
Tight Space Complexity of the Coin Problem

Mark Braverman∗

Princeton University
Sumegha Garg†

Harvard University
Or Zamir‡

Institute for Advanced Study

Abstract

In the coin problem we are asked to distinguish, with probability at least 2/3, between n i.i.d.
coins which are heads with probability 1

2
+ β from ones which are heads with probability 1

2
− β. We

are interested in the space complexity of the coin problem, corresponding to the width of a read-once
branching program solving the problem.

The coin problem becomes more difficult as β becomes smaller. Statistically, it can be solved whenever
β = Ω(n−1/2), using counting. It has been previously shown that for β = O(n−1/2), counting is essentially
optimal (equivalently, width poly(n) is necessary [Braverman-Garg-Woodruff FOCS ’20]). On the other
hand, the coin problem only requires O(logn) width for β > n−c for any constant c > log2(

√
5−1) ≈ 0.306

(following low-width simulation of AND-OR tree of [Valiant Journal of Algorithms’84]).
In this paper, we close the gap between the bounds, showing a tight threshold between the values of

β = n−c where O(logn) width suffices and the regime where poly(n) width is needed, with a transition
at c = 1/3. This gives a complete characterization (up to constant factors) of the memory complexity of
solving the coin problem, for all values of bias β.

We introduce new techniques in both bounds. For the upper bound, we give a construction based
on recursive majority that does not require a memory stack of size logn bits. For the lower bound, we
introduce new combinatorial techniques for analyzing progression of the success probabilities in read-once
branching programs.

1 Introduction

The coin problem. Given n independent coins that all have bias of β either towards 1 or −1, the
coin problem asks to determine the direction of the bias. The problem becomes harder with decreasing
β. As we shall discuss later, it is closely connected to the majority problem. It appears naturally in the
context of streaming lower bounds [BGW20], pseudo-randomness [RSV13, BRRY14] and circuit complexity
[Aar10, LSS+19]. In the context of read-once branching programs, it was first formally considered in [BV10].

Statistically, the optimal strategy to distinguish would be to output the majority of the n coins. Majority
attains a constant advantage when β > n−0.5, and a vanishing failure probability whenever β � n−0.5.
However, majority is not computable by many natural models of computation, such as bounded-width
read-once branching programs and AC0 circuits. In this paper, we focus on solving the coin problem
using read-once branching programs (ROBPs). The main complexity measure of such programs is width
— corresponding to the number of different states a program can be in after reading t bits of the input.
Informally, a width-w ROBP corresponds to a streaming algorithm with logw bits of memory.

Prior results. Motivated by derandomization, [BV10, Ste13, CGR14] study the smallest bias β such that
width-w length-n ROBPs can distinguish between the two cases. The works [BV10, Ste13] show that a
width-w length-n ROBP cannot solve the coin problem for β < c/(2 log n)w−2 (for a small enough constant

∗Email: mbraverm@cs.princeton.edu. Research supported in part by the NSF Alan T. Waterman Award, Grant No. 1933331,
a Packard Fellowship in Science and Engineering, and the Simons Collaboration on Algorithms and Geometry.
†Email: sumegha.garg@gmail.com. Research supported by Michael O. Rabin Postdoctoral Fellowship.
‡Email: orzamir@ias.edu. Research supported in part by NSF grant No. CCF-1900460.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 83 (2021)

c > 0), which gives a width-Ω
(

logn
log logn

)
lower bound for solving the coin problem for any β = n−Θ(1). Works

of [MNSW98, KNW10] imply hardness of computing majority using nΩ(1)-width ROBPs, which are correct
on every input with high probability, but such results don’t imply hardness of solving the coin problem.
Recent work of [BGW20] shows that any ROBP which, on n i.i.d. uniform input bits, outputs majority with
high advantage (over the uniform distribution), requires nΩ(1) width. This result implies that solving the

coin problem (up to statistical distance between the two distributions) for β < cn−
1
2 (for a small enough

constant c > 0) requires nΩ(1) width, improving on the previously known Ω
(

logn
log logn

)
width lower bound for

smaller values of β (see Appendix B for the details).
Next, focusing on upper bounds, [BV10], using the circuit construction for approximating majority

by [Ama09], shows that for constant width ROBPs, the lower bound by [Ste13] is tight. That is, [BV10]
constructs a width-w (for constant w) ROBP that solves the coin problem for β = O((log n)2−w). A recursive

OR-AND ((x1∧x2)∨ (x3∧x4)) tree of depth log4 n can detect a bias of Ω(n− log2(
√

5−1)) ≈ Ω(n−0.306) (more
on this in Section 2.1). In other words, if the input is i.i.d. Ber(1/2 + δ), then the output of a recursive
OR-AND tree is ∼ Ber(1/2 + n0.306 · δ). Valiant [Val84] used such a recursive OR-AND tree to compute
majority. In fact, [Bop85, DZ97] showed that this is the best bias-amplification a read-once boolean formula
can achieve. A read-once boolean formula of depth d can be executed by a ROBP of width equal to (d+ 1)
(instead of the brute force 2d-width recursive implementation). Thus, [Val84] implies a length-n, O(log n)-
width, ROBP that distinguishes the coin problem for bias greater than n−0.306 — we can already detect a
very small bias with memory much better than counting. However, it turns out that n−0.306 is the smallest
bias read-once boolean formulas can detect [Bop85, DZ97]. A natural question is whether this limitation
extends to O(log n)-width ROBP.

Previous and new results for various β’s are summarized in the table below. Prior to our work there was
an exponential gap between the upper bound nO(1) and the lower bound Ω(log n) on the width of a ROBP
for solving the coin problem for values of β between n−0.306 and n−0.5. It was strongly suspected that the
threshold at which the required width becomes polynomial is at one of the endpoints of this interval: either
the upper bound one gets from OR-AND trees is tight, and improving on it requires polynomial width — or,
β ∼ n−0.5 is a singularly difficult case, and bias n−0.5+ε can be detected using width O(log n). It turns out
that neither is the case. Surprisingly, the transition from logarithmic to polynomial width happens around
β = n−1/3:

Range of β Upper bound lower bound
β > (log n)−c w = O(1) [BV10] w = Ω(1) (trivial)

n−0.306 � β � 1
logn w = O(log(1/β)) (Similar to [BV10, Val84]) w = Ω

(
log(1/β)
log logn

)
[BV10, Ste13]

β ∼ n−0.5 w = nO(1) (counting) w = nΩ(1) [BGW20]

n−1/3+ε < β < n−0.306 w = O(log n) [New] w = Ω
(

logn
log logn

)
[BV10, Ste13]

β < n−1/3−ε w = nO(1) (counting) w = nΩ(1) [New]

An equivalent1 formulation of bounded-width ROBPs is the model of computation in which the input
is given bit-by-bit and we are limited to store only M bits of memory after processing each bit, yet, we
are given an access to a clock that is incremented with every given input bit. In [HC70] it is shown that
a m-state automaton2 (time-invariant function) cannot distinguish coins with bias β < c

m (for a small
enough constant c > 0). Hence, without clock access only β = Ω(1) can be distinguished with constant-
sized memory M = O(1). Nevertheless, the tribes function Tribes (xi,j) := ∨si=1 ∧wj=1 xi,j can be easily
computed with M = O(1) ([BV10]) for any w, s, when (xi,j) are the n = s · w input bits (where xi,j is the
((i − 1)w + j)th input bit). For w ≈ log n, s ≈ n

logn the value of the Tribes function can distinguish coins

with bias β = 1
logn−log logn+O(1) . Hence, with clock-access M = O(1) memory suffices for β � 1

logn . This

1up to taking a logarithm, i.e., w = 2M .
2compare m with 2M .

2

illustrates the importance of using the clock and like [BV10], in constructing our upper bound, we crucially
use the time-step of a read-once branching program.

New upper bound. As noted before, any depth-d read-once formula for the coin problem can be translated
into a width-O(d) ROBP (and thus into a streaming with clock automaton with ∼ log d bits of memory).

Using the boolean AND-OR tree [Val84], one gets that O(log n)-width suffices when β > n− log2(
√

5−1) ≈
n−0.306, but this cannot be improved for read-once boolean formulas. We show that the O(log n)-width upper
bound can be extended to β > n−1/3+ε for any ε > 0. This is interesting for two reasons: (1) Previous upper
bounds for the coin problem relied on the connection between read-once formula depth and ROBP upper
bounds. We cannot rely on this connection due to known limitations on read-once boolean formulas. Instead,
we expand the type of recursive programs that can be executed with very limited memory. This shows a
gap between the strength of read-once NC1 formulas and O(log n)-width read-once branching programs. (2)
The upper bound is tight: the memory complexity jumps exponentially once β drops below n−1/3.

New lower bound. We show that whenever β < n−1/3−ε, the memory M needed to solve the coin problem
increases from O(log log n) to Ω(log n) — this is matched by a trivial upper bound attained by counting the
number of heads. Previously, such lower bound was only known for β ∼ n−0.5 — proved in [BGW20] using
information complexity techniques3. The fact that Θ(log n) memory is required to detect bias as high as
n−1/3 is surprising, because the information complexity of detecting such bias (e.g. as measured by the
amount of information about the coin tosses that the automaton needs to store) is o(log n). Indeed, our
proof introduces combinatorial techniques to obtain the lower bound. These combinatorial techniques are
likely to be useful in other ROBP contexts where information-theoretic techniques cannot work.

Main theorems.

Theorem 1.1 (Informal statement of Theorem 4.12). For all constant ε > 0, there exists a length-n width-

O(log n) ROBP that solves the coin problem for bias β ≥ n− 1
3 +ε.

Theorem 1.2 (Corollary of 5.16). For all constant ε > 0, any length-n ROBP that solves the coin problem

for bias β ≤ n− 1
3−ε, requires nΩ(ε) width.

Other Related Work The coin problem has been studied in various computational models, such as
AC0 circuits [SV10, Aar10, CGR14], AC0[⊕] [LSS+19], product tests [LV18] and regular ROBPs [BRRY14,
RSV13]. Lower bounds on coin problem have applications in the area of pseudorandomness and circuit
lower bounds. [BRRY14] used the fact that regular width-w length-n ROBPs cannot distinguish coins with
bias β < c/w (for small enough constant c > 0) to improve the state-of-art construction of pseudorandom
generators for regular ROBPs. [LSS+19] used the coin problem for constructing functions that proved a
fixed-depth size-hierarchy theorem for uniform AC0[⊕].

2 Proof Overview

In this section, we give a proof outline for our tight bounds for solving the coin problem on low-width
read-once branching programs (see Section 3 for the formal definition). Before we dive into the bounds for
ROBPs, we prove tight bounds for a model of computation we call Skip-Forward Read-Once Program
(SF-ROP). A size-` SF-ROP P on n-bit input is defined as a sequence of ` states S1, S2, . . . , S` (S1 represents
the start state and S`−1 = t0 and S` = t1 represent the two terminal states). Each non-terminal state s
has an input bit xi(s) associated with it, which it reads to jump to the next state. Let P (s, 0) (and P (s, 1))
represent the states that P transitions to, from state s, when xi(s) is 0 (and 1). We require that these
states are ahead of s in the sequence and that the input bits associated with P (s, 0) and P (s, 1) have strictly

3Note that n−0.5 is the smallest value of β for which the bias is statistically detectable from n samples.

3

higher indexes than i(s). We also require that each execution on input x reaches one of the terminal states.
Each input bit of x is read once as the input indexes that the program reads keep increasing at every state
transition. SF-ROP is called “skip forward” as the program skips some states to transition to the next state
in sequence.

In principle, SF-ROPs are more powerful than ROBPs but in our context, they turn out to be the “right”
abstraction. We prove that to solve the coin problem with bias β (coins with bias towards 1 ends at t1 with
probability > 2/3, and ones with bias towards 0 end at t0 with probability > 2/3), the size complexity of a
SF-ROP is Θ(β−3) (both upper and lower bound). In particular, this readily implies our lower bound when
β < n−1/3 as a length-w width-n ROBP can be seen as a size-(w · n) SF-ROP.

In the opposite direction, we use the upper bound on SF-ROP solving the coin problem to get a “special”
constant-sized ROBP, which amplifies the bias and can be recursed on, without blowing up the width
exponentially.

