
Hardness on Any Samplable Distribution Suffices:

New Characterizations of One-Way Functions by Meta-Complexity

Rahul Ilango
MIT

Hanlin Ren
Tsinghua University

Rahul Santhanam
University of Oxford

June 16, 2021

Abstract

We show that one-way functions exist if and only if there is some samplable distribution
D such that it is hard to approximate the Kolmogorov complexity of a string sampled from
D. Thus we characterize the existence of one-way functions by the average-case hardness of
a natural uncomputable problem on samplable distributions, extending a recent line of work
by Liu and Pass (FOCS’20, STOC’21) and Ren and Santhanam (CCC’21).

We also show that the average-case hardness of approximating Minimum Circuit Size
on a locally samplable distribution (where the sampler runs in sub-linear time by using
random access to its input) is equivalent to the existence of one-way functions. This is the
first characterization of one-way functions by a natural average-case hardness assumption
on the Minimum Circuit Size Problem. We present several other characterizations and con-
nections between one-way functions and average-case hardness of meta-complexity problems
(problems about complexity) on samplable distributions.

We give various applications of these results to the foundations of cryptography and
the theory of meta-complexity. We show that the average-case hardness of deciding k-SAT
or Clique on any samplable distribution of high enough entropy implies the existence of
one-way functions. Thus one-way functions follow from general assumptions on the average-
case hardness of NP-complete problems. We observe that our assumptions are implied by
standard cryptographic assumptions such as the Planted Clique hypothesis and the pseudo-
randomness of Goldreich’s local functions.

Our results imply a range of equivalences between various meta-complexity problems,
showing that the theory of meta-complexity is very robust when considering average-case
complexity. We use our results to unconditionally solve various meta-complexity problems
in CZK (computational zero-knowledge) on average, and give implications of our results for
the classic question of proving NP-hardness for the Minimum Circuit Size Problem.

1 Introduction

What is the most general complexity-theoretic assumption that implies the existence of one-
way functions? This is a fundamental question in complexity theory and cryptography. The
beautiful theory of cryptography that emerged in the 80s and 90s [BM84,Yao82,GM84,GGM86,
HILL99,Gol01] uses one-way functions as a basic primitive. The relationship of this primitive to
standard worst-case and average-case assumptions in complexity theory has yet to be properly
understood. What is known is mostly in the form of negative results, indicating that we are
unlikely to be able to base one-way functions on NP-hardness using “black-box” reductions
[BT06,AGGM06,BB15].

For several well-studied computational problems, such as Factoring, Discrete Logarithm,
the Shortest Vector Problem [AD97], Learning Parity with Noise [Ale11], Subset Sum [IN96]
and Planted Clique [JP00], it is known that one-way functions (and in many of these cases,
even public-key cryptography) can be based on hardness of the problem. However, it is not
known for any of these problems whether a hardness assumption on the problem is necessary

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 82 (2021)

for the existence of one-way functions. In order to base cryptography on assumptions that are
as general as possible, it would be helpful to have examples of natural computational problems
whose hardness is equivalent to the existence of one-way functions.

If we relax the requirement that the computational problem needs to be natural, such
examples are well-known. Levin [Lev03] showed the existence of a universal one-way function
F : a fixed polynomial-time computable function that is one-way if one-way functions exist.
It is straightforward to define a decision problem LF corresponding to this universal one-way
function such that LF is average-case hard if and only if one-way functions exist.

We emphasize, however, that the naturalness of the computational problem is an important
criterion when we are seeking to better understand the complexity-theoretic foundations of
cryptography. As an analogy, consider the theory of NP-completeness. The canonical Bounded
NTM Halting problem, which asks if a given non-deterministic Turing machine M halts on input
x within t steps (for t given in unary), is easily seen to be NP-complete. What truly makes the
notion of NP-completeness significant, though, is the work of Cook [Coo71], Levin [Lev73], and
Karp [Kar72], showing that many natural problems (such as SAT, Clique, 3-Coloring, Integer
Linear Programming, etc.) are NP-complete. This shows the deep relatedness of these seemingly
different problems. The reductions among them can then be exploited in many different ways -
in solving these problems in the real world, for example, or in understanding the approximability
and average-case complexity of these problems.

One could ask, ambitiously: is there a similar Cook-Levin-Karp-style theory of completeness
for one-way functions? Indeed, this question is explicitly posed by Levin in his survey [Lev03]
on one-way functions.

In a recent breakthrough, Liu and Pass [LP20] showed that one-way functions exist if and
only if the Kt problem (computing the t-time bounded Kolmogorov complexity1) is weakly
hard2 on average (in a bounded-error sense) over the uniform distribution for some polynomial
t. The crucial point here is that unlike the problem LF above, the problem Kt is natural : it is
independently interesting and was heavily studied before in its own right [Tra84,Sip83, Har83,
Ko86,Ko91,Hir18].

The Liu-Pass result suggests a deeper link between one-way functions and meta-complexity.
Here “meta-complexity” refers to the complexity of a computational problem that is itself
about complexity. The Kt problem is such an example, since determining the t-time bounded
Kolmogorov complexity of a string is itself a problem about complexity. Other examples in-
clude the problem K of computing the Kolmogorov complexity of a string, and the Minimum
Circuit Size Problem (MCSP) [KC00] of computing the minimum circuit size of a Boolean
function given by its truth table. The theory of meta-complexity has found applications in
several different contexts recently, including learning algorithms [CIKK16, OS17], worst-case
to average-case reductions within NP and PH [Hir18, Hir20, Hir21], hardness magnification
[OS18, OPS19, MMW19, CJW19, CJW20, CHO+20, LP21a], pseudorandomness [Wil16, San20]
and proof complexity [PS19].

Indeed, following [LP20], there have been several other results showing connections and
equivalences between meta-complexity and one-way functions [LP21a, ACM+21, RS21]. What
these results all have in common is that they connect one-way functions to meta-complexity over
the uniform distribution. While the uniform distribution is a natural one for meta-complexity
problems, the theory of average-case complexity [Lev86] deals more generally with polynomial-
time samplable distributions, and it is natural to ask if these connections and equivalences can
be shown based on hardness over samplable distributions instead.

A further issue with considering hardness assumptions over the uniform distribution is that
they are somewhat fragile in terms of parameters. For example, in [LP20], the assumption needs

1Given a universal Turing machine U , the t-time bounded Kolmogorov complexity of a string x is the size of
the smallest program p such that U(p) outputs x in at most t(|x|) steps.

2We use “weakly hard” for the notion termed “mildly hard” in [LP20].

2

to be about weak average-case hardness rather than strong average-case hardness3, even though
one-wayness is robust in the sense that weak one-way functions exist if and only if strong one-way
functions exist [Yao82]. Also, while the result in [LP20] does imply equivalence of computing
Kt and O(log(n))-additively approximating Kt, it is not capable of handling additive gaps that
are ω(log(n)) (since Kt is in fact not weakly hard to ω(log(n))-additively approximate), or
complexity thresholds much smaller than n (since only a negligible fraction of strings have Kt

complexity significantly below n)4.
In this paper, we characterize the existence of one-way functions by the average-case hard-

ness of meta-complexity problems such as K and MCSP over samplable distributions. These
characterizations are very robust, and lead to several applications in cryptography and meta-
complexity.

1.1 Our Results

1.1.1 Equivalences

Our first main result shows an equivalence between the existence of one-way functions and the
average-case hardness of a gap version of the problem of computing Kolmogorov complexity over
samplable distributions. This might seem surprising at first, given that Kolmogorov complexity
is uncomputable.

Below, GapK[s, c] denotes the promise problem of distinguishing between strings of Kol-
mogorov complexity at most s and Kolmogorov complexity at least c. We say that a problem
is weakly average-case hard on a distribution D if every probabilistic polynomial-time algorithm
fails to solve it with probability 1/nO(1) (over D and the randomness of the algorithm) on almost
all input lengths, and we say that a problem is strongly average-case hard on a distribution D
if every probabilistic polynomial-time algorithm fails to solve it with probability 1/2− 1/nω(1)

on almost all input lengths.

Theorem 1. The following are equivalent:

1. One-way functions exist.

2. For some s = nΩ(1) and ∆ = ω(log(n)), there is a samplable distribution D such that
GapK[s, s+ ∆] is weakly average-case hard on D.

3. For every ε > 0, there is a samplable distribution D such that GapK[nε, n − ω(log(n))] is
strongly average-case hard on D.

Theorem 1 shows the robustness of approximating Kolmogorov complexity on average over
samplable distributions, with respect to the complexity parameter s, the approximation gap
∆, and the notion of average-case hardness. If there is a samplable distribution on which
approximating Kolmogorov complexity with some ω(log(n)) gap for some complexity parameter
s = nΩ(1) is weakly average-case hard, then for each ε > 0 there is a samplable distribution
on which approximating Kolmogorov complexity up to a multiplicative factor n1−ε is strongly
average-case hard.

The fact that the average-case hardness of approximating Kolmogorov complexity implies
the existence of one-way functions might seem especially surprising, given that candidate one-
way functions are usually defined based on problems in NP, while Kolmogorov complexity
is uncomputable. While most constructions of one-way functions based on the average-case

3The result in [LP20] in fact shows that O(log(n))-additively approximating Kt complexity is mildly hard
on the uniform distribution if and only if one-way functions exist. Kt complexity can be O(log(n))-additively
approximated on all but an inverse polynomial fraction of the inputs on the uniform distribution simply by
outputting n on every input, since most inputs have Kt complexity close to n.

4In a subsequent paper, [LP21a] address this issue, but at the cost of using a somewhat unnatural notion of
average-case hardness (which they call “average-case∗ hardness”).

3

hardness of some computational problem use the structure of the problem to define the one-way
function and argue security based on the distributional average-case hardness, our construction
does the reverse5: the one-way function is defined based on the distribution, while the proof of
security exploits the structure of the problem assumed to be hard, i.e., Kolmogorov complexity.

By strengthening the samplability assumption in Theorem 1 and using the influential local-
ization technique of [AIK06], we can also characterize one-way functions computable in NC0.6

Theorem 2. The following are equivalent:

1. There are one-way functions computable in NC0.

2. For some s = nΩ(1) and ∆ = ω(log(n)), there is a logspace-samplable distribution D such
that GapK[s, s+ ∆] is weakly average-case hard on D.

3. There is an NC0-samplable distribution D such that GapK[n − n0.99, n − ω(log(n))] is
strongly average-case hard on D.

A natural question is whether there is a version of Theorem 1 or Theorem 2 where the
equivalence involves the hardness of a meta-complexity problem known to be in NP, such as the
Kt problem considered in [LP20]7 We are able to achieve this with a more complicated proof, but
only under a complexity-theoretic derandomization assumption and for infinitely-often one-way
functions. However, we get a much cleaner result for the Minimum Circuit Size Problem.

Let GapMCSP[s, c] denote the promise problem of distinguishing between truth tables of
Boolean functions with circuit complexity at most s and Boolean functions with circuit com-
plexity at least c. It is a major open problem to characterize one-way functions by the average-
case hardness of MCSP. The celebrated Natural Proofs paper of Razborov and Rudich [RR97]
shows that one-way functions imply the zero-error average-case hardness of MCSP, but no un-
conditional converse to this result is known8.

We give the first equivalence between the average-case hardness of MCSP and the existence
of one-way functions. In order to do this, we consider a samplability notion that we believe
is interesting in its own right: local samplability. A t-local sampler is a sampler that, in order
to compute a given bit of its output, runs in time t with random access to its input9. Here t
is typically some sub-linear function. Several natural distributions, such as the uniform distri-
bution and distributions induced by pseudorandom function generators [GGM86], are t-locally
samplable for small t. Further motivating the notion is the fact that for most pairs L,L′ of
natural NP-complete problems, there is a local reduction from L to L′, and hence the hardness
of L with respect to some locally samplable distribution translates to the hardness of L′ also
with respect to some locally samplable distribution.

Theorem 3. The following are equivalent:

1. One-way functions exist.

2. For some constant δ > 0 and s = Ω(nδ), there is an (nδ)-locally samplable distribution D
such that GapMCSP[s, sn5δ] is weakly average-case hard on D.

5There are precedents for this, such as [IL90]. In [IL90], they prove that if NP is hard over some samplable
distribution, then NP is also hard over the uniform distribution. One of the cases they consider is that the sampler
itself already implements a one-way function; in this case, a hard NP language over the uniform distribution follows
easily.

6NC0 is the class of (multi-output) functions computable by uniform circuits such that each output bit is
connected to a constant number of input bits.

7Intuitively Kt is an easier problem than K, therefore basing one-way functions on hardness of Kt should be
easier than basing one-way functions on hardness of K. This is not the case, though, for the proof techniques we
use.

8Such a converse is given in [San20] under an additional assumption about universal succinct pseudorandom
distributions.

9Consequently, a t-local sampler can access at most t bits of its input while computing a specific output bit.

4

3. For every constant δ > 0, there is an (nδ)-locally samplable distribution D such that
GapMCSP[nδ, o(n

logn)] is strongly average-case hard on D.

One of the main research directions in the theory of meta-complexity is to show the ro-
bustness of meta-complexity problems with respect to the complexity parameter and the gap.
Many results in the area are insensitive to differences in the complexity parameter and the gap,
but there are few formal reductions between meta-complexity problems that justify this. The-
orem 3 shows that in the setting of average-case complexity with respect to locally samplable
distributions, MCSP is very robust with respect to the complexity parameter and the gap.

1.1.2 Applications

Our new characterizations of one-way functions by the hardness of meta-complexity problems
on samplable distributions have several applications in cryptography and the theory of meta-
complexity.

One-way functions from hardness of SAT and Clique. First, they allow us to show that
one-way functions follow from the average-case hardness of NP-complete problems such as SAT
and Clique under more general assumptions than were known before. Specifically, average-case
hardness of SAT or Clique on any samplable distribution of high enough entropy implies the
existence of one-way functions. Candidate one-way functions based on SAT and Clique are
often based on very specific distributions, which lead to hardness assumptions that are not very
robust. By showing that one-wayness can be derived from more general classes of distributions,
we make progress towards basing one-way functions simply on the average-case hardness of NP.

Below, the entropy deficiency of a distribution on m bits is the difference between m and
the entropy.

Theorem 4. Given an integer k, let ∆ ≥ 2k+3 be a large enough integer, and let t : N→ N be
any function such that t(n) = ω(log n). If

• k-SAT on ∆n clauses is strongly average-case hard w.r.t. some samplable (resp. logspace-
samplable) distribution D with entropy deficiency at most ∆n/2k+1, or

• t-Clique is strongly average-case hard w.r.t. some samplable (resp. logspace-samplable)
distribution D with entropy deficiency at most 0.99

(
t
2

)
,

then one-way functions (resp. one-way functions computable in NC0) exist.

It is natural to wonder if the hardness assumptions in Theorem 4 are reasonable. We show
that in fact, the hardness assumption for Clique follows from the well-studied Planted Clique
Hypothesis [Jer92,Kuc95,AKS98], while the hardness assumption for SAT follows from pseudo-
randomness of random local functions (often referred to as“Goldreich’s PRG”) [Gol00, App13,
App16]. Thus our assumptions generalize hypotheses that have been intensively studied.

Unconditional CZK protocols for meta-complexity. Turning to the theory of meta-
complexity, our characterizations imply unconditional average-case simulations of the corre-
sponding meta-complexity problems in CZK (Computational Zero Knowledge) infinitely often.
As far as we are aware, these are the first natural examples of approximation problems shown
to be in CZK (on average) without also being shown to be in SZK (Statistical Zero Knowledge).

Below, we say that a problem is infinitely often in CZK on a distribution D if for each k > 0,
there is a CZK protocol that is correct with probability at least 1 − 1/nk on inputs sampled
from D, for infinitely many n.

5

Theorem 5. For every s : N→ N such that s(n) = nΩ(1) and for every samplable distribution
D, GapK[s, s+ ω(log(n))] is infinitely often in CZK on D.

For every δ > 0, s = Ω(nδ), and (nδ)-locally samplable distribution D, GapMCSP[s, sn5δ] is
infinitely often in CZK on D.

Non-NP-hardness of GapMCSP under randomized local reductions. Finally, we use our
results to shed some light on the long-standing open question of whether MCSP is NP-complete.
Based on the assumption that one-way functions in NC0 exist, we rule out NP-hardness of
GapMCSP under randomized local reductions. To the best of our knowledge, this is the first
piece of evidence against randomized reductions from SAT to GapMCSP. We note that Murray
and Williams [MW17] unconditionally ruled out NP-hardness of MCSP under deterministic local
reductions.

Theorem 6. Suppose there are one-way functions computable in NC0. Then for each δ > 0
and s = Ω(nδ), there are no randomized (nδ)-local reductions from SAT to GapMCSP[s, sn4δ].

1.2 Techniques

Here we discuss the main ideas used in our proofs. We restrict ourselves to high-level arguments
in this section, and do not delve too deeply into the choice of parameters.

