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Abstract

Following the paper of Alekhnovich, Ben-Sasson, Razborov, Wigderson [Ale+04] we call a
pseudorandom generator ℱ : {0, 1}𝑛 → {0, 1}𝑚 hard for a propositional proof system P if P
cannot efficiently prove the (properly encoded) statement 𝑏 ∉ Im(ℱ) for any string 𝑏 ∈ {0, 1}𝑚.

In [Ale+04] the authors suggested the “functional encoding” of the considered statement for
Nisan–Wigderson generator that allows the introduction of “local” extension variables. These ex-
tension variables may potentially significantly increase the power of the proof system. In [Ale+04]
authors gave a lower bound of exp [Ω ( 𝑛2

𝑚⋅22Δ )] on the length of Resolution proofs where Δ is
the degree of the dependency graph of the generator. This lower bound meets the barrier for the
restriction technique.

In this paper, we introduce a “heavy width” measure for Resolution that allows us to show a
lower bound of exp [ 𝑛2

𝑚2𝒪(𝜀Δ) ] on the length of Resolution proofs of the considered statement for
the Nisan–Wigderson generator. This gives an exponential lower bound up to Δ ≔ log2−𝛿 𝑛 (the
bigger degree the more extension variables we can use). In [Ale+04] authors left an open problem
to get rid of scaling factor 22Δ , it is a solution to this open problem.

1 Introduction

Pseudorandom generators [Yao82] are one the most important notions in modern computer science.
A pseudorandom generator can be considered as a function ℱ : {0, 1}𝑛 → {0, 1}𝑚 such that for all
small circuits 𝐶 ∈ ℭ:

∣ Pr
𝑥∈{0,1}𝑛

[𝐶(ℱ(𝑥))] − Pr
𝑦∈{0,1}𝑚

[𝐶(𝑦)]∣ −−−→
𝑛→∞

0,

where ℭ is some circuit class, and 𝑥, 𝑦 are taken from the uniform distribution.
The condition on a pseudorandom generator can be rephrased in the following more informal way:

“For a class of circuits ℭ it is hard to distinguish points inside and outside of the image of ℱ”. This fact
was used by Alekhnovich, Ben-Sasson, Razborov, and Wigderson [Ale+04] who suggested a natural
way of viewing pseudorandom generators from the proof complexity perspective. Following [Ale+04]
we call a pseudorandom generator ℱ : {0, 1}𝑛 → {0, 1}𝑚 hard for a propositional proof system P if P
cannot efficiently prove the (properly encoded as a CNF formula) statement 𝑏 ∉ Im(ℱ) for any string
𝑏 ∈ {0, 1}𝑚. Similar constructions were also proposed by Krajíček [Kra01].

The problem of proving lower and upper bounds on the considered formulas is natural and at the
same time there are lots of motivations from different areas of computer science. We discuss some of
them and also refer the reader to [Ale+04; BP98; Raz15] for the detailed survey.
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Candidate Hard Examples for Strong Proof Systems. Despite the success of proving lower bounds
on weak proof systems like Resolution, Polynomial Calculus, etc. we are still far away from lower
bounds on strong proof systems like Frege or Extended Frege. Moreover, at this moment, we have
few candidates for hard examples for these systems. In [Raz15] Razborov introduced explicit conjec-
tures that formulas obtained from Nisan–Wigderson pseudorandom generators are hard for Frege and
Extended Frege.

These Razborov’s conjectures are based on the deep connection between pseudorandom generators
and so-called Circuit formulas. That provides another important motivation in circuit complexity.

Circuit Lower Bound. In [Raz95] Razborov introduced the principle Circuit𝑡(𝑓𝑛) expressing that
the circuit size of the Boolean function 𝑓𝑛 in 𝑛 variables, given as its truth-table, is lower bounded by
𝑡 = 𝑡(𝑛). Razborov stated that to show that a proof system P does not have efficient proofs of the
formula Circuit𝑡(𝑓𝑛), it suffices to design a sufficiently constructive pseudorandom generator hard for
P and such that the number of output bits, as a function of the number of input bits, is as large as
possible. In other words, the pseudorandom generators in proof complexity capture the arguments
that are required to prove the circuit lower bounds (see also [Ale+04; Raz96]).

In this paper, we focus on the Nisan–Wigderson generators that were mention above. This partial
case already illustrates all considered applications and shows the limits of the current techniques for
proving lower bounds in proof complexity that we discuss next section.

1.1 Nisan–Wigderson Generators

The Nisan–Wigderson pseudorandom generator [NW94] may be described by a family of functions
𝑓 ≔ {𝑓1, … , 𝑓𝑚} and a bipartite dependency graph 𝐺 ≔ (𝐿, 𝑅, 𝐸) where |𝐿| = 𝑚, |𝑅| = 𝑛 and
each vertex in 𝐿 has degree Δ. We identify the right part of this graph with a set of boolean variables
𝑥1, … , 𝑥𝑛 and the left part with the output bits. We define a function ℱ𝐺,𝑓 : {0, 1}𝑛 → {0, 1}𝑚 such
that the 𝑗-th bit of the output is defined by 𝑓𝑗(𝑥𝑖1

, 𝑥𝑖2
, … , 𝑥𝑖Δ

) where 𝑥𝑖𝑘
are neighbours of the vertex

𝑣𝑗 ∈ 𝐿 that are ordered in arbitrary but fixed way.
Pick some 𝑏 ∈ {0, 1}𝑛 ⧵ Im(ℱ𝐺,𝑓). We produce the unsatisfiable CNF formula PRG𝐺,𝑓,𝑏 that

states 𝑏 ∈ Im(ℱ) in the most natural way i.e. we encode the constraints 𝑓𝑗(𝑥) = 𝑏𝑗 independently.
If the function 𝑓𝑗 is simple enough (or Δ is small enough) then we can encode it in CNF directly in
terms of 𝑥𝑖1

, 𝑥𝑖2
, … , 𝑥𝑖Δ

. But if Δ ≫ log𝑛 this encoding will be superpolynomial even in the case
of parity function. To solve this problem, in [Ale+04] the authors suggested to use “local” extension
variables (so-called “functional encoding”). In other words we can introduce any variable 𝑦𝑔 whose
value corresponds to some function 𝑔 that depends on some set of variables 𝑋𝑔 and 𝑋𝑔 ⊆ N (𝑣) where
𝑣 ∈ 𝐿 and N (𝑣) is a set of neighbours of 𝑣.

Another important motivation for the considered functional encoding is that it naturally charac-
terizes the spectrum of proof systems between Resolution and Extended Frege. To see this we remind
a classical Theorem that Resolution with all extension variables is equivalent to Extended Frege [CR79;
Kra95]. So if we omit the locality constraint 𝑋𝑔 ⊆ N (𝑣) and allow all possible extension variables then
any lower bound on the size of Resolution proofs can be transformed into lower bounds on the Ex-
tended Frege. Note that the bigger Δ the more extension variables we allow to use, and the behaviour
of Resolution is closer to the behaviour of Extended Frege. So the question about proving the lower
bounds for a bigger degree of the dependency graph is a necessary step for proving lower bound on
stronger proof systems.

Technical Aspects of Proving Lower Bounds. Themost popular technique for proving lower bounds
in proof complexity is a restriction. The main idea of this technique that we can hit the small proof
by some restriction and obtain a well-structured proof. For example, this trick was used to reduce the
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question about the size of the resolution proof to a question about the width of proof. It can be used
explicitly [Ale+04] or implicitly [CEI96; IPS99; BW01].

The “quality” of the restriction trick depends on the number of variables in our formula. Hence
the lower bounds on the functional encoding of Nisan–Wigderson generator are an important barrier.
The lower bound presented in [Ale+04] shows the limits of the classical restriction approach.

Prior Results. Despite the importance of the problem, only a few lower bounds are known.
Alekhnovich, Ben-Sasson, Razborov, andWigderson [Ale+04] showed a lower bound exp [Ω ( 𝑛2

𝑚⋅22Δ )]
on the length of Resolution proofs on the functional encoding of the Nisan–Wigderson generator. Since
this proof used the “pure restriction technique” it also works for the Polynomial Calculus, which was
also done in the same paper. This is the only lower bound that deals with the full functional encoding.
They formulated a list of open problems that included:

• to prove a lower bound that works for 𝑚 ≫ 𝑛2;

• to get rid of the 22Δ scaling factor in the lower bound.

In [Kra06] Krajíček showed a simplified proof of the lower bound from [Ale+04], but it works only
for a certain choice of the small number of local extension variables. This lower bound is given via
reduction from the Pigeonhole Principle and hence it works for the bigger class of proof systems. For
another choice of local extension variables Razborov [Raz15] showed a superpolynomial lower bound
up to 𝑚 = 𝒪 (𝑛log𝑛). This lower bound works for the Resolution and 𝑘-DNF Resolution, and it is
obtained via the so-called “Small Restriction Switching Lemma” [SBI04; Raz15].

If we switch back from the Nisan–Wigderson generator to the general case then we must point
out that in [Raz15] Razborov showed a lower bound for subexponential parameter 𝑚. This lower
bound is based on two ideas: a lower bound on the Nisan–Wigderson generator, compositionTheorem
[Kra04; Raz15]. The generator used in this lower bound is a composition of several Nisan–Wigderson
generators.

1.2 Our Results

We develop a new measure of resolution proofs “heavy width”. This measure gives us a way to deal
with extension variables in a structured way. We modify the restriction technique and show that for
proper formulas small resolution proof may be transformed into a proof of small heavy width. Also, we
show a way for proving lower bounds on heavy width (even in cases when we cannot bound classical
resolution width).

By using the considered measure and techniques we show the following result, that is a solution
to an open problem [Ale+04]: to get rid of scaling factor 22Δ in lower bounds on resolution proofs of
PRG formulas.

Theorem 1.1 [Informal]

Let 𝐺 ≔ (𝐿, 𝑅, 𝐸) be an (𝑟, Δ, (1 − 𝜀)Δ)-expander, where |𝐿| = 𝑚, |𝑅| = 𝑛. If 𝑓𝑖 is a family
of good functions then for any 𝑏 ∉ Im(ℱ𝐺,𝑓) any resolution proof of PRG𝐺,𝑓,𝑏 requires size
exp [2−𝒪(𝜀Δ) ⋅ 𝑟2

𝑚 ].

We give a definition of a “good” function and expander graph later (see Definition 2.1 and section
2.1). Informally speaking function is good iff it remains balanced even if we fix some of its input
variables (Parity is a good function). We may think about expander graphs as about bipartite random
graphs with left degree Δ.
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Parameter 𝜀 may depends on 𝑛 and Δ that allows us to show lower bounds of the form:
exp [2−𝑜(Δ) ⋅ 𝑟2

𝑚 ] for the proper expander graphs. In particular, we may consider natural distribu-
tion over random graphs 𝒢(𝑚, 𝑛, Δ) (see section 2.2) for which, our Theorem implies the following
result.

Theorem 1.2 [Informal]

Let 𝑛 be large enough integer number, 𝛿 > 0, 𝑚 ≔ 𝑛2−𝛿, Δ ≔ log2−𝛿 𝑛 and 𝐺 ∼ 𝒢(𝑚, 𝑛, Δ).
If 𝑓𝑖 is a family of good functions then whp for any 𝑏 ∉ Im(ℱ𝐺,𝑓) any resolution proof of
PRG𝐺,𝑓,𝑏 requires size exp [𝑛Ω(𝛿)].