2.1 Overview of the Upper Bound

We show that one can detect a very small bias using a read-once branching program with memory require-
ments that are exponentially smaller than what is needed to count and take the majority (which is the optimal
strategy). Intuitively, the layers of the program — the “time dimension” — ends up substituting for memory.
As an instructive example, let us first consider the alternating two-input OR-AND tree of depth d = log4 n
([Val84] used such a tree to compute majority). The function F (x1, x2, x3, x4) := (x1 ∧ x2)∨ (x3 ∧ x4) maps

i.i.d. inputs Ber(q) into Ber(f(q)). The function f has one fixed point at p =
√

5−1
2 , where f(p) = p. If the

inputs are distributed according to Ber(p), then the output is distributed according to Ber(p) (fixed point
can be shifted to 1/2 by randomly adding 1s to the input stream). If the inputs are distributed according
to Ber(p + ε), then the output is distributed according to Ber(p + (

√
5 − 1)2ε + O(ε2)). Thus β will get

amplified (approximately) to

(
√

5− 1)2d · β = (
√

5− 1)log2 n · β = nlog2(
√

5−1) · β,

which is constant as long as β = Ω(n− log2(
√

5−1)) ≈ Ω(n−0.306). As noted in previous papers (for example,
[CSV15]), a depth d read-once boolean formula on n bits can be executed by a length-n width-(d + 1)
read-once branching program, which gives a O(log n)-width ROBP to solve the coin problem for bias greater
than Ω(n−0.306). [Bop85, DZ97] showed that this is the best a read-once boolean formula can detect. We
improve the bias detected by read-once branching programs to ∼ n−1/3 (using a construction based on the
majority function) without going through read-once boolean formulas, but before that let’s look at low-width
simulation of d-depth read-once boolean formulas for intuition.

ROBP for read-once boolean formulas. Consider a read-once boolean formula F (with AND/OR gates
at non-leaf nodes) on variables x1, . . . , xn, where the variables appear in F in this order. To convert the
computation into a branching program format, it is instructive to consider the following question: suppose
we are given xi+1, . . . , xn; what information about x1, . . . , xi do we need to compute F (x1, . . . , xn)?

We can view the evaluation of F as a recursive execution, where if F = ∨kj=1Fj , the subformulas Fj are
executed in order, and when Fj is being executed, the stack contains the value of F1 ∨ . . .∨Fj−1. Therefore,
to complete the computation of F given xi+1, . . . , xn, all we need to know is the state of the stack of the
computation of F at time i — that is, after observing x1, . . . , xi.

Each layer of the recursive evaluation of a formula with AND and OR gates is evaluating a single AND/OR
function, and thus requires 1 bit of state. Therefore, to evaluate a depth d formula, the stack appears to
require d bits of storage, corresponding to 2d different possible states and giving a width-2d ROBP to evaluate
a read-once boolean formula. However, one can do better by noting that if F = F1∨F2, and F1 has evaluated
to 1 (that is, the first bit of the stack is 1), then the output of the executing of F2 will not affect the output
of the calculation (which will be 1). This observation holds in general: for each layer of the recursion, one
value on the stack means that we care about the output of the child being computed, and the other value (0

4

for the AND gate and 1 for an OR gate) means that we do not care. Whenever we don’t care, the execution
is unaffected if we modify (or forget) the portions of the stack corresponding to the evaluation of that child.

To save space, let us replace values on the stack that cannot affect evaluation of the function with 0’s.
This means that for each i ∈ [n], there are only d+ 1 possible states of the stack (represented by a position
t ∈ [0, d]), such that the stack till t stores values which may affect the evaluation of F (for every layer of
recursion, it’s type (AND or OR) fixes this value), followed by 0’s. This gives a length-n width-(d + 1)
read-once branching program evaluating read-once formulas.

Thus, for an AND/OR formula, recursion doesn’t blow up the width exponentially. What helps an
AND/OR gate is the fact that when we learn the value of a AND/OR gate G, we “suspend” or “fast for-
ward” the computation on the remaining inputs of G, since these cannot affect the ultimate outcome of the
computation. Hence, we open the recursion on a child for only a singe value of the stack till now. Unfor-
tunately, this property is unique to the AND/OR gates. Given an AND(G1, G2, G3) gate (with G1, G2, G3

appearing in this order), saying “we care about the value of G2” implies that G1 evaluated to 1. On the
other hand, for a majority gate MAJ(G1, G2, G3), the fact that G2 is influential does not determine the
value of G1, and thus the recursive execution will open G2 for multiple values of the stack, increasing the
number of states to 2Ω(d).

Our construction. The bias amplifying gadget in the read-once formula was an OR-AND gate which,
as discussed above, could be recursed on without blowing the width exponentially. Our bias amplifying
read-once branching program (ROBP) is based on the majority function and has the property that saying
“we care about the value of the (i + 1)th input bit” fixes the state of the program in the ith layer. Such a
property is true for ROBPs with effective width 1. A ROBP has an effective width of w′ if every layer
has at most w′ non-dormant nodes, which are nodes that transition to different states, in the next layer,
depending on whether the next bit is 0 or 1. In other words, a node in ith layer is dormant if it doesn’t
look at the (i+ 1)th input bit while transitioning to the next layer. ROBPs with effective width 1 can be
recursed on without blowing the width exponentially. This is because, we open the recursion on a child only
for a single state in every layer and hence the width increases linearly. Thus, if we show a length-c1 width-c2
ROBP (with effective width 1) that amplifies the bias β to a · β (where c1 and c2 are constants), then we
can recurse up to logc1 n levels to get a O(log n)-width ROBP, which detects a bias of n− logc1 a.

We first construct a length-m width-
√
m ROBP B1 that amplifies the bias of each input bit (β) to

∼
√
mβ (outcome has bias of

√
mβ). B1 keeps track of the count, stops whenever the count reaches ±

√
m

and outputs the sign of the count. B1 can be viewed as an approximation to the majority function4. As
every ROBP corresponds to a SF-ROP when the states are sequenced in increasing order of their layers, B1

gives a size-(m3/2) SF-ROP P on m-bit input that amplifies the bias of the input bits (β) to ∼
√
mβ.

Next, we just look at the skip-forward read-once program P and convert it into a ROBP B with
effective width equal to 1. Let S1, S2, . . . , Sm3/2 be the states in the sequence of the program P . The
nodes in the ith layer of B are indexed by {Sj}j∈[m3/2], where the node corresponding to Si is ‘Active’ and
the nodes corresponding to states Sj |j 6= i are of the FF [Sj] type (short for ‘Fast-Forward’ to Sj). In other
words, ith layer of B corresponds to the state Si and (i+ 1)th input bit is read or cared about iff B reaches
state Si – ‘Active’ node in the ith layer. To execute P , B reads the next input bit whenever it reaches an
‘Active’ state (say in the ith layer) and uses ‘Fast-Forward’ nodes to transition to P (Si, xi+1) (FF [Sj] skips
the input bits till it reaches the jth layer).

Thus, B is a m3/2-length m3/2-width ROBP with effective width 1, which imitates the execution of P
using a m3/2-length input instead of a m-length input5. The question is – how does the output distribution
of B compare to that of SF-ROP P when the input bits are i.i.d. Ber(p) for both programs. We observe
that the output distribution is the same, as for P – the bit read at a state s is independently drawn from
Ber(p) conditioned on reaching s and the transition probabilities will remain unchanged when each state

4Truncating the count at m1 would have amplified the bias β to min{m1,
√
m} · β; thus, m1 ≈

√
m gives the optimal

construction.
5A more careful conversion will give m3/2-length O(m1/2)-width ROBP with effective width 1, however this does not affect

the resulting performance (which is a function of length), and the width-m3/2 reduction is more straightforward to describe.

5

is given it’s unique bit as in B. Therefore, B is a m3/2-length m3/2-width ROBP with effective width
1, which amplifies the input bias β to output bias of ∼

√
mβ. Recursion up to logm3/2 n levels gives us a

O(log n)-width ROBP, which detects a bias of n− log
m3/2

√
m ≈ n−1/3.

2.2 Overview of the Lower Bound

Attaching posterior probabilities to states and transitions. The key observation that makes our
lower bound possible is that at any point of the execution of the SF-ROP the ‘knowledge’ of the program
about the answer (the coin’s bias) can be summarized using a single number: the current estimate p(S) ∈ [0, 1]
on the probability that the coin is biased towards 1, assuming the initial bias has been chosen to be +β or
−β with an equal probability. Thus, in the beginning of the program’s execution p(S1) = 1/2, while the
success requirement implies that p(t1) > 2/3 and p(t0) < 1/3.

Probabilities p(s) can be attached to transitions between states and not just to states themselves. For a
transition s→ s0 the corresponding p(s→ s0) is the probability that the coin is biased towards 1 conditioned
on the program finding itself in the s→ s0 transition.

How posterior probabilities evolve throughout the program. Each time a state s queries a bit
xi(s), the result is either 0, in which case it transitions to s0 := P (s, 0), or 1, in which case it transitions
to s1 := P (s, 1). It is important to note that there is a simple connection between p(s) and p(s → s0) and
p(s→ s1), given by Bayes rule. For example,

p(s→ s1) = Pr[Bias=‘+’|reach s→ s1] =
Pr[reach s→ s1|Bias=‘+’] · 0.5

Pr[reach s→ s1]
=

Pr[reach s|Bias=‘+’] · 0.5 · (0.5 + β)

Pr[reach s] · (p(s) · (0.5 + β) + (1− p(s)) · (0.5− β))
=

p(s) · (0.5 + β)

0.5 + 2 · p(s) · β − β
.

The only fact we need to know about the above equation is that |p(s)− p(s→ s1)| < O(β): reading one
input bit cannot change our belief about the answer by too much.

When a number of transitions S1 → S, . . . , Sk → S merge into a single state S, their conditional
probabilities of positive bias also merge in a predictable way into the weighted average of the conditional
probabilities:

p(S) =
Pr[reach S1 → S] · p(S1 → S) + . . .+ Pr[reach Sk → S] · p(Sk → S)

Pr[reach S1 → S] + . . .+ Pr[reach Sk → S]
(1)

Split-and-merge game. Sweep the SF-ROP from first to last state. During step t consider all the
transitions of the form Si → Sj that cross the (t− 1)− t boundary between {S1, . . . , St−1} and {St, . . . , S`}.
That is, such that i < t ≤ j. For each such transition Si → Sj , let w(Si → Sj) be the probability that the
program reaches that transition.

We can map the transitions through the (t−1)− t boundary to distributions Xt of masses on the interval
[0, 1], where for each transition Si → Sj with i < t ≤ j we put mass w(Si → Sj) at location p(Si → Sj).
Note that w(Si → Sj) of transitions that cross the (t− 1)− t boundary adds up to 1, because every program
execution crosses that boundary exactly once. Therefore, each Xt is a distribution.

Initially, X1 is an atomic mass at 1/2. At the end of the execution, by the success condition, X` will have
all its mass outside the (1/3, 2/3) interval. For each t, the transition from Xt to Xt+1 involves transitions
entering state St being replaced with transitions leaving state St. These can be broken down to two steps:
(1) Merge: masses corresponding to transitions entering St are merged into their center of mass p(St)
according to equation (1); (2) Split: the mass at p(St) is split into two masses corresponding to the value
of xi(St). The two resulting masses are in the interval (p(St)−β, p(St) +β)), and their center of mass is still
p(St). Intuitively, as our goal is to push as much mass away from 1/2 as possible, split steps are working in
our favor, while merge steps work against us.

6

In our lower bound proof, we show that at least Ω(β−3) split moves are needed to move the mass away
from the middle. The overarching technique is related to the lower bound proof using pebbles in [BRRY14].
Interestingly, in our case here we do not believe there is a direct analytical argument lower bounding the
number of split steps. For example, a second-moment argument only gives an Ω(β−2) lower bound (roughly
corresponding to bias β = n−0.5). The second moment of X0 is 0, and the second moment of X` is constant.
Since each split step is confined into an interval of length 2β, splitting a mass m increases second moment
by O(m · β2), giving a β−2 lower bound. The extra β−1 factor requires an additional argument — showing
that the mass is spread across the interval, and thus a typical split step will only involve ∼ β mass, leading
to only a β3 increase in the second moment. We do not know if a direct analytic proof (involving an energy
function) exists — we give a combinatorial argument.

The discrete split-only game, and a combinatorial lower bound. After some transformations, the
split-and-merge game described in the previous paragraph can be transformed into the following discrete-
state, split-only game. At step t, Y t is a distribution on states {−k,−k+1, . . . , 0, 1, . . . , k}, where k = Θ(β−1).
A split step on location i, takes the mass Y ti and splits it evenly between locations i+ 1 and i− 1:

Y t+1
i = 0; Y t+1

i−1 = Y ti−1 + Y ti /2; Y t+1
i+1 = Y ti+1 + Y ti /2.