1.2.1 Equivalences

The argument for one direction of Theorems 1 and 3 is straightforward given previous work.
Suppose one-way functions exist, and we wish to show that GapK and GapMCSP are strongly
hard on average. By [HILL99,GGM86], for each ε > 0 there are pseudo-random generators with
seed length nε computable in polynomial time such that each output of the generator, when
interpreted as the truth table of a function, has circuit size nO(ε). This also implies that every
output of the generator has Kolmogorov complexity at most nO(ε). On the other hand, a random
string x has K(x) close to n and circuit size close to n/ log(n) with high probability. Thus, we can
consider the samplable distribution D that generates a uniformly random string with probability
1/2 and a uniformly random output of the pseudo-random generator with probability 1/2. Any
algorithm for GapK or GapMCSP that has noticeable advantage over random could be used
to distinguish the uniform distribution from the pseudo-random distribution, contradicting the
pseudo-randomness assumption.

For the other direction of Theorem 1, suppose that there is a samplable distribution D such
that GapK is hard on average with respect to D. The crucial observation is the following:

• If a string y has a high probability of being sampled from D, then the Kolmogorov com-
plexity of y is small. The reason is that there are few strings sampled with high probability
in D, and we could simply specify y by giving its index in a lexicographically ordered list
of high-probability strings.

• On the other hand, if a string x has a low probability of being sampled from D, then the
Kolmogorov complexity of y is large (on average over D). To see this, note that by a simple
counting argument there are few strings of small Kolmogorov complexity. Therefore the
cumulative weight in D of such small Kolmogorov-complexity strings sampled with low
probability is low.

Hence, in order to solve GapK on D, it is sufficient to check whether a string is sampled
with high or low probability on average over D. Under the assumption that one-way functions
don’t exist, this can be done infinitely often in probabilistic polynomial time (on average) with
standard hashing techniques.

6

We note that similar ideas have been used before in the literature on one-way functions and
average-case complexity [IL89,IL90]. Our main contribution in proving Theorem 1 is conceptual.
We use these ideas to illuminate the fundamental role of meta-complexity in this context.

In order to show Theorem 2, we need to adapt the proofs of both directions of Theorem
1. In order to get average-case hardness on logspace-samplable distributions from NC0 one-way
functions, we use [HRV13] rather than [HILL99]. In order to get NC0 one-way functions from
average-case hardness on logspace-samplable distributions, we observe that since there exist
logspace-computable hash functions, when starting from a logspace-samplable distribution, the
proof of Theorem 1 also gives logspace-computable one-way functions. We then apply the main
result of [AIK06] to get one-way functions in NC0.

To show Theorem 3, we adopt the same template as in Theorem 1, but need to work harder
and use some new ideas. Suppose that we have hardness of GapMCSP on some locally samplable
distribution D, and wish to derive one-way functions from this hardness assumption. When we
were analyzing Kolmogorov complexity, the basic observation that a string y sampled from D
with high probability has low complexity was easy to show. The corresponding result is harder
when we work with circuit complexity.

We show that if y is the truth table of a function with high circuit complexity, then py is
low, where py is the probability that y is sampled from D. The key idea is to “reveal” bits of
the input to the sampler used to compute y in stages. Each stage reveals a small number of
bits of the input to the sampler, by its locality. If after a small number of stages, all bits of y
can be correctly computed by an approximate majority over random choices of the unrevealed
bits, then we can argue that we get a small circuit for y. Suppose this is not the case. Then
there is some bit of y for which random choices to the unrevealed bits give the wrong answer
with probability ≥ 1/3. In this case, we can argue that py must decrease by a factor of 2/3. If
y has large circuit complexity, the number of stages in this process must be high, and hence py
must be low.

Once we show this claim, we can use the non-existence of one-way functions to approximate
py on average as in the proof of Theorem 1.

Remark 7. The first bullet in our discussion of GapK (i.e. any string sampled from an (efficient)
sampler with noticeable probability has low Kolmogorov complexity) is called a coding theorem
in Kolmogorov complexity. Our results for GapMCSP can also be interpreted as a coding theorem
for circuit complexity (and KT complexity), but over locally-samplable distributions. We remark
that Lu and Oliveira [LO21] recently showed a coding theorem for rKt (a randomized version
of Levin’s Kt complexity [Lev84,Oli19]).

1.2.2 Applications

Theorem 4: One-way functions from hardness of SAT and Clique. Our proof of Theo-
rem 4 is inspired by a zero-error average-case reduction from SAT to computing KT complexity10

in [HS17]. The idea is that random k-CNF formulas are incompressible, while k-CNFs with sat-
isfying assignments can be compressed if they are long enough. A similar idea gives a zero-error
reduction from Clique to computing KT.

Here we adapt these ideas to the bounded-error average-case setting. When considering
bounded-error average-case complexity, it is no longer the case that the uniform distribution
is a reasonable one to consider for k-SAT, since answering “Unsatisfiable” works with over-
whelmingly high probability. However, it is still reasonable to expect average-case hardness
on distributions with high entropy. We show that if the distribution has high enough entropy,
then there are bounded-error reductions from k-SAT and Clique to approximating Kolmogorov
complexity. The reductions themselves are the simplest possible, namely the identity reduction!
However, the proof that they work requires the compressibility argument from [HS17] as well

10KT complexity is a meta-complexity notion defined in [All01] that is closely related to circuit complexity.

7

as the fact that high entropy distributions must place noticeable probability on strings of high
Kolmogorov complexity. We thereby get a reduction from computing SAT or Clique on average
with noticeable advantage over random on a samplable distribution D with high enough entropy
to computing GapK with all but inverse polynomial probability on D. The robustness of GapK
on average is crucial to our argument, as the reduction needs the algorithm for GapK to be
correct w.p. 1− 1/poly(n).

To show that our average-case assumptions are reasonable, we show that they are implied
by well-studied hardness assumptions in average-case complexity and cryptography, namely the
Planted Clique Hypothesis for Clique and the pseudorandomness of random local functions for
k-SAT.

Theorem 5: Unconditional CZK protocols for meta-complexity. The proof of Theorem
5 uses a win-win argument:

• It is well known that if one-way functions exist, then CZK = IP = PSPACE [BGG+88,
Sha92]. In this case, since py can be computed in polynomial space for any string y
sampled from the distribution D, we have that GapK is in CZK on average.

• Suppose, on the other hand, that one-way functions don’t exist. Then by Theorem 1,
GapK is infinitely often in probabilistic polynomial time on D. Since CZK trivially contains
probabilistic polynomial time, GapK is infinitely often in CZK on D in this case as well.

A similar argument works for GapMCSP on locally samplable distributions, using Theorem 3
instead of Theorem 1.

Theorem 6: Non-NP-hardness of GapMCSP under randomized local reductions. Fi-
nally, to prove Theorem 6, we first show that if a language L has randomized local reductions to
GapMCSP, then L is easy on average over locally samplable distributions. The main ingredient
of this proof is showing that GapMCSP can be is easy on average over a locally samplable distri-
bution when given the randomness of the sampler, rather than just its output. This argument
is similar to the argument that py is low for strings y of high circuit complexity sampled by a
local sampler D. We observe that under the assumption that there are one-way functions in
NC0, k-SAT is average-case hard on some locally samplable distribution, and combining this
with the lemma about randomized local reductions concludes the proof.

1.3 Related Work

There have been several works relating one-way functions to non-cryptographic notions. Im-
pagliazzo and Levin [IL90] show that one-way functions exist if and only if “universal ex-
trapolation” does not, where universal extrapolation is a generic procedure to sample from
continuations of the output of some samplable process. Some of the ideas we use are similar to
theirs, though there does not seem to be a formal connection between the results. Blum, Furst,
Kearns, and Lipton [BFKL93] relate the existence of one-way functions to an average-case no-
tion of learning. Oliveira and Santhanam [OS17] show that exponentially hard (non-uniform)
one-way functions exist if and only if non-trivial (non-uniform) learning is hard.

More recently, there have been a number of works considering the average-case hardness of
meta-complexity problems on the uniform distribution and relating it to one-way functions.
Santhanam [San20] showed that under an assumption on universal succinct pseudorandom
distributions, MCSP is zero-error hard on average on the uniform distribution if and only if
one-way functions exist. By considering Kt rather than MCSP and bounded-error hardness
rather than zero-error hardness, Liu and Pass [LP20] gave an unconditional equivalence. Char-
acterizations of NC0 cryptography by meta-complexity over the uniform distribution are given
in [LP21c, RS21]. An implication for one-way functions from the average-case hardness of the

8

conditional KT-complexity problem is given in [ACM+21]. [LP21b] give a natural NP-complete
problem whose average-case hardness on the uniform distribution is equivalent to the existence
of one-way functions.

2 Preliminaries

For a positive integer n, we let [n] = {1, . . . , n}. Throughout this paper, we assume s,∆ : N→ N
are polynomial-time computable functions. If S is a set, we write x← S to denote sampling an
element of S uniformly at random.

An n-bit partial string is a ρ ∈ {0, 1, ?}n. We say a (total string) x ∈ {0, 1}n agrees with ρ
if the i’th bit of x equals the i’th bit of ρ whenever ρ(i) is Boolean. We write y ← ρ to denote
sampling a uniformly random binary string y ∈ {0, 1}n that agrees with ρ.

A PPT algorithm is a probabilistic polynomial time algorithm. We let negl(n) denote a
negligible function (i.e. negl(n) = 1/nω(1)).

2.1 Samplable Distributions

For each positive integer n, let Dn be a probability distribution on {0, 1}n. We say D = {Dn}
is an ensemble. We say that an ensemble D is a samplable distribution if there is a polynomial-
time sampling algorithm Samp such that Samp(1n, r) samples from Dn when r is a uniformly
random string of length m = poly(n). For any Boolean string y ∈ {0, 1}n, we let py denote the
probability that y is sampled from Dn (the underlying samplable distribution D is implicit and
will always be clear from context).

We say that a probabilistic algorithm A computes a language L on D in time t(n) with error
δ(n) for all n in some set N ⊆ N if for all n ∈ N

Pr
x←Dn,A

[A(x) 6= L(x)] ≤ δ(n)

and A(x) runs in time t(n) for all x ∈ {0, 1}n. If this holds with N = N, we omit specifying a
subset N , and if this holds for an infinite set N , we say A computes L on D in time t(n) with
error δ(n) infinitely-often.

We say an ensemble D = {Dn} is a (t(n))-locally samplable distribution if there is a local
sampling algorithm LSamp that gets random access to three inputs (a length parameter n
in binary11, an index i ∈ [n], and some randomness r ∈ {0, 1}poly(n)) and has the following
property. For any i ∈ [n], if r ∈ {0, 1}poly(n) is chosen uniformly at random, then LSamp(n, i, r)
outputs the i’th bit of a sample from Dn in time t(n). In particular, the n-bit string given by

LSamp(n, 1, r) . . . LSamp(n, n, r)

is a sample from Dn if r is chosen uniformly at random.
We will abuse notation and let LSamp(n, r) with no i provided as input denote the n-bit

string:
LSamp(n, r) = LSamp(n, 1, r) . . . LSamp(n, n, r).

2.2 One-Way Functions

Throughout this paper, we consider one-way functions secure against uniform probabilistic
adversaries. More precisely, we say a (deterministic) polynomial-time computable function

11The reason why n is provided to LSamp in binary rather than unary is because we will want LSamp to run
in t(n) time and t(n) is usually less than n.

9

f : {0, 1}n → {0, 1}n is one-way if every probabilistic polynomial-time algorithm I succeeds at
finding pre-image of f with negligible probability. That is, for all n,

Pr
x←{0,1}n

[f(I(f(x))) = f(x)] ≤ negl(n).

(Note that we assumed f is length-preserving, i.e. for every x, |f(x)| = |x|. This is without
loss of generality, see e.g. [Gol01, Proposition 2.2.5].)

We say f is one-way infinitely often if for every probabilistic polynomial-time algorithm I,
there exists an infinite set N such that for all n ∈ N ,

Pr
x←{0,1}n

[f(I(f(x))) = f(x)] ≤ negl(n).

Finally, we say a polynomial-time computable function f : {0, 1}n → {0, 1} is weakly one-
way if there is a polynomial p such that for every probabilistic polynomial-time algorithm I
and every n,

Pr
x←{0,1}n

[f(I(f(x))) = f(x)] ≤ 1− 1/p(n).

Yao [Yao82] showed that weak one-way functions exist if and only if one-way functions exist.
As a result, if one-way functions do not exist, then for every polynomial computable function
f : {0, 1}n → {0, 1}n and every constant q ≥ 1, there exists a randomized polynomial-time
algorithm I such that for infinitely many n

Pr
x←{0,1}n

[f(I(f(x))) = f(x)] ≥ 1−O(1/n−q).

Remark 8. In this paper we assume one-way functions are secure against uniform adversaries.
Most of our results should also hold for non-uniform adversaries, but there is a potential counter-
example, namely Theorem 28. The reason is that we assume there are no one-way functions
and invert two candidate one-way functions f1, f2 in the proof. The function f2 depends on the
inverter of f1, so if the inverter of f1 is non-uniform, then f2 itself is only computable with
non-uniformity, and it is unclear whether we can still invert f2.

2.3 Circuits

Throughout this paper, we work with DeMorgan circuits (i.e. circuits with fan-in two AND
and OR gates and NOT gates), although this choice is not crucial to our results. The size of a
circuit C, denoted |C|, is the number of AND and OR gates in the circuit. Given a truth table
T of a Boolean function, the circuit complexity of T , denoted CC(T), is the size of the smallest
circuit computing T .

We will also make use of randomized circuits. A randomized circuit D is a circuit C that
has two inputs, a (regular) input x ∈ {0, 1}n and a probabilistic input r ∈ {0, 1}m. We say
that a randomized circuit computes D computes a Boolean function f if for all x ∈ {0, 1}n, the
probability C(x, r) = f(x) is at least 2/3 when r is chosen uniformly at random. The size of D
is the size of C.

We will also use Adleman’s construction for converting a randomized circuit into a deter-
ministic circuit.

Theorem 9 (Adleman [Adl78]). Suppose D is a randomized circuit of size s that computes
f : {0, 1}n → {0, 1}. Then there is a (deterministic) circuit C of size at most s · poly(n) that
computes f .

10

2.4 Kolmogorov Complexity and Its Meta-Complexity

We introduce the variants of Kolmogorov complexity that we consider.

Definition 10. Fix a universal Turing machine U . For a string x ∈ {0, 1}?:

• The Kolmogorov complexity of x, denoted as KU (x), is the length of the shortest program
d such that U(d) outputs x in finite time.

• Let t(·) be a function. The t-time-bounded Kolmogorov complexity of x, denoted as KtU (x),
is the length of the shortest program d such that U(d) outputs x in at most t(|x|) steps
[Ko91].

• The KT-complexity of x, denoted as KTU (x), is the minimum of |d|+ t over all programs
d and time bounds t such that for every 1 ≤ i ≤ |x| + 1, Ud(i) = xi [All01]. (Here we
assume x|x|+1 = ?. Also note that U is given random access to the program d.)

Our results hold for every efficient enough universal Turing machine U , therefore we will omit
the subscript U and simply write K(x), Kt(x), and KT(x).

We need the standard fact that the number of strings with low Kolmogorov complexity is
small (which is proved by a counting argument):

Fact 11. Let s, n be integers. The number of strings x ∈ {0, 1}n such that K(x) ≤ s is at most∑s
i=0 2i = 2s+1 − 1.

We also define the meta-complexity problems associated with each complexity measure (K,
Kt, KT, and circuit complexity).

Definition 12. Let 0 < s1(n) < s2(n) < n be two functions.

• GapK[s1, s2] is the promise problem whose YES instances are strings x such that K(x) ≤
s1(|x|), and NO instances are strings x such that K(x) ≥ s2(|x|).

• Let t be a polynomial. GapKt[s1, s2] is the promise problem whose YES instances are
strings x such that Kt(x) ≤ s1(|x|), and NO instances are strings x such that Kt(x) ≥
s2(|x|).

• GapKT[s1, s2] is the promise problem whose YES instances are strings x such that KT(x) ≤
s1(|x|), and NO instances are strings x such that KT(x) ≥ s2(|x|).

Let 0 < s1(n) < s2(n) < n/ log n be two functions.

• GapMCSP[s1, s2] is the promise problem whose YES instances are truth tables tt with
circuit complexity at most s1(|tt|), and NO instances are truth tables tt with circuit
complexity at least s2(|tt|).

2.5 Hash Functions

We will make use of the existence of explicit, pairwise independent hash functions.

Theorem 13 (See e.g. [Vad12, Problem 3.3]). Let m ≤ n ∈ N. There is a family of pairwise
independent hash functions Hn,m where each element of Hn,m is a function hw : {0, 1}n →
{0, 1}m indexed by a w ∈ {0, 1}n+m. Moreover, given n,m,w, and x ∈ {0, 1}n, one compute
hw(x) in time poly(n) and space O(log n).

The Leftover Hash Lemma, first stated by Impagliazzo, Levin, and Luby [ILL89], will be
crucial for us.

11

Lemma 14 (Leftover Hash Lemma). Let X ∈ {0, 1}n be a random variable with min-entropy
at least k. Let Hn,m = {hw : w ∈ {0, 1}n+m} be a family of pairwise independent hash functions
from n bits to m bits. Then the statistical distance between the following two distributions is at
most

√
2m−k:

• sample w ← {0, 1}n+m, x← X, and output (w, hw(x));

• sample w ← {0, 1}n+m, v ← {0, 1}m, and output (w, v).

3 Average-Case Algorithms for Variants of Kolmogorov Com-
plexity

In this section, we give polynomial-time algorithms for that solving various versions of Kol-
mogorov complexity on average, under some assumptions (such as the non-existence of one-way
functions).

