGL16, Lemma 6.5], which is obtained by running
alternating extraction [DP07, DW09] with the extractor in Lemma 4.10.

Lemma 6.3 (2-look-ahead extractor). For every n, d,m ∈ N, ε > 0, there exists an explicit
function laExt2 : {0, 1}n × {0, 1}d → ({0, 1}m)2 which satisfies the following. Let X,X[t] ∈ {0, 1}n
and Y,Y[t] ∈ {0, 1}d be random variables such that (X,X[t]) is independent of (Y,Y[t]), Y = Ud

and H∞(X) = k. Let r = max{m, cGUV log(d/ε)}. If d ≥ (t + 3)cGUV log(n/ε) + log(1/ε) and

k ≥ (t+ 3)r + log(1/ε), then (R0,R1) := laExt2(X,Y) and their tampering (R
[t]
0 ,R

[t]
1 ) satisfy

(R0 ≈O(ε) Um) | (Y,Y[t]),

(R1 ≈O(ε) Um) | (Y,Y[t],R0,R
[t]
0 ).

The following lemma generalizes the proof idea in [CL16a].

Lemma 6.4 (independence-merging lemma). Let (X,X[t]) ↔ Z ↔ (Y,Y[t]) be a Markov chain,
such that X,X[t] ∈ {0, 1}n, Y,Y[t] ∈ {0, 1}d. Moreover, suppose there exists S, T ⊆ [t] such that

• (Y ≈δ Ud) | (Z,YS)

• H̃∞(X | (XT ,Z)) ≥ k + tm+ log(1/ε)

Let Ext : {0, 1}n × {0, 1}d → {0, 1}m be any (k, ε)-strong seeded extractor, let W = Ext(X,Y) and
Wj = Ext(Xj ,Yj) for every j ∈ [t]. Then

(W ≈2ε+δ Um) | (WS∪T ,Y,Y[t],Z).

Proof. Without loss of generality, assume that S and T are disjoint. First we give a short sentence
as a sketch of the proof: fix XT ,YS and WS , observe that X still have enough entropy and Y is
still uniform and independent of X. Therefore W = Ext(X,Y) is still uniform after fixing Y and
Y[t]. Now WT is also fixed, so we can conclude that W is uniform conditioned on Z,Y,Y[t],WS∪T .
The formal proof is as follows. First note that Y is δ-close to uniform conditioned on Z,YS , and
will still be δ-close to uniform even when further conditioned on XS ,XT . That is,

(Y ≈δ Ud) | (XT ,Z,XS ,YS).

Since WS is a deterministic function of XS ,YS , this implies

(Y ≈δ Ud) | (XT ,Z,WS ,YS).

Besides, by Lemma 4.12,

H̃∞(X | (XT ,Z,WS)) ≥ k + (t− |s|)m+ log(1/ε) ≥ k + log(1/ε).

This implies
H̃∞(X | (XT ,Z,WS ,YS)) ≥ k + log(1/ε)

since X ↔ Z ↔ YS is a Markov chain. Next observe that by fixing XT and YS in the Markov
chain (X,X[t]) ↔ Z ↔ (Y,Y[t]), we get that (X,XS) ↔ (XT ,Z,YS) ↔ (Y,Y[t]) is a Markov
chain. Since WS = Ext(XS ,YS), by fixing WS we get a Markov chain

X↔ (XT ,Z,WS ,YS)↔ (Y,Y[t]).

25



Therefore Lemma 4.20 implies

(W ≈2ε+δ Um) | (XT ,Z,WS ,YS ,Y,Y[t]).

Now note that WT is a deterministic function of XT and YT , so

(W ≈2ε+δ Um) | (WT ,Z,WS ,YS ,Y,Y[t])

By removing duplicated YS we prove the claim.

The following lemma gives a non-malleable independence-preserving merger (NIPM) for two
strings with entropy recycling. Note that the definition is different from the t-tampering NIPM
in [CL16a] in the following way. First, we allow V1,V2 to be weak sources with high conditional
entropy conditioned on some tampering and require S to be uniform, while they require V1,V2 to
be uniform but allow S to be a weak source in their basic merger. Second, in [CL16a] V1,V2 either
is independent of all the tampering or has no independence guarantee at all, but in the lemma
below we also consider partial independence so that V1,V2 might be independent of a subset of
tampering. Besides, similar to [Li19], this NIPM takes an extra input R as entropy pool and assume
that the output length is the same as |V1| , |V2|.