Initially, Y 1
0 = 1 — all the mass is at location 0. Our goal is to move at least half the mass outside of the

[−k/2, k/2] interval. We would like to accomplish this goal using as few split steps as possible. It is not hard
to see that this can be done using O(k3) split steps. We give a combinatorial argument showing that this is
in fact tight. We sketch it here.

Imagine that the masses are made of play dough. Embed n = δ · k (for a small constant δ) grains of
sparkling sand into the play dough, and observe them throughout a typical trajectory of the split game. Let
random variable Qi denote the number of times particle i experiences a split operation, and let Qij be the
number of times particles i and j experience a split operation together. By an inclusion-exclusion argument
we have

Total number of splits ≥
∑
i=1..n

Qi −
∑

i,j=1..n

Qij . (2)

Each individual grain of sand follows an unbiased random walk. Since it leaves the [−k/2, k/2] interval
with probability > 0.5, it must be the case that E[Qi] = Ω(k2). A slightly more involved calculation shows
that two particles, each following a random walk, meet at most O(k) times in expectation: E[Qij] = O(k).
Therefore, using (2), we get:

E[Total number of splits] ≥ Ω(n · k2)−O(n2k) = k3 · (Ω(δ)−O(δ2)) = Ω(k3),

for an appropriately chosen small constant δ > 0.

2.3 Outline of the paper

In Section 3, we establish certain notations, formally define read-once branching programs (ROBP), skip-
forward read-once programs (SF-ROP) and related notions needed for our construction. In Section 4, we first
establish the bias-amplifying properties of a majority-like gadget of constant size and construct a read-once
branching program with effective width 1, which executes the gadget by encoding states in a time-step (or
location in the topological order). Then, we define taking tensor of two branching programs (for recursive
execution) and prove the upper bound for coin problem with bias greater than n−1/3+Ω(1). In Section 5, we
prove the lower bound for SF-ROPs solving the coin problem, which instantly gives a lower bound on the
width of ROBPs for bias less than n−1/3−Ω(1).

3 Preliminaries

We use [n] to denote the set {1, 2, . . . , n}. Given x ∈ {−1, 1}n, we represent the projection of x on coordinates
from a to b as x[a : b], that is, x[a : b] = (xa, xa+1, . . . , xb). We will interchangeably represent the set of bits

7

by {0, 1} or {−1, 1} depending on the context. Let Ber(p) (p ∈ [0, 1]) represent the Bernoulli distribution,
that puts weight p on 1 and 1−p on −1 (or 0). Given a distribution D : X → [0, 1], let x ∼ D represent that
x is drawn from D. Given a k-length sequence x = (x1, . . . , xk) ∈ {−1, 1}k, let flip(x) represent the sequence
(−x1, . . . ,−xk). Let R represent the set of real numbers. The following inequalities would be useful in the
paper:

1. ∀x ∈ R, 1− x ≤ e−x.

2. ∀x ∈ [0, 1], e−x ≤ 1− x
2 .

The following Stirling’s approximation [Rob55] for factorials would be useful in the paper:

√
2πnn+ 1

2 e−n ≤ n! ≤ enn+ 1
2 e−n

Definition 3.1. A read-once branching program (ROBP) of length-n and width-w is an acyclic directed graph
whose nodes, called states, are partitioned into n layers, where each layer consists of at most w nodes/states.
There is an additional “start” state at the start of the program. The last layer consists of 2 states called
“accept” (or 1) and “reject” (or −1). From every state but for the latter two, there are two outgoing edges,
labeled by −1 and 1, to the states in the following layer. On input x ∈ {−1, 1}n, the computation reads the
bits of x (ith bit at the (i− 1)th layer) and traverses the branching program, starting from the “start” state,
by following the edges according to the labels given by the bits of x. The string x is accepted by the program
if the computation ends in the “accept” state.

In the paper, we will also consider ROBPs that output a state, instead of “accept” or “reject”. Given a
length-n and width-w ROBP B, let LBi represent the set of nodes/states in the ith layer (i ∈ {0, 1, . . . , n}),
where LB0 just contains the “start” state, that is, sB . We represent the state transition from (i− 1)th layer
to ith layer using the function Bi : LBi−1×{−1, 1} → LBi (i ∈ [n]), that is, the edge labeled b ∈ {−1, 1}, from
a state s in (i − 1)th layer, goes to the state Bi(s, b) in the ith layer. Given an n-bit input x ∈ {−1, 1}n,
B(x) ∈ LBn represents the output of B on x, that is, the state reached in after traversing B along edges with
labels corresponding to bits of x. B(x) is in {−1, 1}, for ROBPs with last layer consisting of only “accept”
and “reject”.

The goal of the coin problem is to distinguish between n independent coins i.i.d from Ber
(

1
2 − δ

)
and n

independent coins i.i.d. from Ber
(

1
2 + δ

)
.

Definition 3.2. We say a length-n and width-w ROBP B solves the coin problem for parameter/bias δ with
an advantage p if

Pr
∀i∈[n],xi∼Ber(1

2 +δ)
[B(x) = 1]− Pr

∀i∈[n],xi∼Ber(1
2−δ)

[B(x) = 1] ≥ p (3)

Pr
∀i∈[n],xi∼Ber(1

2−δ)
[B(x) = −1]− Pr

∀i∈[n],xi∼Ber(1
2 +δ)

[B(x) = −1] ≥ p (4)

Next, we define certain operations on the ROBPs that would make the exposition of the O(log n)-width
ROBP for solving the coin problem easier. Given a read-once branching program B outputting a state and
a mapping OB : LBn → {−1, 1}, we convert B into a ROBP that outputs −1 or 1 using the following merge
operation.

Definition 3.3. Let B be a length-n, width-w ROBP and OB : LBn → {−1, 1} be a mapping that assigns
each output state of B a −1 or 1. Merge(B,OB) outputs a length-n, width-w ROBP read-once branching
program B′ such that ∀i ∈ [n− 1], B′i = Bi and B′n = OB(Bn). Hence, ∀x ∈ {−1, 1}n, B′(x) = OB(B(x)).

Let B be a length-n, width-w ROBP outputting 1 or −1, and B′ be a length-n′, width-w′ ROBP
outputting 1 or −1. In the paper, we would be interested in constructing a length-n ·n′ ROBP B′′ = B⊗B′
such that on a (n · n′)-bit input x ∈ {1,−1}n·n′ , B′′(x) = B(B′(x[1 : n′]), B′(x[n′ + 1 : 2n′]), . . . , B′(x[((n−
1) · n′) + 1 : n · n′])). To compute the width of such a B, we would be interested in the following definitions.
We will formally define B ⊗B′ in Section 4.3.

8

Definition 3.4. Let B be a length-n, width-w ROBP outputting 1 or −1. A node s in the ith layer of B
(i ∈ {0, 1, . . . , n− 1}) is called dormant if both the edges from s go to the same node in the next layer, that
is,

Bi+1(s, 1) = Bi+1(s,−1).

Let DBi = {s ∈ LBi | s is dormant} be the set of dormant nodes in the ith layer of B.

Definition 3.5. Let B be a length-n, width-w ROBP outputting 1 or −1. Let w′ ≥ 1 be the smallest w′′ ≥ 1
such that for every layer of B, at most w′′ (w′′ ≤ w) nodes are not dormant. Then, w′ is called the
effective width of B. Thus,

∀i ∈ {0, 1, . . . , n− 1}, |LBi \ DBi | ≤ w′.

3.1 Introducing Skip-Forward Read-Once Program

In this section, we formally define Skip-Forward Read-Once Program. The following exposition gives a teaser
for the tight bounds for ROBPs solving the coin problem.

Definition 3.6. We define a size-` Skip-Forward Read-Once Program (SF-ROP) P on input
x1, . . . , xn as follows. It has ` states, which are indexed by {1, . . . , `−1, `} such as S1, . . . , S` (to specify a topo-
logical order), with two special terminal states S`−1 = t0, S` = t1 and a starting state S1. Each non-terminal
state s ∈ {Sj}j∈[`−2] has associated i(s) ∈ [n] – the index of the bit that it is reading, P (s, 0), P (s, 1) – the
states, that are ahead of s in the topological order, and to which it transitions when xi(s) = 0 and xi(s) = 1,
respectively.

In addition, we require that whenever P (s, 0) and P (s, 1) are non-terminal, i(P (s, 0)), i(P (s, 0)) > i(s).
In other words, the indexes (input as well as state) at which the program is looking are strictly increasing
throughout the execution. We also require that the program always reaches one of the two terminal states.

We say that the program P distinguishes distributions µ0 and µ1 with advantage δ if∣∣∣∣ Pr
x∼µ0

[P reaches t1]− Pr
x∼µ1

[P reaches t1]

∣∣∣∣ > δ

t0 corresponds to an output of 0 (or −1 depending on context) and t1 corresponds to outputting 1. For
x ∈ {0, 1}n, P (x) denotes the output of P when executed on x. We say that a SF-ROP P solves the coin
problem for bias β if

Pr
∀i∈[n],xi∼Ber(1/2+β)

[P (x) = 1] ≥ 2/3 and Pr
∀i∈[n],xi∼Ber(1/2−β)

[P (x) = 0] ≥ 2/3.

SF-ROP is a more general model of computation than a ROBP as a length-n width-w ROBP can be seen
as a SF-ROP of size at most (w ·n+ 1) on an n-bit input6. Thus, a lower bound of s on the size of SF-ROP
would translate to a lower bound of (s− 1)/n on the width of a ROBP.

Definition 3.7. For every `-sized SF-ROP P using n input bits, we define flattened version of P as Flat[P],
which is an `-sized SF-ROP using `− 2 input bits, such that ∀j ∈ [`− 2], b ∈ {0, 1}, Flat[P](Sj , b) = P (Sj , b)
and i(Sj) = j. In other words, under Flat[P], each state has a unique input bit associated with it, matching
the index of the state under the topological ordering.

We observe that for the purpose of solving the coin problem where each input bit is i.i.d., the state-input
bit associations under a SF-ROP doesn’t affect the probability of reaching t1/ t0. This allows us to convert
a SF-ROP into a ROBP with effective width 1 (more on this in Section 4.2), which performs well under
recursion. Formally,

6order the states the ROBP in increasing order of the corresponding layers, and this satisfies the requirements of a SF-ROP.

9

Claim 3.8. Let P1 and P2 be two `-sized SF-ROPs having identical state transition functions, that is, ∀s ∈
{Sj}j∈[`−2], b ∈ {0, 1}, P1(s, b) = P2(s, b), but different association functions i1(s) ∈ [n1] and i2(s) ∈ [n2]
respectively. Then, ∀ 0 ≤ p ≤ 1,

Pr
∀i∈[n1],xi∼Ber(p)

[P1(x) = 1] = Pr
∀i∈[n2],xi∼Ber(p)

[P2(x) = 1]

and similarly for output 0.

Proof. We prove the claim for P and Flat[P], and that would prove the claim for P1 and P2, as the flattened
version of P1 and P2 are equivalent. As P is read-once (reads every input at most once in order), and all
input bits are i.i.d. Ber(p), conditioned on reaching any non-terminal state s, xi(s) is drawn from Ber(p)
even conditioned on reaching s. Then, if we transition according to a new i.i.d. Ber(p) bit on state s, the
probability of reaching the next state remains the same and it doesn’t affect the subsequent transitions which
read other independent bits. Thus, we can give each state their unique bit, as in Flat[P], without changing
the distribution of the output when bits are drawn i.i.d. Ber(p).

In Section 5 (Lemma 5.16), we prove that any SF-ROP that solves the coin problem for bias β with
success probability 2/3 requires Ω(β−3) size. In Section 4.2 (Figure 2, Remark 4.6), we construct a size
O(β−3), thus showing tight bounds for SF-ROPs solving the coin problem. The lower bound on the size
of a SF-ROP solving the coin problem requires work and the lower bound for ROBPs then follows easily.
Whereas, the upper bound for SF-ROP solving the coin problem follows comparatively easily but the upper
bound for ROBPs, using the corresponding flattened SF-ROP, requires work.