We believe that heavy width measure could be of independent interest.

1.3 Our Technique

Let ℱ𝐺,𝑓 : {0, 1}𝑛 → {0, 1}𝑚. Let us remind that we pick some 𝑏 ∈ {0, 1}𝑛 ⧵ Im(ℱ𝐺,𝑓) and produce
the unsatisfiable CNF formula PRG𝐺,𝑓,𝑏 that states 𝑏 ∈ Im(ℱ) by encoding the constraints 𝑓𝑗(𝑥) =
𝑏𝑗 independently. To do it for all functions 𝑔 that depends on some set of variables 𝑋𝑔 and 𝑋𝑔 ⊆
N (𝑣) where 𝑣 ∈ 𝐿 we introduce an extension variable 𝑦𝑔 whose value corresponds to 𝑔. For formal
construction see Section ⁇. Note, that since for all 𝑣 ∈ 𝐿 the size of N (𝑣) is Δ our CNF formula
consists of 𝑚 ⋅ 22Δ variables.

We start with the approach that gives a lower bound exp [Ω ( 𝑛2

𝑚⋅22Δ )] on the size of resolution
proofs of PRG𝐺,𝑓 . This strategy has the same flavor as a strategy from [Ale+04] but has some differ-
ences in details.

Let 𝜋 ≔ (𝐷1, … , 𝐷ℓ) be a Resolution proof of PRG𝐺,𝑓 and 𝐻 is a set of clauses of width at least
𝑤0. For the sake of contradiction assume that 𝜋 has small size and apply the following algorithm.

1. If 𝜋 is small then 𝐻 is small.

2. Pick the most frequent literal 𝑦 in 𝐻 . Note that it is contained in at least 𝑤0
𝑚⋅22Δ+1 fraction of

clauses (by a naive averaging argurment).

3. Set 𝑦 to 0 in 𝜋. This operation kills all clauses that contain 𝑦.

4. After this assignment 𝜋 ↾ (𝑦 = 0) is still a proof of a restricted formula.

5. We apply a “closure” trick [AR03; Ale+04] to make sure that the remaining formula does not
contain a “local contradiction” (see also an iterative version of this trick in [Sok20]).

6. Repeat while we have clauses of large width.

If 𝐻 is small we kill all clauses of large width in a few iterations. To achieve a contradiction it remains
to show that if there is no “local contradiction” then any resolution proof requires width at least 𝑤0
for the right choice of 𝑤0.

This strategy is semantic, i.e. we do not care about the exact form of clauses in the proof; we need
only two properties:

• clauses of large width can be killed with large probability by a “random assignment”;

• clauses of small width are not so easy to satisfy (we need this property for the width lower
bound).
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The bottleneck of the considered strategy is the fraction of clauses that contain some specific literal.
So if we want to improve the lower bound, we need to expand this bottleneck. First of all, we will count
the number of output bits that are “touched” (in other words, 𝑖-th output bit is touched iff there is a
variable (or extension variable) in a clause from N (𝑖) (that value depends only on N (𝑖))) by a clause
rather than the number of input variables. To do so we define a “functional form” of a clause that
helps to split all variables into 𝑚 baskets. Unfortunately, our functional form of a clause is a syntactic
representation, i.e., it heavily depends on the exact representation of a clause and not only the function
defined by it. Moreover it is not unique that affects our complexity measures.

On the one hand, the syntactic measure has already provided problems in the analysis. On the other
hand, it is still not enough for our lower bound. To expand the bottleneck even more we introduce
the new measure “heavy width”. Informally speaking if we have clause 𝐷 then we want to count only
those output bits of the generator the value of which are heavily correlated to a value of the clause 𝐷.

Let us define the full strategy. Let 𝜋 ≔ (𝐷1, … , 𝐷ℓ) be a Resolution proof of PRG𝐺,𝑓 and 𝐻 be a set
of clauses of heavy width at least 𝑤0 (in other words there are at least 𝑤0 output bits of the generator
whose values are correlated with the value of a clause). For the sake of contradiction assume that 𝜋
has a small size and apply the following algorithm.

1. If 𝜋 is small then 𝐻 is small.

2. Pick an output bit 𝑣 of the generator uniformly at random.

3. Set all neighbors of 𝑣 in order to satisfy constraints to this output bit. In our case this operation
kills 2−𝜀Δ

𝑚 fraction of clauses in 𝐻 (this argument will follow from the definition of heavy width)

4. After this assignment the restricted proof is still a proof of a restricted formula.

5. We apply a “closure” trick to make sure that the remaining formula does not contain “local
contradiction”.

6. Make sure that heavy width of alive clauses does not grow too much. This is the new and one of
the most problematic step.

7. Repeat while we have clauses of large width.

If 𝐻 is small we kill all clauses of large width in a few iterations. To achieve a contradiction it remains
to show that if there is no “local contradiction” then any resolution proof requires a clause of large
“heavy width”.

To show the lower bound on the heavy width we equip a game approach (that is similar to [Pud00;
AD08]) with a new invariant. This is the place where the problem with the syntactic definition of
a functional form arises. To avoid this problem we again will use the expansion properties of our
dependency graph.

2 Preliminaries

Let 𝑥 be a propositional variable, i.e., a variable that ranges over the set {0, 1}. A literal of 𝑥 is either
𝑥 (denoted sometimes as 𝑥1) or ¬𝑥 (denoted sometimes as 𝑥0). A clause 𝐶 ≔ 𝑥𝑐1

1 ∨ 𝑥𝑐2
2 ⋯ ∨ 𝑥𝑐𝑘

𝑘
is a disjunction of literals where 𝑐1, 𝑐2, … , 𝑐𝑘 ∈ {0, 1}. A CNF formula 𝜑 ≔ 𝐶1 ∧ ⋯ ∧ 𝐶𝑚 is a
conjunction of clauses. We think of clauses and CNF formulas as sets: order is irrelevant and there are
no repetitions.

A Resolution proof 𝜋 of an unsatisfiable CNF formula 𝜑 is an ordered sequence of clauses 𝜋 ≔
𝐶1, … , 𝐶𝑠 such that 𝐶𝑠 = ∅ is an empty clause and for each 𝑖 ∈ [𝑠] either 𝐶𝑖 is a clause in 𝜑 or there
exist 𝑗, 𝑘 < 𝑖 such that 𝐶𝑖 is derived from 𝐶𝑗 and 𝐶𝑘 by the resolution rule
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𝐶 ∨ 𝑥 𝐷 ∨ ¬𝑥
𝐶 ∨ 𝐷

or by the weakening rule

𝐶 [𝐶 ⊆ 𝐷].𝐷
A partial assignment or a restriction on a function 𝑓 (or a formula 𝜑) is a mapping 𝜌 : Vars(𝑓) →

{0, 1, ∗}. We let supp(𝜌) ≔ 𝜌−1({0, 1}) denote the set of assigned variables. The restriction of a
function 𝑓 (or a formula 𝜑) by 𝜌, denoted 𝑓|𝜌 (𝜑|𝜌), is the Boolean function (propositional formula)
obtained from 𝑓 (from 𝜑, respectively) by setting the value of each 𝑥𝑖 ∈ supp(𝜌) to 𝜌(𝑥𝑖) and leaving
each 𝑥𝑖 ∉ supp(𝜌) unassigned.

The size of a partial assignment 𝜌 is the size of the supp(𝜌). We denote it by |𝜌|.
Definition 2.1

Let 𝑓 : {0, 1}𝑛 → {0, 1}. We say that 𝑓 is (𝛿, 𝑘)-balanced for some 0 < 𝛿 ≤ 1
2 and 𝑘 ≥ 0 iff for

any 𝑏 ∈ {0, 1} and any partial assignment 𝜌 of size at most 𝑘 the size of (𝑓|𝜌)−1(𝑏) is at least
𝛿 ⋅ 2𝑛−|𝜌|.

Some examples:

• Parity(𝑥1, … , 𝑥𝑛) is (1
2 , 𝑛 − 1)-balanced;

• IP ≔
𝑛/2
∑
𝑖=1

𝑥𝑖𝑦𝑖 mod 2 is (1
4 , 𝑛

2 − 1)-balanced;

• a random function is (1
4 , 𝑛 − √𝑛)-balanced (see Lemma A.4 for the calculations).

2.1 Expanders and Closure

We use the following notation: N𝐺 (𝑆) is the set of neighbours of the set of vertices 𝑆 in the graph 𝐺,
𝜕𝐺 (𝑆) is the set of vertices 𝑢 that are connected with 𝑆 by exactly one edge. We omit the index 𝐺 if
the graph is evident from the context.

Definition 2.2

A bipartite graph 𝐺 ≔ (𝐿, 𝑅, 𝐸) is an (𝑟, Δ, 𝑐)-expander if all vertices 𝑢 ∈ 𝐿 have degree at
most Δ and for all sets 𝑆 ⊆ 𝐿, |𝑆| ≤ 𝑟, it holds that |N (𝑆) | ≥ 𝑐 ⋅ |𝑆|. Similarly, 𝐺 ≔ (𝐿, 𝑅, 𝐸)
is an (𝑟, Δ, 𝑐)-boundary expander if all vertices 𝑢 ∈ 𝐿 have degree at most Δ and for all sets
𝑆 ⊆ 𝐿, |𝑆| ≤ 𝑟, it holds that |𝜕 (𝑆) | ≥ 𝑐 ⋅ |𝑆|.

In this context, a simple but useful observation is that

|N (𝑆) | ≤ |𝜕 (𝑆) | + Δ|𝑆| − |𝜕 (𝑆) |
2 = Δ|𝑆| + |𝜕 (𝑆) |

2 ,

since all non-unique neighbours have at least two incident edges. This implies that for any 𝜀 ≤ 1
2 if a

graph 𝐺 is an (𝑟, Δ, (1 − 𝜀)Δ)-expander then it is also an (𝑟, Δ, (1 − 2𝜀)Δ)-boundary expander.
The next proposition is well known in the literature. In this form it was used in [GMT09].
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Proposition 2.3

If 𝐺 ≔ (𝐿, 𝑅, 𝐸) is an (𝑟, Δ, 𝑐)-boundary expander then for any set 𝑆 ⊆ 𝐿 of size 𝑘 ≤ 𝑟 there
is an enumeration 𝑣1, 𝑣2, … , 𝑣𝑘 ∈ 𝑆 and a sequence 𝑅1, … , 𝑅𝑘 ⊆ N (𝑆) such that:

• 𝑅𝑖 = N (𝑣𝑖) ⧵ (
𝑖−1
⋃

𝑗=1
N (𝑣𝑗));

• |𝑅𝑖| ≥ 𝑐.

In particular, there is a matching on the set 𝑆.

Proof. We create this sequence in reversed order. Since |𝑆| ≤ 𝑟 it holds that |𝜕 (𝑆) | ≥ 𝑐|𝑆| and there
is a vertex 𝑣𝑘 ∈ 𝑆 such that |𝜕 (𝑆) ∩ N (𝑣𝑘) | ≥ 𝑐. Let 𝑅𝑘 ≔ |𝜕 (𝑆) ∩ N (𝑣𝑘) |, and repeat the process
on 𝑆 ⧵ {𝑣𝑘}.

