
The zero-rate threshold for adversarial bit-deletions is less than 1
2

Venkatesan Guruswami* Xiaoyu He† Ray Li‡

Abstract

We prove that there exists an absolute constant δ > 0 such any binary code C ⊂ {0,1}N tolerating
(1/2−δ)N adversarial deletions must satisfy |C|6 2poly logN and thus have rate asymptotically approach-
ing 0. This is the first constant fraction improvement over the trivial bound that codes tolerating N/2
adversarial deletions must have rate going to 0 asymptotically. Equivalently, we show that there exists
absolute constants A and δ > 0 such that any set C ⊂ {0,1}N of 2logA N binary strings must contain two
strings c and c′ whose longest common subsequence has length at least (1/2+ δ)N. As an immediate
corollary, we show that q-ary codes tolerating a fraction 1− (1+ 2δ)/q of adversarial deletions must
also have rate approaching 0.

Our techniques include string regularity arguments and a structural lemma that classifies binary
strings by their oscillation patterns. Leveraging these tools, we find in any large code two strings with
similar oscillation patterns, which is exploited to find a long common subsequence.

Contents
1 Introduction 1

1.1 Our results . 2
1.2 Related works . 2
1.3 Deletion correction in related models . 3

2 Proof overview 5
3 Preliminaries and Notation 8
4 The structure lemma and definition of types 11

4.1 The structure lemma . 11
4.2 Definition of types . 15

5 The entropy regularity argument 15
5.1 Flag balance . 16
5.2 Flag balance of intervals . 16
5.3 Flag balance of substrings . 17

6 Green case 19
7 Blue-Yellow case 21
8 Putting it all together 26

8.1 Statistics . 26
8.2 The Imbalanced case . 27
8.3 Combining the arguments for the Imbalanced, Green, and Blue-Yellow cases 28
8.4 Finishing the proof . 30

9 Conclusion and open questions 31

*Computer Science Department, Carnegie Mellon University. venkatg@cs.cmu.edu. Research supported in part by NSF grants
CCF-1814603 and a Simons Investigator Award.

†Department of Mathematics, Stanford University. alkjash@stanford.edu. Research supported by NSF GRFP Grant DGE-
1656518.

‡Department of Computer Science, Stanford University. rayyli@cs.stanford.edu. Research supported by NSF Grants DGE-
1656518, CCF-1814629, and by Jacob Fox’s Packard Fellowship.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 79 (2021)

1 Introduction

This work considers the limits of reliable communication against an adversarial deletion channel. Suppose
we are to transmit N bits on a channel that can adversarially delete a fraction p of the bits, leaving the
receiver with a subsequence of length (1− p)N. Crucially, the receiver does not know the location of the
deleted bits. We would like to achieve zero-error communication over such an adversarial deletion channel.
To do so, we restrict the sequence of transmitted bits to a subset C ⊂ {0,1}N so that every x ∈ C can be
unambiguously identified from an arbitrary subsequence of x of length (1− p)N. It is easy to see that this
property is equivalent to the property that for every two distinct codewords x,y ∈ C, the length of their
longest common subsequence, denoted LCS(x,y), is less than (1− p)N.

Defining LCS(C) to be the largest value of LCS(x,y) over all distinct pairs x,y ∈ C, we therefore call
a subset C ⊆ {0,1}N a p-deletion correcting code if LCS(C) < (1− p)N. The rate of such a code, defined
as R(C) = (log2 |C|)/N, measures the average number of information bits communicated per transmitted
codeword bit. If there exists a family of such codes C whose rates are bounded away from zero as N→ ∞,
we say it is possible to achieve a non-vanishing rate of information communication.

For any noise model of interest, one of the basic goals is to understand the threshold noise level below
which it is possible to communicate with non-vanishing rate. For example, it is well-known that for a
channel that flips an adversarially chosen set of at most pN bits, the threshold value for the error-fraction
p equals 1/4. On the other hand, for the adversarial deletions channel, this fundamental question remains
unsolved:

What is the largest fraction of deletions p ∈ (0,1) for which it is possible to achieve zero-error
communication with non-vanishing information rate?

Formally, define the zero-rate threshold of adversarial bit-deletions to be

pthr
del := sup{p | ∃ αp > 0 s.t for infinitely many N there is a subset C ⊂ {0,1}N with

LCS(C)< (1− p)N and |C|> 2αpN} . (1)

The above question is then: What is the value of pthr
del? We have a trivial upper bound pthr

del 6 1/2. Indeed,
among any three strings x,y,z ∈ {0,1}N , there must be two with the same majority bit, and thus a common
subsequence (of all 0’s or all 1’s) of length at least N/2. Thus any 1/2-deletion correcting code C ⊂ {0,1}N

satisfies |C|6 2.

The value of pthr
del remains unknown. Even more starkly, as simplistic as the above argument is, it

was not previously known if pthr
del is strictly bounded away from 1/2, or whether there are in fact codes of

non-vanishing rate for correcting a (1/2− δ) fraction of deletions for any desired δ > 0. This tantalizing
question was implicit in early works on deletion codes, particularly in [Ull67], which gave bounds on the
achievable tradeoffs between rate and deletion fraction, and was explicitly raised in [KMTU11]. Since then,
this question has been mentioned in several works, including the work of Bukh and Ma [BM14] which
showed that an upper bound of 1

2 −
1

poly logN on the correctable deletion fraction, and many recent works on
deletion code constructions such as [Wan15, GL16, GW17, BGH17, GL20, GHS20], other works on coding
theory [ZBJ20], as well as the recent surveys [CR21, HS21]. In the other direction, the best known lower
bound pthr

del >
√

2− 1 is due to [BGH17], who constructed explicit binary codes of non-vanishing rate to
correct a fraction of deletions approaching

√
2−1 (see [SZ99, KMTU11] for prior constructions).

1

1.1 Our results

In this work, we prove the first nontrivial upper bound on pthr
del.

Theorem 1.1. There exists an absolute constant δ0 > 0 such that pthr
del 6

1
2 − δ0. More concretely, there

exists absolute constants A,δ0 > 0 such that for all large enough N, any binary code C ⊂ {0,1}N tolerating
(1

2 −δ0)N adversarial deletions must satisfy |C|6 2(logN)A
.

We show the above in the contrapositive form—in any code C ⊂ {0,1}N of quasi-polynomial size, we
find two codewords s, t ∈ C with LCS(s, t) > (1/2+ δ0)N. We made no attempts to optimize the value of
δ0 but regardless it is very small for our argument. In Section 2, we give an overview of the proof and an
outline of this paper. In the remainder of this introduction we survey some generalizations of Theorem 1.1
and connections to other problems in coding theory.

Non-binary alphabets. We generalize Theorem 1.1 to alphabets of larger size. Let us denote the quantity
analogous to (1) for any fixed alphabet size q > 2, namely the zero-rate threshold for q-ary deletion codes,
by pthr

del(q). The trivial upper bound is pthr
del(q)6 1−1/q; this corresponds to finding a common sequence of

at least N/q repeated i’s between two strings that share the same most frequent symbol i ∈ {0,1, . . . ,q−1},
in any code of size bigger than q. Just as in the binary case, no improvement over this trivial bound was
previously known.

For any code C ⊆ {0,1, . . . ,q−1}N over an alphabet of size q > 2, we may pick some two symbols i, j
and a set Ci, j ⊆C of at least |C|/q2 strings whose two most frequent symbols are i and j. We can then obtain
a binary code C′ ⊆{i, j}2N/q by restricting each element of Ci, j to a substring of length 2N/q consisting only
of i’s and j’s. Applying Theorem 1.1 to C′, we see that some two strings in C′ have a common subsequence
with length at least (1

2 + δ0)
2N
q . We have thus shown the following theorem as an immediate corollary of

Theorem 1.1.

Theorem 1.2. Fix an integer q > 2. Then

pthr
del(q)6 1− 1+2δ0

q < 1− 1
q ,

where δ0 > 0 is the positive constant promised in Theorem 1.1.

We note that for the simpler model of erasures where the location of missing symbols are known to the
decoder, the zero-rate threshold equals 1− 1/q.1 Thus our results also show a formal separation between
the zero-rate threshold for the models of erasures and deletions, for any fixed alphabet.

In the list-decoding model with list-size L for deletion fraction p, there can be up to L codewords
that contain the (arbitary) input sequence y ∈ {0,1}(1−p)N . The zero-rate threshold for list-decoding from
deletions, as the list-size L→ ∞, is known to equal 1− 1/q [GW17]. Thus our result also demonstrates
that list-decoding is provably more powerful in terms of the deletion fractions that can be handled with
non-vanishing rate.

1.2 Related works

Performance of random codes. An ubiquitous approach to establish strong, and in many cases the best
known, possibility results in coding theory is to analyze random codes of certain rates. These results typically

1The erasure fraction correctable by a code is exactly governed by its relative (Hamming) distance. The Plotkin bound shows
that the rate must be vanishing for relative Hamming distance 1− 1/q. We know the existence and even explicit constructions of
codes of non-vanishing rate and relative Hamming distance 1−1/q− ε for any ε > 0.

2

also identify the precise performance threshold of random codes [GMR+21]. For the case of binary deletion
codes, however, the performance of random codes itself is hard to analyze, as we do not rigorously know a
tight estimate of the expected length γn of the longest common subsequence of two random n-bit strings (γ
is called the Chvátal-Sankoff constant [CS75]). The known bounds on this expectation γn [Lue09], together
with standard probabilistic arguments, imply that with high probability, random codes can tolerate a deletion
fraction at least 0.17, but also at most 0.22 [KMTU11]. For codes over alphabet size q, random codes can
correct a deletion fraction approaching 1−2/

√
q for large q [KLM04].

As mentioned earlier, we now have constructions of binary codes that can correct a deletion fraction
0.414 [BGH17], which is substantially better than random codes. This raised the possibility that perhaps
there might be binary codes of non-vanishing rate capable of correcting a deletion fraction all the way up to
the trivial limit of 1/2, which we refute in this work.

Trade-offs for correcting N/2−N1−θ deletions. In terms of previously known limitations of deletion
codes, Bukh and Ma [BM14] showed that for each fixed r and large enough N (specifically, at least rO(r)),
every set C ⊆ {0,1}N of size r+4 satisfies

LCS(C)> N
2 +Ω(r−9)N1−1/r . (2)

Choosing r appropriately, the result (2) implies that there exist absolute constants b,c such that every code
C⊆ {0,1}N with LCS(C)< N

2 + N
(logN)b has size |C|6 c logN

log logN . Bukh and Ma demonstrated that this N1−1/r

advantage in (2) is asymptotically sharp for each fixed r, by exhibiting a set W of (r + 4) N-bit strings
with LCS(W) 6 N

2 +O(N1−1/r). Interestingly, this set W played a crucial role in the developments on
constructions of codes to correct a large fraction of deletions in [BGH17, GL20], as well as codes achieving
the zero-rate threshold for list decoding from insertions and deletions in [GHS20]. A suitable modification
of this Bukh-Ma code W also drives the best known 0.414-deletion correcting codes of [BGH17].

Twins and regularity techniques. One of the ideas used in this work is a new regularity-type result about
strings. Szemerédi’s regularity lemma and its variants are ubiquitous in extremal and additive combinatorics,
but applying these ideas to coding theory is a relatively recent development. The first example of such a
result was proved by [APP13], and their regularity lemma roughly shows that every long string can be
partitioned into a constant number of consecutive substrings, each of which is regular (a regular string is
one in which the one-density in any long consecutive substring is close to the one-density in the whole
string). They used this regularity lemma to prove that every string of length N contains two disjoint copies
of some length (1/2−o(1))N subsequence (so-called “twins”). Given the similarity between finding twins
in a single string and finding long common sequences between different strings, it should not come as a
surprise that these techniques are useful here as well. The main difference in our approach is that we require
a stronger regularity condition, which is that every substring not only has the same one-density but has
similar “oscillation statistics” at many scales with the parent string.

1.3 Deletion correction in related models

To offer some wider context, we now discuss some results related to the broader study of codes for deletions
and synchronization errors under various channel assumptions.

Non-adversarial models. Our work focuses on the adversarial model, where an arbitrary subset of p frac-
tion of the codeword bits, can be deleted. There is a rich body of work on the binary deletion channel where
each codeword bit is deleted i.i.d with probability p. In this case, it is known that one can have positive

3

rate codes that ensure vanishing miscommunication probability even for p approaching 1 (so the zero-rate
threshold equals 1). The interested reader can find more information about codes for the deletion channel in
the surveys [Mit09, CR21].

One can consider models that are intermediate in power between i.i.d random and adversarial channels.
For instance, in the oblivious model the deletion pattern can be chosen arbitrarily, but without knowledge
of the codeword. In this case, too, the zero-rate threshold is 1, as for any p < 1, Guruswami and Li [GL20]
showed the existence of codes that ensured that for every pattern of p-fraction deletions most codewords are
communicated correctly.2 Their work also considered the online model, where the decision to delete the i-th
bit must be made based only on the first i bits of the codeword. They showed that the zero-rate threshold for
this model (again, for the average-error criterion of ensuring most codewords are communicated correctly
for any deletion pattern) equals 1/2 if and only if pthr

del =
1/2. By virtue of Theorem 1.1, this implies that the

zero-rate threshold for the online model is also bounded away from 1/2.

Large alphabets. We focused on codes over the binary and fixed small alphabets in this work. This is in fact
the most challenging setting for deletion codes. Indeed, if the code alphabet is allowed to grow with N, then
one can include the index i along with the i-th codeword symbol, effectively reducing the deletion model to
the much simpler erasure model, where Reed-Solomon codes give a simple, optimal solution. For alphabets
that are large, but still independent of N, a natural greedy strategy shows the existence of codes of rate
(1− p− ε) capable of correcting a fraction p of deletions, over an alphabet of size exp(O(1/ε)) [GW17].
In particular, the zero-rate threshold approaches 1. Also, 1− p is a trivial upper bound on the possible rate,
even for the simpler model of p fraction of erasures. Explicit constructions of p-deletion correcting of rate
approaching 1− p over an alphabet size independent of N were given in [HS18] based on synchronization
strings, which is a very elegant tool that has since found several other applications (see the survey [HS21]).

Insertions and deletions. Another form of errors that affect the synchronization between sender and re-
ceiver are insertions of symbols. It is well known (since [Lev66]) that a code C with LCS(C)< (1− p)N can
tolerate any combination of a total of pN insertions and deletions (insdel errors). Thus allowing insertions
as well does not change the combinatorial aspects of the underlying coding problem, as it is governed by the
LCS. However, for efficient algorithms for insdel errors are not implied by deletion correction algorithms,
and have to be reworked [GL16].