3.1 Algorithms for GapK

3.1.1 An Unconditional Exponential-Time Algorithm

While GapK is uncomputable in the worst-case, things are different in the average-case setting
with two-sided error. For example, if one wants to compute GapK[n − ∆, n] on the uniform
distribution, there is a very simple algorithm: just always output NO. This algorithm errs with
probability at most 2−∆+1 since the number of strings with K-complexity at most n −∆ is at
most 2n−∆+1 by Fact 11.

A natural question is whether one can give an average-case algorithm for computing GapK
on any polynomial-time samplable distribution. It turns out that (if ∆ is large enough) one can
give an average-case algorithm that runs in exponential-time unconditionally.

Recall that throughout this paper s,∆ : N → N denote polynomial-time computable func-
tions.

Theorem 15. Let D = {Dn} be a samplable distribution and ∆ = ω(log n). Then there is a
deterministic algorithm A running in time 2poly(n) that solves GapK[s −∆, s] on D with error
at most 2−∆/3.

We actually prove a stronger version of Theorem 15 that will be useful later. Recall py
denotes the probability that y is sampled from Dn, where y ∈ {0, 1}n.

Theorem 16. Let D = {Dn} be a samplable distribution and ∆ = ω(log n). Let O be an oracle,
c ≥ 1 be an arbitrary constant, and 0 < ε < 1 be such that

Pr
y←Dn

[py/c < O(y) ≤ py] ≥ 1− ε

for all n in some set N ⊆ N.
Then given oracle access to O, one can solve GapK[s −∆, s] on D in deterministic12 poly-

nomial time with error at most ε+ 2−∆/3 for all n ∈ N .

Assuming Theorem 16, we can prove Theorem 15.

Proof of Theorem 15. For any samplable distribution D, there is an exponential time algorithm
computing py exactly (in the worst-case) given y ∈ {0, 1}n: we simply compute∑

r∈{0,1}m
1Samp(1n,r)=y

where m = poly(n). Therefore, Theorem 15 follows from Theorem 16 with c = 1 and ε = 0.

12If O is randomized, then the algorithm will be randomized.

12

We now prove Theorem 16.

Proof of Theorem 16. The algorithm A is very simple. Given y ∈ {0, 1}n, A outputs YES if
O(y) is large, in particular greater than

α = 2−s+∆/2,

and outputs NO otherwise. This completes our description of the algorithm A.
Clearly this algorithm runs in polynomial time (with oracle access to O), so we just need

to argue for correctness when n is sufficiently large. The key to proving the correctness of this
algorithm are the following two claims. The first claim says (informally) that low complexity y
rarely have py < cα.

Claim 17. If n is sufficiently large, then

Pr
y←Dn

[K(y) ≤ s−∆ and py < cα] ≤ 2−∆/3.

The second claim says (informally) that high complexity strings y always have py ≤ α.

Claim 18. If n is sufficiently large, then

Pr
y←Dn

[K(y) ≥ s and py ≥ α] = 0.

Combining Claim 17 and Claim 18 and union bounding over the ε error probability of O,
we get that for all sufficiently large n ∈ N that

Pr
y←Dn

[A(y) errs in computing GapK[s−∆, s]] ≤ ε+ 2−∆/3

which proves the theorem. It remains to prove the two claims, which we do below.

Proof of Claim 17. By Fact 11, the number of strings with K-complexity at most s − ∆ is at
most 2s−∆+1. On the other hand, the probability that y is output by Dn is py, by definition.
Thus, by a union bound, we get

Pr
y←Dn

[K(y) ≤ s−∆ and py < α · c] ≤ 2s−∆+1 · α · c ≤ 2c · 2−∆/2 ≤ 2−∆/3

when n is sufficiently large since c = O(1) and ∆ = ω(log n). �

Proof of Claim 18. Observe that the set of strings H = {y ∈ {0, 1}n : py ≥ α} has size at
most 1/α+ 1, since the py quantities are non-negative and together sum to one. Thus, we can
describe any element y of H by specifying the code for Samp, n, α and the index of y in H.
Therefore, we get that the Kolmogorov complexity of any element of H is at most

O(log n) + log(1/α) +O(1) ≤ O(log n) + s−∆/2 +O(1) ≤ s− ω(log n).

Thus, if n is sufficiently large, no string with K-complexity at least s can be an element of H,
as desired. �

13

3.1.2 A Conditional Polynomial-Time Algorithm

Theorem 15 gives an exponential-time algorithm for solving GapK on average. In this subsection,
we show that if one-way functions do not exist, then one can get a randomized polynomial-time
algorithm for solving GapK on average infinitely often.

We begin by showing that py can be efficiently approximated on average (infinitely often) if
one-way functions do not exist.

Theorem 19 ([IL90,IL89]). Assume no one-way functions exist. Let D = {Dn} be a samplable
distribution and let q ≥ 1 be an arbitrary constant. Then there exists a randomized polynomial-
time algorithm A such that for infinitely many n,

Pr
y←Dn

[Ω(py) ≤ A(y) ≤ py] ≥ 1−O(1/nq).

Proof. Let Samp be the sampling algorithm for D. Let m = poly(n) be the number of random
bits the sampler Samp uses to sample from Dn. Let Hm,k = {hw : w ∈ {0, 1}m+k} denote
the family of efficient pairwise independent hash functions mapping m-bits to k-bits given by
Theorem 13.

Consider the polynomial-time computable function f that given an input (n, k, w, r), where
k ∈ [m], w ∈ {0, 1}m+k, and r ∈ {0, 1}m, acts as follows. Set y = Samp(1n, r). Select the hash
function hw from Hm,k and compute hw(r). Finally, output (n, y, k, w, hw(r)).

Now, since one-way functions do not exist (and therefore weak one-way functions do not
exist), there exists a randomized polynomial-time algorithm I such that for all n in an infinite
set N we have

Pr
k←[m],

w←{0,1}m+k,
r←{0,1}m,
z=f(n,k,w,r)

[f(I(z)) = z] ≥ 1− 1/(mnq).

We will use I to estimate py by seeing “how often there is an r that Samp maps to y in
some random hash bucket.” In more detail, we define a {0, 1}-valued random variable E(k, y)
for each k ∈ [m] and y ∈ {0, 1}n as follows (E stands for “experiment”). E(k, y) is the indicator
random variable for the event that I succeeds at finding a pre-image for (n, y, k, w, v) when
v ← {0, 1}k and w ← {0, 1}m+k.

Our randomized polynomial-time algorithm A works as follows. Given y, the algorithm
repeats the experiment E(k, y) m2 times independently for each k ∈ [m]. It then outputs 2k

′−m

where k′ is the smallest value of k such that the experiment succeeded (i.e. output 1) for at
most half of the repetitions.

It is easy to see that this algorithm runs in randomized polynomial-time. We now argue for
correctness. Let n ∈ N . We will show that the expectation of E(k, y) is small (at most 1/4)
when 2k−m ≥ 4py and usually (with probability 1−O(1/nq) over y ← Dn) large (at least 3/4)
when 2k−m ≤ py/64. The correctness of A will then follow from a Chernoff bound.13

First, we show that the expectation of E(k, y) is small if py is small relative to k. Fix y and
k. The total number of r ∈ {0, 1}m that map to y under Samp is exactly py2

m (by definition
of py). Therefore, for any fixed w, the total number of v ∈ {0, 1}k for which there exists an
r ∈ {0, 1}m such that y = Samp(1n, r) and hw(r) = v is at most py2

m. Thus, E(k, y) can
succeed with probability at most py2

m−k. So if py ≤ 2k−m/4, then the expectation of E(k, y) is
at most 1/4.

Next, we show that the expectation of E(k, y) is usually large if py is large relative to k.
Fix some k ∈ [m], and fix some y ∈ {0, 1}n. Let Ry be the set of r such that Samp(1n, r) = y.
Again note that by definition of py we have |Ry| = py2

m. The leftover hash lemma (Lemma 14)
implies that the following two distributions have statistical distance at most

√
2k−m/py

13To get the guarantee stated in the theorem that Ω(py) ≤ A(y) ≤ py, one needs to multiply the output of A
by an appropriate constant.

14

• sample w ← {0, 1}m+k and v ← {0, 1}k and output (n, y, k, w, v), and

• sample w ← {0, 1}m+k, r ← Ry, and v ← {0, 1}k and output (n, y, k, w, hw(r)).

Thus, we have that

Pr[E(k, y) = 0] ≤
√

2k−m/py + Pr
r←Ry ,w←{0,1}m+k

[I(n, y, k, w, hw(r)) fails to invert]

We now show that this quantity is small for most y. Say that y is good if for all k ∈ [m]

Pr
r←Ry ,w←{0,1}m+k

[I(n, y, k, w, hw(r)) fails to invert] ≤ 1/8.

If y is good, then for all k satisfying 2k−m ≥ py/64, we have that

Pr[E(k, y) = 0] ≤
√

2k−m/py + Pr
r←Ry ,w←{0,1}m+k

[I(n, y, k, w, hw(r)) fails to invert]

≤ 1/8 + 1/8

= 1/4,

so the expectation of E(k, y) is at least 3/4. Finally, because the failure probability of I is at
most 1/(mnq), by union bounding over all k ∈ [m], we know that a y sampled from Dn is good
with probability 1−O(1/nq).

We also note that the same proof shows a stronger consequence if we assume infinitely-often
one-way functions do not exist, and that the proof produces an A that gives an estimate on py
with one-sided error. (This is because the upper bound of py2

m−k on the expectation E(k, y)
holds for all y.) These modifications will be useful later in Section 3.2.

Theorem 20. Assume no infinitely-often one-way functions exist. Let D = {Dn} be a samplable
distribution and let q ≥ 1 be an arbitrary constant. Then there exists a randomized polynomial-
time algorithm A such that for all n

Pr
y←Dn

[A(y) = Ω(py)] ≥ 1−O(1/nq),

and for all y ∈ {0, 1}n
Pr[A(y) ≤ py] ≥ 1−O(1/nq).

Combining Theorem 19 and Theorem 16, we get the following corollary.

Corollary 21. Assume one-way functions do not exist. Let D be a samplable distribution,
∆ = ω(log n), and q ≥ 1 be an arbitrary constant. Then there is a randomized polynomial-time
algorithm A that infinitely-often solves GapK[s−∆, s] on D with error at most O(n−q).

3.1.3 Algorithms for Logspace-Samplable Distributions

Recall that [AIK06] showed that the existence of one-way functions computable in NC0 is
equivalent to the existence of one-way functions computable in logspace. To characterize NC0-
computable one-way functions, we prove the following variant of Theorem 19:

Theorem 22. Assume that no NC0-computable one-way functions exist. Let D = {Dn} be
a logspace-samplable distribution and let q ≥ 1 be an arbitrary constant. Then there exists a
randomized polynomial-time algorithm A such that for infinitely many n,

Pr
y←Dn

[A(y) ≥ Ω(py)] ≥ 1−O(1/nq)

and for all y ∈ {0, 1}?,
Pr[A(y) ≤ py] ≥ 1−O(1/|y|q).

15

Proof Sketch. The theorem essentially follows from the proof of Theorem 19. Let Samp be the
logspace sampling algorithm for D. Let Hm,k = {hw : w ∈ {0, 1}m+k} denote the family of
efficient pairwise independent hash functions given by Theorem 13. Recall that the candidate
one-way function f (that we will invert) is defined as follows: on input (n, k, w, r), set y =
Samp(1n, r) and output (n, y, k, w, hw(r)). As both Samp and the hash function are computable
in logarithmic space, it follows that f is also computable in logarithmic space. Since logspace-
computable one-way functions imply NC0-computable one-way functions, which does not exist
by our assumption, we know that f is not one-way. As in the proof of Theorem 19, we can
use the inverter I for f to estimate py. (Note that A(y) ≤ py holds w.h.p. for every string y
regardless of how the inverter I behaves.)

Combining Theorem 22 and Theorem 16, we obtain the following corollary:

Corollary 23. Assume that no NC0-computable one-way functions exist. Let D be a logspace-
samplable distribution, q ≥ 1 be an arbitrary constant, and ∆ = ω(log n). Then there is a
randomized polynomial-time algorithm that infinitely-often solves GapK[s − ∆, s] over D with
error at most O(n−q).

3.2 An Algorithm for GapKt

When moving from GapK to GapKt the main thing that breaks is Claim 18, which shows that
high complexity strings must have low values of py. Unfortunately, we do not know how to get
around this unconditionally. Luckily, assuming infinitely-often14 one-way functions do not exist
and a derandomization assumption, we can prove an analogous claim.

Various derandomization assumptions suffice for our purpose but we will use [IW97] which
shows that if E 6⊆ ioSIZE[2.01n], then there are complexity-theoretic pseudorandom generators
secure against P/Poly with seed length O(log n) computable in time poly(n). More precisely,
if E 6⊆ ioSIZE[2.01n], then for every polynomial p and every constant 0 < ε < 1, there exists a
multi-set Gn,p,ε ⊆ {0, 1}n such that

• Gn,p,ε has poly(n) elements,

• the i’th element of Gn,p,ε is computable in deterministic time poly(n), and

• if C is a circuit that takes n-inputs and has size at most p(n), then∣∣∣∣ Pr
r←{0,1}n

[C(r) = 1]− Pr
r←Gn,p,ε

[C(r) = 1]

∣∣∣∣ ≤ ε.
Lemma 24. Assume infinitely-often one-way functions do not exist and that E 6⊆ ioSIZE[2.01n].
Let D = {Dn} be a samplable distribution, q ≥ 1, and ∆ = ω(log n). Let α = 2−s+∆/2. Then
for every large enough polynomial τ and for all n,

Pr
y←Dn

[Kτ (y) ≥ s and py ≥ α] ≤ O(n−q).

Proof. At a high level, the idea is this: suppose y is a high complexity string and py is large. To
achieve a contradiction, we want to come up with a small, efficient description of y. We will do
this by specifying a small hash v of y such that this hash is unique among the (not too many)
strings z such that pz is large. We will then use the non-existence of one-way functions (in two
different ways) to show that given v, one can recover y (on average). The full details are below.

14At a high level, the reason why we assume that infinitely often one-way functions do not exist (instead of just
the non-existence of one-way functions) is that we use the ability to invert candidate one-way functions twice, in
a recursive manner. As a result, we need to be careful to make sure the input lengths where the two inverters
succeed match.

16

Let k be the ceiling of s−∆/3. We can assume that k ≤ n (since otherwise s = n+ω(log n)
and the statement is trivial). Let Hn,k = {hw : w ∈ {0, 1}n+k} be the family of explicit pairwise
independent hash functions mapping n bits to k bits given by Theorem 13. Let m = poly(n)
be the number of random bits used by Samp to sample from Dn. Since infinitely often one-way
functions do not exist, Theorem 20 implies there is a randomized polynomial time algorithm
A which computes a c-factor approximation of py with error at most O(n−2q) over D. We
can assume that A is deterministic using our derandomization assumption. Again using our
derandomization assumption, let HitSet = Gn+k,p,ε ⊆ {0, 1}n+k where p is some fixed sufficiently
large polynomial and ε = 1/3. Let τ be some sufficiently large polynomial.

Consider the polynomial-time computable function f that given n ∈ N, r ∈ {0, 1}m, and
w ∈ {0, 1}n+k works as follows. Let y = Samp(1n, r). If A(y) < α/c, then f outputs ⊥.
Otherwise, f outputs (n,w, hw(y)) where hw ∈ Hn,k. This completes the description of f .

Since infinitely-often one-way functions do not exist, there exists a deterministic15 polyno-
mial time algorithm I such that for all n

Pr
r←{0,1}m,w←{0,1}n+k,y=Samp(1n,r)

[A(y) < α/c or hw(I(n,w, hw(y))) = hw(y)] ≥ 1− 1/n4q.

Now fix some sufficiently large n and let Bad be the set of all y ∈ {0, 1}n satisfying Kτ (y) ≥
s and py ≥ α. For contradiction, assume that

Pr
y←Dn

[y ∈ Bad] > n−q.

We make the following claim.

Claim 25. If n is sufficiently large, there exists a y ∈ Bad, a w ∈ HitSet, and a v ∈ {0, 1}k
such that I(n,w, v) outputs y.

If Claim 25 is true, then this yields an efficient description of y. In particular, if τ is a
sufficiently large polynomial

Kτ (y) ≤ log n+ log |HitSet|+ k +O(1) ≤ k +O(log(n+ k)) ≤ s− ω(log n),

which contradicts the s lower bound on the Kτ complexity of y when n is sufficiently large. This
proves the theorem (assuming Claim 25).

It remains to prove Claim 25.

Proof of Claim 25. We say that w ∈ {0, 1}n+k is nice if

Pr
y←Dn

[I(n,w, hw(y)) 6= y | A(y) ≥ α/c] ≤ 4n−2q.

We also say w is almost nice if the RHS is replaced by 5n−2q, that is

Pr
y←Dn

[I(n,w, hw(y)) 6= y | A(y) ≥ α/c] ≤ 5n−2q.

We note that the event being conditioned on above occurs somewhat often, that is

Pr
y←Dn

[A(y) ≥ α/c] ≥ Pr
y←Dn

[y ∈ Bad]−O(n−2q) = Ω(n−q),

using the fact that A gives a c-approximation of py with error probability O(n−2q).
We make another claim.

