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Abstract

The stabilizer rank of a quantum state ψ is the minimal r such that |ψ〉 = ∑r
j=1 cj

∣∣ϕj
〉

for cj ∈ C and stabilizer states ϕj. The running time of several classical simulation
methods for quantum circuits is determined by the stabilizer rank of the n-th tensor
power of single-qubit magic states.

We prove a lower bound of Ω(n) on the stabilizer rank of such states, improving
a previous lower bound of Ω(

√
n) of Bravyi, Smith and Smolin [BSS16]. Further, we

prove that for a sufficiently small constant δ, the stabilizer rank of any state which is
δ-close to those states is Ω(

√
n/ log n). This is the first non-trivial lower bound for

approximate stabilizer rank.
Our techniques rely on the representation of stabilizer states as quadratic func-

tions over affine subspaces of Fn
2 , and we use tools from analysis of boolean func-

tions and complexity theory. The proof of the first result involves a careful analysis
of directional derivatives of quadratic polynomials, whereas the proof of the second
result uses Razborov-Smolensky low degree polynomial approximations and correla-
tion bounds against the majority function.

1 Introduction
The conventional wisdom is that quantum computers are more powerful than classi-
cal computers. Among other reasons, this belief is supported by the fact that quantum
computers are able to efficiently solve problems such as integer factorization [Sho97],
which are believed by some to be hard for classical computers; by provable black box
separations [Sim97, Gro96, BV97, RT19]; and by quantum computers’ advantage in
solving certain sampling problems that are deemed intractable for classical comput-
ers under well established complexity theoretic conjectures [AA13].

There is, however, very little that we can unconditionally prove with regard to the
impossibility of efficiently simulating quantum computers using classical computers.
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Indeed, barring a computational complexity theoretic breakthrough, such as — at the
very least — separating P from PSPACE, we can’t hope to prove general and uncon-
ditional impossibility results.

Nevertheless, it remains an interesting and important problem to prove lower
bounds on the running time of certain restricted types of simulation techniques for
quantum circuits. One such result is a lower bound of Huang, Newman and Szegedy
[HNS20], who prove unconditional exponential lower bounds for a subclass of sim-
ulators they call monotone simulators, which includes many, but not all, of the known
simulation techniques.

Simulation algorithms based on stabilizer rank decompositions for quantum circuits
dominated by Clifford gates [BSS16, BG16, BBC+19] is a recent powerful class of algo-
rithms for classically simulating quantum circuits (which is not covered by the lower
bound of [HNS20]). The computational cost of these algorithms is dominated by a
certain natural algebraic and complexity-theoretic rank measure for quantum states,
which we now define.

1.1 Clifford Circuits, Magic States and Stabilizer Rank
Clifford circuits are quantum circuits which only apply Clifford gates (for background
on the Clifford group and the definitions of the type of gates considered in this paper,
see Appendix A). Equivalently, such circuits only use CNOT, Hadamard, and phase
gates. This is an important class of quantum circuits which, by the Gottesman-Knill
theorem [Got97, AG04], can be efficiently simulated (on, say, the input |0n〉) by a clas-
sical algorithm. This highly non-obvious theorem follows from the fact that such cir-
cuits can only maintain certain states known as stabilizer states. These can be succinctly
represented, and it is easy to track the state and update the succinct representation af-
ter any application of a Clifford gate.

Adding T gates (we refer again to Appendix A for the definition) on top of the Clif-
ford gates results in a universal quantum gate set, that is, a set which can approximate
every unitary operation. It is then possible, using a simple gadget-based transforma-
tion, to “push the T gates to the inputs” and obtain an equivalent circuit, of roughly
the same size, which only uses Clifford operations, and is given, as additional auxil-
iary inputs, sufficiently many copies of qubits in a so-called magic state [BK05, BSS16].
This transformation only increases the circuit size by a polynomial factor. For classical
circuit complexity theorists, a useful albeit imperfect analogy is the fact that any size-s
circuit can be simulated by a monotone circuit of size polynomial in s, which is given
as additional inputs the n negations of the input variables x1, . . . , xn.

Two examples for such magic states are |H〉 = cos(π/8) |0〉 + sin(π/8) |1〉 and
|R〉 = cos(β) |0〉 + eiπ/4 sin(β) |1〉, where β = 1

2 arccos(1/
√

3) [BK05].1 This sug-
gests the possibility of simulating a general quantum circuit by decomposing |H⊗n〉
or |R⊗n〉 as a linear combination of stabilizer states.

More formally, |ϕ〉 is a stabilizer state if |ϕ〉 = U |0n〉 where U is an n-bit Clifford
unitary (see also Equation (1.3) and the following paragraph). The stabilizer rank of a

1The state |R〉 is often called |T〉. However, to avoid confusion, we follow the notation of [BSS16], and
reserve the notation |T〉 for a different state. For a handy reference to our notation, see Appendix A.
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state |ψ〉, denoted χ(ψ), is the minimal integer r such that

|ψ〉 =
r

∑
j=1

cj |ϕj〉 ,

where for every 1 ≤ j ≤ r, |ϕj〉 is a stabilizer state and cj ∈ C.
For any n-qubit state, the stabilizer rank is at most 2n. Interestingly, much smaller

upper bounds can be shown for the the stabilizer rank of |H⊗n〉: Bravyi, Smith and
Smolin [BSS16] proved that χ(H⊗6) ≤ 7 which implies that χ(H⊗n) ≤ 7n/6 ≤ 20.468n.
Bravyi, Smith and Smolin [BSS16] then use this identity to obtain simulation algo-
rithms for circuits with a small number of T gates, whose running time is much faster
than the trivial brute-force simulation. A slightly faster algorithm was presented by
Kocia who proved that χ(H⊗12) ≤ 47 [Koc20].

When simulating quantum circuits, it is often enough, for all intents and purposes,
to obtain an approximation of their output state. Thus, it’s natural to define a simi-
lar approximation notion for stabilizer rank. The δ-approximate stabilizer rank of
|ψ〉, denoted χδ(ψ), is defined as the minimum of χ(ϕ) over all states |ϕ〉 such that
‖ψ− ϕ‖2 ≤ δ [BBC+19]. By considering approximate stabilizer decomposition of
|H⊗n〉, improved simulation algorithms were obtained by Bravyi and Gosset [BG16].