Let 𝐺 ≔ (𝐿, 𝑅, 𝐸) denote a bipartite graph. Consider a closure operation that seems to have
originated in [AR03; Ale+04].

Definition 2.4

For a vertex set 𝑈 ⊆ 𝑅 we say that a set 𝑆 ⊆ 𝐿 is (𝑈, 𝑟, 𝜈)-contained if |𝑆| ≤ 𝑟 and |𝜕 (𝑆) ⧵
𝑈| < 𝜈|𝑆|. For any set 𝐽 ⊆ 𝑅 let Cl𝑟,𝜈(𝐽) denote an arbitrary but fixed set of maximal size
such that Cl𝑟,𝜈(𝐽) is (𝐽, 𝑟, 𝜈)-contained. We say that Cl𝑟,𝜈(𝐽) is a closure of 𝐽 .

Note that for any 𝐽 ⊆ 𝑅 and any positive 𝑟, 𝜈 the empty set is (𝐽, 𝑟, 𝜈)-contained and
closure is well-defined.

Lemma 2.5

Suppose that 𝐺 is an (𝑟, Δ, 𝑐)-boundary expander and that 𝐽 ⊆ 𝑅 has size |𝐽 | ≤ Δ𝑟. Then
|Cl𝑟,𝜈(𝐽)| < |𝐽|

𝑐−𝜈 .

Proof. By definition we have that |𝜕 (Cl𝑟,𝜈(𝐽)) ⧵ 𝐽| < 𝜈|Cl𝑟,𝜈(𝐽)|. Since |Cl𝑟,𝜈(𝐽)| ≤ 𝑟 by definition,
the expansion property of the graph guarantees that 𝑐|Cl𝑟,𝜈(𝐽)| − |𝐽| ≤ |𝜕 (Cl𝑟,𝜈(𝐽)) ⧵ 𝐽|. The
conclusion follows.

Suppose 𝐽 ⊆ 𝑅 is not too large. Then Lemma 2.5 shows that the closure of 𝐽 is not much larger.
Thus, after removing the closure and its neighbourhood from the graph, we are still left with a decent
expander. The following lemma makes this intuition precise.

Lemma 2.6

Let 𝐽 ⊆ 𝑅 be such that |𝐽 | ≤ Δ𝑟 and |Cl𝑟,𝜈(𝐽)| ≤ 𝑟
2 and let 𝐺′ ≔ 𝐺 ⧵ (Cl𝑟,𝜈(𝐽) ∪ 𝐽 ∪

N (Cl𝑟,𝜈(𝐽))). Then any set 𝑆 of vertices from the left side of 𝐺′, with size |𝑆| ≤ 𝑟
2 , satisfies

that |𝜕𝐺′ (𝑆) | ≥ 𝜈|𝑆|.

Proof. Suppose the set 𝑆 ⊆ 𝐿(𝐺′) violates the boundary expansion guarantee. Observe that Cl𝑟,𝜈(𝐽)
and 𝑆 are both sets of size at most 𝑟

2 . Furthermore, the set (Cl𝑟,𝜈(𝐽) ∪ 𝑆) is (𝐽, 𝑟, 𝜈)-contained in the
graph 𝐺. As Cl𝑟,𝜈(𝐽) is a (𝐽, 𝑟, 𝜈)-contained set of maximal cardinality, this leads to a contradiction.
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2.2 Existence

For 𝑛, 𝑚, Δ ∈ N, we denote by 𝒢(𝑚, 𝑛, Δ) the distribution over bipartite graphs with disjoint vertex
sets 𝐿 ≔ {𝑣1, … , 𝑣𝑚} and 𝑅 ≔ {𝑢1, … , 𝑢𝑛} where the neighbourhood of a vertex 𝑣 ∈ 𝐿 is chosen by
sampling a subset of size Δ uniformly at random from 𝑅.

The next claim follows from the standard calculation.
Lemma 2.7 [de Rezende et al. [Rez+20]]

Let 𝑛, 𝑚 and Δ be large enough integers such that 𝑚 > 𝑛 ≥ Δ. Let 𝜉, 𝜒 ∈ R+ be such that
𝜉 < 1/2, 𝜉 ln𝜒 ≥ 2 and 𝜉Δ ln𝜒 ≥ 4 ln𝑚. Then for 𝑟 = 𝑛/(Δ ⋅ 𝜒) and 𝑐 = (1 − 2𝜉)Δ it
holds asymptotically almost surely for a randomly sampled graph 𝐺 ∼ 𝒢(𝑚, 𝑛, Δ) that 𝐺 is an
(𝑟, Δ, 𝑐)-boundary expander.

3 Nisan–Wigderson PRG and Its Encoding

Let 𝐺 ≔ (𝐿, 𝑅, 𝐸) be a bipartite graph such that 𝐿 ≔ {𝑣1, 𝑣2, … , 𝑣𝑚}, 𝑅 ≔ {𝑢1, 𝑢2, … , 𝑢𝑛}
and each vertex in 𝐿 has degree Δ. Also for each vertex 𝑣 ∈ 𝐿 we fix some arbitrary enumer-
ation of its neighbours. We identify the right part of this graph with a set of boolean variables
{𝑥1, 𝑥2, … , 𝑥𝑛} and the left part with a set of output bits. Based on this identity we introduce a pseu-
dorandom generator ℱ𝐺,𝑓 : {0, 1}𝑛 → {0, 1}𝑚 that is defined by the graph 𝐺 and a family of the
base functions 𝑓1, 𝑓2, … , 𝑓𝑚 : {0, 1}Δ → {0, 1} in the natural way: the 𝑗-th bit of output is defined
by 𝑓𝑗(𝑢𝑖1

, 𝑢𝑖2
, … , 𝑢𝑖Δ

) (here we use enumeration of neighbours of the vertex 𝑣𝑗) where 𝑢𝑖𝑘
∈ N (𝑣𝑗)

is a set of neighbours of the vertex 𝑣𝑗 ∈ 𝐿. We also use a notation Vars𝑗 ≔ N (𝑣𝑗).
We want to encode the question about inversion of the function ℱ𝐺 as a propositional formula.

Following the [Ale+04] and [Ale+02] we allow to use “local” extension variables.

3.1 Functional Encoding

Let ℱ𝐺,𝑓 : {0, 1}𝑛 → {0, 1}𝑚 be a pseudorandom generator based on the graph 𝐺 and base functions
𝑓1, 𝑓2, … , 𝑓𝑚 : {0, 1}Δ → {0, 1}. Let 𝑏 ∈ {0, 1}𝑚 be an arbitrary point. We say that a boolean
function 𝑔 is local iff there is some 𝑖 ∈ [𝑚] such that 𝑔 depends only on Vars𝑖. Let 𝔊 be a collection of
local functions.

For each local function 𝑔 ∈ 𝔊 we introduce a variable 𝑦𝑔. And we write a CNF formula PRG𝐺,𝑓,𝑏
on variables 𝑦𝑔 which consists of the following disjunctions:

• (𝑦𝑐1𝑔1 ∨ 𝑦𝑐2𝑔2 ∨ 𝑦𝑐3𝑔3 ⋯ ∨ 𝑦𝑐ℓ𝑔ℓ), for all tuples 𝑔1, 𝑔2, … , 𝑔ℓ where ℓ ≤ 22Δ and all 𝑐1, 𝑐2, … , 𝑐ℓ ∈ {0, 1}
such that there is 𝑖 ∈ [𝑚]:

– 𝑔𝑗 depends only on Vars𝑖 for all 𝑗 ∈ [ℓ];
– any assignment 𝑎 ∈ {0, 1}Δ that satisfy the equality 𝑓𝑖(𝑎) = 𝑏𝑖 also satisfy the equality

𝑔𝑘 = 𝑐𝑘 for at least one 𝑘 ∈ [ℓ]. In other words the equality 𝑔𝑘 = 𝑐𝑘 semantically follows
from the equality 𝑓𝑖(𝑎) = 𝑏𝑖.

Note that, in particular, PRG𝐺,𝑓,𝑏 contains the following constraints:

• (𝑦𝑏𝑖
𝑓𝑖

), for all 𝑖 ∈ [𝑚];

• (¬𝑦𝑠 ∨ 𝑦𝑔), (¬𝑦𝑠 ∨ 𝑦ℎ) and (𝑦𝑠 ∨ ¬𝑦𝑔 ∨ ¬𝑦ℎ) for all local functions 𝑠, 𝑔, ℎ such that:

– 𝑠 = 𝑔 ∧ ℎ;
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– there is 𝑖 ∈ [𝑚] such that 𝑠, 𝑔, ℎ depends only on Vars𝑖.

We omit indices of PRG𝐺,𝑓,𝑏 if it is clear from the context. Following [Ale+04] we say that it is
functional encoding. The following observation is a straightforward corollary from the definition.

Remark 3.1 [Aleckhovich et al. [Ale+04]]

Formula PRG𝐺,𝑓,𝑏 is unsatisfiable iff 𝑏 ∉ Im(ℱ𝐺).

3.1.1 Assignments, Restrictions and Intuition

If we have some total assignment 𝜌 to 𝑥 variables (we call it 𝑥-assignment) it can define an assignment
on 𝑦 variables in the natural way:

• 𝑦𝑥𝑖
← 𝜌(𝑥𝑖);

• if 𝑔(𝑥) is a local function then 𝑦𝑔 ← 𝑔(𝑥)|𝜌.

We denote this assignment by 𝜌𝑦. The intuition behind the considered encoding and assignment is that
a value of a variable 𝑦𝑔 on 𝜌𝑦 corresponds to a value of a function 𝑔 on 𝜌.

We can extend the translation of 𝑥-assignment to 𝑦 variables on the partial assignments. If we
have some partial assignment 𝜌 to 𝑥 variables, we define an assignment 𝜌𝑦 in the following way:
𝑦𝑔|𝜌𝑦 ≔ 𝑦𝑔|𝜌 . We say that these assignments are normal. In this paper we consider only normal
assignments.

Consider a clause 𝐷 ≔ (𝑦𝑐1𝑔1 ∨ 𝑦𝑐2𝑔2 ∨ … ∨ 𝑦𝑐ℓ𝑔ℓ) in 𝑦 variables where 𝑐𝑖 ∈ {0, 1}. Note, that under
normal assignments:

• 𝑦0
𝑔 ≡ 𝑦1−𝑔;

• 𝑦𝑔 ∨ 𝑦𝑔′ ≡ 𝑦𝑔∨𝑔′ .

We can use these equalities and group variables of the clause 𝐷. Let 𝐵1, 𝐵2, … , 𝐵𝑚 be a sequence of
subsets (or bags) of literals {𝑦𝑐1𝑔1 , 𝑦𝑐2𝑔2 , … , 𝑦𝑐ℓ𝑔ℓ} such that:

• for all 𝑖 ∈ [𝑚], 𝑗 ∈ [ℓ] if 𝑦𝑐𝑗
𝑔𝑗 ∈ 𝐵𝑖 then Vars(𝑔𝑗) ⊆ Vars𝑖;

• for all 𝑗 ∈ [ℓ] there is at least one 𝑖 ∈ [𝑚] such that 𝑦𝑐𝑗
𝑔𝑗 ∈ 𝐵𝑖.