4 Coin Problem Upper Bound

In this section, we construct a O(log n)-width ROBP that solves the coin problem for bias greater n−1/3+ε,
with success probability at least 0.98. In Section 4.1, we describe a random process that amplifies the bias of
a random bit (almost) as well as majority but in square root number of states. In Section 4.2, we construct a
length-m3/2, width-m3/2 ROBP with effective width 1 that amplifies the bias β to ≈ m1/2 · β. In Section
4.3, we recurse to amplify the bias and length exponentially, while increasing the width only linearly.

4.1 Bias-Amplifying Random Process

Consider the following k (k is odd) step random process (imitating majority) on states
{−k′,−k′ + 1, . . . , 0, . . . , k′ − 1, k′} associated with parameter p (also described in Figure 1). We
start the random process at state s0 = 0. Let si be the random variable denoting the state reached after i
steps.

Random Process RP (k, k′, p)

1. (Start) At the start of the random process, state is 0, that is, s0 = 0.

2. (Walk) For all i ∈ [k], at the ith step, sample an input bit bi ∼ Ber(p). Update the state as follows:

si+1 =

{
si if si ∈ {k′,−k′}
si + bi otherwise.

3. (End) Let y be a random variable that takes value −1 if sk < 0 and 1 if sk > 0.

Abusing the notation, given a k-bit sequence x = (x1, . . . , xk) ∈ {−1, 1}k, we define si(x) to be the state
reached at the ith step after following Update 2 on the input sequence x (that is, instead of sampling the
bit bi, we use bi = xi). Note that, as k is odd, sk 6= 0 and, we let y(x) = 1 if sk(x) > 0 and −1 if sk(x) < 0.

10

0start 1−1 k′ − 1· · · k′−k′ + 1 · · ·−k′
1 11 1

−1 −1 −1

111

−1−1 −1−1

1,−11,−1

Figure 1: State transitions for the Random Process RP (k, k′, p). The process starts at 0 and takes k steps
according to the above automaton where at each step, input bit is 1 with probability p.

We prove the following claim comparing the probabilities that the random process RP (k, k′, p) end at j
or −j (j ∈ [k′]), which would be useful in analyzing the probability that the output (y) is 1.

Claim 4.1. Let k ≥ k′ > 0. Then, under the random process RP (k, k′, p) (p ∈ (0, 1)), for all j ∈ [k′],

Pr[sk = j]

Pr[sk = −j]
=

(
p

1− p

)j
.

The proof follows easily using symmetry and we give the complete proof in Appendix A.1. The claim
allows to show the following proposition for odd k (which is formally proved in Appendix A.1).

Proposition 4.2 (Bias Doesn’t Decrease). For odd k ≥ k′ > 0 and 0 < δ ≤ 1
2 , under the random process

RP
(
k, k′, 1

2 + δ
)
, we have that

Pr[y = 1] = Pr[sk > 0] ≥ 1

2
+ δ.

And under the random process RP
(
k, k′, 1

2 − δ
)
, we have that Pr[y = −1] = Pr[sk < 0] ≥ 1

2 + δ, implying

Pr[y = 1] = Pr[sk > 0] ≤ 1

2
− δ.

Next, we look into the probability that sk > 0 under the random process RP (k, k′, p) for certain values
of k, k′ and p. We assume that k is odd and k ≥ camp where camp > 0 is a large enough constant to

be determined later. We take k′ =
⌊

1
2

√
k
⌋

and assume p = 1
2 + δ (where 0 < δ ≤ 1√

k
). We prove that

Pr[y = 1] = Pr[sk > 0] > 1
2 + 1

20

√
k · δ for such values of k, k′ and p.

Lemma 4.3 (RP Amplifies Bias). For odd k ≥ camp (where camp > 0 is a large enough constant) and

0 < δ ≤ 1√
k

, under the random process RP
(
k,
⌊

1
2

√
k
⌋
, 1

2 + δ
)

, we have that

Pr[y = 1] = Pr[sk > 0] >
1

2
+

1

20

√
k · δ. (5)

And under the random process RP (k,
⌊

1
2

√
k
⌋
, 1

2 − δ), we have that Pr[y = −1] = Pr[sk < 0] > 1
2 + 1

20

√
k · δ,

implying

Pr[y = 1] = Pr[sk > 0] <
1

2
− 1

20

√
k · δ. (6)

Short Proof. Refer to Appendix A.1 for the complete proof. For odd k, we first show that, under the random
process RP (k, k′, 1

2 + δ),

Pr[sk > 0] >
1

2
+

Pr[sk = k′]

2

(
1− e−2δk′

)
(7)

This lower bound follows from the disparity (Claim 4.1) in probability of ending at k′ and −k′ under

RP (k, k′, 1
2 + δ). Using the fact that ∀x ∈ [0, 1], e−x ≤ 1− x

2 and 2δk′ ≤ 1 for k′ =
⌊

1
2

√
k
⌋

and δ ≤ 1√
k

, we

get that

Pr[sk > 0] ≥ 1

2
+

Pr[sk = k′]

2
(1− (1− δk′)) =

1

2
+ Pr[sk = k′] · k

′

2
· δ

11

Using Sterling’s approximation and facts about Binomial distribution, we prove that Pr[sk = k′] ≥ 1
4 for

k′ =
⌊

1
2

√
k
⌋

and δ ≥ 0. Thus, continuing the calculations above, we get the following bound on Pr[sk > 0],

assuming that k ≥ camp ≥ 100:

Pr[sk > 0] >
1

2
+

1

8
·
⌊

1

2

√
k

⌋
· δ ≥ 1

2
+

1

20

√
k · δ (8)

Thus, Pr[y = −1] = Pr[sk < 0] < 1
2 −

1
20

√
kδ. By symmetry, under the random process

RP
(
k,
⌊

1
2

√
k
⌋
, 1

2 − δ
)

, we get that Pr[sk > 0] < 1
2 −

1
20

√
kδ (for 0 < δ ≤ 1√

k
and k ≥ ck).

Starting with bits that are biased towards 1 with probability 1
2 +δ, the random process RP (k,

⌊
1
2

√
k
⌋
, 1

2 +

δ) “outputs” a random variable y that is biased towards 1 with probability at least 1
2 + 1

20

√
k · δ (for

0 < δ < 1√
k

), which is strictly greater than 1
2 + δ for k > 400. Hence, we view the random process as a

bias-amplification gadget. This random process approximates majority and gets optimal amplification up

to constant factors. We use k′ =
⌊

1
2

√
k
⌋

to amplify the bias till 1√
k

and then use the majority function and

the following claim for end cases.

Claim 4.4 (Majority is a Distinguisher for Biased Coins). Let X1, ..., Xm be i.i.d. ∼ Ber(p) random variables.
Then for p ≥ 1

2 + 1
r and m ≥ 20r2,

Pr

[
m∑
i=1

Xi > 0

]
≥ 0.99

And for p ≤ 1
2 −

1
r and m ≥ 20r2,

Pr

[
m∑
i=1

Xi < 0

]
≥ 0.99

Claim follows easily using Chernoff bound [Che52] and see Appendix A.1 for details. Consider the
random process RP (m,m, p). Then, Pr[sm > 0] is exactly equal to the probability that Pr [

∑m
i=1Xi > 0],

where X1, ..., Xm are i.i.d. ∼ Ber(p) random variables. This leads to the following proposition.

Proposition 4.5. Let 0 < δ ≤ 1
2 and k ≥ 20

δ2 . Under the random process RP
(
k, k, 1

2 + δ
)
, we have that

Pr[y = 1] = Pr[sk > 0] ≥ 0.99.

And under the random process RP
(
k, k, 1

2 − δ
)
, we have that

Pr[y = 1] = Pr[sk > 0] ≤ 0.01.

4.2 Bias-Amplifying Read-Once Branching Program

Next, we construct a read-once branching program that imitates the random process RP (k, k′, p) and amplify
the bias of a coin as RP does.

Bias-amplifying width-based ROBP Our first attempt at the read-once branching program B(1) just
stores the state of the random process at each step, and outputs 1 if the end state is greater than 0 and −1
otherwise. Let B′ be a length-k width-(2k′+1) read-once branching program that stores the state after i steps
of the random process RP (k, k′, p) in the ith layer. Formally, ∀i ∈ [n], s ∈ {−k′, . . . , 0, . . . , k′}, b ∈ {−1, 1},

B′i(s, b) =

{
s if s ∈ {k′,−k′}
s+ b otherwise,

12

0(0)start 0(1)

−1(1)

· · ·

−k′(1)

1(1)

· · ·

k′(1)

0(2)

−1(2)

· · ·

−k′(2)

1(2)

· · ·

k′(2)

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

0(k)(t0)

−1(k)(t0)

· · ·

−k′(k)(t0)

1(k)(t1)

· · ·

k′(k)(t1)

1

−1

1

1

1,−1

1,−1

1

−1

−1

−1

1

1

1,−1

1,−1

1

−1

−1

−1

1

1

1,−1

1,−1

1

−1

−1

−1

Figure 2: SF-ROP imitating the Random Process RP (k, k′, p) when input bits are i.i.d. Ber(p). The states
of P are ordered as 0(0),−k′(1), . . . , 0(1), . . . , k′(1), . . . ,−k′(k−1), . . . , 0(k−1), . . . , k′(k−1), t0, t1. (i+1)th input
bit is associated with the state [s](i) (s ∈ {−k′, . . . , k′}).

where sB′ = 0. We use the merge operation to define the B(1) (Definition 3.3). Let

OB′(s) =

{
1 if s > 0

−1 otherwise
.

B(1) = Merge(B′, OB′). It is easy to see that B(1)(x) = y(x), that is, 1 if sk(x) > 0 and −1 if sk(x) < 0 (for
odd k). Lemma 4.3 applies to the output of B(1) when input is i.i.d. Ber(1/2± δ).

The effective width of B(1) is 2k′− 1 (states k′ and −k′ are dormant in every layer). Thus, the width
blows up exponentially when we recurse on B(1) to amplify the bias to the maximum. As mentioned in
Section 3.1, we use Skip-Forward Read-Once Programs as an intermediary model to construct a ROBP B(2)

(which is equivalent to B(1) for the purpose of solving the coin problem) with effective width 1.

Bias-amplifying SF-ROP (Figure 2) Let P be a size-` SF-ROP on k-bit input representing B(1),
where ` < k(2k′ + 1) + 1. P orders the states in increasing order of the layers, that is, in the or-
der 0(0), −k′(1), . . . , 0(1), . . . , k′(1),. . . , t0, t1 (all edges thus go from left to right). Here, the states
{−k′(i), . . . , 0(i), . . . , k′(i)} represent the ith layer of the branching program B(1) and reads xi+1, and the
accept state of B(1) is replaced by t1 and reject state by t0. P imitates the Random Process RP (k, k′, p)
when input is i.i.d. Ber(p).

Remark 4.6 (Upper bound for SF-ROP solving the coin problem). Let k = Θ(k′2) such that, under
RP (k, k′, 1

2 + δ),
Pr[sk ∈ {−k′, k′]} ≥ 0.99.

Such a k exists for every k′ using anti-concentration of Binomial distribution. Then, for every δ > 0, there
exists a large enough k′ = Θ(1/δ), such that

Pr[sk > 0] > Pr[sk = k′] > 2/3

under RP (k, k′, 1/2 + δ) (using Claim 4.1). This gives a O(δ−3)-sized SF-ROP that solves the coin problem
with probability 2/3.