15We can assume this algorithm is deterministic because of our derandomization assumption and the fact we
can efficiently check whether the output of the inverter is indeed a pre-image of f .

17

Claim 26. Assume n is sufficiently large. If w ← {0, 1}n+k, then w is nice with probability at
least 1/2.

Assuming Claim 26 is true, there must exist an element w of HitSet that is almost nice.
This is because given w, one can estimate Pry←Dn [I(n,w, hw(y)) 6= y | A(y) ≥ α/c] up to
an arbitrarily small constant factor in polynomial time by sampling from Dn repeatedly and
outputting the empirical frequency of the event that I(n,w, hw(y)) 6= y when A(y) ≥ α/c.
(Recall the event that A(y) ≥ α/c occurs with probability at least Ω(n−q), so a polynomial
number of samples suffice.) Using our derandomization assumption, there is a deterministic
polynomial-time algorithm that accepts at least 1/2 fraction of w’s (namely, the nice ones) and
rejects every w that is not almost nice. Since p is a sufficiently large polynomial, the security
of the pseudorandom generator HitSet = Gn+k,p,1/3 implies the existence of an almost nice
w ∈ HitSet.

Now fix an almost nice w ∈ HitSet. Since every element y ∈ Bad satisfies that py ≥ α (by
construction) and since A has failure probability O(n−2q), we know that

Pr
y←Dn

[y ∈ Bad | A(y) ≥ α/c] ≥ Pr
y←Dn

[y ∈ Bad and A(y) ≥ α/c]

≥ Pr
y←Dn

[y ∈ Bad]−O(n−2q)

≥ Ω(n−q)

Combining this bound on Pry←Dn [y ∈ Bad | A(y) ≥ α/c] with the fact that w is almost nice,
we get via a union bound that

Pr
y←Dn

[y 6∈ Bad or I(n,w, hw(y)) 6= y | A(y) ≥ α/c] ≤ 1− Ω(n−q) +O(n−2q),

which is less than 1 when n is sufficiently large. Therefore, there must exist a y ∈ Bad such
that I(n,w, hw(y)) = y when n is sufficiently large. �

Finally, we prove Claim 26.

Proof of Claim 26. When n is sufficiently large we have that

Pr
y←Dn,w←{0,1}n+k

[I(n,w, hw(y)) 6= y | A(y) ≥ α/c]

≤O(n−3q) + Pr
y←Dn,w←{0,1}n+k

[∃y′ ∈ {0, 1}n \ {y} with A(y′) ≥ α/c and hw(y) = hw(y′) | A(y) ≥ α/c]

≤n−2q + (c/α+ 1)2−k

≤n−2q + 2s−∆/2+O(1)2∆/3−s−1

≤ 2n−2q,

where the first inequality comes from the n−4q bound on the failure probability of I and the fact
that Pry←Dn [A(y) ≥ α/c] = Ω(n−q), the second inequality comes from two-wise independence
and the fact that the number of y with A(y) ≥ α is at most16 the number of y with py ≥ α
which is at most 1/α+ 1.

Therefore, by Markov’s inequality, for all least half of the w ∈ {0, 1}n+k we have that

Pr
y←Dn

[I(n,w, hw(y)) 6= y | A(y) ≥ α/c] ≤ 4n−2q,

and so w is nice. �

16This uses that A has one-sided error and never overestimates py.

18

The analog of Claim 17 also holds for GapKt.

Proposition 27. Let τ be any polynomial, let c ≥ 1 be an arbitrary constant, and let ∆ =
ω(log n). Let α = 2−s+∆/2. Then when n is sufficiently large

Pr
y←Dn

[Kτ (y) ≤ s−∆ and py < cα] ≤ 2−∆/3.

Proof. The proof is similar to Claim 17. Union bound over the 2s−∆ low complexity strings
that each show up with probability cα. This gives a bound of

cα2s−∆ = c2−∆/2 = o(2−∆/3).

Combining Proposition 27, Lemma 24, and Theorem 20, we get the following theorem.

Theorem 28. Assume infinitely-often one-way functions do not exist and E 6⊆ ioSIZE[2.01n].
Let D be a samplable distribution, let q ≥ 1 be an arbitrary constant, and let ∆ = ω(log n).
Then there exists a polynomial τ and randomized polynomial-time algorithm A such that A
solves GapKτ [s−∆, s] on D with error probability at most O(n−q).

3.3 An Algorithm for MCSP

When moving from GapK to MCSP, again the part of the proof that breaks is Claim 18, showing
that high complexity strings must have low values of py. We show that the analogous claim
holds for locally samplable distributions (with certain parameters).

Throughout this section, let 0 < δ < 1, and let LSamp be the local sampling algorithm for
a (nδ)-locally samplable distribution D = {Dn}. Assume LSamp takes as input a random seed
of length m = poly(n) to sample from Dn.

Before we prove the analogous claim, we prove a useful lemma. Recall our notation that if
ρ ∈ {0, 1, ∗}m, then z ← ρ denotes sampling z uniformly at random from the set of strings in
{0, 1}m that agree ρ.

Lemma 29. Let ρ ∈ {0, 1, ∗}m be a string with at most d Boolean values. If y ∈ {0, 1}n requires
circuits of size at least dn3δ and n is sufficiently large, then there exists an i ∈ [n] such that

Pr
r̃←ρ

[LSamp(1n, i, r̃) 6= y(i)] ≥ 1/3.

Proof. For contradiction, assume that for all i ∈ [n] that

Pr
r̃←ρ

[LSamp(1n, i, r̃) = y(i)] ≥ 2/3.

We will use this to construct a small circuit C for y and get a contradiction.
To begin, we construct a small randomized circuit C ′ for computing y. C ′ will take as input

an index i ∈ [n], will use nδ bits of randomness, and will have size O(dn2δ).
The circuit C ′ on input i will work as follows. It will simulate running the local sampling

algorithm LSamp on inputs 1n, i, and randomness r̃, where r̃ is constructed “on the fly” via the
following method (recall, LSamp is a local sampling algorithm that makes nδ oracle queries to
r̃). Whenever LSamp makes an oracle query to the j’th bit of r̃, respond as follows. If LSamp
has previously queried the j’th bit of r̃, then give the same answer as before. Otherwise, if
ρ(j) ∈ {0, 1}, then answer with ρ(j); if ρ(j) = ?, answer with a (fresh) uniformly random bit.
This completes our description of C ′.

Observe that for all i ∈ [n]

Pr[C ′(i) = y(i)] = Pr
r̃←ρ

[LSamp(1n, i, r̃) = y(i)] ≥ 2/3,

19

so the randomized circuit C ′ computes y. This is because our method for answering oracle
queries to r̃ is equivalent to picking a uniformly random r̃ that agrees with ρ and answering
according to that.

Now we bound the size of C ′. One can convert the oracle algorithm LSamp running in time
nδ into an oracle circuit D of size O(nδpoly log n). To build C ′ from D, one just needs to
replace each of the at most nδ oracle gates in D with a circuit that can query a bit of the r̃
we are building “on the fly.” Checking if an index of r̃ was previously queried and repeating
that answer if so can be done with O(nδ log n) gates, checking if ρ is defined on an index and
responding with that value if so can be done with O(d · poly log n) gates (since ρ has a Boolean
value on d indices), and answering with a fresh random bit can be done with O(1) gates. Thus,
each oracle gate can be replaced with a circuit of size at most O(dnδpoly log n). Thus C ′ has
size at most O(dn2δpoly log n).

Finally, we can convert the randomized circuit C ′ computing y into a deterministic circuit
C computing y of size O(dn2δpoly log n) by using Adleman’s construction (Theorem 9). Note
that the input i ∈ [n] to the circuit C ′ has length O(log n) as a bit string, which is why the
blowup is only a multiplicative poly log n.

We can now show that high complexity strings have small values of py.

Lemma 30. Let y ∈ {0, 1}n and s = CC(y). Then if n is sufficiently large

py ≤ (2/3)s/n
3δ
.

Proof. We will show that the set of all r such that LSamp(1n, r) = y is small. We will do this
by constructing a sequence of sets Restk that will contain m-bit restrictions (i.e. elements of
{0, 1, ∗}m) and will satisfy the following two properties for all k:

1. If r ∈ {0, 1}m and LSamp(1n, r) = y, then r agrees with exactly one element of Restk.

2. The number of 0/1-values in ρ is at most k · nδ for every ρ ∈ Restk.

We set Rest0 to just contain the empty restriction, that is,

Rest0 = {∗m}.

Observe that Rest0 satisfies properties (1) and (2).
We will construct the remaining Restk inductively. To do this, we will need to introduce

some notation. Given a restriction ρ ∈ {0, 1, ∗}m, let i(ρ) denote the (lexicographically first)
value of i ∈ [n] that minimizes the quantity

pi(ρ) = Pr
r̃←ρ

[LSamp(1n, i, r̃) = y(i)].

Let p(ρ) denote pi(ρ)(ρ).
Given a r̃ ∈ {0, 1}m and an i ∈ [n], we say the query sequence of i for r̃ is the sequence

(j1, v1), . . . , (jt, vt) ∈ [m]×{0, 1} of oracle queries and responses that LSamp makes and receives
on input (1n, i, r̃). That is, LSamp first queries the j1-th bit of r̃, obtains that r̃j1 = v1, then
queries the j2-th bit of r̃ and obtains v2, and so on. Note that t ≤ nδ since LSamp runs in time
nδ.

Given a restriction ρ ∈ {0, 1, ?}m, we say a consistent query sequence of i for ρ is a query

sequence of i for some r̃ that agrees with ρ. Note that there are only 2n
δ

consistent query
sequences of i for ρ since LSamp makes at most nδ queries and each query has at most two
possible outcomes.

If S is a consistent query sequence for i and ρ, then S and ρ determine a refinement ρ′[ρ, S]
of ρ as follows. Set ρ′[ρ, S] = ρ and then further set ρ′[ρ, S](jk) = vk for all k ∈ [t], where
S = ((j1, v1), . . . , (jt, vt)).

20

Next, we define Next(ρ). Given a restriction ρ, let Next(ρ) be the set of all ρ′[ρ, S] where
S is a consistent query sequence of i(ρ) for ρ.

We can now finish our inductive construction. We set Restk+1 =
⋃
ρ∈Restk Next(ρ). Observe

that Restk+1 will satisfy properties (1) and (2) assuming that Restk does.
Now, we will bound the number of strings that agree with an element of Restnδ . First,

observe that the total number of strings that agree with an element of Next(ρ) is at most p(ρ)
times the number of strings that agree with ρ. (This is essentially by definition.)

Next, assume n is sufficiently large so that we can use Lemma 29. Then if ρ ∈ Restk and
k ≤ s/n3δ, then combining (2) and Lemma 29, we get that p(ρ) ≤ 2/3, and thus that the number
of strings that agree with an element of Next(ρ) is at most 2/3rds the number of strings that
agree with ρ.

Thus, using (1) we get that the number of strings that agree with an element of Restk+1

is at most 2/3rds the number of strings that agree with an element of Restk. Applying this
repeatedly, we get that the fraction of m-bit strings that agree with Restnδ is at most

(2/3)s/n
3δ
.

On the other hand, a union bound shows that low complexity strings rarely have small py
values.

Proposition 31. Let c ≥ 1 be an arbitrary constant and s = Ω(n5δ). Then

Pr
y←Dn

[CC(y) ≤ s/n4δ and py < (2/3)s/n
3δ

] = negl(n).

Proof. The number of strings with circuit complexity at most s/n4δ is at most O(2s/n
3.5δ

). By
a union bound, we have that

Pr
y←Dn

[CC(y) ≤ s−∆ and py < α · c] ≤ O(2s/n
3.5δ

(2/3)s/n
3δ

) = negl(n).

Putting it all together, we get an average-case algorithm for approximating GapMCSP if
one-way functions do not exist.

Theorem 32. Assume one-way functions do not exist. Let 0 < δ < 1 and q ≥ 1. Let D be a
(nδ)-locally samplable distribution. Let s = Ω(nδ). Then there exists a randomized polynomial-
time algorithm A that infinitely-often solves GapMCSP[s, sn5δ] on D with error O(n−q).

Proof. Combine Proposition 31, Lemma 30, and Theorem 19.

3.3.1 An Algorithm for GapKT

In this subsection, we prove analogous results on one-way functions computable in NC0. Here, we
consider the KT complexity instead of the circuit complexity. Also, instead of (nδ)-locally sam-
plable distributions, here we consider O(1)-locally samplable distributions (i.e. those samplable
in NC0) that are closely related to the existence of one-way functions in NC0. In particular, we
consider t-locally samplable distributions in this section for some fixed constant t.

It is without loss of generality to assume that the sampler is non-adaptive, since any adaptive
algorithm with query complexity t = O(1) can be simulated by a non-adaptive algorithm with
query complexity 2t = O(1).

We first prove an analog of Lemma 29.

Lemma 33. Let C be a large enough absolute constant. Let ρ ∈ {0, 1, ∗}m be a string with
at most d Boolean values. If n is sufficiently large, y ∈ {0, 1}n satisfies that KT(y) > C(d +
2t) logm, then there exists an i ∈ [n] such that

Pr
r̃←ρ

[LSamp(1n, i, r̃) 6= y(i)] ≥ 1/2.

21

Proof Sketch. Suppose not. Then we have the following upper bound for KT(y).
First, we use perfect hashing [FKS82] to preprocess ρ into a dictionary Dictρ of bit-length

O(d logm) such that, given an index i ∈ [m], we can query ρi in O(logm) time. Now, given
an index i, we know that yi is the majority of LSamp(1n, i, r̃) over all r̃ consistent with ρ.
Since LSamp is a t-local sampler, LSamp(1n, i, r̃) only queries t bits of r̃, and we can compute
this majority value in O(2t · logm) time. It follows that KT(y) ≤ |Dictρ| + O(2t · logm) ≤
O((d+ 2t) logm).

Now we prove an analog of Lemma 30.

Theorem 34. Let y ∈ {0, 1}n and s = KT(y). For some constant ε > 0 (that depends on t), if
n is sufficiently large, then

py ≤ 2−εs/ logm.

Proof Sketch. We follow the proof of Lemma 30. In particular, we consider the same construc-
tion of Restk for 0 ≤ k ≤ k0 where k0 = εs/ logm. Note that every restriction in Restk has
at most k · t 0/1 elements, and C(k · t + 2t) logm ≤ s. By Lemma 33, for every k ≤ k0, the
number of random strings r ∈ {0, 1}m that agrees with some element in Restk is at most half
of the number of r ∈ {0, 1}m that agrees with some element in Restk−1. It follows that there
are at most 2m−k0 random strings r ∈ {0, 1}m that agrees with some element in Restk0 . Since
only such random strings r may satisfy that LSamp(1n, r) = y, we have

py ≤ 2−k0 = 2−εs/ logm.

Theorem 35. Suppose that there are no one-way functions computable in NC0. Let q ≥ 1
be a constant, D be a t-locally samplable distribution, and s(n) = ω(log2 n) be an efficiently
computable function. Then there exists a randomized PPT algorithm that infinitely-often solves
GapKT[o(s/ log n), s] on D with error O(1/nq).

Proof. Let D be a t-locally samplable distribution. By Theorem 22, there exists a randomized
polynomial-time algorithm A and an infinite set of “good” input lengths N ⊆ N such that for
every n ∈ N ,

Pr
y←Dn

[A(y) ≥ Ω(py)] ≥ 1−O(1/nq),

and for all y ∈ {0, 1}n,
Pr[A(y) ≤ py] ≥ 1−O(1/nq).

Let α = 2−εs(n)/ logm. On input y, we output YES if A(y) ≥ α, and output NO otherwise.
Fix a “good” input length n ∈ N . For every y ∈ {0, 1}n such that KT(y) ≥ s(n), w.p. 1−O(1/nq)
we have A(y) ≤ py ≤ α. On the other hand, the probability over a random input y ← Dn that
KT(y) ≤ o(s/ log n) and our algorithm errs on y is at most

O(α) · 2o(s/ logn) ≤ negl(n).

It follows that the error probability of our algorithm is at most O(1/nq) over D.

4 New Characterizations of One-Way Functions

In this section, we characterize the existence of one-way functions by the average-case hardness of
Kolmogorov complexity and their variants. It turns out that our characterizations are extremely
robust : under samplable distributions, mildly average-case hardness (i.e. 1−1/poly(n)) of GapK
with very small gap (e.g. GapK[

√
n,
√
n+ log2 n]) is equivalent to strong average-case hardness

(i.e. 1/2 + negl(n)) of GapK with very large gap (e.g. GapK[n0.01, n − log2 n]), and they are all
equivalent to the existence of one-way functions.

22

Section 3 already presents average-case algorithms for GapK under the assumption that
one-way functions do not exist. Therefore, to complete the equivalence, we need to con-
struct hard samplable distributions for GapK from the existence of one-way functions. This
is done in Section 4.1 using the known constructions of PRGs and PRFs from one-way func-
tions [HILL99, GGM86, HRV13]. Then in Section 4.2, we present our new characterizations of
one-way functions.

4.1 Hardness of Kolmogorov Complexity from One-Way Functions

We begin by showing that computing GapK and GapKτ are hard on average if one-way functions
exist.

