
Hardness vs Randomness, Revised:
Uniform, Non-Black-Box, and Instance-Wise

Lijie Chen * Roei Tell †

June 10, 2021

Abstract

We propose a new approach to the hardness-to-randomness framework and to the
promise-BPP = promise-P conjecture. Classical results rely on non-uniform hardness as-
sumptions to construct derandomization algorithms that work in the worst-case, or rely on
uniform hardness assumptions to construct derandomization algorithms that work only in
the average-case. In both types of results, the derandomization algorithm is “black-box” and
uses the standard PRG approach. In this work we present results that closely relate new and
natural uniform hardness assumptions to worst-case derandomization of promise-BPP , where the
algorithms underlying the latter derandomization are non-black-box.

In our main result, we show that promise-BPP = promise-P if the following holds: There
exists a multi-output function computable by logspace-uniform circuits of polynomial size
and depth n2 that cannot be computed by uniform probabilistic algorithms in time nc, for
some universal constant c > 1, on almost all inputs. The required failure on “almost all inputs”
is stronger than the standard requirement of failing on one input of each length; however,
the same assumption without the depth restriction on f is necessary for the conclusion. This
suggests a potential equivalence between worst-case derandomization of promise-BPP of any
form (i.e., not necessarily by a black-box algorithm) and the existence of efficiently-computable
functions that are hard for probabilistic algorithms on almost all inputs.

In our second result, we introduce a new and uniform hardness-to-randomness tradeoff
for the setting of superfast average-case derandomization; prior to this work, superfast average-
case derandomization was known only under non-uniform hardness assumptions. In an
extreme instantiation of our new tradeoff, under appealing uniform hardness assumptions,
we show that for every polynomial T(n) and constant ε > 0 it holds that BPT IME [T] ⊆
heur-DT IME [T · nε], where the “heur” prefix means that no polynomial-time algorithm can
find, with non-negligible probability, an input on which the deterministic simulation errs.

Technically, our approach is to design targeted PRGs and HSGs, as introduced by Goldreich
(LNCS, 2011). The targeted PRGs/HSGs “produce randomness from the input”, as suggested
by Goldreich and Wigderson (RANDOM 2002); and their analysis relies on non-black-box
versions of the reconstruction procedure of Impagliazzo and Wigderson (FOCS 1998). Our
main reconstruction procedure crucially relies on the ideas underlying the proof system of
Goldwasser, Kalai, and Rothblum (J. ACM 2015).

*Massachusetts Institute of Technology, Cambridge, MA. Email: lijieche@mit.edu
†Massachusetts Institute of Technology, Cambridge, MA. Email: roei.tell@gmail.com

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 80 (2021)

Contents

1 Introduction 1
1.1 Derandomization from hardness on almost all inputs 2
1.2 Superfast derandomization from non-batch-computable functions 6
1.3 Non-black-box derandomization and instance-wise hardness 9
1.4 Organization . 10

2 Technical overview 10
2.1 Warm-up: Proofs of Theorems 1.6 and 1.7 . 11
2.2 The proof of Theorems 1.2, 1.3, 1.4 and 1.5 . 15

3 Preliminaries 21

4 A targeted HSG via bootstrapping systems 24
4.1 Bootstrapping systems . 25
4.2 The result statements: A reconstructive targeted HSG 27
4.3 Bootstrapping systems for logspace-uniform bounded-depth circuits 30
4.4 From bootstrapping systems to a targeted HSG . 36

5 Non-black-box derandomization from “almost-all-inputs” hardness 41
5.1 Hardness-to-randomness tradeoffs and proof of Theorems 1.2 and 1.3 42
5.2 Tight hardness-to-randomness results for low-depth circuits 46
5.3 “Low-end” derandomization from hard functions without structural constraints . . 50

6 Non-black-box derandomization from “non-batch-computability” 52
6.1 Derandomization from non-batch-computable functions 53
6.2 Proofs of Theorems 1.6 and 1.7 and of Corollary 1.8 58
6.3 Necessity of non-batch-computable functions . 61

7 Open problems 65

Appendix A Instantiations of known PRG and code constructions 72

Appendix B Algorithms in logspace-uniform NC for polynomial problems 79

Appendix C An unconditional approximate-direct-product result 96

i

1 Introduction

One of the major achievements in complexity theory is the connection between pseudorandom-
ness and lower bounds, which is known as the hardness-to-randomness framework. In a se-
quence of seminal works following [Yao82; BM84; Nis91; NW94; IW99], derandomization algo-
rithms for promise-BPP (denoted prBPP , in short) were constructed under the assumption that
there is a function in E = DT IME [2O(n)] that is hard for non-uniform circuits. These deran-
domization algorithms work in a “black-box” fashion, by enumerating the seeds of a PRG and
evaluating the relevant probabilistic algorithm on the resulting set. Since efficiently-computable
PRGs (i.e., that run in time exponential in the seed length) are well-known to imply circuit lower
bounds for E , the bottom line of this line-of-works is that efficient black-box derandomization of
prBPP is essentially equivalent to circuit lower bounds for E .

It is a classical open question whether or not the foregoing black-box approach is necessary
for derandomization of prBPP . A natural suspicion is that this approach might be an “overkill”,
since the derandomization of a probabilistic machine M on input x does not depend on the
way M operates on x (other than its number of steps), and just evaluates M on x using the
output-set of a PRG as randomness. In the case of non-deterministic derandomization such as
prBPP ⊆ prNP , we do know that this black-box approach is necessary (see, e.g., [IKW02; Wil13;
MW18; Che19; CW19; CR20; CLW20]). However, for deterministic derandomization such as
prBPP = prP there has been essentially no unconditional progress on the question of whether
black-box derandomization is necessary in the last three decades (see, e.g., [CRT+20; Tel19] for
conditional results and further discussion).

In this work we show that the hardness-to-randomness framework can be revised into a form that
completely avoids the foregoing question. We prove a new and general hardness-to-randomness
tradeoff that closely relates uniform hardness assumptions, of a particular type that we introduce, to
non-black-box derandomization of prBPP . That is, under the foregoing uniform hardness assump-
tions we show how to deduce strong derandomization conclusions such as prBPP = prP , and
we complement this result by showing that similar hardness assumptions are necessary for the
derandomization conclusion. Thus, our approach suggests an appealing path towards proving
an equivalence between any derandomization of prBPP (i.e., not necessarily a black-box derandom-
ization) and corresponding uniform lower bounds of the foregoing type.

In addition, mirroring classical hardness-to-randomness results, the new approach is general
enough to allow trading off the hypothesis for the conclusion both in terms of running time and
in terms of other structural restrictions on the probabilistic algorithms (e.g., we show hardness-to-
randomness tradeoffs for algorithms that work in parallel). In several settings that are obtained
by such “scaling”, our results already come close to proving a full equivalence between the
hypothesized uniform lower bound and the derandomization conclusion.

The general form of our hardness hypotheses. Generally speaking, the uniform hardness hy-
potheses that we will use towards derandomization of prBPP are of the following form:

There exists a multi-output function f : {0, 1}n → {0, 1}k(n) that can be computed by
a deterministic algorithm that runs in time T(n)O(1) and satisfies an additional effi-
ciency requirement, but cannot be computed by probabilistic algorithms in time T(n).

1

The precise technical meanings of “additional efficiency requirement” and of “cannot be com-
puted” vary across our particular results below. However, we stress that this form of hypothesis
does not assume that the function f is hard for non-uniform circuits, or that the string f (x) (for
some input x ∈ {0, 1}n) is a truth-table of a function that is hard for non-uniform circuits. What
we assume is simply that given x, it is hard to print the string f (x) in probabilistic time T(|x|). This
hardness assumption does not refer to circuit complexity at all.1

Our work in context: Uniform hardness-to-randomness. Numerous previous works deduced
some derandomization conclusion from assumptions asserting that an efficiently-computable
function is hard for uniform probabilistic algorithms.2 However, the conclusions that we deduce
from the assumptions in this work are considerably stronger. In more detail, the line-of-works fol-
lowing Impagliazzo and Wigderson [IW98] uses standard uniform hardness assumptions (such
as BPP 6= EXP) to construct PRGs that derandomize BPP in the average-case. (In fact, these
works typically show that their assumptions are equivalent to average-case derandomization.)
Besides working only “on average”, the derandomization typically also works only on infinitely-
many input lengths, and is relatively slow, even when the hypothesized lower bound is strong
(see [CIS18; CRT+20] for recent results and for discussions of previous results).

We use our new uniform hardness assumptions to construct derandomization algorithms
that work in the worst-case, on almost all input lengths, and can work in polynomial time (or, in an-
other result, to construct an extremely fast average-case derandomization that was not previously
known to follow from uniform assumptions). Thus, our results strike a better balance than previ-
ous hardness-to-randomness tradeoffs: In contrast to the average-case results above, we deduce
strong conclusions such as prBPP = prP , which demonstrates that our assumptions are not “too
weak”; and in contrast to results that rely on non-uniform hardness assumptions, we prove that
uniform hardness assumptions similar to the ones that we use are necessary for derandomization,
suggesting that our hardness assumptions might not be “too strong”. Indeed, the reason that
we are able to strike this better balance is since our derandomization algorithms work in a non-
black-box fashion. See Figure 1 for a visual comparison with known results.

1.1 Derandomization from hardness on almost all inputs

Our first main result is motivated by the following observation. Recall that if prBPP = prP , then
for every c > 1 there exists f ∈ P that is hard for BPT IME [nc] on almost all input lengths.
(This is because we can derandomize BPT IME [nc] ⊆ DT IME [nO(c)] and then appeal to a
standard time-hierarchy theorem). The observation is that if we take f to have multiple outputs,
then we can deduce that every probabilistic nc-time algorithm fails to compute f on almost all
inputs, rather than only on some input for every large enough input length; that is, for every
probabilistic nc-time algorithm there exists n0 ∈ N such that the probabilistic algorithm fails to
compute f on each and every input x ∈ {0, 1}∗ of length |x| ≥ n0.

1Our notion of hardness is reminiscent of a lower bound on the conditional randomized time-bounded Kolmogorov
complexity rKT(f (x)|x) of f (x); see [Oli19; LOS21; OL21; LP21] for recent studies of closely related notions.

2We note that hardness for non-deterministic probabilistic algorithms (i.e., for MA) is a significantly stronger as-
sumption, which is in fact sufficiently strong to imply the non-uniform hardness assumptions needed for worst-case
derandomization using PRGs (this follows from known Karp-Lipton-style theorems such as [BFN+93]). We thus limit
our comparison to results that use hardness assumptions for standard probabilistic algorithms.

2

Non-uniform
Hardness Assumptions

(E 6⊂ i.o.SIZE [2Ω(n)])

Worst-Case Black-box
Derandomization

(log-seed polytime PRG)

⇐⇒

New Uniform
Hardness Assumptions

(see Theorem 1.2 and Claim 1.1)

Worst-Case Non-Black-box
Derandomization

(prBPP = prP)

=⇒
⇐=

Classical Uniform
Hardness Assumptions

(EXP 6= BPP)

Average-Case Black-box
Derandomization

(PRG that works “on average”)

⇐⇒

Figure 1: Classical hardness-to-randomness results compared with our new results for worst-
case derandomization. For concreteness, below each box we mention in parentheses a specific
parameter setting of the general result. The top row was proved by [IW99] (a smooth parametric
scaling was subsequently shown in [Uma03]), the bottom row was proved by [IW98] (non-smooth
parametric scalings were shown in subsequent works such as [TV07; CRT+20]), and the middle
row corresponds to the results in Section 1.1.

Claim 1.1 (almost-all-inputs hardness is necessary for derandomization). If prBPP = prP , then
for every c ∈N there exists f : {0, 1}n → {0, 1}n computable in deterministic polynomial time such that
f cannot be computed in probabilistic time nc on almost all inputs.

The proof of Claim 1.1 amounts to diagonalizing against every probabilistic machine that
runs in time nc on almost every input, by using each output bit of f to diagonalize against a
different machine (and relying on the derandomization hypothesis); see Claim 5.2 for details.3

Our main result is that the existence of f as in conclusion of Claim 1.1 in fact suffices to deduce
that prBPP = prP , assuming one additional structural restriction. Specifically, to deduce that
prBPP = prP we need the “almost-all-inputs” hard function f to be computable not just in P ,
but also by uniform circuits of depth that is noticeably smaller than their size. For example, it
suffices to assume that f is computable by circuits of depth n2:

Theorem 1.2 (polynomial-time non-black-box derandomization of prBPP). Assume that there
exists f : {0, 1}n → {0, 1}n computable by deterministic logspace-uniform circuits of polynomial size and
depth n2 such that f cannot be computed in probabilistic time nc on almost all inputs, where c > 1 is a
sufficiently large universal constant. Then prBPP = prP .

We can replace the depth n2 in the hypothesis of Theorem 1.2 by an arbitrary fixed depth nk,
at the expense of increasing the constant c = ck (setting c > k + O(1) suffices; see Corollary 5.7).

3Indeed, it is not necessary for f to have precisely n output bits, and our main result also does not depend on f
having precisely n output bits. We chose this output length for simplicity of presentation.

3

We stress that the notion of uniformity in Theorem 1.2 (i.e., logspace-uniformity) is mean-
ingful only due to the depth constraint,4 and is considerably weaker than standard notions of
uniformity for circuits (such as DLOGTIME-uniformity). Thus, the main gap between the hy-
pothesis that suffices to deduce that prBPP = prP and the hypothesis that is necessary for this
conclusion is that in the former the “almost-all-inputs” hard function can be computed in parallel
(e.g., by poly(n) processors running in parallel in time n2).

1.1.1 Extensions: Scaling the new hardness-to-randomness result

Recall that classical hardness-to-randomness results extend both to derandomization of restricted
complexity classes (such as prBP · NC), and to “low-end” results, which are tradeoffs between
weaker lower bounds and slower derandomization. We now state several extensions of Theo-
rem 1.2, demonstrating that:

1. The hardness-to-randomness result in Theorem 1.2 scales quite well, both to restricted circuit
classes and to weaker parameter settings.

2. When scaling the result in either of the foregoing two directions, the gap between the re-
quired lower bound and the necessary one considerably narrows.

As a first extension, we show that quantitatively weaker “almost-all-inputs” lower bounds
imply slower derandomization. The tradeoff we obtain is very smooth when deducing deran-
domization of prRP , and less smooth when deducing derandomization of prBPP ; specifically,
the following result is a more general version of Theorem 1.2:

Theorem 1.3 (non-black-box derandomization of prBPP ; a general version of Theorem 1.2).
There exists a universal constant c > 1 such that the following holds. Assume that there exists a function
f : {0, 1}n → {0, 1}n computable by deterministic logspace-uniform circuits of size T(n) and depth d(n)
that cannot be computed in probabilistic time d(n) · nc on almost all inputs. Then, we have that

prRP ⊆
⋃
a≥1

prDT IME [T̄(na)]

prBPP ⊆
⋃
a≥1

prDT IME [T̄(T̄(nc·a)a)] ,

where T̄(m) = 2c·log2(T(m))/ log(m).

To see that Theorem 1.3 is a more general version of Theorem 1.2, note that when T is a
polynomial then T̄(na) and T̄(T̄(nc·a)a) are also polynomials. Similarly, as another example,
note that when T is quasi-polynomial then T̄(na) and T̄(T̄(nc·a)a) are also quasi-polynomials.
A natural instantiation of Theorem 1.3 is with d(n) = poly(n), in which case the hypothesized
hardness is for probabilistic polynomial-time algorithms, but other instantiations are also useful;
see Section 1.1.2 for details.

When scaling our tradeoff even further to an extreme “low-end” setting, we are able to
completely eliminate the structural restrictions on f . Specifically, in order to derandomize prRP

4This is since the classical transformations of uniform Turing machines to uniform circuits yield circuits that are
logspace-uniform (and in fact even “more uniform”, e.g. DPOLYLOGTIME-uniform).

4

infinitely-often in fixed exponential-time 2nc
for some c ≥ 1 (indeed a very weak derandomiza-

tion), we do not need to assume that the hard function is computable by uniform circuits of
bounded depth.

Theorem 1.4 (non-black-box fixed-exponential-time derandomization of RP). Assume that there
exists a function f : {0, 1}n → {0, 1}n computable in time 2nc

, where c ≥ 1 is a constant, such that
f cannot be computed by probabilistic polynomial-time algorithms infinitely-often on almost all inputs.5

Then, for some constant c′ ≥ 1 it holds that prRP ⊆ i.o.DT IME [2nc′
].

Indeed, Theorem 1.4 already comes close to a full equivalence between the hardness hy-
pothesis and the derandomization conclusion; essentially, the only remaining gap is that we
derandomize prRP rather than prBPP . See Theorem 5.17 for details.

We suspect that it is possible to improve the derandomization overhead in Theorem 1.3 (see
Remark 5.5), but we did not optimize our construction towards this purpose. Instead, we op-
timized our construction to scale down to weak circuit classes, in which case both the hardness
hypothesis and the derandomization conclusion scale down to the relevant circuit class. The
weakest natural class for which the result holds is that of logspace-uniform NC circuits; that is,
logspace-uniform circuits of polynomial size and polylogarithmic depth. Towards stating the
results, recall that NC i is the class of polynomial-sized circuits of depth logi(n); then:

Theorem 1.5 (non-black-box derandomization of NC). There exists a universal constant c > 1 such
that the following holds. Assume that for every sufficiently large i ∈N there exists f : {0, 1}n → {0, 1}n

computable in logspace-uniform deterministicNC(.99·i) that cannot be computed by logspace-uniform prob-
abilisticNC i[nc] on almost all inputs. Then, logspace-uniform-prBP ·NC ⊆ logspace-uniform-prNC.

Note that, similarly to the “low-end” extensions above, the structural requirements on the
hard function in Theorem 1.5 are relaxed. First, the logspace-uniformity of circuits for f is now
called for, since we want the derandomization algorithm to be computable by such circuits. And
secondly, the gap in depth (between the deterministic circuits for f and the probabilistic circuits
for which f is hard) is now only polylogarithmic. See Corollary 5.15 for further details.

1.1.2 Robustness of our results: Relaxing the hypotheses

One may ask what happens if the hardness in (say) Theorem 1.3 holds not with respect to almost
all inputs, but “only” with respect to some very dense set of inputs. In all of the results in
this section, when one assumes hardness with respect to an (arbitrary) distribution x and some
succeess bound µ > 0, we can deduce derandomization of probabilistic algorithms that have
one-sided error with respect to the precise same distribution x and with µ as the error parameter.
(This is because our hardness-to-randomness tradeoffs are “instance-wise”, and hold with respect
to any fixed input x; we explain this in Section 1.3.)

Indeed, the tradeoff emphasized above between almost-all-inputs hardness and worst-case
derandomization simply represents the extreme setting when x is supported on all inputs and

5The meaning of “infinitely-often hard on almost all inputs” is that there is an infinite set S ⊆ N of input lengths
such that for every probabilistic algorithm and every sufficiently large n ∈ S and every x ∈ {0, 1}n, the algorithm fails
to compute f on x.

5

µ = 0 (in which case we reduce derandomization of probabilistic algorithms that have two-sided
error to derandomization of probabilistic algorithms that have one-sided error).

Another type of tradeoff, which can be obtained when considering derandomization in super-
polynomial time, allows to almost completely eliminate the depth constraint on f . Specifically,
to deduce worst-case derandomization of prBPP in (say) quasipolynomial time, it suffices to
assume that for some constant ε > 0, the function f is computable by deterministic logspace-
uniform circuits of quasipolynomial size T and of depth T(n)1−ε, but cannot be computed in
probabilistic time T(n)1−ε/4 on almost all inputs (see Corollary 5.8 for precise details). In com-
parison to Theorem 1.2, this lower bound is stricter in terms of time (intuitively, we need a
function in time T that is hard for time T.99), but poses almost no depth restriction on f .

1.1.3 Discussion: Derandomization vs “almost-all-inputs” lower bounds

The main implication of the results in this section is a new and tight connection between worst-
case derandomization and almost-all-inputs lower bounds for probabilistic algorithms, which
is the connection hinted at in Figure 1. Our results demonstrate that this is a general connection,
which manifests itself in different parametric settings as well as for classes of restricted algo-
rithms, such as parallel algorithms. (Some technical elaborations on the two latter connections,
beyond what was already stated above, appear in Theorem 5.17 and Corollary 5.15.)

We stress that this new connection is interesting per-se, and not only since it improves on
classical hardness-to-randomness results (i.e., not only since it manages to get worst-case de-
randomization without relying on PRGs and on the corresponding non-uniform lower bounds).
First, this connection highlights the importance of a natural problem in theoretical computer
science that, as far as we are aware, received little attention so far (i.e., almost-all-inputs lower
bounds). Secondly, the connection sheds additional light on the central role of derandomization
in complexity theory, by significantly refining its connections to questions of lower bounds.

And thirdly, this connection is a very natural one. Loosely speaking, it relates the statement
“deterministic machines can efficiently compute a hard function for probabilistic machines” to the
statement “deterministic machines can efficiently simulate probabilistic machines”; that is, we re-
late simulation to lower bounds for these classes of machines. This can be viewed as demonstrating
a setting with a partial affirmative answer to a classical question asked by Kozen [Koz78]: Infor-
mally, he asked for which pairs of complexity classes is simulation equivalent to lower bounds
(pointing out the implication that in this case diagonalization is a complete method for lower
bounds).6 The interesting and non-standard part in the answer suggested by our results is that
the hardness refers to multi-output functions and to almost-all-inputs hardness.

1.2 Superfast derandomization from non-batch-computable functions

Our second main result refers to superfast derandomization of BPP , meaning derandomization
that has almost no time overhead. The question of the best possible polynomial time overhead
was recently raised by Doron et al. [DMO+20], who showed a conditional derandomization with
near-quadratic overhead. In a follow-up work, the current authors showed [CT21] (among other

6Needless to say, this is a very informal phrasing of his broad question, which can be interpreted in various
different ways to begin with. For further study and some formalizations see [Koz78; NIR03; NIR06].

6

results) a conditional average-case derandomization with almost no overhead: For every ε > 0,
probabilistic algorithms that run in time T were simulated by deterministic algorithms that run
in time T · nε, on average-case over any T-time samplable distribution.

The hardness hypotheses in both previous works were very strong non-uniform lower bounds.7

Our second main result is a new hardness-to-randomness approach for the setting of superfast
derandomization that relies only on appealing uniform hardness hypotheses. As in Section 1.1, we
will consider a multi-output function f : {0, 1}n → {0, 1}k(n) that is computable in deterministic
time T but not in smaller probabilistic time T′; and since we now consider superfast derandom-
ization, the gap between T and T′ will now be very small. However, in the current setting our
structural requirement on f will be different: We will assume that each individual output bit of f (x)
can be computed faster than the time-complexity of printing the entire string f (x).

Intuitively, we refer to such hard functions as non-batch-computable: This is since the hardness
assumption implies that when printing all the bits of the string f (x) in a batch, one has to invest
noticeably larger running time than when printing just a single bit of f (x).

1.2.1 The most appealing special case: A direct-product hypothesis

We first describe what we consider to be the most appealing special case of our result. Recall that
standard direct-product results start with a function f0 that is hard to compute in time T on (say)
1/3 of the inputs, and prove that its k-wise direct product f = f×k

0 is hard to compute in time
T′ ≈ T on 1− 2−Ω(k) of the inputs (see, e.g., [IJK+10]).8 Our starting point is that these results
are also known to extend (unconditionally) to “approximate-direct-product” versions, showing
that f (z) cannot even be approximately-printed for the vast majority of z’s: That is, every time-
T′ algorithm fails, for .99 of the tuples z = (x1, ..., xk), to even output a string f̃ (z) such that
Pri∈[k]

[
f̃ (z)i = f (z)i

]
≥ .99. See Proposition 6.10 for a precise statement, following [IJK+10].

A well-known conjecture is that in some cases f is harder also for algorithms with larger
running time; taken to the extreme, the “strong direct-product” conjecture asserts that in some
cases one cannot improve on the naive algorithm that runs in time k · T (see, e.g., [Sha03]).
Our hypothesis will be that a mildly-strong approximate-direct-product result holds for some function
f0 ∈ DT IME [T] that is hard for time T · n−Ω(1). Specifically, given a parameter δ > 0, we assume
that for every T(n) = poly(n) and k(n) = nΩ(1) there exists f0 ∈ DT IME [T] such that f = f×k

0
satisfies the following: Every probabilistic algorithm that gets input z ∈ {0, 1}n·k(n) and runs in
time T(n) · k(n)α does not succeed in printing a string f̃ (z) satisfying Pri∈[k(n)]

[
f̃ (z)i = f (z)i

]
≥

1 − α on more than a δ-fraction of z’s, where α > 0 can be an arbitrarily small constant (see
Assumption 6.11 for a formal statement).

As in our previous work, to deduce derandomization with essentially no time overhead we
will need another assumption, albeit a completely standard one – the existence of one-way func-
tions. Assuming that the mildly-strong approximate-direct-product hypothesis holds, and that
one-way functions secure against uniform polynomial-time algorithms exist, we show that BPP

7Specifically, the assumption in [DMO+20] was that there exists a problem in DT IME [2n] that is hard for ran-
domized non-deterministic circuits of size ≈ 2.99n. The assumptions in [CT21] were of that non-uniformly secure
one-way functions exist, and that there exists a problem in time 2k·n that cannot be solved in time 2.99k·n even with
2.99n bits of non-uniform advice (where k = kT,ε is a suitable large constant).

8Recall that f = f k
0 is defined by f (x1, ..., xk) = (f0(x1), ..., f0(xk)).

7

can be simulated, on average, with almost no time overhead:

Theorem 1.6 (superfast non-black-box derandomization from mildly-strong approximate-direc-
t-product). Assume that one-way functions exist, and that for some δ > 0 the mildly-strong approximate-
direct-product hypothesis holds. Then, for every polynomial T we have that9

BPT IME [T] ⊆
⋂
ε>0

avg1−2δ-DT IME [nε · T] .

We view the hypothesis in Theorem 1.6 as quite mild considering the strong conclusion. First,
as mentioned above, the existence of f0 ∈ DT IME [T] \ BPT IME [T · n−Ω(1)] is necessary for
superfast derandomization. Secondly, the mildly-strong approximate-direct-product hypothesis
is a relaxed one: We only assume the existence of one suitable f0 (rather than a direct-product
result for a class of functions), and only assume that the hardness grows to T · k.0001 (rather than
to T · k). And thirdly, in contrast to [CT21], the hypothesis in Theorem 1.6 is completely uniform,
since even the one-way function only needs to be uniformly-secure (in [CT21] we needed a one-
way function secure against non-uniform circuits).

1.2.2 Randomness might be “indistinguishable from useless” for decision problems

The drawback of the concluded derandomization in Theorem 1.6 is that it succeeds only over
the uniform distribution. Recall that in our previous work [CT21], assuming strong non-uniform
lower bounds, the derandomization succeeded over all T-time samplable distributions.

In the following result we show that a natural strengthening of the uniform hypothesis in
Theorem 1.6 allows to derandomize BPP with the same tiny time overhead over all polynomial-
time-samplable distributions and with a negligible average-case error. Informally, an appealing in-
terpretation of the latter conclusion is that randomness is “indistinguishable from being essen-
tially useless” for solving decision problems in polynomial time (where “essentially useless” here
means that it can save a factor of at most nε in the running time).

Towards stating the result, let us say that a probabilistic algorithm A approximately prints a

function f : {0, 1}n → {0, 1}k(n) on input x if Pr[A(x)i = f (x)i] ≥ .99, where the probability is over
i ∈ [k(n)] and the internal randomness of A (note that the input x is fixed). Then:

Theorem 1.7 (superfast non-black-box derandomization over all polynomial-time-samplable dis-
tributions; see Theorem 6.5). Let T : N → N be a polynomial. Assume that one-way functions exist,
and that for every ε > 0 there exist δ > 0 and a function f : {0, 1}n → {0, 1}nε

such that:

1. There exists an algorithm that gets input (x, i) ∈ {0, 1}n × [nε] and outputs the ith bit of f (x) in
time T′(n), where T′(n) = T(n) · nε.

2. For every probabilistic algorithm A that runs in time T′(n) · nδ and every polynomial-time samplable
distribution x, the probability over x ∼ x that A approximately prints f on input x is negligible.

Then BPT IME [T] ⊆ ⋂ε>0 heur1−neg-DT IME [nε · T], where neg is a negligible function.10

9The notation avg1−2δ- means that for every L there exists a deterministic algorithm that errs with probability at
most 2δ over a uniformly-chosen input.

10The notation heur1−neg- means that for every L there exists a deterministic algorithm AL such that for every
polynomial-time-samplable distribution x, the probability over x ∼ x that AL errs on x is negligible.

8

We note that the conclusion of Theorem 1.7 can only be obtained using a non-black-box deran-
domization algorithm (such as the one that we use); that is, any PRG-based approach cannot yield
such a conclusion. See Remark 6.6 for an explanation.

As we explain below (see Section 1.3), all of our derandomization algorithms not only solve
the decision problem, but also find random strings that lead the relevant probabilistic machine to
a correct decision. This has the following implication to the question of explicit constructions.

We say that an algorithm A is an explicit construction of objects from a set Π ⊆ {0, 1}∗ if A(1n)

prints an n-bit string in Π. We are particularly interested in deterministic explicit constructions
of random-looking objects, which corresponds to the case where Π is dense (e.g., |Π∩ {0, 1}n| ≥
2n/2). In this case, we show that under the same assumption as in Theorem 1.7, the complexity
of explicit constructions is nearly identical to that of verifying that the object has the specified property;
that is, loosely speaking, deterministically constructing good random-looking objects is never
significantly more expensive than deciding if an object is good:

Corollary 1.8 (superfast explicit constructions). Suppose that the assumption of Theorem 1.7 holds for
every polynomial T. Then, for every Π ∈ BPT IME [nk] such that |Π ∩ {0, 1}n| ≥ 2n/no(1) and every
ε > 0, there exists an explicit construction of objects from Π in deterministic time nk+ε.

Lastly, our results also allow to interpolate between the derandomization over the uniform
distribution as in Theorem 1.6 and the derandomization over all polynomial-time-samplable dis-
tributions as in Theorem 1.7. Specifically, if a hypothesis similar to the one in Theorem 1.7 holds
with respect to some fixed polynomial-time-samplable distribution x, then the derandomization
conclusion holds over this distribution x (see Theorem 6.4 for details).

1.2.3 Necessity of non-batch-computable functions for superfast derandomization

We do not know if “non-batch-computable” functions as in the hypotheses of Theorems 1.6
and 1.7 are necessary for average-case superfast derandomization in general. However, we prove
that a non-batch-computable function is necessary in one natural special case.

Specifically, consider balanced formulas of polynomial size that are DLOGTIME-uniform,
which we refer to as well-structured formulas. Loosely speaking, we show that if probabilistic well-
structured formulas can be derandomized with overhead T 7→ T · nε on average over the uniform
distribution, then the following holds: There exists a function g : {0, 1}n → {0, 1}nδ

such that the
mapping (x, i) 7→ g(x)i is computable in time Õ(T), but every probabilistic well-structured for-
mula of size o(T · nδ−ε) fails to print g(x), with high probability over uniform choice of x. For
precise details (and a slightly stronger statement) see Proposition 6.15.

1.3 Non-black-box derandomization and instance-wise hardness

As mentioned above, our derandomization algorithms for all results above will not rely on the
standard approach of enumerating the seeds of a PRG. Instead, our algorithms rely on what was
defined by Goldreich [Gol11a] as targeted PRGs: These are PRGs that do not “fool” all circuits,
but rather get an input x and fool all efficient uniform machines that also have access to x.11

11In [Gol11a] and in a subsequent work [Gol11b] Goldreich proposed two definitions for targeted PRGs, which he
called targeted canonical derandomizers (and targeted canonical hitters for the HSG version). We use the first of those
definitions, which appears in [Gol11a, Definition 4.1].

9

In other words, the potential distinguisher for the PRG is not modeled as a non-uniform circuit
(as in the classical “textbook” approach, where the non-uniformity represents any possible fixed
input), but rather by a uniform Turing machine that only gets access to the particular fixed input
x that is also given to the PRG. Indeed, such targeted PRGs suffice for derandomization, and
Goldreich in fact showed that their existence is also necessary for derandomization.

Recall that a complete problem for prBPP is the Circuit Acceptance Probability Problem (CAPP):
In this problem we are given a circuit and want to approximate its acceptance probability, up to
an additive error of (say) 1/10. The classical PRG approach for solving this problem treats the
given circuit as a black-box, instantiating the PRG using only the circuit size as information. In
contrast, our targeted PRGs treat the given circuit in a non-black-box way, using the description
of the circuit as information in order to generate pseudorandom strings that are good for this
particular circuit; see further details in Section 2.

Following classical techniques, our technical approach is reconstructive: We design a “recon-
struction” algorithm R that transforms every distinguisher for the targeted PRG to an efficient
procedure that computes the hard function. The innovative aspect in our reconstruction argu-
ments is that they work instance-wise, for each fixed input x: That is, our targeted PRG maps every
x to a collection Sx of pseudorandom strings, and our reconstruction algorithm R gets input x
and access to a distinguisher for Sx, and prints the output of the hard function f at x (i.e., it
prints f (x)). Thus, the hardness guarantee for a particular fixed x implies pseudorandomness
of Sx for distinguishers that get access to that particular fixed x; in other words, our hardness-
to-randomness tradeoff holds with respect to each particular input x. Accordingly, when we assume
almost-all-inputs hardness of f we get worst-case derandomization as in Section 1.1, and when
we assume average-case hardness of f we get average-case derandomization as in Section 1.2.

1.4 Organization

In Section 2 we describe our proof techniques, in high level. Section 3 includes preliminary
definitions and statements of well-known results. In Section 4 we present the technical results
underlying the proofs of the results that were described in Section 1.1, and we prove the foregoing
results in Section 5. Finally, in Section 6 we prove the results that were described in Section 1.2.
The appendices include proofs of several technical results that are stated and used in the paper.

2 Technical overview

We first explain the ideas behind our new hardness-to-randomness approach, in very high-level,
and relate them to previous works and known approaches. Then, in Sections 2.1 and 2.2 we
describe the proofs of our main results in more detail.

As mentioned in Section 1.3, the underlying setting is the following: We are given an input
x ∈ {0, 1}n and want to produce a collection of strings Sx that appear random to any distinguisher
that is also given the same input x. At a bird’s eye, our proof techniques merge the techniques
from the two main lines-of-work concerning uniform hardness-to-randomness, which were sep-
arate so far: The line-of-works following Impagliazzo and Wigderson [IW98] (see, e.g., [CNS99;

10

Kab01; Lu01; GSTS03; TV07; SU07; GV08; CIS18; CRT+20]) and the line-of-works following Gol-
dreich and Wigderson [GW02] (see, e.g., [MS05; Zim08; Sha11; KMS12; SW13; Alm19; Hoz19]).

The first main idea (extending [GW02]): Applying a hard function to the input. As a starting
point, let us return to the original idea of Goldreich and Wigderson [GW02] – using the infor-
mation in the input to produce good pseudorandom strings. In their original work they applied
a randomness extractor Ext to the input x to obtain a list {Ext(x, s)}s of pseudorandom strings.
A later modification of their approach by Kinne, van Melkebeek and Shaltiel [KMS12] applied
a seed-extending pseudorandom generator G to obtain a pseudorandom string G(x), using the
input as a seed (see [KMS12] for the definition of a seed-extending PRG).

These two approaches naturally give rise to the following general question: Which function
f can we apply to the input x in order to obtain good pseudorandom strings? The answer
presented in the current work seems, in retrospect, to be the most straightforward one: We apply
a hard function f to the input x, as the first step in our constructions of Sx.

As observed in [GW02], the main danger in using the input x as a source of randomness is the
correlation between x and the set of random strings that lead the relevant probabilistic algorithm
to a wrong decision on x. A key insight implicit in [Sha11; KMS12] is that this correlation is
computational (i.e., can be recognized by an efficient algorithm), and thus we can avoid this
danger by enforcing a suitable hardness requirement on Sx. Our use of a computationally-hard
function x 7→ f (x) as the first step in constructing Sx can be viewed as following this idea.

The second main idea (extending [IW98]): A non-black-box uniform reconstruction argument.
As mentioned in Section 1.3, we do not just output f (x), but show efficient transformations of
f (x) to a set Sx = S f ,x of pseudorandom strings such that any distinguisher D for Sx can be
efficiently transformed to an algorithm F satisfying F(x) = f (x). The mapping of x to f (x) and
then to the set Sx is the core of our targeted PRGs, and the transformation of a distinguisher for
Sx to an algorithm F is called an instance-wise reconstruction procedure.

The main previously-known approach for designing uniform reconstruction procedures, in-
troduced by [IW98; TV07], requires that the hard function will be downward self-reducible and
randomly self-reducible, and only allows to deduce that the PRG works on average-case and
infinitely-often (we explain this in Section 2.2). We show a “non-black-box” version of this argu-
ment that crucially relies on access to the input x, and that works whenever the hard function
is computable by logspace-uniform circuits of bounded depth (e.g., of size T(n) and depth

√
T(n)).

Indeed, this new version allows to deduce that the derandomization works in the worst-case and
on almost all input lengths. Our reconstruction procedure is based on the ideas in the doubly-
efficient proof system of Goldwasser, Kalai, and Rothblum [GKR15].

2.1 Warm-up: Proofs of Theorems 1.6 and 1.7

Let us begin by proving Theorems 1.6 and 1.7. The proofs of these results are simpler, and
showcase our ideas of applying a hard function to the input and of analyzing a targeted PRG by
“instance-wise” reconstruction. Our goal now will be to derandomize probabilistic algorithms
running in time T(n) = poly(n) in deterministic time nε · T(n) on average, and for simplicity we
consider derandomization over the uniform distribution.

11

The main idea. Let us first explain our idea while ignoring the precise parameters. We think
of f (x) as a hard truth-table that is produced from the input x, and use this truth-table to
instantiate a suitable version of the reconstructive PRG of [NW94; IW99] (see below). As observed
in [IW98], the reconstruction procedure for this PRG is a uniform learning algorithm that works
when given access to a distinguisher for the PRG; that is, the reconstruction procedure gets access
to a distinguisher D, issues a small number of queries to the function described by f (x),12 and
outputs a small oracle circuit C such that CD computes the function described by f (x).

The main pressing question is how our reconstruction procedure can answer the queries of
this learning algorithm without using any non-uniformity. This is where our assumption that
the function (x, i) 7→ f (x)i is efficiently-computable comes in. Specifically, assume that we can
compute (x, i) 7→ f (x)i in time T′(n) = poly(n), but that printing all of f (x) cannot be done in
time much smaller than | f (x)| · T′(n). Then, our reconstruction argument relies on two parts:

1. Non-black-box reconstruction: The reconstruction procedure answers queries of the learn-
ing algorithm to f (x) by computing the mapping (x, i) 7→ f (x)i in time T′, relying on
the fact that it has explicit access to the input x. With an appropriate setting of parame-
ters, we can ensure that the reconstruction procedure runs in time noticeably less than
| f (x)| · T′(n). (Specifically, we set | f (x)| = nΩ(ε) and have the PRG of [NW94] output only
| f (x)|Ω(1) = nΩ(ε) pseudorandom bits; see details below.)

2. Learning a small circuit⇒ batch-computing the truth-table: Given the small oracle circuit
C that the learning algorithm outputs, our reconstruction procedure can quickly print the
entire string f (x), by evaluating CD on all inputs. Specifically, it can do so in time | f (x)| ·
Õ(|C|) · T(n), which we can ensure is noticeably less than | f (x)| · T′(n), by defining T′ to
be slightly larger than T (see below). This contradicts the hardness of f on input x.