13

Bias-amplifying time-based ROBP Next, we use Flat[P] (Definition 3.7), which is an `−sized SF-ROP
on ` − 2 input bits (` ≤ k(2k′ + 1) + 1), to construct a length-(` − 2), width-(` − 1) ROBP B(2) with
effective width equal to 1 satisfying the bias-amplification properties of RP (k, k′, p). The reduction is
simple – let S1, S2, . . . , S` be the states of Flat[P]. Layer i of B(2) (0 ≤ i ≤ ` − 2) corresponds to the
state Si+1 of Flat[P] (except for last layer, whose reject state corresponds to S`−1 = t0 and accept state
corresponds to S` = t1). The nodes in B(2) (except for in the start and the last layer) are labelled by FF [s],
where s ∈ {Sj}2≤j≤`. The start vertex of B(2) is labelled by FF [S1]. FF [s] is short for ‘Fast-Forward to
s’ and it signifies a command to ignore the input bits till you reach the layer or time-step corresponding to
state s. And, then B(2) transitions according Flat[P] to the next state. For the ease of formally defining the
transition functions of B(2), we also label the accept vertex as FF [S`] and reject vertex as FF [S`−1]. The
transition function from layer (i− 1) to i (i ∈ [`− 2]) is as follows (s ∈ {Sj}2≤j≤`, b ∈ {−1, 1}):

B
(2)
i (FF [s] , b) =

{
FF [Flat[P](s, b)] if s = Si

FF [s] otherwise

Recall that Flat[P](s, b) represents the state, ahead of s in the topological order, to which it transitions
when the associated input-bit is b. On every (` − 2)-bit input x, B(2) is able to execute Flat[P] on x in
read-once fashion as the state indexes keep increasing during the execution. B(2) uses the jth input bit
iff it reaches the state Sj (under Flat[P], i(Sj) = j) and it reaches an accept/reject state as a SF-ROP
always reaches a terminal state. Therefore, ∀x,B(2)(x) = P (x). For all i ∈ {0, . . . , ` − 3}, all nodes except
FF [Si+1] are dormant in the ith layer of B(2) and thus the effective width of B(2) is 1. Using Claim 3.8
and equivalence between B(1) and P , we get that the output of B(2) imitates the end state of the Random
Process RP (k, k′, p) and thus, B(2) satisfies the bias-amplification properties of RP . Lemma 4.3, Proposition
4.2 and Proposition 4.5 implies the following lemma.

Lemma 4.7. The read-once branching program B(2) with length and width of at most k(2k′+ 1), as defined
above, satisfies the following properties:

1. (Imitating Bias-Amplification Gadget) For odd k ≥ camp (where camp > 0 is a large enough constant),

k′ =
⌊

1
2

√
k
⌋

and 0 < δ ≤ 1√
k

,

Pr
∀i, xi∼Ber(1

2 +δ)
[B(2)(x) = 1] >

1

2
+

1

20

√
kδ,

and

Pr
∀i, xi∼Ber(1

2−δ)
[B(2)(x) = 1] <

1

2
− 1

20

√
kδ.

2. (Bias Does’t Decrease) For odd k ≥ k′ > 0 and 0 < δ ≤ 1
2 ,

Pr
∀i, xi∼Ber(1

2 +δ)
[B(2)(x) = 1] ≥ 1

2
+ δ,

and

Pr
∀i, xi∼Ber(1

2−δ)
[B(2)(x) = 1] ≤ 1

2
− δ.

3. (Imitating Majority) For k′ = k > 0 and
√

20
k ≤ δ ≤

1
2 ,

Pr
∀i, xi∼Ber(1

2 +δ)
[B(2)(x) = 1] ≥ 0.99,

14

and

Pr
∀i, xi∼Ber(1

2−δ)
[B(2)(x) = 1] ≤ 0.01.

4. The effective width of B(2) is 1.

4.3 O(log n)-width ROBP Solving the Coin Problem

Bias-Amplification Recursion Before we describe the ROBP to solve the coin problem for bias greater
than n−1/3+ε, we analyze the recursion that represents the tensorization of the bias-amplification process.
The following lemma is more sophisticated in calculations but basically explains the following idea: if the
bias gets amplified by k1/2 at every recursion level (for a constant k), length gets multiplied by k3/2 and
width increases by poly(k), then we get a n-length O(log n)-width ROBP that amplifies bias ≈ n−1/3 to a
constant.

Lemma 4.8. Let δ > 0 and k > 400. Let r = k · (2
⌊

1
2

√
k
⌋

+ 1). We consider the following recursion:

1. Initialization: δ0 = min
(
δ, 1√

k

)
, n0 = 1 and w0 = 0.

2. Recursion: δi = min
(

1
20

√
k · δi−1,

1√
k

)
, ni ≤ ni−1 · r and wi ≤ wi−1 + r.

Then, for all ε ∈ (0, 1/3), k > max(400, cε) (where cε > 0 is a large enough constant depending on ε), n ≥ ck,ε
(where ck,ε > 0 is a large enough constant depending on k and ε), δ ≥ n− 1

3 +ε, for j =
⌊

logn−log (20k(40k+1))
1.5 log k+1

⌋
,

we have that

δj ≥
1√
k
, (9)

nj ≤
n

(20k(40k + 1))
(10)

and
wj = j · r ≤ k(

√
k + 1) · log n (11)

The proof follows from straightforward calculations and is deferred to Appendix A.2.

Tensorization of the ROBPs To use the bias-amplification recursion as analyzed, we define the tensor
of two ROBPs as follows:

Definition 4.9. Let A be a length-na width-wa ROBP with effective width w′a (Definition 3.5) and B be
a length-nb width-wb ROBP. Then, A⊗B is a length-na · nb ROBP defined as follows:

1. Description of the layers: Nodes of A⊗ B are cartesian products of nodes in A and that in B (in the
corresponding layers) except for when they are dormant. More formally,

• ∀i ∈ [na], LA⊗B(i−1)·nb = {(s, sB) | s ∈ LAi−1}. Recall that sB represents the starting node of B.

• ∀i ∈ [na], j ∈ [nb − 1],

LA⊗B(i−1)·nb+j = {(s, sB) | s ∈ DAi−1} ∪ {(s, s′) | s ∈ LAi−1 \ DAi−1 and s′ ∈ LBj }.

• LA⊗Bna·nb = {1,−1}.

2. Description of the transition functions: On layers that do not correspond to the last layer of B, A⊗B
transitions according to B and then uses the output of B to transition according to A. More formally,

15

• ∀i ∈ [na − 1], and ∀s ∈ LAi−1 \ DAi−1, s
′ ∈ LBnb−1,

(A⊗B)i·nb((s, s
′), b) = (Ai(s,Bnb(s

′, b)), sB),

and ∀s ∈ DAi−1 (Ai(s, 1) = Ai(s,−1)),

(A⊗B)i·nb((s, sB), b) = (Ai(s, 1), sB).

These are the transitions according to A using the output of B.

• ∀i ∈ [na], j ∈ [nb − 1], ∀s ∈ LAi−1 \ DAi−1, s
′ ∈ LBj−1,

(A⊗B)(i−1)·nb+j((s, s
′), b) = (s,Bj(s

′, b)),

and ∀s ∈ DAi−1,
(A⊗B)(i−1)·nb+j((s, sB), b) = (s, sB).

These are the transitions according to B per node of A.

• ∀s ∈ LAna−1 \ DAna−1, s
′ ∈ LBnb−1,

(A⊗B)na·nb((s, s
′), b) = Ana(s,Bnb(s

′, b)),

and ∀s ∈ DAna−1 (Ana(s, 1) = Ana(s,−1)),

(A⊗B)na·nb((s, sB), b) = Ana(s, 1).

This defines the transitions to the output layer of A×B.

Under A ⊗ B, A uses the output of B to make the transition at every node rather than using the next
input bit. Thus, each transition of A is replaced by B that reads the next nb bits and its output is then used
to transition according to A. Each node of A is thus expanded into a length-nb width-wb ROBP. However,
we can do better at dormant nodes of A. As, for dormant nodes, the output of B doesn’t affect the node in
the next layer that A transitions to, we can replace each dormant node of A by a length-nb width-1 ROBP
always outputting 1 instead of B, thus saving on the width of A⊗B.

Remark 4.10. The (na ·nb)-length ROBP A⊗B as in Definition 4.9 has width at most (w′a · (wb−1)+wa).

Proof. A⊗B is a width-(w′a · (wb − 1) +wa) ROBP as all the layers have at most that many nodes and this
can be shown formally as follows. ∀i ∈ [na], |LA⊗B(i−1)·nb | = |L

A
i−1| ≤ wa and ∀i ∈ [na], j ∈ [nb − 1],

LA⊗B(i−1)·nb+j = |DAi−1|+ |LAi−1 \ DAi−1| · |LBj |

= |LAi−1| − |LAi−1 \ DAi−1|+ |LAi−1 \ DAi−1| · |LBj |
= |LAi−1|+ |LAi−1 \ DAi−1| · (|LBj | − 1)

≤ wa + w′a · (wb − 1). (effective width of A is w′a)

Remark 4.11. The output of A⊗B (Definition 4.9) on input x ∈ {1,−1}na·nb is given by

A⊗B(x) = A (B(x[1 : nb]), B(x[nb + 1 : 2nb]), . . . , B(x[(na − 1) · nb + 1 : na · nb])) .

Proof. We focus on the (i · nb)th (i ∈ [na]) layers of A ⊗ B. Let C be a length-n width-w ROBP. Let
0 ≤ i1 < i2 ≤ n and C[i1,i2] : LCi1 × {1,−1}(i2−i1) → LCi2 represent the state transition from the i1th layer of

C to i2th layer of C, that is, the path labelled by y ∈ {1,−1}(i2−i1) from a state t in the i1th layer goes to
the state C[i1,i2](t, y) in the i2th layer. By Definition 4.9, LA⊗B(i−1)·nb = {(s, sB) | s ∈ LAi−1}. We prove that

(for y ∈ {1,−1}nb),

∀i ∈ [na − 1], (A⊗B)[(i−1)·nb,i·nb]((s, sB), y) = (Ai(s,B(y)), sB)

16

and
(A⊗B)[(na−1)·nb,na·nb]((s, sB), y) = Ana(s,B(y)),

implying that A × B(y1, y2, . . . , yna) = A(B(y1), B(y2), . . . , B(yna)), which would prove the remark. Now,
we look at the function (A⊗B)[(i−1)·nb,i·nb] for a fixed i ∈ [na − 1] (proof for (A⊗B)[(na−1)·nb,na·nb] follows
similarly). Let s ∈ LAi−1 \ DAi−1, then by Definition 4.9 (Point 2), we have that (for y ∈ {1,−1}nb),

(A⊗B)[(i−1)·nb,i·nb−1]((s, sB), y[1 : nb − 1]) = (s,B[0,nb−1](sB , y[1 : nb − 1])),

and as ∀s′ ∈ LBnb−1, b ∈ {−1, 1}, (A⊗B)i·nb((s, s
′), b) = (Ai(s,Bnb(s

′, b)), sB), we get that

(A⊗B)[(i−1)·nb,i·nb]((s, sB), y) = (Ai(s,Bnb(B[0,nb−1](sB , y[1 : nb − 1]), ynb)), sB)

= (Ai(s,B(y)), sB). (Bnb(B[0,nb−1](sB , y[1 : nb − 1]), ynb) = B(y))

Next, we prove the same statement for s ∈ DAi−1. By Definition 4.9 (Point 2), we have that (for y ∈ {1,−1}nb)

(A⊗B)[(i−1)·nb,i·nb−1]((s, sB), y[1 : nb − 1]) = (s, sB),

and as (A⊗B)i·nb((s, sB), b) = (Ai(s, 1), sB), we get that

(A⊗B)[(i−1)·nb,i·nb]((s, sB), y) = (Ai(s, 1), sB)

= (Ai(s,B(y)), sB). (Ai(s, 1) = Ai(s,−1) for s ∈ DAi−1)

This completes the proof.

Main Theorem Now that we have all the ingredients, we are ready to prove the main theorem.

Theorem 4.12. For all constant 0 < ε < 1
3 and n ≥ Cε (where Cε > 0 is a large enough constant), there

exists a length-n width-Oε(log n) (constants in the Big Oh notation depend on ε) ROBP B that solves the

coin problem for parameter δ ≥ n− 1
3 +ε with an advantage 0.98 (according to Definition 3.2).

The constant 0.98 is arbitrary and we can update the construction to achieve an advantage of at least
1− γ for any constant γ > 0, while losing only constant factors in the width.

Proof. We use Lemma 4.7 and 4.8 to prove the theorem. For the given constant ε, we take k to be the
smallest odd integer strictly greater than max(camp, 400, cε), where camp > 0 and cε > 0 are large enough
constants determined in Lemmas 4.3 and 4.8 respectively. We assume Cε ≥ ck,ε where ck,ε > 0 is the constant

determined in Lemma 4.8. Given n, we take j =
⌊

logn−log (20k(40k+1))
1.5 log k+1

⌋
as in Lemma 4.8.

We define Btop to be the branching program B(2) as defined in Section 4.1 (Lemma 4.7) imitating the
20k-step random process RP with k′ = 20k (Btop has length and width of at most (20k(40k + 1))). We

define Bamp to be the branching program B(2) (with length and width at most k
(

2
⌊

1
2

√
k
⌋

+ 1
)

) as defined

in Section 4.1 imitating the k-step random process RP with k′ =
⌊

1
2

√
k
⌋
. We define the branching program

B using a sequence of branching programs through tensorization as follows:

1. Let B[1] = Bamp.

2. ∀i ∈ {2, 3, . . . , j}, let B[i] = Bamp ⊗B[i−1].