Theorem 36. Assume one-way functions exist. Let 0 < ε < 1. Then there exists a samplable
distribution D such that no PPT algorithm infinitely-often solves any of the following problems
with probability greater than 1/2 + negl(n)17:

• GapK[nε, n− ω(log n)]

• GapKτ [nε, n− ω(log n)] for every large enough polynomial τ .

Proof. Suppose one-way functions exist, then pseudorandom generators also exist [HILL99].
Also, we may assume that the stretch of the PRG is an arbitrarily large polynomial (see
e.g. [Gol01, Theorem 3.3.4]).

Let ` = nε/2, G : {0, 1}` → {0, 1}n be a secure PRG. Let Un be the uniform distribution
over {0, 1}n, and G(U`) be the output of G on a uniformly random seed. Let

D =
1

2
(Un +G(U`)),

i.e. to sample from D, w.p. 1/2 we sample from Un and w.p. 1/2 we sample from G(U`).
Suppose there is an algorithm A that infinitely-often solves GapK[nε, n − ω(log n)] over D

w.p. ≥ 1/2+1/p(n), where p is a polynomial. Note that for every large enough n and every seed
s ∈ {0, 1}`, we have K(G(s)) ≤ ` + O(1) ≤ nε. On the other hand, w.p. ≤ negl(n), a random
string of length n has Kolmogorov complexity at most n− ω(log n). Therefore the correctness
of A implies

1

2

(
Pr
s←U`

[A(G(s)) = 1] + (1− Pr
x←Un

[A(x) = 1]) + negl(n)

)
≥ 1/2 + 1/p(n).

That is, ∣∣∣∣ Pr
s←U`

[A(G(s)) = 1]− Pr
x←Un

[A(x) = 1]

∣∣∣∣ ≥ 1/q(n),

for some polynomial q. This contradicts the security of G. Therefore, no PPT algorithm
infinitely-often solves GapK[nε, n−ω(log n)] over D with probability greater than 1/2 +negl(n).

Let τ be any large enough polynomial. Note that:

• For every large enough n and every seed s ∈ {0, 1}`, we also have Kτ (G(s)) ≤ `+O(1) ≤ nε.

• W.p. ≤ negl(n), a random string of length n has Kτ complexity at most n− ω(log n).

Thus the above argument also shows that GapKτ [nε, n−ω(log n)] is average-case hard on D.

Next, we show that GapMCSP is hard on average if one-way functions exist.

17Here, “with probability greater than 1/2 + negl(n)” means “with probability greater than 1/2 + 1/p(n) for
some polynomial p”.

23

Theorem 37. Assume one-way functions exist. For every constant 0 < δ < 1, there is
an (nδ)-locally samplable distribution D such that no PPT algorithm infinitely-often solves
GapMCSP[nδ, o(n

logn)] with probability greater than 1/2 + negl(n).

Proof. Suppose one-way functions exist, then pseudorandom function generators (PRFs) also
exist [GGM86,HILL99].

More precisely, let f : {0, 1}n → {0, 1}n be a one-way function, and k = (C/δ) log n where
C is a large enough absolute constant. Let N = 2k, then we can construct a PRF F : {0, 1}n →
{0, 1}N according to [GGM86,HILL99] that satisfies the following properties:

1. For every x ∈ {0, 1}n, the circuit complexity of F (x) (viewed as a truth table) is at most
nC ≤ N δ.

2. Any PPT algorithm A could distinguish F (Un) from UN with advantage at most negl(n).

Consider the distribution

D =
1

2
(UN + F (Un)).

First, it is easy to see that D is (N δ)-local: it is O(1)-local to sample from UN , and it is
n-local to sample from F (Un). Since n ≤ N δ, it is (N δ)-local to sample from D.

Any output from F (Un) is a YES instance of GapMCSP[N δ, o(N
logN)]. On the other hand, a

random truth table of length N is a NO instance of GapMCSP[N δ, o(N
logN)] w.p. ≥ 1− negl(N).

It follows that no PPT algorithm solves GapMCSP[N δ, o(N
logN)] over D with probability greater

than 1/2 + negl(N).

We also can show hardness under the assumption that there are one-way functions com-
putable in NC0.

Theorem 38. Assume there exist one-way functions in NC0. Then there exists an O(1)-locally
samplable distribution D such that no PPT algorithm infinitely-often solves any of the following
problems with probability greater than 1/2 + negl(n):

• GapK[n− n0.99, n− ω(log n)];

• GapKT[n− n0.99, n− ω(log n)].

Proof. Suppose there is a one-way function in NC0, then there is also a PRG in NC0 [HRV13].
Moreover, we may assume that the PRG has stretch n0.999, i.e., it stretches n− n0.999 random
bits into n pseudorandom bits. (See e.g., [AIK06, Remark 6.2].)

Let G be a PRG in NC0 with stretch n0.999. Consider the distribution

D =
1

2
(Un +G(Un−n0.999)).

Since G is a PRG in NC0, D is O(1)-locally samplable.
Any output from G(Un−n0.999) is a YES instance of GapK[n − n0.99, n − ω(log n)], since it

can be described by a seed of length n − n0.999 and the code of G which has length O(1). On
the other hand, the probability that a random string of length n has Kolmogorov complexity
≤ n − ω(log n) is ≤ negl(n). It follows that GapK[n − n0.99, n − ω(log n)] is hard on average
under D.

Since G is a PRG in NC0, its outputs also have small KT complexity. Therefore the above
hardness result also holds for GapKT[n− n0.99, n− ω(log n)].

24

4.2 Equivalences

We begin by proving an equivalence between the existence of one-way functions and the average-
case hardness of GapK and GapMCSP.

Theorem 39. Let q ≥ 1 and 0 < δ < 1 be constants. Let nΩ(1) ≤ s ≤ n and ω(log n) ≤ ∆ ≤ s/2.
Let n5δ < s′ < n1−6δ. Then the following are equivalent.

1. One-way functions exist.

2. There is a samplable distribution D such that no PPT algorithm infinitely-often solves
GapK[nδ, n− ω(log n)] on D with probability greater than 1/2 + negl(n).

3. There is a samplable distribution D such that no PPT algorithm infinitely-often solves
GapK[s−∆, s] on D with probability greater than 1− 1/nq.

4. There is an (nδ)-locally samplable distribution D such that no PPT algorithm infinitely-
often solves GapMCSP[nδ, o(n

logn)] on D with probability greater than 1/2 + negl(n).

5. There is an (nδ)-locally samplable distribution D such that no PPT algorithm infinitely-
often solves GapMCSP[s′, s′n5δ] on D with probability greater than 1− 1/nq.

Proof. (2) =⇒ (3) and (4) =⇒ (5) are trivial.
(1) =⇒ (2) follows from Theorem 36.
(3) =⇒ (1) follows from Corollary 21.
(1) =⇒ (4) follows from Theorem 37.
(5) =⇒ (1) follows from Theorem 32.

We also get an equivalence between the average-case hardness of GapKt and the existence
of infinitely-often one-way functions under a derandomization assumption.

Theorem 40. Assume that E 6⊆ ioSIZE[2.01n]. Then the following are equivalent:

1. Infinitely-often one-way functions exist.

2. For every constant 0 < ε < 1, there is a samplable distribution D such that for every
large enough polynomial τ , no PPT algorithm solves GapKτ [nε, n − ω(log n)] on D with
probability greater than 1/2 + negl(n).

3. There are functions s ∈ [nΩ(1), n], ∆ = ω(log n), a constant q ≥ 1, and a samplable
distribution D, such that for every large enough polynomial τ , no PPT algorithm infinitely-
often solves GapKτ [s−∆, s] on D with probability greater than 1− 1/nq.

Proof. (2) =⇒ (3) is trivial.
(1) =⇒ (2) follows from (an infinitely-often version of) Theorem 36.
(3) =⇒ (1) follows from Theorem 28.

We can also characterize the existence of one-way functions in NC0 by the average-case
hardness of GapK over O(1)-locally samplable distributions:

Theorem 41. The following are equivalent:

1. There are one-way functions computable in logspace.

2. There are one-way functions computable in NC0.

3. There is an NC0-samplable distribution D such that no PPT algorithm infinitely-often
solves GapK[n− n0.99, n− ω(log n)] on D with probability greater than 1/2 + negl(n).

25

4. There are a constant c > 0, a logspace-samplable distribution D, and efficiently computable
functions s1(n), s2(n) < n, such that s2− s1 = ω(log n), and no PPT algorithm infinitely-
often solves GapK[s1, s2] on D with probability greater than 1− 1/nc.

Proof. (1) ⇐⇒ (2) is the main result of [AIK06].
(2) =⇒ (3) follows from Theorem 38.
(3) =⇒ (4) is trivial.
(4) =⇒ (2) follows from Corollary 23.

Finally, we attempt to use the average-case hardness of GapKT to characterize the existence
of one-way functions in NC0. We could not obtain an equivalence result with current techniques;
we could only show that “one-way functions in NC0” is between an “easier” version and a
“harder” version of GapKT. The two versions have different parameters — the “easier” version
is GapKT[o(n

logn), n− ω(log n)] while the “harder” version is GapKT[n− n0.99, n− ω(log n)].

Theorem 42. The following items hold:

1. Suppose there exist one-way functions in NC0. Then there exists an O(1)-locally samplable
distribution D such that no PPT algorithm infinitely-often solves GapKT[n − n0.99, n −
ω(log n)] with probability greater than 1/2 + negl(n).

2. Suppose there exist no one-way functions in NC0. Then for every constant q ≥ 1 and
every O(1)-locally samplable distribution D, there is a randomized PPT algorithm that
infinitely-often solves GapKT[o(n

logn), n− ω(log n)] with probability ≥ 1− 1/nq.

Proof. The first item follows from Theorem 38. The second item follows from Theorem 35.

5 Applications

5.1 One-Way Functions from Hardness of SAT and Clique

We will be considering average-case hardness assumptions on k-SAT and Clique. In particular,
we show that if these problems are hard on average under samplable distributions with large
enough entropy, then one-way functions exist.

Definition 43. Given positive integers k and ∆ > 0, k-SAT(n,∆n) is the set of satisfiable
k-CNF formulas on n variables with ∆n clauses. Given a function t : N→ N, t-Clique(n) is the
set of graphs on n vertices that have a clique of size at most t(n).

We need suitable encodings of k-SAT(n,∆n) and t-Clique(n) such that the problems are
defined on all input lengths. It is important for us that the problems are defined on all input
lengths because one-way functions naturally correspond to almost everywhere hardness.

We choose the following natural encoding for k-SAT: for k-CNF formulas on n variables
and ∆n clauses, let m(n, k,∆) = ∆n(kdlog(n)e+ k). We can represent a k-CNF formula on n
variables and ∆n clauses with m(n, k,∆) bits by specifying, for each clause, the sequence of k
literals in the clause. A literal can be specified with dlog(n)e + 1 bits by giving the index of a
variable as well as its polarity. For lengths m that are not of the form m(n, k,∆), we interpret
an input of length m as a padded version of an input of length m′, where m′ is the largest
m(n, k,∆) < m. In other words, we ignore the last m−m′ bits of the input.

Similarly we choose the following natural encoding for t-Clique: for a graph G on n vertices,
let m(n) =

(
n
2

)
. We interpret a string x of bit-length m(n) as a graph Gx on n vertices, where

the i’th bit of x is 1 iff the i’th edge (out of the
(
n
2

)
possible edges, lexicographically ordered)

is present in G. If m is not of the form m(n), then we interpret a string x of length m as a
padded version of an input of length m′, where m′ is the largest m(n) < m.

We emphasize that the specific choice of these encodings isn’t crucial in our results — as
mentioned before, what is important is that the problem is non-trivial on all input lengths.

26

Definition 44. Let Dn be a distribution on n-bit strings. We say that Dn has entropy deficiency
at most ` if the entropy of Dn is at least n− `.

We first need a lemma stating that a string sampled from a high entropy distribution must
have high Kolmogorov complexity with noticeable probability.

Lemma 45. Let Dn be a distribution on n-bit strings with entropy k. With probability at least
1/n over x sampled from Dn, K(x) > k − 3.

Proof. Suppose, for the sake of contradiction, that with probability greater than 1 − 1/n over
x sampled from Dn, K(x) ≤ k− 3. Let Low be the set of n-bit strings x with K(x) ≤ k− 3 and
High be the set of n-bit strings with K(x) > k − 3. Consider the random variable S defined to
be “high” if x sampled from Dn is in High and “low” if x sampled from Dn is in Low. Let phigh
be the probability that S is “high” and plow the probability that S is “low”. By the chain rule
for entropy, we have that

H(Dn) ≤ H(Dn, S) = H(S) + plowH(Dn | S is “low”) + phighH(Dn | S is “high”).

Since S is defined on a 2-element set, the first term in the RHS is at most 1. Since Low has size
at most 2k−2, the second term is at most k − 2. Since phigh < 1/n and H(Dn | S is “high”) ≤
H(Dn) ≤ n, the third term is less than 1. Hence H(Dn) < k, in contradiction to the assumption
on Dn.

A key ingredient in our proofs is that satisfiable formulas and graphs with large cliques can
be compressed.

Lemma 46. If φ ∈ k-SAT(n,∆n) is satisfiable, then K(φ) ≤ n+∆n log((2k−1)
(
n
k

)
)+O(log(n)).

Proof. Let φ be a satisfiable k-CNF on n variables with ∆n clauses, and let z ∈ {0, 1}n be a
satisfying assignment to φ. We will describe φ using z and the index i of φ in the lexicographic
ordering of all sequences of ∆n k-clauses for which each clause is satisfied by z. Note that there
are at most (2k − 1)

(
n
k

)
k-clauses satisfied by z - given a choice of k variables, satisfiability of z

excludes one out of the 2k polarities for these variables in a clause. Hence the index of φ can
be described with at most ∆n log((2k − 1)

(
n
k

)
) +O(1) bits. To describe φ, we specify n, z, the

index i and a constant-size program that recovers φ from n, z, i. This takes n + ∆n log((2k −
1)
(
n
k

)
) +O(log(n)) bits overall.

Lemma 46 gives a saving over the encoding length of arbitrary k-CNFs with ∆n clauses
when ∆� 2k. Note that an arbitrary k-CNF with ∆n clauses requires encoding length at least
∆n log(2k

(
n
k

)
).

Lemma 47. Let t : N → N be a function. If an n-vertex graph G has a clique of size at least
t(n), then K(G) ≤ t log(n) +

(
n
2

)
−
(
t
2

)
+O(log(n)).

Proof. Suppose that G has a clique S of size t(n). We will describe G using the vertices in S
together with all edges such that at least one endpoint of the edge is not in S. The vertices in
S can be described with t log(n) bits. The edges that are not contained in S can be described
with

(
n
2

)
−
(
t
2

)
bits given knowledge of S, by a bitstring specifying for each pair of vertices (u, v)

in lexicographic order, where at least one of u and v is not in S, whether (u, v) is an edge of
G. Thus G can be described by specifying n, S and edges not in S, together with a program
for reconstructing G from these information. This takes t log(n) +

(
n
2

)
−
(
t
2

)
+ O(log(n)) bits

overall.

Lemma 47 gives a saving over the encoding length of arbitrary n-vertex graphs when t(n) =
ω(log(n)). Note that an arbitrary n-vertex graph requires encoding length at least

(
n
2

)
.

27

Theorem 48. Let ∆ ≥ 2k+3 be an integer. Suppose that there is a samplable distribution D
(resp. logspace-samplable distribution D) such that every probabilistic polynomial-time algorithm
solving k-SAT(n,∆n) on D has error at least 1/2−1/m2 for all but finitely many m (where m is
the bit-length of the encoding of the k-SAT formula), and moreover D has entropy deficiency at
most ∆n/(2k+1). Then one-way functions (resp. one-way functions computable in NC0) exist.

Proof. We give an average-case reduction implying that k-SAT(n,∆n) can be solved with error
at most 1/2− 1/100m on D = {Dm} for infinitely many m if GapK[s− λ, s] can be solved with
error at most 1/m3 on Dm for infinitely many m, for some efficiently computable s = Ω(m), λ =
ω(log(m)). The theorem follows by combining this reduction with Corollary 21 in case D is
samplable, and with Corollary 23 in case D is logspace-samplable.

For a given m, let n be the largest integer such that m(n, k,∆) ≤ m. We choose s(m) =
2n+ ∆n log((2k − 1)

(
n
k

)
) and λ(m) = log2(n). Suppose that GapK[s− λ, s] can be solved with

error at most 1/m3 on Dm for infinitely many m. Let I ⊆ N be the set of such good input
lengths m. By a simple Markov argument, there is a PPT algorithm A such that for every
m ∈ I, with probability at least 1− 1/m2 on x← Dm, the following holds:

• If K(x) ≤ s(m) − λ(m) then A(x) outputs 1 with probability ≥ 2/3, and if K(x) ≥ s(m)
then A(x) outputs 0 with probability ≥ 2/3.

If the above item holds for some x ∈ {0, 1}m, then we say x is good. (In particular, every x
such that s(m) − λ(m) < K(x) < s(m) is good.) Then a random sample from Dm is good
w.p. ≥ 1− 1/m2.

We use A to define a probabilistic polynomial-time algorithm A′ that solves k-SAT(n,∆n)
on Dm with error ≤ 1/2 − 1/100m for infinitely many m. Given input x, A′ simply simulates
A on x. If A outputs 0, then A′ outputs 0. If A outputs 1, A′ outputs a fixed bit b hardcoded
into the algorithm, which we specify later.