In the model of list-decoding, even the combinatorial aspects are more nuanced in the presence of
insertions. The trade-off between the combinations of fractions of insertions and deletions that governs
the zero-rate region exhibits an interesting piece-wise linear behavior [GHS20]. (As mentioned earlier, the
zero-rate threshold for list-decoding q-ary codes from deletions alone equals 1−1/q.)

Low-deletions regime. This work focused on the largest deletion fraction that can be corrected with non-
vanishing rate. At the opposite end of the spectrum are codes to correct a deletion fraction p→ 0. In
this case, the optimal rate behaves as 1−O(p log(1/p)) and we also know explicit codes with such rate
1−O(p log2(1/p)) and efficient deletion-correction algorithms [CJLW18, Hae19]. There has also be an
active line of recent code constructions, triggered by [BGZ18], for correction of a fixed number k of deletions
with redundancy at most ck logN. We now have codes with the optimal (up to constant factors) redundancy
of O(k logN) [CJLW18, Hae19, SB21, SGB20].

2This average-case criterion to achieve decoding success for most, as opposed to all, codewords is necessary, as otherwise
tackling the oblivious model becomes as hard as tackling the adversarial model. Alternatively, one can allow a stochastic encoder,
and ensure high probability of successful transmission of each message when averaged over the choice of its random encoding.

4

2 Proof overview

In this section, we give a high-level overview of the proof of Theorem 1.1, as well as the organization of
the rest of this paper. Let C ⊆ {0,1}N be a binary code of size 2(logN)A

for some large constant A, and our
goal will be to find two elements s, t ∈C for which LCS(s, t) > (1/2+ δ0)N. The proof breaks down into
five conceptually independent parts that roughly correspond to the Sections 4 through 8. It will be natural to
explain these parts here in roughly reverse order, starting with Section 8.

Pigeonholing by “statistics”. The only place where we use the size of C is in the final Section 8, which
wraps up the proof of Theorem 1.1. We need C to be large enough to find by the pigeonhole principle two
elements s, t ∈C with similar “macroscopic statistics.” That is, we pick s and t to have the same number of
ones in every long subinterval of length N/poly logN, and also to share some other statistics that characterize
the “frequencies at which they oscillate.” As there are only O(poly logN) long intervals and the statistics in
question take on only 2poly logN possible values on each interval, C is large enough to guarantee the existence
of two s and t sharing identical statistics on all such intervals. The remaining sections explain how to define
the statistics we care about and show that if s and t have identical statistics, then they must have a long LCS.

We now describe the three different high-level strategies we use for finding long common subsequences
between s and t.

Strategy 1: Globally imbalanced strings. The first strategy is extremely simple: match corresponding
ones (or zeros if there are more zeros) in s and t. In the case that s and t are significantly imbalanced, this
strategy immediately finds an LCS of length noticeably more than N/2. This naive strategy is illustrated in
Figure 1. It may be helpful to visualize the strategy as sending two runners, one down the length of each
string, who must advance simultaneously while holding hands and only step on the ones in their respective
strings.

1 0 1 1 0 1 1 0 0 0 0 0 1 0 0 1 1 0 1 1 1 0 1 0 0 1 1 0 0 1 1 0

1 1 0 1 0 0 0 1 0 1 1 0 0 0 1 1 1 1 0 1 0 0 0 0 1 0 1 0 1 0 1 1

Figure 1: In the naive strategy, we match ones greedily between s and t. In this example, the strings are
balanced so the naive strategy finds a common subsequence of length exactly 16 between s and t of length
32.

Strategy 2: Green strategy. The other two strategies, which we call the Green strategy and the Blue-Yellow
strategy, are both modifications of the naive strategy. We first describe the Green Strategy, which is carried
out in Section 6, as it is simpler. The naive strategy above can be thought of as a scanning process, where two
runners move along the ones in s and t simultaneously, matching bits together to find a common subsequence
composed entirely of ones. In the Green strategy, we fix an “oscillation period” ` > 1 and preprocess s by
counting, for every index i of a one-bit in s, the number of zeros between the i-th one and the (i+ `)-th one.
For each such i, we plant a marker there, which we call a Green `-flag, if there are more than (1+ ε)(`−1)
zeros in this interval. Since there are exactly `−1 ones in this same interval, the Green `-flags are meant to
signal to the runners that they are entering a zero-rich patch within s. The same preprocessing is also done
in t.

5

In the Green strategy, the two runners proceed in the same way as the naive strategy except that each
time the runners reach Green flags simultaneously, they switch to stepping only on zeros for the duration
of the flagged regions. As there are more zeros than ones in the flagged regions, they pick up an advantage
over the naive strategy for every single pair of Green flags they simultaneously match. The Green strategy
is pictured in Figure 2.

1 0 1 1 0 1 1 0 0 0 0 0 1 0 0 1 1 0 1 1 1 0 1 0 0 1 1 0 0 1 1 0

1 1 0 1 0 0 0 1 0 1 1 0 0 0 1 1 1 1 0 1 0 0 0 0 1 0 1 0 1 0 1 1

Figure 2: In the Green strategy, we find a long common subsequence by matching zeros instead of ones in
the zero-rich patches immediately following Green `-flags. In this example `= 4, the darker Green one-bits
are Green `-flags, and the light Green substrings following them are zero-rich patches. The Green strategy
finds a common subsequence of length 20 between the s and t pictured above.

Our analysis of the success of the Green strategy is conditioned on the existence of a single oscillation
period ` for which many of these zero-rich patches exist in both s and t. Indeed, suppose there exists ` for
which a constant g` = Ω(1) fraction of the ones in both s and t are Green `-flags. Typically, we expect that
the two runners hit Green flags simultaneously a constant g2

` fraction of the time (this can be made rigorous
by randomly shifting the starting position of one of the runners slightly). Thus, using the Green strategy one
can find a common subsequence of length (1/2+g2

`ε)N. The Green case finishes the proof of Theorem 1.1
if there exists any single oscillation period ` for which a constant fraction of ones in s and t are Green `-flags.

Unfortunately, it is not always the case that a string s has a single oscillation period ` as above. Indeed,
if

si
def
= (12i

02i
)2k−i−1

,

then each si is a string of length 2k which oscillates with period 2i. It is not hard to check that the con-
catenation s def

= s0s1 · · ·sk−1 is a string of length N = k · 2k, such that there are at most O(2k) Green `-flags
in s for any given choice of `. Thus, g` = O((logN)−1) = o(1) for every single `, so the Green strategy is
insufficient for this type of string. We remark that is essentially the worst case, and one can always find two
strings s and t in C with g` = Θ((logN)−1) with the same `, proving LCS(s, t) > (1/2+Ω((logN)−2))N
using the Green strategy alone. Already, this argument saves several factors of logN in the surplus term over
the argument of Bukh and Ma [BM14].

Strategy 3: Blue-Yellow strategy. We give a third and final strategy which handles the cases in which
g` = o(1) for all oscillation periods `, which we call the Blue-Yellow strategy. This strategy, handled in
Section 7, is the most involved of the three and we do not explain all of the technical complications here.
However, the general picture is similar to the Green strategy: we send two runners along s and t matching
ones, and find opportune moments to switch to matching zeros to gain an advantage.

In the Blue-Yellow strategy, we also mark certain one-bits in s and t by flags, but we use flags of two
different colors Blue and Yellow. A Blue `-flag is a relatively rare occurrence: it signals that there is an
extremely zero-rich interval afterwards containing `− 1 ones and more than ε−1(`− 1) zeros. A Yellow
`-flag, on the other hand, is very common: it signals there is an interval afterwards containing `− 1 ones
and more than 0.9(`−1) zeros. Also, since there is no single oscillation period that captures the behavior of
s and t (or else we would apply the Green strategy), we must pay attention to flags at many different scales

6

1 0 1 1 0 1 1 0 0 0 0 0 1 0 0 1 1 0 1 1 1 0 1 0 0 1 1 0 0 1 1 0

1 1 0 1 0 0 0 1 0 1 1 0 0 0 1 1 1 1 0 1 0 0 0 0 1 0 1 0 1 0 1 1

Figure 3: In the Blue case, we find a long common subsequence by matching zeros from extremely zero-
rich patches (signalled by Blue flags) to longer relatively balanced patches (signalled by Yellow flags) and
vice-versa. The Blue-Yellow strategy finds an LCS of length 18 between the s and t pictured above.

` at the same time. The rough idea is then that the runners will switch to matching zeros when one of them
reaches a Blue flag, and the other one simultaneously hits a Yellow flag of a similar scale, see Figure 3.

In the above diagram, the top runner reaches a Blue flag first, and the bottom runner happens upon a
Yellow flag at the same time. This signals both of them to switch to matching zeros, which allows the top
runner to gain a great advantage (since the patch past a Blue flag is so zero-rich). The bottom runner may
lose out slightly in efficiency because Yellow intervals can have slightly fewer zeros than ones, but on net
we see that more bits are used from the two patches together than would have been otherwise. In the long
run, we expect Blue flags to appear approximately equally frequently in s and t, so the advantages and losses
balance out to a net gain on both sides.

String regularity. In order to guarantee that the two runners remain relatively synchronized as the Blue-
Yellow strategy proceeds, we need Blue flags to be somewhat consistently distributed within s and within
t. We get this desired property by proving a string regularity lemma similar to that of [APP13] (see also
[BZ16, ACK+19, HKPS21]). Our regularity lemma, proved in Section 5 differs from previous versions for
words in that we use an entropy increment argument, rather than the usual density increment argument.

The structure lemma. The remainder of the paper is designed to set up the strings s and t so that one of the
above three strategies can succeed in finding a long common subsequence. To do this, we prove a structure
lemma in Section 4 about strings, which says each string falls in one of three cases (1) Globally imbalanced,
(2) Green at some oscillation period `, or (3) Blue-Yellow at some oscillation period `. These types are
defined such that, if two strings s and t have the same type and same oscillation period (if applicable), one
can find a long common subsequence of s and t using the corresponding strategy.

With this structure lemma, we simply need to put all the pieces together (Section 8). We partition each
codeword s into poly logN substrings s1, . . . ,spoly logN and apply the structure lemma to each substring si. By
pigeonhole, there exist two strings s and t such that, for each i = 1, . . . ,poly logN, the substrings si and ti are
the same “type,” meaning that they are in the same case of the structure lemma and have the same oscillation
period (if applicable). Then in each pair of substrings si and ti one can find a long common subsequence
using one of the three strategies, giving an overall large LCS.

It is important for two technical reasons to split into substrings si and ti, rather than applying the structure
lemma directly to the entire strings s and t. First, we need to randomly shift the starting position of one of
the “runners” to get enough synchronized flags, incurring a loss of order up to |s1|, so it is necessary that
this loss is o(N). Second, our regularity lemma guarantees Blue flags to have sufficient regularity at most,
but not all, substrings lengths. Thus, we may not obtain the desired regularity until we consider substring
lengths down to around O(N/poly logN).

Organization. Section 3 collects the common notations, definitions, and preliminary lemmas we need for
the rest of the paper. In Section 4, we prove a structure lemma which divides strings into three types, one

7

suitable to each of the three strategies above. In Section 5, we perform an additional technical argument to
prove a “regularity-type” property of strings necessary for the runners to remain synchronized in the Blue-
Yellow case (so that one does not race too far ahead of the other). These two sections together set the stage
for Sections 6, 7, and 8 to handle the Green case, the Blue-Yellow case, and complete the proof, respectively.
Finally, we collect some of the tantalizing open questions that remain in this area in Section 9.

3 Preliminaries and Notation

Constants. Throughout, fix ε = 10−6 and γ = 10−15 = 0.001ε2.

Subsequences and substrings. A subsequence in a string s is any string obtained from s by deleting
zero or more symbols. In contrast, a substring is a subsequence consisting of consecutive symbols of s
(substrings are also sometimes referred to as subwords elsewhere, but we do not use this terminology).
Thus, if s = 10001, then 101 is a subsequence of s but not a substring.

Intervals and strings. Throughout, for real numbers x and y we define an interval I = [x,y] to be the set of
integers a such that x 6 a 6 y (rather than the set of real numbers a). We let [n] denote the interval [1,n].
We similarly define intervals (x,y] and [x,y) and (x,y) as subsets of the integers. The size of an interval is
the number of integers in the interval. For α ∈ (0,1) and real number x, let (1±α)x denote the interval
[(1−α)x,(1+α)x].

Throughout the remainder of the paper, all strings are binary. Let {0,1}∗ be the set of all binary strings

of any nonnegative length. For integers m > 0 and i > 1, we let Im,i
def
= [(i−1) ·2m +1, i ·2m]. We call such

an Im,i, where both the size is a power of two and the endpoints are aligned with the same power of two, a
dyadic interval. For strings s1 and s2, let s1s2 denote the string concatenation of s1 with s2.

For a string s with L ones and an interval I = [x,y], let sI denote the contiguous substring of s between
the x-th one of s (or the beginning of the string if x 6 0) and the (y+ 1)-st one of s (or until the end of
the string if y > L), including the first but excluding the second. For example, if w = 1001011, we have
w[1,2] = 10010. For m > 0 and i > 1 write sm,i as shorthand for sIm,i . Informally, we refer to sm,1,sm,2,sm,3, . . .

as the substrings of s at scale m. We note that leading zeros of a string are not included in any dyadic
substring sm,i, but this is negligible as we typically work with strings that start with a one.

We write z(s) for the number of zeros in a string s.

Reversing strings that begin with a one. In the Blue-Yellow strategy on two strings s and t, we apply the
Blue-Yellow matchings in pairs: (i) matching Blue flags in s with Yellow flags in t, and (ii) matching Blue
flags in t with Yellow flags in s. Arguments (i) and (ii) can be see as applying the same lemma (Lemma 7.1)
when (ii) is viewed as applying the lemma on the reversals of s and t. However, since throughout we index
our substrings sI by the one-bits rather than all bits, it is helpful to slightly modify the definition of string
reversal as follows. Given a string s starting with a one, let rev(s) denote the string obtained by reversing
the order of all the bits in s after the first bit. Thus, rev(s) is only defined for strings starting with a one. It is
easy to check the following properties of rev.

Lemma 3.1. Let w be a string that begins with a one and has L ones in total.