A natural question is then what is the limit of such simulation methods. As the
running time of the simulation scales with the stabilizer rank, an upper bound which
is polynomial (in n) on χ(H⊗n) or χ(R⊗n) will imply that BPP = BQP and even (by
simulating quantum circuits with postselection) P = NP [BBC+19], and thus seems
highly improbable.2 Much stronger hardness assumptions than P 6= NP, such as the
exponential time hypothesis, imply that χ(H⊗n) = 2Ω(n) [MT19, HNS20].

However, the starting point of this discussion was our desire to obtain uncondi-
tional impossibility results, and thus we are interested in provable lower bounds on
χ(H⊗n) and χδ(H⊗n), and similarly for R⊗n.

While it’s easy to see, using counting arguments, that the stabilizer rank of a ran-
dom quantum state would be exponential, it is a challenging open problem to prove
super-polynomial lower bounds on the rank of |H⊗n〉 or for other explicit states.
Bravyi, Smith and Smolin proved that χ(H⊗n) = Ω(

√
n). In this paper, we improve

this lower bound, and also prove the first non-trivial lower bounds for approximate
stabilizer rank.

1.2 Our results: Improved Lower Bounds on Stabilizer Rank
and Approximate Stabilizer Rank
Our first result is an improved lower bound on χ(H⊗n) and χ(R⊗n).

Theorem 1.1. χ(H⊗n) = Ω(n), and similarly, χ(R⊗n) = Ω(n).

2This implication holds up to uniformity issues having to do with finding the decomposition of |H⊗n〉
as a linear combination of stabilizer states. However, these complexity classes collapses are not believed to
hold even in the non-uniform world, and further, by the Karp-Lipton theorem, a non-uniform collapse also
implies a collapse of the polynomial hierarchy in the uniform world.
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As we remark in Section 1.3, proving super-linear lower bound on χ(H⊗n) will
solve a notable open problem in complexity theory. We discuss this challenge, as well
us some barriers preventing our technique from proving super-linear lower bounds,
in Section 1.5.

The result of Theorem 1.1 can be immediately adapted to prove the same lower
bounds on the δ-approximate stabilizer rank for exponentially small δ. We are, how-
ever, interested in much coarser approximations, and we are able to prove a meaning-
ful result even for δ being a small enough positive constant.

Theorem 1.2. There exists an absolute constant δ > 0 such that χδ(H⊗n) = Ω(
√

n/ log n),
and similarly χδ(R⊗n) = Ω(

√
n/ log n).

By definition, the stabilizer rank of any two states which are Clifford-equivalent is
the same, and thus the lower bounds of Theorem 1.1 and Theorem 1.2, while stated
as lower bounds on the ranks of |H⊗n〉 and |R⊗n〉 hold for any state which is Clifford-
equivalent to them, even up to a phase.

1.3 Technique: Stabilizer States as Quadratic Polynomials
The original proof of the Gottesman-Knill Theorem used the stabilizer formalism and
tracked the current state of the circuit by storing the generators of the subgroup of
the Pauli group which stabilizes the state, and updating them after each application
of a Clifford operation. It turns out, however, that there is an alternative succinct
representation of stabilizer states, using their amplitudes in the computational basis
{|x〉}x∈Fn

2
[DDM03, VdN10]. This representation also leads to an alternative proof of

the theorem, as explained in [VdN10].
If |ϕ〉 is a stabilizer state then (up to normalization)

|ϕ〉 = ∑
x∈A

i`(x)(−1)q(x) |x〉 (1.3)

where A ⊆ Fn
2 is an affine subspace, `(x) is an F2-linear function and q(x) is a

quadratic polynomial over F2. The amplitudes of |H⊗n〉 and |R⊗n〉 are also easy to
compute. For example, recall that |H〉 = cos(π/8) |0〉+ sin(π/8) |1〉, and thus

|H⊗n〉 = ∑
x∈Fn

2

cos(π/8)n−|x| sin(π/8)|x| |x〉 ,

where |x| denotes the Hamming weight of x.
It is convenient to recast this problem as a problem about functions on the boolean

cube in the following natural way. For an n-qubit state |ψ〉 we associate a function
Fψ : Fn

2 → C such that Fψ(x) equals the amplitude of |x〉 when writing |ψ〉 in the
computational basis. In this formulation, our “building blocks” are stabilizer functions,
i.e., functions of the form

ϕ(x) = i`(x)(−1)q(x)1A

where A is an affine subspace, 1A is the indicator function of A (i.e., 1A(x) = 1 if
x ∈ A and zero otherwise), ` is a linear function and q is a quadratic polynomial. Let
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Hn denote the function associated with |H⊗n〉. We would like to show that in any
decomposition

Hn(x) =
r

∑
j=1

cj ϕj(x) =
r

∑
j=1

cji`(x)(−1)qj(x)1Aj(x)

where cj ∈ C and ϕj(x) are stabilizer functions, r must be large.
Our techniques for showing that use tools from the analysis of boolean functions

and from complexity theory. In Section 1.4 we recall some similar questions that have
arisen in complexity theory.

For the proof of Theorem 1.1, we show that if f is a function of stabilizer rank
at most, say, n/100, then it is possible to find two vectors x, y ∈ Fn

2 such that the
Hamming weight of x is very small, the Hamming weight of y is very large, and
f (x) = f (x + y). Since |x + y| ≥ |y| − |x|, for the correctly chosen parameters we get
that |x + y| > |x|, which leads to a contradiction if f = Hn, since Hn takes different
value on each layer of the Hamming cube.

To find such x and y, given a decomposition ∑r
j=1 cji`(x)(−1)qj1Aj with r ≤ n/100,

we find x, y such that `j(x) = `j(x + y), qj(x) = qj(x + y) and 1Aj(x) = 1Aj(x + y) for
all j ∈ [r].

Observe that for a fixed y ∈ Fn
2 and a quadratic polynomial q(x), the equation

q(x) = q(x + y) is an affine linear equation in unknowns x. Thus, denoting ∆y(q) =
q(x) + q(x + y) (this is also called the directional derivative of q with respect to y),
we get a system of affine linear equations

{
∆y(qj) = 0

}
j∈[r] in x, which, assuming r is

small, has many solutions (assuming it is solvable at all).
The additional requirements `j(x) = `j(x + y) and 1Aj(x) = 1Aj(x + y) make

things more complicated. However, using an averaging argument and by again uti-
lizing the fact that r is relatively small, we are able to find a large affine subspace U of
vectors which satisfy those equations, and then we analyze the above system of linear
equations over the affine subspace U.

In order to satisfy the conditions on the Hamming weights of x and y we use
Kleitman’s theorem [Kle66] which gives an upper bound on the size of sets of the
boolean cube with small diameter, as well as some elementary linear algebra. The full
proof of Theorem 1.1 appears in Section 3.