Lemma 6.5 (2-NIPM). For every n, s, r ∈ N and ε > 0, there exists an explicit function

NIPM2 : ({0, 1}n)2×{0, 1}r×{0, 1}s → {0, 1}n which satisfies the following. Let V1,V2,V
[t]
1 ,V

[t]
2 ∈

{0, 1}n,S,S[t] ∈ {0, 1}s,R,R[t] ∈ {0, 1}r and Z be any random variable. Let T1, T2 ⊆ [t]. Let
g = max{r, s, n} and d = cGUV log(g/ε). If the following conditions hold:

• (S,S[t])↔ Z↔ (V1,V
[t]
1 ,V2,V

[t]
2 ,R,R

[t]) is a Markov chain.

• H̃∞(V1 | (VT1
1 ,Z)), H̃∞(V2 | (VT2

2 ,Z)) ≥ (2t+ 3)d+ log(1/ε)

• (S ≈δ Us) | Z, and s ≥ (3t+ 4)d+ log(1/ε)

• H̃∞(R | Z) ≥ (t+ 2)n+ (2t+ 2)d+ log(1/ε)

Then W = NIPM2((V1,V2),R,S) and its tampering W[t] satisfy

(W ≈δ+O(ε) Un) | (WT1∪T2 ,S,S[t],Z).

Proof. This function requires the following building blocks.

• ExtV : {0, 1}n × {0, 1}d → {0, 1}d is a (2d, ε)-strong seeded extractor from Lemma 4.10

• ExtS : {0, 1}s × {0, 1}d → {0, 1}d is a (2d, ε)-strong seeded extractor from Lemma 4.10

• ExtR : {0, 1}r × {0, 1}d → {0, 1}n is a (2n, ε)-strong seeded extractor from Lemma 4.10

The construction of NIPM2 is as follows. Let Q1 be a length-d prefix of S. Now apply the following
steps:

P1 = ExtV (V1,Q1)

Q2 = ExtS(S,P1)

P2 = ExtV (V2,Q1)

Qr = ExtS(S,P2)

W = ExtR(R,Qr).

26



Then W will be the output of NIPM2((V1,V2),R,S). To prove the correctness, we start with

the Markov chain (S,S[t])↔ Z↔ (V1,V
[t]
1 ,V2,V

[t]
2 ,R,R

[t]), and then we fix (Q1,Q
[t]
1 ), (P1,P

[t]
1 ),

(Q2,Q
[t]
2 ) and (P2,P

[t]
2 ) in order. Observe that as long as the extractor applied in each step satisfies

the conditional min-entropy requirement in Lemma 6.4, by applying Lemma 6.4 in each step we
get

(P1 ≈δ Ud) | (PT1
1 ,Z,Q1,Q

[t]
1 )

(Q2 ≈δ+2ε Ud) | (QT
2 ,Z,Q1,Q

[t]
1 ,P1,P

[t]
1 )

(P2 ≈δ+4ε Ud) | (PT1∪T2
2 ,Z,Q1,Q

[t]
1 ,P1,P

[t]
1 ,Q2,Q

[t]
2 )

(Qr ≈δ+6ε Ud) | (QT1∪T2
r ,Z,Q1,Q

[t]
1 ,P1,P

[t]
1 ,Q2,Q

[t]
2 ,P2,P

[t]
2 , )

(W ≈δ+8ε Um) | (WT1∪T2 ,Z,Q1,Q
[t]
1 ,P1,P

[t]
1 ,Q2,Q

[t]
2 ,P2,P

[t]
2 ,Qr,Q

[t]
r ). (5)

Besides, observe that by further fixing (Qr,Q
[t]
r ,WT1∪T2) in the last step we have a Markov chain

(S,S[t])↔ (Z,Q1,Q
[t]
1 ,P1,P

[t]
1 ,Q2,Q

[t]
2 ,P2,P

[t]
2 ,Qr,Q

[t]
r ,W

T1∪T2)↔W.

By applying Lemma 4.17 to (5) we prove the claim. Finally we need to verify that at each step
the conditional entropy of V1,V2,S,R actually satisfies the requirement in Lemma 6.4. Now we

define Z′ = (Q
[t]
1 ,Q1), (P

[t]
1 ,P1), (Q

[t]
2 ,Q2). Observe that

H̃∞(V1 | (Z,Z′)) ≥ H̃∞(V1 | Z)− (t+ 1)d ≥ 2d+ td+ log(1/ε)

H̃∞(V2 | (Z,Z′)) ≥ H̃∞(V2 | Z)− (t+ 1)d ≥ 2d+ td+ log(1/ε)

H̃∞(S | (Z,Z′)) ≥ H̃∞(S | Z)− 2(t+ 1)d ≥ 2d+ td+ log(1/ε)

H̃∞(R | (Z,Z′,P[t]
2 ,P2)) ≥ H̃∞(R | Z)− 2(t+ 1)d ≥ 2n+ tn+ log(1/ε).