Note that we can rewrite a clause 𝐷 in the equivalent form under normal assignments 𝐷 ≡ (𝑦ℎ1
∨

𝑦ℎ2
∨ … ∨ 𝑦ℎ𝑚

) where
ℎ𝑖(𝑥) ≔ ⋁

𝑦𝑐𝑔∈𝐵𝑖

(1 ⊕ 𝑐 ⊕ 𝑔(𝑥)).

We may think about a clause 𝐷 as about the following disjunction:

𝐹 ≔ ⋁
𝑖∈[𝑚]

(ℎ𝑖(𝑥) = 1),

and we say that 𝐹 is a functional form of the clause 𝐷. Denote by

𝐹|𝜌 ≔ ⋁
𝑖∈[𝑚]

(ℎ𝑖(𝑥)|𝜌 = 1),

where 𝜌 is an 𝑥-assignment.
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𝑥1
𝑥2
𝑥3

1

2

Figure 1: Dependency graph

Remark 3.2
Functional form is not unique.

To illustrate Remark 3.2 consider the following situation for some function 𝑔 such that 𝑦𝑔 ∈ 𝐷:
Vars(𝑔) ⊆ (Vars𝑖 ∩ Vars𝑖′). In this case we can put the literal 𝑦𝑔 into a bag 𝐵𝑖, into a bag 𝐵𝑖′ , or into
both of these bags (also into none of them if we have an opportunity to put it into some third bag).

On the one hand Remark 3.2 provides additional problems if we want to work with functional
forms of the clauses since we should care about all possible functional forms. On the other hand non-
uniqueness allows to deal with assignments.

Lemma 3.3

Let 𝐹 ≔ ⋁
𝑖∈[𝑚]

(ℎ𝑖(𝑥) = 1) be a functional form of a clause 𝐷. If 𝜌 is a partial 𝑥-assignment then

𝐹|𝜌 is a functional form of a clause 𝐷|𝜌𝑦 .

Proof. Follows from definition of the functional form. Let𝐷 ≔ (𝑦𝑐1𝑔1 ∨𝑦𝑐2𝑔2 ∨…∨𝑦𝑐ℓ𝑔ℓ), and𝐵1, 𝐵2, … , 𝐵𝑚
be a collection of bags that generates the functional form (𝑦ℎ1

∨ 𝑦ℎ2
∨ … ∨ 𝑦ℎ𝑚

).
Note that 𝐷|𝜌𝑦 = (𝑦𝑐1

𝑔1|𝜌 ∨ 𝑦𝑐2
𝑔2|𝜌 ∨ … ∨ 𝑦𝑐ℓ

𝑔ℓ|𝜌). We create a collection of bags 𝐵′
𝑖 for a clause 𝐷|𝜌𝑦

and we put 𝑦𝑐𝑗
𝑔𝑗|𝜌 ∈ 𝐵′

𝑖 iff 𝑦𝑐𝑗
𝑔𝑗 ∈ 𝐵𝑖. By construction it satisfy all required properties for bags and

⋁
𝑦𝑐𝑔∈𝐵′

𝑖

(1 ⊕ 𝑐 ⊕ 𝑔(𝑥)) = ⋁
𝑦𝑐𝑔∈𝐵𝑖

(1 ⊕ 𝑐 ⊕ 𝑔(𝑥)|𝜌) = ⎛⎜
⎝

⋁
𝑦𝑐𝑔∈𝐵𝑖

(1 ⊕ 𝑐 ⊕ 𝑔(𝑥))⎞⎟
⎠

|𝜌

that concludes the proof.

Remark 3.4

The definition of functional form is “syntactic”, or in other words it heavily depends on variables
that appear in the clause 𝐷 and not only on the boolean function that is defined by it.

To illustrate the remark above let us consider an example. At first we have to define dependency
graph (otherwise the notion of local function is meaningless). The graph is defined on fig. 1. Let us
choose some collection of local functions:

ℓ(𝑥) ≔ 𝑥1 ⊕ 𝑥2 ⊕ 𝑥3, ℓ′(𝑥) ≔ 𝑥1 ⊕ 𝑥2, ℓ″(𝑥) ≔ 𝑥3

and consider two clauses:
𝐷 ≔ 𝑦ℓ ∨ 𝑦ℓ′ , 𝐷′ ≔ 𝑦ℓ ∨ 𝑦ℓ″ .

To define a functional form of a clause 𝐷 we have to define two bags 𝐵1, 𝐵2. We have to put literal 𝑦ℓ
into the bag 𝐵1 (we have to put it somewhere, and we cannot put it into bag 𝐵2 since Vars(ℓ) ⊈ Vars2).
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The same situation with the literal 𝑦ℓ′ , so there is the only way to define bags: 𝐵1 ≔ {𝑦ℓ, 𝑦ℓ′}, 𝐵2 ≔ ∅,
and in this case the functional form of 𝐷 is unique and is defined by the following functions:

ℎ1(𝑥) ≔ (𝑥1 ⊕ 𝑥2 ⊕ 𝑥3) ∨ (𝑥1 ⊕ 𝑥2), ℎ2(𝑥) ≔ 0.

To define a functional form of a clause 𝐷′ we have to define two bags 𝐵′
1, 𝐵′

2. But the situation is
different for this clause. Again we have to put literal 𝑦ℓ into the bag 𝐵′

1, but the literal 𝑦ℓ″ we can put
into 𝐵′

1 or 𝐵′
2 or into both of them, so there are three ways:

• 𝐵′
1 ≔ {𝑦ℓ, 𝑦ℓ″}, 𝐵′

2 ≔ ∅ that give a functional form that is defined by the functions:

ℎ1(𝑥) ≔ (𝑥1 ⊕ 𝑥2 ⊕ 𝑥3) ∨ 𝑥3, ℎ2(𝑥) ≔ 0;

• 𝐵′
1 ≔ {𝑦ℓ}, 𝐵′

2 ≔ {𝑦ℓ″} that give a functional form that is defined by the functions:

ℎ1(𝑥) ≔ (𝑥1 ⊕ 𝑥2 ⊕ 𝑥3), ℎ2(𝑥) ≔ 𝑥3;

• 𝐵′
1 ≔ {𝑦ℓ, 𝑦ℓ″}, 𝐵′

2 ≔ {𝑦ℓ″} that give a functional form that is defined by the functions:

ℎ1(𝑥) ≔ (𝑥1 ⊕ 𝑥2 ⊕ 𝑥3) ∨ 𝑥3, ℎ2(𝑥) ≔ 𝑥3.

So functional forms of 𝐷 and 𝐷′ are different, but under normal assignments these clauses are
equivalent. The observation 3.4 is a source of problems for the proof of the main Theorem, since we
should always pay an attention to the exact form of the clauses.

4 Lower Bound

In this section we prove the main Theorem.
Theorem 4.1 [Formalization of Theorem 1.1]

Let 𝐺 ≔ (𝐿, 𝑅, 𝐸) be an (𝑟, Δ, (1 − 𝜀)Δ)-expander, where |𝐿| = 𝑚, |𝑅| = 𝑛. If 𝑓𝑖 is a family
of (1

4 , 3𝜀Δ)-balanced functions then for any 𝑏 ∉ Im(ℱ𝐺,𝑓) any resolution proof of PRG𝐺,𝑓,𝑏
has size exp [Ω ( 𝜀5𝑟2

26𝜀Δ𝑚)].

We defer the proof of this Theorem to section 4.4 and start with a plan of our proof.

• We introduce an analog of the width measure on clauses with two important differences:

– we want to count number of output bits that are touched by a clause rather than number
of variables;

– we want to count only those outputs that we cannot erase from a clause “for free”.

Let call this measure “heavy width”.

• We hit our proof by a random restriction. We will do it step by step and at each step we create
an 𝑥-assignment 𝜎 by choosing some output bit 𝑣𝑖 ∈ [𝑚] and assign its neighbours in order to
satisfy it. This assignment is equivalent to erasing some vertices from the right part of the graph.
So after each step some output bit will not satisfy the expansion property of the graph. We say
that these output bits are in danger and choose some 𝑥-assignment 𝜈 on its neighbours to satisfy
them. We hit our proof by (𝜎 ∪ 𝜈)𝑦.
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• We repeat this process while we do not kill all clauses of big heavy width. At this step it is
important that we deal with heavy width rather than usual width.

• We prove a lower bound on the heavy width. For the sake of contradiction we assume that there
is a proof of small heavy width. We trace a path in this resolution proof from the final clause to
some axiom and maintain a partial assignment that:

– does not satisfy the current clause (note that this clause may have a large classical width,
hence our assignments will not set this clause to a constant);

– does not violate any axiom.

In the leaf these properties will give a contradiction.

We apply this Theorem for good enough graphs.

Theorem 4.2 [Formalization of Theorem 1.2]

Let 𝑛 be large enough integer number, 𝛿 > 0, 𝑚 ≔ 𝑛2−𝛿, Δ ≔ log2−𝛿 𝑛 and 𝐺 ∼ 𝒢(𝑚, 𝑛, Δ).
If 𝑓𝑖 is a family of (1

4 , 3𝜀Δ)-balanced functions then whp for any 𝑏 ∉ Im(ℱ𝐺,𝑓) any resolution
proof of PRG𝐺,𝑓,𝑏 has size exp [𝑛Ω(𝛿)].

Proof. Fix 𝜒 ≔ 𝑛𝛿/10 and 𝜉 ≔ 100
𝛿 log𝑛 .

We use Lemma 2.7 and show that our graph 𝐺 whp is an ( 𝑛1−𝛿
polylog(𝑛) , log

2−𝛿 𝑛, (1 − 200
𝛿 log𝑛)Δ)-

expander. Indeed:

• 𝜉 < 1
2 ;

• 𝜉 ln𝜒 = 100
𝛿 log𝑛

𝛿
10 ln𝑛 > 2;

• 𝜉 ln𝜒Δ ≥ 4 ln𝑚.

Hence by Theorem 4.1 size of any resolution proof of PRG𝐺,𝑓,𝑏 has size at least

exp [Ω ( 𝑛2−𝛿/5

polylog(𝑛)2Ω(log1−𝛿 𝑛)𝑚
)] ≥ exp [Ω (𝑛2−𝛿/5

𝑛2−𝛿/2 )] = exp [𝑛Ω(𝛿)].

Remark 4.3

Note that if 𝑓𝑖 is a balanced function then 𝑓𝑖(𝑥) ⊕ 𝑏𝑖 is also a balanced function. Hence to
simplify the notation wlog we assume that 𝑏 = 0𝑛 and we omit an index 𝑏 in the rest of the
section. All the results holds for any 𝑏 ∉ Im(ℱ𝐺,𝑓).