3. B = Btop ⊗B[j].

17

Analyzing the width of B Let wi denote the width of the branching program B[i]. Then, w1 is equal

to the width of the branching program Bamp, that is, w1 ≤ k
(

2
⌊

1
2

√
k
⌋

+ 1
)

. As the effective width

of Bamp is 1 (Lemma 4.7), using Remark 4.10, ∀i ∈ {2, 3, . . . , j}, wi ≤ 1 · (wi−1 − 1) + r ≤ wi−1 + r

(where r = k · (2
⌊

1
2

√
k
⌋

+ 1)). Thus, using the recursion in Lemma 4.8, by Equation (11), we have that

wj ≤ k(
√
k+ 1) log n. Let wtop be the width of the branching program Btop, that is, wtop = (20k(40k+ 1)).

As B = Btop ⊗ B[j] and effective width of Btop is 1, width of B is at most wj − 1 + (20k(40k + 1)) ≤
k(
√
k + 1) log n+ poly(k) = Oε(log n), where Oε hides constants that depends on ε.

Analyzing the length of B We will prove that B as defined above has length n′, where n′ ≤ n, but
we would assume the length of B to be n as an n′-length ROBP can be trivially extended to a n-length
(≥ n′) ROBP by adding n − n′ identity layers. Such an operation preserves the properties of B to solve
the coin problem. Let ni denote the length of the branching program B[i]. Then, n1 is equal to the length

of the branching program Bamp, that is, n1 ≤ k ·
(

2
⌊

1
2

√
k
⌋

+ 1
)

. By Definition 4.9, ∀i ∈ {2, 3, . . . , j},

ni ≤ ni−1 · k
(

2
⌊

1
2

√
k
⌋

+ 1
)

. Thus, using the recursion in Lemma 4.8, by Equation (10), we have that

nj ≤
n

(20k(40k + 1))
.

Let ntop be the length of the branching program Btop, that is, ntop = (20k(40k + 1)). As B = Btop ⊗ B[j],
the length of B (by Definition 4.9) is given by nj · ntop ≤ n

(20k(40k+1)) · (20k(40k + 1)) = n.

Analyzing the output of B on i.i.d. biased bits To prove that B solves the coin problem for parameter
δ (where δ ≥ n− 1

3 +ε) with an advantage 0.98 (by Definition 3.2), it suffices to show the following:

Pr
∀l∈[n],xl∼Ber(1

2 +δ)
[B(x) = 1] ≥ 0.99 and Pr

∀l∈[n],xl∼Ber(1
2−δ)

[B(x) = −1] ≥ 0.99.

For all i ∈ [j], let δ0 = min
(
δ, 1√

k

)
and δi = min

(
1
20

√
k · δi−1,

1√
k

)
. By Lemma 4.8 , as δ ≥ n− 1

3 +ε, δj ≥ 1√
k

.

Before proving the statement for B, we prove using induction that ∀i ∈ [j],

Pr
∀l∈[ni],xl∼Ber(1

2 +δ)
[B[i](x) = 1] ≥ 1

2
+ δi and Pr

∀l∈[ni],xl∼Ber(1
2−δ)

[B[i](x) = −1] ≥ 1

2
+ δi.

For i = 1, B[1] = Bamp and by Lemma 4.7 Property 1 (k satisfies the conditions), for 0 < δ ≤ 1√
k

,

Pr∀l∈[n1],xl∼Ber(1
2 +δ)[B[1](x) = 1] ≥ 1

2 + 1
20

√
k · δ and Pr∀l∈[n1],xl∼Ber(1

2−δ)
[B[1](x) = −1] ≥ 1

2 + 1
20

√
k · δ. For

δ > 1√
k

, we use Property 2 of Lemma 4.7, which says that Pr∀l∈[n1],xl∼Ber(1
2 +δ)[B[1](x) = 1] ≥ 1

2 + δ and

Pr∀l∈[n1],xl∼Ber(1
2−δ)

[B[1](x) = −1] ≥ 1
2 + δ. Therefore, we get that

Pr
∀l∈[n1],xl∼Ber(1

2 +δ)
[B[1](x) = 1] ≥ 1

2
+ min

(
1

20

√
k · δ, 1√

k

)
=

1

2
+ δ1

and Pr
∀l∈[n1],xl∼Ber(1

2−δ)
[B[1](x) = −1] ≥ 1

2
+ min

(
1

20

√
k · δ, 1√

k

)
=

1

2
+ δ1.

This is because, for δ ≤ 1√
k

, we use the first expression in the min and for δ ≥ 1√
k

, we use the second

expression in the min. Next, we assume that

Pr
∀l∈[ni],xl∼Ber(1

2 +δ)
[B[i](x) = 1] ≥ 1

2
+ δi and Pr

∀l∈[ni],xl∼Ber(1
2−δ)

[B[i](x) = −1] ≥ 1

2
+ δi,

18

and prove the statement for i+ 1.
Let Pr∀l∈[ni],xl∼Ber(1

2 +δ)[B[i](x) = 1] = 1
2 + δ′i. By definition, B[i+1] = Bamp ⊗ B[i]. Thus, by Remark

4.11,
B[i+1](x) = Bamp(B[i](x[1 : ni]), . . . , B

[i](x[ni+1 − ni + 1 : ni+1])).

Therefore,

Pr
∀l∈[ni+1],xl∼Ber(1

2 +δ)
[B[i+1](x) = 1]

= Pr
∀l∈[ni+1],xl∼Ber(1

2 +δ)
[Bamp(B[i](x[1 : ni]), . . . , B

[i](x[ni+1 − ni + 1 : ni+1])) = 1]

= Pr
∀l′∈[n1],yl′∼Ber(1

2 +δ′i)
[Bamp(y) = 1]

(∀l ∈ [n1], B[i](x[(l − 1) · ni + 1 : l · ni]) are independent random variables)

≥ 1

2
+ min

(
1

20

√
k · δ′i,

1√
k

)
(using the base case as B[1] = Bamp)

≥ 1

2
+ min

(
1

20

√
k · δi,

1√
k

)
(δ′i ≥ δi)

=
1

2
+ δi+1.

Similarly, we prove that Pr∀l∈[ni+1],xl∼Ber(1
2−δ)

[B[i+1](x) = −1] ≥ 1
2 + δi+1. As δj ≥ 1√

k
, we get that

Pr
∀l∈[nj],xl∼Ber(1

2 +δ)
[B[j](x) = 1] ≥ 1

2
+

1√
k

and Pr
∀l∈[nj],xl∼Ber(1

2−δ)
[B[j](x) = −1] ≥ 1

2
+

1√
k
.

As Btop is a (20k(40k+ 1))-length (20k(40k+ 1))-width branching program (as in Lemma 4.7) imitating
the 20k-step random process RP with k′ = 20k, by Lemma 4.7 Property 3, we get that for δ′ ≥ 1√

k
,

Pr
∀l∈[ntop],xl∼Ber(1

2 +δ′)
[Btop(x) = 1] ≥ 0.99 and Pr

∀l∈[ntop],xl∼Ber(1
2−δ′)

[Btop(x) = −1] ≥ 0.99.

We are now ready to prove the statement for B = Btop ⊗B[j].

Pr
∀l∈[n],xl∼Ber(1

2 +δ)
[B(x) = 1]

= Pr
∀l∈[n],xl∼Ber(1

2 +δ)
[Btop(B[j](x[1 : nj]), . . . , B

[j](x[(ntop − 1) · nj + 1 : ntop · nj])) = 1] (Remark 4.11)

= Pr
∀l′∈[ntop],yl′∼Ber(1

2 +δ′j)
[Btop(y) = 1]

≥ 0.99. (δ′j ≥ δj ≥ 1√
k

)

Similarly, we can prove that Pr∀l∈[n],xl∼Ber(1
2−δ)

[B(x) = −1] ≥ 0.99.

5 Coin Problem Lower Bound

We prove our coin problem lower bound by defining a discrete Mass Split-and-Merge Game in Section 5.1,
showing that the merge moves cannot help the game in Section 5.2, proving a lower bound on just the Mass
Split Game in Section 5.3, and finally reducing ROBPs (actually SF-ROPs) to this game in Section 5.4.

19

5.1 Mass split-and-merge game and mass split game

Definition 5.1. The MSMG is defined as follows. For i ∈ {−k, . . . , k}, t = 0, . . . , T , we have xti ≥ 0. We
have x0

0 = 1 and x0
i = 0 for i 6= 0. For each t we have

∑
i x

t
i = 1. xt+1 is obtained from xt using one of two

moves:

• Split move. For i ∈ {−k + 1, . . . , k− 1} and y ∈ [0, xti] we split a y portion of the mass at location i:

xt+1
j =


xtj − y if j = i
xtj + y/2 if j = i− 1, i+ 1
xtj otherwise

(12)

• Merge move. Let yi ∈ [0, xi] be any values such that the weighted average(∑
i

i · yi

)
/

(∑
i

yi

)
=: ` ∈ {−k, . . . , k}

is an integer. Set

xt+1
j =

{
xtj − yj +

∑
i yi if j = `

xtj − yj otherwise
(13)

The Mass Split Game (MSG) is defined exactly as the MSMG game, except that only split moves are
allowed (i.e., merge moves do not exist). We’ll need a theorem of the following form:

Theorem 5.2. Let xti be an execution of a MSMG. Suppose that∑
i

|i| · xTi > δ · k.

Then there have been > c · δ3 · k3 split moves, where c > 0 is a universal constant.

5.2 Reducing MSMG to MSG

We now show that every MSMG strategy can be converted to a MSG strategy achieving the same expected
absolute value (

∑
i |i| · xTi) using at most the same number of moves. Hence, merge moves are unnecessary

in the MSMG.

Lemma 5.3. Let x0
i be an arbitrary state of the MSMG. Let M be a merge move turning x0

i to x1
i , and

let S be split move subsequently turning x1
i to x2

i . Then, there exists a split move S′ and a sequence of
merge moves M ′1, . . . ,M

′
k (for some k ≤ 3) such that starting with x0

i and performing the sequence of
moves S′,M ′1, . . . ,M

′
k we reach the same end state x2

i .

Proof. Denote by `1 the index to which the mass in the merge move M is merged into. Denote by `2 the
index from which the mass in the split move S is split from.

If `1 6= `2 we show that M and S are interchangeable and thus we are done with k = 1, S′ = S, M1 = M .
First, x1

`2
≤ x0

`2
and thus S is feasible starting with x0

i . Denote by yMi the portion of mass moved from

index i in M . Denote by yS the portion of mass split from `2 in S. As S is feasible from x1
i , it must hold

that yS ≤ x1
`2

= x0
`2
−yM`2 . Denote by x̃1

i the state we reach starting from x0
i and applying S. For every i 6= `2

we have x̃1
i ≥ x0

i ≥ yMi , and we also have x̃1
`2

= x0
`2
− yS ≥ yM`2 . In particular, M is feasible from x̃1

i .

Otherwise, `1 = `2. Denote by ` := `1 = `2 and yS , yMi as before. Denote by yM =
∑
i y
M
i the total mass

merged in M . We may assume that yM`1 = 0 as we can simply not merge the mass from the index to itself
without changing the outcome of the merge move. We again consider two sub-cases.

If yM < yS , then we begin with split move S′ that splits
(
yS − yM

)
portion of mass from index `.

This step is feasible as 0 ≤ x2
` = x0

` + yM − yS and hence
(
yS − yM

)
≤ x0

` . We next show that the merge

20

move M can be split into two merge moves M ′1,M
′
2 such that both are feasible and push 1

2y
M amount of mass

to `−1, `+1 respectively. Hence, performing S′,M ′1,M
′
2 gets from x0

i to x2
i as well. We need to show that there

exist 0 ≤ y′i ≤ yMi such that
∑
i y
′
i = 1

2y
M and (

∑
i iy
′
i) / (

∑
i y
′
i) = `+ 1. If so, then we can define M ′1 by y′i

and M ′2 by yMi −y′i. By applying a linear transformation to all indices i (and to `) we may assume without loss
of generality that ` = 0,

∑
i y
M
i = 1 and we need to find 0 ≤ y′i ≤ yMi such that

∑
i y
′
i = 1

2 , (
∑
i iy
′
i) /
(

1
2

)
= 1.