Therefore in each application of Lemma 6.4 the entropy requirement is satisfied.

The following lemma uses the flip-flop idea from [Coh16a].

Lemma 6.6. Let FFAssign : ({0, 1}n)2 × {0, 1}a → ({0, 1}n)2a be the function defined as follows.
Let r0, r1 ∈ {0, 1}n and α ∈ {0, 1}a. Let αj denote the j-th bit of α. Then FFAssign(r0, r1, α) :=

(rα1 , r1−α1 , . . . , rαa , r1−αa). Now suppose for some random variables R0,R
[t]
0 ,R1,R

[t]
1 ∈ {0, 1}n, Z

and some strings α, α1, . . . , αt ∈ {0, 1}a, the following conditions hold:

• (R0 ≈ε Un) | Z

• (R1 ≈ε Un) | (Z,R[t]
0 )

• αj 6= α for every j ∈ [t]

Then there exist sets S1, . . . , S2a ⊆ [t] which satisfy the following. First,
⋃2a
i=1 Si = [t]. Second, let

(V1, . . . ,V2a) = FFAssign(R0,R1, α) and (Vj
1, . . . ,V

j
2a) = FFAssign(Rj

0,R
j
1, α

j). Then for every
j ∈ [2a],

(Vj ≈ε Un) | (Z,VSj

j ).

27



Proof. For every j ∈ [a], let S2j−αj = {i ∈ [t] : αij 6= αj}, S2j−1+αj be empty. Observe that for

every i ∈ [t], there exists pi such that αpi 6= αipi , which implies i ∈ S2pi−αpi
. Therefore

⋃2a
i=1 Si = [t].

Besides, note that for every j ∈ [2a], either Vj = R1 and V
Sj

j = R
Sj

0 or Vj = R0 and Sj is empty.

By the given condition, (Vj ≈ε Un) | (Z,VSj

j ) in both cases.

6.2 Construction and proof

Now we are ready to prove Theorem 6.2.

Proof of Theorem 6.2. Let ε0 = (ε/Ca) for some large enough constant C. Let s = cGUV log(n/ε0),
we take sy = (t + 4)s and sx = (2t + 9)s. Let v = max{(3t + 5)(sx + sy),m} = O(t2s + m). We
need to guarantee that d ≥ (t+ 3)v+ (2t+ 3)sx+ log(2a)(t+ 1)(sx+ sy) = O(t2 log(a)s+ t3s+ tm),
and H∞(A) ≥ (log(2a)(t+ 1) + 1)sy + 3 log(1/ε0) = O(t2 log(a)s). To construct ACB, we need the
following building blocks:

• LExt : {0, 1}n × {0, 1}sx → {0, 1}sy , which is a (sy + 2 log(1/ε0), ε0)-strong linear seeded
extractor from Lemma 4.9.

• laExt2 : {0, 1}d × {0, 1}sy → ({0, 1}v)2 from Lemma 6.3 with error parameter ε0.

• FFAssign : ({0, 1}v)2 × {0, 1}a → ({0, 1}v)2a from Lemma 6.6.

• NIPM2 : ({0, 1}v)2 × {0, 1}d × {0, 1}sy → ({0, 1}v) from Lemma 6.5 with error parameter ε0.

Given X = A + B,Y, the construction works as follows.

1. Take W0 to be a prefix of Y of length sx.

2. Compute Q0 := LExt(X,W0).

3. Compute (R0,R1) := laExt2(Y,Q0).

4. Define (V0,1,V0,2, . . . ,V0,(2a−1),V0,2a) := FFAssign((R0,R1), α).

5. For i from 1 to h = log(2a), repeat the following steps:

I Take Wi to be a prefix of Vi−1,1 of length sx.

II Compute Qi := LExt(X,Wi).

III For every j ∈ [2a/2i], compute Vi,j := NIPM2((V(i−1),(2j−1),V(i−1),2j),Y,Qi).