4.1 The “Heavy Width”

In the classical restriction technique the notion of the width of a clause 𝐶 is used to estimate the
probability that a random restriction will satisfy a clause. We give the next definition in order to save
this property even if can deal with extension variables.
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Definition 4.4

Fix a formula PRG𝐺,𝑓 . Let 𝐶 be a clause with functional form: 𝐹 ≔
𝑚
⋁

𝑖=1
(ℎ𝑖(𝑥) = 1). We say

that 𝑖-th output bit is 𝜂-heavy in 𝐹 wrt PRG𝐺,𝑓 iff Pr
𝑧←𝑓−1

𝑖 (0)
[ℎ𝑖(𝑧) = 1] ≥ 𝜂. And the 𝜂-heavy

width or hw𝜂
PRG𝐺,𝑓

of 𝐹 is the number of 𝜂-heavy output bits in 𝐹 .
This definition of width depends on the formula.

To justify this notion we may think about the “information” about 𝑖-th output bit in the clause 𝐶
(despite on the fact that it is defined for functional form). We pick a point 𝑧 ∈ {0, 1}Δ that satisfy the
constraint 𝑓𝑖(𝑧) = 0 uniformly at random. If the probability that we satisfy 𝐶 by this assignment is
small then 𝐶 “almost avoids” 𝑦 variables that belongs to 𝑖-th output bit. In this case we pretend that
the clause 𝐶 is independent of 𝑖-th output bit, otherwise the value of 𝐶 is heavily correlated with the
value of 𝑓𝑖.

Remark 4.5
Thestandardwidthmeasure can be considered as an 𝜂-heavywidthmeasure. But in the different
part of the proofs of classical resolution lower bounds we assume different parameters 𝜂.

• for the reduction from size to width: 𝜂 is an absolute positive constant (usually 1
2 );

• for the width lower bound: 0 < 𝜂 < 1
2𝑛 .

And it works since without extension variables for local functions we can state that: if an output
bit is 𝜂-heavy for some 𝜂 > 0 then it also 𝜂′-heavy for some 𝜂′ ≈ 1

2 .

We define heavy width on functional form of the clause, that may give us potential problems due
to the Remark 3.4.

Definition 4.6

Let 𝜋 ≔ 𝐷1, 𝐷2, … , 𝐷𝑠 be a resolution proof of PRG𝐺,𝑓 . And the 𝜂-heavy width hw𝜂
PRG𝐺,𝑓

of
the proof 𝜋 is the minimal natural number 𝑤 such that there is a sequence 𝐹1, 𝐹2, … , 𝐹𝑠 where
for all 𝑖 ∈ [𝑠]:

• 𝐹𝑖 is a functional form of 𝐷𝑖;

• hw𝜂
PRG𝐺,𝑓

of 𝐹𝑖 is at most 𝑤.

4.2 Size to Heavy Width Reduction

In this section we present a random restriction argument that helps to reduce the question about size
of proof to a question about 𝜂-heavy width of the proof for carefully chosen parameter 𝜂. Fix some
PRG𝐺,𝑓 .

Let define the key object that we use in our main Theorem.
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Definition 4.7

Let 𝐺 ≔ (𝐿, 𝑅, 𝐸) be an (𝑟, Δ, (1 − 𝜀)Δ)-expander. We say that an 𝑥-assignment 𝜌 of PRG𝐺,𝑓
is self-reduction iff there is a set 𝐿𝜌 ⊆ 𝐿 such that:

• |𝐿𝜌| ≤ 𝜀2 𝑟
16 ;

• 𝜌 assigns all and only variables from N (𝐿𝜌), moreover 𝜌 satisfy constraints from the set
𝐿𝜌;

• 𝐺 ⧵ (𝐿𝜌 ∪ N (𝐿𝜌)) is an (𝑟, Δ, (1 − 2𝜀)Δ)-expander.

The size of self-reduction is the size of the set 𝐿𝜌.

The next observation is trivial, but at the same it gives an opportunity to deal with heavy width
measure since it is defined only for the PRG formulas.

Remark 4.8

If 𝜌 is a self-reduction of PRG𝐺,𝑓 then PRG𝐺,𝑓 |𝜌𝑦 is equivalent to PRG𝐺′,𝑓′ under normal
assignments where:

• 𝐺′ ≔ 𝐺 ⧵ (𝐿𝜌 ∪ N (𝐿𝜌));

• 𝑓 ′ ≔ {𝑓 ′
1, … , 𝑓 ′

𝑚} and 𝑓 ′
𝑖 ≔ 𝑓𝑖|𝜌.

We use the following algorithm to generate self-reductions.

Algorithm 1 𝑟, 𝜀 are parameters.
1: 𝑂1 ≔ ∅ ▷ Set of active output bits
2: 𝐺1 ≔ 𝐺 ▷ 𝐺𝑖 = (𝐿𝑖, 𝑅𝑖, 𝐸𝑖)
3: 𝑖 ≔ 1
4: 𝜌1 ≔ ∅
5: For all 𝑗 ∈ [𝑚]: 𝑝1

𝑗 ≔ 𝑓𝑗
6: while 𝑖 ≤ 𝜀3 𝑟

32 do
7: Pick a vertex 𝑣𝑖 ∈ 𝐿𝑖 uniformly at random
8: Pick an 𝑥-assignment 𝜎𝑖 ← (𝑝𝑖

𝑣𝑖)−1(0) uniformly at random
9: 𝑂𝑖+1 ≔ 𝑂𝑖 ∪ {𝑣𝑖}

10: 𝐺′
𝑖+1 ≔ 𝐺𝑖 ⧵ ({𝑣𝑖} ∪ N𝐺𝑖

(𝑣𝑖))
11: 𝐵𝑖 ≔ argmax{|𝐵| ∣ 𝐵 ⊆ 𝐿′

𝑖+1, |𝐵| ≤ 𝑟, |𝜕𝐺′
𝑖+1

(𝐵) | ≤ (1 − 2𝜀)|𝐵|}
12: Pick an 𝑥-assignment 𝜈𝑖 on N𝐺′

𝑖+1
(𝐵𝑖) that satisfy all constraints from the set 𝐵𝑖

13: 𝐺𝑖+1 ≔ 𝐺′
𝑖+1 ⧵ (𝐵𝑖 ∪ N𝐺′

𝑖+1
(𝐵𝑖))

14: 𝜌𝑖+1 ≔ 𝜌𝑖 ∪ 𝜎𝑖 ∪ 𝜈𝑖
15: For all 𝑗 ∈ [𝑚]: 𝑝𝑖+1

𝑗 ≔ 𝑓𝑗|𝜌𝑖+1
16: 𝑖 ≔ 𝑖 + 1

return 𝜌𝑖

Following the Remark 4.8 note that (PRG𝐺,𝑓)|𝜌𝑦
𝑖
is equivalent to PRG𝐺𝑖,𝑝𝑖 .

Lemma 4.9

Let 𝐺 ≔ (𝐿, 𝑅, 𝐸) be an (𝑟, Δ, (1 − 𝜀)Δ)-expander graph such that |𝐿| = 𝑚, |𝑅| = 𝑛 and
10
𝜀 ≤ 𝑟. If 𝑓 ≔ {𝑓1, … , 𝑓𝑚} is a collection of (1

4 , 3𝜀Δ)-balanced functions then Algorithm 4.2
generates a self-reduction of 𝜑 ≔ PRG𝐺,𝑓 .
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Before the proof we present an intuition about parameters. We are given a family of expander
graphs that fixes some 𝜀 (that we want to be as small as possible) and Δ. We choose a family of
balanced functions with proper parameters. Parameter 𝜀 determines 𝛾 ≔ 2−𝜀Δ, on the one hand it
is just abbreviation, on the other hand it corresponds to the scaling factor 2𝜌 from the definition of
balanced function. In the classical Resolution lower bounds 𝛾 is some constant (that is implicit and
hidden inside the proof).

Proof. Let ℓ ≔ 𝜀3 𝑟
32 be the number of iterations of our algorithm.

By induction we show the following properties:

• 𝐺𝑖 is an (𝑟, Δ, (1 − 2𝜀)Δ)-expander;

• |𝐶𝑖| ≤ 𝜀2 𝑟
32 ,

where 𝐶𝑖 ≔
𝑖
⋃

𝑗=1
𝐵𝑗. For proof see Proposition A.3 in appendix A.

We have to show that on each iteration we can find some 𝑥-assignment 𝜈𝑖 that satisfy the require-
ments. Since |𝐶𝑖| ≤ 𝜀2 𝑟

32 that imply, in particular, that |𝐵𝑖| ≤ 𝜀2 𝑟
32 .

Fix some iteration 𝑖. Since 𝐺𝑖 is an (𝑟, Δ, (1 − 2𝜀)Δ)-expander then by Lemma A.2 graph 𝐺′
𝑖+1 is

an (𝑟, Δ, (1−3𝜀)Δ)-expander. Hence by Proposition 2.3 there is an enumeration 𝑣1, 𝑣2, … , 𝑣|𝐵𝑖| ∈ 𝐵𝑖
and a sequence 𝑅1, … , 𝑅𝑘 ⊆ N𝐺′

𝑖+1
(𝑆) such that for all 𝑒 ∈ [|𝐵𝑖|]:

• 𝑅𝑒 = N𝐺′
𝑖+1

(𝑣𝑒) ⧵ (
𝑒−1
⋃

𝑗=1
N𝐺′

𝑖+1
(𝑣𝑗));

• |𝑅𝑒| ≥ (1 − 3𝜀)Δ.

We define the 𝑥-assignment 𝜈𝑖 step by step starting from 𝑣1. Consider an auxiliary 𝑥-assignment
𝜅 ≔ 𝜌𝑖∪𝜎𝑖. Since 𝑓𝑣1 is a (1

4 , 3𝜀Δ)-balanced function and𝜅 assigns atmost |N𝐺 (𝑣1) |−|N𝐺′
𝑖+1

(𝑣1) | <
3𝜀Δ its variables then 𝑓𝑣1 |𝜅 is not a constant and we define an 𝑥-assignment 𝜈𝑣1

𝑖 to 𝑅1 variables to

satisfy the constraint 𝑓𝑣1(𝑥) = 0. We continue this process for vertices 𝑣𝑗 and 𝜅 ≔ 𝜌𝑖 ∪ 𝜎𝑖 ∪
𝑗−1
⋃

𝑏=1
𝜈𝑣𝑏

𝑖 .

The 𝑥-assignment 𝜈𝑖 ≔
|𝐵𝑖|
⋃

𝑏=1
𝜈𝑣𝑏

𝑖 satisfy all constraints from the set 𝐵𝑖 as desired.

At this moment we proved that we can realise all steps of our algorithm. The 𝑥-assignment 𝜌ℓ
assigns only variables from N (𝑂ℓ ∪ 𝐶ℓ), hence 𝐿𝜌 ≔ 𝑂ℓ ∪ 𝐶ℓ. The first property of self-reduction is
satisfied: |𝐿𝜌| ≤ ℓ + 𝜀2 𝑟

32 ≤ 𝜀2 𝑟
16 . The second follow from the construction. The third property was

proved above. Moreover all intermediate 𝑥-assignments 𝜌𝑖 are also satisfy these properties.

Theorem 4.10

Let 𝐺 ≔ (𝐿, 𝑅, 𝐸) be an (𝑟, Δ, (1 − 𝜀)Δ)-expander graph such that |𝐿| = 𝑚, |𝑅| = 𝑛 and
10
𝜀 ≤ 𝑟. Fix 𝛾 ≔ 2−𝜀Δ. Let 𝑓 ≔ {𝑓1, … , 𝑓𝑚} be a collection of (1

4 , 3𝜀Δ)-balanced functions,
and 𝜋 ≔ 𝐷1, … , 𝐷𝑠 be a resolution proof of 𝜑 ≔ PRG𝐺,𝑓 .