We may think of yMi as a distribution over indices i. Let Median
(
yMi
)

be the median of this distribution.

Since yM0 = 0 and the median must be in the support of the distribution, we have
∣∣Median

(
yMi
)∣∣ ≥ 1. We

may also assume without loss of generality that Median
(
yMi
)
≥ 1 (otherwise, replace the roles of i and −i and

then of y′i and yMi −y′i). We find suitable values for y′i using the following continuous process. Begin with the
feasible values y′i = 1

2y
M
i . For these initial values we clearly have 0 ≤ y′i ≤ yMi ,

∑
i y
′
i = 1

2 ,
∑
i iy
′
i = 1

2` = 0.
We now continuously move mass from the lowest index j1 such that y′j1 > 0 to the highest index j2 such

that y′j2 < yMj2 (i.e., we move mass from the left-most non-empty bucket to the right-most non-full bucket

in the distribution). Throughout the process, it is maintained that 0 ≤ y′i ≤ yMi ,
∑
i y
′
i = 1

2 . As we always
move mass from lower to higher indices (j1 < j2) the quantity

∑
i iy
′
i increases throughout the process. If

we would carry on with the process until no longer possible, we would end up with the mass fully being in
indices larger or equal to Median

(
yMi
)

and in particular at this point we have
∑
i iy
′
i ≥ 1

2Median
(
yMi
)
≥ 1

2 .
In particular, by continuity, there is some point throughout the process in which we have exactly

∑
i iy
′
i = 1

2 ,
as we wanted.

We are left to deal with the case that yM ≥ yS . In that case we actually do not need any split move
(as x2

` ≥ x0
`). Instead, we remove the split move (or replace it with a split move that splits no mass) and

partition the merge move M into three merge moves M ′1,M
′
2,M

′
3. We let M ′1 be simply a scaling down of M

to a mass of 0 ≤ yM − yS ≤ yM . The rest yS of the portion of mass to be merged is partitioned to two
merges M ′2,M

′
3 each merging 1

2y
S portion of mass to `− 1, `+ 1 respectively, in the same manner as in the

previous case.

Theorem 5.4. Given an execution of MSMG of length T ending with expected absolute value v, there exists
an execution of MSG of length T ′ ≤ T ending with expected absolute value v′ ≥ v.

Proof. Consider the execution of the MSMG. As long as there is a merge move followed by a split move,
we apply the transformation of Lemma 5.3. This does not change the rest of the game execution and in
particular not the final value. This process must end in finite time as each application of Lemma 5.3 does
not change the number of split moves yet strictly reduces the lexicographical order of the set of indices of
split moves. After such transitions are no longer possible, the execution must consist of only split moves
followed by only merge moves. As merge moves only reduces the expected absolute value, the prefix of the
executions that contains only the split moves satisfies the Theorem’s statement.

5.3 Lower bound for MSG

Due to Section 5.2 to prove Theorem 5.2 it is enough to prove the following.

Theorem 5.5. Let xti be an execution of a MSG. Suppose that∑
i

|i| · xTi > δ · k.

Then there have been > c · δ3 · k3 split moves, where c > 0 is a universal constant.

In fact, we first prove a similar result for a seemingly weaker variant of value. Consider
the following trimmed formulation of the Mass Splitting Game (MSG). We have 2k + 1 vari-
ables x−k, x−(k−1), . . . , x−1, x0, x1, . . . , xk−1, xk. Initially, the value of x0 is 1 and the value of xi for every
other −k ≤ i ≤ k, i 6= 0 is 0. The game also has a value v which is initially 0. In each step, the player
picks a variable index −k ≤ i ≤ k and an amount 0 ≤ m ≤ xi of mass that is currently in the variable
xi. The mass m is removed from xi and is split evenly between its predecessor and successor. That is,

21

after the step the new values of xi−1, xi, xi+1 are xi+1 + m
2 , xi − m,xi + m

2 . We abuse notation by set-
ting x−(k+1) = xk+1 = v. That is, if the player chooses i = −k or i = k then half of the mass m is added
to the value of the game. The objective of the player is to reach a constant value v in the lowest number of
steps. In this section we prove the following.

Theorem 5.6. If a MSG strategy using T steps gets v ≥ α, then T ≥
√
π/2·α3/2

32 ln3/2(8/α)
k3.

We first show that Theorem 5.5 follows from Theorem 5.6.

Proof of Theorem 5.5. Assume that
∑
i |i| · xTi > δ · k. For every j ≥ 1, denote by

pj :=
∑

i s.t. |i|≥j

xTi

the total mass that ended out of [−(j − 1), (j − 1)]. We notice that

∞∑
i=−∞

|i| · xTi =

∞∑
j=1

pj .

By Theorem 5.6 there exists some constant c′ such that if a MSG strategy7 using T steps gets ≥ α of mass
out of [−j, j] then T ≥ c′ ·α2j3. Denote by c = 1

27c
′. If there exists j such that c′ · p2

j · j3 ≥ c · δ3 · k3 then we

are done by the last statement. Otherwise, for every j we have p2
j <

c
c′ ·

δ3·k3
j3 and hence pj <

√
c
c′ ·

δ3/2·k3/2
j3/2

.

Therefore,

δ · k <
∞∑
j=1

pj ≤
(c/c′)

1/3·δ·k∑
j=1

1 +

∞∑
j=(c/c′)1/3·δ·k+1

√
c

c′
· δ

3/2 · k3/2

j3/2

≤
(c
c′

)1/3

· δ · k +

√
c

c′
· δ3/2 · k3/2 ·

∞∑
j=(c/c′)1/3·δ·k+1

1

j3/2

≤
(c
c′

)1/3

· δ · k +

√
c

c′
· δ3/2 · k3/2 · 2√

(c/c′)
1/3 · δ · k

= 3 ·
(c
c′

)1/3

· δ · k = δ · k,

which is a contradiction.

We begin by showing that in an optimal strategy, the player always chooses to split all of the mass in its
chosen variable.

Lemma 5.7. Let S =< (i1,m1), (i2,m2), . . . , (iT ,mT) > be a MSG strategy of length T = |S| getting
value v(S). There exists a strategy S′ of length T ′ = |S′| ≤ T getting value v(S′) ≥ v(S) in which every step
splits the full mass, that is, for each j before the j-th step we have mj = xj.

Proof. We prove the claim by induction on r, the number of steps j in which mj < xj . If r = 0 there is
nothing to prove. Otherwise, consider the last step j in which mj < xj . We observe that for every ` > j,
the step s` = (i`) that fully splits the mass of xi` is a linear map Msj on (x−k, . . . , xk, v). In particular, as
a composition of linear maps, the function M := MsT · . . . ·Msj+1

that maps the values of (x−k, . . . , xk, v)
after the j-th step to those in the end of the game is linear, and so is its restriction M ′ to the value of v.

7we restrict the strategy to {−j + 1, . . . , 0, . . . , j − 1} and add to the value whenever j − 1 or −j + 1 is split; ignoring the
splits involving the mass already added to the value.

22

Let (x−k, . . . , xk, v) be the values of the variables and the game before the j-th step. After the step,
these values are

(x−k, . . . , xk, v) + (. . . , 0,
mj

2
,−mj ,

mj

2
, 0, . . .)

where in the added vector the non-zero coordinates are xij−1, xij , xij+1. In particular, the value of the game
in the end of it is

M ′
(

(x−k, . . . , xk, v) + (. . . , 0,
mj

2
,−mj ,

mj

2
, 0, . . .)

)
=M ′ (x−k, . . . , xk, v) +mj ·M ′

(
. . . , 0,

1

2
,−1,

1

2
, 0, . . .

)
.

This is a linear function of mj and thus in the interval mj ∈ [0, xj] it must attain its maximum in either of
the endpoints 0 or xj . Thus, we can either remove the j-th step or increase mj to xj without lowering the
value of the strategy. This reduces the number of such steps by one and thus proves the induction step.

Using Lemma 5.7 we assume from now on that in each step the player just picks a variable index i and
fully splits its mass. We now introduce a randomized variant of MSG, denoted by rMSG. In this variant,
we initially place n particles on the 0-th variable. In each step, the player chooses an index i, and then each
particle that currently resides in i randomly moves to either i−1 or i+1 uniformly. We again equate −(k+1)
and k+ 1 with v, and now consider the value of the game to be the fraction of particles that reached v. We
may translate strategies from MSG to rMSG (and vice versa) in a natural way.

Observation 5.8. Let S be a strategy of MSG with value v(S). If we apply S to rMSG then the probability
that a specific particle ends up in v is exactly v(S).

Intuitively, each particle behaves as a simple random walk and thus would need to move Ω(k2) times in
order to be likely to reach v. Furthermore, after Ω(k2) moves a particle resides in a roughly uniformly random
index and thus only a 1

Ω(k) fraction of the particles would be in each index at every time. In particular, we

would need Ω(k3) steps to make each particle move Ω(k2) times. The exact argument follows.
We fix a MSG strategy S and apply it to rMSG with n particles named P1, . . . , Pn. For each particle Pi

denote by Ti the random variable counting the number of steps in which Pi was moved. For each pair of
particles Pi, Pj denote by Ti,j the random variable counting the number of steps in which both Pi and Pj
were moved.

Lemma 5.9. We have T ≥
∑
i Ti −

∑
i,j Ti,j.

Proof. If r particles are moved in a step, then the change to
∑
i Ti−

∑
i,j Ti,j in this step is r−

(
r
2

)
≤ 1.

Lemma 5.10. We have E[T1,2] ≤ 2
√

2√
π
·
√
E[T1].

Proof. Denote by T̃1,2 the number of steps in which either P1 or P2 (or both) were moved. Denote these

steps by j1, j2, . . . , jT̃1,2
. Denote the locations of P1, P2 after the j`-th step by P

(`)
1 , P

(`)
2 respectively.

Let D
(`)
1,2 := |P (`)

1 − P (`)
2 | be the distance between them. We note that the sequence D1,2 behave almost as

a uniform single dimensional random walk: If D
(`)
1,2 > 0, then D

(`+1)
1,2 distributes uniformly between D

(`)
1,2 − 1

and D
(`)
1,2 + 1. If D

(`)
1,2 = 0, then D

(`+1)
1,2 distributes uniformly between 0 and 2. In Appendix C.1 we show by

standard techniques that the expected number of times such a random walk of length r visits the origin is
at most 2√

π

√
r. Thus,

E[T1,2] = E[E[T1,2|T̃1,2]] ≤ E
[

2√
π

√
T̃1,2

]
≤ 2√

π

√
E[T̃1,2] ≤ 2√

π

√
2E[T1],

where the second inequality follows from Jensen’s Inequality and the last one is a union bound.

23

Lemma 5.11. We have T ≥
√
π

4
√

2
(E[T1])

3
2 .

Proof. By Lemma 5.9 we have that always T ≥
∑
i Ti −

∑
i,j Ti,j . Therefore,

T ≥ E[
∑
i

Ti −
∑
i,j

Ti,j] =
∑
i

E[Ti]−
∑
i,j

E[Ti,j] = nE[T1]−
(
n

2

)
E[T1,2].

Then, by Lemma 5.10 we have that

nE[T1]−
(
n

2

)
E[T1,2] ≥ nE[T1]−

(
n

2

)
· 2
√

2√
π
·
√
E[T1].

By choosing n =

√
E[T1]
2
√

2√
π

, the above expression is at least as large as

√
E[T1]
2
√

2√
π

E[T1]− 1

2

√E[T1]
2
√

2√
π

2

· 2
√

2√
π
·
√
E[T1] =

√
π

4
√

2
(E[T1])

3
2 .

Lemma 5.12. If v(S) ≥ α then E[T1] ≥ α
4 ln(8/α)k

2.

Proof. Assume the contradiction E[T1] < α
4 ln(8/α)k

2. By Observation 5.8, v(S) is the probability that the

particle P1 ends up in v. By Markov’s inequality, Pr(T1 >
1

2 ln(8/α)k
2) < α

2 . Thus, the probability that P1

reaches v conditioned on T1 ≤ 1
2 ln(8/α)k

2 is at least v(s)− α
2 ≥

α
2 .

Let j1, . . . , jT1
be the steps in which P1 was moved and P

(1)
1 , . . . , P

(T1)
1 its location after each of these

steps. The sequence of locations is a uniform one-dimensional random walk. We finish by noting that the
probability of a simple random walk of length 1

2 ln(8/α)k
2 to reach −(k + 1) or k + 1 is lower than α

2 , which

is a contradiction. We include a proof of this fact in Appendix C.2.