6. Output ACB(X,Y, α) := Vh,1.

To prove that this construction works, define Ai := LExt(A,Wi),Bi := LExt(B,Wi). We also

use Vi to denote (Vi,1, . . . ,Vi,(2a/2i)). First note that (A0 ≈ε0 Usy) | (W0,W
[t]
0 ,B0,B

[t]
0 ). Since

H̃∞(Y | (W0,W
[t]
0 ,B0,B

[t]
0 )) ≥ (t+ 3)v + 2 log(1/ε0), by Lemma 6.3 and Lemma 6.6, there exists

sets S0,1, S0,2, . . . , S0,2a such that
⋃2a
j=1 S0,j = [t], and for every j ∈ [2a] we have

(V0,j ≈O(ε0) Uv) | (W0,W
[t]
0 ,Q0,Q

[t]
0 ,B0,B

[t]
0 ,V

S0,j

0,j ).

Now for every i ∈ [h] and j ∈ [2a/2i], define Si,j = Si−1,2j−1 ∪ Si−1,2j . Note that Sh,1 = [t].

Besides, for i from 0 to h, define Zi = (W0,W
[t]
0 ,Q0,Q

[t]
0 ,B0,B

[t]
0 ). We inductively prove the

following claims for i from 1 to h.

28



• (A,A[t])↔ Z<i ↔ (B,B[t],Y,Y[t],V(i−1),V
[t]
(i−1),Wi,W

[t]
i ,Bi,B

[t]
i ) forms a Markov chain.

This is by induction hypothesis and by the fact that Wi,Bi is a deterministic function of
B,V(i−1),1.

• (Wi ≈O(2iε0) Usx) | Z<i. (by (6))

• H̃∞(A | Z<i) ≥ H∞(A) − i(t + 1)sy ≥ sy + 3 log(1/ε0) (by induction hypothesis and chain
rule)

• (Ai ≈O(2iε0) Usy) | (Z<i,Wi,W
[t]
i ,Bi,B

[t]
i ) (by LExt being an extractor)

• (A,A[t],Ai,A
[t]
i ) ↔ (Z<i,Wi,W

[t]
i ,Bi,B

[t]
i ) ↔ (B,B[t],Y,Y[t],V(i−1),V

[t]
(i−1)) forms a

Markov chain

• (Qi ≈O(2iε0) Usy) | (Z<i,Wi,W
[t]
i ,Bi,B

[t]
i ) (sum of U and any fixed string is still U)

• (A,A[t],Qi,Q
[t]
i ) ↔ (Z<i,Wi,W

[t]
i ,Bi,B

[t]
i ) ↔ (B,B[t],Y,Y[t],V(i−1),V

[t]
(i−1)) forms a

Markov chain. (This is because Qi = Ai + Bi.)

• For every j ∈ [2a/2i−1], there exists Ṽ(i−1),j s.t.

H̃∞

(
Ṽ(i−1),j |

(
V
S(i−1),j

(i−1),j ,Z<i,Wi,W
[t]
i ,Bi,B

[t]
i

))
≥ v−(t+1)(sx+sy) ≥ (2t+3)sx+log(1/ε0)

and (
V(i−1),j ≈O(2iε0) Ṽ(i−1),j

)
|
(
V
S(i−1),j

(i−1),j ,Z<i,Wi,W
[t]
i ,Bi,B

[t]
i

)
.

This Ṽ(i−1),j comes from the Uv in (6), which has H̃∞

(
Ṽ(i−1),j |

(
V
S(i−1),j

(i−1),j ,Z<i

))
= v. The

conditional entropy bound is by chain rule (Lemma 4.12).

• H̃∞

(
Y |

(
Z<i,Wi,W

[t]
i ,Bi,B

[t]
i

))
≥ d− i(t+ 1)(sx + sy) ≥ (t+ 2)v+ (2t+ 2)sx + log(1/ε0).

• For every j ∈ [2a/2i],(
Vi,j ≈O(2i+1ε0) Uv

)
|
(
V
Si,j

i,j ,Z<i,Wi,W
[t]
i ,Bi,B

[t]
i ,Qi,Q

[t]
i

)
,

which can be rewritten as (
Vi,j ≈O(2i+1ε0) Uv

)
|
(
V
Si,j

i,j ,Z≤i

)
. (6)

This is by applying NIPM2 (Lemma 6.5) on (Ṽ(i−1),(2j−1), Ṽ(i−1),2j). The error blows up by
a factor 2 and will dominate the additive O(ε0) error in previous steps.