Clearly, A′ is a probabilistic polynomial-time algorithm. We need to choose the bit b so
that A′ solves k-SAT(n,∆n) on Dm with error ≤ 1/2 − 1/100m infinitely often. We say that
A 0-classifies x if K(x) > s(m)− λ(m) and A(x) outputs 0 with probability > 2/3. We choose
b to be 1 if for infinitely many m ∈ I, x ← Dm is the encoding of a satisfiable formula with
probability at least 1/2 conditioned on A not 0-classifying x; and b = 0 otherwise. Let I ′ ⊆ I be
an infinite set of input lengths such that for each m ∈ I ′, b is the correct answer for satisfiability
of x ← Dm with probability at least 1/2 conditioned on A not 0-classifying x. We show that
A′ correctly solves satisfiability on x with error at most 1/2− 1/100m on Dm for each m ∈ I ′.

The key point is that A′ always solves k-SAT correctly on inputs x for which A 0-classifies
x, and this event happens with noticeable probability over Dm when m ∈ I ′. Indeed, if A
0-classifies x, then K(x) > s(m) − λ(m), and x would be an unsatisfiable formula by Lemma
46 and our choice of ∆. Also, by Lemma 45 and the upper bound on entropy deficiency of D,
with probability at least 1/m over x ← Dm, K(x) > m − ∆n/2k+1 − 3 > s(m). Let p be the
probability that A 0-classifies x for a random x← Dm, then

p ≥ Pr
x←Dm

[x is good and K(x) > s(m)] ≥ 1/m− 1/m2,

which is ≥ 1/(2m) for m ≥ 2. Since b is the correct value for k-SAT on x← Dm with probability
at least 1/2 conditioned on A not 0-classifying x, we have that

Pr
x←Dm,A

[A(x) is correct] = Pr
x←Dm,A

[A(x) is correct | A 0-classifies x] · p

+ Pr
x←Dm,A

[A(x) is correct | A does not 0-classify x] · (1− p)

≥ (2/3) · p+ (1/2) · (1− p)
= 1/2 + p/6

≥ 1/2 + 1/100m.

28

We note that any reasonable encoding of a k-SAT formula on n variables with a linear
number of clauses has bit-length O(n log(n)), while the entropy deficiency upper bound for
Theorem 48 to apply is O(n).

Next we show an analogous result to Theorem 48 for Clique.

Theorem 49. Let t : N→ N be a function such that t(n) = ω(log(n)). Suppose that there is a
samplable distribution D (resp. logspace-samplable distribution D) such that every probabilistic
polynomial-time algorithm solving t-Clique on D has error at least 1/2−1/m2 for all but finitely
many m, and moreover D has entropy deficiency at most (1 − ε)

(
t
2

)
for some constant ε > 0.

Then one-way functions (resp. one-way functions computable in NC0) exist.

Proof Sketch. The proof is very similar to that of Theorem 48, so we just provide a sketch.
We give an average-case reduction implying that t-Clique(n) can be solved with error at most
1/2 − 1/nΩ(1) on D = {Dm} for infinitely many m if GapK[s − λ, s] can be solved with error
at most 1/mq on Dm for infinitely many m, for some constant q and efficiently computable
s = Ω(m), λ = ω(log(m)). The theorem follows by combining this reduction with Corollary 21
in case D is samplable, and with Corollary 23 in case D is logspace-samplable.

For a given m, let n be the largest integer such that m(n) ≤ m. Let ε > 0 be a constant
such that D has entropy deficiency at most (1−ε)t(n). We choose s(m) =

(
n
2

)
−(1−ε/2)

(
t
2

)
and

λ = log(n)2. The reduction is exactly the same as in the proof of Theorem 48, except that we
use Lemma 47 instead of Lemma 46 and the parameters defined above to argue correctness.

While the upper bound on entropy deficiency is inherently sub-linear in Theorem 48, it can
be chosen to be linear in Theorem 49 by choosing t = Ω(n). As far as we are aware, there is no
evidence against Ω(n)-Clique being hard on average on some samplable distribution.

A natural question is whether the assumption of Theorem 49 is believable. We justify this
assumption by showing that it follows from the well-known Planted Clique Hypothesis (thus
generalizes the latter).

Given a function t : N → N, the t-Planted Clique Hypothesis [Jer92, Kuc95, AKS98, JP00]
states that for almost all n, no probabilistic polynomial-time algorithm can distinguish with
probability 1/nO(1) between a random graph on n vertices where each edge is included inde-
pendently with probability 1/2 and the union of a random graph and a clique on a uniformly
chosen subset of t vertices. It is consistent with our current knowledge of algorithms for Clique
that the t-Planted Clique Hypothesis holds for t(n) = n0.49[Jer92,FK03,MPW15].

Since for t = ω(log(n)), a random graph has a t-Clique with negligible probability, the
t-Planted Clique Hypothesis also implies that t-Clique is hard on average with respect to the
distribution on graphs obtained by choosing a random graph with probability 1/2 and the union
of a random graph and a random planted clique of size t with probability 1/2.

Proposition 50. Let t : N → N be a function. If the t-Planted Clique Hypothesis holds,
then there is a samplable distribution D with entropy deficiency at most

(
t
2

)
/2 such that every

probabilistic polynomial-time algorithm solving t-Clique(n) has error at least 1/2 − 1/nω(1) on
all but finitely many n.

Proof. Consider the distribution D = {Dm} obtained as follows. Choose a random size-t(n)
subset S of [n] and a uniformly random G on n vertices where each edge is included indepen-
dently with probability 1/2. Let C[S] be the clique on S. With probability 1/2, output G,
and with probability 1/2 output the union of G and C[S]. By the t-Planted Clique Hypothesis,
t-Clique(n) is strongly hard on this distribution for all but finitely many n. The entropy of Dm

is at least
(
m
2

)
/2 + (

(
m
2

)
−
(
t
2

)
)/2 =

(
m
2

)
−
(
t
2

)
/2, and hence the entropy deficiency is at most(

t
2

)
/2.

29

In order to similarly justify the assumption of Theorem 48, we consider the following hy-
pothesis on pseudorandomness of random local functions, which is inspired by the candidate
OWF proposed by Goldreich [Gol00,App13,App16].

The Random Local Function Pseudorandomness Hypothesis states that for any c > 0, there
is an integer k and a k-ary predicate P such that for every ∆ > 0 no probabilistic poly-time
algorithm can distinguish the following 2 distributions with probability ≥ 1/nc:

1. ∆n uniformly chosen k-tuples S1, . . . S∆n of [n] together with uniformly and independently
chosen ∆n-bit string z;

2. ∆n uniformly chosen k-tuples S1, . . . S∆n of [n] together with the evaluations of P on
x|S1 , . . . x|S∆n

on a uniformly and independently chosen n-bit string x.

The following proposition is closely analogous to Proposition 50, and we omit the proof.

Proposition 51. Suppose the Random Local Function Pseudorandomness Hypothesis holds.
Then there are integers k and ∆ and a samplable distribution D with entropy deficiency at most
∆n/2k+1 such that any probabilistic polynomial-time algorithm solving k-SAT(n,∆n) on D has
error at least 1/2− 1/m3 for all but finitely many m.

5.2 Unconditional Average-Case CZK Protocols

In this subsection, we show unconditionally that GapK[s − ω(log n), s] admits an average-case
computational zero-knowledge protocol on infinitely many input lengths.

We first define the properties that our interactive proof system will have: namely, our proof
system is polynomially-bounded and computationally zero-knowledge. (For a rigorous definition
of interactive protocols, we refer the reader to Section 2.5 of [Vad06].)

Definition 52. Let (P, V) be an interactive protocol where P stands for “prover” and V stands
for “verifier”. We use 〈P, V 〉(x) to denote V ’s view of the interaction on input x.

• We say (P, V) is polynomially-bounded if the total length of messages exchanged between
P and V are polynomially-bounded, and V is a PPT algorithm.

• Let x be an input. We say (P, V) accepts x if V accepts in 〈P, V 〉(x) with probability 1,
and (P, V) rejects x if for every prover P ?, V accepts in 〈P ?, V 〉(x) with probability at
most 1/2.18

• We say (P, V) is (computationally) zero-knowledge if there is an oracle PPT S (called
a “simulator”) such that for every non-uniform PPT V ? and every x such that (P, V)
accepts x, the distributions 〈P, V ?〉(x) and SV

?
are computationally indistinguishable.

We show unconditionally that GapK[s − ω(log n), s] admits an average-case computational
zero-knowledge protocol.

Theorem 53. Let D = {Dn} be a samplable distribution, ∆ = ω(log n), and q ≥ 1. There is a
CZK protocol that on infinitely many input lengths n, solves GapK[s−∆, s] on D with error at
most 1/nq.

More precisely, there is a polynomially-bounded zero-knowledge interactive protocol (P, V)
such that for infinitely many n,

Pr
x←Dn

[K(x) ≤ s−∆ and (P, V) does not accept x] ≤ 1/2nq,

and
Pr

x←Dn
[K(x) > s and (P, V) does not reject x] ≤ 1/2nq.

18Note that it is possible that an interactive protocol (P, V) neither accepts nor rejects some input x.

30

Proof. The proof is by a win-win argument. Roughly speaking, if one-way functions exist, then
CZK = IP = PSPACE, and thus we can implement the algorithm in Theorem 15 in CZK; if
one-way functions do not exist, then Corollary 21 shows that GapK can be solved in average in
probabilistic polynomial time.

Case I: one-way functions exist. Suppose one-way functions exist, then CZK = IP [IY87,
BGG+88, Nao91, HILL99]. It is also known that IP = PSPACE [LFKN92, Sha92]. Let A1

be the unconditional heuristic for GapK[s − ω(log n), s] given in Theorem 15 that has error
probability at most 1/2nq over D. Note that A1 can be implemented in PSPACE, thus there
is a polynomially-bounded zero-knowledge interactive protocol (P, V) such that for every input
x ∈ {0, 1}?:

• if A1(x) accepts, then (P, V) accepts x;

• if A1(x) rejects, then (P, V) rejects x.

It follows that for every input length n,

Pr
x←Dn

[K(x) ≤ s−∆ and (P, V) does not accept x]

= Pr
x←Dn

[K(x) ≤ s−∆ and A1(x) rejects] ≤ 1/2nq,

and

Pr
x←Dn

[K(x) > s and (P, V) does not reject x]

= Pr
x←Dn

[K(x) > s and A1(x) accepts] ≤ 1/2nq.

Case II: one-way functions do not exist. Suppose no one-way functions exist. By Corol-
lary 21, there is a PPT algorithm A2 for GapK[s−∆, s] that has error at most 1/2nq over D, on
infinitely many input lengths. Consider the following trivial CZK protocol for GapK[s −∆, s]:
on input x, the verifier outputs A2(x) without interacting with the prover at all. This trivial
protocol solves GapK[s−∆, s] on average on infinitely many input lengths.

Similarly, one can also show unconditionally that GapMCSP is solvable by a CZK protocol
on average:

Corollary 54. Let 0 < δ < 1, q ≥ 1, and D = {Dn} be an (nδ)-locally samplable distribution.
Let s = Ω(nδ). Then there is a CZK protocol that on infinitely many input lengths n, solves
GapMCSP[s, sn5δ] on D with error at most 1/nq.

Proof Sketch. Suppose one-way functions exist. As MCSP is solvable in polynomial space, it
follows that GapMCSP[s, sn5δ] ∈ CZK.

On the other hand, suppose there are no one-way functions. By Theorem 32, there is a
randomized polynomial-time algorithm (i.e. a trivial CZK protocol) for GapMCSP[s, sn5δ] that
has error at most 1/nq over D, on infinitely many input lengths.

5.3 Limitations of Randomized Local Reductions

In this subsection, we discuss limitations on the power of local reductions for proving hardness
of GapMCSP. An (nδ)-local reduction from a language L to a language L′ is a polynomial-time
algorithm R mapping m-bits to n-bits such that for all x

L(x) = 1 ⇐⇒ L′(R(x)) = 1

31

and the i’th output bit of R(x) is computable in deterministic time nδ given i and random
access to x.

Murray and Williams [MW17] show that while almost all known NP-complete problems
are NP-complete under (no(1))-local reductions, MCSP is unconditionally not NP-hard under
deterministic (n.49)-local reductions. As a result, there is a formal sense in which a NP-hardness
result for MCSP must “look very different” from existing NP-hardness results.

A natural question is exactly how different would such a reduction have to be. For example,
what if one considers randomized local reductions instead of deterministic local reductions?
Could there be a relatively simple randomized local reduction from, say, SAT to MCSP? This
question gains further motivation in light of recent results showing NP-hardness for the multi-
output and conditional versions of MCSP using relatively simple randomized reductions [ILO20,
Ila20].

Our main result in this subsection is to give evidence against the existence of an (nδ)-local
randomized reduction from SAT to GapMCSP with a sufficiently large gap. A randomized (nδ)-
local reduction from L to L′ is a randomized polynomial-time algorithm R that maps m bits to
n bits such that for all x

Pr
R

[L(x) = L′(R(x))] ≥ 2/3

and the i’th output bit of R(x) is computable in deterministic time nδ given i and random
access to both x and the randomness used by R.

Before we state our results, we introduce some notation. Let T ∈ {0, 1}n, ρ ∈ {0, 1, ?}m, r ∈
{0, 1}m, i ∈ [n]. Unless otherwise stated, let LSamp be an (nδ)-locally samplable distribution
for some 0 < δ < 1. Throughout this subsection, let O denote a (deterministic) oracle that on
input (T, ρ, i) outputs an estimate to the quantity

Pr
r̃←ρ

[LSamp(n, i, r̃) = T (i)]

with additive error at most .01.19

Let the unlikeliness of r relative to O, denoted uO(r), be the number of iterations needed
for the following loop to terminate. Initially, set ρ = ?m and T = LSamp(n, r). While there
is a (lexicographically first) coordinate i ∈ [n] such that O(T, ρ, i) < 3/4, set ρ(j) = r(j) for
all indices j ∈ [n] of r that are queried by LSamp on input (n, i, r) (recall LSamp gets random
access to r). This completes our definition of uO(r). We also let ρO(r) denote the value of ρ
when the above loop terminates.

We now bound the probability that LSamp outputs some fixed string and has high unlikeli-
ness.

Lemma 55. Fix some T ∈ {0, 1}n. Then

Pr
r←{0,1}m

[LSamp(n, r) = T and uO(r) ≥ k] ≤ (4/5)k.

Proof. Fix T ∈ {0, 1}m. We will analyze how the loop above that defines uO(r) acts when r
is chosen uniformly at random. In particular, we consider the following loop. Set ρ initially
to be ?m. While there exists a (lexicographically first) coordinate i ∈ [n] with O(T, ρ, i) <
3/4, simulate running LSamp on (n, i, ρ) and whenever LSamp queries an index j of ρ that is
undefined, set ρ(j) to be an independent random bit and respond with that bit.

Let ρk denote the value of ρ on the k’th iteration of the loop. Our convention is that ρ0 = ?m

is the value of ρ before any iteration. We will show that for all k

Pr[ρk is defined and ∃r̃ that agrees with ρk satisfying T = LSamp(n, r̃)] ≤ (4/5)k

19To make the output of the O usable to polynomial-time algorithms, we assume its output has bit length
O(n).

32

where the probability is over the randomness in the loop. Observe that this probability bound
implies the lemma.

We prove the probability bound by induction on k. For the inductive step, fix a restriction20

ρk and assume i is a (lexicographically first) coordinate with O(T, ρk, i) < 3/4. Let ρk+1 be the
random variable that is equal to the (updated) value of ρ after one iteration of the above loop
starting with ρ = ρk. Then we have that

Pr
ρk+1

[∃r̃′ that agrees with ρk+1 and T = LSamp(n, r̃′)]

≤ Pr
ρk+1

[∃r̃′ that agrees with ρk+1 and T (i) = LSamp(n, i, r̃′)]

≤ Pr
r̃←ρk

[LSamp(n, i, r̃) = T (i)]

≤ 4/5

where the second inequality comes from the fact that ρ′ defines all the coordinates needed
to compute LSamp(n, i, r̃) (and chooses the coordinates not already defined by ρ uniformly
at random), and the third inequality comes from the approximation guarantee on O and the
assumption that O(T, ρ′, i) < 3/4.

Inductively, we can apply this bound to get that

Pr[ρk is defined and ∃r̃ that agrees with ρk satisfying T = LSamp(n, r̃)] ≤ (4/5)k.

On the other hand, we show that if T has high circuit complexity, then T can never be
output on an r with low unlikeliness.

Lemma 56. Let r ∈ {0, 1}m and T = LSamp(n, r). Then CC(T) ≤ O(uO(r)n3δ).

Proof. Let ρ = ρO(r) ∈ {0, 1, ?}m. By construction of ρ and the approximation guarantee on
O, we know that for all i ∈ [n]

Pr
r̃←ρ

[LSamp(n, i, r̃) = T (i)] ≥ 2/3.

We also know that the number of binary values in ρ is at most uO(r)nδ (since LSamp runs in
time nδ so each iteration of the loop sets at most nδ coordinates). Thus, applying Lemma 29,
we get that CC(T) ≤ O(uO(r)n3δ).

Next, we show that there is an efficient randomized algorithm with the properties we want
from O.