The proof of Theorem 1.2 follows a different strategy. Starting from a state |ψ〉
of rank r which is δ-close to |H⊗n〉 for some small enough constant δ > 0, we show
how to use |ψ〉 in order to construct an F2-polynomial of degree O(r log r) which
(1− ε)-approximates the majority function on m = Ω(n) bits. By a well known cor-
relation bound of Razborov and Smolensky [Raz87, Smo87, Smo93], this implies that
r = Ω(

√
n/ log n).

We now explain how to obtain this polynomial approximating the majority func-
tion. Let p = sin2(π/8) = 0.146 . . . . Instead of majority, it is convenient to first
consider the function THRpn which is 1 on all inputs x whose Hamming weight is at
least pn, and zero otherwise. Note that this function is trivial to approximate under
the uniform distribution by the constant 1 polynomial, but the approximation ques-
tion becomes meaningful when considering B(n, p), the binomial distribution with
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parameter p on the n-dimensional cube. This is useful since the L2 mass of the vector
|H⊗n〉 is distributed according to this distribution. In particular it is heavily concen-
trated on coordinates x such that |x| = pn±O(

√
n), and a state |ψ〉 which is δ-close

to |H⊗n〉 must contain in almost all of these coordinates values which are very close
to those of |H⊗n〉. It is then possible to obtain from ψ a boolean function f which
approximates the function THRpn. We observe that a restriction g of f to a random set
of 2pn coordinates will approximate the majority function, and further, assuming |ψ〉
has stabilizer rank r, and using standard techniques again borrowed from Razborov
and Smolensky, g itself can be approximated by a polynomial g̃ of degree O(r log r).
It follows that g̃ approximates the majority function over 2pn bits. The full proof of
Theorem 1.2 appears in Section 4.

1.4 Related Work
As mentioned above, the previous best lower bound was an Ω(

√
n) lower bound for

exact stabilizer rank of |H⊗n〉 proved by Bravyi, Smith and Smolin [BSS16]. Stronger
lower bounds are known in restricted models. As mentioned by [BSS16] (see also
Lemma 2 in [BG16]), for every stabilizer state |ϕ〉 it holds that |〈ϕ|H⊗n〉| ≤ 2−Ω(n)

which immediately implies an exponential lower bound in the case that the coeffi-
cients cj are bounded in magnitude (in particular, this holds if the states in the de-
composition are orthogonal). It is worth noting that by Cramer’s rule, in any rank r
decomposition the coefficients cj can be taken to be of magnitude at most exponential
in n and r.

Bravyi et al. [BBC+19] present a different restricted model in which they prove an
exponential lower bound.

Related questions have been considered before in complexity theory. The so called
“quadratic uncertainty principle” [FHH+14, Wil18] is a conjecture which states that
in any decomposition of the AND function as a sum

r

∑
j=1

cj(−1)qj(x), (1.4)

for quadratic functions
{

qj
}

j∈[r] and cj ∈ C, r = 2Ω(n). The best lower bound known
is r ≥ n/2 (see [Wil18]). Note that since in the stabilizer rank case we allow functions
of the form (−1)q · 1A for affine subspaces A, the model we consider in this paper is
stronger: in particular the AND function itself is a stabilizer function and its stabilizer
rank is 1.

Williams [Wil18] has constructed, for every positive integer k, a function fk ∈ NP
which requires r = Ω(nk) in any decomposition as in (1.4). It remains, however, an
intriguing open problem to construct boolean function in P which requires a super-
linear number of summands.

We remark that proving super linear lower bounds on the stabilizer rank of |H⊗n〉
will solve this problem. Indeed, as mentioned above, the stabilizer rank model is
even stronger, and thus lower bounds carry over to weaker models. Furthermore,
even though Hn itself is not a boolean function, |H〉 is Clifford-equivalent (up to an
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unimportant phase) to |T〉 := 1√
2
(|0〉+ eiπ/4 |1〉) (see [BSS16]), which implies that the

stabilizer rank of |H⊗n〉 equals the stabilizer rank of |T⊗n〉. Denoting Tn the function
associated with T⊗n, it is now evident that Tn(x) depends only on |x| mod 8, and
therefore

Tn =
7

∑
j=0

bj Mj(x),

where for j ∈ {0, ..., 7}, bj ∈ C and Mj : Fn
2 → {0, 1} is a boolean function such

that Mj(x) = 1 if and only if |x| = j mod 8. Thus, a super-linear lower bound on
the stabilizer rank of |H⊗n〉 will imply a super-linear lower bound on the rank of the
(boolean) mod 8 function.

1.5 Open Problems
While Theorem 1.1 improves upon the previous best lower bound known, we are
unfortunately unable to prove super-polynomial or even super-linear lower bounds
on χ(H⊗n) or χ(R⊗n). Further, our techniques seem incapable of proving super-linear
lower bounds, as they extend to any representation of Hn as an arbitrary function of r
stabilizer functions, and not necessarily a linear combination of them.

As mentioned in Section 1.4, it seems that a first step could be proving super-linear
lower bounds for the quadratic uncertainty principle problem. A different approach-
able open problem is to improve our lower bound on the δ-approximate stabilizer
rank to be closer to Ω(n). This could perhaps be easier assuming δ is polynomially
small in n.

Acknowledgements The third author would like to thank Andru Gheorghiu for
introducing him to the notion of stabilizer rank.

2 Preliminaries

2.1 General Notation
As mentioned in the introduction, it is often convenient to speak about functions on
the boolean cube rather than quantum states. For an n-qubit state |ψ〉 = ∑x∈Fn

2
cx |x〉,

the associated function Fψ : Fn
2 → C is defined as Fψ(x) = cx.

The L2 norm of the function F : Fn
2 → C is then the same as the norm of the

corresponding vector, i.e., ‖F‖ =
(

∑x∈Fn
2
|F(x)|2

)1/2
.

A function ϕ : Fn
2 → C is called a stabilizer function if there exists an n-variate

linear function `(x), an n-variate quadratic polynomial q(x) ∈ F2[x1, . . . , xn] and an
affine subspace A ⊆ Fn

2 such that ϕ(x) = i`(x)(−1)q(x)1A, where 1A denotes the char-
acteristic function of A. As shown in [DDM03, VdN10], stabilizer functions indeed
correspond to stabilizer states up to normalization (which has no effect on the stabi-
lizer rank).
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The stabilizer rank of a function F : Fn
2 → C, denoted χ(F), is the minimal r such

that there exist c1, . . . , cr ∈ C and stabilizer functions ϕ1, . . . , ϕr such that F(x) =

∑r
j=1 cj ϕj(x).