• (A,A[t])↔ Z≤i ↔ (B,B[t],Y,Y[t],Vi,V
[t]
i ) forms a Markov chain. (by fixing Qi,Q

[t]
i )

Finally observe that (6) for i = h, j = 1 is exactly what we want. The error is O(2hε0) = O(aε0).

29



7 Main Theorem

In this section we prove our main theorem.

Theorem 7.1 (Theorem 1, restated). For every constant ε > 0, there exists a constant C such that
for every large enough n, there exists an explicit extractor AffExt : {0, 1}n → {0, 1} for (n, k)-affine
source with error ε for any k ≥ C log(n) log log(n) log log log6(n).

Proof. Let X be a (n, k)-affine source. Let t = O( log2(1/ε)
ε2

) be large enough so that C4.28
log(t)√

t
≤ ε

3 .

Let LSRExt : {0, 1}n × [D] × [A] → {0, 1}c logn be a strong linear seeded somewhere random
extractor from Theorem 5.1 where δ5.1 = 0.4, and assume that c and k is large enough so that

• k satisfies the entropy requirement in Theorem 5.1, i.e. k ≥ β5.1c log(n).

• An explicit (tA, k0, a, γ)-advice correlation breaker ACB : {0, 1}n × {0, 1}c log(n) × {0, 1}a →
{0, 1} exists based on Theorem 6.2, where k0 = k − tA(c log(n)), a = log(AD) and γ =
ε/(3tDt).

We set the parameters later. Now for every s ∈ {0, 1}D, z ∈ {0, 1}A, compute

Ys,z := LSRExt(X, s, z)

Rs,z := ACB(X,Ys,z, (s, z))

Ps := ⊕zj=1Rs,j .

Then the output is
AffExt(X) := Maj(P1, . . . ,PD).

Observe that the running time is polynomial, since all the functions are explicit and D,A ≤
nO(1). Next we prove the correctness of this construction. First note that by Theorem 5.1 there
exists a set B ∈ [D] of size at most D0.4 such that for ∀s ∈ [D]\B, ∃z ∈ [A] s.t. Ys,z is uniform.
Now consider any T ⊆ [D]\B such that |T | = t. Let T = {s1, s2, . . . , st}. For every i ∈ [t], let
zi ∈ [A] be the index such that Ysi,zi is uniform. Observe that for every i ∈ [t], j ∈ [A], the function
LSRExt(·, si, j) is linear, and so is their concatenation. Since their total length is tA(c log(n)), by
Lemma 4.21, there exists A,B such that A + B = X, A is independent of (B, {Ysi,j}i∈[t],j∈[A]),
and H∞(A) ≥ k − tA(c log(n) = k0. Then for every i ∈ [t], by the definition of ACB we get that
for every i ∈ [t],

(Rsi,zi ≈γ U1) |
(
{Rsi,j}j∈[A]\{zi}, {Rs′,j}s′∈T\{si},j∈[A]

)
.

This implies that
(Psi ≈γ U1) |

(
{Ps′}s′∈T\{si}

)
,

and then
(Ps1 , . . . ,Psi−1 ,Psi ,Ut−i) ≈γ (Ps1 , . . . ,Psi−1 ,U1,Ut−i).

By triangle inequality we eventually get

(Ps1 ,Ps2 , . . . ,Pst) ≈tγ Ut.

30



In other word, for every T ⊆ [D]\B s.t. |T | = t, we have PT is tγ-close to Ut, which means
(P1, . . . ,PD) is a (D0.4, t, tγ)-NOBF source. Therefore by Lemma 4.28 we can conclude that

∆ (AffExt(X); U1) ≤ C4.28
log(t)√

t
+ C4.28D

−0.1 + tDtγ,

which is at most ε as long as n is large enough so that C4.28D
−0.1 ≤ ε/3.

Finally we consider the parameter restriction of c, k. First note that

c log(n) ≥ C6.2

(
(tA)3 + (tA)2 log log(DA)

)
log

(
n log(DA)

ε/3tDt

)
= O

((
log6(c) + log4(c) log log(n)

)
· (log(n) + log log(c))

)
.

Observe that there exists some large enough constant C0 such that c = C0 log log(n)(log log log(n))4

satisfies the above restriction. This implies A = O(log2(c)) = O((log log log(n))2). Next, we need

k − (tAc log(n)) ≥ C6.2

(
(tA)2 log log(DA)

)
log

(
n log(DA)

ε/3tDt

)
= O(c log(n)).