Proposition 57. There is a polynomial-time randomized algorithm A such that for all T ∈
{0, 1}n, ρ ∈ {0, 1, ?}m, and i ∈ [n], we have that A(T, ρ) estimates the quantity

Pr
r̃←ρ

[LSamp(n, i, r̃) = T (i)]

within additive error at most .01. Moreover, the failure probability of the algorithm is at most
2−(n+m)2

.

Proof. The algorithm is simple. Given ρ and T , it just samples a uniformly random r̃ agreeing
with ρ and checks if LSamp(n, i, r̃) = T (i). It repeats this independently a (sufficiently large)
polynomial number of times and outputs the empirical probability. This algorithm clearly runs
in polynomial time, and its correctness follows from a Chernoff bound.

Finally, we use all this machinery to show that one can unconditionally solve GapMCSP
(with a sufficiently large gap) on any (nδ)-locally samplable distribution on average.

20To emphasize, ρk is some fixed element of {0, 1, ?}m, not an uncertain random variable.

33

Theorem 58. There is a randomized polynomial-time algorithm A such that A(n, r) computes

GapMCSP[s, ω(n5δs log s)](LSamp(n, r))

with error at most O(2−n
δ
) when r is chosen uniformly at random.

Proof. The average-case algorithm is simple to describe. Given an input (n, r), pick an efficiently
computable oracle O (we describe how below) and output NO if uO(r) > k and output YES
otherwise, where we set

k = n2δs log s.

We now specify how to pick the oracle O. Let A′ be the algorithm in Proposition 57. We
cannot just use A′ as our oracle O because it does not give deterministic answers to queries
(A′ is randomized). So instead, we mimic Adleman’s construction to get an oracle that is
deterministic and (with high probability) computes the approximation we desire. In other
words, we will choose our oracle probabilistically, after we make this choice, the output of the
oracle is deterministic. In detail, we sample s ← {0, 1}poly(n) and let O be the algorithm that
runs A′ and uses s for its randomness. In this case, the output of O is deterministic and
because the failure probability of A′ is at most 2−(n+m)2

, a union bound implies that, with all
but exponentially small probability, we have that O computes

Pr
r̃←ρ

[LSamp(n, i, r̃) = T (i)]

with .01 additive error for all r̃ ∈ {0, 1, ?}m, T ∈ {0, 1}n, and i ∈ [n]. Thus, in our proof of
correctness, we can assume that our choice of O does indeed compute

Pr
r̃←ρ

[LSamp(n, i, r̃) = T (i)]

with .01 additive error for all r̃ ∈ {0, 1, ?}m, T ∈ {0, 1}n, and i ∈ [n]. This completes our
description of our algorithm. (The chance that this does not occur can be absorbed into the
failure probability of our algorithm.)

It is easy to see that this algorithm runs in probabilistic polynomial time since A′ (and
hence O) is computable in probabilistic polynomial time and the loop defining uO is efficient
given oracle access to O. It remains to show correctness.

First, we show this algorithm always rejects NO instances. If uO(r) ≤ k, then Lemma 56
implies CC(LSamp(n, r)) = O(kn3δ) = O(n5δs log s). So, this algorithm rejects all NO instances
when n is sufficiently large.

Next, we show this algorithm usually accepts YES instances. We prove this by applying
Lemma 55 and union bounding over the number of truth tables with circuit complexity at most
s:

Pr
r←{0,1}m

[CC(LSamp(n, r)) ≤ s and uO(r) > k]

≤
∑

T∈{0,1}n:CC(T)≤s

Pr
r←{0,1}m

[LSamp(n, r) = T and uO(r) > k]

≤
∑

T∈{0,1}n:CC(T)≤s

(4/5)k

≤ 2O(s log(n+s))(4/5)k

≤O(2−n
δ
)

As a corollary, we get that, under certain parameters, if L has a local reduction to GapMCSP,
then solving L on any locally samplable distribution is easy on average.

34

Corollary 59. Assume there is a (nδ/2)-local reduction from a language L to GapMCSP[s, ω(n3δs log s)].
Let LSamp be a (nδ/2)-locally samplable distribution. Then there is a randomized polynomial-

time algorithm solving L on LSamp with error at most 2−n
Ω(1)

.

Proof. Compose the (nδ/2)-local reduction from L to GapMCSP[s, ω(n3δs log s)] with the (nδ/2)-
local sampling algorithm for LSamp. This gives a new (nδ)-locally samplable distribution LSamp′

where
L(LSamp(n, r)) = GapMCSP[s, ω(n3δs log s)](LSamp′(poly(n), r)).

Then the Corollary follows from Theorem 58.

Conversely, setting L = SAT, we get that if SAT is hard under any locally samplable dis-
tribution, then SAT does not locally reduce to GapMCSP (with certain parameters) even if one
allows for randomness.

Corollary 60. If SAT is hard on some (nδ/2)-locally samplable distribution, then there is no
randomized (nδ)-local reduction from SAT to GapMCSP[s, ω(n3δs log s)]

Finally, we justify the assumption of Corollary 60. In particular, if there exists a one-way
function computable in NC0, then SAT is average-case hard on some O(log n)-locally samplable
distribution. As a corollary, under plausible assumptions, there is no randomized n0.01-local
reduction from SAT to GapMCSP[n0.2, n0.8].

Theorem 61. Suppose there are one-way functions computable in NC0. Then there is an
O(log n)-locally samplable distribution D such that for every polynomial p, no PPT algorithm
solves SAT with probability 1/2 + 1/p(n). (Actually, the local sampler only makes O(1) queries
to the random tape; it spends O(log n) time to output each bit of the SAT instance.)

Proof Sketch. If there are one-way functions computable in NC0, then there are also PRGs
computable in NC0 [HRV13]. Let G : {0, 1}n−

√
n → {0, 1}n be a PRG computable in NC0

d,
i.e. each output bit of G only depends on d input bits, where d is an absolute constant. Let
Dy be the following distribution over length-n strings: w.p. 1/2, we sample a uniformly random
length-n string, and w.p. 1/2, we sample a random output of G. Let D be the following
distribution: we sample y ← Dy, and encode the following assertion

“∃s ∈ {0, 1}n−
√
n, s.t. G(s) = y”

into a SAT instance. We can verify that Dy is O(d log n)-samplable, and the pseudorandomness
of G implies that SAT is average-case hard on Dy.

6 Acknowledgments

We thank Igor Carboni Oliveira for collaborating on this project at an early stage, and Shuichi
Hirahara and Ryan Williams for useful discussions.

References

[ACM+21] Eric Allender, Mahdi Cheraghchi, Dimitrios Myrisiotis, Harsha Tirumala, and Ilya
Volkovich. One-way functions and a conditional variant of MKTP. Electron. Col-
loquium Comput. Complex., 28:9, 2021. URL: https://eccc.weizmann.ac.il/

report/2021/009. 2, 9

35

https://eccc.weizmann.ac.il/report/2021/009
https://eccc.weizmann.ac.il/report/2021/009

[AD97] Miklós Ajtai and Cynthia Dwork. A public-key cryptosystem with worst-
case/average-case equivalence. In Frank Thomson Leighton and Peter W. Shor,
editors, Proceedings of the Twenty-Ninth Annual ACM Symposium on the Theory
of Computing, El Paso, Texas, USA, May 4-6, 1997, pages 284–293. ACM, 1997.
doi:10.1145/258533.258604. 1

[Adl78] Leonard Adleman. Two theorems on random polynomial time. In Proceedings of
the 19th Annual Symposium on Foundations of Computer Science, SFCS ’78, page
75–83, USA, 1978. IEEE Computer Society. doi:10.1109/SFCS.1978.37. 10

[AGGM06] Adi Akavia, Oded Goldreich, Shafi Goldwasser, and Dana Moshkovitz. On bas-
ing one-way functions on NP-hardness. In Proceedings of the 38th Annual ACM
Symposium on Theory of Computing, Seattle, WA, USA, May 21-23, 2006, pages
701–710. ACM, 2006. doi:10.1145/1132516.1132614. 1

[AIK06] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Cryptography in NC0. SIAM
J. Comput., 36(4):845–888, 2006. doi:10.1137/S0097539705446950. 4, 7, 15, 24,
26

[AKS98] Noga Alon, Michael Krivelevich, and Benny Sudakov. Finding a large hidden
clique in a random graph. In Proceedings of the Ninth Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, 25-27 January 1998, San Francisco, California, USA,
pages 594–598. ACM/SIAM, 1998. URL: http://dl.acm.org/citation.cfm?id=
314613.315014. 5, 29

[Ale11] Michael Alekhnovich. More on average case vs approximation complexity. Comput.
Complex., 20(4):755–786, 2011. doi:10.1007/s00037-011-0029-x. 1

[All01] Eric Allender. When worlds collide: Derandomization, lower bounds, and Kol-
mogorov complexity. In FST TCS 2001: Foundations of Software Technology and
Theoretical Computer Science, 21st Conference, Bangalore, India, December 13-15,
2001, Proceedings, volume 2245 of Lecture Notes in Computer Science, pages 1–15.
Springer, 2001. doi:10.1007/3-540-45294-X_1. 7, 11

[App13] Benny Applebaum. Pseudorandom generators with long stretch and low locality
from random local one-way functions. SIAM J. Comput., 42(5):2008–2037, 2013.
doi:10.1137/120884857. 5, 30

[App16] Benny Applebaum. Cryptographic hardness of random local functions - survey.
Comput. Complex., 25(3):667–722, 2016. doi:10.1007/s00037-015-0121-8. 5, 30

[BB15] Andrej Bogdanov and Christina Brzuska. On basing size-verifiable one-way func-
tions on NP-hardness. In Theory of Cryptography - 12th Theory of Cryptography
Conference, TCC 2015, Warsaw, Poland, March 23-25, 2015, Proceedings, Part
I, volume 9014 of Lecture Notes in Computer Science, pages 1–6. Springer, 2015.
doi:10.1007/978-3-662-46494-6_1. 1

[BFKL93] Avrim Blum, Merrick L. Furst, Michael J. Kearns, and Richard J. Lipton. Cryp-
tographic primitives based on hard learning problems. In Advances in Cryptology
- CRYPTO ’93, 13th Annual International Cryptology Conference, Santa Barbara,
California, USA, August 22-26, 1993, Proceedings, volume 773 of Lecture Notes in
Computer Science, pages 278–291. Springer, 1993. doi:10.1007/3-540-48329-2\
_24. 8

36

https://doi.org/10.1145/258533.258604
https://doi.org/10.1109/SFCS.1978.37
https://doi.org/10.1145/1132516.1132614
https://doi.org/10.1137/S0097539705446950
http://dl.acm.org/citation.cfm?id=314613.315014
http://dl.acm.org/citation.cfm?id=314613.315014
https://doi.org/10.1007/s00037-011-0029-x
https://doi.org/10.1007/3-540-45294-X_1
https://doi.org/10.1137/120884857
https://doi.org/10.1007/s00037-015-0121-8
https://doi.org/10.1007/978-3-662-46494-6_1
https://doi.org/10.1007/3-540-48329-2_24
https://doi.org/10.1007/3-540-48329-2_24

[BGG+88] Michael Ben-Or, Oded Goldreich, Shafi Goldwasser, Johan H̊astad, Joe Kilian, Sil-
vio Micali, and Phillip Rogaway. Everything provable is provable in zero-knowledge.
In CRYPTO ’88, volume 403 of Lecture Notes in Computer Science, pages 37–56.
Springer, 1988. doi:10.1007/0-387-34799-2_4. 8, 31

[BM84] Manuel Blum and Silvio Micali. How to generate cryptographically strong sequences
of pseudo-random bits. SIAM J. Comput., 13(4):850–864, 1984. doi:10.1137/

0213053. 1

[BT06] Andrej Bogdanov and Luca Trevisan. On worst-case to average-case reductions
for NP problems. SIAM J. Comput., 36(4):1119–1159, 2006. doi:10.1137/

S0097539705446974. 1

[CHO+20] Lijie Chen, Shuichi Hirahara, Igor Carboni Oliveira, Ján Pich, Ninad Rajgopal, and
Rahul Santhanam. Beyond natural proofs: Hardness magnification and locality. In
11th Innovations in Theoretical Computer Science Conference, ITCS 2020, January
12-14, 2020, Seattle, Washington, USA, volume 151 of LIPIcs, pages 70:1–70:48.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.

ITCS.2020.70. 2

[CIKK16] Marco L. Carmosino, Russell Impagliazzo, Valentine Kabanets, and Antonina
Kolokolova. Learning algorithms from natural proofs. In 31st Conference on Compu-
tational Complexity, CCC 2016, May 29 to June 1, 2016, Tokyo, Japan, volume 50
of LIPIcs, pages 10:1–10:24. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2016. doi:10.4230/LIPIcs.CCC.2016.10. 2

[CJW19] Lijie Chen, Ce Jin, and R. Ryan Williams. Hardness magnification for all
sparse NP languages. In David Zuckerman, editor, 60th IEEE Annual Sympo-
sium on Foundations of Computer Science, FOCS 2019, Baltimore, Maryland,
USA, November 9-12, 2019, pages 1240–1255. IEEE Computer Society, 2019.
doi:10.1109/FOCS.2019.00077. 2

[CJW20] Lijie Chen, Ce Jin, and R. Ryan Williams. Sharp threshold results for computational
complexity. In Konstantin Makarychev, Yury Makarychev, Madhur Tulsiani, Gau-
tam Kamath, and Julia Chuzhoy, editors, Proccedings of the 52nd Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2020, Chicago, IL, USA,
June 22-26, 2020, pages 1335–1348. ACM, 2020. doi:10.1145/3357713.3384283.
2

[Coo71] Stephen A. Cook. The complexity of theorem-proving procedures. In Proceedings of
the 3rd Annual ACM Symposium on Theory of Computing, May 3-5, 1971, Shaker
Heights, Ohio, USA, pages 151–158. ACM, 1971. doi:10.1145/800157.805047. 2

[FK03] Uriel Feige and Robert Krauthgamer. The probable value of the Lovász–Schrijver
relaxations for maximum independent set. SIAM J. Comput., 32(2):345–370, 2003.
doi:10.1137/S009753970240118X. 29

[FKS82] Michael L. Fredman, János Komlós, and Endre Szemerédi. Storing a sparse table
with O(1) worst case access time. In 23rd Annual Symposium on Foundations
of Computer Science, Chicago, Illinois, USA, 3-5 November 1982, pages 165–169.
IEEE Computer Society, 1982. doi:10.1109/SFCS.1982.39. 22

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random
functions. J. ACM, 33(4):792–807, 1986. doi:10.1145/6490.6503. 1, 4, 6, 23, 24

37

https://doi.org/10.1007/0-387-34799-2_4
https://doi.org/10.1137/0213053
https://doi.org/10.1137/0213053
https://doi.org/10.1137/S0097539705446974
https://doi.org/10.1137/S0097539705446974
https://doi.org/10.4230/LIPIcs.ITCS.2020.70
https://doi.org/10.4230/LIPIcs.ITCS.2020.70
https://doi.org/10.4230/LIPIcs.CCC.2016.10
https://doi.org/10.1109/FOCS.2019.00077
https://doi.org/10.1145/3357713.3384283
https://doi.org/10.1145/800157.805047
https://doi.org/10.1137/S009753970240118X
https://doi.org/10.1109/SFCS.1982.39
https://doi.org/10.1145/6490.6503

[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. J. Comput. Syst. Sci.,
28(2):270–299, 1984. doi:10.1016/0022-0000(84)90070-9. 1

[Gol00] Oded Goldreich. Candidate one-way functions based on expander graphs. Elec-
tron. Colloquium Comput. Complex., 7(90), 2000. URL: http://eccc.hpi-web.
de/eccc-reports/2000/TR00-090/index.html. 5, 30

[Gol01] Oded Goldreich. The Foundations of Cryptography - Volume 1: Basic Techniques.
Cambridge University Press, 2001. doi:10.1017/CBO9780511546891. 1, 10, 23

[Har83] Juris Hartmanis. Generalized Kolmogorov complexity and the structure of feasible
computations (preliminary report). In 24th Annual Symposium on Foundations
of Computer Science, Tucson, Arizona, USA, 7-9 November 1983, pages 439–445.
IEEE Computer Society, 1983. doi:10.1109/SFCS.1983.21. 2

[HILL99] Johan H̊astad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudo-
random generator from any one-way function. SIAM J. Comput., 28(4):1364–1396,
1999. doi:10.1137/S0097539793244708. 1, 6, 7, 23, 24, 31

[Hir18] Shuichi Hirahara. Non-black-box worst-case to average-case reductions within NP.
In 59th IEEE Annual Symposium on Foundations of Computer Science, FOCS
2018, Paris, France, October 7-9, 2018, pages 247–258. IEEE Computer Society,
2018. doi:10.1109/FOCS.2018.00032. 2

[Hir20] Shuichi Hirahara. Characterizing average-case complexity of PH by worst-case meta-
complexity. In 61st IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2020, Durham, NC, USA, November 16-19, 2020, pages 50–60. IEEE, 2020.
doi:10.1109/FOCS46700.2020.00014. 2

[Hir21] Shuichi Hirahara. Average-case hardness of NP from exponential worst-case hard-
ness assumptions. In STOC 2021, to appear, 2021. URL: https://eccc.weizmann.
ac.il/report/2021/058. 2