If 𝑠 < exp (𝜀3𝑟
32 ⋅ 1

3𝛾6 𝑤
𝑚) for some 𝑤 ∈ N then there is a self-reduction 𝜌 such that hw𝛾3

𝜑|𝜌𝑦

of 𝜋|𝜌𝑦 is at most 𝑤.

Proof. Let 𝜃 ≔ 𝐹1, 𝐹2, … , 𝐹𝑠 where 𝐹𝑖 is a functional form of 𝐷𝑖.
We show that under the current assumptions Algorithm 4.2 whp give such an 𝑥-assignment. Let

ℓ ≔ 𝜀3 𝑟
32 be the number of iterations of our algorithm. By Lemma 4.9 it generates self-reduction 𝜌.
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We have to check that whp 𝜋|𝜌 is a proof of small heavy width. We do it for each line in the proof
separately and moreover for all 𝑖 ∈ [𝑠] we show that (𝐹𝑖)|𝜌 has small heavy width.

One of the important difference of heavy width and a classical width that after application of a
partial assignment it may increase since we also apply an assignment to the functions 𝑓𝑖 and change
our formula. To avoid this problem we analyse hw

𝛾6
3𝜑 rather than hw𝛾3

𝜑 of the clauses and show that
for any 𝐹 ∈ 𝜃:

• hw
𝛾6
3

𝜑|𝜌𝑦
𝑖
(𝐹 |𝜌𝑖

) is small for any 𝑖 ≤ ℓ than it cannot “grow” to much in the end (in terms of hw𝛾3

𝜑 );

• if hw
𝛾6
3

𝜑|𝜌𝑦
𝑖
(𝐹 |𝜌𝑖

) is big enough for some 𝑖 ≤ ℓ it will be killed with good enough probability on
𝑖 + 1-th iteration.

We start with the first part of the proof. Let 𝐹 ∈ 𝜃 be a functional form of a clause from 𝜋 and 𝐹 is
defined by the functions ℎ1, ℎ2, … , ℎ𝑚. Fix some 𝑖 ≤ ℓ and pick some alive output bit 𝑣 ∈ 𝐿 ⧵𝐿𝜌. We
remind a notation 𝑝𝑖

𝑣 ≔ 𝑓𝑣|𝜌𝑖
. Output bit 𝑣 is alive and graph 𝐺ℓ is an (𝑟, Δ, (1 − 3𝜀)Δ)-expander,

hence 𝑥-assignments 𝜌𝑖 and 𝜌ℓ can assign at most 3𝜀Δ variables from N (𝑣). Thus for all 𝑖 ≤ ℓ:

Pr
𝑧←(𝑝ℓ𝑣)−1(0)

[ℎ𝑣(𝑧) = 1] ≤ |ℎ−1
𝑣 (1) ∩ (𝑝ℓ

𝑣)−1(0)|
|(𝑝ℓ𝑣)−1(0)|

≤ |ℎ−1
𝑣 (1) ∩ (𝑝𝑖

𝑣)−1(0)|
|(𝑝ℓ𝑣)−1(0)| (𝜌𝑖 ⊆ 𝜌ℓ)

= |ℎ−1
𝑣 (1) ∩ (𝑝𝑖

𝑣)−1(0)|
|(𝑝𝑖𝑣)−1(0)| ⋅ |(𝑝𝑖

𝑣)−1(0)|
|(𝑝ℓ𝑣)−1(0)|

≤ |ℎ−1
𝑣 (1) ∩ (𝑝𝑖

𝑣)−1(0)|
|(𝑝𝑖𝑣)−1(0)| ⋅ |𝑓−1

𝑣 (0)|
|(𝑝ℓ𝑣)−1(0)| (𝑝𝑖

𝑣 = 𝑓𝑣|𝜌𝑖
)

≤ |ℎ−1
𝑣 (1) ∩ (𝑝𝑖

𝑣)−1(0)|
|(𝑝𝑖𝑣)−1(0)| ⋅

3
42Δ

1
42Δ−3𝜀Δ (𝑓 is balanced)

≤ Pr
𝑧←(𝑝𝑖𝑣)−1(0)

[ℎ𝑣(𝑧) = 1] ⋅ 3 ⋅ 23𝜀Δ

Hence for all 𝐹 ∈ 𝜃 and all 𝑣 ∈ 𝐿 if 𝑣 is 𝛾3-heavy in 𝐹|𝜌ℓ
wrt 𝜑|𝜌𝑦 then 𝑣 is 𝛾6

3 -heavy in 𝐹|𝜌𝑖
wrt

𝜑|𝜌𝑦
𝑖
for all 𝑖 ≤ ℓ. And hw𝛾3

𝜑|𝜌𝑦
𝑖
(𝐹 |𝜌ℓ

) ≥ 𝑤 imply that hw
𝛾6
3

𝜑|𝜌𝑦
𝑖
(𝐹 |𝜌𝑖

) ≥ 𝑤 for all 𝑖 ∈ ℓ.
Consider a clause 𝐷 in 𝜋|𝜌𝑦

𝑖−1
and its functional form 𝐹 ∈ 𝜃. Denote by 𝐻 the event that 𝑣𝑖 is

𝛾6

3 -heavy output bit in 𝐹 wrt PRG𝐺,𝑓 |𝜌𝑖−1
. Clause 𝐷 is killed by 𝜌𝑦

𝑖 with probability at least:

Pr
𝑣𝑖,𝜎𝑖

[𝐷|𝜎𝑖
= 1] ≥ Pr

𝑣𝑖,𝜎𝑖
[ℎ𝑣𝑖(𝑥)|𝜎𝑦

𝑖
= 1]

≥ Pr
𝑣𝑖,𝜎𝑖

[𝐻] ⋅ Pr
𝑣𝑖,𝜎𝑖

[(ℎ𝑣𝑖 |𝜎𝑦
𝑖

= 1) ∣ 𝐻]

≥ |{𝑣𝑖 ∈ [𝑚] ∣ 𝐻}|
𝑚 ⋅ 𝛾6

3 .

Hence for the clause 𝐷 ∈ 𝜋 there are two ways.

• At some moment 𝑖 ≤ ℓ the hw
𝛾6
3

𝜑|𝜌𝑦
𝑖
(𝐹 |𝜌𝑖

) ≤ 𝑤. In this case 𝐷 is not interesting for us anymore,

since as we proved above hw𝛾3

𝜑|𝜌𝑦 (𝐹 |𝜌) ≤ 𝑤.
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• If hw
𝛾6
3

𝜑|𝜌𝑦
𝑖
(𝐹 |𝜌𝑖

) ≥ 𝑤 then the probability that the clause 𝐷|𝜌𝑖
is survived on 𝑖 + 1-th iteration is

at most:
Pr[𝐷|𝜌𝑖

is survived on 𝑖 + 1-th iteration] ≤ 1 − 𝑤
𝑚

𝛾6

3 .

And hence:

Pr[𝐷 is survived after ℓ iterations] ≤
∏

𝑖
Pr[𝐷|𝜌𝑖

is survived on 𝑖 + 1-th iteration] ≤

(1 − 𝑤
𝑚

𝛾6

3 )
ℓ
. since hw

𝛾6
3

𝜑|𝜌𝑦
𝑖
(𝐹 |𝜌𝑖

) ≥ 𝑤

To conclude the proof note that

Pr[hw𝛾3

𝜑|𝜌𝑦
ℓ
(𝐹 |𝜌ℓ

) > 𝑤] ≤ (1 − 𝑤
𝑚

𝛾6

3 )
ℓ

= (1 − 𝑤
𝑚

𝛾6

3 )
𝜀3 𝑟

32

< (1 − 𝑤
𝑚

𝛾6

3 )
1

𝑤𝑚
𝛾6
3

log 𝑠
< 1

𝑠 .

By the union bound over all 𝐹 ∈ 𝜃 we conclude that:

Pr[∃𝐹 ∈ 𝜃, hw𝛾3

𝜑|𝜌𝑦
ℓ
(𝐹 |𝜌ℓ

) > 𝑤] < 1.

Or in other words there is an 𝑥-assignment 𝜌 that satisfy all required properties.

4.3 Heavy Width Lower Bound

For the sake of contradiction assume that we have a proof 𝜋 ≔ (𝐷1, … , 𝐷𝑠) of small heavy width.
Starting from 𝐷𝑠 we trace the path 𝑝 in the dag of 𝜋 to the initial clause. During this process we
maintain a partial 𝑥-assignment 𝜎 such that in the clause 𝐷 ∈ 𝑝 for any small set 𝑆 of initial clauses
the 𝑥-assignment 𝜎 can be extended for an 𝑥-assignment 𝜅 ⊇ 𝜎 such that 𝑆 is satisfied by 𝜅, but 𝐷
does not. That give us a contradiction in a leaf where 𝐷 should be one of the initial clauses.

This assignment 𝜎 will assign neighbours of heavy output bits of the generator and some extension
(closure) to make sure that the remaining graph (after removing assigned variables) is an expander.
Since the remainder is an expander (in particular we assign not so many neighbours of any alive output
bit) then the existence of the assignment 𝜅 will follow from the fact other output bit are not heavy that
means that there are a lot of points that satisfy the constraint but not satisfy the clause.

In this section we assume that 𝐺 ≔ (𝐿, 𝑅, 𝐸) be an (𝑟, Δ, (1 − 𝜀)Δ)-expander and PRG𝐺,𝑓 is
based on this graph an some functions 𝑓𝑖 (again we assume that zero point not in Im(ℱ𝐺,𝑓) and state
our result for this point, but it holds for all 𝑏 ∉ Im(ℱ𝐺,𝑓)). All clauses deal with variables of PRG𝐺,𝑓 .
We also fix an abbreviation 𝛾 ≔ 2−𝜀Δ.

Let start with auxiliary objects and lemmas.
Definition 4.11

Let 𝜌 be a self-reduction of PRG𝐺,𝑓 . Let 𝐶 be a clause and 𝐹 its functional form, 𝐼𝜂 be a set of
𝜂-heavy output bits wrt PRG𝐺,𝑓 |𝜌𝑦 . We say that an output bit 𝑣 is (𝜂, 𝜈)-dangerous for 𝐹 iff
𝑣 ∈ Cl𝑟,𝜈(N𝐺 (𝐼𝜂 ∪ 𝐿𝜌)). Denote this set by 𝒟𝜂,𝜈

𝐹,𝜌.

Note that this definition make sense only if graph 𝐺 is an expander. Also note that 𝐼𝜂 ∪ 𝐿𝜌 ⊆
Cl𝑟,𝜈(N𝐺 (𝐼𝜂 ∪ 𝐿𝜌)). For fixed parameters 𝜂 and 𝜈 and a clause 𝐶 with functional form 𝐹 we also say
that an 𝑥-assignment 𝜎 ⊇ 𝜌 is (𝜂, 𝜈)-locally consistent iff:

17



• 𝜎−1({0, 1}) = N (𝒟𝜂,𝜈
𝐹,𝜌);

• 𝐶|𝜎𝑦 ≢ 1;
• 𝜎 satisfy all constraints that correspond to 𝒟𝜂,𝜈

𝐹,𝜌.