Assuming that f (x) is hard to print in time | f (x)| · T′(n) on 0.99 of the inputs x, our de-
randomization succeeds on 0.99 of the inputs. In fact, for every polynomial-time samplable
distribution x, if f (x) is hard to print with high probability over x ∼ x, then our derandomiza-
tion succeeds with high probability over x ∼ x (the requirement that x will be polynomial-time
samplable is due to our use of one-way functions, which was not described above; we explain
this in a moment). By tweaking the parameters, we can even relax the required lower bound to
be of the form | f (x)|α · T′(n) for an arbitrarily small constant α > 0, rather than | f (x)| · T′(n).

Unfortunately, the idea above does not work as-is. First, as mentioned above, to make this
idea work we need the number of output bits of the PRG of [NW94; IW99] to be only nΩ(ε) rather
than T(n); we will use our assumption that one-way functions exist to bridge this gap (this
assumption implies the existence of a very fast PRG with an arbitrarily large polynomial stretch).
Secondly, the PRG of [NW94; IW99] actually encodes the truth-table f (x) by error-correcting
codes and the reconstruction procedure needs query access to the encoded string rather than to
f (x); indeed, these encodings do not preserve the time-complexity of computing individual bits
of the string. We explain below how to overcome this difficulty, using the stronger assumption
that f (x) is hard to “approximately-print”.

12These queries are used for the reconstruction procedure of the PRG of [NW94] as well as to eliminate the required
advice in the list-decoding algorithms of [GL89; IW99], which are both used as part of the reconstruction procedure.

12

Implementation: Some technical details. Recall that our goal is to derandomize a probabilistic
algorithm that runs in time T(n). Fix any small constant α > 0 (which will characterize the
hardness of f), let ε′ > 0 be a sufficiently small constant, and let k = nO(ε′/α) � nα. For T′ = T · k,
we fix a function f : {0, 1}n → {0, 1}k such that (x, i) 7→ f (x)i is computable in time T′, but every
probabilistic algorithm that runs in time T′ · kα fails, on all but a small fraction of inputs x, to
print whp a string f̃ (x) that agrees with f (x) on more than 0.99 of the bits. Recall that such a
function f is obtained naturally as the k-wise direct-product of a function f0 ∈ DT IME [T′] that
is hard for probabilistic time slightly smaller than T′ (see Section 6.2 for details).

As a first step, relying on the assumption that one-way functions exist, we use a PRG that
runs in near-linear time to reduce the number of random coins used by the probabilistic algo-
rithm from T(n) to nε′ , without significantly increasing its running time and while maintaining
correctness on all but a negligible fraction of inputs (see Theorems 3.4 and 6.4 and Claim 6.4.1
for details). For simplicity, let us assume that we reduced the number of random coins to nε′

without affecting the running time or correctness at all.

The targeted PRG. On input x we first compute the string f (x), which we think of as the truth-
table of a function g : [k] → {0, 1}. We then apply the “mild average-case” to “extreme average-
case” hardness amplification step of [IW99] to the function g, and then apply the Hadamard
encoding to the resulting non-Boolean function, to obtain the truth-table f̄ (x) of a function ḡ. We
instantiate the NW PRG with ḡ as the hard function and with output length nε′ , and this yields
a collection Sx ⊆ {0, 1}nε′

of strings that we hope fools the probabilistic algorithm on input x.
The sequence of transformations x 7→ f (x) 7→ f̄ (x) 7→ Sx above is depicted visually in Fig-

ure 2.1. One crucial point for us is that the first two transformations, mapping x to f̄ (x), satisfy
the following property: Each output bit of f̄ (x) can be computed, when given access to x, in time
T′ · log(k). The reason is that each output bit of f (x) is computable from x in time T′ by our
assumption, and the truth-table f̄ (x) is obtained from f (x) by applying the efficient derandom-
ized direct product of [IW98] and the Hadamard encoding, which approximately maintain the
complexity of the underlying function (see Theorem 6.3 and Appendix A.2 for details).

The resulting derandomization algorithm is extremely fast: We compute the string f (x) in
time T′ · k, transform it into f̄ (x) and Sx in time poly(k), and evaluate the original probabilistic
algorithm on each string in Sx (and output the majority value) in time poly(k) · T′ = poly(k) · T.
Choosing ε′ to be sufficiently small, the running time is less than nε · T.

Analysis: Non-black-box reconstruction. Our goal is to design a reconstruction procedure that,
when given access to x and to a time-T distinguisher D for Sx, runs in time T′ · nα and with high
probability prints a string f̃ (x) that agrees with f (x) on more than 0.99 of the bits. Our procedure
will use the reconstruction algorithm Rec of the NW PRG as well as the list-decoding algorithm
Dec underlying the transformation of g to ḡ (the latter combines the list-decoding algorithms of
the derandomized direct-product of [IW99] and of the Hadamard encoding [GL89]).

Since the output length of the targeted PRG is small (i.e., the output length is nε′), both Rec

and Dec run in time at most nO(ε′) ≤ kα/2 (see Theorem 6.3 for details). Whenever Rec queries
ḡ = f̄ (x) at location i ∈ [poly(k)], our reconstruction procedure uses its access to x in order to
compute the mapping (x, i) 7→ f̄ (x)i in time T′ · log(k). Also, the list-decoding algorithm Dec

produces a list of candidate circuits, and we estimate the agreement of each of these circuits

13

x

n

f (x)

k

g

f̄ (x)

kO(1)

ḡ

Sx

nε′ nε′ ... nε′

poly(k)

⇒ Each entry i ∈ [k] of f (x) is computable from x in time T′.

⇒ Each entry i ∈ [kO(1)] of f̄ (x) is computable from x in time T′ · log(k).

Figure 2: A diagram of the steps in our construction, noting the lengths of the strings in each step.
Note that the function g is {0, 1}log(k) → {0, 1} and that the function ḡ is {0, 1}O(log(k)) → {0, 1}.
Also, the number of strings in Sx is poly(k), and each of them has nε′ bits.

with f (x) up to a small constant error, using random sampling and by computing the mapping
(x, i) 7→ f (x)i, which can be done in time T′ using our access to x.

After running this procedure, with high probability we obtain an oracle circuit C of size at
most kα/2 such that the truth-table of CD agrees with f (x) on more than 0.99 of the inputs. We
can then compute this truth-table in time k · Õ(|C|) · T = Õ(|C|) · T′ < kα · T′ and print a string
f̃ (x) that agrees with f (x) on more than 0.99 of the bits.

Two additional comments. The reconstruction procedure above is “instance-wise”, in the sense
that for every x such that the probabilistic algorithm distinguishes the outputs of the targeted
PRG on x from uniform, the reconstruction procedure prints an approximate version of f (x).
Thus, when assuming hardness of f over the uniform distribution (as in Theorem 1.6) we obtain
derandomization over the uniform distribution; and when hardness of f is over all polynomial-
time-samplable distributions x (as in Theorem 1.7) we obtain a derandomization that succeeds over
all polynomial-time-samplable distributions. Further details appear in Section 6.

As mentioned in Section 1.2, we also show that the existence of a “non-batch-computable”
function is necessary for average-case superfast derandomization in the natural setting of highly-
uniform balanced formulas. In high level, assuming that we can derandomize probabilistic for-
mulas with overhead T 7→ T · nε, we first diagonalize against all probabilistic formulas of size T
using a function that is computable by a formula F of size T′ = T · nε. We define a non-batch-
computable function g : {0, 1}n → {0, 1}n2ε

that, on input x, prints the n2ε gate values in the
appropriate intermediate level of F(x). Due to our choice of computational model (i.e., balanced
formulas) each output bit of g can be computed in time approximately T′/n2ε = T · n−ε; whereas
probabilistically computing the gate-values of the entire layer in F in time o(T) allows to compute
F itself in time o(T), a contradiction to its hardness. See Proposition 6.15 for further details.

14

2.2 The proof of Theorems 1.2, 1.3, 1.4 and 1.5

Loosely speaking, in Section 2.1 we used the input x to produce a hard truth-table f (x), and
then instantiated a version of the NW PRG with f (x) as the hard function. The main technical
bottleneck was that the reconstruction procedure for the PRG needed oracle access to f (x), and
we were able to answer the procedure’s oracle queries by our assumption that the individual bits
of f (x) are computable quickly. In Theorem 1.2 we have no such assumption, and therefore we
will need a more complicated construction.

The classical reconstruction approach of [IW98] and its drawbacks. Previous works follow-
ing [IW98; TV07] handled a similar technical challenge using an influential “bootstrapping”
argument. Recall that this argument instantiates a version of the NW PRG using a hard problem
L ∈ PSPACE that is both downward self-reducible and randomly self-reducible. Assuming
that there exists a distinguisher for the PRG on all input lengths n ∈ N, the reconstruction pro-
cedure is iterative: For i = 1, ..., n, the ith reconstruction step constructs a circuit that decides
Li = L ∩ {0, 1}i, using the circuit for Li−1 and the distinguisher for NWLi (i.e., for the NW PRG
that uses Li as the hard function). The base case of this procedure (i.e., computing L1) is trivial,
each iterative step uses the self-reducibility properties of L, and the conclusion of this argument
is that Ln can be efficiently decided for every n ∈N, a contradiction to the hardness of L.

There are two well-known drawbacks in this argument. First, the entire argument is “black-
box”, in the sense that it does not involve the input x that is available to the PRG and to the
reconstruction procedure. This is a drawback (rather than an advantage) since it causes their
derandomization to succeed only in average-case, rather than in the worst-case.13 Secondly, the
argument yields derandomization that succeeds only on infinitely many input lengths, since the as-
sumption that we make towards a contradiction is that a distinguisher succeeds (in distinguishing
the PRG from uniform) on almost all input lengths.

A non-black-box version of their reconstruction argument. The main building-block in our
proof is a non-black-box version of the [IW98] reconstruction argument, which allows us to
overcome the two aforementioned drawbacks. Intuitively, for any fixed x ∈ {0, 1}n, instead of
using the truth-tables of L1, ..., Ln as hard functions,14 we use a sequence of truth-tables that can
be efficiently produced from the input x, while guaranteeing that this sequence of truth-tables has
the structural properties needed for the reconstruction argument. The only downside to our
argument is that we construct a targeted HSG, rather than a targeted PRG. Details follow.

We first define a property of the hard function f : {0, 1}n → {0, 1}n that will allow us to
construct a targeted reconstructive HSG using f . For parameters t � T and d � T, we say that

13Specifically, their reconstruction procedure is a uniform algorithm that samples an input x ∈ {0, 1}n, and uses a
corresponding distinguisher Dx for the PRG (that is obtained by running the probabilistic algorithm that we are trying
to derandomize on input x) to compute L; since L is hard for probabilistic algorithms, it follows that the probability
of sampling x on which the derandomization fails is small. When trying to strengthen the conclusion and deduce that
there does not exist x on which the derandomization fails, we need to allow the reconstruction procedure access to an
arbitrary string x. In such a case the reconstruction is a non-uniform procedure (the advice modeled by x), and so the
argument does not work under the original uniform hardness hypothesis.

14To be accurate, in the arguments of [IW98; TV07] and of subsequent works the PRG uses the truth-tables of
L1, ..., L`, where ` is proportional to the seed length of the PRG.

15

B1 each entry in this row is computable from x in time t

B2

B3

...

Bd f (x) is computable with access to x and to this row in time t

T

each entry is computable from

the preceding row in time t

⇒ Each row is a codeword.

Figure 3: Visual depiction of a (d× T)-bootstrapping system B = B(f , x). We denote the ith row
of B by Bi.

f has (d× T)-bootstrapping systems with bootstrapping time t if for every x ∈ {0, 1}n there exists a
d× T matrix B = B f (x) satisfying the following.

1. (Base case.) There is an algorithm that gets input (x, i) ∈ {0, 1}n × [T], runs in time t, and
outputs the ith bit in the bottom row of B.

2. (Final case.) There is an algorithm that gets input x and oracle access to the top row of B,
and outputs f (x) in time | f (x)| · t.

3. (Self-reducibility.) There is an algorithm that gets input (i, j) ∈ [d]× [T] and oracle access
to the (i− 1)th row of B, runs in time t, and outputs Bi,j.

4. (Error-correction.) Each row of B is a codeword in a sufficiently good code. (The entries
in the matrix will be non-Boolean, but for simplicity we ignore this issue in the current
overview.) In particular, a sufficient requirement from the code is that every row, considered
as a truth-table, is sample-aided worst-case to rare-case reducible in time t.15

See Figure 3 for a visual depiction of a bootstrapping system, and see Definition 4.1 for the
formal definition. We stress that the bootstrapping matrix B = B f (x) depends on the particular
input x. In fact, if f has (d × T) bootstrapping systems with bootstrapping time t, then there
is an efficient algorithm that maps x to B f (x) in time poly(T, d, t) (i.e., the algorithm iteratively
computes each row in B f (x) from bottom to top, using the self-reducibility algorithm).

15This property of a function g means that there is a probabilistic algorithm that gets input z, access to a highly
corrupted version of g, and uniform samples (r, g(r)), and outputs g(z) with high probability (see Definition 3.8,
following Goldreich and Rothblum [GR17]). We can also relax this property, and only require that each row will be a
codeword in a locally-decodable code; see the discussion after the proof of Proposition 4.2.

16

Previous works following [IW98; TV07] can also be viewed as using bootstrapping systems,
albeit of a particular and more constrained type than the notion that we leverage (intuitively, the
bootstrapping systems implicit in their works are “black-box” since they do not depend on the
input; see Section 4.1 for an explanation). Using our more general notion, given any function that
has (d× T)-bootstrapping systems with bootstrapping time t satisfying poly(d, t) � T, we can
construct a corresponding reconstructive targeted HSG H f that has the following parameters:

Proposition 2.1 (from bootstrapping systems to a targeted HSG; informal, see Proposition 4.4).
Assume that f : {0, 1}n → {0, 1}n has (d× T)-bootstrapping systems with bootstrapping time t and suffi-
ciently good error-correction properties. Then, for any ε > 0 and n ≤ M(n) ≤ min

{
T(n)Ω(ε), t(n)Ω(1)

}
there exist:

1. Targeted HSG. A deterministic algorithm H f that gets input x ∈ {0, 1}n, runs in time poly(T),
and outputs a set of M-bit strings.

2. Reconstruction procedure. A probabilistic algorithm R that gets input x and oracle access to a
(1/M)-distinguisher D (i.e., Prr∈{0,1}M [D(r) = 1] ≥ 1/M but D rejects all the strings that H f (x)
outputs), runs in time poly(t, Tε, M) · d, and with probability at least 2/3 outputs f (x).

We explain the proof of Proposition 2.1, which uses the same ideas as in [IW98] but now
applies them to the bootstrapping system B f (x) that depends on x (rather than to a sequence of
the truth-tables of a hard function on input lengths 1, ..., n). The targeted HSG thinks of each row
in B f (x) as the truth-table of a function, and applies a suitable instantiation of the NW PRG to
this truth-table in order to map it to a set of M-bit strings.16 The union over all i ∈ [d] of these
sets of M-bit strings is the final pseudorandom set of strings that our targeted HSG outputs.

The reconstruction procedure R gets input x and access to a distinguisher Dx for H f (x), and
iteratively constructs small circuits that compute each row of B f (x), from bottom to top. The first
circuit computes the “base case” – the bottom row in the matrix B f (x). This can be done by a
circuit of size Õ(t) since the reconstruction procedure has access to x. Then, for i ≥ 2, we mimic
the iterative reconstruction argument of [IW98], showing that when given access to a circuit
Ci−1 that computes the truth-table Bi−1, and to the distinguisher Dx, we can compute in time
poly(t, M) a circuit Ci that computes the truth-table Bi. (In a gist, this step consists of combining
the well-known reconstruction and list-decoding algorithms of [GL89; NW94; IW98] and the
sample-aided worst-case to rare-case reducibility algorithm for Bi, which in our construction
follows [STV01]; see Section 4.4 for details.) Finally, we obtain a circuit Cd that computes Bd,
which allows us to compute f (x) by evaluating the circuit | f (x)| · t times. The crucial point is
that the reconstruction time is a fixed polynomial in M, d and t, which can be much smaller than
T assuming that t� T and d� T.

Indeed, the description above is high-level and omits many technical details, but these gener-
ally follow known techniques. The formal connection between bootstrapping systems and HSGs
is stated in Proposition 4.4 and proved in Section 4.4.

16For simplicity, in this presentation we simply refer “a suitable version” of the NW PRG, ignoring the alphabet
from which each entry in the matrix comes from and additional encodings applied to each row.

17

Bootstrapping systems and logspace-uniform circuits of bounded depth. So far we proved
a generic statement, saying that if f has bootstrapping systems then we can design a targeted
reconstructive HSG using f as the hard function. Loosely speaking, the additional result needed
to prove Theorem 1.2 is that the class of functions that have bootstrapping systems with d, t � T is
essentially the class of functions computable by logspace-uniform circuits of bounded depth.

One direction in this connection is relatively straightforward: If f has (d× T)-bootstrapping
systems with bootstrapping time t, then f can be computed by circuits of depth approximately
(d · t) and size approximately (d · t) · T (this direction is visually evident from Figure 3; see
Proposition 4.2 for details). The other direction is the more demanding one: We show that any
function computable by logspace-uniform circuits of depth d and size T also has bootstrapping
systems with dimensions d · log(T)× poly(T) and bootstrapping time Tε.

Proposition 2.2 (bootstrapping systems for logspace-uniform circuits; informal, see Proposi-
tion 4.3). Let f : {0, 1}n → {0, 1}n be computable by logspace-uniform circuits of size T(n) and depth
d(n) and let ε > 0 be an arbitrarily small constant. Then, for d′ = d · log(T) and T′ = poly(T)
there are (d′ × T′)-bootstrapping systems for f with bootstrapping time t = Tε · n and sufficiently good
error-correction properties.

To get initial intuition for the proof, assume for a moment that f from Proposition 2.2 is
computable by circuits that are not only logspace-uniform, but such that given the index of a
gate g in the circuit, we can compute the indices of the two gates feeding into g in time no(1).
Then, it is easy to construct a (d× T) system B = B f (x) that satisfies the base case, the final case,
and the self-reducibility properties of a bootstrapping system, but does not necessarily satisfy
any error-correction property. Specifically, denoting the circuit for f by C f , and considering the
gate-values of C f when it is given input x, we can define each row in B to be the gate-values
in the corresponding row of C f (x). The self-reducibility property then follows since the value
of each gate in the ith row of C f (x) depends on the values of just two gates in the (i− 1)th row
of C f (x), and we can compute the indices of these gates in time no(1). The challenge in proving
Proposition 2.2 is to construct a system in which the rows are not only self-reducible, but are
simultaneously also error-correctable (i.e., codewords in a good code), and to do so even when
the circuit only satisfies the weaker logspace-uniformity property.

To do so we rely on the ideas underlying the doubly-efficient proof system of Goldwasser,
Kalai, and Rothblum [GKR15]. Let us recall their construction. For i = 1, ..., d, denote by αi ∈
{0, 1}T the string representing the gate-values in the ith row of C f (x) (note that we index the
bottom row by 1 and the top row by d). Thinking of each αi as a function {0, 1}log(T) → {0, 1}, let
α̂i be a suitable low-degree extension of αi over a field of sufficiently large polynomial size (the
precise degree of each α̂i will be Tε for a small constant ε > 0).

As a first step (which does not yet complete the construction), define a system B̃ in which
the ith row is the truth-table of α̂i (i.e., the evaluation of the polynomial α̂i on all inputs). Indeed,
low-degree polynomials are codewords in the Reed-Muller code, and this code satisfies the error-
correction properties that we need in a bootstrapping system (see Section 3.4). However, we now
need to show that the rows in the system are self-reducible.

The key technical idea in [GKR15] is an interactive protocol that reduces computing α̂i+1 at
any given point ~w to computing α̂i at a different point (that the verifier chooses). This interactive

18

reduction consists of running an appropriate sumcheck protocol on a low-degree polynomial
that expresses the value α̂i+1(~w) as the weighted sum of values of α̂i on T2 inputs. Specifically,
let Φ̂ be an appropriate arithmetization of the circuit-structure function (i.e., of the function that
gets input (w, u, v) and outputs 1 iff gate w is fed by gates u and v), and assume wlog that all
gates in C f compute the NAND function. Then, we have that

α̂i+1(~w) = ∑
~u,~v

Φ̂(~w,~u,~v) · (1− α̂i(~u) · α̂i(~v)) , (2.1)

where the summation ranges over the arithmetizations ~u,~v of all T2 pairs of gates u, v in the ith

layer. (It is not a-priori clear how to arithmetize the circuit-structure function by a polynomial
Φ̂ of a low degree. This problem was solved in [GKR15], relying on the assumption that C f is
logspace-uniform, using another auxiliary interactive protocol; we avoid this auxiliary protocol
relying on a simplification suggested by Goldreich [Gol18]. See Section 4.3 for details.)

The sumcheck protocol reduces computing the LHS in Eq. (2.1) to computing α̂i at two points,
in at most log(T) rounds.17 The last observation that we need to complete the proof of Proposi-
tion 2.2 dates back to the work of Trevisan and Vadhan [TV07]: They observed that the sumcheck
protocol can be thought of as yielding a sequence of polynomials that is self-reducible, in the
sense that computing each polynomial reduces to computing the subsequent polynomial in a
small number of points. (Each polynomial corresponds to a round in the protocol, and the
number of points corresponds to the degree of the original polynomial in Eq. (2.1).)

We are now ready to define the bootstrapping system. We start from the initial system B̃
whose layers are the α̂i’s, and in between each pair of layers we add the polynomials that arise
from the sumcheck protocol. The self-reducibility property now follows since the polynomials
in each pair of layers either both come from the sumcheck protocol (in which case they are
self-reducible by the observation of [TV07]), or one of them is the last one in the sequence of
polynomials corresponding to α̂i+1 and the other one represents α̂i (in which case the former
polynomial just depends on the values of the latter in two points). For the full proof details see
Proposition 4.3 and Section 4.3.

An alternative view of our construction. An equivalent way of viewing our construction is that
each row in the bootstrapping system is the truth-table of the prover’s strategy function on input
x in a corresponding round of the [GKR15] protocol. Specifically, the dth row (i.e., the top row)
corresponds to the first round, in which the prover just sends the claimed value f (x); the (d− i)th

row corresponds to round i + 1 in the proof system; and the bottom row corresponds to the last
round in the proof system. From this perspective, the reconstruction procedure for B that was
described above reconstructs the prover strategy functions in the protocol of [GKR15], round-by-
round, starting from the last round in the interaction and working back until the first round.

Wrapping-up: Proof of Theorem 1.2 Combining Propositions 2.1 and 2.2, if f has logspace-
uniform circuits of size T(n) = poly(n) and depth d(n) = n2, then we have a reconstructive
targeted HSG H f with output length M = O(n) = TΩ(1) and reconstruction time t̄ = poly(Tε, n).

17In fact, since we use low-degree extensions α̂i of degree TΩ(1), the number of rounds will be constant. However,
this is immaterial to the high-level overview and we mention it only to avoid confusion.

19

In particular, if there exists an f as above that cannot be computed by probabilistic algorithms
in time t̄ on almost all inputs x, then for every x we have that H f “fools” all linear-time machines
that also get access to x, and it follows that prRP = prP . The standard reductions of [Sip83;
Lau83] imply that prBPP = prP , concluding the proof of Theorem 1.2.

We wish to highlight where we used the assumption that f is computable in parallel, i.e.
by uniform circuits of low depth. Denoting the circuit depth by d = d(n), we construct (via
Proposition 2.2) a bootstrapping system of slightly larger depth d′ > d, although for now we can
pretend that d′ = d. The reconstruction algorithm from Proposition 2.1 then runs in d′ iterations,
and in each iteration it performs a computation in time poly(n) (when setting the parameters
M, Tε and t as above). Thus, our hardness assumption is for probabilistic algorithms that run
in time d′ · poly(n). In particular, this means that the deterministic time bound for computing f
must be noticeably larger than the depth d′ of the bootstrapping system and of the circuit for f .

We also comment that to deduce the derandomization conclusion, it is not actually necessary
to assume that f is hard for all probabilistic algorithms that run in the prescribed time; instead,
it suffices to assume that f is hard for a particular algorithm. See Remark 5.6 for details.

Extensions: Proofs of Theorems 1.3, 1.4 and 1.5. The generalization of Theorem 1.2 to Theo-
rem 1.3 (i.e., scaling the time bounds for the hard function and the derandomization algorithm)
is mainly based on parametric modifications to the argument, and does not require additional
new ideas. However, one interesting point is that we reduce derandomization of prBPT IME
to derandomization of prRT IME with a significant time overhead (using the classical tech-
niques of [Sip83; Lau83], following [BF99]); more efficient reductions are known (see [ACR98;
GVW11]), but these work only when the derandomization of prRT IME is black-box (using
HSGs), whereas our derandomization is non-black-box.

Scaling Theorem 1.2 to smaller circuit classes, and in particular to logspace-uniform NC as
in Theorem 1.5, requires significantly more work and involves many low-level technical details.
Given a function f from the class, we need to ensure that the construction of bootstrapping
system, targeted HSG, and reconstruction procedure can all be carried out by circuits that are
both of polylogarithmic depth and logspace-uniform. To do so we prove several technical results that
are seemingly new (although they rely on known high-level algorithmic ideas); one result that
might be of independent interest is that the list-decoding procedure for the Reed-Muller code
can be implemented by such circuits, since the corresponding special case of list-decoding the
Reed-Solomon code can be implemented by such circuits. This construction relies on an idea that
was communicated to us by Madhu Sudan, and is presented in Appendix B.

Lastly, let us explain how we prove the “low-end” hardness-to-randomness tradeoff in The-
orem 1.4, in which there are no structural restrictions on the hard function f . First, if EXP 6⊂
P/poly then prBPP ⊆ i.o.prSUBEXP (using the NW PRG, see [BFN+93]) and we are done.
Otherwise, by [BFN+93], we have that EXP = MA. In particular, the function f that is com-
putable in time 2nc

has MA protocols running in some fixed time bound nk. The crucial obser-
vation is that any such MA protocol can by simulated by a uniform circuit that, while having
size 2O(nk), is nevertheless of fixed polynomial depth d(n) = nO(k); this is by a brute-force circuit
that enumerates the witnesses for the MA verifier in parallel. Moreover, this circuit is logspace-
uniform, since we just use the standard transformation of Turing machines to highly-uniform

20

circuits that compute the tableau of the machine’s computation.
We now want to base a reconstructive targeted HSG H f on this hard function f . To do so

we need to tweak the parameters in Propositions 2.1 and 2.2 so that the reconstructive over-
head and bootstrapping time will both be proportional to polylog(T) = poly(n) rather than to
Tε = 2poly(n). This modification is indeed possible, where the cost is that the dimensions of
the bootstrapping system increase and the resulting targeted HSG is slower, working in time
2polylog(T) = 2nO(c)

(see Propositions 4.3 and 4.4 for details). This overhead is fortunately good
enough for the current setting: Instantiating the targeted HSG H f with such overhead and with

polynomial output length M, the derandomization time is a fixed exponent 2nO(c)
and the re-

construction time is polylog(T) · poly(n) · d = poly(n). Thus, if f is hard for probabilistic
polynomial-time algorithms then prRP can be simulated in fixed exponential time 2nO(c)

.

3 Preliminaries

Throughout the paper we use the notation 〈x, y〉 to denote the inner-product over F2; that is,
〈x, y〉 = ⊕i(xi · yi). We will typically denote random variables by boldface.

Unless explicitly stated otherwise, we assume that all circuits are comprised of Boolean NAND

gates of fan-in two and are layered, where the latter property means that gates at distance i from
the inputs only feed to gates at distance i + 1. 18 In several places in the paper we will need
the following notion, which strengthens the standard notion of a time-computable function by
requiring that the function will be computable in logarithmic space.

Definition 3.1 (logspace-computable functions). We say that a function T : N → N is logspace-

computable if there exists an algorithm that gets input 1n, runs in space O(log(T(n))), and outputs
T(n).

3.1 Pseudorandomness and targeted pseudorandom generators

Our non-black-box derandomization algorithms rely on constructions of targeted pseudorandom
generators and targeted hitting-set generators. Targeted PRGs were defined by Goldreich [Gol11a],
who showed that the existence of polynomial-time computable targeted PRGs with logarithmic
seed length is equivalent to the hypothesis prBPP = prP . Let us recall his definition of targeted
PRGs, and also define a targeted HSGs in the natural way:

Definition 3.2 (targeted PRG; see [Gol11a, Definition 4.10]). For T : N→ N, let G be an algorithm
that gets input x ∈ {0, 1}n and a seed of length `(n) and outputs a string of length T(n). We say that G
is a targeted pseudorandom generator with error µ for time T (or µ-targeted-PRG for time T, in short) if
for every algorithm A running in time T, every sufficiently large n ∈ N and every x ∈ {0, 1}n it holds
that ∣∣∣ Pr

r∈{0,1}T(n)
[A(x, r) = 1]− Pr

s∈{0,1}`(n)
[A(x, G(x, s)) = 1]

∣∣∣ ≤ ε .

18The assumption that circuits are layered is made merely for simplicity. In particular, logspace-uniform circuits (as
defined in Definition 3.5) that are not layered can be transformed to logspace-uniform circuits that are layered with
a linear overhead in size. (By adding dummy gates at each layer, and since the distance of each gate from the inputs
can be computed in space that is logarithmic in the size of the circuit.)

21

Definition 3.3 (targeted HSG). For T : N→N, let H be an algorithm that gets input x ∈ {0, 1}n and
a random seed of length `(n) and outputs a string of length T(n). We say that H is a targeted hitting-

set generator with error µ for time T (or µ-targeted-HSG for time T, in short) if for every algorithm A
running in time T, every sufficiently large n ∈N and every x ∈ {0, 1}n such that Prr∈{0,1}T(n) [A(x, r) =
1] ≥ 1/2, there exists s ∈ `(n) such that A(x, H(x, s)) = 1.

The foregoing definitions refer to PRGs and HSGs that fool distinguishers in the worst-case
(i.e., for every x ∈ {0, 1}n). These definitions extend naturally to PRGs and HSGs that only fool
distinguishers on average-case (i.e., with high probability over choice of x according to some
predetermined probability distributions).

In Section 6 we rely on the following claim, which asserts that if one-way functions exist, then
there exist PRGs with seed length nε that are computable in time n1+ε, for an arbitrarily small
ε > 0. The proof of this claims amounts to using the classical constructions of PRGs from one-
way functions [HIL+99] and then applying standard techniques to extend the expansion factor
of PRGs (see, e.g., [Gol01, Construction 3.3.2]).

Theorem 3.4 (OWFs yield PRGs with near-linear running time). If there exists a polynomial-time
computable one-way function secure against polynomial-time algorithms, then for every ε > 0 there exists
a PRG that has seed length `(n) = nε, is computable in time n1+ε, and fools every polynomial-time
algorithm with negligible error.

Proof. By [HIL+99], the hypothesis implies that for some negligible function neg there exists
G1 : {0, 1}m → {0, 1}2m that is computable in time mc, and for all k ∈ N, no probabilistic algo-
rithm running in time (2m)k can distinguish between G1(um) and u2m with advantage at least
neg(2m). Our PRG G gets input 1n and a seed x ∈ {0, 1}m where m = nε/2c < nε and acts as
follows.

1. Let σ1 = x.

2. For i ∈ {2, 3, ..., n/m}, compute σi as the last m bits of G1(σi−1).

3. Output the concatenation of σ1, σ2, ..., σn/m, which is an n-bit string

The running time of G is at most mc · n + O(n) ≤ n1+ε, and a standard hybrid argument (as
in [Gol01, Theorem 3.3.3]) reduces distinguishing G1 with noticeable advantage to distinguishing
G with noticeable advantage.

3.2 Logspace-uniform circuits

Recall that, as mentioned in the introduction, we generalize the definition of logspace-uniform
circuits to super-polynomial size bounds, in a straightforward way. The usual definition refers to
circuits of size poly(n) whose adjacency relation (i.e., Φ(u, v, w) = 1 iff gates v, w feed into gate u)
can be decided in space O(log(n)); that is, in space that is linear in the input size to the adjacency
relation function. We simply scale this definition up, while maintaining the requirement that the
adjacency relation can be decided in space logarithmic in the circuit size (i.e., linear in the input
size to the adjacency relation); that is:

22

Definition 3.5 (logspace-uniform circuit). We say that a circuit family {Cn}n∈N of size T(n) is
logspace-uniform if there exists an algorithm A such that:

1. (Decides the adjacency relation.) The algorithm gets as input (u, v, w) ∈ {0, 1}3 log(T(n)) and
accepts if and only if the gates in Cn indexed by v and by w feed into the gate in Cn indexed by u.

2. (Runs in linear space.) On an input of length ` = 3 log(T(n)), the algorithm runs in space
O(`).

When we mention logspace-uniform probabilistic circuits we refer to circuits that are logspace-uniform
and also use additional input gates that are assigned random values (i.e., the randomness is used by the
circuit rather than by the logspace algorithm that constructs the circuit).

Note that Definition 3.5 is equivalent to a definition asserting that there exists an algorithm
that gets input 1n, runs in space O(log(T)), and prints a description of Cn (where the description
is a list of gates, and for each gate we list the indices of gates feeding into it).

3.3 Average-case complexity classes and simulations

We now recall standard definitions of average-case simulation of a problem L ⊆ {0, 1}∗. The
following definitions refer to average-case simulation over an arbitrary distribution, over the
uniform distribution, and over all polynomial-time samplable distributions, respectively.

Definition 3.6 (average-case simulation over arbitrary distributions). Let L ⊆ {0, 1}∗, let β : N→
(0, 1) let C be a complexity class, and let x = {xn}n∈N be an ensemble of distributions (where xn is a
distribution over n-bit inputs). We say that L ∈ heurx,1−β-C if there exists C ∈ C such that for every
sufficiently large n ∈N it holds that Prx∼xn [C(x) = L(x)] ≥ 1− β(n).

Definition 3.7 (average-case simulation, two special cases). Let L ⊆ {0, 1}∗, let β : N→ (0, 1) and
let C be a complexity class. Then:

1. We say that L ∈ avg1−β-C if there exists C ∈ C such that for every sufficiently large n ∈ N it
holds that Prx∈{0,1}n [C(x) = L(x)] ≥ 1− β(n) (i.e., the choice of x is according to the uniform
distribution).

2. We say that L ∈ heur1−β-C if there exists C ∈ C such that for every polynomial-time samplable
ensemble x of distributions and sufficiently large n ∈ N it holds that Prx∼xn [C(x) = L(x)] ≥
1− β(n).

We say that a complexity class C ′ satisfies C ′ ⊆ avg1−β-C if for every L ∈ C ′ it holds that
L ∈ avg1−β-C (and similarly define C ′ ⊆ heurx,1−β-C and C ′ ⊆ heur1−β-C).

3.4 Sample-aided worst-case to rare-case reductions for polynomials

Our algorithms will use sample-aided worst-case to rare-case reductions. The foregoing term was
coined recently by Goldreich and Rothblum [GR17], and is implicit in many previous works.
Intuitively, a sample-aided worst-case to rare-case reduction for a function f is an algorithm
that computes f at any point given a “highly corrupted” version f̃ of f as well as random
labeled examples of f . We also specialize this definition to the case where the algorithm can be
implemented by logspace-uniform circuits of bounded depth.

23

Definition 3.8 (sample-aided reductions). For s, w : N→N and ρ, ε : N→ [0, 1]:

1. Let f : {0, 1}∗ → {0, 1}∗ be a function that maps n bits to w(n) bits.

2. Let M be a probabilistic procedure that gets input 1n and a sequence of s(n) pairs of the form
(r, v) ∈ {0, 1}n × {0, 1}n and oracle access to a function f̃n : {0, 1}n → {0, 1}w(n), and outputs a
circuit C : {0, 1}n → {0, 1}w(n) with oracle gates.

We say that M is a sample-aided reduction of computing f in the worst-case to computing f on ρ

of the inputs using a sample of size s and with error ε if for every f̃n : {0, 1}n → {0, 1}w(n) satisfying
Prx∈{0,1}n

[
f̃n(x) = fn(x)

]
≥ ρ(n) the following holds: With probability at least 1− ε over choice of

r̄ = r1, ..., rs(n) ∈ {0, 1}n and over the internal coin tosses of M, we have that M f̃n(1n, (ri, fn(ri))i∈[s(n)])

outputs an oracle circuit C such that Pr
[
C f̃n(x) = fn(x)

]
≥ 2/3 for every x ∈ {0, 1}n.

Definition 3.9 (sample-aided worst-case to rare-case reducibility). For ρ, ε : N → (0, 1), and
T, D, s : N → N, we say that a function f : {0, 1}∗ → {0, 1}∗ is sample-aided worst-case to ρ-rare-

case reducible by logspace-uniform circuis of size T and depth D with error ε and sample size s if there
exists a sample-aided reduction M of computing f in worst-case to computing f on ρ of the inputs such
that M uses s(n) samples and has error ε > 0, and can be implemented by a logspace-uniform circuits of
size T(n) and depth D(n).

The following result asserts that low-degree polynomials (i.e., the Reed-Muller code) are
sample-aided worst-case to rare-case reducible. The proof of the foregoing statement is quite
standard, but in the following result we will also assert something stronger: We claim that
the reduction can be implemented by logspace-uniform circuits of polylogarithmic depth (i.e.,
in logspace-uniform NC). A reduction meeting this additional efficiency requirement, and in
particular the logspace-uniformity of the circuits, seems not to have been known before. The full
proof involves many low-level details, and we present it in Appendix B. A key idea in the proof
was suggested to us by Madhu Sudan.

Proposition 3.10 (low-degree polynomials are uniformly sample-aided worst-case to average-case
reducible). Let q : N → N be a function mapping integers to primes, let ` : N → N such that n ≥
`(n) · log(q(n)), and let d : N→N. Let f = { fn}n∈N be a sequence of functions such that fn computes
a polynomial F

`(n)
n → Fn of degree d(n) where |Fn| = q(n). Then f is sample-aided worst-case to ρ-rare-

case reducible by logspace-uniform oracle circuits of size poly(q, `) and depth polylog(q, `) with error
1− 2−q and poly(q) samples, where ρ = 10

√
d(n)/q(n).

4 A targeted HSG via bootstrapping systems

The main technical result underlying Theorem 1.2 is a construction of a reconstructive targeted
HSG that is based on any function computable by logspace-uniform circuits of bounded depth.
In this section we present this construction.

First, in Section 4.1 we formally define bootstrapping systems and discuss the complexity of
functions with bootstrapping systems. Then, in Section 4.2 we state the two technical results that

24

we will need for our HSG construction, and then use them to state the construction and prove it.
Finally, in Sections 4.3 and 4.4 we prove each of the two technical results, respectively.

Throughout the section, we will frequently refer to integers in [T] as representing gates in a
given circuit of size T. This representation refers to the indices of gates according to an ordering
in some fixed canonical way of describing the entire circuit as a list of gates.19 We also consider
integers that represent gates in individual layers of the circuit; this refers to indices of gates between
1, ..., T where T is the number of gates in the layer, where the ordering of gates is induced by the
same global ordering of all the gates in the circuit.

4.1 Bootstrapping systems

The following definition of bootstrapping systems expands on the one that was presented in
Section 2.2. The main difference is that in the definition below we distinguish the complexity of
the algorithms for each of the different tasks associated with a bootstrapping system, whereas in
Section 2.2 we just bounded them all by a single parameter (denoted t there). After the definition
we demonstrate a typical setting of parameters that we will use.