1. The strings w and rev(w) have the same length and number of ones.

2. For an interval I = [x,y]⊂ [L], we have rev(wI) = rev(w)[L+1−y,L+1−x].

3. When w has L = 2n ones we have rev(wm,i) = rev(w)m,2n−m+1−i.

8

Proof. The first item is obvious. For the second item, it suffices to consider when x and y are integers:
indeed, for real numbers x and y, we have [x,y] = [dxe,byc] and [L+1− y,L+1− x] = [L+1−byc,L+1−
dxe], so we may replace x and y with dxe and byc. The zeros between the i-th and (i+ 1)-st one of w map
to the zeros between the (L+ 1− i)-th and (L+ 2− i)-th one of rev(s). Let zi denote the number of zeros
between the i-th and (i+1)-st one of w. Then

rev(w[x,y]) = rev(10zx10zx+11 · · ·10zy) = 10zy10zy−11 · · ·10zx = rev(w)[L+1−y,L+1−x].

The third item follows from the second:

rev(wm,i) = rev(w[(i−1)·2m+1,i·2m]) = rev(w)[2n+1−i·2m,2n−(i−1)·2m]

= rev(w)[2m(2n−m−i)+1,2m·(2n−m−i+1)] = rev(w)m,2n−m−i+1.

Example 3.2. For w = 1001011, we have

rev(w[1,2]) = rev(10010) = 10100 = (1110100)[3,4] = rev(w)[3,4].

Lemma 3.3. (rev preserves LCS) For strings s and t starting with a one, LCS(s, t) = LCS(rev(s), rev(t)).

Proof. The LCS always matches the first bits if they are equal, and reversing strings preserves the LCS.

Flags. We now define flags, a key notion that measures the oscillation frequencies within string.

Definition 3.4 (Flags). For a positive integer ` and a string w, define an index i ∈ Z to be an `-flag of rate r
in w if (`−1)−1z(w[i,i+`)) = r. Here r ∈ [0,+∞] (so it can take on the value +∞) and we define 0−1 ·0 = 0
and 0−1 ·m =+∞ for any positive integer m. The rate of an `-flag i in w is the ratio of zeros to ones (strictly)
between the i-th one and the (i+ `)-th one of w, and we would like to find `-flags with high rate in order to
execute the zero-matching strategies described in the previous section. We say `-flag i of rate r is

Blue if r > ε−1,

Green if r > 1+2ε,

Yellow if r > 0.9,

Red if r 6 0.9.

Note that Blue flags are Green flags and Green flags are Yellow flags. For a string w with L ones, for each
i ∈ [L], define bw(i) to be the largest power of two ` ∈ [L] such that i is a Blue `-flag in w, and 0 if no such `

exists. We say i is a Blue `+-flag in w if bw(i)> `.

Imbalanced strings. For δ ∈ (0,1/2), we say a string w with L ones is δ -imbalanced if its number of zeros
z(w) is not in (1± δ)L. For convenience, we simply say that w is imbalanced if it is ε-imbalanced with
ε = 10−6 defined at the beginning of this section. We will reason about imbalanced substrings wI of w at
various scales, and exploit the existence of these imbalanced substrings.

Lemma 3.5. Let w be a string with L ones, and let `> 2ε−1. Suppose that i is a Blue or Green `-flag in w,
or i 6 L− `+1 is a Red `-flag. On the interval I = [i,min(i+ `−1,L)], the substring wI is imbalanced.

Proof. If i is a Green `-flag, substring wI has at least (1+ 2ε)(`− 1) > (1+ ε)` > (1+ ε)|I| zeros. Since
Blue flags are Green flags, wI is also imbalanced if i is a Blue `-flag. If i is a Red `-flag, substring wI has at
most 0.9(`−1)< (1− ε)|I| zeros. In all three cases, wI is imbalanced, as desired.

9

It is also easy to see that if two imbalanced strings have the same length n and the same number of ones,
then their LCS is a constant fraction larger than n/2.

Lemma 3.6. Let δ ∈ (0,1/2). Let s and t be δ -imbalanced strings of the same length with the same number
L of ones in each. Then LCS(s, t)> (1/2+δ/5)|s|.

Proof. If the number of zeros is at most (1− δ)L, then the all-ones string is a common subsequence of
length L > 1

2−δ
|s|> (1/2+δ/5)|s|. If the number of zeros is at least (1+δ)L, then the all-zeros string is a

common subsequence of length at least 1+δ

2+δ
|s|> (1/2+δ/5)|s|.

Prefixes and suffixes. For a string w with L ones, and ∆ ∈ [−L,L], let Trim∆(w)
def
= w[max(1,1−∆),min(L,L−∆)].

Thus, Trim∆(w) is a prefix of w if ∆ > 0 and a suffix otherwise. The following lemma (see Figure 4) shows
that finding long common subsequences across prefixes and suffixes of many subintervals of s and t implies
that LCS(s, t) is large overall.

t

s

sm,3

tm,3

sm,2n−m

tm,2n−m

+δ ·2m

Trim∆(sm,3)

Trim−∆(tm,3)

+δ ·2m

Trim∆(sm,6)

Trim−∆(tm,6)

+δ ·2m

Trim∆(sm,8)

Trim−∆(tm,8)

+δ ·2m

Trim∆(sm,14)

Trim−∆(tm,14)

1 2m 2n−∆

1 ∆ 2m 2n

Figure 4: If, for some ∆, we find a large LCS between many (prefixes and suffixes of) dyadic substrings of s
and t, then LCS(s, t) is large overall. We note that Lemma 3.7 works as long as the subintervals (in purple)
have LCS beating the trivial matching by δ ·2m on average, even though the figure depicts each subinterval
having LCS advantage δ ·2m. In the diagram, the set Z from Lemma 3.7 is {3,6,8,14}. 4

Lemma 3.7 (Prefix/Suffix LCS). Let δ > 0, let m and n be integers with 0 6 m 6 n− 10− logδ−1 and
L = 2n, and let Z ⊂ [2n−m] satisfy |Z| > 2n−m/10. Suppose that s and t are strings with L ones each, and
there exists ∆ ∈ [−2m,2m] and δ > 0 such that

∑
i∈Z

LCS(Trim∆(sm,i),Trim−∆(tm,i))> |Z| · (2m−|∆|+δ ·2m).

Then we have

LCS(s, t)>
(

1+
δ

20

)
L.

Proof. Finding a common sequence between s and t is equivalent to exhibiting a matching between the bits
of s and the bits of t such that only equal bits are matched and such that the matching is “non-crossing,”
meaning that earlier bits of s are matched with earlier bits of t.

Consider the matching where we match the i-th one in s with the (i+∆)-th one in t. This matches L−|∆|
ones. In this matching, for each i ∈ Z, the 2m−|∆| ones of Trim∆(sm,i) are exactly matched to the 2m−|∆|

4Technically, the figure is invalid because we need m 6 n− 10− logδ−1 and here m = n− 4, but we ignore this issue for
illustration.

10

ones of Trim−∆(tm,i). For each i∈ Z, replace the matching between the ones of Trim∆(sm,i) and Trim−∆(tm,i)

with a matching for the LCS of Trim∆(sm,i) and Trim−∆(tm,i).

All of these replacements can be done simultaneously and independently while keeping the matching
non-crossing. Each of the |Z| replacement operations deletes 2m−|∆| pairs, and in total the replacements
add |Z|(2m−|∆|+δ ·2m) pairs. Thus in total the replacements increase the number of matched pairs by at
least |Z| ·δ ·2m. Thus, the total length of this common subsequence is at least (recall L = 2n)

L−|∆|+ |Z| · (δ2m)> L−2m +
2n−m

10
·δ ·2m > L− δ

210 L+
δ

10
L >

(
1+

δ

20

)
L.

In the second inequality, we used that m 6 n−10− logδ−1. Thus LCS(s, t)>
(

1+ δ

20

)
L, as desired.

4 The structure lemma and definition of types

4.1 The structure lemma

Throughout this section, we reason about a single string w with L ones, and assume w starts with a one.
Recall that ε = 10−6. Our main structure lemma is as follows.

Lemma 4.1 (Structure Lemma). If w ∈ {0,1}∗ is a string that starts with one and has exactly L = 2n ones,
and n is sufficiently large (in terms of ε), then at least one of the following conditions hold.

1. There exists an interval I ⊆ [L] of size |I|> ε2L such that wI is imbalanced.

2. There exists 1 6 `6 L such that the number of Green `-flags in w is at least ε2L.

3. There exists 1 6 m 6 n such that the number of Blue (2m)+-flags in w is at least ε2L, and for every
`> 2m the number of Red `-flags in w is at most 600εL.

The three cases of the Structure Lemma correspond exactly to the three matching strategies outlined
in the Overview (Section 2). Case 1 is when w is imbalanced at a macroscopic scale, i.e., a linear-length
subword with density far from 1

2 . Case 2, the “Green case”, is when w “fluctuates on a single scale” and
can be treated by studying that scale only, i.e., using the Green strategy described in the Overview. Case 3
is when w is “sporadic” and must be analyzed at many scales simultaneously, which is done with the Blue-
Yellow strategy in the Overview. Before we prove Lemma 4.1, we need the following technical lemma,
which gives part of Lemma 4.1 under the additional assumption that many of the zeros in w are concentrated
at Blue flags.

Lemma 4.2. Suppose α > 0, n is sufficiently large, L = 2n, 1 6 ` 6 L, and w ∈ {0,1}∗ is a string with L
ones. If

1
` ∑

i∈B`

z(w[i,i+`))> αL,

where B` is the set of all Blue `-flags of w, then at least one of the following conditions hold.

1. There exists an interval I ⊆ [L] of size |I|> ε2L such that wI is imbalanced.

2. The number of Blue `-flags in w is at least ε2L.

11

3. The number of Blue `+-flags in w is at least (α−22ε)εL/16.

Proof. We assume Conditions 1 and 2 do not hold and prove Condition 3. We first prove a slightly stronger
lower bound (see (4)) on the number of Blue `+ flags than claimed in Condition 3 in the special case that `
is a power of 2, and will then handle the case of general `.

Since |B`|< ε2L, if we define A`
def
= {i ∈ B` | z(w[i,i+`))> 2ε−1`} we find that

1
` ∑

i∈B`\A`

z(w[i,i+`))6
1
`
· (2ε

−1`) · |B` \A`|6 2εL, so
1
` ∑

i∈A`

z(w[i,i+`))> (α−2ε)L .

By the pigeonhole principle, we can pick a residue class r ∈ {1, . . . , `} such that the set S⊆ [L/`] defined by

S def
= { j | (j−1)`+ r ∈ A`} satisfies

∑
j∈S

z(w[(j−1)`+r, j`+r))> (α−2ε)L.

Write b j
def
= z(w[(j−1)`+r, j`+r)). We have that for each j ∈ S, b j > 2ε−1`, and bS > (α − 2ε)L (using the

summation notation bS
def
= ∑ j∈S b j).

Let L′ = L/`. Since ` and L are powers of 2, L′ is as well. We consider the family of all dyadic intervals

Im,i
def
= [(i−1) ·2m+1, i ·2m] where 0 6 m 6 log2(L

′) and 1 6 i 6 L′ ·2−m. Let I be the set of such intervals
Im,i maximal under the property that bIm,i > 2ε−1` · |Im,i|. By maximality of the Im,i, the intervals of I are
pairwise disjoint. Furthermore, for j ∈ S, we have bI0, j = b j > 2ε−1`, so each j ∈ S is in some interval of I .

We claim that these intervals satisfy bIm,i 6 4ε−1` · |Im,i|. Suppose otherwise. Either Im,i = [L′] or there is a
dyadic interval Im+1,di/2e in [L′] containing Im,i with twice the size of Im,i. In the former case, z(w[L]) = b[L′] >
4ε−1`L′ > L+ εL, which would imply condition 1. In the latter case, Im+1,di/2e is an interval containing Im,i

satisfying bIm+1,di/2e > 2ε−1` · |Im+1,di/2e|, contradicting the maximality of Im,i. This proves the claim.

Since every i ∈ S lies in some element of I , we have

4ε
−1` · ∑

Im,i∈I
|Im,i|> ∑

Im,i∈I
bIm,i

> bS > (α−2ε)L,

and so ∑I |Im,i|> 1
4(α−2ε)εL/`.

Thus the dyadic intervals in I have an abundance of zeroes in total. We need to convert this into
an abundance of `+-flags. To this end, let us define Jm,i

def
= [(i− 1) · 2m`+ r, i · 2m`+ r), defined so that

bIm,i = z(wJm,i). The key observation is that if Im,i ∈ I , then any j ∈ Jm,i−1 is a Blue `+-flag. Indeed, for
such a j we have [j, j+2m+1`)⊇ Jm,i, so

z(w[j, j+2m+1`))> z(wJm,i) = bIm,i > 2ε
−1` · |Im,i|= ε

−1 ·2m+1`,

so j is a Blue (2m+1`)-flag, and thus an `+-flag as desired since ` is a power of 2.

We conclude that all of the elements of

T def
= [L]∩

⋃
Im,i∈I

Jm,i−1 (3)

are Blue `+-flags of w.

Note that the union in (3) may not be a disjoint union. Indeed, although any two intervals Im1,i1 , Im2,i2 ∈
I must be disjoint, their predecessor intervals Im1,i1−1, Im2,i2−1 may not be disjoint if m1 6= m2 (and the

12

corresponding Jm,i may not be either). To address this issue, we pass to a subcollection I ′ ⊆ I so that
for any two Im1,i1 , Im2,i2 ∈I ′, their respective shifts Im1,i1−1 and Im2,i2−1 are disjoint. Notice that for disjoint
Im1,i1 , Im2,i2 ∈ I with m1 6 m2, their shifts Im1,i1−1 and Im2,i2−1 intersect only if Im1,i1 (Im2,i2−1. Thus, it
suffices to find a subcollection I ′ ⊆ I so that no interval Im1,i1 lies in the shift Im2,i2−1 of another. Such
a subcollection can be picked greedily by scanning from right to left through I , skipping any Im1,i1 which
appears in the shift Im2,i2−1 of an interval already picked, and breaking ties by preferring larger intervals.
Any greedily chosen Im2,i2 removes at most |Im2,i2 | in total interval size from I ′, so the total size of the
intervals in I ′ is at least half of the total size of intervals in I .

Thus, ∑I ′ |Im,i|> 1
2 ∑I |Im,i|, and {Jm,i−1 | Im,i ∈I ′} is now a disjoint collection. Inside I ′, there can

be at most one interval Im,i for which Jm,i−1 does not lie entirely inside [L], and Jm,i−1 must have size at most
ε2L or else

z(wJm,i−1)> (1+ ε) ·2m,

for 2m > ε2L, implying condition 1. It follows that w has at least

|T |> ∑
Im,i∈I ′

|Jm,i−1|− ε
2L >

1
2 ∑

Im,i∈I
|Jm,i−1|− ε

2L >
(α−10ε)ε

8
L, (4)

Blue `+-flags. This proves the lemma, in fact with a stronger lower bound on number of Blue `+ flags, when
` is a power of 2.