The following Lemma is the heart of the proof. It says that locally consistent assignments cannot
violate any constraint from our formula.

Lemma 4.12

Let 𝑓 ≔ {𝑓1, … , 𝑓𝑚} be a collection of (1
4 , 3𝜀Δ)-balanced functions, 𝛾 < 1

8 and 𝜌 be a self-
reduction of PRG𝐺,𝑓 . If 𝐶 is a clause with functional form 𝐹 such that hw𝛾3

PRG𝐺,𝑓 |𝜌(𝐹) ≤ 𝜀 𝑟
8 and

𝜎 is a (𝛾3, (1 − 2𝜀Δ))-locally consistent assignment then for any 𝐽 ⊆ 𝐿 such that |𝐽 | ≤ 𝜀 𝑟
4 ,

there is an extension 𝜅 ⊇ 𝜎 such that:

• 𝜅−1({0, 1}) ⊇ N (𝒟𝛾3,(1−2𝜀)Δ
𝐹,𝜌 ) ∪ N (𝐽);

• 𝐶|𝜅𝑦 ≢ 1;

• ∀𝑣 ∈ 𝐽, 𝑓𝑣(𝑥)|𝜅 = 0.

Proof. Let 𝒟 ≔ 𝒟𝛾3,(1−2𝜀)Δ
𝐹,𝜌 and 𝐹 ≔ ⋁

𝑖
(ℎ𝑖(𝑥) = 1). Let 𝐼 ≔ Cl𝑟,(1−2𝜀)Δ(N𝐺 (𝐽) ∪ N𝐺 (𝒟)) ⧵𝒟. By

Lemma 2.5 |𝐼| ≤ 3
8𝑟. By the definition of closure 𝐼 ⊇ 𝐽 ⧵ 𝒟.

By Lemma 2.6 graph 𝐺′ ≔ 𝐺 ⧵ (𝒟 ∪ N𝐺 (𝒟)) is an ( 𝑟
2 , Δ, (1 − 2𝜀)Δ)-expander. By Proposition

2.3 there is an enumeration 𝑣1, 𝑣2, … , 𝑣|𝐼| ∈ 𝐼 and a sequence 𝑅1, … , 𝑅|𝐼| ⊆ N𝐺′ (𝑆) such that:

• 𝑅𝑖 = N𝐺′ (𝑣𝑖) ⧵ (
𝑖−1
⋃

𝑗=1
N𝐺′ (𝑣𝑗));

• |𝑅𝑖| ≥ (1 − 2𝜀)Δ.

We define a family of 𝑥-assignments 𝜈𝑖 and 𝜅𝑖 ≔
𝑖
⋃

𝑗=1
𝜈𝑖 ∪ 𝜎 step by step, starting from 𝜈1 in the

following way:

• 𝜈(−1)
𝑖 ({0, 1}) = 𝑅𝑖;

• 𝑓𝑣𝑖(𝑥)|𝜅𝑖
= 0;

• 𝐶|𝜅𝑦
𝑖

≢ 1.
We have to show the existence of such 𝜈𝑖. Note that |𝑅𝑖| ≥ (1 − 2𝜀)Δ hence 𝜅𝑖−1 can assign at most
2𝜀Δ variables in N𝐺 (𝑣𝑖). Since 𝑓𝑣𝑖 is a balanced function:

|(𝑓𝑣𝑖 |𝜅𝑖−1
)−1(0)| ≥ 1

4𝛾22Δ ≥ 1
4𝛾2|𝑓−1

𝑣𝑖 (0)|.

Output bit 𝑣𝑖 is not 𝛾3-heavy hence there are at most 𝛾3|𝑓−1
𝑣𝑖 (0)| different 𝑥-assignments to 𝑅𝑖 that

maps ℎ𝑣𝑖 to 1, assuming that 𝛾 < 1
8 we can find an assignment that maps ℎ𝑣𝑖 to 0 and satisfy the

constraint 𝑓𝑣𝑖(𝑥) = 0. We define 𝜅 ≔ 𝜅|𝐼|.
It remains to check that 𝜅𝑦 does not satisfy 𝐶 , that does not immediately follow from the construc-

tion due to Remark 3.4. To show this fact we use an expansion of underlying graph. For the sake of
contradiction assume that 𝜅𝑦 maps some literal 𝑦𝑐

𝑔 ∈ 𝐶 to 1 and this literal belongs to bag 𝐵𝑣. Consider
three cases.
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1. 𝜅 assigns all variables from N (𝑣). In this case ℎ𝑣(𝑥)|𝜅 is mapped to 1 since ℎ𝑣 is a disjunction
of (1 ⊕ 𝑐 ⊕ 𝑔) with some function. that contradicts with the choice of 𝜅.

2. 𝜅 assigns at most 2𝜀Δ variables from N (𝑣). Note that

Pr
𝑧←𝑓−1𝑣 (0)

[ℎ𝑣(𝑧) = 1] ≥ Pr
𝑧←𝑓−1𝑣 (0)

[𝑧 cons. with 𝜅] 𝜅 maps 𝑦𝑔 to 1

≥ Pr
𝑧←{0,1}Δ

[𝑧 cons. with 𝜅 ∧ 𝑓𝑣(𝑧) = 0]

≥ Pr
𝑧←{0,1}Δ

[𝑧 cons. with 𝜅] ⋅ Pr
𝑧←{0,1}Δ

[𝑓𝑣(𝑧) = 0 ∣ 𝑧 cons. with 𝜅]

≥ 𝛾2 Pr
𝑧←{0,1}Δ

[𝑓𝑣(𝑧) = 0 ∣ 𝑧 cons. with 𝜅]

≥ 𝛾2 Pr
𝑧←{0,1}Δ

[𝑓𝑣(𝑧)|𝜅 = 0]

≥ 𝛾2

4 ≥ 𝛾3. 𝑓𝑣 is balanced

But in this case 𝑣 ∈ 𝒟 by definition of 𝒟. Hence 𝜅 should assign all variable in N (𝑣).

3. 𝜅 assigns at least 2𝜀Δ + 1 variables from N (𝑣) but not all of them. That contradicts with the
fact that 𝜅 assigns variables from N (𝐼 ∩ 𝒟) = N (Cl𝑟,(1−2𝜀)Δ(N𝐺 (𝐽) ∪ N𝐺 (𝒟))) and Lemma
2.6.

Theorem 4.13

Let 𝜀 < 1
3 , 𝐺 ≔ (𝐿, 𝑅, 𝐸) be an (𝑟, Δ, (1 − 𝜀)Δ)-expander graph such that |𝐿| = 𝑚, |𝑅| = 𝑛.

Fix 𝛾 ≔ 2−𝜀Δ < 1
8 . If 𝑓 ≔ {𝑓1, … , 𝑓𝑚} is a collection of (1

4 , 3𝜀Δ)-balanced functions then
hw𝛾3

PRG𝐺,𝑓 |𝜌𝑦 of any resolution proof of PRG𝐺,𝑓 |𝜌𝑦 is at least 𝜀2 𝑟
16 where 𝜌 is self-reduction.

Proof. For the sake of contradiction assume that 𝜋 ≔ (𝐷1, … , 𝐷𝑠) is a resolution proof of PRG𝐺,𝑓 |𝜌𝑦 of
hw𝛾3

PRG𝐺,𝑓 |𝜌𝑦 at most 𝜀2 𝑟
16 . Let 𝜃 ≔ (𝐹1, 𝐹2, … , 𝐹𝑠) be a sequence of functional forms that is witnessing

heavy width of 𝜋. For a disjunction 𝐹𝑖 ∈ 𝜃 we denote 𝒟𝑖 ≔ 𝒟𝛾3,(1−2𝜀)Δ
𝐹𝑖,𝜌 .

For the clause 𝐷𝑠 with functional form 𝐹𝑠 an 𝑥-assignment 𝜌 is locally consistent, since graph
(𝐺 ⧵ (𝐿𝜌 ∪ N (𝐿𝜌)) is an (𝑟, Δ, (1 − 2𝜀)Δ)-expander. We want to show that the existence of a locally
consistent assignment 𝜅𝐷 for some clause 𝐷 ∈ 𝜋 with functional form 𝐹 ∈ 𝜃 imply the existence of
a locally consistent assignment for at least one of its predecessors. In this case the can trace the path
from 𝐷𝑠 to some initial clause 𝐷𝑘 ∈ 𝜋 ∩ PRG𝐺,𝑓 |𝜌𝑦 with functional form 𝐹𝑘 and show the existence
of a locally consistent assignment 𝜅𝐷𝑘 for this clause.

Suppose that 𝐷𝑘 ≔ (𝑦𝑐1𝑔1 ∨ 𝑦𝑐2𝑔2 ∨ 𝑦𝑐3𝑔3 ⋯ ∨ 𝑦𝑐ℓ𝑔ℓ). By construction of PRG𝐺,𝑓 we can find an 𝑖 ∈ [𝑚]
such that for all 𝑗 ∈ [ℓ]:

• 𝑔𝑗 depends only on Vars𝑖;

• the equality 𝑔𝑗(𝑥) = 𝑐𝑗 semantically follows from the equality 𝑓𝑖(𝑥) = 0.
But in this case 𝑖 is 1-heavy for 𝐷𝑘 and for any 𝑥-assignment 𝜎 the condition 𝑓𝑖(𝑥)|𝜎 = 0 imply that
𝐷𝑘|𝜌𝑦 ≡ 1. This fact contradicts with the definition of locally consistent assignment.

Suppose a locally consistent assignment 𝜅 exists for a clause 𝐷𝑖 ∈ 𝜋 with functional form 𝐹𝑖 ∈ 𝜃
and 𝐷𝑎, 𝐷𝑏 are predecessors of 𝐷𝑖 in 𝜋 with functional forms 𝐹𝑎, 𝐹𝑏 respectively. Note, that hw𝛾3

𝜑 of
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these functional forms are at most 𝜀2 𝑟
16 , hence Lemma 2.5 together with the upper bound |𝐿𝜌| ≤ 𝜀2𝑟

16
imply that the sizes of 𝒟𝑖, 𝒟𝑎, 𝒟𝑏 are at most 𝜀 𝑟

16 + 𝜀 𝑟
16 = 𝜀 𝑟

8 . By Lemma 4.12 we have an extension
𝜎 ⊇ 𝜅 on N𝐺 (𝒟𝑎 ∪ 𝒟𝑏) that satisfy constraints of PRG𝐺,𝑓 that correspond to 𝒟𝑎 ∪ 𝒟𝑏 but do not
satisfy 𝐷𝑖. And since 𝜎 do not satisfy 𝐷𝑖 it also do not satisfy at least one of its predecessor, wlog it is
𝐷𝑎. And the 𝑥-assignment 𝜎 ∩ N𝐺 (𝒟𝑎) is a locally consistent for 𝐷𝑎 and 𝐹𝑎 as desired.