Definition 4.1 (bootstrapping systems). Let T, d, A : N → N and ρ : N → (0, 1) be logspace-
computable functions. We say that a function f : {0, 1}∗ → {0, 1}∗ has (d× T)-bootstrapping systems

with alphabet size A if for every x ∈ {0, 1}n there exists a sequence of strings P0(x), ..., Pd(n)(x) ∈
[A(n)]T(n) with the following properties:

1. (Layers are efficiently printable.) There exists an efficient algorithm that gets input (x, i) ∈
{0, 1}n × [d(n)] and prints the string Pi(x) (using the natural encoding of integers in [A(n)] as
binary strings).

2. (Base case.) There exists an efficient algorithm that gets input (x, j) ∈ {0, 1}n × [T(n)] and
outputs P0(x)j.

3. (Downward self-reducibility.) There exists an efficient algorithm that gets input (x, i, j) ∈
{0, 1}n × [d(n)]× [T(n)] and oracle access to Pi−1(x), and outputs Pi(x)j.

4. (Worst-case to rare-case reducibility.) Each Pi(x), considered as the truth-table of a function, is
sample-aided worst-case to ρ(n)-rare-case self-reducible.20

5. (Final case.) There exists an efficient algorithm that gets input x ∈ {0, 1}n and oracle access to
Pd(n)(x) and outputs f (x).

When claiming that a function f has bootstrapping systems, we will specify the precise complexities
of each of the efficient algorithms mentioned in Items (1), (2), (3), (4) and (5). We also call the parameter
A the alphabet size, and the parameter ρ the rare-case agreement.

19The only exception to this rule is in the proof of Claim 4.7.1, where a particular algorithm will need to describe
circuits in a specific different way. We will explicitly mention this point in that proof.

20A minor technicality is that we defined sample-aided worst-case to rare-case reductions for Boolean functions
f : {0, 1}∗ → {0, 1}∗, whereas here for each n ∈N we have a collection of functions {Pi} and we define the reduction
for each function Pi in the collection. Our intention is that there exists a single uniform algorithm that gets input n
and i and performs the reduction for Pi.

25

We will typically use bootstrapping systems in which the algorithm for printing layers runs
in time poly(T), the algorithms in Items (2), (3), (4) and (5) run in time t � T (say, t = Tδ for a
very small constant δ > 0), and the rare-case agreement is ρ(n) = t−Ω(1). We note that there are
several natural relaxations of our requirements from bootstrapping systems that still allow our
main argument to follow through; see details below.

The complexity of functions with bootstrapping systems. Let f be a function that has a (d×
T)-bootstrapping with alphabet size o(2n), and assume that the algorithms for Items (2), (3), (4),
and (5) all work in time t. We observe that f can be computable by logspace-uniform circuits
of depth approximately d · t2 and size approximately T · (d · t2). In particular, for our parameter
setting poly(d, t)� T, these are logspace-uniform circuits of size T and depth poly(d, t)� T.

Proposition 4.2 (functions with bootstrapping systems are computable by bounded-depth cir-
cuits). Let f : {0, 1}n → {0, 1}n be a function that has (d× T)-bootstrapping systems with alphabet size
2o(n), and assume that the algorithms for Items (2), (3), and (5) all work in time t(n). Then f can be
computed by a logspace-uniform circuit of depth Õ(t(n)) · d(n) and size Õ(T(n) · t(n)) · d(n) · n.

Proof. We rely on the fact that a time-t Turing machine can be simulated by a logspace-uniform
circuit of size O(t2) (i.e., the standard method of computing the tableau of the machine’s compu-
tation can be implemented by logspace-uniform circuits).

Given x ∈ {0, 1}n, iteratively for i = 0, ..., d(n), the circuit computes a binary representation
of Pi(x), which is of length T(n) · o(n) ≤ T(n) · n. By the base case in Definition 4.1, each block of
log(o(n)) bits in P0(x) can be computed in time t, and hence by a logspace-uniform circuit of size
O(t2). Thus, we can compute the binary representation of Pi(x) by a circuit of size T(n) · Õ(t(n)).
Similarly for i ∈ [d(n)], we compute a binary representation of Pi+1(x) from the precomputed
binary representation of Pi(x) using a logspace-uniform circuit of size O(T(n) · t(n)2). Oracle
gates of the circuit (which issue queries to the preceding layer Pi(x)) can be replaced by a gadget
that implements the indexing function, which is computable by a logspace-uniform circuit of size
Õ(T(n)). The output layer of the circuit uses the final case algorithm in a similar manner. The
overall depth of this circuit is (d(n) + 2) ·O(t(n)2), and its size is O(t(n)2 · T(n) · d(n) · n).

Relaxing the requirements. There are two natural relaxations of the requirements in Defini-
tion 4.1 that still allow our main argument (i.e., the construction of an HSG from bootstrapping
systems in Proposition 4.4) to follow through. First, the requirement that each layer is worst-
case to rare-case reducible can be relaxed, only requiring that each layer is a codeword in a
code that has an efficient local decoder from a constant (say, 1/4) fraction of errors. This is the
case because given a bootstrapping system that only satisfied the relaxed requirement, we can
apply the derandomized direct product construction of Impagliazzo and Wigderson [IW99] to
each layer: Their construction transforms each such codeword into the truth-table of a function
that is sample-aided worst-case to rare-case reducible, where each entry in the new truth-table
can be efficiently computed using logarithmically many queries to the previous truth-table (see
Theorem A.5 for precise details).

Secondly, when presenting Definition 4.1 we implicitly assumed that the algorithms in Items (2), (3)
and (5) are deterministic. While this is the case in our particular constructions, the proof of

26

Proposition 4.4 follows through even if these algorithms are probaiblistic (this is since the recon-
struction argument that uses these algorithms is probabilistic to begin with).

Previous works as using bootstrapping systems. As mentioned in Section 2, previous works
in uniform hardness-to-randomness can be viewed in retrospect as relying on bootstrapping
systems. Specifically, in the works of Impagliazzo and Wigderson [IW98] and of Trevisan and
Vadhan [TV07] the hard function was a set L ⊆ {0, 1}∗ that is downward self-reducible and
randomly self-reducible (instead of a multi-output function f as in our work), and given x ∈
{0, 1}n considered the following bootstrapping system: For each i ∈ [n], the layer Pi is the truth-
table of L on inputs of length i.

To see that this yields bootstrapping systems as in Definition 4.1, note the downward self-
reducibility of L yields the algorithm in Item (3), and the random self-reducibility of L ensures
that each row in the bootstrapping system is a codeword in a code that has an efficient local
decoder (which, as explained above, suffices to meet the requirement in Item (4)). The layers in
their constructions are printable in polynomial space, and the algorithms for Items (2) and (5)
follow since L1 is trivially-computable and since Ln at location x is simply the sought value L(x).

An important point to notice, which we already mentioned in Section 2, is that the foregoing
bootstrapping systems are identical for all inputs of a given length n (i.e., the bootstrapping system
matrices BL(x) and BL(x′) are identical for every x, x′ ∈ {0, 1}n). In contrast, our bootstrapping
systems will depend on the particular input.

4.2 The result statements: A reconstructive targeted HSG

We now state the two main technical results that we need for our HSG construction, and then
combine them to obtain the HSG construction. The first technical result asserts that any function
computable by logspace-uniform circuits of bounded depth has efficient bootstrapping systems.
When parsing the parameters below, we encourage the reader to notice that the algorithms for
computing P0, for downward self-reducibility, and for worst-case to rare-case reducibility, all run
in time much smaller than T (i.e., in time t = Tµ for a very small µ).

Proposition 4.3 (bootstrapping systems based on the proof system of [GKR15]). There exist two
universal constants α ∈ (0, 1) and k > 1 such that the following holds. Let f : {0, 1}∗ → {0, 1}∗ be
length-preserving function computable by a logspace-uniform family {Cn}n∈N of circuits of size at most
T(n)k and depth d(n). Then, there exist d′ = O(d · log(T)) and T′ = poly(T) such that for every
logspace-computable µ : N → (0, 1) satisfying t = Tµ ≥ log1/α(T), the function f has (d′ × T′)-
bootstrapping systems with alphabet size O(log(T)) and the following properties:

1. The algorithm that prints Pi(x) is a logspace-uniform circuit of size poly(T) and depth d′ +
O(log2(T)).

2. The algorithm that computes P0(x) is a logspace-uniform circuit of size max {n, t} · t and depth
O(log2(T)).

3. The downward self-reducibility algorithm is a logspace-uniform circuit of size t and depth O(log2(T)).

27

4. The sample-aided worst-case to ρ-rare-case algorithm supports agreement ρ = t−α ·polylog(T), has
error 2−tα

, and is computable by logspace-uniform circuits of size t and depth log1/α(T). 21

The second technical result below constructs a reconstructive targeted HSG based on any
function f that has an efficient bootstrapping system. We stress that the transformation does not
depend on f being logspace-uniform or having bounded-depth circuits, but holds for any function with
bootstrapping systems. (Indeed, only in the “moreover” we assume that f has this particular
form, in which case we deduce that the algorithms associated with the HSG are also logspace-
uniform circuits of bounded depth.) When parsing the parameters below, we encourage the
reader to think of t and t0 as very small compared to T′ (e.g., t = Tγ for a very small γ).

Proposition 4.4 (from bootstrapping systems to a targeted HSG). There exist universal constants
c′, c′′ > 1 such that the following holds.

Assumption: For T′, A, T̄, t0, t, d′ : N → N and α ∈ (0, 1) such that max {A(n), t(n), t0(n), d′(n)} ≤
T′(n), let f be a length-preserving function that has (d′ × T′)-bootstrapping systems with alphabet size
A satisfying the following:

1. The algorithm that prints Pi(x) runs in time T̄.

2. The algorithm that computes P0(x) runs in time t0.

3. The downward self-reduction runs in time t.

4. The sample-aided worst-case to rare-case reduction runs in time t, supports a rare-case agreement of
t−α, and has error 2−tα

.

Conclusion: Then, for every time-computable M : N→N and γ : N→ (0, 1) such that log(T′) ≤ M ≤
min

{
(T′)γ/c′′ , tα/c′′

}
there exist a deterministic algorithm H f and a probabilistic algorithm R that for

every x ∈ {0, 1}n satisfy the following:

1. Generator. When H f gets input x ∈ {0, 1}n it runs in time (T̄ + (T′)1/γ)c′ and outputs a set of
M-bit strings.

2. Reconstruction. When R gets input x and oracle access to a function D : {0, 1}M → {0, 1} such
that Prr∈{0,1}M [D(r) = 1] ≥ 1/M but D rejects all the strings that H f (x) outputs, it runs in time

(t · (T′)γ ·M)c′ ·
(

d′ + n + tc′
0

)
and with probability at least 1− d′ ·

(
1/(T′)2 + 3 · 2−M) outputs

f (x).

Moreover, assume that γ is constant, that all the relevant functions (i.e., T′, A, T̄, t0, t, d′, and M) are
logspace-computable, that the algorithms in Items (1), (2), (3), and (4) of the hypothesis are logspace-
uniform circuits of size identical to the stated time bounds, that the circuit in Item (1) has depth d̃, and
that the circuits in the other three items have depth polylog(T′). Then, generator H f can be computed by
a logspace-uniform circuit of size poly(T′) and depth d̃ + polylog(T′), and the reconstruction algorithm
R can be computed by a logspace-uniform probabilistic circuit of size (t · (T′)γ ·M)c′ ·

(
d′ + n + tc′

0

)
and

depth d′ · polylog(T′).

21The polylogarithmic power in the definition of ρ depends on the family {Cn}.

28

As mentioned above, the proofs of Propositions 4.3 and 4.4 appear in Sections 4.3 and 4.4,
respectively. The following result is our main construction of the HSG in this section, and its
proof amounts to a straightforward combination of the foregoing two results. We state the result
for a relatively high reconstruction overhead (i.e., Tδ for a constant δ > 0), in which case the
HSG and reconstruction are guaranteed to be a logspace-uniform circuit of bounded depth; a
statement allowing lower overheads (i.e., To(1)), but without such guarantee, appears in Section 5.

Proposition 4.5 (a reconstructive targeted HSG). There exists a universal constant c > 1 such that
the following holds. Let f : {0, 1}n → {0, 1}n be computable by logspace-uniform circuits of size T(n)
and depth d(n), let δ > 0, and let M : N→ N such that c · log(T(n)) ≤ M(n) ≤ T(n)δ/c. Then, there
exist a deterministic algorithm H f and a probabilistic algorithm R that for every x ∈ {0, 1}n satisfy the
following:

1. Generator. The generator H f gets input x and outputs a set of M-bit strings. It is computable by
a logspace-uniform circuit of size poly(T) and depth (d + log(T)) ·O(log(T)).

2. Reconstruction. When R gets input x and oracle access to a function D : {0, 1}M → {0, 1}
such that Prr∈{0,1}M [D(r) = 1] ≥ 1/M but D rejects all the strings that H f (x) prints, it outputs
f (x) with probability at least 1 − 1/M. The procedure R is computable by a logspace-uniform
probabilistic circuit of size (d + nc) · Tδ ·Mc and depth d · logc(T).

Proof. Let c′ and c′′ be the universal constants from Proposition 4.4, and let α ∈ (0, 1) and k be
the universal constants from Proposition 4.3. We instantiate the bootstrapping systems for f from
Proposition 4.3 with parameter µ = δ/5c′. This yields a system with dimensions (d′× T′) for d′ =
O(d · log(T)) and T′ = Tk, where the algorithm that prints each Pi is a logspace-uniform circuit
of size T̄ = TO(1/µ) = poly(T) and depth d′ + O(log2(T)), the algorithms computing the two
reductions (i.e., downward self-reducibility and worst-case to rare-case reducibility) are logspace-
uniform circuits of size t = Tδ/5c′ and depth polylog(T), and the algorithm that computes P0 is a
logspace-uniform circuit of size t0 = max {n, t} · t and depth polylog(T).

We now plug this system into Proposition 4.4, using the parameter γ = δ/(5k · c′). The
hypothesis in Proposition 4.4 that A(n) ≤ T(n) is satisfied (since the bootstrapping system has
alphabet size A(n) = O(log(T(n)))), and the constraint in its conclusion that k · log(T) ≤ M ≤
min

{
tα/c′′ , (T′)γ/c′′

}
= min

{
T(α·δ)/(5c′·c′′), Tδ/(5c′·c′′)

}
= T(α·δ)/(5c′·c′′) is satisfied by our hypothe-

sis that c · log(T) ≤ M ≤ Tδ/c for a sufficiently large universal constant c ≥ max {k, (5c′ · c′′)/α}.
Note that the generator H f is indeed computable by a logspace-uniform circuit of size poly(T̄+

(T′)1/γ) = poly(T) and depth

d̃ + O(log2(T)) = d′ + O(log2(T)) = O(d · log(T)) + O(log2(T)) .

The reconstruction algorithm R can be computed by a logspace-uniform probabilistic circuit of
size (

t · Tkγ ·M
)c′
·
(

d′ + n + (max {n, t} · t)c′
)
< Tδ ·Mc · (nc + d)

and of depth d′ · polylog(T′) = d · logc(T), assuming that the universal constant c is sufficiently

29

large. The probability that R errs is at most

O(d · log(T)) ·
(

1
(T′)2 + 3 · 2−M

)
< 1/M .

4.3 Bootstrapping systems for logspace-uniform bounded-depth circuits

In this section we prove Proposition 4.3. As explained in Section 2, our construction mimics the
interactive proof system of Goldwasser, Kalai, and Rothblum [GKR15]. Specifically, we arithme-
tize the circuit layer-by-layer over an appropriate arithmetic setting, and “in between layers” we
add additional polynomials that represent a suitable sumcheck protocol, which allows reducing
claims about each layer to claims about the preceding layer. Our construction is actually simpler,
and does not refer to two auxiliary interactive protocols from their original proof system; this
simplification is possible since we only need a bootstrapping system rather than a proof system,
and using an additional idea of Goldreich [Gol18].22

We first define the notion of a polynomial decomposition of a circuit, then show that any function
computable by logspace-uniform bounded-depth circuits has a polynomial decomposition with
good parameters, and finally show how a function with such a polynomial decomposition has
bootstrapping systems with good parameters.

Definition 4.6 (polynomial decomposition of a circuit). Let C be a circuit that has n input bits,
fan-in two, size T, and depth d. For every x ∈ {0, 1}n, we call a collection of polynomials a polynomial

decomposition of C(x) if it meets the following specifications:

1. (Arithmetic setting.) For some prime p ≤ T, the polynomials are defined over the prime field
F = Fp. For some integer h ≤ p, let H = [h] ⊆ F, let m be the minimal integer such that hm ≥ T,
and let m′ ≤ m be the minimal integer such that hm′ ≥ n.

2. (Circuit-structure polynomial.) For each i ∈ [d], let Φi : H3m → {0, 1} be the function such
that Φi(~w,~u,~v) = 1 if and only if the gate in layer i indexed by ~w is fed by the gates in layer i− 1
indexed by ~u and ~v. (If one of the elements ~w,~u,~v does not index a valid gate in the corresponding
layer, then Φi outputs zero.) The polynomial Φ̂i : F3m → F can be any extension of Φi.

3. (Input polynomial.) Let α0 : Hm → {0, 1} represent the string x0hm−n, and let α̂0 : Fm → F be
defined by

α̂0(~w) = ∑
~z∈Hm′×{0}m−m′

δ~z(~w) · α0(~z) ,

where δ~z is Kronecker’s delta function (i.e., δ~z(~w) = ∏j∈[m] ∏a∈H\{zj}
wj−a
zj−a).

22Let us spell out the differences, for readers who are familiar with [GKR15]. First, following the simplification
idea of Goldreich [Gol18], we avoid an auxiliary protocol from their original system intended to compute the circuit-
structure polynomial. Secondly, we avoid an auxiliary protocol that reduces verification of a pair of points at each
step to verification of a single point at each step; this is because in bootstrapping systems we are fine with verifying
a set of points at each step (in contrast to proof systems, where this yields an exponential blow-up in the verification
time). Lastly, we warn readers that our indexing of the layers below is reverse order compared to the indexing in their
paper (i.e., we index from bottom to top rather than from top to bottom).

30

4. (Layer polynomials.) For each i ∈ [d], let αi : Hm → {0, 1} represent the values of the gates at
the ith layer of C in the computation of C(x) (with zeroes in locations that do not index valid gates),
and let α̂i : Fm → F be defined by

α̂i(~w) = ∑
~u,~v∈Hm

Φ̂i(~w,~u,~v) · (1− α̂i−1(~u) · α̂i−1(~v)) .

5. (Sumcheck polynomials.) For each i ∈ [d], let α̂i,0 : F3m → F be the polynomial

α̂i,0(~w, σ1, ..., σ2m) = Φ̂i(~w, σ1,...,m, σm+1,...,2m) · (1− α̂i−1(σ1,...,m) · α̂i−1(σm+1,...,2m)) ,

and for every j ∈ [2m− 1], let α̂i,j : F3m−j → F be the polynomial

α̂i,j(~w, σ1, ..., σ2m−j) =

∑
σ2m−j+1,...,σ2m∈H

Φ̂i(~w, σ1,...,m, σm+1,...,2m) · (1− α̂i−1(σ1,...,m) · α̂i−1(σm+1,...,2m)) ,

where σk,...,k+r = σk, σk+1, ..., σk+r. Lastly, let α̂i,2m(~w) = α̂i(~w).

We now show that any function computable by logspace-uniform circuits of bounded depth
has a polynomial decomposition whose reducibility algorithms are very efficient.

Proposition 4.7 (polynomial decompositions of logspace-uniform circuits using universal cir-
cuits). There exist two universal constants c, c′ ∈ N such that the following holds. Let {Cn}n∈N be a
logspace-uniform family of circuits of size T(n) and depth d(n), and let γ : N → (0, 1) be a logspace-
computable function such that T(n)γ(n) ≥ log(T(n)). Then, there exists a logspace-uniform family of
circuits {C′n}n∈N of size T′(n) = O(T(n)c) and depth d′(n) = O(d(n) · log(T(n))) that computes the
same Boolean function as {Cn} such that for every x ∈ {0, 1}n there exists a polynomial decomposition of
C′n(x) satisfying:

1. (Arithmetic setting.) The polynomials are defined over Fp, where p is the smallest prime in the
interval [Tγ·c, 2Tγ·c]. Let H = [h] ⊆ F, where h is the smallest power of two of magnitude at least
Tγ/6, and let m be the minimal integer such that hm ≥ 2Tc.

2. (Faithful representation.) For every i ∈ [d′(n)] and ~w ∈ Hm representing a gate in the ith layer
it holds that α̂i(~w) is the value of the gate ~w in C′n(x).

3. (Layer downward self-reducibility.) There is a logspace-uniform oracle circuit of size max {n, h} ·
hc′ and depth O(log2(T)) that, when given oracle access to x ∈ {0, 1}n, computes the function α̂0.
Also, there is a logspace-uniform oracle circuit of size hc′ and depth O(log2(T)) that computes α̂i,0

while querying α̂i−1 twice on inputs in Hm. Lastly, α̂i,2m ≡ α̂i.

4. (Sumcheck downward self-reducibility.) There is a logspace-uniform oracle circuit of size hc′

and depth O(log(T)) that gets input ~w ∈ Fm and (σ1, ..., σ2m) ∈ F2m and j ∈ [2m] and oracle
access to α̂i,j−1 and outputs α̂i,j(~w, σ1, ..., σ2m−j).

5. (Sample-aided worst-case to rare-case reducibility.) For each i ∈ [d′(n)] and j ∈ [2m], the
Boolean function representing α̂i,j is sample-aided worst-case to ρ-rare-case reducible with error 2−h

31

by logspace-uniform circuits of size hc′ and depth polylog(T), where ρ = h−c · polylog(T). The
same claim holds for α̂0.

Proof. Following [Gol18], we consider a circuit C′n that first computes a description of Cn (repre-
sented as a T(n)× T(n)× T(n) tensor) and then computes the Eval function (〈Cn〉 , x) 7→ Cn(x).
The construction of C′n in [Gol18] essentially suffices for our purposes, but we will need to use
a property of this construction that was not explicitly stated in [Gol18] (specifically, the fact that
the adjacency relation of C′n is computable in small space). That is:

Claim 4.7.1. There exists a circuit C′n as above of depth d′(n) = O(log2(T(n)) + d(n) · log(T(n)))
and size T′ = 2c·dlog(T(n))e (for some universal integer c > 1) such that the layered adjacency relation
function Φ′ : [d′]× {0, 1}3 log(T′) → {0, 1} of C′n can be decided by a formula that can be constructed in
time polylog(T(n)) and space O(log(T(n))).

Proof. We follow the construction of C′n and its analysis in [Gol18, Sections 3.3 and 3.4.2], while
tracking the relevant changes. The original construction is stated with respect to a parameter n
such that the input length is n and Cn is a circuit of size poly(n) and depth d(n) whose adjacency
relation can be decided in time O(log(n)). However, this construction scales smoothly to the
case where Cn is of size T(n) and depth d(n) and the adjacency relation can be decided in time
O(log(T(n))), by considering Cn as a circuit over T(n) bits that ignores all but the first n bits.
Also, without loss of generality, we can assume that T′(n) is a power of two.

Turning to the adjacency relation Φ′, in [Gol18] it is only stated that Φ′ can be computed by a
formula that can be constructed in time polylog(T(n)). To see that the algorithm constructing the
formula only uses space O(log(T(n))), note that each of the three stages of the construction of C′n
yields a very simple description of the adjacency relations in the corresponding part of C′n: The
first step consists of constructing the matrix of transitions between instantaneous configurations
of the O(log(T))-space machine that prints a description of Cn (the gates in this step have no in-
coming wires); the second steps consists of squaring the foregoing matrix for O(log(T(n))) times;
and the third step consists of computing the Eval function with input (〈Cn〉 , x). (See [Gol18, Sec-
tion 3.4.2] for explicit descriptions of the adjacency relations in the two latter parts.) �

Since d′ ≤ T′, we can extend Φ′ to a function {0, 1}4 log(T′) → {0, 1} without noticeably
affecting its complexity. We denote the size of the formula for Φ by s′ = polylog(T), and for
every i ∈ [d′], we denote by Φi(·) = Φ′(i, ·) the ith “slice” of Φ′ (that is, Φi(~w,~u,~v) = Φ′(i, ~w,~u,~v).

Recall that p is the smallest prime in the interval [Tγ·c, 2Tγ·c], and that h is the smallest power
of two of magnitude at least Tγ/6. Note that given input 1n, both p and h can be found in space
O(log(T)). For every x ∈ {0, 1}n, we consider the polynomial decomposition of C′n(x) with
h ≤ p ≤ T. The claim about faithful representation holds for any valid arithmetic extension of
the Φi’s. Thus, to complete the description of the decomposition and conclude the proof, we
now specify the arithmetization Φ̂i of each Φi, and then prove our claims regarding downward
self-reducibility and worst-case to rare-case reducibility.

Arithmetization of the Φi’s. Our goal now is to arithmetize each Φi as a polynomial F3m → F

that has low degree and is efficiently computable, as follows:

Claim 4.7.2. For i ∈ [d′] there exists Φ̂i : F3m → F that satisfies the following:

32

1. For every (~w,~u,~v) = z1, ..., z3m ∈ H3m we have that Φ̂i(~w,~u,~v) = 1 if gate ~w in the ith layer of C′n
is fed by gates ~u and ~v in the (i− 1)th layer of C′n, and Φ̂i(~w,~u,~v) = 0 otherwise.

2. The degree of Φ̂i is at most h · polylog(T).

3. For a universal constant c1 > 1, there exists a logspace-uniform circuit of size hc1 and depth
O(log2(T)) that computes Φ̂i.

Proof. We think of Φi as a function F
3 log(T′)
2 → F2, and note that it is computable by an arithmetic

formula (over F2), whose structure mimics the one of the original Boolean formula (i.e., each gate
w in the original formula computes the NAND of two sub-formulas u and v, and thus w can be
replaced by the expression ŵ = 1− û · v̂). The same arithmetic formula can be used to compute
a polynomial Φ′i : F3 log(T′) → F of degree poly(s′) that agrees with Φi on F

3 log(T′)
2 . 23

Next, let ` = log(h), and for every j ∈ [`] consider the function πj : H → {0, 1} such that
πj(a) is the jth bit in the binary representation of the integer a. Note that there is a polynomial
π̂j : F→ F of degree at most h that agrees with πj on H. Finally, let Φ̂i : F3m → F such that

Φ̂i(z1, ..., z3m) = Φ′i(π̂1(z1), ..., π̂`(z1), ..., π̂1(z3m), ..., π̂`(z3m)) . (4.1)

By definition, when Φ̂i is given input (~w,~u,~v) ∈ H3m, the πj’s project each of the three inputs
to a bit-string that is the index of a gate, and the arithmetic formula Φ′i computes Φi on the

corresponding gates. Also, the degree ∆ def
== deg(Φ̂i) satisfies ∆ ≤ h · poly(s′) = h · polylog(T).

Lastly, the algorithm for Φ̂i gets input z1, ..., z3m, computes π̂j(wk) for each k ∈ [3m] and j ∈ [`],
and evaluates the arithmetic formula for Φ′i on the resulting sequence of 3m · ` elements from F.
Now, recall that addition of h elements in Fp and iterated multiplication of h elements in Fp are
computable by logspace-uniform circuits of depth O(log(p)) and size poly(h · log(p)) = poly(h)
(see Lemma B.1)). Thus, using the formula π̂j(u) = ∑a∈H πj(a) ·∏a′∈H\{a}

u−a′
a−a′ , the polynomial π̂j

can be computed by a logspace-uniform circuit of depth O(log(p)) = O(log(T)) and size poly(h).
Also, since the formula Φi is logspace-uniform and is of size polylog(T) and depth O(log(T)),
we can replace each gate in Φi by a logspace-uniform circuit of depth O(log(p)) = O(log(T)) and
size polylog(p) = polylog(T) for the corresponding arithmetic operation and obtain a logspace-
uniform circuit of size polylog(T) and depth O(log2(T)) for the arithmetic version of Φi. The
final algorithm for Φ̂i is thus a logspace-uniform circuit of size

` ·m · poly(h) + polylog(T) ≤ hc1 ,

and depth O(log2(T)), where we relied on the fact that m ≤ log(T) ≤ poly(h) and that c1 > 1
is a universal constant (which depends on the size of the logspace-uniform circuits for iterated
multiplication). �

Layer downward self-reducibility. Recall that, by Definition 4.6, m′ is the minimal integer such
that hm′ ≥ n, and that δ~z is Kronecker’s delta function. By the definition of α̂0, to compute it we
can first enumerate (in parallel) over all elements in Hm′ , then enumerate over j ∈ [m] in parallell;

23Note that the domain size of Φ′i is superpolynomial in T, but none of our algorithms will explicitly construct the
entire truth-table of Φ′i at any point.

33

for each element and j perform (h− 1) multiplication operations on our input, and then multiply
the m results; and finally sum up the hm′ results. Relying on Lemma B.1, this can be done by
logspace-uniform circuits of size

hm′ ·m · poly(h) + O(hm′ · log(p · hm′)) ≤ max {n, h} · hc2

and of depth O(log(p)) + O(log(p) · log(n)) = O(log2(T)), for some universal constant c2 > 1.
(We again relied on the fact that m ≤ log(T) ≤ poly(h).)

To compute α̂i,0 with an oracle to α̂i−1, we get inputs (~w,~u,~v) and we need to compute
Φ̂i(~w,~u,~v) and perform two oracle calls and arithmetic operations; by Claim 4.7.2, we can do
so with a logspace-uniform circuit of size hc1 + O(log(p)) and depth O(log2(T)). The identity
α̂i,2m ≡ α̂i is by definition.

Sumcheck downward self-reducibility. The algorithm for α̂i,j follows from the fact that

α̂i,j(~w, σ1, ..., σ2m−j) = ∑
σ2m−j+1∈H

α̂i,j−1(~w, σ1, ..., σ2m−j+1) ,

where the RHS can be computed by adding the answers to h oracle queries to α̂i,j−1. We construct
a uniform circuit that takes input j and ~w, σ1, ..., σ2m, enumerates (in parallel) all σ ∈ H, uses each
fixed σ along with the first 2m− j elements σ1, ..., σ2m−j to issue an oracle query σ1, ..., σ2m, σ to
α̂i,j−1, and adds the h results. This can be done by logspace-uniform circuits of size hc3 and depth
O(log(p)) = O(log(T)), where c3 > 1 is a universal constant.

Worst-case to rare-case reducibility. We claim that for every i ∈ [d′] , the degree of α̂i and of

α̂i,j, is at most ∆ def
== h · polylog(T). To see this, for i ∈ [d′], note that α̂i feeds its input ~w only to

the function Φ̂i, and recall that deg(Φ̂i) = h · polylog(T) ≤ ∆. An identical argument shows that
for every i ∈ [d′] and j ∈ [2m], the degree of α̂i,j is at most ∆. Now, note that

∆/|F| ≤ h · polylog(T)/(T′)γ ≤ h · T−γ·c · polylog(T) .

By Proposition 3.10, the Boolean function associated with α̂i is sample-aided worst-case to
ρ-rare-case reducible, for

ρ = 10
√

∆/|F| < T−(γ·c)/2 ·
√

h · polylog(T) < T−cγ/6 · polylog(T) ,

which is upper-bounded by h−c · polylog(T). The reduction can be computed by logspace-
uniform circuits of size poly(m, Tγ·c) ≤ hc4 using at most hc4 samples (for some universal c4 ≥ 1)
and depth polylog(T) and has error 2−|F| < 2−h.

Wrapping-up. To conclude we define the constant c′ to satisfy c′ ≥ max {c1 + 1, c2, c3, c4}.

We now prove Proposition 4.3, which is our construction of bootstrapping systems. The proof
amounts to transforming the polynomial decomposition from Proposition 4.7 into bootstrapping

34

systems, by ordering the layer polynomials and the sumcheck polynomials in an appropriate
ascending order (and carefully verifying the parameters of the resulting construction).

Proof of Proposition 4.3. Let Cn be the logspace-uniform circuit for f on inputs of length n,
which is of depth d = d(n) and of size T = T(n). Let c and c′ be the universal constants from
Proposition 4.7, and let C′n be the corresponding logspace-uniform circuit from Proposition 4.7,
which has depth d′0 = O(d · log(T)) and size T′ = O(T)c < Tk (for any constant k > c). For
γ = 5µ/c′, consider the corresponding polynomial decomposition of C′n from Proposition 4.7; the
requirement that Tγ > log(T) is satisfied by our hypothesis that Tµ ≥ log1/α(T) and by a choice
of sufficiently small α ≤ 1/c′. Note that |F| ≤ poly(T) and h = O(T5µ/6c′) and m = O(1/µ).
Denote t = hc′ = O(T5µ/6) < Tµ.

Let {α̂i : Fm → F}i∈{0,...,d′0} and
{

α̂i,j : F3m−j → F
}

i∈[d′0],j∈{0,...,2m−1} be the corresponding layer
polynomials and sumcheck polynomials in the decomposition, respectively. We now view each
α̂i and α̂i,j as a Boolean function mapping 3m · log(|F|) = O(log(T)) bits to |F| = O(log(T)) bits
(note that we think of all these functions as having the same domain, meaning that some of the
Boolean functions will ignore a suffix of their input).

Defining the bootstrapping system. The bootstrapping system has d′ = d′0 · (2m+ 1) = O(d′0/µ)

layers, each of length |F|3m = poly(T) and over alphabet F, in addition to the base layer P0. The
base layer P0 is the truth-table of the function α̂0, and for each (i, j) ∈ [d′0]× {0, ..., 2m}, the (i, j)th

layer is the truth-table of the function α̂i,j. The layers are ordered first according to an increasing
value of i, and then according to an increasing order of j; for example, the following three layers
are listed in ascending order: (1, 2m− 1), then (1, 2m), and then (2, 0).

Printing each layer. Given x ∈ {0, 1}n and an index (i, j) ∈ [d′0] × {0, ..., 2m}, we print the
layer corresponding to (i, j) as follows. We first compute the values of all the gates of C′n, which
can be done by a logspace-uniform circuit of size poly(T) and depth d′0. This gives us the
values of α̂i−1 on the set Hm (because these are the values of the gates in the (i − 1)th layer of
C′n(x), which in the case of i = 1 are just the bits of x). We compute the truth-table of α̂i,0,
using the layer self-reducibility algorithm and our oracle access to values of α̂i−1 on Hm; this
can be done by a logspace-uniform circuit of size t · poly(T) = poly(T) and depth O(log2(T)).
Then, iteratively for j′ = 1, ..., j, we compute the truth-table of α̂i,j′ , using the sumcheck self-
reducibility algorithm and oracle access to α̂i,j′−1; this can be done by a logspace-uniform circuit
of size O(m) · t · poly(T) = poly(T) and depth O(m · log(T)) = O(log(T)/µ). Thus, the final
algorithm that prints the (i, j)th layer is a logspace-uniform circuit of size poly(T) and depth
d′0 + O(log2(T)).

Base case. Given x ∈ {0, 1}n and k ∈ [poly(T)], we can use the algorithm for α̂0 and our access
to x to output P0(x)k. This can be done by a logspace-uniform circuit of size max {n, h} · t ≤
max {n, t} · t and depth O(log2(T)).

Downward self-reducibility. We are given x ∈ {0, 1}n and (i, j) ∈ [d′0]× {0, ..., 2m}. The proof
differs according to whether j = 0 or j ∈ [2m]:

35

1. If j = 0, then we need to compute α̂i,0 with oracle access to α̂i−1,2m = α̂i−1. By layer self-
reducibility, we can do so by a logspace-uniform circuit of size t and depth O(log2(T)).

2. If j ∈ [2m], we need to compute α̂i,j with oracle access to α̂i,j−1. Using sumcheck self-
reducibility, this can be done by a logspace-uniform circuit of size t and depth O(log(T)) <
O(log2(T)).

Worst-case to rare-case reduction. By Proposition 4.7, each of the Pi’s is the truth-table of a
function that is worst-case to ρ0-rare-case self-reducible, where ρ0 = h−c · polylog(T), with error
2−h and using logspace-uniform circuits of size t and depth polylog(T). This value of ρ0 suffices
by choosing a sufficiently small α ≤ 1/c′, which guarantees that tα ≤ h ≤ hc.

4.4 From bootstrapping systems to a targeted HSG

In this section we prove Proposition 4.4. We will directly prove the “moreover” part, under
the stronger hypotheses (referring to logspace-uniformity and depth bounds); the proof of the
basic claim (without the “moreover” part) is essentially identical, just ignoring depth bounds
and logspace-uniformity. For convenience, we will denote the dimensions of the bootstrapping
system in our hypothesis by d× T instead of d′ × T′.

For the proof we will need the following standard tools: The Nisan-Wigderson PRG [NW94]
and the Goldreich-Levin [GL89] list-decoding algorithm for the Hadamard code. In the result
statements below we assert that the reconstruction algorithm for the Nisan-Wigderson PRG is a
uniform learning algorithm, following the classical observation of [IW98], and moreover assert
that all the associated algorithms can be implemented by logspace-uniform circuits of bounded
depth. The only non-standard thing in the latter efficiency requirement is that the circuits are
logspace-uniform; we meet this requirement by constructing combinatorial designs in logspace
(following [KM98; HR03] and an idea attributed to Salil Vadhan), so that the logspace algorithm
that constructs the uniform circuit can “hardwire” the design into the circuit. Proofs of the two
result statements appear in Appendices A.1 and A.4, respectively.

Theorem 4.8 (the NW PRG with reconstruction as a learning algorithm). There exists a universal
constant c > 1, an oracle machine G, and a probabilistic oracle machine R0, such that the following holds:

1. Generator: When given input (1`, 1M, γ) such that M ≤ 2(γ/c)·` oracle access to h : {0, 1}` →
{0, 1}, the machine G runs in time 2c·`/γ and outputs a set of strings in {0, 1}M. Moreover, if γ

is constant and `, M are sufficiently large, then G can be implemented by logspace-uniform oracle
circuits of size 2c·`/γ and depth O(log(M, `)).

2. Reconstruction: When given input (1`, 1M, γ) and oracle access to a (1/M)-distinguisher D
for Gh(1`, 1M, γ) and to h, the machine R0 runs in time Mc · 2γ·`, makes non-adaptive queries,
and outputs with probability at least 1− 2−3M an oracle circuit that computes h on 1/2 + M−3

of the inputs when given access to D. The circuit that R0 outputs has depth polylog(M, `) and
makes just one oracle query. Moreover, if γ is a constant and `, M are sufficiently large, then R0

can be implemented by a logspace-uniform probabilistic oracle circuit of size Mc · 2γ·` and depth
polylog(M, `) that makes non-adaptive queries.

36

Theorem 4.9 (list-decoding the Hadamard code [GL89]). For any time-computable a : N → N

satisfying a(`0) ≤ `0 and ε : N → (0, 1/2) there exists a transformation Had that maps any function
g : {0, 1}`0 → {0, 1}a(`0) to a Boolean function Had(g) : {0, 1}`0+a(`0) → {0, 1} such that the following
holds.

1. Encoding: For every x ∈ {0, 1}`0 and z ∈ {0, 1}a(`0) it holds that Had(g)(x, z) = 〈g(x), z〉 =
⊕i∈[a(`0)]g(x)i · zi.

2. Decoding: There exists a logspace-uniform circuit GL of size poly(`0/ε) and depth polylog(`0/ε)

that gets input 1`0 and outputs a probabilistic oracle circuit C of depth polylog(`0/ε) that satisfies
the following. For every oracle H̃ad(g) that agrees with Had(g) on 1/2 + ε of the inputs, the
probability over the random coins of C and a uniform choice of x ∈ {0, 1}`0 that CH̃ad(g)(x) = g(x)
is at least poly(ε).