For a vector x ∈ Fn
2 we denote by |x| its Hamming weight. We denote by Majm :

Fm
2 → F2 the m-bit majority function, that is Majm(x) = 1 if and only if |x| ≥ m/2.

Definition 2.1. Let A ⊂ Fn
2 . The diameter of A, denoted diam(A), is defined as

max
u,v∈A

d(u, v) = max
u,v∈A

|u + v|.

Here d(u, v) denotes the Hamming distance of u and v. ♦

Kleitman [Kle66] proved that sets of small diameter cannot be too large.

Theorem 2.2 ([Kle66]). Let A ⊂ Fn
2 such that diam(A) ≤ 2k for k < n/2. Then,

|A| ≤
k

∑
j=0

(
n
j

)
≤ 2H2( k

n )n,

where H2(p) = −p log p− (1− p) log(1− p) is the binary entropy function.

This result is obviously tight as shown by the example of the set of all vectors of
Hamming weight at most k.

Throughout the paper, we omit floor and ceiling symbols to improve readability.

2.2 Linear Algebraic Facts
Recall that an affine subspace U ∈ Fn

2 is a the set of solutions to a system of affine
equations, i.e., a system of the form Mx = b for some M ∈ Fk×n

2 and b ∈ Fk
2. Ev-

ery affine subspace can be written as U = u + U0 for u ∈ Fn
2 and a linear subspace

U0 ⊆ Fn
2 . In our terminology, linear subspaces are in particular affine subspaces (and

similarly, linear functions are a special case of affine functions).
We record the following useful facts.

Fact 2.3. Let U ( Fn
2 be an affine subspace, and let v ∈ Fn

2 \ U. Then there is an affine
function a(x) : Fn

2 → F2 such that a(v) = 1 and for every u ∈ U, a(u) = 0.

Fact 2.4. Let U1, U2 ⊆ Fn
2 be affine subspaces such that U1 ∩U2 6= ∅. Then

dim(U1 + U2) = dim(U1) + dim(U2)− dim(U1 ∩U2).

Claim 2.5. Let U ⊆ Fn
2 be an affine subspace, with dim(U) = n− k > 0. There exists a

subset S ⊂ [n], of size |S| = n− k such that for every v ∈ Fn−k
2 there is u ∈ U with u|S = v

(where u|S denotes the restriction of u to the coordinates indexed by S).

Proof. U is the set of solutions for an equation Mx = b for a matrix M ∈ Fk×n
2 and

b ∈ Fk
2. The fact that dim(U) = n− k implies that M has rank k, and there is a k× k

non-singular submatrix M′ of M. Denote by S the columns of M that do not appear
in M′. For every v ∈ Fn−k

2 , fixing x|S = v in the equation Mx = b gives a system of
equations M′x′ = b′ in the set of remaining k unknowns x′, which has a solution since
M′ is non-singular.
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Corollary 2.6. Let U ⊆ Fn
2 be an affine subspace with dim(U) = n− k > 0. Then, there

exists u ∈ U with |u| ≤ k.

Proof. Follows immediately from applying Claim 2.5 with v = 0.

Finally, we define the directional derivative of a quadratic function over F2.
Definition 2.7. Let q ∈ F2[x1, . . . , xn] be a polynomial of degree 2. Let 0 6= y ∈ Fn

2 . The
directional derivative of q in direction y is defined to be the function

∆y(q)(x) := q(x) + q(x + y) ∈ F2[x1, . . . , xn].

Observe that for every y, ∆y(q) is an affine function in x. ♦

3 A Lower Bound for Exact Stabilizer Rank
In this section we prove Theorem 1.1. We first present the main lemma of this section.

Lemma 3.1. Let F : Fn
2 → C be a function of stabilizer rank r such that r ≤ n/100. Then,

there exist y, z ∈ Fn
2 such that |y| 6= |z| and F(y) = F(z).

Theorem 1.1, which we now restate, is an immediate corollary of Lemma 3.1.

Theorem 3.2. Let |B〉 be either |H〉 or |R〉. Then χ(B⊗n) = Ω(n).

Proof. In the case where |B〉 = |H〉, the associated function FH : Fn
2 → C is defined by

FH(x) = cos(π/8)n−|x| sin(π/8)|x|. If |B〉 = |R〉, the associated function FR : Fn
2 → C

is defined by FR(x) = cos(β)n−|x|(eiπ/4 sin(β))|x| where β = arccos(1/
√

3)/2.
It is immediate to verify that for every y, z ∈ Fn

2 of different Hamming weight
those functions attain different values. Thus, by Lemma 3.1, their stabilizer rank is at
least n/100.

We turn to the proof of Lemma 3.1.

Proof of Lemma 3.1. Let F : Fn
2 → C be a function of stabilizer rank at most r ≤ n/100,

i.e.,

F(x) =
r

∑
j=1

cji`j(x)(−1)qj(x)1Aj(x),

where for every j ∈ [r], `j is a linear function, qj is a quadratic function, and Aj ⊆ Fn
2

is an affine subspace.
To prove the statement of the lemma, we will show that there exist y, z ∈ Fn

2 such
that |y| < |z| and for every j ∈ [r] all of the following hold:

1. `j(y) = `j(z)

2. 1Aj(y) = 1Aj(z)

3. qj(y) = qj(z).

The first two items are handled by the following claim, which shows that there is
a large affine subspace satisfying both conditions.
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Claim 3.3. There’s an affine subspace U ⊆ Fn
2 of dimension at least n− 3r such that for every

j ∈ [r] and for every u1, u2 ∈ U, `j(u1) = `j(u2) and 1Aj(u1) = 1Aj(u2).

We defer the proof of Claim 3.3 to the end of this proof. Write U = u + U0 where
u ∈ Fn

2 and U0 ⊆ Fn
2 is a linear subspace. The next claim handles the third item above.

Claim 3.4. There exists v ∈ U0 with |v| ≥ 2n/3 such that the system of equations{
qj(x) = qj(x + v)

}
j∈[r]

(in unknowns x) has a solution in U.

We postpone the proof of this claim as well, and now explain how it implies the
result. Let v ∈ U0 as promised in Claim 3.4. The set of solutions in U to the system of
affine equations {

qj(x) = qj(x + v)
}

j∈[r] = {∆v(q)(x) = 0}j∈[r] (3.5)

is non-empty (by Claim 3.4), and thus by Fact 2.4, the set of solutions in U to (3.5) is
an affine subspace V ⊆ U of dimension at least n− 4r.