Now suppose ` is not a power of 2. If `′ is the smallest power of 2 greater than or equal to `, then all
Blue (`′)+-flags are also Blue `+-flags and 1 6 `′ 6 L since L is a power of 2. Furthermore, if B`′ is the set
of Blue `′-flags, z(w[i,i+`))6 z(w[i,i+`′))6 ε−1(`′−1) if i 6∈ B`′ . Thus, since |B`|< ε2L we get

1
`′ ∑

i∈B`\B`′

z(w[i,i+`))6 εL,

which implies

1
`′ ∑

i∈B`′

z(w[i,i+`′))>
1
`′ ∑

i∈B`∩B`′

z(w[i,i+`))>
1
2` ∑

i∈B`

z(w[i,i+`))− εL > (α/2− ε)L,

and so the conditions of the lemma are true with modified parameters `′ > ` a power of 2 and α ′ = α/2−ε .
It follows by applying (4) with these parameters instead that w must have at least

(α ′−10ε)ε

8
L >

(α−22ε)ε

16
L

Blue `+-flags in the general case, thus completing the proof.

Now we are ready to prove Lemma 4.1.

Proof of Lemma 4.1. We assume conditions 1 and 2 do not hold for some w, and prove condition 3.

Pick m ∈ [0,n] maximal such that w contains at least ε2L Blue (2m)+-flags. To see that such an m exists,
let B1 denote the set of Blue 1-flags in w, which is just the set of one-bits in w immediately followed by at
least one zero. Then, we have

∑
i∈B1

z(w[i,i+1)) = z(w[L])> L− εL,

13

assuming condition 1 does not hold. Furthermore, because Blue flags are Green flags, condition 2 being
false implies there are fewer than ε2L Blue 2m-flags for any 0 6 m 6 n. In particular, |B1| < ε2L. Thus,
the conditions of Lemma 4.2 are satisfied with ` = 1 and α = 1− ε , and we obtain that either w satisfies
condition 1 or condition 2 (since Blue flags are Green flags) or the number of Blue 1+-flags in w is at least

(α−22ε)εL/16 = (ε−23ε
2)L/16 > 2ε

2L.

Hence we used that ε is sufficiently small. Thus, some such 0 6 m 6 n exists.

By the maximality of m and the fact that there are fewer than ε2L Blue 2m-flags for any particular
0 6 m 6 n, we see that in fact m > 1 and the number of Blue (2m)+-flags is in [ε2L,2ε2L). It remains to
check that the second half of condition 3 holds.

Suppose `> 2m, and let B`,G`,Y`, and R` be the sets of `-flags in w which are Blue, Green, Yellow, and
Red (respectively). Note that by our definitions of the colors, B` ⊆ G` ⊆ Y` and Y`tR` = [L]. Suppose for
the sake of contradiction that |R`|> 600εL. We may assume `6 ε2L, as otherwise a single Red `-flag would
violate condition 1. We can express z(w[L]) as

z(w[L]) =
1
`

L

∑
i=−`

z(w[i,i+`))

since each z(w{i}) appears exactly ` times in the sum on the right. Setting aside the terms on the right with
i 6 0, we find by breaking up the sum in terms of the colors of the flags,

z(w[L])6
1
`

(
0

∑
i=−`

z(w[i,i+`))+ ∑
i∈B`

z(w[i,i+`))+(`−1)(ε−1|G`\B`|+(1+2ε)|Y`\G`|+0.9|R`|)

)
. (5)

We can bound 1
` ∑

0
i=−` z(w[i,i+`))6 z(w[`]), |G`\B`|6 |G`|< ε2L (since condition 2 is false), and |Y`\G`|6

|Y`|= L−|R`|. Putting these together with (5), we obtain

z(w[L])6 L+3εL+ z(w[`])+
1
` ∑

i∈B`

z(w[i,i+`))−0.1|R`|. (6)

Since condition 1 is false, we have z(w[L])> L− εL, so together with (6) and |R`|> 600εL we get

z(w[`])+
1
` ∑

i∈B`

z(w[i,i+`))> 56εL.

Next, we claim that z(w[`]) 6 εL. This follows from the facts that ` 6 ε2L and z(w[ε2L]) 6 εL (by the
assumption that condition 1 does not hold). We get

1
` ∑

i∈B`

z(w[i,i+`))> 55εL.

The conditions of Lemma 4.2 are satisfied with this ` and α = 55ε . Applying the lemma, we find that either
w satisfies one of condition 1 or 2, or the number of Blue `+-flags in w is at least (55ε−22ε)εL/16 > 2ε2L.
This contradicts the observation we made before that the number of Blue (2m)+-flags is in [ε2L,2ε2L) and
completes the proof.

14

4.2 Definition of types

Using the structure theorem, we define below the type of a string roughly based on the case that it satisfies in
the structure theorem. These three definitions of types (Imbalanced, Green, Blue-Yellow) roughly align with
the three cases of the structure theorem, though for Green and Blue-Yellow types, it helps to additionally
have an upper bound on `, the length of the flags. Because we only prove the Structure Lemma (Lemma 4.1)
for strings whose number of ones is a power of two, we also only define types for strings whose number of
ones is a power of two, which is enough for our application. Recall that γ = 0.001ε2.

Definition 4.3. Given a string w with L = 2n ones with n sufficiently large, we say the type of w is

1. Imbalanced if there exists some interval I ⊆ [L] of size |I|> ε5L such that wI is imbalanced.

2. `-Green for some integer 1 6 `6 ε5L if the number of Green `-flags in w is at least ε2L.

3. m-Blue-Yellow if there exists 1 6 m 6 n such that the number of indices i ∈ [L] with 2m 6 bw(i)6 γL
is at least (ε2− γ)L, and the number of Red `-flags in w is at most 600εL for any `> 2m.

If w could be more than one type, we assign w one of the types arbitrarily.

Note that there are at most 1+ L + logL = O(|w|) possible types for a string w. As a corollary of
Lemma 4.1, each string w has a type, assuming n is sufficiently large:

Lemma 4.4. If n is sufficiently large, each string w with L = 2n ones has a type.

Proof. If w satisfies Case 1 of Lemma 4.1, then w has type Imbalanced.

If w satisfies Case 2 of Lemma 4.1 with parameter `, then w has at least ε2L Green `-flags, and in
particular there exists an i 6 L− ε2L that is a Green `-flag. If ` > ε5L, then by Lemma 3.5, the interval
I = [i, i+ `−1] of size at least ε5L gives that wI is imbalanced, so w has type Imbalanced. If `6 ε5L, then
w has type `-Green.

If w satisfies Case 3 of Lemma 4.1 with parameter m, then there are at least ε2L indices with bw(i)> ε2L,
and the number of Red `-flags in w is at most 600εL for any integer `> 2m. If there are at least γL indices
i ∈ [L] with bw(i) > γL, then some i 6 L− γL+ 1 satisfies bw(i) > γL, so by Lemma 3.5, there exists an
interval I of size at least γL > ε5L such that wI is imbalanced, so w is type Imbalanced. Otherwise, for at
least (ε2− γ)L indices i ∈ [L], we have 2m 6 bw(i)6 γL, so w is type m-Blue-Yellow.

5 The entropy regularity argument

In this section, we prove the regularity-type result Lemma 5.6, which roughly states that in most dyadic
substrings of a given string s, the positions of the Blue flags are distributed relatively uniformly. In the
Blue-Yellow strategy, we may be matching bits in s and t that lie in nearby but different dyadic intervals
(because of our random shifting argument and because the Blue-Yellow strategy consumes ones from s and
t at different rates). Because of this, it is helpful to say that there many neighboring pairs of dyadic intervals
with similar Blue flag distributions in s and t.

15

5.1 Flag balance

Define the L1 distance between two discrete probability distributions p,q to be ‖p−q‖1
def
= ∑ |p(x)−q(x)|.

Recall that bw(i) is the largest power of two ` ∈ [L] such that i is a Blue `-flag in w, and 0 if no such ` exists.
For a string w with L ones and an interval I ⊂ [L], let pw,I denote the distribution of the value of bw(i) over
a uniform random i ∈ I. Put another way, the probability mass pw,I(`) is the fraction of indices i ∈ I with
bw(i) = `.

Definition 5.1 (Blue-flag-balance). For β > 0, we say that a dyadic interval Im,i is β -Blue-flag-balanced in
w if ‖pw,Im−1,2i−1 − pw,Im−1,2i‖1 6 β . We say that a string w with L = 2n ones is β -Blue-flag-balanced if the
interval In,1 is β -Blue-flag-balanced in w.

Showing Blue-flag balance is useful because we can show that if a Blue-flag-balanced string w has many
Blue flags of a certain length, then both halves of w also have many Blue flags of the same length. The next
lemma formalizes this idea.

Lemma 5.2. If string w is β -Blue-flag-balanced with L = 2n ones, then for any set S of integers, we have∣∣Pri∈[L][bw(i) ∈ S]−Pri∈[L/2][bw(i) ∈ S]
∣∣6 β

2
.

Proof. Since w is β -Blue-flag-balanced, interval In,1 is β -Blue-flag-balanced in w. We have∣∣Pri∈[L][bw(i) ∈ S]−Pri∈[L/2][bw(i) ∈ S]
∣∣= ∑

`′∈S
|pw,In,1(`

′)− pw,In−1,1(`
′)|

6 ∑
`′
|pw,In,1(`

′)− pw,In−1,1(`
′)|

=
∥∥pw,In,1− pw,In−1,1

∥∥
1

=
∥∥∥ pw,In−1,1− pw,In−1,2

2

∥∥∥
1
6

β

2
.

The third equality uses that
pw,In−1,1+pw,In−1,2

2 = pw,In,1 , and the last inequality uses the definition of interval In,1

being β -Blue-flag-balanced in w.

5.2 Flag balance of intervals

Our goal is to find a scale at which most intervals are Blue-flag-balanced. We start by proving a simple
lemma about probability distributions. Recall that the binary entropy of a discrete probability distribution p
is defined as H(p) def

= −∑x p(x) log p(x) over all values x in the support of p, and the logarithms are base 2.

Lemma 5.3. If p−, p, and p+ are three discrete probability distributions supported on a finite domain Ω

satisfying p−(x)+ p+(x) = 2p(x) for all x ∈Ω, then

H(p−)+H(p+)6 2H(p)− 1
4
‖p+− p−‖2

1.

Proof. We use Pinsker’s inequality, which states in the case of discrete probability distributions that the
Kullback-Leibler divergence between two distributions P and Q satisfies

DKL(P‖Q) = ∑
i

P(i) log
(

P(i)
Q(i)

)
>

1
2
‖P−Q‖2

1.

16

In particular, applying this to the pairs (P,Q) = (p−, p) and (P,Q) = (p+, p), we obtain

2H(p)−H(p−)−H(p+) = ∑
i

(
p−(i) log p−(i)+ p+(i) log p+(i)−2p(i) log(p(i))

)
= DKL(p−‖p)+DKL(p+‖p)

>
1
2
‖p−− p‖2

1 +
1
2
‖p+− p‖2

1

=
1
4
‖p+− p−‖2

1.

We now obtain with a regularity argument the following lemma, which is the most substantial result in
this section.

Lemma 5.4 (Interval Blue-flag-balance). For β > 0, n > 2, and any w ∈ {0,1}N with L = 2n ones, except
for at most 32β−3 logn values of m ∈ [0,n], the following holds: the number of dyadic intervals Im,i that are
not β -Blue-flag-balanced in w is less than β ·2n−m.

Proof. Consider the expression

Em
def
= 2m ·

2n−m

∑
i=1

H(pw,Im,i).

By the definition of an β -Blue-flag-balanced interval, we obtain that whenever interval Im,i is not β -Blue-
flag-balanced in w,

‖pw,Im−1,2i−1− pw,Im−1,2i‖1 > β ,

and so if there are tm dyadic intervals Im,i that are not β -Blue-flag-balanced in w, we obtain

Em−1 6 Em−2m−1 · tm ·
1
4

β
2 6 Em−2m−3tmβ

2,

by Lemma 5.3. Since bw(i)6 L is either 0 or a power of two for all indices i ∈ [L], we have that bw(i) takes
on one of n+2 values. Thus, we have En = 2n ·H(pw,In,1) 6 log(n+2) ·2n. Since we also have E0 > 0, at
most 8β−3 log(n+2)< 32β−3 logn values of tm are at least β ·2n−m, completing the proof.

5.3 Flag balance of substrings

In Lemma 5.4 we showed that there exists many scales m where many (dyadic) intervals were β -Blue-flag-
balanced in the sense of Definition 5.1. For technical reasons, it is helpful to establish that there are many
substrings that are β -Blue-flag-balanced, and we do so in this section. The distinction here is that certain
one-bits in the interval I may be Blue `-flags in w, but not Blue `-flags in wI once the zeros to the right of I
are taken out of consideration.

For a string w with L ones, let pw
def
= pw,[L]. Note that the distribution pw,I may be different from the

distribution pwI , because indices i ∈ I that are Blue `-flags in string w may not correspond to Blue `-flags in
substring wI . However, the converse is true: for I = [x,y], if i− x+1 is a Blue `-flags of substring wI , then i
is a Blue `-flag of string w. Because of this, we can show that pw,I and pwI are similar in distribution under
certain conditions.

Lemma 5.5. Let β > 0, w be a string with L ones, I ⊂ [L] be an interval, and `0 be an integer, such that at
most β |I| indices i ∈ I satisfy bw(i)> `0. Then

‖pw,I− pwI‖1 6 2
(

β +
`0

|I|

)
.

17

Proof. Recall that bw(i) is the largest power of two such that the i-th one of w is an bw(i)-flag of w (or 0 if
no such power of two exists). For an interval I = [x,y], if index i− x+1 is a Blue `-flag of wI , then index i
is a Blue `-flag of w, and furthermore if index i is a Blue `-flag of w and x 6 i 6 y− `, then index i−x+1 is
a Blue `-flag of wI as well. Hence, for all x 6 i 6 y−`0 with bw(i)6 `0, we have that bw(i) = bwI (i−x+1).
Thus, by the union bound,

Pri∈I[bw(i) 6= bwI (i− x+1)]6 Pri∈I[i > y− `0]+Pri∈I[bw(i)> `0]6
`0

|I|
+β , (7)

We also have

‖pw,I− pwI‖1 = ∑
`′
|pw,I(`

′)− pwI (`
′)|= ∑

`′

1
|I|

∣∣∣∣∣∑i∈I
1(bw(i) = `′)−∑

i∈I
1(bwI (i− x+1) = `′)

∣∣∣∣∣
Thus, the expression ‖pw,I− pwI‖1 is a 1

|I| -Lipschitz function in the indicator functions 1(bw(i) = `′) for i∈ I
and `′ a power of two or 0. Changing the value of any single bw(i) changes the value of at most two such
indicator functions, and furthermore we know that changing the value of |I| ·Pri∈I[bw(i) 6= bwI (i− x+ 1)]
values of bw(i) makes the expression ‖pw,I− pwI‖1 equal to 0, so we have that

‖pw,I− pwI‖1 6
1
|I|
·2 · |I| ·Pri∈I[bw(i) 6= bwI (i− x+1)].6 2 ·Pri∈I[bw(i) 6= bwI (i− x+1)] (8)

Combining (7) and (8) gives the desired result.