We now describe the generator H f and then later the reconstruction algorithm R. Throughout
the description, the algorithms that we describe will be logspace-uniform circuits of bounded
depth. We note that in intermediate stages of their execution, these algorithms will compute
descriptions of certain circuits and then simulate these circuits; we will always bound the depth
of the circuits whose descriptions are computed, in order to verify that the algorithm can then
indeed simulate these circuits in small depth.24

The hitting-set generator H f . Given x ∈ {0, 1}n, the algorithm H f enumerates in parallel over
i ∈ [d] and for each i computes the string Pi(x). Thinking of Pi(x) ∈ [A]T as a truth-table of
a function pi : {0, 1}log(T) → [A], the algorithm computes the truth-table of the function hi =

Had(pi), where Had is the encoding from Theorem 4.9. Note that hi is a Boolean function over
` = log(T) + log(A) = (1 + o(1)) · log(T) bits, which means that its truth-table is of size T1+o(1).
Finally, for the parameter γ = γ(n) ∈ (0, 1) chosen in our statement, the algorithm uses the
generator G from Theorem 4.8 with parameters (1`, 1M, γ) and with access to the function hi, to
output a set of strings of length M. (The hypothesis of Theorem 4.8 is satisfied by our assumption
that M ≤ Tγ/c′′ for a sufficiently large constant c′′ ≥ 1.)

To bound the complexity of H f , recall that Pi(x) can be computed by a logspace-uniform
circuit of depth d̃ and size T̄. Now, since each entry in the truth-table of hi can be com-
puted in time polylog(A) with non-adaptive access to the truth-table of pi (i.e., to the string
Pi), we can compute the entire truth-table of hi by a logspace-uniform circuit of size poly(T̄)
and depth polylog(A) ≤ polylog(T). Finally, the generator from Theorem 4.8 can be computed
by a logspace-uniform circuit of size TO(1/γ) and depth O(log(M · `)) = O(log(T)). Thus, for
each i ∈ [d] the corresponding output string can be printed by a logspace-uniform circuit of size
poly(T1/γ, T̄) and depth d̃ + polylog(T), and multiplying the size by d (since we enumerate over
i ∈ [d] in parallel) we still get a circuit of size at most (T1/γ + T̄)c′ for a sufficiently large universal
constant c′.

24The potential issue here is that a logspace-uniform circuit C of bounded depth can potentially compute a descrip-
tion of a circuit C′ of very large depth (in which case C would not be able to simulate C′ in bounded depth). However,
we will make sure that this does not happen in our specific constructions.

37

The reconstruction algorithm R. Let D : {0, 1}M → {0, 1} be such that Prr∈{0,1}M [D(r) =

1] ≥ 1/M, but for every i ∈ [d(n)] it holds that D rejects all the strings in the output set of
Ghi(1`, 1M, γ). The algorithm R gets input x ∈ {0, 1}n and iteratively, for i = 0, ..., d(n), it finds
a small circuit that computes the function whose truth-table is Pi(x). We will now describe the
procedure, while accounting both for the complexity of implementing each iteration, and for the
complexity of the circuit that each iteration produces.

First, the algorithm constructs a circuit C0 that computes the function whose truth-table is
P0; by our assumption about P0, this can be done by a logspace-uniform circuit of size t0 and
depth polylog(T), and also C0 has size Õ(t0) and depth polylog(T). Then, for i ∈ [d(n)], we
start the ith iteration with an oracle circuit Ci−1 of size |Ci−1| and depth Depth(Ci−1) such that
CD

i−1 computes pi−1. The following lemma shows that, given Ci−1 and oracle access to D, we can
efficiently compute a small circuit Ci that computes pi:

Lemma 4.10 (the ith iteration: moving from a circuit for pi−1 to a circuit for pi). There exists
a universal constant c0 > 1 such that the following holds. Given the circuit Ci−1 and oracle access
to D, we can compute with probability at least 1− 1/T2 − 3 · 2−M an oracle circuit Ci that computes
pi when given oracle access to D. This can be done by a logspace-uniform probabilistic circuit of size
t2 · T2γ · (M · |Ci−1|)c0 and depth (log(T) ·Depth(Ci−1))

c0 , and the circuit Ci is of size Õ(t) ·Mc0 · T2γ

and depth log(T)c0 .

Proof. The algorithm will consist of three steps. Loosely speaking, these correspond to the
Nisan-Wigderson reconstruction algorithm (as in Theorem 4.8); to the Goldreich-Levin list-decoding
algorithm (as in Theorem 4.9), coupled with a process of weeding the output list to find a single
“good” circuit; and to applying worst-case to rare-case self-reducibility. These three steps are
depicted in the following three claims.

Claim 4.10.1 (the [NW94] reconstruction). Given the circuit Ci−1 and oracle access to D, we can
compute with probability at least 1 − 2−M an oracle circuit Ci,1 such that CNW = CD

i−1 computes hi

correctly on 1/2 + M−3 of the inputs. This step can be implemented by a logspace-uniform probabilistic
circuit of size poly(M, |Ci−1|) · T2γ · t and depth poly(log(T),Depth(Ci−1)), 25 and the circuit Ci,1 is of
size poly(M) · T2γ and of depth polylog(M).

Proof. We invoke the reconstruction algorithm from Theorem 4.8 for hi with input (1`, 1M, γ). We
answer its oracle queries to a distinguisher using D, and we answer its queries to hi using the
fact that hi(x, z) = 〈Pi(x), z〉, the downward self-reducibility algorithm for Pi, and the circuit Ci−1

such that CD
i−1 computes Pi−1. With probability at least 1− 2−M this yields an oracle circuit Ci,1

such that CNW = CD
i,1 computes hi correctly on 1/2 + M−3 of the inputs.

To bound the complexity of this step, recall that the reconstruction algorithm can be im-
plemented by a logspace-uniform probabilistic oracle circuit of size poly(M) · 2γ·` ≤ poly(M) ·
T2γ and depth polylog(M), and the circuit Ci−1 that it outputs has depth polylog(M · `) =

polylog(M). The size of Ci,1 is trivially bounded by poly(M) · T2γ. Now, using the down-
ward self-reducibility of the bootstrapping system, each query to hi can be answered by a

25In the bootstrapping systems that we construct in Proposition 4.3 the queries of the downward self-reducibility
algorithm (as well as all worst-case to rare-case reduction) are actually non-adaptive. Thus, the term polylog(T) ·
Depth(Ci−1) can actually be replaced by polylog(T) +Depth(Ci−1). We do not apply this optimization since it does
not significantly improve the final parameters of the current construction.

38

logspace-uniform circuit of size t and depth polylog(T) that makes queries to CD
i−1. Also re-

call that the queries are non-adaptive. Hence, the circuit size of the reconstruction algorithm is(
poly(M) · T2γ

)
· t · poly(|Ci−1|) and its depth is polylog(M). �

Claim 4.10.2 (the [GL89] list-decoding, coupled with weeding the list). Given the circuit Ci−1 and
oracle access to CNW and to D, we can compute with probability at least 1− 2−M an oracle circuit Ci,2 such

that CGL = CCNW

i,2 computes pi on at least µGL
def
== poly(1/M) of the inputs. This step can be implemented

by a logspace-uniform circuit of size t · poly(M, |Ci−1|) and depth poly(log(M),Depth(Ci−1)), and the
circuit Ci,2 is of size poly(M) depth polylog(M).

Proof. We invoke the decoding algorithm from Theorem 4.9 for hi = Had(pi) with parameter
ε = M−3 and input 1log(T). This algorithm produces a probabilistic oracle circuit C′i,2 such that
the probability over input y ∈ {0, 1}log(T) and the internal randomness of C′i,2 that (C′i,2)

CNW(y) =
pi(y) is εGL = poly(1/M). This step can be implemented by a logspace-uniform circuit of size
poly(log(T), M) = poly(M) and depth polylog(M), and the circuit C′i,2 is of size poly(M) and
depth polylog(M).

Then, we perform the following experiment for O(M/εGL) = poly(M) trials in parallel:

1. Randomly choose a fixed random string for C′i,2 and hard-wire it into the circuit, to obtain
a deterministic circuit Ci,2.

2. Estimate the agreement of CCNW

i,2 with pi, up to error εGL/10 and with confidence 1− 2−M2
.

To do so we sample poly(M) inputs, and evaluate pi and CCNW

i,2 on each input. Computing
pi is done using the downward self-reducibility algorithm, the circuit Ci−1, and our oracle
D.

3. Consider Ci,2 to be good if CCNW

i,2 agrees with pi on at least µGL of the inputs.

With probability at least 1− 2−M, all the estimates are correct and at least one choice of random
string yields a good deterministic circuit Ci,2. We proceed with the first good Ci,2 that we find
among the trials (according to some predetermined efficient ordering of the trials), and denote
CGL = CCNW

i,2 .
The latter procedure can be implemented by a logspace-uniform circuit of size t ·poly(M, |Ci−1|)

and depth poly(log(M),Depth(Ci−1)). This is since for each of the poly(M) inputs (which are
sampled in parallel) we apply a logspace-uniform circuit of size t with oracle access to Ci−1 and
to D. The circuit Ci,2 that it produces is of the same size and depth as C′i,2 (i.e., size poly(M) and
depth polylog(M)), since we just hard-wired randomness into C′i,2. �

Claim 4.10.3 (worst-case to rare-case reducibility). Given the circuit Ci−1 and oracle access to CGL and
to D, we can compute with probability at least 1− 2−M − 1/T2 a circuit Ci,3 such that CCGL

i,3 computes pi.
This step can be implemented by a logspace-uniform probabilistic circuit of size t2 · poly(M, |Ci−1|) and
depth poly(log(T),Depth(Ci−1)) and Ci,3 is of size t · poly(M) and depth polylog(T).

Proof. Recall that pi is sample-aided worst-case to ρ-rare-case reducible for ρ = t−α. Denoting
µGL = M−k for a universal constant k, note that

ρ = t−α ≤ M−k = µGL ,

39

where we relied on the hypothesis that M ≤ tα/c′′ for a sufficiently large constant c′′ ≥ k/α. We
invoke the sample-aided reduction with input 1log(T) and a sample of poly(M) labeled examples
of pi that we produce using the downward self-reducibility algorithm for pi, the circuit Ci−1, and
our access to D. With probability 1− 2−tα

> 1− 2−M (where we relied again on the hypothesis
M ≤ tα/c′′ ≤ tα) this step produces a probabilistic oracle circuit C′i,3 of size t such that for every

y ∈ {0, 1}log(T) we have that Pr
[
(C′i,3)

CGL(y) = pi(y)
]
≥ 2/3.

This step can be implemented by a logspace-uniform circuit of size t2 · poly(M, |Ci−1|) and
depth poly(log(T),Depth(Ci−1)), and the circuit that it produces is of size t · poly(M) and depth
polylog(T). To see this, recall that by our assumption, the sample-aided worst-case to rare-case
reduction can be implemented by a logspace-uniform circuit of size t and depth polylog(T); and
note that (as in the previous step) we can produce each of the t samples that it requires by a
logspace-uniform circuit of size t · poly(|Ci−1|) and depth poly(log(M),Depth(Ci−1)).

Implementing naive error-reduction in C′i,3, we decrease its error from 1/3 to 1/poly(T) at
the cost of increasing its size by a multiplicative factor of O(log(T)) and its depth by an additive
factor of O(log(T)). We then randomly choose a fixed random string for C′i,3 and hard-wire
it; with probability at least 1− 1/T2 we obtain a deterministic oracle circuit Ci,3 such that CCGL

i,3
computes pi. This can be implemented by a logspace-uniform circuit of size Õ(t) · poly(M) and
depth polylog(T). �

Let us now see how the combination of the foregoing three steps yields the algorithm for the
ith iteration. The three steps of the ith iteration above succeed with probability at least 1− 1/T2−
3 · 2−M. Assuming all the steps above succeeded, we have the following:

CNW = CD
i,1 computes hi correctly on 1/2 + M−3 of the inputs

CGL = CCNW

i,2 computes pi correctly on µGL = poly(1/M) of the inputs

CCGL

i,3 computes pi

This yields an oracle circuit Ci that computes pi when given oracle access to D (by replacing
the oracle gates in Ci,3 with Ci,2, replacing the oracle gates in Ci,2 with Ci,1, and keeping the oracle
gates in Ci,1 intact). Note that the size of Ci is

|Ci| = Õ(t) · poly(M) · T2γ ,

and its depth is polylog(T). This is since Ci,3 is of size Õ(t) · poly(M), and Ci,2 is of size
poly(M), and Ci,1 is of size poly(M) · T2γ, and all three circuits are of depth polylog(T).

Also, by accounting for the complexity of each of the three steps above, the entire ith iteration
can be implemented by a logspace-uniform circuit of size

t2 · poly(M, |Ci−1|) + poly(M, |Ci−1|) · T2γ · t ≤ t2 · T2γ · poly(M, |Ci−1|)

and depth poly(log(T),Depth(Ci−1)).
We stress that the constant powers hiding inside the poly notation in the size and depth

bounds above (both for the circuit implementing the ith iteration and for the circuit that it pro-
duces) are universal, arising from the universal constants in Theorem 4.8, Theorem 4.9, Propo-

40

sition 3.10, and the cost of simulating a circuit of bounded depth (given its description) by a
logspace-uniform circuit of bounded depth. Thus we will bound the polynomials in all these
expressions by the polynomial power c0 for a universal constant c0 > 1.

After d applications of Lemma 4.10, with probability at least 1− d ·
(1

T2 + 3 · 2−M) this algo-
rithm yields a circuit Cd such that CD

d computes pd. By evaluating CD
d on the inputs corresponding

to first n bits of Pd(x), we obtain the value of f (x).
To bound the overall complexity of the algorithm, we separate the first iteration i = 1 (in

which |C0| ≤ t0) from iterations i = 2, ..., d. The first iteration can be implemented by a logspace-
uniform circuit of depth polylog(T) and of size

t2 · T2γ ·Mc0 · tc0
0 ,

and the other d − 1 iterations can be implemented (together) by a logspace-uniform circuit of
depth (d− 1) · polylog(T) and size

(d− 1) · t2 · T2γ ·Mc0 · (Õ(t) ·Mc0 · T2γ)c0 < (d− 1) · (t · Tγ ·M)4c2
0 .

Also accounting for the last step (of evaluating Cd on n inputs), the procedure in its entirety
can be implemented by a logspace-uniform circuit of depth d · polylog(T) and size

t2 · T2γ ·Mc0 · tc0
0 + (d− 1) · (t · Tγ ·M)4c2

0 + n · (Õ(t) ·Mc0 · T2γ)c0

< (t · Tγ ·M)4c2
0 · (d + n + tc0

0) ,

and this concludes the proof if we set the universal constant c′ to be at least 4c2
0.

5 Non-black-box derandomization from “almost-all-inputs” hardness

In this section we use the reconstructive targeted HSG from Section 4 to prove various hardness-
to-randomness results. In Section 5.1 we state hardness-to-randomness results for general prob-
abilistic algorithms, and in particular prove Theorem 1.2. In Section 5.2 we state hardness-to-
randomness results for restricted (probabilistic) circuit classes, and in particular prove Theo-
rem 1.5. And in Section 5.3 we prove Theorem 1.4 for the “low-end” setting.

For some of our results (in Sections 5.1 and 5.3) we will need the following modified version
of our reconstructive HSG from Proposition 4.5, which was mentioned prior to the proposition’s
statement. Compared to the latter HSG, the reconstruction algorithm in the following result
can be more efficient, at the cost of a less efficient HSG; specifically, the overhead of Tδ in the
reconstruction time can now be for a subconstant δ = o(1), at the cost of having an HSG with
running time TO(1/δ), and both the HSG and the reconstruction are not necessarily computable
by logspace-uniform circuits of bounded depth.

Proposition 5.1 (a reconstructive targeted HSG, a version with low reconstruction overhead).
There exists a universal constant c > 1 such that the following holds. Let f : {0, 1}n → {0, 1}n be
computable by logspace-uniform circuits of size T(n) and depth d(n), let δ : N→ (0, 1), and let M : N→

41

N such that

c · log(T(n)) ≤ M(n) ≤ T(n)δ(n)/c ,

δ(n) ≥ c · log log(T)
log(T)

.

Then, there exist a deterministic algorithm H f and a probabilistic algorithm R that for every x ∈ {0, 1}n

satisfy the following:

1. Generator. The generator H f gets input x, runs in time TO(1/δ), and outputs a set of M-bit strings.

2. Reconstruction. When R gets input x and oracle access to a function D : {0, 1}M → {0, 1} such
that Prr∈{0,1}M [D(r) = 1] ≥ 1/M but D rejects all the strings that H f (x) prints, it runs in time
(d + nc) · Tδ ·Mc and outputs f (x) with probability at least 1− 1/M.

Proof. The proof is identical to the proof of Proposition 4.5, with only the following differences.
First, we verify that the hypothesized lower bound Tµ ≥ log1/α(T) holds in Proposition 4.3 (the
lower bound holds by our choice of µ = δ/5c′ and by our assumption about δ). Secondly, we
do not claim that H f and R are logspace-uniform circuits of bounded depth, so we just bound
their running time (using the exact same bound as the size bound on the circuits). Thirdly, in our
conclusion the running time of the generator H f is TO(1/δ), which is not necessarily polynomial
in T.

Throughout this section, when we say that a probabilistic algorithm A computes a multi-
output function f on input x, we mean that Pr[A(x) = f (x)] ≥ 2/3, where the probability is over
the internal coin tosses of A.

5.1 Hardness-to-randomness tradeoffs and proof of Theorems 1.2 and 1.3

We now prove several hardness-to-randomness tradeoffs as a consequence of Propositions 4.5
and 5.1, and in particular we deduce Theorem 1.2. We first prove Claim 1.1, which asserts
that “almost-all-inputs” lower bounds are necessary for derandomization. The proof is slightly
more subtle than one might expect, since the hard function has multiple output bits but the
derandomization hypothesis refers to machines with a single output bit.

Claim 5.2 (Claim 1.1, restated). If prBPP = prP , then for every c ∈ N there exists f : {0, 1}n →
{0, 1}n computable in deterministic polynomial time such that f cannot be computed in probabilistic time
nc on almost all inputs.

Proof. By our hypothesis, prBPT IME [O(nc)] ⊆ prDT IME [nc′], for a sufficiently large con-
stant c′. The function f gets input x ∈ {0, 1}n, and for each i ∈ [n] it simulates the ith Turing
machine Mi for nc′+2 steps on input x, and sets f (x)i to be the opposite of the ith output bit of
Mi; that is, f (x)i = 1−Mi(x)i (or f (x)i = 0, in case Mi does not halt after nc′+2 steps).

Assume towards contradiction that f can be computed on an infinite set X ⊆ {0, 1}∗ of inputs
by a probabilistic machine M0 that runs in time nc. Consider the probabilistic machine M1 that
takes as input a pair (x, i) of strings of identical length, and outputs M1(x, i) = M0(x)i (if i > |x|
or M0(x) does not output |x| bits then M1(x, i) = 0). Note that M1 induces a promise-problem

42

Π ∈ prBPT IME [O(nc)], where the promise is that x ∈ X. By our derandomization hypothesis,
Π ∈ prDT IME [nc′]. Let M2 be a deterministic machine that solves Π in time nc′ , and note that
for every x ∈ X and every i ∈ [|x|] we have that M2(x)i = f (x)i.

Consider the following procedure: Given input x ∈ {0, 1}n, we simulate M2 on inputs
(x, 1), ..., (x, n) and print the concatenation of its outputs. For every x ∈ X, this procedure
prints f (x) in time O(nc′+1). Now, let i be the index of a Turing machine Mi that implements
the foregoing procedure in time O(nc′+1). By the definition of f , for every input x ∈ {0, 1}∗
of sufficiently large length n ≥ i (in particular, for infinitely many inputs x ∈ X) we have that
f (x)i = 1−Mi(x)i. This is a contradiction.

We now state a very general tradeoff. Loosely speaking, and choosing nice parameters, the
following result asserts that we can derandomize prRT IME [M] using a function f that is hard
for probabilistic time poly(M) on almost all inputs, with the following parameters: If f is com-
putable by logspace-uniform circuits of size T and depth poly(M), then the derandomization
time is polynomial in 2log2(T)/ log(M). The foregoing parametrization is a special case, since the
result is further parametrized by the depth d of circuits for f .

Theorem 5.3 (non-black-box derandomization, general version). There exists a universal constant
c > 1 such that the following holds. Let T, M, d : N→ N such that n ≤ max {d(n), M(n)} ≤ T(n) ≤
2M(n)/c. Let Π ∈ prRT IME [M], and let x = {xn}n∈N be an ensemble of distributions such that xn is
over {0, 1}n and does not violate the promise of Π. Assume that for µ : N→ [0, 1) there exists a function
f : {0, 1}n → {0, 1}n computable by deterministic logspace-uniform circuits of size T(n) and depth d(n)
such that for every probabilistic algorithm A running in time d(n) ·M(n)c, the probability over x ∼ xn

that A(x) computes f (x) is at most µ(n). Then, Π ∈ heurx,1−µ-prDT IME
[
2c·(log2(T)/ log(M))

]
.

In particular, if there exists f : {0, 1}n → {0, 1}n as above such that every probabilistic algorithm
running in time d(n) · M(n)c fails to compute f on almost all inputs, then there exists a (1/M)-
targeted HSG for time M with seed length O(log(T)2/ log(M)) and running time 2O(log2(T)/ log(M)),
and consequently

prRT IME [M(n)] ⊆ prDT IME
[
2c·(log2(T)/ log(M))

]
.

Proof. Let Π ∈ prRT IME [M(n)], let MΠ be a probabilistic linear-time machine that solves Π,
and let x = {xn}n∈N be an ensemble of distributions that do not violate the promise of Π. We
instantiate Proposition 5.1 with the function f and with parameters T, d, M and with δ such that
M = Tδ/c0 , where c0 is the universal constant from Proposition 5.1 (i.e., δ = c0 · log(T)/ log(M)).
Note that the hypothesis of Proposition 5.1 is satisfied by our constraints on M and T and by our
choice of δ.

Given input x ∈ {0, 1}n, we compute the set H(x) =
{

ri ∈ {0, 1}O(n)
}

i∈{0,1}O(log(T)/δ)
, and

accept if and only if there exists i ∈ {0, 1}O(log(T)/δ) such that MΠ accepts x with randomness ri.
The running time of this deterministic algorithm is TO(1/δ) ·M(n) = 2O(log2(T)/ log(M)).

Note that foregoing algorithm never accepts “no” instance of Π, and thus may only err by
rejecting “yes” instances. Assume towards a contradiction that for some n ∈N, with probability
more than µ(n) over x ∼ xn it holds that x is a “yes” instance of Π that the foregoing algorithm
rejects. Then, we can compute f on n-bit inputs with success probability more than µ(n) over

43

x ∼ xn, as follows. Given x, we use the algorithm R from Proposition 5.1 with the function
Dx(r) = MΠ(x, r) as the distinguisher. By our assumption, for every x ∈ S the function Dx

accepts at least 1/2 of its inputs, but rejects all the strings that H(x) outputs. Hence, for every
“yes” instance that the deterministic algorithm above rejects, our algorithm outputs f (x) with
probability 1− 1/O(n)� 2/3, in time at most

O(n + d(n)) · T(n)δ ·M(n)c0 = O(n + d(n)) ·M(n)2c0 < d(n) ·M(n)3c0 ,

which contradicts the hardness of f if we choose c ≥ 3c0.
The “in particular” part of the statement follows since the assumption that f is hard on almost

all inputs implies that f is hard for all possible distributions xn and with success bound µ(n) = 0.
In this case, for every time-M algorithm A and every fixed x of sufficiently large length such that
Prr[A(x, r) = 1] ≥ 1/2, the proof above implies that there exists ri ∈ H(x) such that A(x, ri) = 1.
Indeed, it follows that the algorithm that gets input x and outputs H(x) is a (1/M)-targeted HSG
for time M.

We now prove Theorem 1.3, which assert a hardness-to-randomness tradeoff for derandom-
ization of polynomial-time algorithms. The theorem follows by instantiating Theorem 5.3 with
M = poly(n), and deducing derandomization of algorithms with two-sided error via the stan-
dard reduction by [Sip83; Lau83] of derandomization of prBPP to any derandomization (i.e.,
not necessarily black-box) of prRP (see, e.g., [BF99] and [GVW11] for an explanation).

Corollary 5.4 (non-black-box derandomization of prBPP ; Theorem 1.3, restated). There exists a
universal constant c > 1 such that the following holds. Assume that there exists a function f : {0, 1}n →
{0, 1}n computable by deterministic logspace-uniform circuits of size T(n) and depth d(n) that cannot be
computed in probabilistic time d(n) · nc on almost all inputs. Then, we have that

prRP ⊆
⋃
a≥1

prDT IME [T̄(na)]

prBPP ⊆
⋃
a≥1

prDT IME [T̄(T̄(nc·a)a)] ,

where T̄(m) = 2c·log2(T(m))/ log(m).

Proof. Let c > 1 be the universal constant from Theorem 5.3. We can assume wlog that
T(n) ≤ 2n/c, otherwise the conclusion is trivial. This allows us to instantiate Theorem 5.3
with M(n) = O(n), and deduce that prRT IME [O(n)] ⊆ prDT IME [T̄(n)], where T̄(n) =

2c·(log2(T)/ log(n)). The derandomization of prRP follows by a padding argument (reducing any
problem in prRT IME [na] to prRT IME [O(n)] by padding the input to length na).

For the derandomization of prBPP , we rely on the fact that for some fixed k ∈N, every prob-
lem in prBPT IME [O(n)] is probabilistically reducible in probabilistic time O(nk) and with one-
sided error to a corresponding problem in prRT IME [O(n)] (see [Sip83; Lau83; BF99; GVW11]).
Thus, for some constant b ≥ 1 we have that prBPT IME [O(n)] ⊆ prDT IME [T̄(T̄(nb)b)],
which implies the derandomization of prBPP (by a padding argument as above).

44

Remark 5.5. We suspect that the derandomization time of 2log2(T)/ log(n) in Corollary 5.4 can be
improved to be only poly(T). The current overhead comes from applying the Nisan-Wigderson
PRG to each row in the bootstrapping matrix, and in particular from the combinatorial designs
underlying this PRG. More sophisticated constructions of HSGs and PRGs that avoid this partic-
ular overhead are well-known (e.g., by Shaltiel and Umans [SU05] and by Umans [Uma03]), and
we suspect that using such constructions instead of the NW PRG might improve the overhead.

Remark 5.6. The hypothesis in Corollary 5.4 is that f : {0, 1}n → {0, 1}n is hard for all prob-
abilistic algorithm that run in the prescribed time. However, to deduce the derandomization
conclusion it suffices to assume that f is hard for one particular algorithm, which is the algorithm
that is obtained when invoking the reconstruction procedure for f from Proposition 5.1 with the
distinguisher being the standard machine solving the CAPP problem.26 (This is the case because
if the targeted HSG “fools” this machine, then we can derandomize all of prRP , relying on the
completeness of the one-sided error version of CAPP for prRP .) Thus, to deduce the derandom-
ization conclusion it suffices to analyze the hardness of f with respect to a single algorithm.

Our main result in this section (i.e., Theorem 1.2) is the special case of Corollary 5.4 with
T(n) = poly(n). As mentioned in Section 1, we state a more general version of the result, which
refers to a hard function of any fixed polynomial depth d(n) = poly(n) (rather than n2).

Corollary 5.7 (polynomial-time non-black-box derandomization of prBPP ; Theorem 1.2, re-
stated). There exists c > 1 such that for every k ∈N the following holds. Assume that there exists a func-
tion f : {0, 1}n → {0, 1}n computable by deterministic logspace-uniform circuits of polynomial size and
depth nk that cannot be computed in probabilistic time nk+c on almost all inputs. Then prBPP = prP .

Note that Corollary 5.7 follows immediately from Corollary 5.4 using the parameters T(n) =
poly(n) and d(n) = nk (in which case T̄(n) = poly(n)).

A different type of hardness-to-randomness tradeoff. In the hardness-to-randomness results
above, to derandomize prBPT IME [M] we assumed a function that is hard for probabilistic time
poly(M) and that can be computed by uniform circuits of relatively small depth (i.e., circuits of
depth d and size T � d). We now show a different type of tradeoff, where we considerably relax
the assumption that the circuits have bounded depth, but we assume hardness for larger proba-
bilistic time (closer to the circuit size T than to the time bound M that we want to derandomize).

This type of hardness-to-randomness tradeoff is particularly appealing in the setting of de-
randomization in superpolynomial time, since in this setting the assumption about the depth of
the circuits can be almost completely eliminated. For simplicity, let us state just one nice instan-
tiation of it, which refers to derandomization in quasipolynomial time. (Instantiations with other
time bounds can be obtained using the same idea.)

Corollary 5.8 (superpolynomial-time non-black-box derandomization of prBPP). There exists a
constant c > 1 such that for every constant ε > 0 the following holds. Assume that there exists a
function f : {0, 1}n → {0, 1}n computable by deterministic logspace-uniform circuits of quasipolynomial

26That is, the distinguisher D = Dx interprets the input x as a description of a circuit Cx, gets a random (or
pseudorandom) string r, and outputs Cx(r).

45

size T(n) = 2logc(n) (where c > 1) and depth T(n)1−ε that cannot be computed in probabilistic time
T(n)1−ε/4 on almost all inputs. Then,

prBPP ⊆ prQP ,

where prQP = ∪c prDT IME [2logc(n)].

Proof. The proof is very similar in structure to that of Theorem 5.3 and of Corollary 5.4, so we
focus on pointing out the differences in parameters. Given Π ∈ prRT IME [O(n)], we instantiate
Proposition 5.1 with parameters T, d, M = O(n), and δ = ε/2. The derandomization of Π runs
in time poly(T), which is quasipolynomial in n, and it succeeds since the hardness is for time
larger than (d + nc0) · Tε/2 · nc < T1−ε+ε/2 · poly(n) < T1−ε/4. It follows (by padding) that
prRP ⊆ prQP , and using [Sip83; Lau83] we deduce that prBPP ⊆ prQP .

5.2 Tight hardness-to-randomness results for low-depth circuits

In this section we extend our hardness-to-randomness results to the setting of derandomizing
probabilistic low-depth circuits, and in particular logspace-uniform NC circuits. These results
follow using the reconstructive HSG in Proposition 4.5, relying on the fact that both the HSG and
the reconstruction can be computed by logspace-uniform circuits of low depth.

Let us first define logspace-uniform NC circuits and logspace-uniform probabilistic NC cir-
cuits. (Recall that the general notion of probabilistic circuits that we use was defined in Defini-
tion 3.5.)

Definition 5.9 (logspace-uniformNC). For two constants i, c ∈N, we denote by logspace-uniform-prNC i[nc]

the class of promise problems solvable by families of logspace-uniform circuits of depth logi(n) and size nc.

Definition 5.10 (logspace-uniform probabilisticNC). We denote by logspace-uniform-prBP ·NC i[nc]

the class of promise problems solvable by families of logspace-uniform probabilistic circuits of such depth
and size that err with probability at most 1/3. We denote by logspace-uniform-prR · NC i[nc] the class
of promise problems solvable by families of logspace-uniform probabilistic circuits of such depth and size
that err only on “yes” instances (i.e., have one-sided error) and with probability at most 1/2

Referring to Definitions 5.9 and 5.10, when we omit the size parameter we implicitly refer to
some (unspecified) polynomial size, and when we omit the depth parameter we implicitly refer
to some (unspecified) polylogarithmic depth.

Our first result asserts that, for a fixed i, logspace-uniform NC i circuits with one-sided error
can be derandomized by logspace-uniform deterministic circuits, conditioned on a hardness hy-
pothesis that corresponds to i. (Later on we will extend this to all i and to derandomization with
two-sided error.) In more detail:

Proposition 5.11 (non-black-box derandomization of logspace-uniform NC). There exists a uni-
versal constant c > 1 such that for any constant i ∈ N the following holds. Assume that for some j ∈ N

there exists a function f : {0, 1}n → {0, 1}n computable by deterministic logspace-uniform NC j circuits
that cannot be computed by logspace-uniform probabilistic circuits of size nc and of depth logi+j+c(n) on

46

almost all inputs. Then,

logspace-uniform-prR · NC i ⊆ logspace-uniform-prNC .

Proof. We first show that logspace-uniform-prR · NC i+1[O(n)] ⊆ logspace-uniform-prNC, and
then deduce the general statement by a padding argument. Fix Π ∈ logspace-uniform-prR ·
NC i+1[O(n)], decidable by a circuit family {Cn} that is printed by a uniform machine MΠ. Let
f be the hard function from our hypothesis, and denote the size of the circuits for f by nk and
their depth by logj(n). Let c′ be the universal constant from Proposition 4.5.

Our deterministic algorithm uses the HSG H f from Proposition 4.5 with the function f and
with δ = c′/k and M = O(n), then simulates Cn on input x and with each of the M-bit strings
that H f outputs (used as randomness for Cn), and finally outputs the majority value. By Propo-
sition 4.5 and the properties of {Cn}, this algorithm is computable in logspace-uniform NC.

Assuming towards a contradiction that this derandomization fails on infinitely many inputs
x, for each such x we have that C|x|(x, ·) rejects all strings in the HSG’s output set but accepts
a random string with probability at least 1/2. It follows that the reconstruction algorithm from
Proposition 4.5 computes f (x), with high probability. This reconstruction algorithm is com-
putable by a logspace-uniform probabilistic circuit of size(

polylog(n) + nc′
)
· (nk)δ ·O(n)c′ = O(n3c′)

and depth logj(n) · logi+1(n) · logc′(nk) < logi+j+3c′(n). This contradicts the hypothesized hard-
ness of f if we set c > 3c′.

Finally, for any constant k let Π ∈ logspace-uniform-prR · NC i[nk]. We define a padded ver-
sion Πpad whose “yes” instances are

{
(x, 1|x|

k−|x|) : x is a yes instance of Π
}

and whose “no”

instance are
{
(x, 1|x|

k−|x|) : x is a no instance of Π
}

. Observe that Πpad ∈ logspace-uniform-prR ·
NC i[O(n)] ⊆ logspace-uniform-prR · NC i+1[O(n)], since we can compute in logspace a circuit
that checks if the input is of the form (x, 1|x|

k − |x|) and that simulates the circuit for Π on the
first part in the input (i.e., on x). Thus, by our hypothesis Πpad ∈ logspace-uniform-prNC. Then,
given an input x, a logspace machine can print a circuit that pads its input x with 1|x|

k−|x| and
then simulates the circuit for Πpad. Thus, Π ∈ logspace-uniform-prNC.

Let us now extend Proposition 5.11 to hold for all i and for derandomization with two-
sided error. In the proof below, to leverage derandomization of logspace-uniform-prR · NC to
derandomization of logspace-uniform-prBP · NC we rely on the fact that the classical reduction
of [Sip83; Lau83] can be implemented by logspace-uniform NC circuits.

Corollary 5.12 (non-black-box derandomization of logspace-uniform NC). There exists a universal
constant c > 1 such that the following holds. Assume that for every i ∈ N there exists j ∈ N and a
function f : {0, 1}n → {0, 1}n computable by deterministic logspace-uniform NC j circuits that cannot
be computed by logspace-uniform probabilistic circuits of size nc and of depth logi+j+c(n) on almost all
inputs. Then,

logspace-uniform-prBP · NC ⊆ logspace-uniform-prNC .

47

Proof. Invoking Proposition 5.11 with all i ∈ N, we deduce that logspace-uniform-prR · NC ⊆
logspace-uniform-prNC. Now, let Π ∈ logspace-uniform-prBP · NC i[nk] for some constant k, solv-
able by a logspace-uniform circuit family {Cn}. We implement the standard reduction of [Sip83;
Lau83] in logspace-uniform NC, as follows. Consider the logspace-uniform circuit family {C′n}
such that C′n simulates Cn while implementing naive error-reduction, to reduce the error below
2−n; note that {C′n} is also logspace-uniform, and of size nk′ for some k′ > k and depth O(logi(n)).

Now, consider the following promise problem Π′. The valid inputs are of the form (x, s1, ..., s|x|k′)

where each si is a string of length |x|k′ . The “yes” instances are such that for every r ∈ {0, 1}|x|k
′

there exists i ∈ [|x|k′] for which C′|x|(x, r⊕ si) = 1, and the “no” instances are such that for at least

half of the r ∈ {0, 1}|x|k
′

it holds that C′|x|(x, r⊕ si) = 0 for all i ∈ [|x|k′]. Relying on the properties
of {C′n} and on the fact that we can check the si’s in parallel, the problem Π′ is solvable by a
logspace-uniform family of probabilistic circuits of size nO(k′) and depth O(logi(n)) with one-
sided error. Hence, Π′ is also solvable by a logspace-uniform family {C′′n} of deterministic circuits
of size nk′′ and depth logi′(n), for some constants k′′, i′ ∈N.

It follows that Π ∈ logspace-uniform-prR · NC. To see this, consider a circuit family that
gets input x, chooses (s1, ..., sk′

|x|) at random, and simulates the circuit C′′n (where n = |x|+ |x|2k′)
on input (x, s1, ..., s|x|k′). The well-known analysis (see, e.g., [Gol08, Theorem 6.9]) shows that
this circuit family solves Π with one-sided error of at most 1/2. Also, this circuit family is of
polynomial size and of polylogarithmic depth. Hence, Π ∈ logspace-uniform-prNC.

We complement Proposition 5.11 by showing that, analogously to Claim 5.2, functions that
are hard on almost all inputs are necessary for derandomization of logspace-uniform NC cir-
cuits. This result relies on diagonalization, and in particular on diagonalizing against logspace-
uniform circuits by other logspace-uniform circuits. To do so we need to quantify the “amount
of logspace” used to construct the circuit, and so we introduce the following definitions.

Definition 5.13 (α-logspace-uniformity). For a constant α ≥ 1, we say that a circuit family {Cn} of
size T(n) is α-logspace-uniform if there exists a Turing machine M of space complexity α · log(T(n)) such
that M(1n) prints Cn.

The following diagonalization-based proof is similar to that of Claim 5.2, but with the ad-
ditional complication that the diagonalizing function must be computable by logspace-uniform
circuits of bounded depth even when it simulates logspace machines whose output is not neces-
sary a bounded-depth circuit.

Proposition 5.14 (almost-all-inputs hardness is necessary for derandomization of NC). Assume
that logspace-uniform-prBP · NC ⊆ logspace-uniform-prNC. Then, for every α ≥ 1 and c1, c2 ∈ N

there exists f : {0, 1}n → {0, 1}n computable by logspace-uniform circuits of polylogarithmic depth and
polynomial size such that f cannot be computed by α-logspace-uniform probabilistic circuits of size nc1 and
depth logc2(n) on almost all inputs.

Proof. The hard problem f is defined using two sufficiently large constants d1 and d2 that depend
on c1 and c2 and will be determined in a moment. For every x ∈ {0, 1}n we will print a circuit
{0, 1}n → {0, 1}n that consists of n separate sub-circuits C1, ..., Cn, one per each output bit i ∈ [n].
For each i ∈ [n],

48

1. Let Mi be the ith Turing machine (according to some efficient enumeration). We check that
Mi(1n) uses α · log(nd1) space and halts after 2α·log(nd1) steps.

2. We print a circuit Ci that has the output of Mi(1n), denoted C′i , hard-wired. The circuit Ci

tries to simulate C′i(x) assuming that C′i is a circuit of size nd1 and depth logd2(n).