By Corollary 2.6, there is y ∈ V with |y| ≤ 4r. Set z = y + v, so that qj(y) =
qj(y + v) = qj(z) for all j ∈ [r]. Observe that z ∈ U, since Claim 3.4 promises that
v ∈ U0. Thus y and z attain the same values on `j and 1Aj for all j ∈ [r] as well. Finally
note that |y| ≤ 4r whereas

|z| = |y + v| ≥ |v| − |y| ≥ 2n
3
− 4r > 4r.

It remains to prove Claim 3.3 and Claim 3.4.

Proof of Claim 3.3. Let V1 ⊂ Fn
2 be the linear subspace defined by the system of equa-

tions
{
`j = 0

}
for all j ∈ [r]. It holds that dim(V1) ≥ n− r > 0.

Consider now the map E : V1 → {0, 1}r, defined by

E(x) = (1A1(x), . . . ,1Ar(x)).

By the pigeonhole principle, there is α ∈ {0, 1}r with |E−1(α)| ≥ 2dim V1−r ≥ 2n−2r. Let
S be the support of α, that is, the set of indices j ∈ [r] such that αj = 1. We have that

E−1(α) =

⋂
j∈S

Aj

 \
⋃

j 6∈S

Aj

 ∩V1 ⊆

⋂
j∈S

Aj

 ∩V1

(for notational convenience, if S = ∅, then
⋂

j∈S Aj = Fn
2 ).

Let V2 =
(⋂

j∈S Aj

)
∩ V1. Then V2 is an affine subspace, and |V2| ≥ |E−1(α)| ≥

2n−2r, so dim(V2) ≥ n− 2r > 0.
Pick now an arbitrary x0 ∈ E−1(α). Thus, x0 ∈ V2, and for every j 6∈ S, x0 6∈ Aj. By

Fact 2.3, for every j 6∈ S there is an affine equation aj such that aj(x0) = 1 and for all
x ∈ Aj, aj(x) = 0. Let

U =
{

x ∈ V2 : for all j 6∈ S, aj(x) = 1
}

.
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Then U is an affine subspace (as it is defined by at most r additional affine constraints
on V2), and it is non-empty (since x0 ∈ U). By Fact 2.4, it follows that dim(U) ≥
n− 2r− r = n− 3r. Further, for every x ∈ U and j ∈ [r], it holds that `j(x) = 0 and

1Aj(x) =

{
1 j ∈ S
0 j 6∈ S

which completes the proof.

We finish the section by proving Claim 3.4.

Proof of Claim 3.4. Consider the map Γ : U → {0, 1}r defined by

Γ(x) = (q1(x), . . . , qr(x)).

For every α ∈ {0, 1}r, let Γα =
{

x1 + x2 : x1, x2 ∈ Γ−1(α)
}

. Observe that for every α,
Γα ⊆ U0. Furthermore, for every v ∈ Γα, the set of affine equations{

∆v(qj)(x) = 0
}

j∈[r] ,

in unknowns x, has a solution in U. Indeed, v = x1 + x2 where x1, x2 ∈ Γ−1(α), and
thus qj(x1) = qj(x2) = qj(x1 + v) for every j ∈ [r], which implies that x1 is a solution.

In order to finish the proof we need to show that there is α ∈ {0, 1}r and v ∈ Γα

such that |v| ≥ 2n
3 . By the pigeonhole principle there is α0 ∈ {0, 1}r such that

|Γ−1(α0)| ≥ |U|/2r = 2n−4r. Observe that the maximal Hamming weight of an el-
ement in Γα0 equals the diameter of the set Γ−1(α0).

By Theorem 2.2 (for k = n/3), the size of every set of diameter 2n/3 is at most
2H2(1/3)n ≤ 20.92n. Since r ≤ n/100, |Γ−1(α0)| > 20.95n, so diam(Γ−1(α0)) ≥ 2n/3, and
there is v ∈ Γα0 of weight at least 2n/3.

4 A Lower Bound for Approximate Stabilizer Rank
In this section we prove Theorem 1.2. In Section 4.1, we show how to obtain, given
a function f that approximates the function THRpn (with respect to the binomial dis-
tribution on the n-dimensional cube with parameter p, B(n, p)), a random restriction
of f which approximates the majority function over3 m = 2pn bits with respect to the
uniform distribution. In Section 4.2, we construct, given a state |ψ〉 that is δ close to
either |H⊗n〉 or |R⊗n〉, a boolean function fψ that approximates THRpn. In Section 4.3
we then show how to get low-degree polynomial approximations to restrictions of fψ,
which, as we specify in Section 4.4, completes the proof.

3Recall that we omit floor and ceiling symbols for readability.
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4.1 A Reduction from Threshold Functions to Majority
Let 0 < p < 1/2. Recall that THRpn(x) equals 1 if |x| ≥ pn and 0 otherwise. In this
section we prove that given any function f : Fn

2 → F2 that approximates THRpn with
respect to B(n, p), we can find a function g, which is a restriction of f to 2pn random
coordinates, which approximates the majority function on those bits with respect to
the uniform distribution.

In anticipation of the next section, when considering approximations for THRpn
we will work with a slightly different notion of approximation than approximation
with respect to B(n, p), which we now explain.

Let Lk = {x ∈ Fn
2 | |x| = k} denote the k-th layer of the boolean cube. We say that

a function f : Fn
2 → F2 is ε-wrong on Lk (with respect to THRpn) if the fraction of

elements x ∈ Lk such that f (x) 6= THRpn(x) is at least ε.
We say that f (ε, γ)-approximates THRpn if f is ε-wrong on at most a γ fraction of

the layers Lk for k ∈ [pn− 5
√

2pn, pn + 5
√

2pn].
For the rest of the proof we will always set ε = γ = 0.01.
Since B(n, p) is heavily concentrated on layers Lk with k ∈ [pn − O(

√
n), pn +

O(
√

n)], and for every k in that range, Prx∼B(n,p)[x ∈ Lk] = Θ(1/
√

n), this notion and
the notion of approximation with respect to B(n, p) are in fact very similar, up to the
precise choice of constants.

Lemma 4.1. Let 0 < p < 1/2 be an absolute constant, and let f : Fn
2 → F2 be a boolean

function that (0.01, 0.01)-approximates THRpn. For every D ⊆ [n] of size m := 2pn, let
gD : Fm

2 → F2 be the function obtained from f by fixing all input bits outside of D to 0. Then
there exists D0 such that for g := gD0 , Prx∈Fm

2
[g(x) = Majm(x)] ≥ 3/4, where x is chosen

according to the uniform distribution.