[HRV13] Iftach Haitner, Omer Reingold, and Salil P. Vadhan. Efficiency improvements in
constructing pseudorandom generators from one-way functions. SIAM J. Comput.,
42(3):1405–1430, 2013. doi:10.1137/100814421. 7, 23, 24, 35

[HS17] Shuichi Hirahara and Rahul Santhanam. On the average-case complexity of MCSP
and its variants. In 32nd Computational Complexity Conference, CCC 2017, July
6-9, 2017, Riga, Latvia, volume 79 of LIPIcs, pages 7:1–7:20. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2017. doi:10.4230/LIPIcs.CCC.2017.7. 7

[IL89] Russell Impagliazzo and Michael Luby. One-way functions are essential for com-
plexity based cryptography (extended abstract). In 30th Annual Symposium on
Foundations of Computer Science, Research Triangle Park, North Carolina, USA,
30 October - 1 November 1989, pages 230–235. IEEE Computer Society, 1989.
doi:10.1109/SFCS.1989.63483. 7, 14

[IL90] Russell Impagliazzo and Leonid A. Levin. No better ways to generate hard NP in-
stances than picking uniformly at random. In 31st Annual Symposium on Founda-
tions of Computer Science, St. Louis, Missouri, USA, October 22-24, 1990, Volume
II, pages 812–821. IEEE Computer Society, 1990. doi:10.1109/FSCS.1990.89604.
4, 7, 8, 14

38

https://doi.org/10.1016/0022-0000(84)90070-9
http://eccc.hpi-web.de/eccc-reports/2000/TR00-090/index.html
http://eccc.hpi-web.de/eccc-reports/2000/TR00-090/index.html
https://doi.org/10.1017/CBO9780511546891
https://doi.org/10.1109/SFCS.1983.21
https://doi.org/10.1137/S0097539793244708
https://doi.org/10.1109/FOCS.2018.00032
https://doi.org/10.1109/FOCS46700.2020.00014
https://eccc.weizmann.ac.il/report/2021/058
https://eccc.weizmann.ac.il/report/2021/058
https://doi.org/10.1137/100814421
https://doi.org/10.4230/LIPIcs.CCC.2017.7
https://doi.org/10.1109/SFCS.1989.63483
https://doi.org/10.1109/FSCS.1990.89604

[Ila20] Rahul Ilango. Approaching MCSP from above and below: Hardness for a condi-
tional variant and AC0[p]. In 11th Innovations in Theoretical Computer Science
Conference, ITCS 2020, January 12-14, 2020, Seattle, Washington, USA, volume
151 of LIPIcs, pages 34:1–34:26. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2020. doi:10.4230/LIPIcs.ITCS.2020.34. 32

[ILL89] R. Impagliazzo, L. A. Levin, and M. Luby. Pseudo-random generation from one-way
functions. In Proceedings of the Twenty-First Annual ACM Symposium on Theory
of Computing, STOC ’89, page 12–24, New York, NY, USA, 1989. Association for
Computing Machinery. doi:10.1145/73007.73009. 11

[ILO20] Rahul Ilango, Bruno Loff, and Igor Carboni Oliveira. NP-hardness of circuit mini-
mization for multi-output functions. In 35th Computational Complexity Conference,
CCC 2020, July 28-31, 2020, Saarbrücken, Germany (Virtual Conference), volume
169 of LIPIcs, pages 22:1–22:36. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2020. doi:10.4230/LIPIcs.CCC.2020.22. 32

[IN96] Russell Impagliazzo and Moni Naor. Efficient cryptographic schemes provably as
secure as subset sum. J. Cryptol., 9(4):199–216, 1996. doi:10.1007/BF00189260.
1

[IW97] Russell Impagliazzo and Avi Wigderson. P = BPP if E requires exponential circuits:
Derandomizing the XOR lemma. In Proceedings of the Twenty-Ninth Annual ACM
Symposium on Theory of Computing, STOC ’97, page 220–229, New York, NY,
USA, 1997. Association for Computing Machinery. doi:10.1145/258533.258590.
16

[IY87] Russell Impagliazzo and Moti Yung. Direct minimum-knowledge computations. In
CRYPTO ’87, volume 293 of Lecture Notes in Computer Science, pages 40–51.
Springer, 1987. doi:10.1007/3-540-48184-2_4. 31

[Jer92] Mark Jerrum. Large cliques elude the Metropolis process. Random Struct. Algo-
rithms, 3(4):347–360, 1992. doi:10.1002/rsa.3240030402. 5, 29

[JP00] Ari Juels and Marcus Peinado. Hiding cliques for cryptographic security. Des.
Codes Cryptogr., 20(3):269–280, 2000. doi:10.1023/A:1008374125234. 1, 29

[Kar72] Richard M. Karp. Reducibility among combinatorial problems. In Proceedings of
a symposium on the Complexity of Computer Computations, held March 20-22,
1972, at the IBM Thomas J. Watson Research Center, Yorktown Heights, New
York, USA, The IBM Research Symposia Series, pages 85–103. Plenum Press, New
York, 1972. doi:10.1007/978-1-4684-2001-2_9. 2

[KC00] Valentine Kabanets and Jin-Yi Cai. Circuit minimization problem. In Proceedings of
the Thirty-Second Annual ACM Symposium on Theory of Computing, May 21-23,
2000, Portland, OR, USA, pages 73–79. ACM, 2000. doi:10.1145/335305.335314.
2

[Ko86] Ker-I Ko. On the notion of infinite pseudorandom sequences. Theor. Comput. Sci.,
48(3):9–33, 1986. doi:10.1016/0304-3975(86)90081-2. 2

[Ko91] Ker-I Ko. On the complexity of learning minimum time-bounded Turing machines.
SIAM J. Comput., 20(5):962–986, 1991. doi:10.1137/0220059. 2, 11

[Kuc95] Ludek Kucera. Expected complexity of graph partitioning problems. Discret. Appl.
Math., 57(2-3):193–212, 1995. doi:10.1016/0166-218X(94)00103-K. 5, 29

39

https://doi.org/10.4230/LIPIcs.ITCS.2020.34
https://doi.org/10.1145/73007.73009
https://doi.org/10.4230/LIPIcs.CCC.2020.22
https://doi.org/10.1007/BF00189260
https://doi.org/10.1145/258533.258590
https://doi.org/10.1007/3-540-48184-2_4
https://doi.org/10.1002/rsa.3240030402
https://doi.org/10.1023/A:1008374125234
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1145/335305.335314
https://doi.org/10.1016/0304-3975(86)90081-2
https://doi.org/10.1137/0220059
https://doi.org/10.1016/0166-218X(94)00103-K

[Lev73] Leonid A. Levin. Universal sequential search problems. Problemy peredachi infor-
matsii, 9(3):115–116, 1973. 2

[Lev84] Leonid A. Levin. Randomness conservation inequalities; information and in-
dependence in mathematical theories. Inf. Control., 61(1):15–37, 1984. doi:

10.1016/S0019-9958(84)80060-1. 7

[Lev86] Leonid A. Levin. Average case complete problems. SIAM J. Comput., 15(1):285–
286, 1986. doi:10.1137/0215020. 2

[Lev03] Leonid A. Levin. The tale of one-way functions. Probl. Inf. Transm., 39(1):92–103,
2003. doi:10.1023/A\%3A1023634616182. 2

[LFKN92] Carsten Lund, Lance Fortnow, Howard J. Karloff, and Noam Nisan. Algebraic
methods for interactive proof systems. J. ACM, 39(4):859–868, 1992. doi:10.

1145/146585.146605. 31

[LO21] Zhenjian Lu and Igor Carboni Oliveira. An efficient coding theorem via probabilistic
representations and its applications. In ICALP 2021, to appear, 2021. URL: https:
//eccc.weizmann.ac.il/report/2021/041. 7

[LP20] Yanyi Liu and Rafael Pass. On one-way functions and Kolmogorov complexity. In
61st IEEE Annual Symposium on Foundations of Computer Science, FOCS 2020,
Durham, NC, USA, November 16-19, 2020, pages 1243–1254. IEEE, 2020. doi:

10.1109/FOCS46700.2020.00118. 2, 3, 4, 8

[LP21a] Yanyi Liu and Rafael Pass. Cryptography from sublinear-time average-case hard-
ness of time-bounded Kolmogorov complexity. In STOC 2021, to appear, 2021.
URL: https://eccc.weizmann.ac.il/report/2021/055. 2, 3

[LP21b] Yanyi Liu and Rafael Pass. On one-way functions from NP-complete problems. Elec-
tron. Colloquium Comput. Complex., 28:59, 2021. URL: https://eccc.weizmann.
ac.il/report/2021/059. 9

[LP21c] Yanyi Liu and Rafael Pass. On the possibility of basing cryptography on EXP 6=
BPP. In CRYPTO 2021, to appear, 2021. URL: https://eccc.weizmann.ac.il/
report/2021/056. 8

[MMW19] Dylan M. McKay, Cody D. Murray, and R. Ryan Williams. Weak lower bounds on
resource-bounded compression imply strong separations of complexity classes. In
Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2019, Phoenix, AZ, USA, June 23-26, 2019, pages 1215–1225. ACM, 2019.
doi:10.1145/3313276.3316396. 2

[MPW15] Raghu Meka, Aaron Potechin, and Avi Wigderson. Sum-of-squares lower bounds
for planted clique. In Rocco A. Servedio and Ronitt Rubinfeld, editors, Proceedings
of the Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC
2015, Portland, OR, USA, June 14-17, 2015, pages 87–96. ACM, 2015. doi:10.

1145/2746539.2746600. 29

[MW17] Cody D. Murray and R. Ryan Williams. On the (non) NP-hardness of computing
circuit complexity. Theory Comput., 13(1):1–22, 2017. doi:10.4086/toc.2017.

v013a004. 6, 32

[Nao91] Moni Naor. Bit commitment using pseudorandomness. J. Cryptol., 4(2):151–158,
1991. doi:10.1007/BF00196774. 31

40

https://doi.org/10.1016/S0019-9958(84)80060-1
https://doi.org/10.1016/S0019-9958(84)80060-1
https://doi.org/10.1137/0215020
https://doi.org/10.1023/A%3A1023634616182
https://doi.org/10.1145/146585.146605
https://doi.org/10.1145/146585.146605
https://eccc.weizmann.ac.il/report/2021/041
https://eccc.weizmann.ac.il/report/2021/041
https://doi.org/10.1109/FOCS46700.2020.00118
https://doi.org/10.1109/FOCS46700.2020.00118
https://eccc.weizmann.ac.il/report/2021/055
https://eccc.weizmann.ac.il/report/2021/059
https://eccc.weizmann.ac.il/report/2021/059
https://eccc.weizmann.ac.il/report/2021/056
https://eccc.weizmann.ac.il/report/2021/056
https://doi.org/10.1145/3313276.3316396
https://doi.org/10.1145/2746539.2746600
https://doi.org/10.1145/2746539.2746600
https://doi.org/10.4086/toc.2017.v013a004
https://doi.org/10.4086/toc.2017.v013a004
https://doi.org/10.1007/BF00196774

[Oli19] Igor Carboni Oliveira. Randomness and intractability in Kolmogorov complexity. In
46th International Colloquium on Automata, Languages, and Programming, ICALP
2019, July 9-12, 2019, Patras, Greece, volume 132 of LIPIcs, pages 32:1–32:14.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.

ICALP.2019.32. 7

[OPS19] Igor Carboni Oliveira, Ján Pich, and Rahul Santhanam. Hardness magnification
near state-of-the-art lower bounds. In 34th Computational Complexity Conference,
CCC 2019, July 18-20, 2019, New Brunswick, NJ, USA, volume 137 of LIPIcs,
pages 27:1–27:29. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. doi:

10.4230/LIPIcs.CCC.2019.27. 2

[OS17] Igor Carboni Oliveira and Rahul Santhanam. Conspiracies between learning al-
gorithms, circuit lower bounds, and pseudorandomness. In 32nd Computational
Complexity Conference, CCC 2017, July 6-9, 2017, Riga, Latvia, volume 79 of
LIPIcs, pages 18:1–18:49. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017.
doi:10.4230/LIPIcs.CCC.2017.18. 2, 8

[OS18] Igor Carboni Oliveira and Rahul Santhanam. Hardness magnification for natural
problems. In 59th IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2018, Paris, France, October 7-9, 2018, pages 65–76. IEEE Computer Soci-
ety, 2018. doi:10.1109/FOCS.2018.00016. 2

[PS19] Ján Pich and Rahul Santhanam. Why are proof complexity lower bounds hard?
In 60th IEEE Annual Symposium on Foundations of Computer Science, FOCS
2019, Baltimore, Maryland, USA, November 9-12, 2019, pages 1305–1324. IEEE
Computer Society, 2019. doi:10.1109/FOCS.2019.00080. 2

[RR97] Alexander A. Razborov and Steven Rudich. Natural proofs. J. Comput. Syst. Sci.,
55(1):24–35, 1997. doi:10.1006/jcss.1997.1494. 4

[RS21] Hanlin Ren and Rahul Santhanam. Hardness of KT characterizes parallel cryp-
tography. In CCC 2021, to appear, 2021. URL: https://eccc.weizmann.ac.il/
report/2021/057. 2, 8

[San20] Rahul Santhanam. Pseudorandomness and the minimum circuit size problem. In
11th Innovations in Theoretical Computer Science Conference, ITCS 2020, January
12-14, 2020, Seattle, Washington, USA, volume 151 of LIPIcs, pages 68:1–68:26.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.

ITCS.2020.68. 2, 4, 8

[Sha92] Adi Shamir. IP = PSPACE. J. ACM, 39(4):869–877, 1992. doi:10.1145/146585.

146609. 8, 31

[Sip83] Michael Sipser. A complexity theoretic approach to randomness. In Proceedings
of the 15th Annual ACM Symposium on Theory of Computing, 25-27 April, 1983,
Boston, Massachusetts, USA, pages 330–335. ACM, 1983. doi:10.1145/800061.

808762. 2

[Tra84] Boris A. Trakhtenbrot. A survey of Russian approaches to perebor (brute-force
searches) algorithms. IEEE Ann. Hist. Comput., 6(4):384–400, 1984. doi:10.

1109/MAHC.1984.10036. 2

[Vad06] Salil P. Vadhan. An unconditional study of computational zero knowledge. SIAM
J. Comput., 36(4):1160–1214, 2006. doi:10.1137/S0097539705447207. 30

41

https://doi.org/10.4230/LIPIcs.ICALP.2019.32
https://doi.org/10.4230/LIPIcs.ICALP.2019.32
https://doi.org/10.4230/LIPIcs.CCC.2019.27
https://doi.org/10.4230/LIPIcs.CCC.2019.27
https://doi.org/10.4230/LIPIcs.CCC.2017.18
https://doi.org/10.1109/FOCS.2018.00016
https://doi.org/10.1109/FOCS.2019.00080
https://doi.org/10.1006/jcss.1997.1494
https://eccc.weizmann.ac.il/report/2021/057
https://eccc.weizmann.ac.il/report/2021/057
https://doi.org/10.4230/LIPIcs.ITCS.2020.68
https://doi.org/10.4230/LIPIcs.ITCS.2020.68
https://doi.org/10.1145/146585.146609
https://doi.org/10.1145/146585.146609
https://doi.org/10.1145/800061.808762
https://doi.org/10.1145/800061.808762
https://doi.org/10.1109/MAHC.1984.10036
https://doi.org/10.1109/MAHC.1984.10036
https://doi.org/10.1137/S0097539705447207

[Vad12] Salil P. Vadhan. Pseudorandomness. Found. Trends Theor. Comput. Sci., 7(1-3):1–
336, 2012. doi:10.1561/0400000010. 11

[Wil16] R. Ryan Williams. Natural proofs versus derandomization. SIAM J. Comput.,
45(2):497–529, 2016. doi:10.1137/130938219. 2

[Yao82] Andrew Chi-Chih Yao. Theory and applications of trapdoor functions (extended ab-
stract). In 23rd Annual Symposium on Foundations of Computer Science, Chicago,
Illinois, USA, 3-5 November 1982, pages 80–91. IEEE Computer Society, 1982.
doi:10.1109/SFCS.1982.45. 1, 3, 10

A Unconditional Hardness of GapK

Recall that Theorem 15 presents an algorithm for GapK[n−∆, n] with error probability 2−∆/3.
We show that such algorithms have some limits, in the sense that even if we allow an arbitrarily
large (but finite) running time, no algorithm could improve the error parameter to o(2−∆/n).

Theorem 62. No algorithm computes GapK[n −∆, n] on the uniform distribution D = {Un}
with error at most o(2−∆/n).

Proof. For contradiction, suppose there is an algorithm A that solves GapK[n − ∆, n] on the
uniform distribution with error probability o(2−∆/n). Let x1, x2, . . . , x` denote the strings of
length n that are rejected by A in lexicographic order. Let i be the smallest index such that
K(xi) ≥ n−∆. Since A(x) fails with probability o(2−∆/n), we know that i ≤ o(2n−∆/n). Since
we can describe y by revealing i, n and the code of A, we get that

K(y) ≤ log n+ log i+O(1) ≤ n−∆− ω(1),

which is a contradiction.

42
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

https://doi.org/10.1561/0400000010
https://doi.org/10.1137/130938219
https://doi.org/10.1109/SFCS.1982.45