3. If the simulation of C′i(x) succeeds, then Ci(x) = 1− C′i(x); otherwise, Ci(x) = 0.

Note that the algorithm for f can be computed by a logspace-uniform circuit family of polyno-
mial size and of polylogarithmic depth. Assume towards a contradiction that f can be computed
on an infinite set X ⊆ {0, 1}∗ of inputs by an α-logspace-uniform probabilistic circuit family {Fn}
of size T = T(n) = nc1 and depth logc2(n), and let Mi be a Turing machine that prints this circuit
family using α · log(T) space.

Let M′i be a logspace machine that prints a circuit family {F′n} in which each F′n gets input
(x, i), simulates Fn on x, and prints the ith bit of Fn(x). Consider the promise-problem of mapping
(x, i) 7→ f (x)i where the promise is that x ∈ X. By our derandomization hypothesis, for some
d1, d2 ∈ N there exists a logspace machine M′′i that prints a family {F′′n } of deterministic circuits
of size nd1 and depth logd2(n) that agree with F′n on every x ∈ X and i ∈ [|x|]. If we use these
values d1 and d2 in the definition of f above, we obtain a contradiction.

By combining Propositions 5.11 and 5.14 we obtain the following “near-equivalence” result,
in which there is a very small gap between a hypothesis that suffices to derandomize logspace-
uniform NC and a hypothesis that is necessary for doing so. The following statement implies
Theorem 1.5.

Corollary 5.15 (non-black-box derandomization of NC). There exists a universal constant c > 1
such that, considering the following statements, we have that (1)⇒ (2)⇒ (3).

1. (Sufficient lower bound.) For every sufficiently large i ∈ N there exists f : {0, 1}n → {0, 1}n

computable in logspace-uniform deterministicNC(.99·i) that cannot be computed by logspace-uniform
probabilistic NC i[nc] on almost all inputs.

2. (Derandomization.) logspace-uniform-prBP · NC ⊆ logspace-uniform-prNC.

3. (Necessary lower bound.) For every i ∈ N and α ≥ 1 there exists f : {0, 1}n → {0, 1}n

computable in logspace-uniform deterministic NC that cannot be computed in α-logspace-uniform
probabilistic NC i[nc] on almost all inputs.

Proof. The implication (2) ⇒ (3) follows immediately from Proposition 5.14. To see that (1) ⇒
(2), by Proposition 5.11 it suffices to show, for every fixed i0 ∈ N, a function f in logspace-
uniform NC j for some j ∈N that cannot be computed by logspace-uniform probabilistic circuits
of size nc and depth logi0+j+c(n) on almost all inputs. Such a function exists by our hypothesis,
taking j to be sufficiently large such that j + (i0 + c) < .99 · j.

49

5.3 “Low-end” derandomization from hard functions without structural constraints

We now prove Theorem 1.4, which deduces a fixed-exponential-time derandomization of RP
from the existence of a hard function f without any structural constraints on f (i.e., we do not
need to assume that f has logspace-uniform low-depth circuits).

Towards presenting the result, we say that a probabilistic algorithm A computes σ on input

x ∈ {0, 1}n with zero error and success probability β if A(x) outputs either σ or ⊥ and A(x) outputs
σ with probability at least β. We will also need the following definition, which relaxes “almost-
all-inputs” hardness to only require failure on all inputs of certain lengths.

Definition 5.16 (infinitely-often almost-all-inputs hardness). We say that a function f is hard for a
class C of probabilistic algorithms in�nitely often on almost all inputs if for every C ∈ C there exists an
infinite set S ⊆N such that for every n ∈ S and x ∈ {0, 1}n it holds that Pr[C(x) = f (x)] < 2/3.

Analogously to the shorthand notation i.o. for “infinitely-often”, we will use the shorthand
notation i.o.-aai to refer to “infinitely-often almost-all-inputs” hardness. The following result,
which implies Theorem 1.4, asserts that if there exists a function in EXP that is hard for BPP
infinitely-often almost-all-inputs, then RP can be derandomized in fixed exponential time; and
if RP can be derandomized in fixed exponential time, then there exists a function in EXP that
is hard for RP infinitely-often almost-all-inputs. Indeed, the only gap between the hardness
hypothesis and the hardness that we conclude from derandomization is that the former is for
BPP whereas the latter is for RP .

Theorem 5.17 (a near-equivalence in the “low-end” setting). Considering the following three state-
ments, we have that (1)⇒ (2)⇒ (3).

1. (EXP is i.o.-aai hard for BPP .) There exists a universal constant c1 ≥ 1 and a function
f : {0, 1}n → {0, 1}n computable in time 2nc1 such that f is hard for all polynomial-time probabilis-
tic algorithms infinitely often on almost all inputs.

2. (Infinitely-often non-trivial derandomization for prRP .) There exists a universal constant
c2 ≥ 1 such that prRP ⊆ i.o.DT IME [2nc2].

3. (EXP is i.o.-aai hard for ZPP .) There exists a universal constant c3 ≥ 1 and a function
f : {0, 1}n → {0, 1}n computable in time 2nc3 such that f is hard for all polynomial-time probabilis-
tic zero-error algorithms infinitely often on almost all inputs.

Proof of (1)⇒ (2). First note that we can assume that EXP ⊂ P/poly. This since otherwise,
by [NW94; BFN+93] we have that prBPP ⊆ i.o.prSUBEXP [NW94; BFN+93], which in partic-
ular implies that prRP ⊆ i.o.prDT IME [2n].

Now, recall that EXP ⊂ P/poly implies that EXP ⊂ MA [BFL91; BFN+93]. Assuming that
Item (1) holds for a constant c1 > 1, we have that DT IME [2nc1] ⊆ MA. This further implies
that DT IME [2nc1] is contained in MAT IME [nd] for a constant d > 1 (since DT IME [2nc1]

has a complete problem under linear-time reductions).
Note that any function in MAT IME [nd] can be computed by a log-space uniform circuit

50

family of size T0(n) = 2O(nd) and depth log(T0).27. By Item (1), there is a function f : {0, 1}n →
{0, 1}n computable in time 2nc1 such that there is an infinite subset S ⊆N for which f is instance-
wise hard for all polynomial-time probabilistic algorithms infinitely often. Consider the function
fidx : {0, 1}n × [n] → {0, 1} that maps (x, i) to f (x)i. With a natural Boolean encoding of [n], we
have that fidx is computable in 2nc1 time using the algorithm for f . Hence, by the discussion
above, fidx ∈ MAT IME [nd] and hence it can be computed by a logspace-uniform circuit family
of size at most T0(2n) and depth log T0(2n). This implies that for some T(n) = 2O(nd), f can be
computed by logspace-uniform circuit family of size at most T and depth log T.

Now, fix an arbitrary prRP problem Π = (Πyes, Πno) solvable in time nt, where t ≥ 1 is a
constant. That is, there is a deterministic Turing machine N taking two inputs x and y satisfying
|y| = nt, such that (1) Pry∈{0,1}nt [N(x, y) = 1] ≥ 1/2 for x ∈ Πyes and (2) Pry∈{0,1}nt [N(x, y) =

1] = 0 for x ∈ Πno. For convenience, we also define the set Ax := {y ∈ {0, 1}nt
: N(x, y) = 1}.

Let c be the constant in Proposition 5.1, let M(n) = nt, and δ(n) = τ · (log log T(n)/ log T(n))
for a large enough constant τ ≥ 1 so that M(n) ≤ T(n)δ/c = O(nd)τ/c and log T(n) = O(nd) ≤
T(n)δ/c. Note that without loss of generality, we can assume t is a large enough constant so
that M(n) = nt > c log T(n). Then, by Proposition 5.1 there is a generator H f running in

TO(1/δ) = 2O(nd2
) time such that, for every x ∈ Πyes the following holds: If H f (x) does not hit the

set Ax, plugging N(x, ·) as the oracle of the reconstruction algorithm R, the resulting algorithm
RN(x,·)(x) computes f (x) in (log T + nc) · Tδ ·Mc · nt ≤ nκ time with probability at least 1− 1/n,
for a constant κ = κ(t, c, d).

Now consider the following algorithm A for solving Π: Given an input x ∈ {0, 1}n, enumerate
all outputs y of the generator H f ; if any of them satisfy N(x, y) = 1 A(x) output 1, and otherwise
output 0. By Item (1), f is hard for the algorithm RN(x,·)(x) infinitely often on almost all inputs.
Let S be the corresponding infinite subset of N on which f is hard for RN(x,·)(x). In the following,
we show that for all n ∈ S, A computes Π on n-bit inputs.

Otherwise, for infinitely many input length n ∈ S, A fails to compute Π on some n-bit
input. Note that A never errs on “no” instances, so this means that for every n ∈ S, there exists
an input xn ∈ Πyes ∩ {0, 1}n (for xn in neither Πno nor Πyes, A is allowed to output anything)
such that H f (xn) does not hit the set Axn . By previous discussions, this means that RN(xn,·)(xn)

computes f (xn) with probability at least 1− 1/n, for infinitely many n ∈ S and the corresponding
xn ∈ {0, 1}n, contradicting to the fact that f is hard for the algorithm RN(x,·)(x) infinitely often
on almost all inputs.

Proof of (2)⇒ (3). Assume that Item (2) holds for a constant c2 ≥ 1. We define a function
f : {0, 1}n → {0, 1}n as follows:

1. Given an input x ∈ {0, 1}n and an output index i ∈ [n], let Mi be the i-th deterministic
Turing machine.

2. Simulate Mi on x for 2nc2+1
steps to obtain its output σ ∈ {0, 1}n. If Mi does not terminate

in 2nc2+1
steps or its output does not have length exactly n, we set σ = 0n.

27This is because we can construct a circuit that enumerates all possible nd-length proofs in parallel, and verifies
every proof deterministically by enumerating all possible nd-bit strings as randomness in parallel. Note that the
nd-time verifier can be simulated by a logspace-uniform circuit of depth O(nd), using the standard tableau method.

51

3. Otherwise, set f (x)i = 1− σi.

Let c3 ≥ 1 be a constant such that f is computable in 2nc3 time (e.g., set c3 = c2 + 2), and let
A be a polynomial-time probabilistic algorithm. We first establish the following claim.

Claim 5.18. There is a 2nc2+1
-time computable function fA : {0, 1}n → {0, 1}n such that for infinitely

many input lengths n and for every x ∈ {0, 1}n, if A(x) computes σ ∈ {0, 1}n with zero error and success
probability at least 2/3, then fA(x) = σ.

Proof. We first consider the following promise problem ΠA: On an input of length m, letting
n = bm/2c, it treats the first n bits as an input x ∈ {0, 1}n, the next dlog ne bits as an index
i ∈ [n]28, and ignores the rest of the input. We say that an input (x, i) is in the promise of ΠA if
it satisfies the following: There exists an output σ ∈ {0, 1}n such that Pr[A(x) = σ] ≥ 2/3 and
Pr[A(x) ∈ {σ,⊥}] = 1. For such an (x, i) in the promise of ΠA, letting σ be the corresponding
high-probability output of A(x), we simply define ΠA(x, i) = σi. By a straightforward simulation
algorithm, we have that ΠA ∈ prZPP ⊆ prRP .

By our hypothesis in Item (2), there is an infinite subset S ⊆N and a 2nc2 -time algorithm MA

such that for every m ∈ S it holds that MA solves ΠA for all inputs of length m. Now we consider
the following two cases:

1. There are infinitely many even integers in S. In this case, we define fA as follows: Given
input x ∈ {0, 1}n, for each i ∈ [n], we set fA(x)i = MA(x, i, 0n−dlog ne).

2. There are finitely many even integers in S. Note that this implies there are infinitely many
odd integers in S. In this case, we define fA as follows: Given input x ∈ {0, 1}n, for each
i ∈ [n], we set fA(x)i = MA(x, i, 0n+1−dlog ne).

It is straightforward to verify that fA in either cases satisfy the requirement. �

Now we are ready to show that f satisfies Item (3). Let A be a probabilistic randomized
algorithm, and let fA be the corresponding 2nc2+1

-time algorithm guaranteed by Claim 5.18. Sup-
pose that fA is implemented by the i-th deterministic Turing machine. Then by Claim 5.18, for
infinitely many input lengths n ≥ i and every x ∈ {0, 1}n, if A(x) computes σ ∈ {0, 1}n with
zero error and success probability at least 2/3, then f (x)i = 1− σi 6= σi. Therefore, f is hard for
all polynomial-time probabilistic zero-error algorithms infinitely often on almost all inputs.

6 Non-black-box derandomization from “non-batch-computability”

In this section we show our uniform hardness-to-randomness tradeoff for the setting of superfast
derandomization, and in particular prove Theorems 1.6 and 1.7. For convenience we define the
following notion of a probabilistic algorithm that approximately-prints a multi-output function.

Definition 6.1 (approximately-printing a function). Let A be a probabilistic algorithm, let g : {0, 1}n →
{0, 1}k, and let x ∈ {0, 1}n. For α ∈ [0, 1], we say that A approximately-prints g(x) with error α if with
probability at least 1− α it holds that Pri∈[k][A(x)i = g(x)i] ≥ 1− α.

28If these bit correspond to an integer larger than n, ΠA truncates it to n.

52

In Section 6.1 we show a generic construction of a reconstructive targeted PRG, and prove
that it can be instantiated with a suitable hard function to obtain superfast derandomization. In
Section 6.2 we use the foregoing results to prove Theorems 1.6 and 1.7 (in particular, Section 6.2
includes the formal definitions of the direct-product hypothesis underlying Theorem 1.6). And
in Section 6.3 we prove that a “non-batch-computable” function is necessary for superfast deran-
domization in the natural special case of highly-uniform formulas.

6.1 Derandomization from non-batch-computable functions

The following construction of a reconstructive targeted PRG underlies our main results. Loosely
speaking, the targeted PRG G is based on a function g : {0, 1}n → {0, 1}k such that the individual
bits of g (i.e., the mapping (x, i) 7→ g(x)i) can be computed in time T′, and the result below
shows a reconstruction algorithm that, given access to x and to a distinguisher Dx for G(x),
approximately-prints g(x) with error α′ in time T′ · nβ′ , where α′ and β′ are arbitrarily small
constants.

Proposition 6.2 (a reconstructive targeted PRG). For every α′, β′ > 0 and sufficiently small η =

ηα′,β′ > 0 the following holds. Let T, k : N → N be time-computable functions such that T(n) ≥ n, and
let g : {0, 1}n → {0, 1}k (where we denote k = k(n)) such that the mapping of (x, i) ∈ {0, 1}n × {0, 1}k

to g(x)i is computable in time T′(n). Then, there exist a deterministic algorithm Gg and a probabilistic
algorithm R that for every x ∈ {0, 1}n satisfy the following:

1. Generator. When Gg gets as input x ∈ {0, 1}n and η > 0, it runs in time k · T′(n) + poly(k) and
outputs a set of strings in {0, 1}kη

.

2. Reconstruction. When R gets as input x ∈ {0, 1}n and η > 0, and gets oracle access to a function
Dx : {0, 1}kη → {0, 1} that (1/kη)-distinguishes the uniform distribution over the output-set of
Gg(x, η) from a truly uniform string, it runs in time Õ(k1+β′) + kβ′ · T′(n), makes Õ(k1+β′)

queries to Dx, and with probability at least 1− 2−kη
outputs a string that agrees with g(x) on at

least 1− α′ of the bits.

Proof. In our proof we will use the following reconstructive PRG, which is based on a combina-
tion of parts from the classical constructions of Nisan and Wigderson [NW94] and of Impagli-
azzo and Wigderson [IW99]. The PRG gets as input a k-bit truth-table of a function {0, 1}log(k) →
{0, 1}, outputs a set of poly(k) strings of length kη for a sufficiently small η > 0, and the crucial
property for us is that its reconstruction algorithm is both uniform and of very small time complexity
kβ′ .

Theorem 6.3 (the PRG of [NW94; IW99] with reconstruction as a high-accuracy learning algo-
rithm). For every two constants α′, β′ ∈ (0, 1) there exist an oracle machine GIW and a probabilistic oracle
machine RIW such that for every function g : {0, 1}log(k) → {0, 1} and sufficiently small η = ηα′,β′ > 0
the following holds.

• Generator: When given input (1k, η) and oracle access to g, the machine GIW runs in time poly(k)
and outputs a set of strings in {0, 1}m, where m = kη .

53

• Reconstruction: When given input (1k, η) and oracle access to a (1/m)-distinguisher D for
Gg(1k, η) and to g, the machine RIW runs in time O(kβ′) and with probability at least 1− 2−2m

outputs outputs an oracle circuit that agrees with g on 1− α′ of the inputs when given access to D.

The proof of Theorem 6.3 is based on well-known constructions and observations from [NW94;
IW98; IW99], but it involves many low-level details, so we defer the full proof to Appendix A.
In high-level, the PRG first encodes the function by the efficient derandomized direct-product
construction of [IW99] and by the Hadamard encoding, and then applies the PRG construction
of [NW94] instantiated with very small output length kη . To design a very fast uniform recon-
struction algorithm, we rely on the observation of [IW98] that the reconstruction algorithm for
the PRG of [NW94] is a uniform learning algorithm, and further note that when the output length
is small (i.e., kη as in our setting), then the latter algorithm is also very fast (see Theorem A.4 for
details). Similarly, the list-decoding algorithms for the the direct-product construction of [IW99]
and for the Hadamard encoding are both very fast uniform algorithms (see Theorem A.5 for de-
tails). All these algorithms succeed with probability 1/poly(m), and we repeat them to produce
a list of candidate circuits that with high probability contains a circuit computing the initial func-
tion. We can then use our oracle access to the initial function in order to “weed” these lists and
find a circuit that agrees with the function on 1− α′ of the inputs. See Appendix A for details.

Both the generator GIW and the reconstruction RIW in Theorem 6.3 are auxiliary protocols for
the targeted generator G and reconstruction algorithm R that we construct. Specifically, G and
R will instantiate GIW and RIW (respectively) with the k-bit truth-table g(x) ∈ {0, 1}k that is a
function of an n-bit input x, where x is given as explicit input both to G and to R. Details follow.

The pseudorandom generator G = Gg. Given as input x ∈ {0, 1}n and parameter η, the algo-
rithm G computes g(x) ∈ {0, 1}k in time k ·T′(n), and applies the generator GIW from Theorem 6.3
with the constants α′,β′,η. The generator runs in time poly(k) and outputs a set of poly(k) strings
z1, ..., zpoly(k) ∈ {0, 1}kη

.

The reconstruction algorithm R. Given input x ∈ {0, 1}n and parameter η > 0, the algorithm
R runs the reconstruction algorithm RIW from Theorem 6.3 with input (1k, η). The reconstruction
algorithm needs oracle access to a (1/kη)-distinguisher for Gg(x, η), which we provide using Dx;
and it needs oracle access to the function whose truth-table is g(x), which we provide using the
T′-time algorithm for the output bits of g. The running time of RIW is O(kβ′), and therefore the
number of queries to Dx is at most O(kβ′) and the running time of this step is O(kβ′ · T′).

With probability at least 1− 2−2kη
, at this point we have a circuit Ci such that CDx

i correctly
computes at least 1− α′ of the coordinates of g(x). We evaluate Ci on all of its k inputs, answering
its queries with Dx, and output the truth-table of Ci. The running time of this step is Õ(k1+β′),
and thus the total running time is O(kβ′ · T) + Õ(k1+β′).

The following hardness-to-randomness result is a direct consequence of the reconstructive
targeted PRG from Proposition 6.2. Loosely speaking, for a time function T(n) and denoting
T′ = T · nε, the hypothesis below is that one-way functions exist, and there exists a function
g : {0, 1}n → {0, 1}k such that the mapping (x, i) 7→ g(x)i is computable in time T′, but g(x)
cannot be approximately-printed with small error in time T′ · nε, with high probability over x

54

chosen from a distribution x. Given this hypothesis, the result asserts that we can derandomize
probabilistic time T with essentially no overhead nε, on average with respect to the distribution
x.

Theorem 6.4 (superfast non-black-box derandomization from a non-batch-computable function).
Let T : N → N be a polynomial, let δ′ : N → (0, 1), and let x = {xn}n∈N be a polynomial-time-
samplable ensemble of distributions, where xn is over {0, 1}n. Assume that one-way functions exist, and
that for every ε′ > 0 there exist α, β ∈ (0, 1) and a function g mapping n bits to nε′ bits such that:

1. There exists an algorithm that on input (x, i) ∈ {0, 1}n × [nε′] outputs the ith bit of g(x) in time
T(n) · nε′ .

2. For every probabilistic algorithm A that runs in time T(n) · n(1+β)·ε′ and sufficiently large n ∈ N,
the probability over x ∼ xn that A approximately-prints g(x) with error α is at most δ′(n).

Then, for every ε > 0 there exists a deterministic algorithm D = Dε that runs in time nε · T(n) and
prints t < nε strings w1, ..., wt ∈ {0, 1}T(n) such that the following holds. For every probabilistic machine
M that runs in time T, with probability at least 1− δ′(n)− n−ω(1) over x ∼ xn it holds that∣∣∣ Pr

r∈{0,1}T(n)
[M(x, r) = 1]− Pr

i∈[t]
[M(x, wi) = 1]

∣∣∣ < n−γ , (6.1)

where γ = γε,β > 0 is a sufficiently small constant. Moreover, the algorithm D does not depend on the
distribution x or on the parameter δ′ from the hardness hypotheses.

The algorithm in the conclusion of Theorem 6.4 is similar to a targeted PRG (as in Defini-
tion 3.3), but it only works on average-case over a choice of x ∼ xn rather than for every x. This
“targeted PRG” has seed length log(t) < ε · log(n), and we will use it to deduce average-case
derandomization with a multiplicative time overhead of nε.

Proof of Theorem 6.4. Let ε′ = ε/c for a sufficiently large constant c > 1 and let k(n) = nε′ . Let
g be the corresponding function from our hypothesis, and note that with our new notation:

1. Each output bit of g is computable in time T′ = T · k.

2. For every probabilistic algorithm A running in time T · k1+β, the probability over x ∼ xn

that A approximately-prints g(x) with error α is at most δ′.

The deterministic algorithm D. Fix a sufficiently small constant µ = µε,β > 0. By Theorem 3.4,
there exists a neg-PRG Gcrypto for polynomial-time algorithms that has stretch nµ 7→ T and
running time T(n) · nµ. We will use the algorithm G = Gg from Proposition 6.2, with parameters
α′ = α and β′ = β/2 and η such that kη = nµ (i.e., η = µ/ε′); note that if µ is sufficiently small
then η is sufficiently small. On input x ∈ {0, 1}n, our algorithm first computes the output-set
of Gg(x, η), which consists of poly(k) strings z1, ..., zpoly(k). Then, for each zi it prints the string
wi = Gcrypto(zi) ∈ {0, 1}T(n).

Note that the number of strings that D prints is poly(k) < nε (relying on a sufficiently large
choice of c) and that the total running time of D is at most

k · T′(n) + poly(k) · T(n) · nµ < nε · T(n) .

55

Also note that the algorithm D does not depend on x or on δ′, but only on the hard function g
and on the parameters ε, α, β.

Proof of correctness. Let M be a probabilistic machine that runs in time T(n), and let γ be any
constant smaller than µ. For a fixed input x ∈ {0, 1}n, denote by zx the uniform distribution over
z1, ..., zpoly(k). Note that for the fixed x, if Eq. (6.1) does not hold, then it cannot be that

M(x, uT) ≈1/n M(x, Gcrypto(unµ)) ≈n−µ M(x, Gcrypto(zx)) , (6.2)

where ≈α means that two distributions are α-close in statistical distance. (This is because the
distribution M(x, Gcrypto(zx)) in the RHS of Eq. (6.2) equals the distribution of M(x, wi) for a
uniform i ∈ [nε], by the definition of the wi’s and of zx.)

We first claim that the probability over x ∼ xn that M(x, uT) 6≈1/n M(x, Gcrypto(unµ)) is
n−ω(1); that is:

Claim 6.4.1. Let Sn = {x ∈ {0, 1}n : M(x, uT) is (1/n)-far from M(x, Gcrypto(unµ))}. Then, Pr [xn ∈ Sn] ≤
n−ω(1).

Proof. The proof amounts to constructing a polynomial-time distinguisher for Gcrypto under the
assumption Pr[xn ∈ Sn] ≥ 1/poly(n). The crucial point in the construction is that the distin-
guisher can sample x ∼ xn and simulate M in polynomial time (since xn is polynomial-time
samplable and M runs in polynomial time). Details follow.

Assume that Pr[xn ∈ Sn] ≥ 1/p(n) for some polynomial p. For every x ∈ {0, 1}n, denote
u(x) = Pr[M(x, uT) = 1] and w(x) = Pr[M(x, Gcrypto(unµ)) = 1]. Our distinguisher F for Gcrypto

gets input r ∈ {0, 1}T, samples x ∼ xn, estimates the values u(x) and w(x) each up to error
1/(4n · p(n)) and with confidence 1− 2−2n, obtaining estimates ũ(x) and w̃(x) respectively, and

outputs F(r) =

{
M(x, r) ũ(x) > w̃(x)

1−M(x, r) ũ(x) < w̃(x)
.

Note that F runs in polynomial time, since T is a polynomial and x is polynomial-time-
samplable and p is a polynomial. To see that F is an n−O(1)-distinguisher for Gcrypto, let

FAR =
{

x :
∣∣∣u(x)− w(x)

∣∣∣ > 1/(2n · p(n))
}

, and note that Sn ⊆ FAR. We further partition FAR into

FAR(>) = {x ∈ FAR : u(x) > w(x)} and FAR(<) = {x ∈ FAR : u(x) < w(x)}. Denote the random
variable representing the coins that F uses for estimation by v, and note that with probability at
least 1− 2−n over v ∼ v the following event, denoted by V , happens: Conditioned on any choice
of x ∈ FAR(>) we have that F(r) = M(x, r), and conditioned on any choice of x ∈ FAR(<) we have

56

that F(r) = 1−M(x, r). Then,

Pr[F(uT) = 1]− Pr[F(Gcrypto(unµ)) = 1]

= Ev∼v,x∼xn [Pr[F(uT) = 1|v, x]− Pr[F(Gcrypto(unµ)) = 1|v, x]]

≥ Ex∼xn [Pr[F(uT) = 1|V , x]− Pr[F(Gcrypto(unµ)) = 1|V , x]]− 2−n

≥ Pr
[
xn ∈ FAR(>)

]
·Ex∼xn

[
Pr[F(uT) = 1]− Pr[F(Gcrypto(unµ)) = 1]|x ∈ FAR(>),V

]
+ Pr

[
xn ∈ FAR(<)

]
·Ex∼xn

[
Pr[F(uT) = 1]− Pr[F(Gcrypto(unµ)) = 1]|x ∈ FAR(<),V

]
+ Pr[xn /∈ FAR] · (−1/(2n · p(n)))− 2−n

= Pr
[
xn ∈ FAR(>)

]
·Ex∼xn

[
Pr[M(x, uT) = 1]− Pr[M(x, Gcrypto(unµ)) = 1]|x ∈ FAR(>),V

]
+ Pr

[
xn ∈ FAR(<)

]
·Ex∼xn

[
Pr[M(x, uT) = 0]− Pr[M(x, Gcrypto(unµ)) = 0]|x ∈ FAR(<),V

]
− 1/(2n · p(n))− 2−n

> Pr
[
xn ∈ FAR(>)

]
·Ex∼xn

[
u(x)− w(x)|x ∈ FAR(>),V

]
+ Pr

[
xn ∈ FAR(<)

]
·Ex∼xn

[
(1− u(x))− (1− w(x))|x ∈ FAR(<),V

]
− 1/(2n · p(n))− 2−n

≥ Pr[xn ∈ FAR] ·Ex∼xn

[∣∣∣u(x)− w(x)
∣∣∣|x ∈ FAR,V

]
− 1/p(n)2

≥ Pr[xn ∈ Sn] ·Ex∼xn

[∣∣∣u(x)− w(x)
∣∣∣|x ∈ Sn,V

]
− 1/(2n · p(n))− 2−n

≥ 1/(n · p(n))− 1/(2n · p(n))− 2−n ,

where the last inequality is since Pr[xn ∈ Sn] ≥ 1/p(n) and for every x ∈ Sn it holds that
∣∣∣u(x)−

w(x)
∣∣∣ > 1/n. Thus, for a sufficiently large n the algorithm F is a (1/(3n · p(n)))-distinguisher

for Gcrypto, a contradiction. �

Now, let Dx(r) = M(x, Gcrypto(r)), and observe that for every x ∈ {0, 1}n such that M(x, Gcrypto(unµ))

is (n−µ)-far from M(x, Gcrypto(zx)) it holds that Dx is a (n−µ)-distinguisher for zx. We will now
construct a probabilistic algorithm A that runs in time k1+β · T(n) and approximately-prints g(x)
with error α for any such x. By our assumption, the probability over x ∼ xn that A approximately-
prints g(x) with error α is at most δ′. Thus, by a union bound, we will conclude that the prob-
ability over x ∼ xn that Eq. (6.2) does not hold, which upper-bound the probability over x ∼ xn

that our derandomization errs on x, is at most δ′ + n−ω(1).
Our algorithm A runs the reconstruction algorithm R from Proposition 6.2 with inputs (x, η),

and while answering its oracles queries to Dx by simulating Gcrypto and M. The reconstruction
R requires a (k−η)-distinguisher, and recall that kη = nµ by our parameter choices. The total
running-time of A is

Õ(k1+β/2) + kβ/2 · T′ + Õ(k1+β/2) · (T · nµ) = o
(

k1+β · T(n)
)

,

where we relied on the fact that R makes Õ(k1+β/2) oracle queries, and that we can answer each

57

oracle query in time O(T · nµ). With probability at least 1− 2−kµ
> 1− α it outputs a string that

agrees with g(x) on at least 1− α of the coordinates.

6.2 Proofs of Theorems 1.6 and 1.7 and of Corollary 1.8

In this section we show that Theorems 1.6 and 1.7 follow as corollaries of the hardness-to-
randomness tradeoff in Theorem 6.4. Let us first formally state Theorem 1.7 and prove it:

Theorem 6.5 (superfast non-black-box derandomization over all polynomial-time-samplable dis-
tributions; Theorem 1.7, restated). Let T : N → N be a polynomial. Assume that one-way functions
exist, and that for every ε > 0 there exist δ > 0 and a function g mapping n bits to nε bits such that:

1. There exists an algorithm that gets input (x, i) ∈ {0, 1}n × [nε] and outputs the ith bit of g(x) in
time T′(n) = T(n) · nε.

2. For every probabilistic algorithm A that runs in time T′(n) · nδ and every polynomial-time samplable
distribution x and every sufficiently large n, the probability over x ∼ xn that A approximately-prints
g(x) with error .01 is negligible.

Then BPT IME [T] ⊆ ⋂ε>0 heur1−neg-DT IME [nε · T], where neg is a negligible function.

Proof. Let L ∈ BPT IME [T], let M be a probabilistic machine that decides L in time T, and let
ε > 0. We invoke Theorem 6.4 with δ′ that is a negligible function, with α = .01 and β = δ/ε,
and with every polynomial-time-samplable distribution x. We obtain a deterministic algorithm
Dε printing strings that satisfy Eq. (6.1), and by the “moreover” part, the algorithm Dε does not
depend on x, so we obtain the same algorithm Dε for all choices of x.

Our deterministic simulation AL gets input x ∈ {0, 1}n and outputs the majority value of
M(x, wi) over all wi’s that Dε prints. Its running time is O(nε · T(n)), since Dε runs in time
nε · T(n) and prints nε strings, and its correctness follows by the conclusion of Theorem 6.4.

Remark 6.6. A non-black-box derandomization approach (such as our targeted PRGs) is necessary
to obtain derandomization as in the conclusion of Theorem 6.4; that is, to obtain derandomization
with a multiplicative overhead of less than n that works over arbitrary polynomial-time samplable
distributions. To see this, fix any HSG G that supposedly derandomizes prBPT IME [T] on
average using n1−ε seeds (i.e., seed length (1 − ε) · log(n)) and running time T′. Then, for a
suitable problem in prBPT IME [T], we can construct in deterministic time O(n · T′) an input
on which the corresponding derandomization errs. Specifically, we enumerate the outputs of G
and construct a circuit that rejects these strings and accepts all other strings; this circuit is an
input for CAPP ∈ prBPT IME [n] ⊆ prBPT IME [T] on which the derandomization errs.29

Since in Theorem 6.4 we construct a targeted PRG rather than just an algorithm that approx-
imates the acceptance probability of a circuit, we are also able to deterministically find good
random strings for probabilistic machines.30 As stated in Corollary 1.8, this implies in particular

29With some care, one can strengthen this impossibility argument so that it holds also for BPT IME [T] rather than
just prBPT IME [T] (to do so we replace CAPP with PIT and construct an arithmetic circuit rather than a Boolean
one).

30There is a known search-to-decision reduction in this context, first pointed out by Goldreich [Gol11a], but a-priori
this reduction has a polynomial runtime overhead. See further discussion after the proof of Theorem 6.8.

58

that, under a hypothesis as in Theorem 6.5, the complexity of explicitly constructing combinatorial
objects is nearly identical to the complexity of verifying that the combinatorial object meets the
required specification. Let us formally define this notion and prove Corollary 1.8:

Definition 6.7 (explicit constructions). Let Π ⊆ {0, 1}∗ such that for every sufficiently large n ∈ N

it holds that Π ∩ {0, 1}n 6= ∅. We say that a deterministic algorithm A is an explicit constrution of Π if
for every sufficiently large n, when A gets input 1n it outputs an n-bit string in Π.

Theorem 6.8 (explicit constructions in time that nearly matches the verification time; Corol-
lary 1.8, restated). Let Π ∈ DT IME [T] such that for every sufficiently large n ∈ N it holds that
|Πn| ≥ 2n/no(1), where Πn = Π ∩ {0, 1}n. Then, under the assumption of Theorem 6.5, for every
ε > 0 there exists an explicit construction of Π in time nε · T(n). Moreover, if the assumption of The-
orem 6.5 holds for every polynomial T, then for every polynomial T we can deduce the conclusion while
only assuming that Π ∈ BPT IME [T].

Proof. Given ε > 0, we invoke Theorem 6.4 with parameters δ′, α, β as in the proof of Theorem 6.5
and with x such that xn is supported only on the string 1n (this is a polynomial-time-samplable
distribution). Let DT,ε be the deterministic algorithm from the conclusion of Theorem 6.4.

Let RΠ be a probabilistic machine that gets input x ∈ {0, 1}n, randomly chooses π ∈ {0, 1}n

and accepts if and only if π ∈ Π (regardless of x). Note that RΠ runs in time O(T(n)). Our
explicit construction of Π gets input 1n, enumerates over the strings w1, ..., wnε that DT,ε(1n)

prints, truncates each string to n bits (recall that the original strings are of length T(n)), and
outputs the lexicographically-first truncated string r such that RΠ(1n, r) = 1.

The foregoing algorithm runs in time O(nε · T(n)). To see that it is an explicit construction of
Π, note that by Theorem 6.4, the probability over x ∼ xn that Eq. (6.1) is violated is less than 1;
since xn is just supported on 1n, we deduce that Eq. (6.1) is satisfied for the machine RΠ above
with input 1n. Also, by our hypothesis that |Πn| ≥ 2n/no(1) and our definition of RΠ, we have
that Pr[RΠ(1n, un) = 1] ≥ n−o(1). Hence, there always exists wi such that M(1n, wi) = 1, which
means that our algorithm indeed outputs some π ∈ Π.

For the “moreover” part, we cannot just define RΠ as above since we do not assume that
Π ∈ DT IME [T]. However, we assumed that there exists a probabilistic machine M that decides
Π in time T. We define DΠ to be the machine that, given input π ∈ {0, 1}n, outputs the majority
vote of M(π, wi) over the strings w1, ..., wnε that DT,ε(π) outputs. Note that DΠ runs in time
T′(n) = O(nε · T(n)) and that no probabilistic polynomial-time algorithm can find a string π

such that DΠ(π) 6= Π(π), with non-negligible probability.
We now define RΠ as above, using DΠ as the deterministic decision algorithm for Π (i.e., RΠ

ignores its input x ∈ {0, 1}n, draws a random π ∈ {0, 1}n, and accepts iff DΠ(π) = 1). Since RΠ

now runs in time T′(n), we invoke Theorem 6.4 with time bound T′ and with the same δ′, α, β, x
to obtain a deterministic algorithm DT′,ε. Our explicit construction works just as above, only
using the output strings of DT′,ε (instead of DT,ε) and evaluating them with the new RΠ that
uses DΠ. To see that it is an explicit construction, the precise same analysis as above implies
that our algorithm outputs π such that DΠ(π) = 1. Since this is a deterministic polynomial-time
algorithm, by the properties of DΠ it cannot be that π /∈ Π.

59

Remark 6.9. Under the particular hypotheses of Theorem 6.8 a different proof approach might
be possible. Moreover, this alternative potential approach is more general, and does not need to
assume that the superfast derandomization involves targeted PRGs (i.e., it only uses the generic
derandomization BPT IME [T] ⊆ ⋂

ε>0 heur1−neg-DT IME [nε · T]). Specifically, when we as-
sume one-way functions (as in Theorem 6.8), we can rely on the fast PRG in Theorem 3.4 to
reduce the search-space of any explicit construction algorithm A from {0, 1}n to {0, 1}nε

, for an
arbitrarily small ε > 0, without significantly affecting its running time or the relative density of
valid outputs.31 The next step is to apply a search-to-decision reduction as in [Gol11a], relying
on the fact that the number of iterations is only nε for an arbitrarily small ε > 0, and that it is
infeasible to find in polynomial time an input on which the derandomization fails. While this
proof approach might work, we prefer the approach presented in Theorem 6.8, both due to its
simplicity and since it demonstrates the general point that targeted PRGs can be used directly to
solve search problems (regardless of whether or not OWFs exist).

Let us now turn to proving Theorem 1.6. Recall that the result relies on a direct product
hypothesis. To introduce this hypothesis we first establish what can be unconditionally proved, as a
basis for comparison. For a function f : {0, 1}n → {0, 1}, denote by f×k the k-wise direct-product
f k(x1, ..., xk) = (f (x1), ..., f (xk)) ∈ {0, 1}k. As mentioned in Section 1.2, it is unconditionally true
that if a function f is average-case hard to compute in probabilistic time T, then f×k(x) cannot
be approximately-printed in similar time Ω(T) for the vast majority of inputs x.

To be more accurate, we will need a slightly stronger assumption, which was also needed in
previous works that studied uniform direct-product results (see, e.g., [IJK+10], following [STV01;
TV07]). Specifically, we will assume that hardness holds with respect to probabilistic algorithms
that get a constant number of advice bits that depend on the randomness of the algorithm but still
do not depend on the specific input to the algorithm. The class of problems solvable by proba-
bilistic algorithms running in time T with a bits of randomness-dependent advice is denoted by
BPT IME [T]//a (see [IJK+10] for further details and explanations). Then:

Proposition 6.10 (non-strong approximate-direct-product theorem). There exists a universal con-
stant c > 1 such that the following holds. Let δ ∈ (0, 1/2), let α > 0 be sufficiently small, let T : N→N

be time-computable, and let k(n) = o(n). Then, for any f /∈ avg1−δ-BPT IME [T]//(1/α) and
any probabilistic algorithm A that runs in time T(n) − nc, the probability over z ∈ {0, 1}k·n that A
approximately-prints f×k(z) with error α is at most δ.

Proposition 6.10 follows as a corollary of the uniform list-decoding algorithms of Impagliazzo
et al. [IJK+10] for the direct-product code (in particular, of [IJK+10, Theorem 1.8]). Since their
paper uses slightly different notions (i.e., it refers to a direct-product function f×k(x1, ..., xk) that
only takes distinct inputs x1, ..., xk, and disallows xi = xj for any i 6= j ∈ [k]), we include for
completeness a proof of Proposition 6.10 in Appendix C.