Therefore the entropy requirement is k = O(Ac log(n)) = O(log(n) log log(n)(log log log(n))6). Note
that the entropy requirement for Theorem 5.1, k ≥ β5.1c log(n), is also satisfied.

Acknowledgement

We thank David Zuckerman for discussions about affine extractors, which led to this work.

References

[AGM03] Noga Alon, Oded Goldreich, and Yishay Mansour. Almost k-wise independence versus
k-wise independence. Inf. Process. Lett., 88(3):107–110, 2003.

[AL93] Miklós Ajtai and Nathan Linial. The influence of large coalitions. Combinatorica,
13(2):129–145, 1993.

[BDL16] Jean Bourgain, Zeev Dvir, and Ethan Leeman. Affine extractors over large fields with
exponential error. computational complexity, 25(4):921–931, 2016.

[BDT17] Avraham Ben-Aroya, Dean Doron, and Amnon Ta-Shma. An efficient reduction from
two-source to non-malleable extractors: achieving near-logarithmic min-entropy. In
Hamed Hatami, Pierre McKenzie, and Valerie King, editors, Proceedings of the 49th
Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, Montreal,
QC, Canada, June 19-23, 2017, pages 1185–1194. ACM, 2017.

[BIW06] Boaz Barak, Russell Impagliazzo, and Avi Wigderson. Extracting randomness using
few independent sources. SIAM Journal on Computing, 36(4):1095–1118, 2006.

[Blu86] Manuel Blum. Independent unbiased coin flips from a correlated biased source—a finite
state markov chain. Combinatorica, 6(2):97–108, 1986.

31



[Bou07] Jean Bourgain. On the construction of affine extractors. GAFA Geometric And Func-
tional Analysis, 17(1):33–57, 2007.

[BSRZ15] Eli Ben-Sasson and Noga Ron-Zewi. From affine to two-source extractors via approxi-
mate duality. SIAM Journal on Computing, 44(6):1670–1697, 2015.

[CG88] Benny Chor and Oded Goldreich. Unbiased bits from sources of weak randomness and
probabilistic communication complexity. SIAM J. Comput., 17(2):230–261, 1988.

[CG20] Eshan Chattopadhyay and Jesse Goodman. Explicit extremal designs and applications
to extractors. Electron. Colloquium Comput. Complex., 27:106, 2020.

[CGH+85] Benny Chor, Oded Goldreich, Johan Hasted, Joel Freidmann, Steven Rudich, and Ro-
man Smolensky. The bit extraction problem or t-resilient functions. In 26th Annual
Symposium on Foundations of Computer Science (sfcs 1985), pages 396–407. IEEE,
1985.

[CGL16] Eshan Chattopadhyay, Vipul Goyal, and Xin Li. Non-malleable extractors and codes,
with their many tampered extensions. In Daniel Wichs and Yishay Mansour, editors,
Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2016, Cambridge, MA, USA, June 18-21, 2016, pages 285–298. ACM, 2016.

[Che10] Mahdi Cheraghchi. Applications of Derandomization Theory in Coding. PhD thesis,
EPFL, Lausanne, Switzerland, 2010.

[CL16a] Eshan Chattopadhyay and Xin Li. Explicit non-malleable extractors, multi-source ex-
tractors, and almost optimal privacy amplification protocols. In Irit Dinur, editor,
IEEE 57th Annual Symposium on Foundations of Computer Science, FOCS 2016, 9-11
October 2016, Hyatt Regency, New Brunswick, New Jersey, USA, pages 158–167. IEEE
Computer Society, 2016.

[CL16b] Eshan Chattopadhyay and Xin Li. Extractors for sumset sources. In Daniel Wichs and
Yishay Mansour, editors, Proceedings of the 48th Annual ACM SIGACT Symposium
on Theory of Computing, STOC 2016, Cambridge, MA, USA, June 18-21, 2016, pages
299–311. ACM, 2016.

[Coh16a] Gil Cohen. Local correlation breakers and applications to three-source extractors and
mergers. SIAM J. Comput., 45(4):1297–1338, 2016.

[Coh16b] Gil Cohen. Making the most of advice: New correlation breakers and their applications.
In Irit Dinur, editor, IEEE 57th Annual Symposium on Foundations of Computer Sci-
ence, FOCS 2016, 9-11 October 2016, Hyatt Regency, New Brunswick, New Jersey,
USA, pages 188–196. IEEE Computer Society, 2016.