Lemma 5.4 argues about the Blue-flag-balance of intervals. Combining Lemma 5.4 with Lemma 5.5,
we obtain the following result about the Blue-flag-balance of substrings.

Lemma 5.6 (Substring Blue-flag-balance). Let β > 0, and n be sufficiently large in terms of β . Let
w ∈ {0,1}N be a string with L = 2n ones, and suppose that at most β 2L indices i ∈ [L] satisfy bw(i) >
2n−200β−3 logn. Then, except for at most 32β−3 logn values of m ∈ [n−150β−3 logn,n] the following holds:
the number of i ∈ [2n−m] for which wm,i is not 6β -Blue-flag-balanced is less than 3β ·2n−m.

Proof. Let m ∈ [n− 150β−3 logn,n] be any value such that there are at most β · 2n−m dyadic intervals Im,i

that are not β -Blue-flag-balanced in w. By Lemma 5.4, all but 32β−3 logn values of m have this property.
We show that each such m satisfy the requirements of the lemma.

Call an index i ∈ [2n−m] good if (1) the dyadic interval Im,i is β -Blue-flag-balanced in w, and (2) for
both intervals I ∈ {Im−1,2i−1, Im−1,2i}, there are at most β |I| indices i ∈ I with bw(i)> 2n−200β−3 logn. By the
choice of m, there are less than β ·2n−m choices of i ∈ [2n−m] that violate requirement (1). Next, we use the
assumption that in total at most β 2L indices i∈ [L] satisfy bw(i)> 2n−200β−3 logn. Thus, at most β ·2n−m+1 of
the dyadic intervals I of size 2m−1 contain at least β |I| indices i ∈ I satisfying bw(i)> 2n−200β−3 logn. Hence,
at most 2β ·2n−m choices of i∈ [2n−m] violate requirement (2). We see that all but less than 3β ·2n−m choices
of i ∈ [2n−m] are good.

We now show that for each good index i ∈ [2n−m], the substring wm,i is 6β -Blue-flag-balanced. By
Lemma 5.5, for each good i and either interval I ∈ {Im−1,2i−1, Im−1,2i}, we have

‖pw,I− pwI‖1 6 2

(
β +

2n−200β−3 logn

2m

)
6 2

(
β +2−50β−3 logn

)
.

18

Since interval Im,i is β -Blue-flag-balanced with respect to w, we have by the triangle inequality

‖pwm−1,2i−1− pwm−1,2i‖1 6 ‖pwm−1,2i−1− pw,Im−1,2i−1‖1 +‖pwm−1,2i− pw,Im−1,2i‖1 +‖pw,Im−1,2i−1− pw,Im−1,2i‖1

6 4(β +2−50β−3 logn)+β < 6β ,

assuming n is sufficiently large. Hence, for each good i, the substring wm,i is 6β -Blue-flag-balanced, as
desired.

6 Green case

Call a pair of strings (s, t) a Green pair if

1. s and t have the same number L of ones, and

2. there exists an 1 6 `6 ε5L such that s and t are both type `-Green.

In this section, we implement the Green strategy in the Overview (Section 2). Specifically, we show
(Lemma 6.2) that when we have strings s and t and some scale m∗ with many Green pairs (sm∗,i, tm∗,i),
then we can find a common subsequence of s and t of length (0.5+δ)|s|. At the highest level, we do this by
finding common subsequences within the Green pairs, and matching ones elsewhere, using the Prefix/Suffix
LCS Lemma (Lemma 3.7).

Within the Green pairs, we match ones everywhere, except that we switch to matching zeros at Green
flags in s and t.

Lemma 6.1 (Green matching lemma). Let L be a power of two. Let (s, t) be a Green pair where strings s
and t have L ones each. Then for ∆ uniformly random in [−L,L], we have

E∆ [LCS(Trim∆(s),Trim−∆(t))+ |∆|]> L+
ε5

8
L.

Proof. For a fixed ∆ in [−L,L], let G′
∆

be the set of indices i ∈ [L] such that i is Green `-flag of s and
i+∆ ∈ [L] and i+∆ is a Green `-flag of t. Let G∆ ⊆ G′

∆
be a subset of size at least |G′

∆
|/`−1 such that any

two distinct i, i′ ∈G∆ satisfy |i− i′|> `, and furthermore every i ∈G∆ satisfies i+∆+ `6 L. Such a G∆ can
be greedily selected from G′

∆
: we can get |G∆|/` indices such that any two differ by at least `, and, as any

i ∈ G′
∆

satisfies i+∆ 6 L, we can guarantee i+∆+ `6 L for all i ∈ G∆ by removing the largest index.

Since s and t are type `-Green, both s and t have at least ε2L Green `-flags. Thus, for each Green `-flag
i ∈ [L] of s, there are at least ε2L values of ∆ such that i ∈ G′

∆
. Hence, Pr∆∈[−L,L][i ∈ G′

∆
] > ε2L

2L+1 > ε2

3 . By

linearity of expectation, we have E∆∼[−L,L][|G′∆|]>
ε2

3 · ε
2L = ε4

3 L. Hence, as |G∆|> |G′∆|/`−1, we have

E∆∼[−L,L][|G∆|]>
ε4L
3`
−1 >

ε4L
4`

. (9)

Here we used that `6 ε5L.

It suffices to construct a large matching between the bits of s and the bits of t such that only equal bits are
matched and such that the matching is “non-crossing”, meaning that earlier bits of s are matched with earlier
bits of t. Indeed, the number of pairs in a non-crossing matching corresponds to the length of a common
subsequence of s and t.

19

1 0 1 1 0 1 1 0 0 0 0 0 1 0 0 1 1 0 1 1 1 0 1 0 0 1 1 0 0 1 1 0

1 1 0 1 0 0 0 1 0 1 1 0 0 0 1 1 1 1 0 1 0 0 0 0 1 0 1 0 1 0 1 1

Figure 5: The matching strategy for Lemma 6.1. In this example ` = 4 and ∆ = 0. The darker Green one-
bits are Green `-flags, and the light Green substrings following them are relatively zero-rich. The solid and
dashed black lines indicate the initial matching of ones, and the thick dark-green lines indicate matchings of
zeros that replace the matchings of ones. The matchings of ones that are replaced are dashed.

Consider the matching where we match the i-th one in s with the (i+∆)-th one in t. This matches
L−|∆| ones. In particular, for each i ∈ G∆, the ones in substring s[i+1,i+`−1] are exactly matched with the
ones in substring t[i+∆+1,i+∆+`−1]. In this matching, for each i ∈ G∆, replace the matching between the ones
of s[i+1,i+`−1] and the ones of t[i+∆+1,i+∆+`−1] with a matching between the zeros of s[i,i+`−1] and the zeros of
t[i+∆,i+∆+`−1]. All of the zeros of s[i,i+`−1] come after the i-th one of s, and all the zeros of t[i+∆,i+∆+`−1] come
after the (i+∆)-th one of t, which stays matched to the i-th one of s, so the matching stays non-crossing
after this replacement. Furthermore, since any two i ∈ G∆ differ by at least `, the substrings s[i,i+`−1] and
t[i+∆,i+∆+`−1] across i ∈ G∆ are pairwise disjoint, so these |G∆| replacements can be done simultaneously
while keeping the matching non-crossing and thus valid.

Substrings s[i,i+`−1] and t[i+∆,i+∆+`−1] each have at least max(1,(1+ε)(`−1)) zeros because i is a Green
`-flag of s and i+∆ is a Green `-flag of t. Thus, each replacement deletes (`−1) pairs of ones and adds at
least max(1,(1+ε)(`−1)) pairs of zeros. If `> 2, each replacement increases the number of pairs matched
by ε(`−1)> ε

2`, so the total number of bits in the new matching is at least L−|∆|+ ε

2`|G∆|. If `= 1, each
replacement increases the number of pairs matched by at least 1, so the total number of pairs in the new
matching is L−|∆|+ |G∆| which is also at least L−|∆|+ ε

2`|G∆|. Thus, for all ∆, we have shown

LCS(Trim∆(s),Trim−∆(t))> L−|∆|+ ε

2
`|G∆|.

Hence, we have by linearity of expectation and (9),

E∆∼[−L,L] [LCS(Trim∆(s),Trim−∆(t))+ |∆|]> L+
ε

2
` ·E∆∼[−L,L] [|G∆|]> L+

ε5

8
L,

as desired.

To find strings s and t that have LCS beating the 1/2 barrier, it is not enough to assume that s and t form
a Green pair and use Lemma 6.1, because we lose by the size of the random shift |∆|. To remedy this, we
break s and t into shorter substrings so that the loss from the random shift is at most the length of a single
substring. If a substantial fraction of these substrings form Green pairs, then we can combine the gains
using the Shifted LCS Lemma (Lemma 3.7) to get a large overall LCS, and the loss from the random shift
is negligible. The following lemma implements this idea, showing that many Green pairs gives large overall
LCS.

Lemma 6.2 (Many Green pairs implies large LCS). Let s and t be strings with the same length and the
same number L = 2n of ones, and let m∗ 6 n−10− logε−5. Suppose there exists a set Z ⊂ [2n−m∗] such that
|Z|> 2n−m∗/10 and for all i ∈ Z, the pair of substrings (sm∗,i, tm∗,i) is a Green pair. Then

LCS(s, t)>
(

0.5+
ε5

5000

)
|s|.

20

Proof. Let L∗ = 2m∗ . We may assume L > (0.5− ε5

1000)|s| or else we are done by having an LCS of (0.5+
ε5

1000)|s| zeros. By Lemma 6.1, we have, for all i ∈ Z,

E∆∼[−L∗,L∗] [LCS(Trim∆(sm∗,i),Trim−∆(tm∗,i))+ |∆|]> L∗+
ε5

8
L∗.

We have, by linearity of expectation,

E∆∼[−L∗,L∗]

[
∑
i∈Z

(LCS(Trim∆(sm∗,i),Trim−∆(tm∗,i))+ |∆|)

]
= ∑

i∈Z
E∆∼[−L∗,L∗] [LCS(Trim∆(sm∗,i),Trim−∆(tm∗,i))+ |∆|]

> |Z| ·
(

L∗+
ε5

8
L∗
)

.

Hence, we may fix a single ∆ for which |∆|6 L∗ and

∑
i∈Z

LCS(Trim∆(sm∗,i),Trim−∆(tm∗,i))> |Z| ·
(

L∗−|∆|+ ε5

8
L∗
)
.

Thus, the set Z satisfies the setup of Lemma 3.7 with n′ = n and m′ = m∗ and L′ = L and δ ′ = ε5

8 . Therefore
we get

LCS(s, t)>
(

1+
ε5

160

)
L >

(
1+

ε5

160

)(
0.5− ε5

1000

)
|s|>

(
0.5+

ε5

5000

)
|s|.

7 Blue-Yellow case

In this section, we implement the Blue-Yellow strategy described in the Overview (Section 2), which is the
most intricate part of our argument. Call a pair of strings (s, t) a Blue-Yellow pair if:

1. The strings s and t have the same length and the same number of ones.

2. There exists an m such that s and t are both of type m-Blue-Yellow.

3. Both s and t are 6γ-Blue-flag-balanced.

Note that (s, t) is a Blue-Yellow pair if and only if (t,s) is a Blue-Yellow pair.

We show that when we have strings s and t and some scale m∗ with many Blue-Yellow pairs (sm∗,i, tm∗,i)
among their substrings at scale m∗, then we can find a common subsequence of s and t of length (1/2+δ)|s|.
At the highest level (Lemma 7.3), we do this by finding common subsequences within the Blue-Yellow
pairs, and matching ones elsewhere. To find large common subsequences within Blue-Yellow pairs, we use
Lemma 7.1 and Lemma 7.2.

Lemma 7.1 shows that, for a Blue-Yellow pair (si, ti), we can find substrings s′i and t ′i of si and ti which
“gain in span,” meaning that LCS(s′i, t

′
i) > (1/4+ δ)(|s′i|+ |t ′i |). To do this, we match ones of si with ones

of ti, and switch to matching zeros when we simultaneously encounter a Blue flag in si and Yellow flag in ti
of the appropriate lengths. However, despite gaining in span, the lengths of si and ti may be quite different
(this offset comes from the zeros of the Blue flags in si spanning fewer ones than the zeros of the Yellow

21

flags in ti), so repeatedly applying Lemma 7.1 is insufficient. Indeed, this would cause us to systematically
match shorter substrings in s with longer substrings in t, leading the common subsequence obtained to reach
the end of t well before reaching the end of s.

The subsequent lemma, Lemma 7.2, shows that if two Blue-Yellow pairs (si, ti) and (si+1, ti+1) occur
consecutively in a string, then we can find a common subsequence that gains in span, like Lemma 7.1,
but also uses the same number of ones in both strings, creating a balanced matching. Roughly, the proof
follows by applying Lemma 7.1 twice, once on the pair (si, ti), matching more bits in ti, and once on the pair
(ti+1,si+1), matching more bits in si+1, so that together the number of bits used from s and t is equal. As a
result, in total our common subsequence spans the same number of bits in s and t but still gains in span. We
refer the reader to Figure 6 below for a visual illustration of this argument.

Thanks to Lemma 7.2, it follows that if we have many Blue-Yellow pairs, then we have many pairs
of subsequences (sisi+1, titi+1) of s and t where there is a common subsequence that gains in span. Thus,
using Lemma 3.7, we can piece these subsequences together, matching ones in between, giving a large LCS
overall; this is the content of Lemma 7.3.

Lemma 7.1 (Blue-Yellow matching lemma). Let (s, t) be a Blue-Yellow pair where each string has L = 2n

ones. Then, for ∆ uniformly random in [L/4],

Pr∆

[
LCS(s[1,(0.5+0.01ε)L], t[1+∆,(0.5+0.3ε)L+∆])> (0.5+0.24ε)L

]
> 0.9.