The following hypothesis essentially says that Proposition 6.10 can be strengthened, for some
function that is hard for probabilistic time T, to assert that the hardness of f×k holds not only

31This is the case since we can replace the algorithm DΠ that decides Π by an algorithm D′Π that gets as input a
seed s ∈ {0, 1}nε

, expands it to an n-bit string using the PRG from Theorem 3.4, and accepts iff DΠ accepts. Thus,
instead of finding a good object in {0, 1}n (i.e., a string that DΠ accepts), it now suffices to find a good seed in {0, 1}nε

(i.e., a string that D′Π accepts).

60

with respect to algorithms running in time T(n)− nc, but also with respect to algorithms running
in time T(n) · kβ, for some (arbitrarily small) constant β > 0. Specifically, the definition below is
a more general version of the assumption that was stated in Section 1.2.

Assumption 6.11 (mildly-strong approximate-direct-product hypothesis). For any δ > 0, the
mildly-strong approximate-direct-product hypothesis for time T(n) and arity k(n) and average-case suc-

cess δ asserts that there exist α, β > 0 and a function f ∈ DT IME [T] such that the following holds.
For any probabilistic algorithm A that runs in time O(kβ · T), the probability over z ∈ {0, 1}k·n that A
approximately-prints f×k(z) with error α is at most δ.

Now we prove Theorem 6.12: Assuming that the mildly-strong approximate-direct-product
hypothesis holds, and that one-way functions exist, probabilistic algorithms running in time T
can be deterministically simulated with essentially no overhead, i.e. in time T · nε, on average
over the uniform distribution.

Theorem 6.12 (superfast non-black-box derandomization from mildly-strong approximate-di-
rect-product; Theorem 1.6, restated). Let T : N → N be a polynomial. Assume that there ex-
ist one-way functions secure against polynomial-time algorithms, and that for some δ > 0 and every
ε0, ε1 > 0 the mildly-strong approximate-direct-product hypothesis holds for time T(n1−ε0) · nε1 and
arity nε1 and average-case success δ. Then BPT IME [T] ⊆ ⋂

ε>0 avg1−δ′-DT IME [nε · T], where
δ′(n) = δ(n) + n−ω(1).

Proof. We show that for any ε′ > 0 there exist α, β > 0 and a function g as in the hypothesis of
Theorem 6.4 with x being the uniform distribution (i.e., for every n ∈ N it holds that xn ≡ un).
To see this, fix any ε′ > 0, and for m(n) = n1/(1−ε′) let T′ : N → N such that T′(n) = T(m(n)) ·
m(n)ε′ (i.e., T′(n) = T(n1/(1−ε′)) · nε′/(1−ε′)). Let f ∈ DT IME [T′] be a function satisfying the
mildly-strong approximate-direct-product hypothesis for time T′ and arity k(n) = m(n)ε′ =

nε′/(1−ε′) and average-case success δ. By our hypothesis, the output bits of the function g =

f×k can be computed in time T′(n) = T(m) · mε′ , whereas there exist α, β > 0 such that g(z)
cannot be approximately-printed with error α on more than δ of the inputs z in probabilistic time
T′(n) ·m(n)β = T(m(n)) ·m(n)(1+β)·ε′ .

Let ε > 0, let Dε be the deterministic algorithm from Theorem 6.4, and for every x ∈ {0, 1}n

let w1(x), ..., wnε(x) be the strings that Dε(x) prints. For any L ∈ BPT IME [T] and ε > 0, our
deterministic algorithm outputs the majority value of ML(x, wi(x)) over all i ∈ [nε], where ML

is a probabilistic T-time machine that decides L. This algorithm runs in time O(nε · T(n)) and
correctly decides L with probability at least 1− δ′ over choice of x ∈ {0, 1}n.

6.3 Necessity of non-batch-computable functions

We now show one natural setting in which superfast derandomization necessitates the existence
of a multi-output function g : {0, 1}n → {0, 1}nε

whose individual bits can be computed in time
T, but that cannot be computed in time significantly less than T · nε.

The computational model is that of balanced formulas of fan-in two over the full binary basis
that are highly uniform (see the precise uniformity condition below). The size of a formula is the
number of leaves, and is typically denoted by T. We assume for simplicity that the size is always

61

a power of two, that internal gates are over the full binary basis, and that negations appear only
in the bottom level (i.e., we only negate variables).

Probabilistic uniform formulas can be defined in several ways, since randomness can be used
either by the machine that constructs the formula or by the formula itself (or by both); moreover,
when randomness is used by the formula itself, it can be either read-once or reusable.32 Our
result works in any of these models, and in none of the models does there seem to be a trivial
derandomization with the requirements that are specified below (i.e., it does not seem trivial to
simulate highly-uniform probabilistic formulas by slightly larger highly-uniform deterministic
formulas). For concreteness, we define probabilistic formulas as ones in which the formula uses
randomness in a read-once manner: That is, some leaves are labeled by a special symbol R, which
indicates that the leaf tosses an independent random coin (and the probabilistic computation of
the formula on a fixed input is over a uniform distribution for the values of leaves that are labeled
by R).

Fixing a canonical indexing of the [2T− 1] gates in a balanced formula of size T such that the
leaves are indexed by [T], the formula is uniquely determined by the labels of the internal gates
(i.e., the function that they compute) and by the labels of the leaves (i.e., each leaf is labeled by a
literal, or by a constant in {0, 1}, or by R). In particular, such a formula is uniquely described by
its label function:

Definition 6.13 (label function). For a formula Fn of size T over n variables, the labels function of Fn,
denoted ΦF : [2T − 1]→ [2n] ∪ {T,F,R} ∪B2, maps each gate in Fn to its label, where a label in [2n] is
interpreted as a literal, the labels T and F stand for the constants 1 and 0 respectively, the label R indicates
that this is a leaf gate that tosses a random coin, and B2 is the full binary basis (i.e., the set of all functions
{0, 1}2 → {0, 1}).

The uniformity condition that we impose on the formulas is similar to what is known as
DPOLYLOGTIME uniformity. Specifically, we require that the label function of a size-T formula
can be computed in time polylog(T) (i.e., polynomial in the input length to the label function).

Definition 6.14 (well-structured formulas). For c ≥ 1, we say that an n-bit formula F of size T is
c-well-structured if F is balanced and its label function ΦF is computable in time log(T)c.

The following statement asserts that superfast derandomization of well-structured formulas
implies the existence of a “non-batch-computable” function as we wanted.

Proposition 6.15 (necessity of non-batch-computable functions for derandomization of well-struc-
tured formulas). Let c be any sufficiently large constant, let c1 > c, let ε, δ ∈ (0, 1) such that ε > δ,
and let T : N→N be a polynomial.

• Assumption: Assume that for every polynomial T0 : N → N, every function computable by a
c-well-structured family of probabilistic formulas of size T0 is also computable, for every sufficiently
large n ∈ N and on more than 0.99 of the inputs x ∈ {0, 1}n, by a c1-well-structured family of
deterministic formulas of size T0(n) · nδ.

32That is, in the former case leaves that are random bits are independent, and in the latter case the same random
bit can reappear as the label of several leafs.

62

• Conclusion: Then, there exists g : {0, 1}n → {0, 1}nε
such that the mapping (x, i) 7→ g(x)i

is computable in time Õ(T), but the following holds. For any c-well-structured family {Dn} of
probabilistic formulas of size o(T(n) · nε−δ) there exists infinitely many input lengths n ∈ N such
that the fraction of x ∈ {0, 1}n for which Pr[Dn(x) = g(x)] ≥ 2/3 is less than 0.01.

High-level proof idea. Let us explain the proof idea before presenting the full proof. For T′ =
T · nε, consider well-structured formulas of size T′ whose top part computes the parity function
of the gates at depth k = ε · log(n). We first diagonalize against this class using a function
Ldiag that is itself computable by a well-structued formula family

{
Fdiag

n

}
n∈N

of the same size

T′. Specifically, for every n ∈ N, let Fn be the well-structured formula that is described by
the uniform machine whose index is n. 33 The diagonalizing formula Fdiag

n has the precise
same structure as Fn, the only difference being that exactly one sub-formula in level k computes
the negation of the corresponding sub-formula in Fn. This is indeed a diagonalization, since
whenever the top k− 1 levels compute the parity function we have that Fdiag

n (x) 6= Fn(x) for all
inputs x ∈ {0, 1}n.

Now, the hard function g gets input x ∈ {0, 1}n and outputs the values of gates in level k of
Fdiag

n (x). Observe that each output bit of g is computable in time Õ(T), since the formulas for
Ldiag are well-structured (i.e., balanced and with an efficiently-computable label function), which
means that each output bit corresponds to a subformula of size T′/nε = T. To see that g is hard,
assume that it can be computed by a family of well-structured probabilistic formulas {Dn} of
size T0 = o(T′) that is “too small”. By our assumption, it can also be computed by a family {D′n}
of well-structured deterministic formulas, which (for simplicity) we now assume are of precisely
the same size T0. We now define a well-structured formula family {D′′n} that first uses D′n to
compute g, and then computes the parity of the outcomes. For every n that is associated with the
uniform machine that defines D′′n , on the one hand we have that D′′n computes the same function
as Fdiag

n (since both of them compute the parity of the values of g), but on the other hand D′′n is
of size o(T′) – a contradiction to the diagonalizing properties of Fdiag.

We are left with just an issue, which is that our derandomization does not succeed in worst-
case, but only on µ > 0.99 of inputs. To deal with this issue, recall that the function

{
Fdiag

n

}
diagonalizes against every M on all inputs of the corresponding length n. Thus, it suffices to
assume that the derandomization of the probabilistic formulas of size T0 that compute g succeeds
even just on one input on which the foregoing formulas correctly compute g.34

Proof of Proposition 6.15. Let c2 > c1 be a sufficiently large constant, and let T′(n) = T(n) · nε.
Fix a standard representation of Turing machines by integers such that each machine is associated
with infinitely many input lengths, and for n ∈N, let Mn be the machine associated with n.

The hard function. We will not need to formally define Fdiag
n that was mentioned above, and

instead we just directly define g : {0, 1}n → {0, 1}nε
, by the following algorithm. On input

33We may not assume that every machine describes a well-structured formula, but we can nevertheless correct
non-valid outputs in some canonical way.

34This follows since the “towards-a-contradiction” hypothesis is that the probabilistic formulas succeed on 0.01 of
the inputs, and the derandomization hypothesis is that the deterministic simulation succeeds on µ > 0.99 of the
inputs.

63

x ∈ {0, 1}n, we think of each i ∈ [nε] as the index of a gate vi in the kth level of a balanced
formula on n variables of size T′(n), where k is the level that is ε · log(n) below the output gate.35

Since we consider a balanced formula, the subformula rooted at vi is of size T′(n)/2k = T(n). We
run Mn on all inputs j such that j is the index of a gate in the subtree of vi, each time for at most
log(T′(n))c2 steps, and correct the outputs of Mn if they are not valid in some fixed canonical
way.36 Then, we define g(x)1 = 1− v1(x) and for i ∈ {2, ..., nε} we define g(x)i = vi(x).

By the definition of g, the mapping (x, i) 7→ g(x)i can be computed in time Õ(T(n)). Now,
denote by Fn the formula that is described by the Mn (after correcting invalid outputs in the
canonical way above) and for x ∈ {0, 1}n denote by Fn,k(x) the values of the gates in the kth level
of Fn at input x. Then, we have that

⊕iFn,k(x)i = 1−⊕ig(x)i . (6.3)

Analysis. Assume towards a contradiction that there is a family {Dn} of c-well-structured proba-
bilistic formulas of size T0(n) = o(T′(n)/nδ) such that for every sufficiently large n ∈N, the frac-
tion of inputs x ∈ {0, 1}n such that Pr[Dn(x) = g(x)] ≥ 2/3 is at least 0.01. By our assumption,
there is a family {D′n} of c1-well-structured deterministic formulas of size T0(n) · nδ = o(T′(n))
such that for every sufficiently large n ∈N there exists xn ∈ {0, 1}n for which D′n(x) = g(x). Let
M(1) be the uniform machine describing {D′n}.

For T1(n) = T0(n) · nδ < T′(n), consider the following machine M(2). Given i ∈ [2T1(n)− 1],
if i is an index of a gate in the kth level of a formula of size T1(n) or in a level beneath it, then
M(2)(i) = M(1)(i); and otherwise (if i is the index of a gate in the top k− 1 levels), then M(2)(i)
outputs the parity function. Finally let M(3) be a machine with essentially the same functionality
as M(2), the only difference being that M(3) describes a “padded” formula of size T′(n) with only
T1(n) non-trivial gates at its top, and a trivial copying mechanism at its bottom levels (in order
for the formula to be of size precisely T′(n)).37

Note that for all n ∈ N and every input in [2T′(n) − 1] it holds that M(3) runs in time
at most log(T0(n) · nδ)c1 + log2(n) ≤ log(T′(n))c2 , where c2 = c1 + 2 and the additional term
of log2(n) accounts for the overheads of M(3) on top of M(1) (i.e., deciding whether the input
requires simulating M(1), or outputting the parity function, or implementing a trivial copying
mechanism). Thus, M(3) describes a c2-well-structured formula family {D′′n} of size T′. Denoting
by D′′n,k(x) the values of gates in the kth level of D′′n at input x, we have that

D′′n (x) = ⊕iD′′n,k(x)i = ⊕iD′n(x)i . (6.4)

Now, fix any n ∈ N such that M(3) is associated with input length n. Since M(3) describes a c2-
well-structured family and by the definition of Fn (when describing the hard function g above),
for any such n we have that Fn = D′′n and Fn,k = D′′n,k. Also, by our assumption, there exists xn

35Recall that we fixed a canonical ordering of the gates in a balanced formula. This canonical ordering induces an
ordering on the gates in the kth level, and i is the index of vi in that ordering.

36That is, if Mn(u) /∈ B2 for an internal node u we let Mn(u) = ∧, and if Mn(u) /∈ [2n] ∪ {T,F} for a leaf u then
Mn(u) = 1, representing x1.

37That is, M(3)(i) behaves like M(2)(i) on the first T1(n)− 1 gates. Then the next T1(n) gates, which are the leaves
of the formula described by M(2) and are denoted by L, are ∨ gates. Similarly all other gates except for the leaves are
∨ gates. Finally M(3) labels each leaf ` by the label that M(2) assigns to the unique node in L that is an ancestor of `.

64

such that D′n(xn) = g(xn). Hence, by combining Eqs. (6.3) and (6.4) we have that

⊕ig(xn)i = 1−⊕iFn,k(xn)i = 1−⊕iD′′n,k(i) = 1−⊕iD′n(x)i = 1−⊕ig(x)i ,

a contradiction.

We note several shortcomings of Proposition 6.15. First, the function g is computable in time
Õ(T) but not necessarily by well-structured formulas of such size. Secondly, our assumption
referred to superfast derandomization of search problems, rather than only decision problems.
And thirdly, we only deduced that g(x) cannot be printed, whereas in Theorems 1.6 and 1.7 we
needed a lower bound even on printing a “slightly-corrupted” version of g(x).

7 Open problems

We conclude this paper with several intriguing open questions stemming from our results.

1. (Direct construction of targeted PRGs.) In Section 4 we constructed targeted HSGs from
instance-wise hardness (Proposition 4.5), and the immediate open problem is to strengthen
this construction to yield targeted PRGs. The lack of targeted PRGs forces us to rely on
the inclusion prBPP ⊆ prRP prRP to get the implication “almost-all-input hardness im-
plies prBPP = prP”. This indirect approach causes the hardness-randomness tradeoff in
Theorem 1.3 to be not as smooth as the tradeoff for prRP , which also prevents us to get
a full equivalence (between hardness assumption and derandomization conclusion) in the
“low-end” setting (see Theorem 5.17). Thus, getting a similar construction of targeted PRGs
would significantly improve the tradeoff for prBPP , as well as strengthen Theorem 5.17
into a full equivalence.

The core technical challenge can be abstracted out as follows (see also Section 4.4): Given
polynomially many candidate targeted PRGs for a given randomized algorithm on a partic-
ular input (meaning, at least one of the candidates is a valid targeted PRG on this particular
input, and others may behave arbitrarily), can we still derandomize the relevant probabilis-
tic algorithm (that has a two-sided error) on this input38 A similar issue also occurred in
previous works concerning uniform hardness-to-randomness (see e.g., [CRT+20]).

2. (Relaxing the low-depth requirement on the hard function.) In Theorem 1.2 we were
able to deduce prBPP = prP from almost-all-input hardness of function f computable
by low-depth circuits. The ultimate goal would be to achieve the same conclusion with
almost-all-input hardness of an arbitrary polynomial-time function, thus showing a com-
plete equivalence between almost-all-input hardness and derandomization. One interme-
diate question is whether or not we can relax the constraint on the hard function f from
low-depth to low-space; that is, can we show prBPP = prP follows from the existence of
a function f : {0, 1}n → {0, 1}n computable by algorithms running in polynomial time and

38To get derandomization with one-sided error one can simply enumerate all the outputs of the targeted PRGs and
see if one of them leads the probabilistic algorithm to accept the given input.

65

in space (say) n2 such that f is almost-all-input hard for probabilistic algorithms running
in fixed polynomial time nc (i.e., when c� 2 is some unknown fixed constant)?

Since our work crucially relies on the doubly-efficient proof systems for low-depth circuits
by [GKR15], it is natural to suspect the recent doubly-efficient proof systems for low-space
computation by [RRR16] may be helpful for the above intermediate question. We never-
theless note that our particular techniques cannot be directly applied to the proof system
of [RRR16], since bootstrapping systems exist only for functions computable by bounded-
depth circuits (see Proposition 4.2).

3. (The needed assumptions for superfast derandomization.) In Theorem 1.7 we show that
BPT IME [T] ⊆ heur-DT IME [T · nε] under the existence of OWFs against uniform adver-
saries and non-batch-computable functions. In Proposition 6.15 we show that the assump-
tion about non-batch-computable functions is necessary in the setting of derandomizing
DPOLYLOGTIME-uniform balanced formulas, but the general case remains unclear. It is
therefore important to understand whether one can further weaken the two assumptions
in Theorem 1.7 (e.g., can we get rid of the assumption about OWFs?), or show these as-
sumptions are indeed necessary. Another potential approach to this question would be to
discover different assumptions under which one can deduce superfast derandomization.

4. (Application to the BPL = L question.) In this paper we demonstrate that almost-all-
input hardness is tightly related to the prBPP = prP question. Can our framework be
applied to the BPL = L question as well? Perhaps our framework can inspire new con-
struction of targeted PRGs for derandomizing bounded-space computations (e.g., showing
BPL = L)? So far, most of the work in this direction focused on black-box derandomiza-
tion of BPL.39

5. (Proving almost-all-input lower bounds against uniform algorithms.) Can we prove the
hardness assumption in Theorem 1.2? It would immediately imply prBPP = prP . Perhaps
a first step is to construct a polynomial-time function f : {0, 1}n → {0, 1}n that cannot be
computed by polynomial-size uniform probabilistic AC0 circuits on almost all inputs.

Acknowledgements

We are very grateful to Madhu Sudan, who suggested the proof idea underlying Appendix B
(the latter is crucially used in our results concerning logspace-uniform NC). We thank Ryan
Williams (who is the PhD advisor of the first author and the postdoc host of the second author)
for very valuable discussions and perspectives, and in particular for suggesting to prove tighter
results forNC circuits, and for pointing out the relevance of Kozen’s work and of the “simulation
versus diagonalization” question. We are grateful to Avishay Tal for a helpful conversation and
for the useful suggestion to randomly choose a small set S in the proof of Proposition 6.10.
We also thank Salil Vadhan for a very useful conversation, in particular about transformations
of bootstrapping systems into low-depth circuits. We thank Oded Goldreich and Igor Oliveira
for detailed comments and suggestions on an early version of the paper, which significantly

39One notable exception is the seminal work by Reingold [Rei08] proving that undirected connectivity is in L.

66

improved our exposition. In particular, we thank Igor for the suggestion to point out implications
of our derandomization for search problems, which led to stating and proving Corollary 1.8.

References

[AB09] Sanjeev Arora and Boaz Barak. Computational complexity: A modern approach. Cam-
bridge University Press, Cambridge, 2009.

[ACR98] Alexander E. Andreev, Andrea E. F. Clementi, and José D. P. Rolim. “A new general
derandomization method”. In: Journal of the ACM 45.1 (1998), pp. 179–213.

[Alm19] Josh Alman. “An illuminating algorithm for the light bulb problem”. In: Proc. 2nd
Symposium on Simplicity in Algorithms (SOSA). 2019, Art. No. 2, 11.

[BF99] Harry Buhrman and Lance Fortnow. “One-Sided Versus Two-Sided Error in Prob-
abilistic Computation”. In: Proc. 16th Symposium on Theoretical Aspects of Computer
Science (STACS). 1999, pp. 100–109.

[BFL91] László Babai, Lance Fortnow, and Carsten Lund. “Non-Deterministic Exponential
Time has Two-Prover Interactive Protocols”. In: Comput. Complex. 1 (1991), pp. 3–40.

[BFN+93] László Babai, Lance Fortnow, Noam Nisan, and Avi Wigderson. “BPP has subexpo-
nential time simulations unless EXPTIME has publishable proofs”. In: Computational
Complexity 3.4 (1993), pp. 307–318.

[BGH82] Allan Borodin, Joachim von zur Gathen, and John E. Hopcroft. “Fast Parallel Matrix
and GCD Computations”. In: Inf. Control. 52.3 (1982), pp. 241–256. doi: 10.1016/
S0019-9958(82)90766-5. url: https://doi.org/10.1016/S0019-9958(82)90766-
5.

[BM84] Manuel Blum and Silvio Micali. “How to Generate Cryptographically Strong Se-
quences of Pseudo-random Bits”. In: SIAM Journal of Computing 13.4 (1984), pp. 850–
864.

[Che19] Lijie Chen. “Non-deterministic Quasi-Polynomial Time is Average-case Hard for
ACC Circuits”. In: Proc. 60th Annual IEEE Symposium on Foundations of Computer
Science (FOCS). 2019.

[CIS18] Marco L. Carmosino, Russell Impagliazzo, and Manuel Sabin. “Fine-grained de-
randomization: from problem-centric to resource-centric complexity”. In: Proc. 45th
International Colloquium on Automata, Languages and Programming (ICALP). 2018, Art.
No. 27, 16.

[CLW20] Lijie Chen, Xin Lyu, and Richard Ryan Williams. “Almost-Everywhere Circuit Lower
Bounds from Non-Trivial Derandomization”. In: Proc. 61st Annual IEEE Symposium
on Foundations of Computer Science (FOCS). 2020.

[CNS99] Jin-Yi Cai, Ajay Nerurkar, and D. Sivakumar. “Hardness and hierarchy theorems
for probabilistic quasi-polynomial time”. In: Proc. 31st Annual ACM Symposium on
Theory of Computing (STOC)). 1999, pp. 726–735.

67

https://doi.org/10.1016/S0019-9958(82)90766-5
https://doi.org/10.1016/S0019-9958(82)90766-5
https://doi.org/10.1016/S0019-9958(82)90766-5
https://doi.org/10.1016/S0019-9958(82)90766-5

[CR20] Lijie Chen and Hanlin Ren. “Strong average-case lower bounds from non-trivial
derandomization”. In: Proc. 52th Annual ACM Symposium on Theory of Computing
(STOC). 2020, pp. 1327–1334.

[CRT+20] Lijie Chen, Ron D. Rothblum, Roei Tell, and Eylon Yogev. “On Exponential-Time
Hypotheses, Derandomization, and Circuit Lower Bounds”. In: Proc. 61st Annual
IEEE Symposium on Foundations of Computer Science (FOCS). 2020, pp. 13–23.

[Csa76] L. Csanky. “Fast Parallel Matrix Inversion Algorithms”. In: SIAM J. Comput. 5.4
(1976), pp. 618–623. url: https://doi.org/10.1137/0205040.

[CT21] Lijie Chen and Roei Tell. “Simple and fast derandomization from very hard func-
tions: Eliminating randomness at almost no cost”. In: Proc. 53st Annual ACM Sym-
posium on Theory of Computing (STOC). 2021.

[CW19] Lijie Chen and R. Ryan Williams. “Stronger Connections Between Circuit Analy-
sis and Circuit Lower Bounds, via PCPs of Proximity”. In: Proc. 34th Annual IEEE
Conference on Computational Complexity (CCC). 2019, 19:1–19:43.

[DMO+20] Dean Doron, Dana Moshkovitz, Justin Oh, and David Zuckerman. “Nearly Opti-
mal Pseudorandomness From Hardness”. In: Proc. 61st Annual IEEE Symposium on
Foundations of Computer Science (FOCS). 2020.

[GKR15] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. “Delegating compu-
tation: interactive proofs for muggles”. In: Journal of the ACM 62.4 (2015), Art. 27,
64.

[GL89] Oded Goldreich and Leonid A. Levin. “A Hard-core Predicate for All One-way
Functions”. In: Proc. 21st Annual ACM Symposium on Theory of Computing (STOC).
1989, pp. 25–32.

[Gol01] Oded Goldreich. The Foundations of Cryptography - Volume 1: Basic Techniques. Cam-
bridge University Press, 2001. isbn: 0-521-79172-3. doi: 10.1017/CBO9780511546891.

[Gol08] Oded Goldreich. Computational Complexity: A Conceptual Perspective. New York, NY,
USA: Cambridge University Press, 2008.

[Gol11a] Oded Goldreich. “In a World of P=BPP”. In: Studies in Complexity and Cryptography.
Miscellanea on the Interplay Randomness and Computation. 2011, pp. 191–232.

[Gol11b] Oded Goldreich. “Two Comments on Targeted Canonical Derandomizers”. In: Elec-
tronic Colloquium on Computational Complexity: ECCC 18 (2011), p. 47.

[Gol18] Oded Goldreich. “On doubly-efficient interactive proof systems”. In: Foundations and
Trendsr in Theoretical Computer Science 13.3 (2018), front matter, 1–89.

[GR17] Oded Goldreich and Guy N. Rothblum. “Worst-case to Average-case reductions
for subclasses of P”. In: Electronic Colloquium on Computational Complexity: ECCC 26
(2017), p. 130.

[GSTS03] Dan Gutfreund, Ronen Shaltiel, and Amnon Ta-Shma. “Uniform hardness versus
randomness tradeoffs for Arthur-Merlin games”. In: Computational Complexity 12.3-4
(2003), pp. 85–130.

68

https://doi.org/10.1137/0205040
https://doi.org/10.1017/CBO9780511546891

[GV08] Dan Gutfreund and Salil Vadhan. “Limitations of hardness vs. randomness under
uniform reductions”. In: Proc. 12th International Workshop on Randomization and Ap-
proximation Techniques in Computer Science (RANDOM). 2008, pp. 469–482.

[GVW11] Oded Goldreich, Salil Vadhan, and Avi Wigderson. “Simplified derandomization
of BPP using a hitting set generator”. In: Studies in complexity and cryptography.
Vol. 6650. Lecture Notes in Computer Science. Springer, Heidelberg, 2011, pp. 59–67.

[GW02] Oded Goldreich and Avi Wigderson. “Derandomization that is rarely wrong from
short advice that is typically good”. In: Proc. 6th International Workshop on Random-
ization and Approximation Techniques in Computer Science (RANDOM). 2002, pp. 209–
223.

[HAB02] William Hesse, Eric Allender, and David A. Mix Barrington. “Uniform constant-
depth threshold circuits for division and iterated multiplication”. In: J. Comput. Syst.
Sci. 65.4 (2002), pp. 695–716.

[HIL+99] Johan Håstad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. “A Pseu-
dorandom Generator from any One-way Function”. In: SIAM Journal of Computing
28.4 (1999), pp. 1364–1396.

[Hoz19] William M. Hoza. “Typically-correct derandomization for small time and space”. In:
Proc. 34th Annual IEEE Conference on Computational Complexity (CCC). 2019, Art. No.
9, 39.

[HR03] Tzvika Hartman and Ran Raz. “On the distribution of the number of roots of poly-
nomials and explicit weak designs”. In: Random Structures & Algorithms 23.3 (2003),
pp. 235–263.

[IJK+10] Russell Impagliazzo, Ragesh Jaiswal, Valentine Kabanets, and Avi Wigderson. “Uni-
form direct product theorems: simplified, optimized, and derandomized”. In: SIAM
Journal of Computing 39.4 (2010), pp. 1637–1665.

[IKW02] Russell Impagliazzo, Valentine Kabanets, and Avi Wigderson. “In search of an easy
witness: exponential time vs. probabilistic polynomial time”. In: Journal of Computer
and System Sciences 65.4 (2002), pp. 672–694.

[IW98] R. Impagliazzo and A. Wigderson. “Randomness vs. Time: De-Randomization Un-
der a Uniform Assumption”. In: Proc. 39th Annual IEEE Symposium on Foundations of
Computer Science (FOCS). 1998, pp. 734–.

[IW99] Russell Impagliazzo and Avi Wigderson. “P = BPP if E requires exponential circuits:
derandomizing the XOR lemma”. In: Proc. 29th Annual ACM Symposium on Theory of
Computing (STOC). 1999, pp. 220–229.

[Kab01] Valentine Kabanets. “Easiness assumptions and hardness tests: trading time for zero
error”. In: vol. 63. 2. 2001, pp. 236–252.

[KM98] Adam Klivans and Dieter van Melkebeek. “Graph Nonisomorphism has Subexpo-
nential Size Proofs Unless the Polynomial-Time Hierarchy Collapses”. In: Electronic
Colloquium on Computational Complexity: ECCC 5 (1998), p. 75.

69

[KMS12] Jeff Kinne, Dieter van Melkebeek, and Ronen Shaltiel. “Pseudorandom generators,
typically-correct derandomization, and circuit lower bounds”. In: Computational Com-
plexity 21.1 (2012), pp. 3–61.

[Koz78] Dexter Kozen. “Indexing of subrecursive classes”. In: Proc. 10th Annual ACM Sym-
posium on Theory of Computing (STOC). 1978, pp. 287–295.

[Koz92] Dexter Campbell Kozen. Design and Analysis of Algorithms. Texts and Monographs
in Computer Science. Springer, 1992. isbn: 978-3-540-97687-5. doi: 10.1007/978-1-
4612-4400-4. url: https://doi.org/10.1007/978-1-4612-4400-4.

[Lau83] Clemens Lautemann. “BPP and the polynomial hierarchy”. In: Information Processing
Letters 17.4 (1983), pp. 215–217.

[LOS21] Zhenjian Lu, Igor C. Oliveira, and Rahul Santhanam. “Pseudodeterministic Algo-
rithms and the Structure of Probabilistic Time”. In: Proc. 53rd Annual ACM Sympo-
sium on Theory of Computing (STOC). 2021.

[LP21] Yanyi Liu and Rafael Pass. “On One-way Functions from NP-Complete Problems”.
In: Electronic Colloquium on Computational Complexity: ECCC 28 (2021), p. 059.

[Lu01] Chi-Jen Lu. “Derandomizing Arthur-Merlin games under uniform assumptions”.
In: Computational Complexity 10.3 (2001), pp. 247–259.

[MS05] Dieter van Melkebeek and Rahul Santhanam. “Holographic proofs and derandom-
ization”. In: SIAM Journal of Computing 35.1 (2005), pp. 59–90.

[MW18] Cody Murray and Ryan Williams. “Circuit Lower Bounds for Nondeterministic
Quasi-Polytime: An Easy Witness Lemma for NP and NQP”. In: Proc. 50th Annual
ACM Symposium on Theory of Computing (STOC). 2018.

[NIR03] Alan Nash, Russell Impagliazzo, and Jeff Remmel. “Universal Languages and the
Power of Diagonalization”. In: Proc. 18th Annual IEEE Conference on Computational
Complexity (CCC). 2003, p. 337.

[NIR06] Alan Nash, Russell Impagliazzo, and Jeff Remmel. “Infinitely-Often Universal Lan-
guages and Diagonalization”. In: Electronic Colloquium on Computational Complexity:
ECCC 13 (2006), p. 51.

[Nis91] Noam Nisan. “Pseudorandom bits for constant depth circuits”. In: Combinatorica
11.1 (1991), pp. 63–70.

[NW94] Noam Nisan and Avi Wigderson. “Hardness vs. randomness”. In: Journal of Com-
puter and System Sciences 49.2 (1994), pp. 149–167.

[OL21] Igor Carboni Oliveira and Zhenjian Lu. “An efficient coding theorem via probabilis-
tic representations and its applications”. In: Proc. 48th International Colloquium on
Automata, Languages and Programming (ICALP). 2021.

[Oli19] Igor Carboni Oliveira. “Randomness and Intractability in Kolmogorov Complex-
ity”. In: Proc. 46th International Colloquium on Automata, Languages and Programming
(ICALP). 2019, 32:1–32:14.

[Rei08] Omer Reingold. “Undirected connectivity in log-space”. In: J. ACM 55.4 (2008), 17:1–
17:24.

70

https://doi.org/10.1007/978-1-4612-4400-4
https://doi.org/10.1007/978-1-4612-4400-4
https://doi.org/10.1007/978-1-4612-4400-4

[RRR16] Omer Reingold, Guy N. Rothblum, and Ron D. Rothblum. “Constant-round inter-
active proofs for delegating computation”. In: Proc. 48th Annual ACM Symposium on
Theory of Computing (STOC). 2016, pp. 49–62.

[Sap17] Ramprasad Saptharishi. Algebra and Computation. 2017. url: https://www.tifr.
res.in/~ramprasad.saptharishi/assets/courses/2017-algComp/algComp_2017.

pdf.

[Sha03] Ronen Shaltiel. “Towards proving strong direct product theorems”. In: Computational
Complexity 12.1-2 (2003), pp. 1–22.

[Sha11] Ronen Shaltiel. “Weak derandomization of weak algorithms: explicit versions of
Yao’s lemma”. In: Computational Complexity 20.1 (2011), pp. 87–143.

[Sip83] Michael Sipser. “A complexity theoretic approach to randomness”. In: Proc. 15th
Annual ACM Symposium on Theory of Computing (STOC). 1983, pp. 330–335.

[STV01] Madhu Sudan, Luca Trevisan, and Salil Vadhan. “Pseudorandom generators with-
out the XOR lemma”. In: Journal of Computer and System Sciences 62.2 (2001), pp. 236–
266.

[SU05] Ronen Shaltiel and Christopher Umans. “Simple extractors for all min-entropies and
a new pseudorandom generator”. In: Journal of the ACM 52.2 (2005), pp. 172–216.

[SU07] Ronen Shaltiel and Christopher Umans. “Low-end uniform hardness vs. random-
ness tradeoffs for AM”. In: Proc. 39th Annual ACM Symposium on Theory of Computing
(STOC). 2007, pp. 430–439.

[Sud15] Madhu Sudan. Algebra and Computation, Lecture 9. 2015. url: http://people.seas.
harvard.edu/~madhusudan/MIT/ST15/scribe/lect09-madhu.pdf.

[Sud21] Madhu Sudan. Personal Communication. 2021.

[Sud97] Madhu Sudan. “Decoding of Reed Solomon Codes beyond the Error-Correction
Bound”. In: J. Complex. 13.1 (1997), pp. 180–193. doi: 10.1006/jcom.1997.0439. url:
https://doi.org/10.1006/jcom.1997.0439.

[SW13] Rahul Santhanam and Ryan Williams. “On medium-uniformity and circuit lower
bounds”. In: Proc. 28th Annual IEEE Conference on Computational Complexity (CCC).
2013, pp. 15–23.

[Tel19] Roei Tell. “Proving that prBPP = prP is as hard as proving that “almost NP” is
not contained in P/poly”. In: Information Processing Letters 152 (2019), p. 105841.

[TV07] Luca Trevisan and Salil P. Vadhan. “Pseudorandomness and Average-Case Com-
plexity Via Uniform Reductions”. In: Computational Complexity 16.4 (2007), pp. 331–
364.

[Uma03] Christopher Umans. “Pseudo-random generators for all hardnesses”. In: Journal of
Computer and System Sciences 67.2 (2003), pp. 419–440.

[Vad12] Salil P. Vadhan. Pseudorandomness. Foundations and Trends in Theoretical Computer
Science. Now Publishers, 2012.

71

https://www.tifr.res.in/~ramprasad.saptharishi/assets/courses/2017-algComp/algComp_2017.pdf
https://www.tifr.res.in/~ramprasad.saptharishi/assets/courses/2017-algComp/algComp_2017.pdf
https://www.tifr.res.in/~ramprasad.saptharishi/assets/courses/2017-algComp/algComp_2017.pdf
http://people.seas.harvard.edu/~madhusudan/MIT/ST15/scribe/lect09-madhu.pdf
http://people.seas.harvard.edu/~madhusudan/MIT/ST15/scribe/lect09-madhu.pdf
https://doi.org/10.1006/jcom.1997.0439
https://doi.org/10.1006/jcom.1997.0439

[Wil13] Ryan Williams. “Improving Exhaustive Search Implies Superpolynomial Lower Bounds”.
In: SIAM Journal of Computing 42.3 (2013), pp. 1218–1244.

[Yao82] Andrew C. Yao. “Theory and Application of Trapdoor Functions”. In: Proc. 23rd
Annual IEEE Symposium on Foundations of Computer Science (FOCS). 1982, pp. 80–91.

[Zim08] Marius Zimand. “Exposure-resilient extractors and the derandomization of proba-
bilistic sublinear time”. In: Computational Complexity 17.2 (2008), pp. 220–253.

Appendix A Instantiations of known PRG and code constructions

In this appendix we state and prove various instantiations of known constructions of PRGs and
of codes. The point in stating and proving these is that we instantiate the known constructions
with non-standard parameters and with specific efficiency constraints that are useful for our
purposes. Specifically, the appendix includes proofs of three claims:

1. We prove Theorem 4.8, which is an instantiation of the Nisan-Wigderson PRG in which both
the output length and the running time of the reconstruction algorithm are very small, and
both the PRG and the reconstruction can be computed by NC circuits that are logspace-
uniform (assuming that the PRG gets explicit access to the hard function, and that the
reconstruction algorithm gets oracle access to a distinguisher).

2. We prove Theorem 6.3 from Section 6, which combines the foregoing construction with
parts of the Impagliazzo-Wigderson [IW99] construction, and asserts that the reconstruction
algorithm for the obtained PRG is a uniform learning algorithm (following [IW98]).

3. We prove Theorem 4.9, which asserts that the list-decoding algorithm of Goldreich and
Levin [GL89] can be implemented by small-depth circuits.

In Section A.1 we prove Theorem 4.8. Then, in Section A.2 we state and prove an instantiation
of the derandomized direct-product construction of [IW99], where the main point is that the
reconstruction algorithm is uniform and efficient. In Section A.3 we combine the two foregoing
constructions to prove Theorem 6.3. And in Section 4.9, which can be read independently of the
rest of this appendix, we prove Theorem 4.9.

A.1 The Nisan-Wigderson PRG using logspace-uniform circuits

To compute the Nisan-Wigderson PRG by logspace-uniform NC circuits, we will use a logspace
algorithm that constructs combinatorial designs and “hard-wires” the designs into an NC cir-
cuits. The logspace construction of designs appears in Section A.1.1, and the corresponding
instantiation of the NW PRG appears in Section A.1.2.

A.1.1 Designs in logspace

The construction of combinatorial designs that we present works in space that is logarithmic
in the number of sets. We follow an idea that appeared in [HR03] and was attributed to Salil
Vadhan; an earlier construction appeared in [KM98]. Let us first recall the definition of an explicit
standard combinatorial design, and then state and prove the result itself.