Proof. Let m = 2pn. For every D ⊆ [n] of size m, let gD be the function obtained from
f by fixing all input bits outside of D to 0. It will be convenient to consider gD as a
function whose domain is Fm

2 using some bijection between D and [m]. Every x ∈ Fn
2

which is zero on coordinates outside of D then corresponds to a unique x̄ ∈ Fm
2 , and

vice versa.
We will now pick D uniformly at random among all subsets of [n] of size m, so

that gD is a random restriction of f .
We say x ∈ Fn

2 survives D if the set of indices j ∈ [n] such that xj = 1 is contained
in D. The probability that x ∈ Lk survives D is (m

k )/(
n
k).

For an input x ∈ Fn
2 , we say x is correct if f (x) = THRpn(x), and incorrect other-

wise. If x is correct and survives, then Majm(x̄) = THRpn(x) = f (x) = gD(x̄).
Let Xk be a random variable, which denotes the number of incorrect inputs x ∈ Lk

that survive D, and

X =

pn+5
√

2pn

∑
k=pn−5

√
2pn

Xk.

By the assumption, for at least 0.99 fraction of the layers Lk, the number of incorrect x’s
is at most 0.01(n

k), and thus for each such layer Lk for k ∈ [pn− 5
√

2pn, pn + 5
√

2pn],
ED[Xk] ≤ 0.01(m

k ). We call such layers good. For the rest of the layers, which we

12



call bad, obviously ED[Xk] ≤ (m
k ). However, the number of bad layers is at most

0.01 · 11
√

2pn, and for every k, (m
k ) ≤

1√
m · 2

m.
Therefore,

ED[X] = ∑
Lk is good

ED[Xk] + ∑
Lk is bad

ED[Xk]

≤ ∑
Lk is good

0.01
(

m
k

)
+ 0.01 · 11

√
m · 1√

m
· 2m

≤ 0.01 ·
(

∑
k

(
m
k

))
+

11
100
· 2m ≤ 12

100
· 2m.

In particular, there is some D0 such that the number if incorrect x’s in layers [pn−
5
√

2pn, pn + 5
√

pn] that survive D0 is at most 12
100 2m. Let g := gD0 . We now claim that

g and Majm agree on more than 3/4 of the inputs in Fm
2 .

First, By the Chernoff bound, the number of vectors x̄ ∈ Fm
2 whose Hamming

weight is not in the range

[pn− 5
√

2pn, pn + 5
√

2pn] = [m/2− 5
√

m, m/2 + 5
√

m],

is at most 1
15 2m. On these inputs we have no guarantee. By the choice of D0, the

number of x̄’s such that |x̄| ∈ [m/2− 5
√

m, m/2+ 5
√

m] and g(x) 6= Maj(x) is at most
12

100 2m. It follows that g(x̄) 6= Majm(x̄) on less than 1
4 · 2m inputs.

4.2 From Stabilizer Decompositions to Threshold Functions
Let |B〉 = α |0〉+ β |1〉with |α|2 + |β|2 = 1. Let p = |β|2 and suppose that 0 < p < 1/2.
Let FB : Fn

2 → C be the function associated with |B⊗n〉, i.e., FB(x) = αn−|x|β|x|.
In this section we prove that if ψ : Fn

2 → C is such that χ(ψ) ≤ r and ‖ψ− FB‖ ≤ δ,
then it is possible to construct a boolean function fψ that (0.01, 0.01)-approximates
THRpn. In Section 4.3, we will prove that if χ(ψ) ≤ r, fψ has low degree polynomial
approximations.

From here on, δ will denote a sufficiently small constant, which may depend on
|B〉 and its parameters (i.e., δ is some function of p), but does not depend on n. Since
we are interested in the case |B〉 = |H〉 or |B〉 = |R〉, δ can be taken to be some small
universal constant.

For k ∈ [n], let mk := |αn−kβk| denote the absolute value of FB on the k-th layer. Let
wk = m2

k = pk(1− p)n−k and Wk = (n
k)wk the total mass on the k-th layer, with respect

to B(n, p). Let η = |β|
|α| . Observe that by assumption, 0 < η < 1.

Suppose ψ : Fn
2 → C is such that χ(ψ) ≤ r and ‖ψ− FB‖ ≤ δ. Write

ψ(x) =
r

∑
j=1

cj ϕj(x) =
r

∑
j=1

cji`j(x)(−1)qj(x)1Aj(x), (4.2)

where for every j ∈ [r], `j is a linear function, qj a quadratic function, and Aj an affine
subspace.
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We define a boolean function fψ : Fn
2 → F2 as follows:4

fψ(x) =

{
1 if |ψ(x)| ≤

(
1+η

2

)
mpn−1

0 otherwise
(4.3)

The intuition for the definition is that, since ‖ψ− FB‖ ≤ δ, we expect ψ(x) to be
very close to FB(x) for most inputs x. For every such x, fψ will correctly compute
THRpn. Further, inputs x such that fψ(x) 6= THRpn(x) correspond to inputs x such that
|ψ(x)− FB(x)| is large. Assuming there are many such x’s will lead to a contradiction
to the assumption that ‖ψ− FB‖ ≤ δ.

Lemma 4.4. Let ψ : Fn
2 → C be a function such that ‖ψ− FB‖ ≤ δ for a sufficiently small

δ. Let fψ the boolean function defined as in (4.3). Then fψ (0.01, 0.01)-approximates THRpn.

We begin with the following calculation.

Claim 4.5. Suppose x ∈ Fn
2 is such that fψ(x) 6= THRpn(x) and |x| = k. Then |ψ(x)−

FB(x)|2 ≥ wk ·
(

1−η
2

)2
.

Proof. Since |x| = k, |FB(x)| = mk. Suppose first that k ≤ pn− 1 so that THRpn(x) = 0.
By assumption, fψ(x) = 1, which implies that

|ψ(x)| ≤
(

1 + η

2

)
mpn−1.

Observe that mk = (η−1)pn−1−kmpn−1 ≥ mpn−1 for k ≤ pn− 1, and therefore by the
triangle inequality

|ψ(x)− FB(x)| ≥ |FB(x)| − |ψ(x)| ≥ mk −
(

1 + η

2

)
mpn−1

≥ mk −
(

1 + η

2

)
mk =

(
1− η

2

)
mk,

which implies the statement of the lemma (for k ≤ pn− 1) by squaring both sides.
If k ≥ pn, then THRpn(x) = 1 which implies fψ(x) = 0, i.e.,

|ψ(x)| ≥
(

1 + η

2

)
mpn−1.