Proof. This proof is long, so we organize it into four parts. First, we use the assumptions to find many
disjoint Blue flags in s. Next, we match the Blue flags in s with candidate Yellow flags in t. We then show
that, on average, most of these candidate flags are in fact Yellow flags in t. Finally, with these ingredients in
place, we show the desired lower bound on the expected LCS over the random offset ∆.

Finding many disjoint Blue flags in s. Since (s, t) is a Blue-Yellow pair, the strings s and t are both type
m-Blue-Yellow for some integer m. Because s is type m-Blue-Yellow, the fraction of indices i ∈ [L] with
bs(i) ∈ [2m,γL] is at least ε2− γ . As s is 6γ-Blue-flag-balanced, by Lemma 5.2, the fraction of indices
i ∈ [L/2] with bs(i) ∈ [2m,γL] is at least ε2−4γ . Let 1 6 i1 < i2 < · · · be such that ik ∈ [L/2] is the smallest
index satisfying bs(ik)∈ [2m,γL] and, if k > 1, ik > ik−1+bs(ik−1). Intuitively, (ik)k>1 is a maximal sequence
of non-overlapping Blue flags in [L/2].

We claim that there is a smallest index d such that ∑
d
k=1 bs(ik)> 0.5(ε2−4γ)L. By the minimality of each

ik, the intervals [ik, ik +bs(ik)−1] for k = 1, . . . ,k′ together contain all indices i < ik′+1 with bs(i) ∈ [2m,γL].
Since there are at least 0.5(ε2− 4γ)L such indices i ∈ [L/2], as long as ∑

k′
k=1 bs(ik) < 0.5(ε2− 4γ)L, the

index ik′+1 is well defined, so in particular d is well defined. Furthermore, by minimality of d, we have
∑

d
k=1 bs(ik)6 0.5(ε2−4γ)L+ γL < 0.5ε2L. We thus have found indices i1, . . . , id where

id 6 L/2, ik+1 > ik +bs(ik) for each k < d, and ∑bs(ik) ∈ [0.5(ε2−4γ)L,0.5ε
2L].

Matching Blue flags in s with candidate Yellow flags in t. Define i0 = 1, `s,0 = 0, and id+1 = b(0.5+0.01ε)Lc.
For k ∈ [d], let `s,k

def
= bs(ik) > 1 for the lengths of these Blue flags in s, and let `t,k

def
= d0.56ε−1`s,ke for

k ∈ [0,d], corresponding to Yellow flag length we want to match in t. Here the constant 0.56ε−1 above is
chosen so that 0.9(`t,k− 1) > 0.5ε−1`s,k, so that a Yellow `t,k-flag guarantees roughly the same number of
zeros in t as a Blue `s,k-flag does in s.

For a subset K ⊂ [0,d], define `s,K
def
= ∑k∈K `s,k, and define `t,K similarly. Recall the shift ∆ is to be

chosen uniformly from [L/4]. For k ∈ [0,d +1], let jk
def
= ik +∆+ `t,[k−1]− `s,[k−1]. This jk is the index in t

22

that we would like to be a Yellow `t,k-flag to be matched with the Blue `s,k-flag at ik. The indices ik and jk
partition s and t into substrings as follows. Let

s′k
def
= s[ik,ik+`s,k−1] for k ∈ [1,d]

s′′k
def
= s[ik+`s,k,ik+1−1] for k ∈ [0,d]

t ′k
def
= t[jk, jk+`t,k−1] for k ∈ [1,d]

t ′′k
def
= t[jk+`t,k, jk+1−1] for k ∈ [0,d].

By construction of i0, . . . , id , we have ik + `s,k 6 ik+1 for k ∈ [0,d−1], and also id + `s,d 6 L/2+ γL < id+1.
Thus, the substrings defined above give a partition s[1,(0.5+0.01ε)L] = s′′0s′1s′′1s′2s′′2 . . .s

′
ds′′d , where the substrings

alternate between the regions s′k corresponding to Blue flags and the regions s′′k in between. Similarly, for
k ∈ [0,d−1] we have

jk + `t,k = ik +∆+ `t,k− `s,[k−1] = jk+1− (ik+1− ik− `s,k)6 jk+1,

and

jd+1 = id+1 + `t,[d]− `s,[d]+∆

6 1+L/2+ γL+0.57ε
−1 · `s,[d]+∆

6 1+L/2+0.01εL+0.57ε
−1 ·0.5ε

2L+∆

6 1+(0.5+0.3ε)L+∆.

Thus, we have that t ′′0 t ′1t ′′1 t ′2t ′′2 . . . t
′
dt ′′d is a prefix of t[1+∆,(0.5+0.3ε)L+∆], alternating between the regions t ′k that

we would like to be Yellow flags and the regions t ′′k in between.

Showing many jk’s are Yellow flags of t. We next show that typically, most of the jk’s as defined above are
Yellow flags. Let K be the set of k ∈ [d] for which the jk is a Yellow `t,k-flag of string t. Call a shift ∆∈ [L/4]
good if `t,K > (1− 24000ε)`t,[d], i.e. that when weighted by flag length, the set K comprises most of [d].
Since string t has type m-Blue-Yellow and `t,k > `s,k > 2m for every k ∈ [d], we know that for every k ∈ [d],
at most 600εL of the indices in [L] are not Yellow `t,k-flags in string t. Hence, if ∆ is chosen uniformly at
random in [L/4], for each k ∈ [d], the probability that k 6∈ K is at most 600εL/(L/4) = 2400ε . By linearity
of expectation,

E∆∼[L/4][`t,[d]− `t,K]6 2400ε`t,[d],

As `t,K 6 `t,[d] always, we have by Markov’s inequality on `t,[d]− `t,K that

Pr[∆ is good] = 1−Pr
[
`t,[d]− `t,K > (24000ε)`t,[d]

]
> 1−

2400ε`t,[d]

24000ε`t,[d]
= 0.9.

Lower bounding expected LCS. Since s′′0s′1s′′1s′2s′′2 . . .s
′
ds′′d = s[1,(0.5+0.01ε)L] and t ′′0 t ′1t ′′1 t ′2t ′′2 . . . t

′
dt ′′d is a prefix of

t[1+∆,(0.5+0.3ε)L+∆+1], it suffices to show that, when ∆ is good,

LCS(s′′0s′1s′′1s′2s′′2 . . .s
′
ds′′d , t

′′
0 t ′1t ′′1 t ′2t ′′2 . . . t

′
dt ′′d)> (0.5+0.24ε)L.

As the index ik is a Blue `s,k-flag in s, substring s′k has at least ε−1(`s,k− 1) > 0.5ε−1`s,k zeros. If k ∈ K,
then jk is a Yellow `t,k-flag in t, so substring t ′k has at least 0.9(`t,k−1) > 0.5ε−1`s,k zeros as well. Hence,
for k ∈ K, we have

LCS(s′k, t
′
k)> 0.5ε

−1`s,k.

23

Furthermore, for k ∈ [0,d], we have that s′′k has ik+1− ik− `s,k ones, and the number of ones in t ′′k is also

jk+1− jk− `t,k = (ik+1 +∆+ `t,k− `s,[k])− (ik +∆+ `t,[k−1]− `s,[k−1])− `t,k = ik+1− ik− `s,k,

so for all k ∈ [0,d],
LCS(s′′k , t

′′
k)> ik+1− ik− `s,k.

Indeed, we now have that for any good ∆,

LCS(s[1,(0.5+0.01ε)L], t[1+∆,(0.5+0.3ε)L+∆]) >
d

∑
k=1

LCS(s′k, t
′
k)+

d

∑
k=0

LCS(s′′k , t
′′
k)

> ∑
k∈K

LCS(s′k, t
′
k)+

d

∑
k=0

(ik+1− ik− `s,k)

> 0.5ε
−1`s,K +(id+1− i0− `s,[d]) (10)

> 0.5ε
−1(1−24000ε)`s,[d]+(0.5+0.01ε)L−2− `s,[d] (11)

= 0.5ε
−1(1−24002ε)`s,[d]+(0.5+0.01ε)L−2

> 0.5ε
−1(1−24002ε)(0.5(ε2−4γ)L)+(0.5+0.01ε)L (12)

> (0.5+0.24ε)L. (13)

In (10), we used that `s,0 = 0. In (11), we used that id+1− i0 = b(0.5+0.01ε)Lc−1 > (0.05+0.01ε)L−2.
In (12), we used that `s,[d] = ∑

d
k=1 bs(ik)> 0.5(ε2−4γ)L by construction of i1, . . . , id . In (13), we used that

ε 6 10−6 and γ 6 0.001ε2. This completes the proof as the probability that ∆ ∈ [L/4] is good is at least
0.9.

The next lemma shows that when two Blue-Yellow pairs occur consecutively (for technical reasons, we
require that the second Blue-Yellow pair occurs on the reversed strings), we get a large common subsequence
that also spans the same number of ones in both s and t. This allows us to piece together many such
matchings and apply the Prefix/Suffix LCS Lemma (Lemma 3.7), giving an overall gain in LCS over the 1/2
barrier.

Lemma 7.2 (Blue-Yellow balanced matching lemma). Let s= s1s2 and t = t1t2 such that substrings s1,s2, t1, t2
each have L ones and start with a one, and the pairs (s1, t1) and (rev(t2), rev(s2)) are Blue-Yellow pairs.
Then for ∆ uniformly random in [L/4], we have

E∆∼[L/4] [LCS(Trim∆(s),Trim−∆(t))+∆]> 2L+0.12εL.

Proof. We have Trim∆(s) and Trim−∆(t) each have 2L−∆ ones, so we always have

LCS(Trim∆(s),Trim−∆(t))+∆ > 2L.

Thus, because 0.8 ·0.16εL > 0.12εL, it suffices to show that

Pr∆∼[L/4] [LCS(Trim∆(s),Trim−∆(t))+∆ > 2L+0.16εL]> 0.8.

Call ∆ good if both of the following inequalities are true:

LCS
(
(s1)[1,(0.5+0.01ε)L],(t1)[1+∆,(0.5+0.3ε)L+∆]

)
> (0.5+0.24ε)L (14)

LCS
(
rev(t2)[1,(0.5+0.01ε)L], rev(s2)[1+∆,(0.5+0.3ε)L+∆]

)
> (0.5+0.24ε)L. (15)

24

By Lemma 7.1, first applied to the Blue-Yellow pair (s1, t1), then applied to the Blue-Yellow pair
(rev(t2), rev(s2)), each of (14) and (15) holds with probability at least 0.9 for ∆ sampled uniformly from
[L/4], so a random ∆ in [L/4] is good with probability at least 0.8.

Fix a good ∆. We show that

LCS(Trim∆(s),Trim−∆(t))> 2L−∆+0.16εL. (16)

By the second part of Lemma 3.1,

rev(t2)[1,(0.5+0.01ε)L] = rev
(
(t2)[1+(0.5−0.01ε)L,L]

)
rev(s2)[1+∆,(0.5+0.3ε)L+∆] = rev

(
(s2)[1+(0.5−0.3ε)L−∆,L−∆]

)
.

Hence since rev(·) preserves LCS (Lemma 3.3), we have

LCS
(
(t2)[1+(0.5−0.01ε)L,L],(s2)[1+(0.5−0.3ε)L−∆,L−∆]

)
= LCS

(
rev(t2)[1,(0.5+0.01ε)L], rev(s2)[1+∆,(0.5+0.3ε)L+∆]

)
> (0.5+0.24ε)L .

s

t

s1 s2

t1 t2

Trim∆(s)

Trim−∆(t)

sinit smid send

tinit tmid tend

(0.5+0.24ε)L (1−0.31ε)L−∆ (0.5+0.24ε)L

1 (0.5+0.01ε)L (1.5−0.3ε)L−∆ 2L−∆

1+∆ (0.5+0.3ε)L+∆ (1.5−0.01ε)L 2L

Figure 6: Lemma 7.2. We obtain two “trapezoids” with good LCS obtained from applying Lemma 7.1 to
two Blue-Yellow pairs, (s1, t1) and (rev(s2), rev(t2)), and match ones in between (in the grey region), giving
an improved LCS for Trim∆(s) and Trim−∆(t).

Writing Trim∆(s) = sinitsmidsend and Trim−∆(t) = tinittmidtend where (see Figure 6)5

sinit
def
= s[1,(0.5+0.01ε)L] = (s1)[1,(0.5+0.01ε)L]

smid
def
= s[(0.5+0.01ε)L,(1.5−0.3ε)L−∆+1]

send
def
= s[(1.5−0.3ε)L−∆+1,2L−∆] = (s2)[(0.5−0.3ε)L−∆+1,L−∆]

tinit
def
= t[1+∆,(0.5+0.3ε)L+∆] = (t1)[1+∆,(0.5+0.3ε)L+∆]

tmid
def
= t[(0.5+0.3ε)L+∆,(1.5−0.01ε)L+1]

tend
def
= t[(1.5−0.01ε)L+1,L] = (t2)[(0.5−0.01ε)L+1,L] .

5A negligible detail: we do not need to shift the endpoints of substrings smid and tmid by 1 because L is a power of two so εL is
never an integer

25

We have smid and tmid both have at least (1−0.31ε)L−∆ ones. Hence, we have

LCS(Trim∆(s),Trim−∆(t)) > LCS(sinit, tinit)+LCS(smid, tmid)+LCS(send, tend)

> (0.5+0.24ε)L+(1−0.31ε)L−∆+(0.5+0.24ε)L

> 2L−∆+0.16εL,

establishing (16) as desired.

Combining Lemma 7.2 with the Prefix/Suffix LCS Lemma (Lemma 3.7) shows that when two strings
have many Blue-Yellow pairs among their substrings at some scale, we get a large LCS.

Lemma 7.3 (Many Blue-Yellow pairs implies good LCS). Let s and t be strings with the same length and
the same number L= 2n of ones, and let m∗6 n−10− logε−1. Suppose there exists a set Z⊂ [2n−m∗−1] such
that |Z| > 2n−m∗−1/10 and for all i ∈ Z, the substring pairs (sm∗,2i−1, tm∗,2i−1) and (rev(sm∗,2i), rev(tm∗,2i))

are Blue-Yellow pairs. Then,

LCS(s, t)> (1+0.0001ε) |s|. (17)

Proof. Let L∗ = 2m∗ . We may assume L > (0.5− 0.001ε)|s| or else we are done by having an LCS of
(0.5+0.001ε)|s| zeros. For all i ∈ Z, substrings sm∗+1,i = sm∗,2i−1sm∗,2i and tm∗+1,i = tm∗,2i−1tm∗,2i satisfy the
setup of Lemma 7.2 with L = L∗, so we have, for all i ∈ Z,

E∆∼[L∗/4]
[

LCS(Trim∆(sm∗+1,i),Trim−∆(tm∗+1,i))+∆
]
> 2L∗+0.12εL∗ .