72

Definition A.1 ([NW94]). A family of sets S1, . . . , Sm ⊆ [d] is called an (m, `, ρ, d)-design if each of
the sets is of size |Si| = `, and any two distinct sets Si, Sj satisfy |Si ∩ Sj| ≤ log(ρ). The computational
complexity of the design is the complexity of the function that gets input i ∈ [m] and outputs the set Si.

The proof idea is to create a designs by simulating a “code concatenation” procedure akin to
the Justensen code. Loosely speaking, we combine a good and explicit “outer” error-correcting
code with an optimal “inner” combinatorial design (that we can find by an exhaustive search).
The result of this combination is stated in the following lemma from [HR03]:

Lemma A.2 (from codes to designs; see [HR03, Lemma 5.5]). For a, `0, ρ0, d0, `1, k, m ∈ N, assume
that there exist:

1. An (a, `0, ρ0, d0)-design computable in space O(log(m)).

2. An error-correcting code C : [m]→ [a]`1 with (absolute) distance `1 − k that is computable in space
O(log(m)).

Then, there exists an (m, `, ρ, d)-design computable in space O(log(m)), where ` = `1 · `0 and d = `1 · d0

and log(ρ) = k · `0 + (`1 − k) · log(ρ0).

We obtain the following logspace-computable designs by combining the Reed-Solomon code
with an inner design that we find using exhaustive search.

Lemma A.3 (designs in logspace). There exists a universal constant c ≥ 1 such that the following
holds. For any constant α ∈ (0, 1) and sufficiently large integer ` there exists an (m, `, ρ, d)-design, where
m ≥ 2(1/c)·α·` and d ≤ c · `/α and log(ρ) = α · `, that is computable in space O(log(m)).

Proof. Let `1 = O(`/ log(`)) be the minimal power of two such that `′ = `1 · log(`1) ≥ `. As
the code we take the Reed-Solomon code Fk+1

`1
→ F

`1
`1

of degree k = bα/8c · `1, whose number
of codewords is m = `k+1

1 > 2(α/8)·`′ . We will combine this code with a design of `1 sets of size
`0 = log(`1) in a universe of size d0 = O(`0/α) that pairwise-intersect on log(ρ0) = (α/8) · `0

coordinates (see, e.g., [Vad12, Problem 3.2] for the existence of such a design).
Using Lemma A.2, the resulting design has m > 2(α/8)·`′ sets of size `′ in a universe of size

O(`′/α) whose pairwise-intersections are of size at most

k · `0 + (`1 − k) · log(ρ0) ≤ (α/8) · `′ + (α/8) · `′ − k · log(ρ0) < α/4 · `′ .

We truncate each set in the design to have exactly ` elements. Note that `′ < 4`,40 and therefore
the pairwise-intersections are of size at most α · ` and the number of sets is m ≥ 2(α/32)·`.

Note that the Reed-Solomon code F
bα/8c·`1+1
`1

→ F
`1
`1

can be computed in space O(`1) =

O(log(m)). Also, we can find an optimal design of `1 sets of size log(`1) in a universe of size
O(log(`1)/α) by an exhaustive search, in space O(`1 · log(`1)) = O(log(m)). By Lemma A.2, the
space complexity of the final design is O(log(m)).

40This is since `1 · log(`1) < 4(`1/2) · log(`1/2) for a sufficiently large `1 = O(`/ log(`)).

73

A.1.2 The NW PRG with uniform reconstruction

We now prove Theorem 4.8. As mentioned above, this is an instantiation of the NW PRG in
which the output length is small, the reconstruction time is small, and both the PRG and the
reconstruction algorithm are computable by logspace-uniform NC circuits (assuming they are
given access to the hard function and to a distinguisher, respectively).

Theorem A.4 (the NW PRG with reconstruction as a learning algorithm). There exists a universal
constant c > 1, an oracle machine G, and a probabilistic oracle machine R0, such that the following holds:

1. Generator: When given input (1`k , 1m, α) such that m ≤ 2(α/c)·`k oracle access to h : {0, 1}`k →
{0, 1}, the machine G runs in time 2c·`k/α and outputs a set of strings in {0, 1}m. Moreover, if α is
constant and `k and m are sufficiently large, then G can be implemented by logspace-uniform oracle
circuits of size 2c·`k/α and depth O(log(m, `k)).

2. Reconstruction: When given input (1`k , 1m, α) and oracle access to a (1/m)-distinguisher D for
Gh(1`k , 1m, α) and to h, the machine R0 runs in time mc · 2α·`k , makes non-adaptive queries, and
outputs with probability at least 1− 2−3m an oracle circuit that computes h on 1/2 + m−3 of the
inputs when given access to D. The circuit that R0 outputs has depth polylog(m, `k) and makes
just one oracle query. Moreover, if α is a constant and `k and m are sufficiently large, then R0

can be implemented by a logspace-uniform probabilistic oracle circuit of size mc · 2α·`k and depth
polylog(m, `k) that makes non-adaptive queries.

Proof. Given input (1`k , 1m) and access to h ∈ {0, 1}2`k , and assuming that c in our hypothesis is
sufficiently large, the machine G constructs the following combinatorial design: The design con-
sists of m sets S1, ..., Sm ⊆ [d] of size |Si| = `k that pairwise-intersect on at most α · `k coordinates
in a universe of size d = O(`k/α). The machine then enumerates in parallel over seeds z ∈ {0, 1}d,
and for every z it queries the oracle m times and outputs the m-bit string h(z�S1

) ◦ ... ◦ h(z�Sm
)

(where z�Si
is the projection of z to the coordinates specified by Si).

If α is constant and `k, m are sufficiently large, then the foregoing procedure can be imple-
mented by a logspace-uniform circuit of size 2d · poly(m) ≤ 2c·`k/α and depth O(log(m, `k)),
assuming again that c is sufficiently large. Specifically, to compute the designs by logspace-
uniform circuits we use Lemma A.3; the logspace algorithm that constructs the circuit computes
the designs in advance and hard-wires them into the circuit. In general (i.e., without assum-
ing that α is a constant), the foregoing procedure can be implemented in time 2(c/α)·`k , using a
standard construction of designs in time poly(m) (see, e.g., [Vad12, Problem 3.2]).

The machine R0 gets input (1`k , 1m, α) and constructs the same design that G constructed. It
then repeats the following expriment for poly(m) attempts in parallel:

1. Randomly choose an index i ∈ [m], values z′ ∈ {0, 1}[d]\Si , values ri,...,m ∈ {0, 1}m−i+1, and
a random bit σ. Query h on the m · 2α·`k points corresponding to intersections of Si with
other sets.

2. Create a circuit that gets input x ∈ {0, 1}`k , combines x and z′ to a seed z ∈ {0, 1}d (by
placing x in the positions indexed by Si and using z′ to fill the other positions), looks up
r1, ..., ri−1 = h(z�S1

) ◦ ... ◦ h(z�Si−1
), creates a string r = r1, ..., rm, makes one oracle call to the

distinguisher D with input r, and outputs D(r)⊕ σ.

74

3. Use poly(m) oracle calls to h to test whether or not the circuit agrees with h on at least
1/2 + m−3 of the inputs, with confidence 1− 2−4m.

After performing the poly(m) experiments, the machine R0 checks if one of them succeeded,
and if so it outputs the circuit produced by one of the successful experiments. Otherwise, the
machine R0 halts and outputs “fail”.

By a standard reconstruction argument following [NW94], in any one of the experiments, with
probability at least 1/O(m) the circuit correctly computes h on 1/2 + 1/O(m2) > 1/2 + m−3 of
the inputs. Thus, the probability that at least one of the poly(m) attempts will succeed is at least
1− 2−3m the machine R0.

The procedure R0 runs in time poly(m) · 2α·`k and makes non-adaptive oracle queries. The
circuit that R0 prints has depth polylog(m, `k) and makes just one oracle call to D. Moreover, if
α is constant then R0 can be implemented by a logspace-uniform circuit, since we compute the
designs in logspace (as we did for M), the first two steps are computationally very simple, and
in the third step we just need to simulate a logspace-uniform circuit (the one we constructed in
the second step); the size of this circuit is poly(m) · 2α·`k , and its depth is polylog(m, `k).

A.2 The derandomized direct product of IW with uniform reconstruction

We now state and prove an instantiation of the derandomized direct-product construction of
Impagliazzo and Wigderson [IW99]. The point of the statement and proof below is simply to
verify that the reconstruction algorithm for the [IW99] construction is both uniform and very
quick.

Theorem A.5 (the locally list-decodable “derandomized direct-product” code of [IW99]). For
every two constants δ, γ > 0, let c = cδ,γ > 1 be a sufficiently large constant. Then, for every sufficiently
large k and r ≤ log(k) and η = 2−r/c there exists a mapping of g ∈ {0, 1}k to h ∈ {0, 1}poly(k) that
satisfies the following:

1. Low complexity overhead: There exists an algorithm that gets input i ∈ [poly(k)] and outputs
the ith entry of h in time polylog(k) with r oracle queries to g.

2. Reconstruction: There exists a probabilistic algorithm that gets input 1k and oracle access to g,
runs in time kγ/2 · poly(log(k), 1/η), and outputs O(1/η2) oracle circuits such that the following
holds. For every function h̃ that agrees with h on 1/2 + η of the inputs, with probability at least
1− exp(−1/η) one of the oracle circuits correctly computes g on 1− δ of the inputs with at most
poly(log(k)/η) queries to h̃.

Proof. To specify our construction we need to recall the following construction of a generator G0

from [IW99] that maps a random seed of length k′ (where the requirements on k′ will be clarified
below) to an output of length r · log(k). The generator XORs the output of two algorithms, which
are applied independently to the same seed:

1. The first algorithm is a randomness-efficient sampler that maps its seed to r samples of
log(k) bits such that any set in {0, 1}log(k) of density δ is sampled with accuracy δ/2 and
with confidence η4/9 = 2−Ω(r).

75

2. The second algorithm is a nearly-disjoint subsets generator (a-la [NW94]). This algorithm
considers a family of subsets S1, ..., Sr ⊆ [k′], each of length log(k), that pairwise intersect
on at most (γ/2) · log(k) coordinates. Given a seed z, the algorithm outputs the r substrings
(z�Si

)i∈[r] (where z�Si
is the projection of z to the locations specified by Si).

For a seed length k′ that is the maximum among the seed lengths of the two algorithms above,
let hIW : {0, 1}k′ → {0, 1}r be the function hIW(z) = (g(G0(z)1), ..., g(G0(z)r)), where G0(z)i is the
ith output string of G0, which is of length log(k). The main lemma from [IW99] is the following
reconstruction algorithm, which transforms a function that agrees with hIW on poly(η) of the
inputs to a function that agrees with g on almost all inputs:

Lemma A.5.1. There exists a probabilistic oracle machine RIW that, given access to g, produces in time
Õ(kγ/2/η9) a deterministic oracle circuit g̃ such that with probability 1− exp(−1/η)/2 the following
holds: When given access to a function that agrees with hIW on at least η4 of the inputs, the circuit g̃ makes
O(log(k)/η9) queries and correctly computes g on at least 1− δ of the inputs.

Proof sketch. We follow the proof of Theorem 15 in [IW99] with parameters ε = η4 and ρ = δ/2
and q = ε

4δ/ρ+1 = η4/9 > 2−ρ·r/6 (our sampler indeed satisfies the hypotheses of the theorem

with these parameters41) and with M = kγ/2 (our nearly-disjoint generator satisfies the hypothe-
ses of the theorem with this parameter).

The proof in [IW99] describes a probabilistic algorithm RIW that runs in time Õ(kγ/2) and
constructs a probabilistic oracle circuit C with one oracle gate that satisfies the following. For
every function h̃IW that agrees with hIW on ε of the inputs there exists a set X ⊂ {0, 1}log(k) of
density at least 1− δ such that for every x ∈ X, the expectation (over random coins of RIW) of
the probability (over random coins of C) that the circuit with access to h̃IW outputs hIW(x) is
at least 1/2 + q. We modify RIW so that it chooses fixed random coins for C, in which case for
every x ∈ X, with probability at least 1/2+ q over coins for RIW the resulting deterministic oracle
circuit outputs hIW(x) when given access to h̃IW.

By running RIW for t′ = O(q−2 · log(k) · (1/η)) = O(log(k)/η9) times and printing a circuit
that outputs the majority decision of the t′ circuits, with probability at least 1− exp(−1/η)/2 the
printed circuit computes hIW for every x ∈ X, while making at most t′ oracle calls to h̃IW. �

The mapping of g to h. We are given g ∈ {0, 1}k and wish to map it to h ∈ {0, 1}poly(k). We
instantiate the generator G0 with the following two algorithms. For a sampler, we can use any
strongly-explicit expander with constant spectral gap: The seed is thus of length log(k) + O(r)
(specifying a vertex in [k] and r edge indices), and we rely on an appropriate expander Chernoff
bound (see, e.g., [AB09, Theorem 21.15]), using the fact that r is larger than a sufficiently large
constant, to deduce that any set of density δ is sampled with accuracy δ/2 and with confidence
2−r/10. For a nearly-disjoint subsets generator we use a standard construction of combinatorial
designs in time poly(r, log(k/γ)) with universe size O(log(k/γ)) (see, e.g., [Vad12, Problem 3.2]).

41In [IW99] the requirement from a sampler is stronger, and non-standard in modern terms: It specifies that any
product of δ-dense sets T1 × ...× Tr ∈ ({0, 1}log(k))r should be sampled approximately well (see [IW99, Definition
5]). However, their proof only uses the property that is considered standard today, which refers to the special case in
which there is a single δ-dense set T ⊆ {0, 1}log(k) and Ti = T for all i ∈ [r]. Moreover, the confidence parameter of
the sampler that we use is much better than what is needed in the [IW99] proof.

76

Combining these constructions yields seed length k′ = max {log(k) + O(r), O(log(k)/γ)} =

O(log(k)), and a generator computable in time poly(k′).
Recall that hIW(z) = (g(G0(z)1), ..., g(G0(z)r)). We define h to be the truth-table of the

Hadamard encoding of hIW; that is, h is the truth-table of h : {0, 1}k′+r → {0, 1} such that
h(z, α) = ⊕i∈[r]αi · hIW(z)i. Note that the truth-table of h is of length 2k′+r = poly(k), and that we
can compute each entry in this truth-table in time polylog(k) with r queries to g.

The reconstruction algorithm. Let h̃ : {0, 1}k′+r → {0, 1} be a function that agrees with h on
1/2+ η of the inputs. The algorithm of [GL89] runs in time poly(log(k)/η), and with probability
at least 1− exp(−1/η)/2 outputs an oracle circuit h̃IW,list that gets input (z, i) ∈ {0, 1}k′ × [t],
where t = O(1/η2), and satisfies the following: For at least Ω(η) of the inputs z to hIW there
exists i ∈ [t] such that h̃h̃

IW,list(z, i) = hIW(z) (see, e.g., [Gol08, Theorem 7.8]42). When the
algorithm of [GL89] succeeds, by an averaging argument there exists i ∈ [t] such that the circuit
h̃(i)IW defined by h̃(i)IW(z) = h̃IW,list(z, i), when given oracle access to h̃, agrees with hIW on at least
Ω(η/t) = Ω(η3) > η4 of the inputs.

We run the probabilistic oracle machine RIW from Lemma A.5.1, while answering its queries
using our oracle to g, and this machine outputs an oracle circuit g̃. We output the t oracle
circuits obtained by composing g̃ with each of the circuits h̃(i)IW, for i ∈ [t]. The running time of
our algorithm is Õ(kγ/2) · poly(1/η), and each of the t circuits makes at most poly(log(k)/η)

queries to h̃. With probability at least 1− exp(−1/η), both algorithms (of [GL89] and of [IW99])
succeeded, in which case one of the t circuits computes g on 1− δ of the inputs with oracle access
to h̃.

A.3 The combined construction

We now state Theorem 6.3 and prove it. The proof amounts to a straightforward combination of
Theorems A.4 and A.5.

Theorem A.6 (the PRG of [NW94; IW99] with reconstruction as a high-accuracy learning al-
gorithm). For every two constants δ, γ > 0 there exist an oracle machine G and a probabilistic oracle
machine R such that for every function g : {0, 1}log(k) → {0, 1} and sufficiently small ε = εδ,γ > 0 the
following holds.

• Generator: When given input (1k, ε) and oracle access to g, the machine G runs in time poly(k)
and outputs a set of strings in {0, 1}m, where m = kε.

• Reconstruction: When given input (1k, ε) and oracle access to a (1/m)-distinguisher D for
Gg(1k, ε) and to g, the machine R runs in time O(kγ) and with probability at least 1 − 2−2m

outputs an oracle circuit that agrees with g on 1− δ of the inputs when given access to D.

Proof. We instantiate Theorem A.5 with parameters γ and δ/2. Let r = 3c · log(m), where
c = cδ/2,γ > 1 is the constant from Theorem A.5, and note that r ≤ log(k) by our assumption that

42The algorithm of [GL89] is probabilistic, and for every z in a set Z of density Ω(η), with probability at least
1− exp(−1/η2) there exists i such that the ith potential output of the algorithm equals the correct result. By choosing
randomness and fixing it into this probabilistic algorithm, with probability at least 1 − exp(−1/η)/2 we obtain a
circuit that succeeds (in the sense above) on at least half of the inputs in Z.

77

ε is sufficiently small, and that η = 2−r/c = 1/m3. Let h : {0, 1}`k → {0, 1} be the corresponding
function from Theorem A.5, where `k = O(log(k)). The machine G is the one from Theorem A.4,
instantiated with h and with the parameter m. Note that the running time of G is polynomial in
2`k = poly(k).

The machine R gets oracle access to a distinguisher D and to g. It first runs the machine R0

from Theorem A.4, obtaining an oracle circuit C′0. (Note that R0 requires oracle access to h, and
R only has oracle access to g, but R can answer each query to h using r ≤ log(k) queries to g.)
Then, R runs the reconstruction algorithm from Theorem A.5, which yields t = O(1/η2) = O(m6)

oracle circuits C′1, ..., C′t. It replaces the oracle gates in each C′i with the circuit C′0 (which contains
an oracle gate to D), and outputs the t resulting circuits C1, ..., Ct.

By Theorem A.4, with probability at least 1 − 2−3m the function (C′0)
D agrees with h on

1/2 + m−3 = 1/2 + η of the inputs. Conditioned on this event, by Theorem A.5 with probability
at least 1− exp(−1/η) > 1− 2−3m there exists i ∈ [t] such that CD

i agrees with g on 1− δ/2 of
the inputs. For i ∈ [t], we estimate the fraction of inputs on which CD

i agrees with g, up to error
δ/2 and with confidence 1− 2−3m/t (by randomly sampling O(m) inputs, making oracle calls to
g, and evaluating Ci with oracle calls to D). With probability at least 1− 2−3m, after this step we
find a single Ci such that CD

i agrees with g on at least 1− δ of the inputs. The running time of R
is poly(m) · kγ/2 < kγ, and its error probability is at most 3 · 2−3m < 2−2m.

A.4 List-decoding the Hadamard code by small-depth circuits of small

We now state and prove Theorem 4.9, which asserts that the list-decoding algorithm of Goldreich
and Levin [GL89] can be implemented by small-depth circuits. The proof amounts to verifying
that the standard construction of [GL89] satisfies this property.

Theorem A.7 (list-decoding the Hadamard code [GL89]; Theorem 4.9, restated). For any time-
computable a : N → N satisfying a(`0) ≤ `0 and ε : N → (0, 1/2) there exists a transformation Had

that maps any function g : {0, 1}`0 → {0, 1}a(`0) to a Boolean function Had(g) : {0, 1}`0+a(`0) → {0, 1}
such that the following holds.

1. Encoding: For every x ∈ {0, 1}`0 and z ∈ {0, 1}a(`0) it holds that Had(g)(x, z) = 〈g(x), z〉 =
⊕i∈[a(`0)]g(x)i · zi.

2. Decoding: There exists a logspace-uniform circuit GL of size poly(`0/ε) and depth polylog(`0/ε)

that gets input 1`0 and outputs a probabilistic oracle circuit C of depth polylog(`0/ε) that satisfies
the following. For every oracle H̃ad(g) that agrees with Had(g) on 1/2 + ε of the inputs, the
probability over the random coins of C and a choice of x ∈ {0, 1}`0 that CH̃ad(g)(x) = g(x) is at
least poly(ε).

Proof. For convenience we denote n = `0 and H = H̃ad(g). For k = O(log(n/ε)), the probabilis-
tic oracle circuit C circuit gets input x ∈ {0, 1}n and chooses at random k bits w1, ..., wk ∈ {0, 1}
and k vectors s1, ..., sk ∈ {0, 1}a(n). For each i ∈ [a(n)] in parallel, the circuit C computes
yi = MAJ {bi,S}S⊆[k], where bi,S = H(x, ∑j∈S sj + ei) ⊕ ∑j∈S wj and ei ∈ {0, 1}a(n) is the indica-
tor vector of the ith position. The circuit outputs the n-bit string y1, ..., yn. A standard analysis
shows that the success probability of the resulting circuit is at least poly(ε) (see, e.g., [AB09, Proof

78

of Theorem 9.12]). The depth of C is polylog(n, 1/ε), since for each output bit C only requires a
constant number of iterated addition operations on poly(n/ε) vectors of n bits.

Appendix B Algorithms in logspace-uniformNC for polynomial prob-
lems

Our goal in this appendix is to prove that low-degree polynomials are sample-aided worst-case
to rare-case reducible by logspace-uniform NC circuits. To prove this we follow the known
algorithms underlying such a result and show that each of these algorithms can be implemented
by logspace-uniform NC circuits.

The main idea in the argument (which appears in Section B.2) was suggested to us by Madhu
Sudan [Sud21], to whom we are very grateful. In high-level, we first show how to extract linear
factors from bivariate polynomials, then use this to obtain a list-decoder for the Reed-Solomon
(RS) code, then deduce a local list-decoder for the Reed-Muller (RM) code, and finally obtain the
worst-case to rare-case reduction. In more detail:

1. First, in Section B.1, we recall some standard results asserting that logspace-uniform NC
circuits can solve basic arithmetic and linear-algebraic problems.

2. In Section B.2 we show how, given a bivariate polynomial p ∈ F[x, y], we can find all of
its linear factors of the form y − p(x) in logspace-uniform NC. This is the crux of the
argument, which was suggested by Madhu Sudan.

3. In Section B.3 we plug the foregoing factoring result into Sudan’s [Sud97] list-decoder for
the RS, to show that it can be implemented in logspace-uniform NC; and deduce a local
list-decoder for the RM code in logspac-euniform NC, relying on the reduction by Sudan,
Trevisan and Vadhan [STV01] of this problem to the problem of list-decoding the RS code.

4. Finally, in Section B.4 we use the foregoing list-decoder for the Reed-Muller code with an
additional simple argument to obtain a sample-aided worst-case to rare-case reduction for
low-degree polynomials that is computable in logspace-uniform NC.

Throughout the appendix, we assume that a bivariate polynomial Q ∈ F[x, y] with degree D
is given as input by listing the coefficients of all of its (D+2

2) monomials in the lexicographical
order.43 Similarly, a univariate polynomial f ∈ F[x] is also given as a list of coefficients, from the
lowest power to the highest power.

B.1 Arithmetic and linear algebra in logspace-uniform NC

Logspace-uniform NC circuits (and even more restricted circuit classes such as logtime-uniform
T C0) can perform basic arithmetic operations, and solve standard linear-algebraic problems. We
now recall several of these results that we will use in our proofs:

Lemma B.1 (arithmetic in logspace-uniform NC). There exist logspace-uniform NC circuit families
for the following problems over a prime field F:

43In more detail, the monomials are ordered first by their x-degrees, and then by their y-degrees.

79

• Iterated addition. The input is a list of n field elements and the output is their sum. In this case
the circuit is of linear size and of depth log(n) · log(|F|).

• Iterated multiplication. The input is a list of n field elements and the output is their multiplica-
tion. In this case the circuit is of depth log(n · p).

• Iterated addition of polynomials. The input is a list of univariate or bivariate polynomials over
F with degree bound D, and the output is the polynomial that computes their sum.

• Multiplication of polynomials. The input is two univariate or bivariate polynomials over F with
degree bound D, and the output is the polynomial that computes their multiplication.

Proof. The circuit for iterated addition is just a tree that iteratively adds pairs of integers. Given
n integers that are each represented by log(p) bits, the tree consists of log(n) levels, and in each
level i = 1, ..., log(n) we add n/2i+1 pairs of elements in size (n/2i+1) · (log(p)) and depth log(p).
The overall size is thus O(n · log(p)) and the overall depth is log(n) · log(p).

For iterated multiplication, Hesse, Allender and Barrington [HAB02] showed a construction
in logtime-uniform T C0. Their construction is stronger, since any logtime-uniform T C0 circuit
yields a logspace-uniform NC1 circuit, by replacing each linear threshold gate by a tree for
addition and a top “greater-than” gadget.

Addition of two polynomials over F that are given as lists of coefficients reduces in logspace-
uniform NC to addition of pairs of elements over F. Additional of n polynomials over F reduces
to addition of two polynomials over F, via an addition tree as above (note that the degree bound
remains identical throughout the procedure).

For multiplication of degree-D univariates we can again use the logtime-uniform T C0 circuits
of [HAB02]. In case the polynomials are bivariate, we construct a circuit that maps the variable y
to x2D, multiplies the resulting two univariates, and transform them back to bivariates.

Systems of linear equations over a prime field F can be solved by logspace-uniform ran-
domized NC circuits. As a first ingredient we verify that the determinant of a matrix can be
computed in logspace-uniform NC; then we show that systems with unique solutions can be
solved in logspace-uniform NC; and finally we reduce the problem of solving general linear
systems to the problem of solving systems with unique solutions. The reduction was shown by
Borodin, von zur Gathen, and Hopcroft [BGH82], while the unique solution case was established
by Csanky [Csa76].

Lemma B.2 (computing the determinant in logspace-uniform NC). There exists a logspace-uniform
family of NC circuits that gets as input a matrix and computes its determinant.

Proof. As shown in [Csa76], the determinant of a matrix can be computed in NC. Our goal here
is to further verify tat the NC algorithm for determinant in [Csa76] can indeed be implemented
by log-space uniform NC. To do so we closely follow the presentation in [Koz92, Lecture 31].

First, relying on Lemma B.1, matrix multiplication is in logspace-uniform NC; and using
repeated squaring, matrix powering to a polynomial power can also be computed in logspace-
uniform NC. We begin by establishing a simple logspace-uniform NC circuit for computing
the inverse of an invertible lower triangular matrix A (that is, Ai,j = 0 for i < j). Without

80

loss of generality assume A is of size 2` × 2` for ` ∈ N, we write A =

[
B 0
C D

]
, where B, C

and D are matrices of size 2`−1 × 2`−1 and B and D are lower triangular. One can verify that

A−1 =

[
B−1 0

−D−1CB−1 D−1

]
. Hence, one can first compute B−1 and D−1 by recursion, and then

compute A−1 by the aforementioned formula. This recursive algorithm can be straightforwardly
implemented in logspace-uniform NC, as it has ` levels (recall that A is of size 2` × 2` and ` is
logarithmic in terms of input size) and each level can be implemented by logspace-uniform NC.

Next, given a general matrix A of size n×n, the algorithm defines a vector s = (s1, s2, . . . , sn) ∈
Fn as follows: Denoting s0 = 1, for every k ∈ [n] we define44

sk =
1
k
·
(

k

∑
j=1

sk−j · tr(Aj) · (−1)j−1

)

In other words, plugging s0 = 1, for each k ∈ [n], we have the following linear equation

sk −
1
k
·
(

k−1

∑
j=1

sk−j · tr(Aj) · (−1)j−1

)
= tr(Ak) · (−1)k−1.

As proved in [Csa76], we have that sn = det(A). Thus, our goal is to output sn. To do so, note
that there is a invertible lower triangular matrix M ∈ Fn×n and a vector c ∈ Fn such that Ms = c;
in more detail, we define

Mk,k = 1 and Mk,k−j =
1
k
· (−1)j · tr(Aj) for j ∈ [k− 1]

ck = tr(Ak) · (−1)k−1 .

By the above discussion both M and c can be computed by logspace-uniform NC circuits
(since |F| > n and 1/k is defined as k 6= 0 for every k ∈ [n]). Also, we can solve the linear system
Ms = c by computing s = M−1c, using the established logspace-uniform NC circuit for inverting
lower triangular matrices. We output sn.

Lemma B.3 (solving linear systems with unique solution in logspace-uniform NC). There exists a
logspace-uniform family of NC circuits that gets as input a linear system with n variables and n equations
over a prime field F such that |F| > n and the linear system is guaranteed to have a unique solution, and
outputs the unique solution.

Proof. Denoting the linear system by Ax = b, and recalling that it has a unique solution (i.e.,
that A has full rank), we know that the solution is x = A−1b. By Cramer’s rule, matrix in-
version reduces to computing the determinants of its minors (as well as the determinant of the
matrix itself), and this reduction can indeed be computed in logspace-uniform NC (since each
output element is the determinant of a minor of a predetermined submatrix, divided by ± of the
determinant of the matrix itself). The claim follows by Lemma B.2.

44Recall that for an n× n matrix M, tr(M) is defined as ∑n
i=1 Mi,i.

81

Lemma B.4 (solving general linear systems in logspace-uniform randomized NC). There exists a
logspace-uniform family of randomized NC circuits that get as input a linear system over a prime field F,
and with probability at least 1− 2−|F| output a solution if one exists.

Proof. The proof of [BGH82, Theorem 5] reduces solving general linear systems Ax = b where
A = n× n to solving systems with unique solutions. Their reduction works as follows:

1. Find a basis for the column-space of A among the columns, and find a basis for the row-
space of A among the rows.

2. Solve the linear system corresponding to the submatrix of bases, which has a unique solu-
tion v ∈ Frank(A) .

3. Extend v to a vector y ∈ Fn by placing zeroes in the yet-unspecified n− rank(A) locations.
If Ay = b, output y, otherwise output ⊥.

By Lemmas B.3 and B.1 we can perform the second and third steps (respectively) in logspace-
uniform NC. It remains to verify that the first step is in logspace-uniform probabilistic NC.

To find a basis among a set of vectors {v1, ..., vn} for their span, it suffices to include vi

iff rank({v1, ..., vi−1}) < rank({v1, ..., vi}) (observe that this reduction from finding a basis to
computing the rank is in logspace-uniform NC). Following the proof of [BGH82, Theorem 3],
we can probabilistically compute the rank of an m×m matrix A′ by taking the maximum among
the outputs of O(1) parallel repetitions of the following experiment:

1. Choose two random m×m matrices B, C.

2. For all i ∈ [m], compute the determinant of the principal i× i minor of BA′C.

3. Output max {i ∈ [n] : fi 6= 0}, or 0 if no such i exists.

Relying on Lemma B.2, the entire procedure above can be carried out by logspace-uniform
probabilistic NC circuits.

B.2 Factoring linear factors from bivariates

Our goal in this section is to construct a logspace-uniformNC circuit that gets as input a bivariate
polynomial Q ∈ F[x, y] and finds all of its factors that are of the form y− p(x) for some univariate
polynomial p(x). Specifically, we prove the following:

Theorem B.5 (factoring linear factors from bivariate polynomials in logspace-uniform NC). Let
F be a prime field and let D ≥ 1 be an integer such that |F| > 2D2. Then, there exists an algorithm
factorizeD,F that gets as input Q ∈ F[x, y] with degree at most D and advice (r, a, t) ∈ [D]× F2 and
satisfies the following:

1. For every τ(x) ∈ F[x] such that (y− τ(x)) is a factor of Q, there exists (r, a, t) ∈ [D]× F2 such
that factorizeD,F(Q, r, a, t) = τ(x).

2. The algorithm factorizeD,F can be implemented by logspace-uniform NC circuits.

82

High-level description of the algorithm

The idea behind the above theorem is to use the Hensel lifting technique, adapted to our par-
ticular setting. Loosely speaking, given a bivariate polynomial Q(x, y) and a factor (y − t) of
Q(0, y) ∈ F[y], one can “lift” (y− t) to a factor (y− τ(x)) of Q(x, y) ∈ F[x, y], under the condi-
tion that y− t has multiplicity exactly 1 in Q(0, y), and t = τ(0) (see Proposition B.11). While
we do not know t = τ(0) (as we do not know τ in advance), our circuit simply tries all possible
t ∈ F in parallel, as we are allowed to use size poly(|F|).

To deal with the requirement that y− t has multiplicity 1 in Q(0, y), we atke the following
preprocessing steps. Suppose that Q has a factor (y− τ(x)) with multiplicity r. We first observe
that y− τ(x) would be a factor of ∂r−1Q

∂r−1y with multiplicity 1 (see Lemma B.8). So we enumerate all

possible multiplicities r at the beginning, and deal with all Q(r−1) = ∂r−1Q
∂r−1y (in parallel) instead of

Q. But this does not guarantee that y− τ(0) has multiplicity 1 in Q(0, y).45 We further consider
all “shifted versions” of Q(r−1), defined by Q(r−1)

a = Q(r−1)(x + a, y). Note that factor y− τ(x) of
Q(r−1) is in one-to-one correspondence to factor y− τ(x− a) of Q(r−1)

a . We show that there must
exist a shift a such that y− τ(x − a) has multiplicity 1 in Q(r−1)

a (0, y) (see Lemma B.9). Hence,
to ensure the multiplicity condition, we enumerate all possible powers r and all possible shifts a,
and then apply the Hensel lifting to every derived polynomials Q(r−1)

a (see Algorithm 3).

B.2.1 Preliminaries

In this section, when we refer to rings we always mean commutative rings. For a polynomial
Q ∈ F[x, y] such that Q = ∑a,b ca,bxayb, we use deg(Q), degx(Q) and degy(Q) to denote the
degree of Q, the x-degree of Q and the y-degree of Q, respectively; that is, deg(Q) is defined
as max{a + b | ca,b 6= 0}, and degx(Q) (resp. degy(Q)) is defined as max{a | ca,b 6= 0} (resp.
max{b | ca,b 6= 0}).

For a ring R and an ideal I ⊆ R, we say that elements g, h ∈ R are coprime mod I if there exist
a, b ∈ R such that ag + bh ≡ 1 (mod I).

Properties of polynomials

Towards presenting the algorithm, we state several elementary facts about polynomials.

Lemma B.6 (division by linear factors). Let R be a unique factorization domain, let f ∈ R[y], and let
t ∈ R. Then, there exists a unique h ∈ R[y] such that

f (y)− f (t) = (y− t)h(y).

We also need the following algorithmic version of a special case of Lemma B.6, in which
R = F[x].

Lemma B.7 (algorithmic division by linear factors). Let F be a prime field, and let D ≥ 1 be an
integer. There is an algorithm SimpleDivisionD,F that gets as input f ∈ F[x, y] with degree at most D and

45For example, it could be the case that Q has another factor y− τ̃(x) such that τ(x) 6= τ̃(x) but τ̃(0) = τ(0). In
this case y− τ(0) would have multiplicity at least 2 in Q(0, y).

83

τ ∈ F[x], and outputs h ∈ F[x, y] such that

f (x, y) = (y− τ(x)) · h(x, y) + f (x, τ(x)).

Moreover, SimpleDivisionD,F can be implemented by logspace-uniform NC circuits.

Proof. First, by Lemma B.6 (with the same f and R = F[x] and t = τ(x)), we know that there
exists a unique h satisfying our requirement. We get as input

f (x, y) = ∑
a,b : a+b≤D

ca,bxayb.

Letting γ(x) = f (x, τ(x)) = ∑a,b : a+b≤D ca,bxaτ(x)b, note that we can compute a representa-
tion of γ as a list of monomials by logspace-uniform NC circuits. In more detail, we can use
polynomial powering to compute ca,bxaτ(x)b (multiplying by ca,bxa is simple), and then sum up
all the resulting O(D2) polynomials by polynomial addition, using Lemma B.1.

Now we have
f (x, y)− γ(x) = (y− τ(x)) · h(x, y). (1)

Note that we have deg(h) ≤ deg(f)− 1 ≤ D − 1. Examining the requirement (1), since we
already know f , γ and τ, we can treat their coefficients as known constants, and (1) can be
equivalently written as (D+1

2) linear equations, involving coefficients of h as the only variables.
In more detail, denoting h = ∑a+b≤D−1 ha,bxayb, the equation implies that

f (x, y)− γ(x) = (y− τ(x)) · ∑
a+b≤D−1

ha,bxayb = ∑ ha,bxayb+1 −∑ ha,bxaτ(x)yb.

After gathering coefficients on the RHS, we are left with a pair of equal polynomials (one on
the RHS and one on the LHS), and each coefficient of the polynomial on the RHS is a linear
combination of the ha,b. Since we already computed representations of f , of γ, and of τ, we treat
their coefficients as known constants, and this yields a linear system with the ha,b’s as variables
and with (D+1

2) equations.
By the above discussions, (1) has a unique solution, and therefore the linear system we just

constructed also has a unique solution. We can construct the system in logspace-uniform NC by
adding field elements (using Lemma B.1), and solve the system in logspace-uniform NC (using
Lemma B.3).

Lemma B.8. Let Q ∈ F[x, y] such that deg(Q) < char(F), and let τ ∈ F[x] such that y− τ(x) is a
factor of Q with multiplicity r ≥ 1. Then, y− τ(x) is a factor of ∂r−1Q

∂r−1y with multiplicity 1.

Proof. Let us prove the lemma by induction. Clearly it holds when r = 1. For r ≥ 2, suppose the
lemma holds when r− 1. Since y− τ(x) is a factor of Q with multiplicity r, we can write

Q(x, y) = (y− τ(x))r · H(x, y)

84

such that H ∈ F[x, y], and y− τ(x) does not divide H. By the chain rule of partial derivatives,

∂Q
∂y

(x, y) =
[
(y− τ(x))r · ∂H

∂y
(x, y)

]
+
[
r · (y− τ(x))r−1 · H(x, y)

]
. (2)

Now, observe that r 6= 0 (since char(F) > deg(Q) ≥ r). This means that (y− τ(x))r does not
divide (2), and consequently y− τ(x) is a factor of ∂Q

∂y with multiplicity r− 1. The lemma then
follows from the induction hypothesis.

Lemma B.9. Let Q ∈ F[x, y] such that 2 deg(Q)2 < |F|, and let (y − τ(x)) be a factor of Q with
multiplicity 1. Then, there exists a ∈ F such that (y− τ(a)) is a factor of Q(a, y) ∈ F[y] with multiplicity
1.

Proof. Let H ∈ F[x, y] such that

Q(x, y) = (y− τ(x)) · H(x, y).

Since (y− τ(x)) has multiplicity 1 in Q(x, y), it means that (y− τ(x)) does not divide H(x, y).
By Lemma B.6 with f = H(x, y) ∈ (F[x])[y] and t = τ(x), we have

H(x, y) = H̃(x, y) · (y− τ(x)) + γ(x),

for γ(x) = H(x, τ(x)). Note that γ(x) has degree at most degx(H) + degy(H) · deg(τ) ≤
deg(Q) + deg(Q)2 ≤ 2 deg(Q)2. Also note that γ(x) is not a zero polynomial.

For any a ∈ F, plugging in x = a, we have

Q(a, y) = (y− τ(a)) · H(a, y) = (y− τ(a)) · (H̃(a, y) · (y− τ(a)) + γ(a)).

As long as a satisfies γ(a) 6= 0, we have that (y− τ(a)) is a factor of Q(a, y) with multiplicity
1. (Also note that H̃(a, y) · (y− τ(a)) + γ(a) is a non-zero polynomial by examining the highest
y-power.) Such an a exists as deg(γ) ≤ 2 deg(Q)2 < |F|.