Note that mk = ηk−pn+1mpn−1 and in particular mk ≤ ηmpn−1 for all k ≥ pn. Thus,

|ψ(x)− FB(x)| ≥ |ψ(x)| − |FB(x)| ≥
(

1 + η

2

)
mpn−1 −mk

≥
(

1 + η

2

)
mpn−1 − ηmpn−1 =

(
1− η

2

)
mpn−1

≥
(

1− η

2

)
mk,

which proves the lemma for this case as well.

4Observe that if |x| < |x′| then |ψ(x)| > |ψ(x′)|.
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We use the following standard estimates on the concentration of the binomial dis-
tribution. Recall that Wk = (n

k)pk(1− p)n−k.

Claim 4.6. Let C ∈ R. Then Wpn+C
√

n = Ω(1/
√

n), where the constant hidden under the
Ω notation depends on C and p, but not on n.

Observe that C in the above claim may be negative. The proof is a direct appli-
cation of Stirling’s approximation. For completeness, we provide a crude estimate
which suffices for us in Appendix B.

We are now ready to prove the main lemma of the section.

Proof of Lemma 4.4. Let k be a layer such that fψ is 0.01-wrong on Lk. By Claim 4.5,

∑
x∈Lk

|ψ(x)− FB(x)|2 ≥ 0.01 ·
(

n
k

)
·
(

1− η

2

)2

wk = 0.01
(

1− η

2

)2

Wk.

Suppose, towards a contradiction, fψ is 0.01-wrong on more than 0.01 fraction of
the layers k ∈ [pn − 5

√
2pn, pn + 5

√
2pn], i.e., on more than 0.1

√
2pn layers. By

Claim 4.6, for every such k, Wk ≥ c/
√

n for some constant c which does not depend
on n. It follows that

‖ψ− FB‖ ≥ 0.1
√

2pn · 0.01
(

1− η

2

)2

· c√
n

,

which is a contradiction for δ < 0.001
√

2pc
(

1−η
2

)2
.

4.3 A Low Degree Polynomial Approximation
In this section we show that for the function fψ defined as in (4.3), and for any restric-
tion gD of fψ as in Lemma 4.1, the function gD has a polynomial approximating it,
whose degree is at most O(r log r). To prove this we apply standard approximation
techniques used for proving lower bounds for bounded depth circuits with modular
gates, although in our case the details are somewhat simpler.

We begin with the following lemma that shows how to approximate indicator
functions of affine subspaces with low degree polynomials.

Claim 4.7 ([Raz87, Smo93]). Let A ⊆ Fm
2 be an affine subspace. For every t ∈N, there ex-

ists a polynomial P ∈ F2[x1, . . . , xm] of degree at most t such that Prx∈Fm
2
[P(x) 6= 1A(x)] ≤

2−t.

Proof. Since A is an affine subspace, there exist k ≤ m affine functions a1, . . . , ak such
that x ∈ A if and only if aj(x) = 0 for every j ∈ [k], or equivalently, 1A(x) =

∏k
j=1(aj(x) + 1).

Let D be a uniformly random subset of [k] and aD = ∑j∈D aj. Observe that for
x ∈ A, aD(x) = 0 with probability 1, whereas for x 6∈ A, there is some j ∈ [k] such
that aj(x) = 1 and hence PrD[aD(x) = 0] = 1/2 (as j is included in D with probability
1/2).
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Hence, for t ∈ N, define PD(x) = ∏t
k=1(aDk(x) + 1), where D = (D1, . . . , Dt) are

chosen uniformly and independently. Then, PD is a degree t (random) polynomial,
PD(x) = 1 for all x ∈ A, and for x 6∈ A, PrD[PD(x) = 1] ≤ 2−t. In particular, in
expectation PD and 1A disagree on at most 2m−t of the inputs, which implies that
there exists a choice of D′ = (D1, ..., Dt) such that P := PD′ satisfies the properties
required in the lemma.

We now show how to approximate restrictions of the boolean function fψ.

Lemma 4.8. Let FB and ψ be functions as in Section 4.2 and (4.2), and let fψ defined as in
(4.3). Let D ⊆ [n] and denote g := gD the restriction of fψ obtained by setting variables
outside of D to 0, as in Section 4.1. Then, there is a polynomial g̃ of degree O(r log r) such
that Prx̄∈Fm

2
[g(x̄) 6= g̃(x̄)] ≤ 1

20 .

Proof. For every j ∈ [r], let A′j, `
′
j, q′j denote the projection of Aj, `j, qj respectively,

obtained by setting the coordinates outside of D to zero. Observe that A′j ⊆ Fm
2 is an

affine subspace, `′j an m-variate linear function over F2, and q′j an m-variate quadratic
function over F2, and that

g(x̄) =

{
1 if |∑r

j=1 cj · i`
′
j(x̄) · (−1)q′j(x̄) · 1A′j

(x̄)| ≤
(

1+η
2

)
mpn−1

0 otherwise.

Let h : F3r
2 → F2 denote the following function:

h(y1, . . . , yr, z1, . . . , zr, v1, . . . , vr) =

{
1 if |∑r

j=1 cj · iyj · (−1)zj · vj| ≤
(

1+η
2

)
mpn−1

0 otherwise.

(note that here vj ∈ {0, 1} is considered as a real number). Then

g(x̄) = h(`′1(x̄), . . . , `′r(x̄), q′1(x̄), . . . , q′r(x̄),1A′1
(x̄), . . . ,1A′r(x̄)).

For every j ∈ [r], let Pj be a polynomial of degree O(log(r)) such that Prx̄∈Fm
2
[Pj(x̄) 6=

1A′j
(x̄)] ≤ 1

20r , as guaranteed by Lemma 4.8. Note that h is a function on 3r boolean
variables, and hence can be represented exactly by a polynomial of degree at most 3r.
As the `′j’s have degree 1 and q′j’s degree 2, it follows that

g̃(x̄) = h(`′1(x̄), . . . , `′r(x̄), q′1(x̄), . . . , q′r(x̄), P1(x̄), . . . , Pr(x̄))

is a polynomial of degree O(r log r), and by the union bound

Pr
x̄∈Fm

2

[g̃(x̄) 6= g(x̄)] ≤ Pr
x̄∈Fm

2

[
∃j ∈ [r] such that Pj(x) 6= 1A′j(x)

]
≤ 1

20
.