[Coh16c] Gil Cohen. Non-malleable extractors - new tools and improved constructions. In Ran
Raz, editor, 31st Conference on Computational Complexity, CCC 2016, May 29 to
June 1, 2016, Tokyo, Japan, volume 50 of LIPIcs, pages 8:1–8:29. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2016.

32



[Coh17] Gil Cohen. Towards optimal two-source extractors and ramsey graphs. In Hamed
Hatami, Pierre McKenzie, and Valerie King, editors, Proceedings of the 49th An-
nual ACM SIGACT Symposium on Theory of Computing, STOC 2017, Montreal, QC,
Canada, June 19-23, 2017, pages 1157–1170. ACM, 2017.

[CS16] Gil Cohen and Leonard J. Schulman. Extractors for near logarithmic min-entropy. In
Irit Dinur, editor, IEEE 57th Annual Symposium on Foundations of Computer Science,
FOCS 2016, 9-11 October 2016, Hyatt Regency, New Brunswick, New Jersey, USA,
pages 178–187. IEEE Computer Society, 2016.

[CT15] Gil Cohen and Avishay Tal. Two structural results for low degree polynomials and
applications. In Approximation, Randomization, and Combinatorial Optimization. Al-
gorithms and Techniques, APPROX/RANDOM 2015, August 24-26, 2015, Princeton,
NJ, USA, pages 680–709, 2015.

[CZ19] Eshan Chattopadhyay and David Zuckerman. Explicit two-source extractors and re-
silient functions. Annals of Mathematics, 189(3):653–705, 2019.

[DG10] Matt DeVos and Ariel Gabizon. Simple affine extractors using dimension expansion. In
2010 IEEE 25th Annual Conference on Computational Complexity, pages 50–57. IEEE,
2010.

[DKSS13] Zeev Dvir, Swastik Kopparty, Shubhangi Saraf, and Madhu Sudan. Extensions to the
method of multiplicities, with applications to kakeya sets and mergers. SIAM Journal
on Computing, 42(6):2305–2328, 2013.

[DORS08] Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin, and Adam D. Smith. Fuzzy extrac-
tors: How to generate strong keys from biometrics and other noisy data. SIAM J.
Comput., 38(1):97–139, 2008.

[DP07] Stefan Dziembowski and Krzysztof Pietrzak. Intrusion-resilient secret sharing. In 48th
Annual IEEE Symposium on Foundations of Computer Science (FOCS 2007), Octo-
ber 20-23, 2007, Providence, RI, USA, Proceedings, pages 227–237. IEEE Computer
Society, 2007.

[DW09] Yevgeniy Dodis and Daniel Wichs. Non-malleable extractors and symmetric key cryp-
tography from weak secrets. In Michael Mitzenmacher, editor, Proceedings of the 41st
Annual ACM Symposium on Theory of Computing, STOC 2009, Bethesda, MD, USA,
May 31 - June 2, 2009, pages 601–610. ACM, 2009.

[FGHK16] Magnus Gausdal Find, Alexander Golovnev, Edward A. Hirsch, and Alexander S. Ku-
likov. A better-than-3n lower bound for the circuit complexity of an explicit function.
In IEEE 57th Annual Symposium on Foundations of Computer Science, FOCS 2016,
9-11 October 2016, Hyatt Regency, New Brunswick, New Jersey, USA, pages 89–98,
2016.

[GR08] Ariel Gabizon and Ran Raz. Deterministic extractors for affine sources over large fields.
Combinatorica, 28(4):415–440, 2008.

33



[GUV09] Venkatesan Guruswami, Christopher Umans, and Salil P. Vadhan. Unbalanced ex-
panders and randomness extractors from parvaresh-vardy codes. J. ACM, 56(4):20:1–
20:34, 2009.

[GW97] Oded Goldreich and Avi Wigderson. Tiny families of functions with random properties:
A quality-size trade-off for hashing. Random Struct. Algorithms, 11(4):315–343, 1997.

[HILL99] Johan H̊astad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudo-
random generator from any one-way function. SIAM J. Comput., 28(4):1364–1396,
1999.

[KRVZ06] Jesse Kamp, Anup Rao, Salil Vadhan, and David Zuckerman. Deterministic extractors
for small-space sources. In Proceedings of the thirty-eighth annual ACM symposium on
Theory of computing, pages 691–700, 2006.

[KZ07] Jesse Kamp and David Zuckerman. Deterministic extractors for bit-fixing sources and
exposure-resilient cryptography. SIAM Journal on Computing, 36(5):1231–1247, 2007.