By linearity of expectation, we have

E∆∼[L∗/4]

[
∑
i∈Z

[
LCS(Trim∆(sm∗+1,i),Trim−∆(tm∗+1,i))+∆

]]
> |Z| · (2L∗+0.12εL∗) .

Hence, we may fix a ∆ ∈ [L∗/4] for which

∑
i∈Z

LCS(Trim∆(sm∗+1,i),Trim−∆(tm∗+1,i))> |Z| · (2L∗−∆+0.12εL∗) .

Thus, set Z satisfies the setup of Lemma 3.7 with n′ = n and m′ = m∗+ 1 and L′ = 2L∗ and δ ′ = 0.06ε .
Hence, by Lemma 3.7,

LCS(s, t)>
(

1+
0.06ε

20

)
L > (1+0.003ε)(0.5−0.001ε)|s|> (0.5+0.0001ε) |s| .

8 Putting it all together

8.1 Statistics

We now prove our main theorem. The first step is to define the statistics of a string w.

Definition 8.1 (Statistics). Let w be a string with L = 2n ones, and let n0
def
= max(0,n− 200γ−3 logn). Let

the statistics of string w be a table of the following data:

26

1. For all m > n0 and i > 1, the number of zeros and the number of ones in wm,i (the number of ones is
always 2m).

2. For all m > n0 and i > 1, the type (see Definition 4.3) of string wm,i.

3. The set I n0(w) of pairwise disjoint intervals I ⊂ [L] that each have size |I| > 2n0 such that wI is
imbalanced for each I ∈ I n0(w), and the sum ∑I∈I n0 (w) |I| is maximized (if multiple such I n0(w)
exist, break the tie arbitrarily).

4. For each I ∈ I n0(w), the indices x and y such that substring wI starts at the x-th bit and ends at the
y-th bit of s.

We say two strings s and t agree on statistics if their tables of statistics are identical.

This next lemma shows that it is possible to pigeonhole strings by their statistics, by showing that there
are not too many possible statistics for a string.

Lemma 8.2. There are at most 2poly logN possible tables of statistics for a string of length N.

Proof. A string w of length N has at most

n

∑
m=n0

2n−m = poly logN

substrings wm,i that are considered in its table of statistics. Furthermore, for each substring wm,i, there are
at most N choices for the number of zeros and the number of ones, and at most O(N) choices for the type
of wm,i (there is one Imbalanced type, O(N) Green types, and O(logN) Blue-Yellow types), so there are
at most 2poly logN choices for all the types and zero/one-counts in the table. Lastly, I n0(w) has at most
2n−n0 = logOε (1) N intervals (because intervals have length at least 2n0 and are disjoint), so there are at most
2poly logN choices for I n0(w) and the locations of the endpoints of the intervals in I n0(w).

8.2 The Imbalanced case

This next lemma covers an easy case, when s has many large imbalanced intervals. In this case, our pigeon-
holing by statistics guarantees that s and t are imbalanced in common locations, allowing us to apply the
imbalanced strategy to find a large LCS.

Lemma 8.3. Let s and t be strings that each start with a one, agree on statistics, and have L = 2n ones
where n is sufficiently large. Suppose there exists a set I of pairwise disjoint intervals I that each satisfy
|I|> 2n−200γ−3 logn such that sI is imbalanced for each I ∈I and ∑I∈I |I|> ε5

10 L. Then

LCS(s, t)>
(

0.5+
ε6

150

)
|s|.

Proof. Let n0 = n− 200γ−3 logn. We may assume that L > |s|
3 , or else s and t each have 2|s|

3 zeros and
LCS(s, t)> 2

3 |s|> (0.5+ ε6

150)|s|. Since s and t agree on statistics, we have I n0(s) = I n0(t). Furthermore,
as I n0(s) maximizes the sum ∑I∈I n0 (s) |I|, we have ∑I∈I n0 (s) |I|> ∑I∈I |I|> ε5

10 L. Let I n0(s) =I n0(t) =

27

{I1, . . . , Ik}, with I1 < I2 < · · ·< Ik (these intervals are pairwise disjoint so the order is the obvious one). We
thus may write

s = s′′0s′1s′′1s′2 · · ·s′ks′′k , t = t ′′0 t ′1t ′′1 t ′2 · · · t ′kt ′′k

where s′j = sI j for j ∈ [1,k], and substring s′′j consists of the bits between the end of substring s′j (or the
beginning of string s if j = 0) and the beginning of substring s′j+1 (or the end of string s if j = k), and the
partition of t is defined analogously. By the definitions of sI j and tI j , for j ∈ [1,k], s′j and t ′j have the same
number |I j| of ones, and for j ∈ [0,k], s′′j and t ′′j have the same number of ones as well. Further, since s
and t agree on statistics, for all j ∈ [1,k], substrings sI j and tI j start and end in the same positions in their
respective strings s and t. In particular, s′j and t ′j have the same length for all j ∈ [1,k], and s′′j and t ′′j have
the same length for all j ∈ [0,k].

For each j ∈ [0,k], the substrings s′′j and t ′′j have the same length and the same number of ones, so
LCS(s′′j , t

′′
j) > |s′′j |/2. Additionally, for j ∈ [1,k] the number of zeros in substrings s′j and t ′j are equal and

not in (1± ε)|s′j|. Hence, by Lemma 3.6, we have LCS(s′j, t
′
j)> (1/2+ ε/5)|s′j|. Therefore we have

LCS(s, t)>
k

∑
j=1

LCS(s′j, t
′
j)+

k

∑
j=0

LCS(s′′j , t
′′
j) >

k

∑
j=1

(
1
2
+

ε

5

)
|s′j|+

k

∑
j=0

|s′′j |
2

=
|s|
2
+

ε

5

k

∑
j=1
|s′j| >

|s|
2
+

ε6L
50

>

(
1
2
+

ε6

150

)
|s|,

where the last two inequalities used that |s′j|> |I j|, ∑
k
j=1 |I j|> ε5L

10 , and L > |s|
3 .

8.3 Combining the arguments for the Imbalanced, Green, and Blue-Yellow cases

We now prove the main technical lemma, which shows that two strings that agree on statistics have LCS
beating the 1/2 barrier. This establishes Theorem 1.1 up to a pigeonhole argument and an assumption
about the number of ones being a power of two. The proof consists of piecing together (1) the Imbalanced
case, when s and t have many substrings of Imbalanced type, Lemma 8.3, (2) the Green case, when s and
t have many substrings of Green type, and (3) the Blue-Yellow case, when s and t have many substrings
of Blue-Yellow type. These three cases correspond to the three matching strategies stated in the Overview
(Section 2).

Lemma 8.4. There exists an absolute constant δ = ε6

150 such that the following holds for n sufficiently large.
Let s and t be strings that each start with a one, have L = 2n ones each, such that s and t agree on statistics,
and rev(s) and rev(t) agree on statistics. Then LCS(s, t)> (0.5+δ)|s|.

Proof. First, suppose that at least γ2L values of i ∈ [L] satisfy bs(i)> 2n−200γ−3 logn. Define 1 6 i1 < · · ·< id
such that ik is the smallest index such that bs(ik) > 2n−200γ−3 logn and ik > ik−1 + bs(ik−1) if k > 1, and d is
the largest index such that id is well-defined. By the definition of bs(ik), index ik is a Blue bs(ik)-flag in s,

so for the interval Ik
def
= [ik,min(ik +bs(ik)−1,L)], substring sIk is imbalanced by Lemma 3.5. Furthermore,

since ik +bs(ik)6 ik+1 for k = 1, . . . ,d−1, we have I1, . . . , Id are pairwise disjoint. Lastly, by minimality of
each ik, each index i ∈ [L] with bs(i) > 2n−200γ−3 logn is in some interval Ik. Thus, ∑ |Ik| > γ2L > ε5

10 . Thus,
we may apply Lemma 8.3 to strings s and t, giving LCS(s, t)> (0.5+δ)|s|. Hence, we may assume for the
rest of the argument that

• At most γ2L values of i ∈ [L] satisfy bs(i)> 2n−200γ−3 logn.

28

Similarly, we may assume

• At most γ2L values of i ∈ [L] satisfy brev(s)(i) > 2n−200γ−3 logn (applying Lemma 8.3 to rev(s) and
rev(t)),

• At most γ2L values of i ∈ [L] satisfy bt(i)> 2n−200γ−3 logn (applying Lemma 8.3 to t and s), and

• At most γ2L values of i ∈ [L] satisfy brev(t)(i) > 2n−200γ−3 logn (applying Lemma 8.3 to rev(t) and
rev(s)).

Hence, we may apply the Substring Blue-flag-balance Lemma, Lemma 5.6, to each of the strings s,
rev(s), t, and rev(t) with β = γ . This shows the existence of some scale m∗ with n−10− logδ−1 > m∗ >
n−150γ−3 logn such that the following hold:

• For at least (1−3γ) ·2n−m∗ values of i ∈ [2n−m∗], the substring sm∗,i is 6γ-Blue-flag-balanced,

• For at least (1−3γ) ·2n−m∗ values of i ∈ [2n−m∗], the substring rev(sm∗,i) is 6γ-Blue-flag-balanced,

• For at least (1−3γ) ·2n−m∗ values of i ∈ [2n−m∗], the substring tm∗,i is 6γ-Blue-flag-balanced, and

• For at least (1−3γ) ·2n−m∗ values of i ∈ [2n−m∗], the substring rev(tm∗,i) is 6γ-Blue-flag-balanced.

Indeed, for each bullet, Lemma 5.6 implies there are at most 32γ−3 logn values of m∗ for which the condition
does not hold, so among 150γ−3 logn−10− logδ−1 > 128γ−3 logn values of m∗, some m∗ allows all four
conditions to hold. Fix this m∗ and let

L∗ def
= 2m∗ .

Since the number of ones in s and t are a power of two, s and t agree on statistics, and m∗ > n0, where n0 is
from Definition 8.1, we have s = sm∗,1 · · ·sm∗,2n−m∗ and t = tm∗,1, . . . , tm∗,2n−m∗ , where, for all i = 1, . . . ,2n−m∗ ,
substrings sm∗,i and tm∗,i have the same number L∗ of ones and the also the same number of zeros, and
thus have the same length. Similarly, we may write rev(s) = rev(sm∗,2n−m∗) · · · rev(sm∗,1) and rev(t) =
rev(tm∗,2n−m∗) · · · rev(tm∗,1).

Since n is sufficiently large, for all i ∈ [2n−m∗], substrings sm∗,i and rev(sm∗,i) have types by Lemma 4.4.
Let Z1 (resp. Z̄1) be the set of i ∈ [2n−m∗] such that substring sm∗,i (resp. rev(sm∗,i)) is Imbalanced. Let Z2

(resp. Z̄2) be the set of i ∈ [2n−m∗] such that substring sm∗,i (resp. rev(sm∗,i)) is `-Green for some `. Let Z3

(resp. Z̄3) be the set of i ∈ [2n−m∗] such that substring sm∗,i (resp. rev(sm∗,i)) is m-Blue-Yellow for some m.
Since |Z1|+ |Z2|+ |Z3|= |Z̄1|+ |Z̄2|+ |Z̄3|= 2n−m∗ , we have the following cases covering all possibilities.

Case 1a. |Z1| > 2n−m∗/10. In this case, for each i ∈ Z1, because sm∗,i is type Imbalanced, there exists
some interval Ji ⊂ Im∗,i with |Ji|> ε5L∗ > 2n−200γ−3 logn such that sJi is imbalanced. Since the intervals Im∗,i

are pairwise disjoint, the intervals Ji are pairwise disjoint. Then setting I ′ = {Ji : i ∈ Z1}, we have that
∑J∈I ′ |J|> ε5L∗ · |Z1|= ε5

10 ·L. Hence, by Lemma 8.3, we have LCS(s, t)> (0.5+ ε6

150)|s|= (0.5+δ)|s|.

Case 1b. |Z̄1| > 2n−m∗/10. By an identical argument to Case 1a, we can show LCS(rev(s), rev(t)) >
(0.5+δ)|s|, which implies that LCS(s, t)> (0.5+δ)|s|.

Case 2a. |Z2|> 2n−m∗/10. Since m∗ 6 n−10− logε−5 by definition of m∗, we may apply Lemma 6.2 to
strings s and t with subset Z ⊂ [2n−m∗]. By Lemma 6.2, we have LCS(s, t)> (0.5+ ε5

5000)|s|> (0.5+δ)|s|.

Case 2b. |Z̄2| > 2n−m∗/10. By an identical argument to Case 2a, we can show LCS(rev(s), rev(t)) >
(0.5+δ)|s|, which implies that LCS(s, t)> (0.5+δ)|s|.

29

Case 3. |Z3| > 4
5 ·2

n−m∗ and |Z̄3| > 4
5 ·2

n−m∗ . Let Z′3 be the set of i ∈ [2n−m∗−1] such that the following
hold:

• Substring sm∗,2i−1 is 6γ-Blue-flag-balanced.

• Substring tm∗,2i−1 is 6γ-Blue-flag-balanced.

• Substring rev(sm∗,2i) is 6γ-Blue-flag-balanced.

• Substring rev(tm∗,2i) is 6γ-Blue-flag-balanced.

• We have 2i−1 ∈ Z3.

• We have 2i ∈ Z̄3.

By choice of m∗, the first four conditions above each fail for at most 3γ ·2n−m∗ values of i∈ [2n−m∗−1]. Since
|Z3|> 4

5 ·2
n−m∗ , the fifth condition fails for at most 1

5 ·2
n−m∗ values of i, and similarly the last condition fails

for at most 1
5 ·2

n−m∗ values of i. Since there are 1
2 ·2

n−m∗ values of i ∈ [2n−m∗−1], we have that Z′3 has size at
least (1

2 −12γ− 2
5) ·2

n−m∗ > 1
10 ·2

n−m∗−1 (recall γ = 10−15 is very small).