Hensel lifting

The following lemma capturing the well-known Hensel lifting technique will be crucial for our
algorithms.

Lemma B.10. Let R be a ring, let I ⊆ R be an ideal, and let f ∈ R. Suppose that there are elements
g, h ∈ R such that

(H1) f ≡ gh (mod I),

(H2) g and h are coprime mod I.

Then, the following holds:

1. Lifting: There exist g̃, h̃ ∈ R such that

(C1) f ≡ g̃h̃ (mod I2),

85

(C2) g̃ and h̃ are coprime mod I2.

(C3) g ≡ g̃ (mod I) and h ≡ h̃ (mod I)

2. Uniqueness: For every elements g̃, h̃ ∈ R such that (C1) – (C3) holds, if there are other two elements
g′, h′ ∈ R satisfying (C1) and (C3), then there exists u ∈ I such that

g′ ≡ g̃(1 + u) (mod I2), and h′ ≡ h̃(1− u) (mod I2).

For completeness, we give below a standard proof of this lemma, following [Sap17, Theorem
12.1] and [Sud15, Lemma 4].

Proof. Denote f = gh + q for some q ∈ I, and let a, b ∈ R and r ∈ I such that ag + bh = 1 + r. We
define

g̃ = g + bq, h̃ = h + aq .

Observe that g̃ = g (mod I) and h̃ = h (mod I), and also that

g̃h̃ = gh + gaq + hbq + baq2

= f − q + q(1 + r) + baq2

= f + qr + baq2

= f (mod I2).

To show that suitable ã, b̃ exist, note that for some s ∈ I it holds that ag̃ + bh̃ = ag + bh +

abq + baq = 1 + r + 2qab = 1 + s; we define ã = a(1 − s) and b̃ = b(1 − s), and note that
ãg̃ + b̃h̃ = (1− s)(ag̃ + bh̃) = 1− s2 = 1 (mod I2).

For the uniqueness part, we will now assume (g1, h1, a1, b2) satisfy (C1) - (C3), and let (g2, h2)

be two elements satisfying (C1) and (C3). Since both (g1, h1) and (g2, h2) satisfy (C3), there exists
α, β ∈ I such that g2 = g1 + α and h2 = h1 + β. Also, from (C1), we have that g1h1 ≡ f ≡ g2h2

(mod I2). Then, it follows that

0 ≡ g2h2 − g1h1 ≡ (g1 + α)(h1 + β)− g1h1 (mod I2)

≡ αh1 + g1β (mod I2) (αβ ∈ I2)

which implies that

b1αh1 + b1g1β ≡ 0 (mod I2)

=⇒ α(1− a1g1) + b1g1β ≡ 0 (mod I2) (see below)

=⇒ α = g1(a1α− b1β) (mod I2)

where the equality b1h1 ≡ 1− a1g1 (mod I2) above is since a1g1 + b1h1 ≡ 1 (mod I2).
Let u = a1α− b1β, note that since α, β ∈ I, we also have that u ∈ I. The above shows that

α = g1u (mod I2), and since g2 = g1 + α, it follows that

g2 = g1(1 + u) (mod I2).

86

By a symmetric argument we have that β = h1(b1β − a1α) = −h1u (mod I2), and since
h2 = h1 + β we have that h2 = h1(1− u).

The foregoing Hensel lifting procedure can be concisely described by the following algorithm.

Algorithm 1 HenselLiftR,I(f , g, h, a, b)
Parameters: A ring R and an ideal I.
Input: Given f , g, h ∈ R satisfying (H1) and (H2), and a, b ∈ R such that ag + bh ≡ 1 (mod I).

1: q← f − gh
2: g̃← g + bq, h̃ = h + aq
3: s← ag̃ + bh̃− 1
4: ã← a(1− s), b̃ = b(1− s)

Output: A tuple (g̃, h̃, ã, b̃) satisfying (C1) - (C3) and ãg̃ + b̃h̃ ≡ 1 (mod I2).

B.2.2 Hensel lifting for factoring linear terms from polynomials

We now describe a modification of the generic Hensel lifting procedure that is particularly suited
to our setting. Specifically, in our setting the ring R is F[x, y], and we are looking to factor
a given polynomial Q(x, y) such that one factor will be of the form (y − τ(x)) (rather than to
factor the polynomial arbitrarily). Moreover, we wish to perform this procedure efficiently, by
logspace-uniform circuits of low depth.

Proposition B.11. Let F be a prime field and let D ≥ 1 be an integer. Then, there exists a procedure
PolyLiftD,F that gets as input Q ∈ F[x, y] of degree at most D and t ∈ F, and satisfies the following.

1. If Q has a factor y− τ(x) such that t = τ(0), and the multiplicity of y− t in Q(0, y) is 1. Then,
PolyLiftD,F(Q, t) outputs τ(x).

2. The procedure PolyLift can be implemented by logspace-uniform NC circuits.

We stress that the assumption in Proposition B.11 that the multiplicity of y− t in Q(0, y) is 1
implies that there is only one factor y− τ(x) satisfying t = τ(0). The first item in Proposition B.11
asserts that PolyLiftD,F(Q, t) outputs τ(x) (i.e., essentially outputs this factor). In the rest of the
section we prove Proposition B.11, by first describing PolyLiftD,F and then analyzing it.

Description of PolyLiftD,F

Condition check. PolyLiftD,F(Q, t) first checks whether (y− t) is a factor of Q(0, y) with mul-
tiplicity 1. It returns ⊥ immediately if the condition fails to hold. Otherwise, since (y− t) is a
factor of Q(0, y), there is a unique polynomial h(y) ∈ F[y] such that

Q(0, y) = (y− t) · h(y).

87

High-level description of the main loop. Let K be the smallest integer so that 2K > D ≥
degx(Q). The goal of the algorithm PolyLiftD,F is to iteratively construct, for every 0 ≤ k ≤ K, a
polynomial pk ∈ F[x] and qk, ak, bk ∈ F[x, y] such that

Q(x, y) ≡ (y− pk(x)) · qk(x, y) (mod x2k
), (3)

ak(y− pk(x)) + bkqk(x, y) ≡ 1 (mod x2k
). (4)

y− pk(x) ≡ y− t (mod x) and qk(x, y) ≡ h(y) (mod x). (5)

We will also show that, if Q has a factor of the form (y− τ(x)) such that τ(0) = t, then for
every k it holds that τ(x) ≡ pk(x) (mod x2k

). To put it succinctly, we will show that

τ(x) ≡ pk(x) (mod x2k
) if y− τ(x) divides Q and τ(0) = t. (6)

The algorithm will finally return pK(x).

Base step. The goal of the base case is to construct p0 ∈ F[x], q0, a0, b0 ∈ F[x, y] so that they
satisfy (3), (4), (5) and (6) for k = 0.

Letting q0(x, y) = h(y) and p0(x) = t (they clearly satisfy (5) for k = 0), we have

Q(x, y) ≡ (y− p0(x)) · q0(x, y) (mod x),

which establishes (3) for k = 0.
Next we show how to construct two polynomials a0, b0 ∈ F[y] so that

a0(y− t) + b0h(y) = 1,

thereby establishing (4) for k = 0. By Lemma B.6, we can write h(y) = (y− t) · h̃(y) + β, where
β = h(t) 6= 0. (We know that (y − t) does not divide h(y), since (y − t) has multiplicity 1 in
Q(0, y) and Q(0, y) = (y− t)h(y).) Then we can simply set a0 = (−β−1) · h̃(y) and b0 = β−1.

Finally, suppose that Q has a factor (y− τ(x)) such that τ(0) = t. Then clearly p0(x) ≡ t ≡
τ(x) (mod x), establishing (6) for k = 0.

Induction. For an integer 1 ≤ k ≤ K, suppose that we have pk−1 ∈ F[x], qk−1, ak−1, bk−1 ∈
F[x, y] such that (3), (4), (5) and (6) hold for k − 1. In the following we show how to construct
(pk, qk, ak, bk) so that (3), (4), (5) and (6) hold for k. We do so as follows:

1. Construction of g̃, h̃, ã, b̃. For this part we will simply apply the generic Hensel lifing
algorithm HenselLift. More precisely, let R = F[x, y] and I = (x2k−1

), we let

(g̃, h̃, ã, b̃) = HenselLiftR,I(Q, y− pk−1, qk−1, ak−1, bk−1).

By Lemma B.10, g̃, h̃, ã, b̃ have the following properties:

Q ≡ g̃h̃ (mod x2k
), g̃ ≡ y− t (mod x), and h̃ ≡ h(y) (mod x),

88

and
ãg̃ + b̃h̃ ≡ 1 (mod x2k

).

(Note that Lemma B.10 indeed shows that g̃ ≡ y− pk−1(x) (mod x2k−1
), which implies g̃ ≡

y − t (mod x) together with our induction hypothesis (5). Similarly we also have h̃ ≡ h(y)
(mod x) from h̃ ≡ qk−1(x) (mod x2k−1

) and our induction hypothesis (5).)
Additionally, following the algorithm of HenselLiftR,I(Q, y− pk−1, qk−1, ak−1, bk−1), we also set

q = Q− (y− pk−1)qk−1. (7)

and we have that
g̃ = (y− pk−1) + bk−1q and h̃ = qk−1 + ak−1q, (8)

according to HenselLiftR,I(Q, y− pk−1, qk−1, ak−1, bk−1).

2. Construction of pk, qk, ak, bk. Next, we show how to modify g̃ and h̃ to construct pk and qk.
For a suitable r ∈ F[x, y] such that x2k−1 |r that will be defined in a moment, we will show that
there exists pk such that

g̃(x, y) · (1− r) ≡ y− pk(x) (mod x2k
)

and we will define qk = h̃ · (1 + r), which means that

h̃(x, y) · (1 + r) ≡ qk(x, y) (mod x2k
).

The key observation here is that for a suitable r, since x2k−1 |r, we have that

(1− r) · (1 + r) = 1− r2 ≡ 1 (mod x2k
),

and hence
(y− pk(x)) · qk(x, y) ≡ g̃(x, y)h̃(x, y) ≡ 1 (mod x2k

).

We now proceed as follows:

• Defining r. Let τ(x, y) = (bk−1q)/x2k−1
. (Recall that x2k−1 |q from (7)) We think of τ(x, y) as

an element in (F[x])[y]. Letting R = F[x], by Lemma B.7, we can compute h̄(x, y) ∈ F[x, y]
and γ(x) = τ(x, pk−1(x)) in logspace-uniform NC such that

τ(x, y) = (y− pk−1(x)) · h̄(x, y) + γ(x).

Plugging in bk−1q, we have

(bk−1q)(x, y) = [(y− pk−1(x))h̄(x, y) + γ(x)] · x2k−1
.

= [gh̄(x, y) + γ(x)] · x2k−1

Now we set r = x2k−1 · h̄(x, y).

• Verifying that g̃ · (1− r) is of the form y− pk. We now verify that

g̃ · (1− r) mod x2k

89

can indeed be written as a polynomial of the form y− pk(x), as follows:

g̃(1− r)

=(g + bk−1q)(1− r) (by (8))

=(g + [gh̄(x, y) + γ(x)] · x2k−1
)(1− x2k−1 · h̄(x, y))

≡g + [gh̄(x, y) + γ(x)] · x2k−1 − x2k−1 · h̄(x, y) · g (mod x2k
)

≡g + γ(x) · x2k−1
(mod x2k

)

≡y− pk−1(x) + γ(x) · x2k−1
(mod x2k

).

Hence, we can set
pk(x) = pk−1(x)− γ(x) · x2k−1

mod x2k

• Modifying ã, b̃ to ak, bk accordingly. Finally, we set ak = ã · (1+ r) mod x2k
and bk = b̃ · (1− r)

mod x2k
, we have

ak(y− pk(x)) + bkqk(x, y) ≡ ã · (1 + r)g̃ · (1− r) + b̃ · (1− r)h̃ · (1 + r) (mod x2k
)

≡ (1− r2) · (ãg̃ + b̃h̃) (mod x2k
)

≡ 1 (mod x2k
).

3. Verifying (6). Suppose that Q has a factor (y− τ(x)) such that τ(0) = t, and denote Q(x, y) =
(y − τ(x)) · H(x, y) for some H ∈ F[x, y]. Since (6) holds for k − 1, we have that y − τ(x) ≡
y− pk−1(x) (mod x2k−1

).
We first show that H(x, y) ≡ qk−1(x, y) (mod x2k−1

). To see this, note that our assumption
y− τ(x) ≡ y− pk−1(x) (mod x2k−1

) implies that

Q = (y− τ(x)) · H(x, y) ≡ (y− pk−1(x)) · qk−1(x, y) (mod x2k−1
)

≡ (y− τ(x)) · qk−1(x, y) (mod x2k−1
),

which further implies that

(y− τ(x)) · (H(x, y)− qk−1(x, y)) ≡ 0 (mod x2k−1
).

Examining the highest y-power at the left-hand, the above is only possible when H(x, y) −
qk−1(x, y) ≡ 0 (mod x2k−1

), which proves our claim.
Now, to prove that τ(x) ≡ pk(x) (mod x2k

) we instantiate Lemma B.10 with the following
parameters:

R = F[x, y], I = (x2k−1
), f = Q,

g = y− pk−1, h = qk−1,

g̃ = y− pk, h̃ = qk,

g′ = y− τ(x), h′ = H.

90

Note that (g̃, h̃) satisfy (C1) – (C3) of Lemma B.10 and that (g′, h′) satisfy (C1) and (C3) of
Lemma B.10. It follows that there exists u ∈ I (that is, x2k−1

divides u) such that

(y− τ(x)) ≡ (y− pk(x)) · (1 + u) (mod x2k
). (9)

Again, we will examine the highest y-power on both sides to show that τ(x) ≡ pk(x)
(mod x2k

). First, one can see that degy(u) = 0, as otherwise the right side of (9) would have
y-degree greater than 1, but the left side of (9) has y-degree exactly 1. Next, looking at the co-
efficients of y at both sides, we have 1 ≡ 1 + u (mod x2k

), meaning that u ≡ 0 (mod x2k
), and

consequently τ(x) ≡ pk(x) (mod x2k
). This verifies the condition (6).

Output. Finally, PolyLiftD,F(Q, t) returns pK(x). The whole algorithm can be succinctly descried
as follows.

Algorithm 2 PolyLiftD,F(Q, t)
Parameters: D is the maximum degree parameter and F is a prime field.
Input: Given Q ∈ F[x, y] with degree at most D and t ∈ F.

1: if y− t does not divide Q(0, y) or (y− t)2 divides Q(0, y) then return ⊥ . Condition check
2: end if
3: h(y)← Q(0, y)/(y− t) . Base step
4: q0 ← h, p0 ← t
5: h̃← (h(y)− h(t))/(y− t), β← h(t)
6: a0 ← −β−1h̃, b0 ← β−1

7: K = dlog(D + 1)e. . Induction step
8: for k← 1, . . . , K do
9: (g̃, h̃, ã, b̃)← HenselLift

F[x,y],(x2k−1)
(Q, y− pk−1, qk−1, ak−1, bk−1). . Computing g̃, h̃, ã, b̃

10: q← Q− (y− pk−1)qk−1

11: τ ← bk−1q/x2k−1
. Start computing pk, qk, ak, bk

12: γ(x)← τ(x, pk−1(x)), h̄← (τ − γ)/(y− pk−1)

13: r ← x2k−1
h̄

14: pk ← pk−1 − γ · x2k−1
mod x2k

, qk ← h̃ · (1 + r) mod x2k

15: ak ← ã · (1 + r) mod x2k
, bk ← b̃ · (1− r) mod x2k

16: end for
17: return pK

Analysis of PolyLiftD,F

We now analyze the algorithm PolyLiftD,F and prove Proposition B.11.

Proof of Proposition B.11. We first prove the correctness of the algorithm (i.e., the first item in the
statement) and then argue about its efficiency (i.e., prove the second item in the statement).

Correctness. Let t = τ(0). Since the multiplicity of y − t in Q(0, y) is 1, the condition check
phase of PolyLiftD,F(Q, t) passes successfully. Next, recall that PolyLiftD,F(Q, t) sets K so that 2K >

91

deg(Q). By (6) and the assumption, we have that τ(x) ≡ pK(x) (mod x2K
). Since 2K > deg(τ)

as well, this means that τ(x) = pK(x).

Complexity. According to Algorithm 2 (also with its subroutine Algorithm 1), PolyLiftD,F(Q, t)
proceeds in O(log D) iterations, and each iteration requires a constant number of arithmetic
operations on polynomials from F[x, y] with at most O(D) degree. Relying on Lemma B.1, mul-
tiplication, addition, subtraction and division by x2k−1

can be implemented by logspace-uniform
NC circuits. It remains to implement the divisions on line 5 and line 12 of Algorithm 2, which
can be handled by using Lemma B.7.

B.2.3 Final algorithm

Our full algorithm factorizeD(Q) works as follows:

Algorithm 3 factorizeD,F(Q, r, a, t)
Parameters: D is the maximum degree parameter and F is a prime field. We require that |F| >

2D2.
Input: Given Q ∈ F[x, y] of degree at most D and (r, a, t) ∈ [D]×F2.

1: Compute Q(r−1) = ∂r−1Q
∂r−1y (where Q(0) = Q).

2: Let Q(r−1)
a (x, y)← Q(r−1)(x + a, y).

Output:
3: if PolyLiftD,F(Q

(r−1)
a , t) = ⊥ then

4: return ⊥
5: else
6: τ̃(x)← PolyLiftD,F(Q

(r−1)
a , t)

7: return τ̃(x− a).
8: end if

Theorem B.12 (reminder of Theorem B.5). Let F be a prime field and let D ≥ 1 be an integer such
that |F| > 2D2. Then, there exists an algorithm factorizeD,F that gets as input Q ∈ F[x, y] with degree
at most D and advice (r, a, t) ∈ [D]×F2 and satisfies the following:

1. For every τ(x) ∈ F[x] such that (y− τ(x)) is a factor of Q, there exists (r, a, t) ∈ [D]× F2 such
that factorizeD,F(Q, iadv) = τ(x).

2. The algorithm factorizeD,F can be implemented by logspace-uniform NC circuits.

Proof. Let y − τ(x) be a factor of Q with multiplicity r (note that 1 ≤ r ≤ deg(Q) ≤ D).
By Lemma B.8 and the assumption on char(F) (recall that char(F) = |F| since F is a prime
field), it holds that y− τ(x) is a factor of Q(r−1) = ∂r−1Q

∂r−1y with multiplicity 1.
Now, by Lemma B.9 and the assumption on |F|, there exists a ∈ F such that (y− τ(a)) is a

factor of Q(r−1)(a, y) with multiplicity 1. Equivalently, we have that (y− τ(0 + a)) is a factor of
Q(r−1)

a (0, y) with multiplicity 1. Letting t = τ(a), by Proposition B.11, it holds that in this case
PolyLiftD,F(Q

(r−1)
a , t) returns the polynomial τ(x + a), and factorizeD,F(Q, r, a, t) reports τ(x) as

desired.

92

Note that by Proposition B.11, PolyLiftD,F(Q
(r−1)
a , t) can be computed by logspace-uniform NC

circuits. Hence, to show the efficiency of factorizeD,F, it suffices to show that in logspace-uniform
NC, one can compute Q(r−1)

a from Q, and τ̃(x− a) from τ̃(x).
Recall that Q is given as a list of coefficients {ca,b} such that

Q = ∑
a,b : a+b≤D

ca,bxayb.

From the rule of computing partial derivative, we have

Q(r−1) =
∂r−1Q
∂r−1y

= ∑
a,b : a+b≤D, b≥r−1

ca,b

r−1

∏
j=0

(b− j) · xayb−r+1.

Since ∏r−1
j=0(b− j) can be computed straightforwardly in O(log |F|) space, one can compute

the coefficient list of ∂r−1Q
∂r−1y in logspace-uniform NC.

Next, given the coefficient list of Q(r−1)(x, y), we can compute the coefficient list of Q(r−1)
a (x, y) =

Q(r−1)(x + a, y) by expanding out every power (x + a)t in Q(r−1)(x + a, y) and summing every-
thing up, which can be implemented in logspace-uniform NC by Lemma B.1. Hence one can
compute Q(r−1)

a from Q(r−1) by logspace-uniform NC. Similarly, we can also compute τ̃(x − a)
from τ̃ by logspace-uniform NC. This concludes the proof.

B.3 (Local) List-decoding for polynomial codes

In this section we utilize the factorization algorithm from Theorem B.5 to construct logspace-
uniform list decoders for both the Reed-Solomon (RS) codes and the Reed-Muller (RM) codes.

First, in Section B.3.1, we plug Theorem B.5 into the standard list decoding algorithm for
the RS code [Sud97], to obtain a logspace-uniform NC list-decoding algorithm for the RS code.
Next, in Section B.3.2, we observe the standard reduction from local list-decoding the RM code
to list-decoding the RS code yields a logspace-uniform NC local list-decoder for the RM code.

B.3.1 List-decoding RS codes in logspace-uniform NC

The following logspace-uniform NC list-decoding algorithm for the RS code is obtained by using
the standard algorithm of [Sud97] with the factorization algorithm from Theorem B.5. We include
a proof for completeness, which essentially follows [AB09, Theorem 19.24] while pointing out
how the algorithmic steps can be implemented by logspace-uniform randomized NC circuits.

Theorem B.13 ([Sud97; Sud21]). Let F be a prime field. There is an algorithm RS-DecNCF that gets as
input a set of m pairs {(ai, bi) ∈ F2}m

i=1 and integers d, t ≥ 1 such that t > 2
√

dm and |F| > 8dm, and
outputs a list of poly(|F|) polynomials in F[x] such that the following holds:

1. With probability at least 1− 2−|F|, the output list of RS-DecNCF({(ai, bi)}m
i=1, d, t) contains every

polynomial τ ∈ F[x] of degree at most d satisfying
∣∣∣ {i ∈ [m] : τ(ai) = bi}

∣∣∣ ≥ t.

2. The algorithm RS-DecNCF can be computed by logspace-uniform randomized circuits of size poly(|F|)
and depth polylog(|F|).

93

Proof. We first find a non-zero polynomial Q ∈ F[x, y] with degx(Q) ≤
√

dm and degy(Q) ≤√
m/d, such that Q(ai, bi) = 0 for all i ∈ [m]. This condition can be formulated by m lin-

ear equations in the (
√

dm + 1) · (
√

m/d + 1) > m coefficients of Q. Since this linear system
is homogeneous and there are more coefficients than equations, one can find a non-zero solu-
tion with probability at least 1 − 2−|F| by solving the linear system in randomized logspace-
uniform NC, relying on Lemma B.4. The algorithm then enumerates all ~adv ∈ [2

√
dm] × F2,

adds factorize2
√

dm,F(Q, ~adv) to the list if it is not ⊥, and finally returns the list.

To show the first condition, let τ ∈ F[x] be a polynomial such that
∣∣∣ {i ∈ [m] : τ(ab) = bi}

∣∣∣ ≥
t, and let γ(x) = Q(x, τ(x)). Since degx(Q) ≤

√
dm and degy(Q) ≤

√
m/d and deg(τ) ≤ d, we

have that deg(γ) ≤ 2
√

dm < t. On the other hand, by our assumption on τ, for at least t ai’s we
have γ(ai) = Q(ai, τ(ai)) = Q(ai, bi) = 0, which means γ has at least t roots. Since deg(γ) < t it
follows that γ is the zero polynomial, and hence (y− τ) is a factor of Q.

By Theorem B.5, it follows that there exists ~adv ∈ [2
√

dm]×F2 such that factorize2
√

dm,F(Q, ~adv)

returns τ, and therefore τ is contained in the list with probability at least 1− 2−|F|. The second
condition follows from Theorem B.5, together with the randomized logspace-uniformNC circuits
for solving homogeneous linear systems (from Lemma B.4).

B.3.2 Local List-decoding RM codes in logspace-uniform NC

Next we show that local list-decoding the RM code can be done in logspace-uniform NC. The
proof of this result implements the reduction from local list-decoding the RM code to list-
decoding the RS code by Sudan, Trevisan and Vadhan [STV01] in logspace-uniform NC.

We start by noting that the standard decoder for the RM code is implementable in logspace-
uniform NC, and then argue that the local list-decoder for the RM code is implementable with
such complexity.

Theorem B.14 (decoding the RM code in logspace-uniform NC). For every prime field F and integer
` ≥ 1 there is a probabilistic procedure RM-DecNCF,` that gets as input a degree parameter d ≤ |F|/2
and a vector x ∈ F`, and gets oracle access to a function f : F` → F, and satisfies the following:

1. If f agrees with a degree-d polynomial P : F` → F on a 0.9 fraction of the inputs, then

Pr
[
RM-DecNC f

F,`(d, x) = P(x)
]
≥ 1− 2−2|F| .

2. The procedure RM-DecNCF,` can be implemented by a family of logspace-uniform oracle circuits of
size poly(|F|, `) and depth polylog(|F|).

Proof. Recall that the standard decoder for the RM code uniformly chooses z ∈ F`, queries its
oracle f on the input-set Lx,z = {x + tz : t ∈ F}, runs the RS list-decoder on the set of pairs
{(y, f (y)) : y ∈ Lx,z} to obtain a list of univariate polynomials Q1, ..., Qpoly(|F|) : F→ F, evaluates
each Qi on Lx,z, and outputs Q(0) where Q is the polynomial in the list whose agreement with f
on Lx,z is maximal.

The foregoing procedure can indeed be performed by logspace-uniform probabilistic circuits
of size poly(|F|, `) and depth polylog(|F|), relying on Theorem B.13. The standard analysis (see,

94

e.g., [AB09, Proof of Theorem 19.19]) shows that when given access to f that agrees with some
degree-d polynomial P on at least 1− (1− d/|F|)/6 > 0.9 of inputs, this procedure outputs P(x)
with probability at least 0.6. To amplify the success probability we can repeat the process in
parallel for poly(|F|) times and take the most frequent result.

Theorem B.15 (local list-decoding the RM code in logspace-uniform NC). For every prime field F

and integer ` ≥ 1, there is an algorithm RM-ListDecNCF,` that gets as input a degree parameter d ≥ 1, a
pair (x0, y0) ∈ F` ×F, and a vector x ∈ F`, and gets oracle access to a function f : F` → F, and satisfies
the following:

1. If f agrees with a degree-d polynomial P : F` → F on 10
√

d/|F| fraction of the inputs, then with
probability at least 1/poly(|F|) over random pairs (x0, y0) from F` ×F,

Pr[RM-ListDecNC f
F,`(d, x0, y0, x) = P(x)] ≥ 1− 2−2|F| for every x ∈ F`. (10)

2. RM-ListDecNCF,` can be implemented by a family of logspace-uniform oracle circuits of size poly(|F|, `)
and depth polylog(|F|, `).

Proof. Relying on Theorem B.14, it suffices to describe a relaxed decoder such that (10) holds
for at least 0.9 fraction of x ∈ F` instead of all possible x (note that we can assume, without loss
of generality, that d ≤ |F|/2). The decoder of [STV01] works by first constructing a univariate
degree-3 curve q : F → F` that passes through x and x0 (that is, q(0) = x and q(r) = x0 for a
random element r ∈ F \ {0}), then running the RS list-decoder on the set {(t, f (q(t))) : t ∈ F}
to obtain a list g1, ..., gpoly(|F|) of polynomials, and finally evaluating all gi’s on a given point,
comparing the results to see if there is a unique gi such that gi(r) = y0, and if so outputs gi(0)
(see [AB09, Theorem 19.26] for a detailed description and proof of correctness).

The RS list-decoder from Theorem B.13 is in logspace-uniform NC, and thus it suffices to
show that the curve q can be constructed by log-space uniform oracle circuit of size poly(|F|, `)
and depth polylog(|F|, `). To do this the decoder fixes two distinct elements u, v ∈ F \ {0, r},
draws two uniformly random vectors x1 and x2 from F`, and writes a linear system over 4`
variables (the coefficients of q) expressing the four conditions q(0) = x, q(r) = x0, q(u) = x1, and
q(v) = x2. This linear system has a unique solution, and thus by Lemma B.3 it can be solved in
logspace-uniform NC.

B.4 Sample-aided worst-case to rare-case reductions for polynomials

Proposition B.16 (low-degree polynomials are uniformly sample-aided worst-case to rare-case
reducible; Proposition 3.10, restated). Let q : N → N be a function mapping integers to primes, let
` : N → N such that n ≥ `(n) · log(q(n)), and let d : N → N. Let f = { fn}n∈N be a sequence of
functions such that fn computes a polynomial F

`(n)
n → Fn of degree d(n) where |Fn| = q(n). Then f is

sample-aided worst-case to ρ-rare-case reducible by logspace-uniform oracle circuits of size poly(q, `) and
depth polylog(q, `) with error 1− 2−q and poly(q) samples, where ρ = 10

√
d(n)/q(n).

Proof. We construct a logspace-uniform probabilistic oracle circuit M that gets input 1n, and
oracle access to a function f̃n that agrees with fn on a ρ(n) fraction of the inputs, and also

95

poly(1/ρ) labeled samples for fn, and with probability 1− 2−q outputs a circuit C : F` → F such
that for every x ∈ F` it holds that Prr[C f̃n(x, r) = fn(x)] ≥ 2/3. Specifically, M works as follows:

1. The first step is to construct in parallel t = poly(q) logspace-uniform circuits such that each
circuit implements the algorithm from Theorem B.15 with an independent uniform choice
of (x0, y0) (and with degree parameter d = d(n)).

This yields a list of t probabilistic oracle circuits C1, ..., Ct such that with probability at least

1− 2−2q, there exists i ∈ [t] for which Pr[C f̃n
i (x) = fn(x)] ≥ 1− 2−2q for all x ∈ {0, 1}n. We

call any circuit that satisfies the latter condition good.

2. The second step is to choose random coins for each circuit Ci and hard-wire them, trans-
forming Ci into a deterministic circuit. Specifically, for each Ci we independently try
w = poly(q) different random strings, obtaining a set of w deterministic circuits Ci,1, ..., Ci,w.
This yields t′ = t · w = poly(q) deterministic circuits D1, ..., Dt′ such that with probability

1− 2−2q there exists a circuit Di satisfying Prx[D
f̃n
i (x) = fn(x)] ≥ 0.99. 46

3. The third step is to “weed” the list in order to find a single circuit Di that (when given
access to f̃n) correctly computes fn on 0.95 of the inputs. To do so we iterate over the list

in parallel, and for each circuit Dj we estimate the agreement of D f̃n
j with fn with accuracy

0.01 and confidence 1− 2−2q, using poly(q) random samples.

4. The final step is to compose Di with the decoder from Theorem B.14 to obtain a probabilistic
circuit that correctly computes f at each input with probability at least 1− 2−2q.

The success probability of the foregoing procedure is 1−O(2−2q) > 1− 2−q. We now argue
that the foregoing procedure M can be implemented as a logspace-uniform probabilistic circuit
of size poly(q, `) and depth polylog(q, `); for simplicity, below we just state that circuits are
“logspace-uniform”, and by this we implicitly mean circuits of such size and depth.

Note that in the first step we just need to compute the description of t = poly(q) circuits
C1, ..., Ct, whose random coins are the ones chosen by our logspace-uniform circuit M. Since each
Ci is logspace-uniform, the part of M that computes their descriptions is also logspace-uniform.
The second step is computationally very easy given the descriptions of the Ci’s. The third step
amounts to simulating the circuits whose descriptions were already computed, so this step can
indeed be executed by a logspace-uniform circuit. And the fourth step is dominated by the cost
of computing the description of a fixed logspace-uniform circuit, and replacing its oracle gates
by the descriptions of the circuit Di found in the previous step.

Appendix C An unconditional approximate-direct-product result

We include for completeness a proof of Proposition 6.10. As mentioned in Section 6, the proof
follows from the results of Impagliazzo et al. [IJK+10], with one caveat being that we refer to

46This success bound assumes that F is sufficiently large such that the success probability of a good Ci satisfies 1−
2−2q > .999. If F is too small then we can amplify the success probability of each Ci in the first step by implementing
naive error reduction.

96

standard direct-product functions, whereas their direct-product function f×k(x1, ..., xk) only takes
distinct inputs x1, ..., xk (i.e., it disallows xi = xj for any i 6= j ∈ [k]).

Proposition C.1 (non-strong approximate-direct-product theorem). There exists a universal con-
stant c > 1 such that the following holds. Let δ ∈ (0, 1/2), let α > 0 be sufficiently small, let T : N→N

be time-computable, and let k(n) = o(n). Then, for any f /∈ avg1−δ-BPT IME [T]//(1/α) and
any probabilistic algorithm A that runs in time T(n) − nc, the probability over z ∈ {0, 1}k·n that A
approximately-prints f×k(z) with error α is at most δ.

Proof. Given δ > 0, let δ′ = δ/12, let γ < δ′ be a sufficiently small constant and let α < γ be
a sufficiently small constant. We will assume that k(n) is larger than δ′/2γ. Assume towards
a contradiction that an algorithm A as in the statement exists, and let Z ⊆ {0, 1}k·n be the set
of inputs z such that with probability at least 1− α we have Pri∈[k][A(z)i = g(z)i] ≥ 1− α. We
denote by A(z, r) the decision of A on input z with random coins r.

Choosing a set S ⊆ [k]. The first step of our algorithm is to randomly choose a set S ⊆ [k] of
size δ′/4γ < k/2. Our hope is that there are many inputs z on which A, with high probability
over internal choice of random coins, correctly computes all the coordinates in S of g(z); in other
words, we hope that there are many z’s such that A, with high probability over coins, correctly
computes f on all the inputs (zi)i∈S. For any input z, and for a fixed i ∈ [k], we denote µi(z) =
Prr [A(z, r)i 6= g(z)i]; similarly, for a fixed S ⊆ [k] we denote µS(z) = Prr [A(z, r)S 6= g(z)S]. Then,
we claim that:

Claim C.1.1. With probability more than 1− δ′ over choice of S, there exists a set Z′ of size at least |Z|/2
such that for every z ∈ Z′ we have that µS(z) ≤ 2α/γ.

Proof. For every fixed z = (x1, ..., xk) ∈ Z we have that Ei∈[k] [µi(z)] = Pri∈[k],r [A(z, r)i 6= g(x)i] ≤
2α, and hence

Pr
i∈[k]

[µi(z) ≥ 2α/γ] ≤ γ . (C.1)

By Eq. (C.1), for every fixed z ∈ Z, when choosing the first element i1 ∈ [k] for S, the prob-
ability that µi1(z) < 2α/γ is at most γ. When choosing the second elements i2, the probability
that µi2(z) ≥ 2α/γ is at most γ·k

k−1 ; by induction, when adding each element ij, the probability
that µij(z) ≥ 2α/γ is less than γ·k

k−|S| . Since k is sufficiently large, we can bound this probability

by γ·k
k−|S| <

γ·k
k/2 = 2γ, where we used the fact that |S| < k/2. By a union-bound, the probability

over S that µS(z) ≥ 2α/γ is at most 2γ|S| < δ′/2.
For every fixed z ∈ Z, and for a random choice of S, denote the event that µS(z) < 2α/γ

by G(z). The above shows that for every z ∈ Z we have that PrS[¬G(z)] < δ′/2. It follows that
ES [Prz∈Z[¬G(z)]] < δ′/2, and hence the probability over S that Prz∈Z[¬G(z)] < 1/2 is at most
δ′. �

Choosing fixed random coins r. As a second step our algorithm will hard-wire random coins
r into A, yielding a deterministic algorithm Ar(z) = A(z, r). We claim that with probability at

97

least 1− δ′ over choice of random coins r, there exists a set Z′′ ⊆ Z′ of density 1− 2α
γ·δ′ > 1/2 in

Z′ such that for every z ∈ Z′′ we have that Ar(z)S = g(z)S. To see this, note that

Er

[
Pr

z∈Z′
[A(z, r)S 6= g(z)S]

]
= Ez∈Z′

[
Pr
r
[A(z, r)S 6= g(z)S]

]
≤ 2α/γ ,

and hence the probability over r that Prz∈Z′ [A(z, r)S 6= g(z)S] >
2α

γ·δ′ is at most δ′.

Invoking the algorithm of [IJK+10] with the fixed S and r. For m = |S|, let h = f×m be the
m-wise direct-product of f . We now use the following algorithm by Impagliazzo et al. [IJK+10]:

Theorem C.2 (uniform list-decoding of the direct-product code). There is a constant cIJKW > 1
and a probabilistic algorithm Dec such that for any f : {0, 1}n → {0, 1} and m ∈ N and ε, δ ∈ (0, 1)
satisfying ε > e−δm/cIJKW the following holds. Let h = f×m. Then, when Dec is given oracle access to
a function h̃ : {0, 1}m·n → {0, 1}m satisfying Prz∈{0,1}m·n [h̃(z) = h(z)] ≥ ε, with probability Ω(ε) it

outputs an oracle circuit C : {0, 1}n → {0, 1} such that Prx∈{0,1}n [Ch̃(x) = f (x)] ≥ 1− δ. Moreover,
the algorithm Dec is a uniform randomized NC0 algorithm that makes just one oracle query to h̃, and the
circuit C is an AC0 circuit of size poly(n, m, log(1/δ), 1/ε) with O(log(1/δ)/ε) oracle gates to h̃.

We invoke the algorithm Dec from Theorem C.2 with parameter values ε = δ/4 and δ′ and
m, while giving it oracle access to the function h̃(x1, ..., xm) = Ar(z)S1 , ..., Ar(z)Sm . The constraint
on the parameters in Theorem C.2 is

ε > e−δ′m/cIJKW ⇐⇒ δ/4 > e−(δ
′)2/(4γ·cIJKW) ,

where the “ ⇐⇒ ” is since m = |S| = δ′/4γ. The constraint above is then satisfied due to our
choice of a sufficiently small γ.

With probability at least Ω(δ) the algorithm outputs an oracle circuit that computes f on 1− δ′

of the inputs when given access to Ar. Thus, if we run this algorithm for O((1/δ) · log(1/δ′))

times, with probability at least 1− δ′ at least one of the resulting circuits will compute f correctly
on 1− δ′ of the inputs when given access to Ar. We get as advice an index for the circuit with
maximal agreement with f , which we denote from now on by C. The size of C is at most
poly(n, m, log(1/δ′), 1/ε) = poly(n), and it makes at most O(log(1/δ′)/ε) = O(1) queries to Ar.

The final algorithm. Our algorithm constructs C as above, which is a procedure that does not
depend on the input x ∈ {0, 1}n, and then outputs C(x). We claim that there exists a set X ⊂
{0, 1}n of density 1− 9δ′ = 1− δ such that for every x ∈ X we have that PrC[C(x) = f (x)] ≥ 2/3.
To see this, recall that the probability that all the three steps in the construction of C above
succeed (i.e., we choose a good S, choose a good r, and the invocations of the algorithm from
Theorem C.2 succeed) is at least 1− 3δ′. Whenever that happens, the circuit C correctly computes
f on 1− δ′ of the inputs x. Thus, we have that

Ex

[
Pr
C
[C(x) 6= f (x)]

]
= EC

[
Pr
x
[C(x) 6= f (x)]

]
≤ 4δ′ ,

and hence the probability over x that Pr[C(x) 6= f (x)] ≥ 1/3 is at most 12δ′ = δ.

98

Indeed, the algorithm above is probabilistic, and on at least 1− δ of the inputs computes f
with probability at least 2/3. The running time of the algorithm is dominated by the step of evalu-
ating the oracle circuit C using the algorithm A, which can be done in time poly(n) +O(T′(n)) <
T(n). Also, the algorithm relies on O(log(1/δ)) bits of advice that depend only on the random-
ness and not on the input. This contradicts our assumption that f /∈ avg1−δ-BPT IME [T]//(1/α).

99
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