[Li11] Xin Li. A new approach to affine extractors and dispersers. In Proceedings of the
26th Annual IEEE Conference on Computational Complexity, CCC 2011, San Jose,
California, USA, June 8-10, 2011, pages 137–147. IEEE Computer Society, 2011.

[Li13] Xin Li. Extractors for a constant number of independent sources with polylogarithmic
min-entropy. In 54th Annual IEEE Symposium on Foundations of Computer Science,
FOCS 2013, 26-29 October, 2013, Berkeley, CA, USA, pages 100–109. IEEE Computer
Society, 2013.

[Li15] Xin Li. Non-malleable condensers for arbitrary min-entropy, and almost optimal pro-
tocols for privacy amplification. In Yevgeniy Dodis and Jesper Buus Nielsen, editors,
Theory of Cryptography - 12th Theory of Cryptography Conference, TCC 2015, War-
saw, Poland, March 23-25, 2015, Proceedings, Part I, volume 9014 of Lecture Notes in
Computer Science, pages 502–531. Springer, 2015.

[Li16] Xin Li. Improved two-source extractors, and affine extractors for polylogarithmic en-
tropy. In Irit Dinur, editor, IEEE 57th Annual Symposium on Foundations of Computer
Science, FOCS 2016, 9-11 October 2016, Hyatt Regency, New Brunswick, New Jersey,
USA, pages 168–177. IEEE Computer Society, 2016.

[Li17] Xin Li. Improved non-malleable extractors, non-malleable codes and independent source
extractors. In Hamed Hatami, Pierre McKenzie, and Valerie King, editors, Proceedings
of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017,
Montreal, QC, Canada, June 19-23, 2017, pages 1144–1156. ACM, 2017.

[Li19] Xin Li. Non-malleable extractors and non-malleable codes: Partially optimal construc-
tions. In Amir Shpilka, editor, 34th Computational Complexity Conference, CCC 2019,
July 18-20, 2019, New Brunswick, NJ, USA, volume 137 of LIPIcs, pages 28:1–28:49.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.

34



[LRVW03] Chi-Jen Lu, Omer Reingold, Salil Vadhan, and Avi Wigderson. Extractors: Optimal
up to constant factors. In Proceedings of the thirty-fifth annual ACM symposium on
Theory of computing, pages 602–611, 2003.

[Mek17] Raghu Meka. Explicit resilient functions matching ajtai-linial. In Philip N. Klein,
editor, Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19, pages
1132–1148. SIAM, 2017.

[NZ96] Noam Nisan and David Zuckerman. Randomness is linear in space. Journal of Computer
and System Sciences, 52(1):43–52, 1996.

[Rao09] Anup Rao. Extractors for low-weight affine sources. In Proceedings of the 24th Annual
IEEE Conference on Computational Complexity, CCC 2009, Paris, France, 15-18 July
2009, pages 95–101. IEEE Computer Society, 2009.

[RRV02] Ran Raz, Omer Reingold, and Salil P. Vadhan. Extracting all the randomness and
reducing the error in trevisan’s extractors. J. Comput. Syst. Sci., 65(1):97–128, 2002.

[Sha04] Ronen Shaltiel. Recent developments in explicit constructions of extractors. In Current
Trends in Theoretical Computer Science: The Challenge of the New Century Vol 1:
Algorithms and Complexity Vol 2: Formal Models and Semantics, pages 189–228. World
Scientific, 2004.

[Tre01] Luca Trevisan. Extractors and pseudorandom generators. J. ACM, 48(4):860–879,
2001.

[TV00] Luca Trevisan and Salil Vadhan. Extracting randomness from samplable distributions.
In Proceedings 41st Annual Symposium on Foundations of Computer Science, pages
32–42. IEEE, 2000.

[Vio14] Emanuele Viola. Extractors for circuit sources. SIAM J. Comput., 43(2):655–672, 2014.

[vN51] J. von Neumann. Various techniques used in connection with random digits. Applied
Math Series, 12:36–38, 1951. Notes by G.E. Forsythe, National Bureau of Standards.
Reprinted in Von Neumann’s Collected Works, 5:768-770, 1963.

[Yeh11] Amir Yehudayoff. Affine extractors over prime fields. Combinatorica, 31(2):245–256,
2011.

[Zuc07] David Zuckerman. Linear degree extractors and the inapproximability of max clique
and chromatic number. Theory Comput., 3(1):103–128, 2007.

35

ECCC   ISSN 1433-8092 

https://eccc.weizmann.ac.il