4.4 A Lower Bound for Approximate Stabilizer Rank via Cor-
relation Bounds
We now observe that the results of Section 4.1, Section 4.2 and Section 4.3 imply our
lower bounds. The final ingredient we require is the following correlation lower
bound.
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Lemma 4.9 ([Raz87, Smo93]). Let f : Fm
2 → F2 be a boolean function such that

Pr
x∈Fm

2

[ f (x) = Majm(x)] ≥ 2
3

.

Then deg( f ) = Ω(
√

m).

We recall Theorem 1.2

Theorem 4.10 (Restatement of Theorem 1.2). Let |B〉 be either |H〉 or |R〉. Then, for a
sufficiently small constant δ, it holds that χδ(B⊗n) = Ω(

√
n/ log n).

Proof. Let ψ be a state such that ‖ψ− B⊗n‖ ≤ δ. By Lemma 4.4, this implies that there
exists a boolean function f that (0.01, 0.01)-approximates THRpn. By Lemma 4.1 this
implies that there exists a restriction of f , g, such that

Pr
x̄∈Fm

2

[g(x̄) 6= Majm(x̄)] ≤ 1
4

for m = 2pn. Further, by Lemma 4.8, there is a polynomial g̃, of degree O(r log r),
such that

Pr
x̄∈Fm

2

[g(x̄) 6= g̃(x̄)] ≤ 1
20

.

It follows that
Pr

x̄∈Fm
2

[g̃(x̄) 6= Majm(x̄)] ≤ 1
3

and thus, by Lemma 4.9, r log r = Ω(
√

2pn), as the theorem states.
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A The Clifford Group and Magic States
The purpose of this section is to provide a brief introduction to the Clifford group for
readers who are unfamiliar with it. We shall not cover the entire background, moti-
vation and various applications of this group in quantum computing and quantum
information, but rather only provide the bare minimum of definitions needed to un-
derstand this work and its motivation. The book [NC16] is good extensive reference
on these topics, and in particular Sections 10.5.1 and 10.5.2 which deal with the stabi-
lizer formalism. We also provide a notational reference to the various gates and magic
states we consider in this paper.

A.1 Pauli and Clifford Group
The Pauli matrices are three 2× 2 complex unitary matrices defined as follows:

X =

[
0 1
1 0

]
, Y =

[
0 −i
i 0

]
, Z =

[
1 0
0 −1

]
.

These matrices generate a subgroup of 2x2 matrices of order 16, denoted by P1 and
called the single qubit Pauli group, that contains the elements

{±I,±iI,±X,±iX,±Y,±iY,±Z,±iZ} .

The n-qubit Pauli group, denoted Pn is defined as

Pn =
{

σ1 ⊗ σ2 ⊗ · · · ⊗ σn : for all j ∈ [n], σj ∈ P1
}

.

The Clifford group Cn can now be defined as the normalizer of Pn in the group
U(n) of n-qubit unitary matrices. It is convenient, however, to consider Cn as a finite
group, which is why it is usually defined modulo U(1), i.e., we identify two matrices
U and V if U = cV for some c ∈ C with |c| = 1 (c is called a global phase):

Cn :=
{

U ∈ U(n) : UPnU† = Pn

}
/U(1).
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It turns out that Cn has a set of generators which is very easy to describe. Every
U ∈ Cn can be generated using the following simple set of gates:

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 , H =
1√
2

[
1 1
1 −1

]
, S =

[
1 0
0 i

]
.

H is called the Hadamard gate and S is called the phase gate. The set of stabilizer states
is the set of states ϕ such that |ϕ〉 = U |0n〉.

Evidently, {CNOT, H, S} is thus not a universal quantum gate set. However, the
set {CNOT, H, S, T}, where

T =

[
1 0
0 eiπ/4

]
is the so-called π/8 gate, is universal.

A.2 Magic States
As explained in Section 1.1, any circuit over the (universal) gate set {CNOT, H, S, T}
can be converted to a circuit of roughly the same size with only Clifford gates, which
is given as additional inputs an ample supply of qubits in a magic state. The two types
of magic states defined by Bravyi and Kitaev [BK05] are

|H〉 = cos(π/8) |0〉+ sin(π/8) |1〉 , and |R〉 = cos(β) |0〉+ eiπ/4 sin(β) |1〉 ,

where β = arccos(1/
√

3)/2.
We say two n-qubit states ψ and ϕ are Clifford-equivalent if |ψ〉 = U |ϕ〉 for U ∈ Cn.

Up to a phase, state |H〉 is Clifford-equivalent to the state |T〉 = 1√
2
(|0〉 + eiπ/4 |1〉)

(see [BSS16]), and thus Clifford circuits provided with |H⊗n〉 as auxiliary inputs have
the same computational power as Clifford circuits provided with |T⊗n〉.

B Proof of Claim 4.6
Proof of Claim 4.6. Recall that by Stirling’s approximation, m! ∼

√
2πm

(m
e

)m. In par-
ticular, for large enough n,(

n
pn

)
=

n!
(pn)!((1− p)n)!

≥ 1
2

√
2πn · (n/e)n√

2π(pn)(pn/e)pn ·
√

2π(1− p)n · ((1− p)n/e)(1−p)n
.

Thus,

Wpn =

(
n
pn

)
ppn(1− p)(1−p)n = Ω(1/

√
n),
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where the constant hidden under the Ω notation depends on p. Now, for C > 0, we
will show that Wpn/Wpn+C

√
n = O(1) (where again, the constant depends on C and

p).

Wpn

Wpn+C
√

n
=

( n
pn)ppn(1− p)(1−p)n

( n
pn+C

√
n)ppn+C

√
n(1− p)(1−p)n−C

√
n

=
(pn + C

√
n) · · · (pn + 1)

((1− p)n) · · · ((1− p)n− C
√

n + 1)
·
(

1− p
p

)C
√

n

≤
(

pn + C
√

n
(1− p)n− C

√
n

)C
√

n

·
(

1− p
p

)C
√

n

=
pn

(1− p)n

C
√

n
·

(
1 + C

p
√

n

)C
√

n

(
1− C

(1−p)
√

n

)C
√

n
·
(

1− p
p

)C
√

n

=

(
1 + C

p
√

n

)C
√

n

(
1− C

(1−p)
√

n

)C
√

n
.

The last term is bounded by a constant, as

lim
n→∞

(
1 +

C
p
√

n

)C
√

n

= eC2/p,

and similarly

lim
n→∞

(
1− C

(1− p)
√

n

)C
√

n

= e−C2/(1−p).

A similar calculation works when C < 0.
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