Fix i∈ Z′3. We claim that strings s and t with parameter m∗ and set Z satisfy the setup of Lemma 7.3. The
bound on m∗ 6 n−10− logε−1 follows from the definition of m∗. We thus need to show that, for all i ∈ Z′3,
the pairs (sm∗,2i−1, tm∗,2i−1) and (rev(sm∗,2i), rev(tm∗,2i)) are a Blue-Yellow pairs. Since 2i− 1 ∈ Z3, there
exists some integer m such that substring sm∗,2i−1 is type m-Blue-Yellow, and since s and t agree on statistics,
substring tm∗,2i−1 is also type m-Blue-Yellow. Since i ∈ Z′3, we have that strings sm∗,2i−1 and tm∗,2i−1 are both
6γ-Blue-flag-balanced, so (sm∗,2i−1, tm∗,2i−1) form a Blue-Yellow pair. Similarly, since 2i∈ Z̄3 and rev(s) and
rev(t) agree on statistics, there exists some integer m′ such that substrings rev(sm∗,2i) = rev(s)m∗,2n−m∗−(2i−1)
and rev(tm∗,2i) have type m′-Blue-Yellow. Since i∈ Z′3, we have that strings rev(sm∗,2i) and rev(tm∗,2i) are both
6γ-Blue-flag-balanced, so (rev(sm∗,2i), rev(tm∗,2i)) form a Blue-Yellow pair, as desired. Thus, by Lemma 7.3,
we have

LCS(s, t)> (0.5+0.0001ε) |s|> (0.5+δ) |s|.

In all cases we have shown that LCS(s, t)> (0.5+δ)|s|, proving the lemma.

8.4 Finishing the proof

To prove the main theorem, we need to find two strings that agree on statistics, and remove the assumption
that the number of ones is a power of two.

Theorem 8.5. There exists absolute constants A > 0 and δ = ε6

900 such that the following holds for N
sufficiently large. Let C ⊂ {0,1}N be a code with at least 2logA N strings. Then C contains two strings s and
t such that LCS(s, t)> (0.5+δ)N.

Proof. By Lemma 8.2, there exists a constant A′ such that the number of possible tables of statistics for a
string of length N is at most 2O(logA′ N). We pick A = A′+1. By removing at most half of the elements of C,
we may assume that every string in C starts with the same bit, and without loss of generality we may assume
that every string starts with a one. Let 2n be the largest power of two less than N/3, so that 2n > N/6. If
there exist two strings s and t in C with less than 2n ones, then we have LCS(s, t)> 2N/3, so we may assume
that all but at most one string in C has at least 2n ones.

By the pigeonhole principle, there exist two strings s, t ∈C such that

30

• s and t have the same number L > 2n of ones,

• sn,1 and tn,1 agree on statistics, and

• rev(sn,1) and rev(tn,1) agree on statistics.

Indeed, the total number of tables of statistics for each of substrings sn,1 and rev(sn,1) is at most 2O(logA′ N),

so the total number of pigeonholes here is at most 2O(logA′ N) < 2logA N = |C| if N is sufficiently large.

Let s = sn,1s′ and t = tn,1t ′. Since strings s and t have the same length and same number of ones, and
substrings sn,1 and tn,1 agree on statistics, we have that the suffixes s′ and t ′ have the same length and the
same number of ones as well. Thus, LCS(s′, t ′)> |s′|/2. By applying Lemma 8.4 to strings sn,1 and tn,1, we
have

LCS(sn,1, tn,1)>
(

0.5+
ε6

150

)
|sn,1|.

Hence, we have

LCS(s, t)> LCS(sn,1, tn,1)+LCS(s′, t ′)>
(

0.5+
ε6

150

)
|sn,1|+0.5|s′|= 0.5N +

ε6

150
|sn,1|> (0.5+δ)N,

as desired. In the last inequality, we used that |sn,1|> 2n > N/6.

9 Conclusion and open questions

We gave the first non-trivial upper bound the zero-rate threshold for bit-deletions, showing that it is strictly
less than 1/2. We achieved this via a structural lemma that classifies the oscillation patterns of 0’s and 1’s in
a balanced string, and then exploiting it to carefully orchestrate a noticeable advantage over just matching
1’s by switching to matching 0’s at judicious points.

Now that we finally have a resolution to the first order question of whether pthr
del =

1/2, it opens up the
opportunity to address several related questions. We list some salient directions for future work below.

1. An obvious and major challenge is to determine the exact value of the zero-rate threshold for bit-
deletions which remains unknown. Our current state of knowledge is

√
2− 1 6 pthr

del 6 1/2− δ0, for
δ0 > 0 given by Theorem 1.1. The true value of 1/2− pthr

del is presumably much bigger than the mi-
nuscule δ0 our proof yields. We made no attempt to optimize δ0, but it is likely to be very small
regardless. We hazard a guess that the true value might be closer to the lower bound. More auda-
ciously, one might even postulate that pthr

del =
√

2−1 since this threshold appears to be the limit of the
techniques in the spirit of [BGH17].

2. As an interesting and necessary step toward improving the upper bound on pthr
del, can one obtain better

upper bounds on the span of a large enough code (which are implied by, but possibly easier to establish
than, a lower bound on LCS)? Here, we define the span of two strings s and t as the minimum ratio
(|s′|+ |t ′|)/LCS(s′, t ′) over all pairs of (contiguous) substrings s′ ⊆ s and t ′ ⊆ t which are of lengths
|s′| > Ω(|s|), |t ′| > Ω(|t|), and the span of a code is the minimum span between any two distinct
strings in the code. Note that if C has span α , then the LCS of any two distinct strings in C is at most
2N/α . The codes of [BGH17] are based on the construction of codes (a variant of the Bukh-Ma code)
of growing size with span at least 2+

√
2. Prior to our work, no non-trivial upper bound (bounded

away from the trivial limit of 4) was known on the span of positive-rate codes.

31

We point out that using our techniques, proving that there exist two codewords with span at most
4−δ0 is easier than proving there exist two codewords with LCS at least (1/2+δ)N. To show span
at most 4−δ0, matched flags do not have to be at similar locations in the two strings, so we have more
flexibility with our random shifting argument. In particular, we can apply the structure lemma to
entire codewords rather than dyadic substrings as we do in Lemma 8.4, so we do not need to combine
LCS in prefixes/suffixes with Lemma 3.7. Furthermore, in the Blue-Yellow case, it is okay to use an
imbalanced matching where say, we match Blue flags only in s, consuming more ones in t, and hence
we do not need the string regularity and string reversal rev(·) arguments which were used to ensure a
balanced matching.

3. Our quasi-polynomial in N upper bound on the size of codes C ⊂ {0,1}N with LCS(C)6 (1/2+δ0)N
can likely be improved with some more care in the argument, though we settled for it for sake of
simplicity. We conjecture that in fact |C|6 O(logN). This would be tight, as the Bukh-Ma code has
size Ω(logN) and LCS(C)6 (1/2+δ0)N. As evidence towards this conjecture, our techniques can be
used to show that |C|6 O(logN) when any two codewords have span at most 4−δ0, by following the
sketch in the previous item.

4. For the q-ary alphabet, the q-ary codes in [BGH17] correct a fraction of deletions approaching 1−
2

q+
√

q , and thus we have

1− 2
q+
√

q 6 pthr
del(q)6 1− 1+2δ0

q . (18)

An interesting question is to determine the infimum of constants c such that pthr
del(q) > 1− c/q for

large enough q. The bounds in (18) imply that c ∈ [1+2δ0,2].

5. In the list-decoding model, there are codes of rate poly(ε) which can be list-decoded from a fraction
1/2− ε of deletions with list-size poly(1/ε). Can one prove a lower bound L(ε) on the list-size for
list decoding from (1/2− ε) fraction of deletions such that L(ε)→ ∞ as ε → 0? What is the optimal
growth rate of the list-size as a function of ε? (For correcting bit-flips, the optimal list-size is known
to be Θ(1/ε2) [Bli86, GV10].)

6. A pair of twins in a string s is a pair of two disjoint subsequences (recall that in our language sub-
sequences of strings are not necessarily contiguous, unlike substrings) of s which are identical. A
natural question to consider is: what is the length t(N) of the longest pair of twins guaranteed to exist
in any s ∈ {0,1}N? This question is relevant for two reasons. First, the question of finding twins
within a single string is closely related to the problem of finding longest common subsequences be-
tween distinct strings. Second, the twins problem was solved asymptotically by [APP13] using the
regularity technique, which is also one of the ingredients in our work. It is now known that

N
2
−O

(N(log logN)1/4

(logN)1/4

)
6 t(N)6

N
2
−Ω(logN),

and it would be interesting to determine the exact growth rate of the lower-order term.

Acknowledgments. The authors are grateful to Jacob Fox for helpful conversations and for bringing
[APP13] to our attention.

32

References

[ACK+19] Sergey Avgustinovich, Julien Cassaigne, Juhani Karhumäki, Svetlana Puzynina, and Aleksi
Saarela. On abelian saturated infinite words. Theoretical Computer Science, 792:154–160,
2019.

[APP13] Maria Axenovich, Yury Person, and Svetlana Puzynina. A regularity lemma and twins in words.
Journal of Combinatorial Theory, Series A, 120(4):733–743, 2013.

[BGH17] Boris Bukh, Venkatesan Guruswami, and Johan Håstad. An improved bound on the fraction of
correctable deletions. IEEE Trans. Inf. Theory, 63(1):93–103, 2017.

[BGZ18] Joshua Brakensiek, Venkatesan Guruswami, and Samuel Zbarsky. Efficient low-redundancy
codes for correcting multiple deletions. IEEE Trans. Inf. Theory, 64(5):3403–3410, 2018.

[Bli86] Vladimir M. Blinovsky. Bounds for codes in the case of list decoding of finite volume. Problems
of Information Transmission, 22(1):7–19, 1986.

[BM14] Boris Bukh and Jie Ma. Longest common subsequences in sets of words. SIAM J. Discrete
Math., 28(4):2042–2049, 2014.

[BZ16] Boris Bukh and Lidong Zhou. Twins in words and long common subsequences in permutations.
Israel Journal of Mathematics, 213(1):183–209, 2016.

[CJLW18] Kuan Cheng, Zhengzhong Jin, Xin Li, and Ke Wu. Deterministic document exchange protocols,
and almost optimal binary codes for edit errors. In Proceedings of the 59th IEEE Annual
Symposium on Foundations of Computer Science, pages 200–211, 2018.

[CR21] Mahdi Cheraghchi and João L. Ribeiro. An overview of capacity results for synchronization
channels. IEEE Trans. Inf. Theory, 67(6):3207–3232, 2021.

[CS75] Václáv Chvatal and David Sankoff. Longest common subsequences of two random sequences.
Journal of Applied Probability, pages 306–315, 1975.

[GHS20] Venkatesan Guruswami, Bernhard Haeupler, and Amirbehshad Shahrasbi. Optimally resilient
codes for list-decoding from insertions and deletions. In Proccedings of the 52nd Annual ACM
Symposium on Theory of Computing, pages 524–537, 2020.

[GL16] Venkatesan Guruswami and Ray Li. Efficiently decodable insertion/deletion codes for high-
noise and high-rate regimes. In IEEE International Symposium on Information Theory, ISIT
2016, Barcelona, Spain, July 10-15, 2016, pages 620–624. IEEE, 2016.

[GL20] Venkatesan Guruswami and Ray Li. Coding against deletions in oblivious and online models.
IEEE Trans. Inf. Theory, 66(4):2352–2374, 2020.

[GMR+21] Venkatesan Guruswami, Jonathan Mosheiff, Nicolas Resch, Shashwat Silas, and Mary Woot-
ters. Sharp threshold rates for random codes. In 12th Innovations in Theoretical Computer Sci-
ence Conference, volume 185 of LIPIcs, pages 5:1–5:20. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2021.

33

[GV10] Venkatesan Guruswami and Salil P. Vadhan. A lower bound on list size for list decoding. IEEE
Trans. Inf. Theory, 56(11):5681–5688, 2010.

[GW17] Venkatesan Guruswami and Carol Wang. Deletion codes in the high-noise and high-rate
regimes. IEEE Trans. Information Theory, 63(4):1961–1970, 2017.

[Hae19] Bernhard Haeupler. Optimal document exchange and new codes for insertions and deletions. In
Proceedings of the 60th IEEE Annual Symposium on Foundations of Computer Science, pages
334–347, 2019.

[HKPS21] Hiep Hàn, Marcos Kiwi, and Matı́as Pavez-Signé. Quasi-random words and limits of word
sequences. In Latin American Symposium on Theoretical Informatics, pages 491–503. Springer,
2021.

[HS18] Bernhard Haeupler and Amirbehshad Shahrasbi. Synchronization strings: explicit construc-
tions, local decoding, and applications. In STOC’18—Proceedings of the 50th Annual ACM
SIGACT Symposium on Theory of Computing, pages 841–854. ACM, New York, 2018.

[HS21] Bernhard Haeupler and Amirbehshad Shahrasbi. Synchronization strings and codes for inser-
tions and deletions - A survey. IEEE Trans. Inf. Theory, 67(6):3190–3206, 2021.

[KLM04] Marcos Kiwi, Martin Loebl, and Jir̆ı́ Matous̆ek. Expected length of the longest common subse-
quence for large alphabets. Advances in Mathematics, 197:480–498, November 2004.

[KMTU11] Ian A Kash, Michael Mitzenmacher, Justin Thaler, and Jonathan Ullman. On the zero-error ca-
pacity threshold for deletion channels. In 2011 Information Theory and Applications Workshop,
pages 1–5. IEEE, 2011.

[Lev66] Vladmir I. Levenshtein. Binary codes capable of correcting deletions, insertions and reversals.
Soviet Physics Dokl. (English Translation), 10(8):707–710, 1966.

[Lue09] George S Lueker. Improved bounds on the average length of longest common subsequences.
Journal of the ACM (JACM), 56(3):1–38, 2009.

[Mit09] Michael Mitzenmacher. A survey of results for deletion channels and related synchronization
channels. Probability Surveys, 6:1–33, 2009.

[SB21] Jin Sima and Jehoshua Bruck. On optimal k-deletion correcting codes. IEEE Trans. Inf. Theory,
67(6):3360–3375, 2021.

[SGB20] Jin Sima, Ryan Gabrys, and Jehoshua Bruck. Syndrome compression for optimal redundancy
codes. In IEEE International Symposium on Information Theory, pages 751–756, 2020.

[SZ99] Leonard J. Schulman and David Zuckerman. Asymptotically good codes correcting insertions,
deletions, and transpositions. IEEE Transactions on Information Theory, 45(7):2552–2557,
1999.

[Ull67] Jeffrey D. Ullman. On the capabilities of codes to correct synchronization errors. IEEE Trans-
actions on Information Theory, 13(1):95–105, 1967.

[Wan15] Carol Wang. Beyond unique decoding: topics in error-correcting codes. PhD thesis, Carnegie
Mellon University, 2015.

34

[ZBJ20] Yihan Zhang, Amitalok J Budkuley, and Sidharth Jaggi. Generalized list decoding. In 2020
Information Theory and Applications Workshop (ITA), pages 51–1. IEEE, 2020.

35
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