4.4 Proof of Theorem 4.1

For the sake of contradiction assume that 𝜋 ≔ 𝐷1, 𝐷2, … , 𝐷𝑠 is a resolution proof of PRG𝐺,𝑓 and
𝑠 ≤ exp [𝛿 𝜀5𝑟2

26𝜀Δ𝑚] for some 𝛿 ≤ 10−4.
Fix 𝑤 ≔ 𝜀2𝑟

20 and 𝛾 ≔ 2−𝜀Δ. Note that:

exp(𝜀3𝑟
32 ⋅ 1

3𝛾6 𝑤
𝑚) = exp(𝜀3𝑟

32 ⋅ 1
3𝛾6 𝜀2𝑟

20 ⋅ 𝑚) ≥ exp( 𝜀5

2000 ⋅ 𝛾6 𝑟2

𝑚) > exp(𝛿𝜀5 ⋅ 𝛾6 𝑟2

𝑚) ≥ 𝑠,

hence we can apply Theorem 4.10 that gives a self-reduction 𝜌. We hit the proof 𝜋 by 𝜌𝑦 and the proof
𝜋|𝜌𝑦 is a proof of PRG𝐺,𝑓 |𝜌𝑦 . Moreover the hw𝛾3

PRG𝐺,𝑓 |𝜌𝑦 of 𝜋|𝜌𝑦 is at most 𝑤.

Since 𝜌 is a self-reduction then by Theorem 4.13 any proof of PRG𝐺,𝑓 |𝜌𝑦 requires hw𝛾3

PRG𝐺,𝑓 |𝜌𝑦 at
least 𝜀2 𝑟

16 > 𝑤. Contradiction.

5 Comments and Further Directions

The most important is the lower bounds on the Nisan–Widgerson generator with 𝑚 ≫ 𝑛2. The
technical barrier for doing it is the scaling factor 1

𝑚 that comes from the step 7 of the algorithm 4.2.
And it is a fundamental problem of the general restriction technique that we use in proof complexity.
The most promising approach for avoiding this problem is the “pseudowidth” that was created by
Razborov in [Raz01; Raz03] and equipped with a closure trick in [Rez+20].

The pseudowidth technique may be viewed as a replacement of the “self-reductions” and algorithm
from Section 4.2. Instead of hitting the proof by a restriction we look at the small enough proof and
try to add a carefully chosen set of axioms to our formula that allows to transform this formula into a
proof of small “pseudowidth”. The pseudowidth measure itself may be considered as an 𝛼-heavy width
where parameter 𝛼 can be different for different output bits. Unfortunately, to apply this strategy we
have to deal with large enough parameters 𝛼, but all results from Section 4.3 used the fact that 𝛼 is
small enough. That leads to another technical, but the important open problem: can one prove that
any resolution proof of PRG𝐺,𝑓 has 1

100 -heavy width at least Ω(𝑛𝛿)?
We may also ask to generalize the lower bounds to stronger proof systems. It seems adaptation of

this technique for Polynomial Calculus (or Sherali–Adams) may be a challenging problem if we want
to go beyond the logarithmic threshold, i.e. Δ ≫ log𝑛.
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A Missed Lemmas

At first we show a simple auxiliary statement.
Lemma A.1

Suppose that 𝐺 ≔ (𝐿, 𝑅, 𝐸) is an (𝑟, Δ, 𝑐)-boundary expander and that 𝐽 ⊆ 𝑅 has size |𝐽 | ≤
Δ𝑟. Then if 𝑋 ⊆ 𝐿 has size |𝑋| ≤ 𝑟 and |𝜕 (𝑋) ⧵ 𝐽| ≤ 𝜈|𝑋| then 𝑋 ≤ |𝐽|

𝑐−𝜈 .

Proof. The expansion property of the graph guarantees that 𝑐|𝑋| − |𝐽| ≤ |𝜕 (𝑋) ⧵ 𝐽|. The conclusion
follows.

Lemma A.2

Let 𝐺 ≔ (𝐿, 𝑅, 𝐸) be an (𝑟, Δ, (1 − 𝜀)Δ)-boundary expander. Then 𝐺 ⧵ ({𝑣} ∪ {𝑁(𝑣)}) is an
(𝑟 − 1, Δ, (1 − 3

2𝜀) Δ) expander where 𝑣 ∈ 𝐿 is an arbitrary vertex.

Proof. Fix some 𝑣 ∈ 𝐿 and denote 𝐺′ ≔ 𝐺 ⧵ ({𝑣} ∪ {𝑁(𝑣)}).
Consider some set of 𝑆 ⊆ (𝐿 ⧵ {𝑣}) of size at most 𝑟 − 1 and denote 𝐻 ≔ 𝑁(𝑆) ∩ 𝑁(𝑣). Since 𝐺

is an expander:
|𝜕𝐺 (𝑆 ∪ 𝑣) | = |𝜕𝐺′ (𝑆) | + Δ − |𝐻| ≥ (1 − 𝜀)Δ(|𝑆| + 1)

|𝜕𝐺′ (𝑆) | ≥ (1 − 𝜀)Δ|𝑆| − 𝜀Δ + |𝐻|.
But from the other point of view:

|𝜕𝐺′ (𝑆) | ≥ |𝜕𝐺 (𝑆) | − |𝐻| ≥ (1 − 𝜀)Δ|𝑆| − |𝐻|.

Altogether:

|𝜕𝐺′ (𝑆) | ≥ (1 − 𝜀)Δ|𝑆| − min(|𝐻|, 𝜀Δ − |𝐻|) ≥ (1 − 𝜀)Δ|𝑆| − 𝜀
2Δ ≥ (1 − 3

2𝜀) Δ|𝑆|.

Proposition A.3 [Analog of [Sok20]]

For all 𝑖 ≤ ℓ:
• 𝐺𝑖 is an (𝑟, Δ, (1 − 2𝜀)Δ)-expander;

• |𝐶𝑖| ≤ |𝜀2 𝑟
32 |.

Proof. At first we prove the second claim |𝐶𝑖| ≤ 𝜀2 𝑟
32 by induction. 𝐶0 is an empty set. Suppose that

|𝐶𝑖−1| ≤ 𝜀2 𝑟
32 . There are two steps in the proof:

• we show that |𝐵𝑖| ≤ 𝑟
3 that give us an opportunity to use expansion property for the set 𝐶𝑖;
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• we give a lower bound on size 𝜕𝐺 (𝐶𝑖) by using expansion property and the upper bound by the
choice of 𝐵𝑖 that together give us an upper bound on size of 𝐶𝑖.

Let start with the first step. |𝜕𝐺 (𝐵𝑖) ⧵ N𝐺 (𝐶𝑖−1 ∪ 𝑂𝑖+1) | ≤ |𝜕𝐺′
𝑖+1

(𝐵𝑖) | ≤ (1 − 2𝜀)|𝐵𝑖|. By
definition |𝐵𝑖| ≤ 𝑟 and hence by Lemma A.1 |𝐵𝑖| ≤ |N𝐺(𝐶𝑖−1∪𝑂𝑖+1)|

𝜀Δ ≤ 𝑟
4 + 𝜀

32𝑟 ≤ 𝑟
3 . That concludes

the first step.

(1 − 𝜀)Δ|𝐶𝑖| ≤
|𝜕𝐺 (𝐶𝑖) | ≤ by expansion

∣
𝑖

⋃
𝑗=1

(𝜕𝐺 (𝐵𝑗) ⧵ N𝐺 (𝐶𝑗−1))∣ ≤

∣
𝑖

⋃
𝑗=1

(𝜕𝐺 (𝐵𝑗) ⧵ (N𝐺 (𝐶𝑗−1) ∪ N (𝑂𝑗+1))) ∪ N (𝑂𝑗+1)∣ ≤

∣
𝑖

⋃
𝑗=1

𝜕𝐺′
𝑗+1

(𝐵𝑗) ∪ N (𝑂𝑖+1)∣ ≤ by the choice of 𝐵𝑗

(1 − 2𝜀)Δ
𝑖

∑
𝑗=1

|𝐵𝑗| + |N (𝑂𝑖+1) | ≤

(1 − 2𝜀)Δ|𝐶𝑖| + |N (𝑂𝑖+1) |.

And hence |𝐶𝑖| ≤ |N(𝑂𝑖+1)|
𝜀Δ ≤ 𝜀2 𝑟

32 as desired.
The first claimwe prove by contradiction. Pick the minimal 𝑖 such that 𝐺 ≔ 𝐺𝑖 is not an (𝑟, Δ, (1−

2𝜀))-boundary expander and 𝑆 ⊆ 𝐿 be a witness of it, i.e. |𝑆| ≤ 𝑟 and |𝜕𝐺 (𝑆) | ≤ (1 − 2𝜀)|𝑆|.
As in previous case |𝜕𝐺 (𝑆) ⧵ (N𝐺 (𝐶𝑖−1) ∪ 𝑂ℓ) | ≤ |𝜕𝐺 (𝑆) | ≤ (1 − 2𝜀)|𝑆| hence by Lemma A.1
|𝑆| ≤ |N𝐺(𝐶𝑖−1)∪𝑂ℓ|

𝜀Δ ≤ 𝑟
2 .

Consider a set 𝑆 ∪ 𝐵𝑖−1 and note that size of it at most 𝑟. 𝜕𝐺′
𝑖
(𝑆 ∪ 𝐵𝑖−1) ⊆ 𝜕𝐺𝑖

(𝑆) ∪ 𝜕𝐺′
𝑖
(𝐵𝑖−1)

by definition of 𝐺𝑖. This implies |𝜕𝐺′
𝑖
(𝑆 ∪ 𝐵𝑖−1) | ≤ (1−2𝜀)Δ|𝑆|+(1−2𝜀)Δ|𝐵𝑖−1| = (1−2𝜀)Δ|𝑆 ∪

𝐵𝑖−1|. That contradicts with the choice of 𝐵𝑖−1.

Lemma A.4

There is a constant 𝑛0 ∈ N such that for any 𝑛 > 𝑛0 if a function 𝑓 : {0, 1}𝑛 → {0, 1} is chosen
uniformly at random then whp it is (1

4 , 𝑛 − √𝑛)-balanced.

Proof. There are at most
𝑛

∑
𝑖=0

(𝑛
𝑖) ⋅ 2𝑖 = 3𝑛

different partial assignments.
A fixed partial assignment 𝜌 of size 𝑘 corresponds to a boolean subcube 𝑆 ⊆ {0, 1} of size 2𝑛−𝑘

for which we want to estimate number of ones and zeroes. Note that:

Pr
𝑓

[|(𝑓|𝜌)−1(1)| ≤ 1
42𝑛−𝑘] ≤

2𝑛−𝑘/4
∑
𝑖=0

(2𝑛−𝑘

𝑖 ) ⋅ 2−2𝑛−𝑘 ≤ 2−(1−H(1/4))2𝑛−𝑘 ≤ 2−0.1⋅2𝑛−𝑘 .
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Altogether:

Pr
𝑓

[𝑓 is not (1
4, 𝑛 − √𝑛)-balanced] ≤

∑
𝜌,|𝜌|≤𝑛−√𝑛

(Pr
𝑓

[|(𝑓|𝜌)−1(1)| ≤ 1
42𝑛−|𝜌|] + Pr

𝑓
[|(𝑓|𝜌)−1(0)| ≤ 1

42𝑛−|𝜌|]) ≤

2 ⋅ 3𝑛 ⋅ 2−0.1⋅2
√𝑛 ≤ 2−2Ω(√𝑛) .
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