We finally conclude the proof of Theorem 5.6.

Proof. By the assumption that v ≥ α and Lemma 5.12 we have E[T1] ≥ α
4 ln(8/α)k

2. From Lemma 5.11 we

thus have

T ≥
√
π

4
√

2
(E[T1])

3
2 ≥

√
π

4
√

2

(
α

4 ln (8/α)
k2

) 3
2

=

√
π/2 · α3/2

32 ln3/2 (8/α)
k3.

5.4 Reducing ROBP to MSMG

Recall the definition of a Skip-Forward Read-Once Program (SF-ROP) from Section 3.1. We observed that
a standard ROBP of width w can be cast as a SF-ROP of size (w · n + 1). Therefore, a lower bound s on
the size of SF-ROP would translate into a lower bound of s/n on w for ROBP.

From now on we fix a parameter ε > 0, fix B ∈U {−1, 1} be the random variable representing the sign
of the bias of the coin. Let b be the value taken by B. The input x conditioned on B = b is distributed as
X|B=b ∼ Ber(1/2 + b · ε)n — n i.i.d. copies of (b · ε)-biased coin tosses.

Let P be a SF-ROP program on input X as above (whose goal is to guess the value of B). For each state
s ∈ P , define the probability estimate of the value of B as

β(s) := Pr[B = 1 | P (x) reaches state s].

Denote also
p(s) := Pr[P (x) reaches state s].

Note that β(S1) = 1/2 (where S1 is the start state), and the following claim holds:

24

Claim 5.13. The advantage of P at determining the value of B is given by

ADV(P) = EExecution of the program reaches t [2 · |β(t)− 1/2|] (14)

It will also be convenient to denote the bias of an edge in the SF-ROP: for an edge s→ s′ between two
states, denote by

β(s→ s′) := Pr[B = 1 | P (x) reaches state s and then takes the edge s→ s′],

and
p(s→ s′) := Pr[P (x) reaches state s and then takes the edge s→ s′].

Note that the following formulas hold by Bayes rule (s0 = P (s, 0) and s1 = P (s, 1)):

β(s→ s0) =
β(s) · (1− 2ε)

1 + 2ε− 4εβ(s)
and β(s→ s1) =

β(s) · (1 + 2ε)

1− 2ε+ 4εβ(s)
(15)

If we assume that ε < 0.1, then we have

β(s→ s0), β(s→ s1) ∈ (β(s)− 5ε, β(s) + 5ε) (16)

To complete our proof we will need some results about manipulating states in the mass split-and-merge
game. A configuration z : {−k, . . . , k} → R+ is an allocation of mass (which does not necessarily adds up
to 1). We define a partial order relationship on configurations:

Definition 5.14. We say that z ≺ y if z can be obtained from y by a finite sequence of merge moves.

For a real number a ∈ (−k, k) define the configuration

c(a)i :=

 1− {a} if i = bac
{a} if i = bac+1
0 otherwise

(17)

Here, {a} represents the fractional part of a, that is {a} = a− bac.

Claim 5.15.

1. If z ≺ y then their mass and centers of mass match:∑
i

zi =
∑
i

yi,
∑
i

i · zi =
∑
i

i · yi;

2. For any configuration x scalar a ≥ 0, z ≺ y implies x+ z ≺ x+ y and a · z ≺ a · y;

3. for each z there exists a unique reduced configuration r(z) such that r(z) is supported on either 1 or 2
adjacent values and such that r(z) ≺ z;

4. for any a, b ∈ (−k, k) and λ ∈ [0, 1],

c(λ · a+ (1− λ) · b) ≺ λ · c(a) + (1− λ) · c(b);

5. Suppose −k < x− 1 < y ≤ x ≤ z < x+ 1 < k are numbers such that x = λ · y + (1− λ) · z. Then

λ · c(y) + (1− λ) · c(z) ≺ 1

2
· c(x− 1) +

1

2
· c(x+ 1).

25

Proof. Each merge move (13) preserves the total mass of the configuration, and its center of mass. To see
that the center of mass is preserved, observe that after the merge step given by (13),∑

j

j · (xtj − xt+1
j) =

∑
j

j · yj − ` ·
∑
i

=
∑
j

j · yj −
∑
i

i · yi = 0.

By induction on the merge steps leading from y to z, this proves the first statement.
The second statement follows by observing that the same sequence of merges that leads from y to z also

leads from x+ y to x+ z. If we multiply each weight in the sequence of merges leading from y to z by a, we
will get a sequence of merges leading from a · y to a · z.

For any configuration y let maxy and miny be the largest and smallest indexes i such that yi > 0. If
maxy −miny ≥ 2, we can perform a merge move that will reduce either ymaxy or yminy to 0, thus reducing
the value of maxy − miny by at least 1. Starting with a configuration z, continue this process until we
reach a configuration r(z) with maxr(z) − minr(z) ≤ 1. This establishes the existence part of the third
statement. Uniqueness follows from the first statement above, since the values of

∑
i ri,

∑
i i · ri and the fact

that maxr −minr ≤ 1 uniquely determine r.
Note that the first and third properties so far imply that whenever

∑
i yi =

∑
i zi and

∑
i i ·yi =

∑
i i ·zi,

we have
r(y) = r(z).

Also, observe that r(c(a)) = c(a), since c(a) is already in a reduced form. Therefore

r(x) =

(∑
i

xi

)
· c

(∑
i

i · xi

)
. (18)

Plugging λ · c(a) + (1− λ) · c(b) into (18), we get the fourth statement:

λ · c(a) + (1− λ) · c(b) � r(λ · c(a) + (1− λ) · c(b)) = 1 · c(λ · a+ (1− λ) · b) = c(λ · a+ (1− λ) · b).

To establish the fifth statement, we repeatedly apply the fourth one, writing y = (x− y) · (x− 1) + (y−
x+ 1) · x and z = (z − x) · (x+ 1) + (x+ 1− z) · x, x = 1

2 · (x− 1) + 1
2 · (x+ 1):

λ·c(y)+(1−λ)·c(z) ≺ λ·(x−y)·c(x−1)+λ·(y−x+1)·c(x)+(1−λ)·(x+1−z)·c(x)+(1−λ)·(z−x)·c(x+1)

≺
[
λ · (x− y) +

1

2
· λ · (y − x+ 1) +

1

2
· (1− λ) · (x+ 1− z)

]
· c(x− 1)+[

1

2
· λ · (y − x+ 1) +

1

2
· (1− λ) · (x+ 1− z) + (1− λ) · (z − x)

]
· c(x+ 1) =[

x

2
− λ · y

2
− (1− λ) · z

2
+

1

2

]
· c(x− 1) +

[
−x

2
+
λ · y

2
+

(1− λ) · z
2

+
1

2

]
· c(x+ 1)

=
1

2
· c(x− 1) +

1

2
· c(x+ 1).

Our main lemma is as follows.

Lemma 5.16. Suppose there is a size-` SF-ROP that gains advantage δ on the coin problem with bias ε.
Let k := 1 + b1/(20ε)c. Then there is a valid MSMG on {−k, . . . , k} that uses at most 2` split moves and
achieves ∑

i

|i| · xTi > δ · k/2.

26

Together with Theorem 5.2, Lemma 5.16 implies an Ω(ε−3) lower bound on the size of an SF-ROP solving
the ε-biased coin problem. Therefore, we get that a ROBP solving the ε-biased coin problem must have
width

w = Ω(ε−3/n).

In particular, if ε = n−1/3−η for a constant η, we get a lower bound of Ω(n3η) on the width, and therefore
an Ω(log n) lower bound on the memory required.

Proof of Lemma 5.16. First, we map biases to real numbers in [−k + 1, k − 1]. For a β ∈ [0, 1] let

f(β) := (β − 1/2)/(10ε).

Let S1, . . . , S` be the states of the SF-ROP in the order that they appear. To streamline the argument, we
assume that the terminal states are repeated twice among the last four states: S`−3 = t0, S`−2 = t1, and
there is a probability 1 transition from S0 → S1, S`−3 → S`−1 and S`−2 → S` (S0 is an additional start
state).

For any t = 0, . . . , `− 2, define Xt as follows:

Xt :=
∑

i≤t,j>t

p(Si → Sj) · c(f(β(Si → Sj))). (19)

The only transition out of S0 is to S1, thus X0 has all the mass on X0
0 = 1. Further, for all t,

∑
iX

t
i = 1,

and at t = `− 2 we have
X`−2 = p(t0) · c(f(β(t0))) + p(t1) · c(f(β(t1))),

therefore ∑
i

|i| ·X`−2
i ≥ p(t0) · |f(β(t0))|+ p(t1) · |f(β(t1))| = ADV(P)

20ε
> δ · k/2.

It remains to see that X`−2 is obtained from X0 using at most 2` split moves. To this end, we will see that
for any t, Xt can be obtained from Xt−1 using 2 split moves (and some merge moves).

The move from Xt−1 to Xt involves moving the mass

M− =
∑
i<t

p(Si → St) · c(f(β(Si → St)))

to
M+ =

∑
j<t

p(St → Sj) · c(f(β(St → Sj))).

Denote p := p(St) and

x := p(St)
−1 ·

∑
i<t

p(Si → St) · f(β(Si → St))

By Claim 5.15 we have p · c(x) ≺M−. Therefore, it suffices to show that M+ can be obtained from p · c(x)
using two splits. Let S0 be the state to which St goes when it reads 0 answer (S0 = P (St, 0)) and S1 be the
state to which St goes when it reads 1 answer (S1 = P (St, 1)). Let

λ := p(St → S0)/p(St).

We have
M+ = p ·

[
λ · c(f(β(St → S0))) + (1− λ) · c(f(β(St → S1)))

]
.

We have x− 1 < f(β(St → S0)) ≤ x ≤ f(β(St → S1)) < x+ 1. Therefore, by Claim 5.15, we have

M+ ≺ 1

2
· p · c(x− 1) +

1

2
· p · c(x+ 1).

To complete the proof, observe that 1
2 · p · c(x− 1) + 1

2 · p · c(x+ 1) is obtained from p · c(x) using one or two
split operations (on the points constituting c(x)).

27

References

[Aar10] Scott Aaronson. BQP and the polynomial hierarchy. In Proceedings of the forty-second ACM
symposium on Theory of computing, pages 141–150, 2010.

[Ama09] Kazuyuki Amano. Bounds on the size of small depth circuits for approximating majority. In
International Colloquium on Automata, Languages, and Programming, pages 59–70. Springer,
2009.

[BGW20] Mark Braverman, Sumegha Garg, and David P Woodruff. The coin problem with applications
to data streams. In 2020 IEEE 61st Annual Symposium on Foundations of Computer Science
(FOCS), pages 318–329. IEEE, 2020.

[Bop85] Ravi B Boppana. Amplification of probabilistic boolean formulas. In 26th Annual Symposium
on Foundations of Computer Science (sfcs 1985), pages 20–29. IEEE, 1985.

[BRRY14] Mark Braverman, Anup Rao, Ran Raz, and Amir Yehudayoff. Pseudorandom generators for
regular branching programs. SIAM Journal on Computing, 43(3):973–986, 2014.

[BV10] Joshua Brody and Elad Verbin. The coin problem and pseudorandomness for branching pro-
grams. In 2010 IEEE 51st Annual Symposium on Foundations of Computer Science, pages
30–39. IEEE, 2010.

[CGR14] Gil Cohen, Anat Ganor, and Ran Raz. Two sides of the coin problem. In Approximation, Ran-
domization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM
2014). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2014.

[Che52] Herman Chernoff. A measure of asymptotic efficiency for tests of a hypothesis based on the sum
of observations. The Annals of Mathematical Statistics, 23(4):493–507, 1952.

[CSV15] Sitan Chen, Thomas Steinke, and Salil Vadhan. Pseudorandomness for read-once, constant-
depth circuits. arXiv preprint arXiv:1504.04675, 2015.

[DZ97] Moshe Dubiner and Uri Zwick. Amplification by read-once formulas. SIAM Journal on Com-
puting, 26(1):15–38, 1997.

[HC70] Martin E Hellman and Thomas M Cover. Learning with finite memory. The Annals of Mathe-
matical Statistics, pages 765–782, 1970.

[KNW10] Daniel M Kane, Jelani Nelson, and David P Woodruff. On the exact space complexity of
sketching and streaming small norms. In Proceedings of the twenty-first annual ACM-SIAM
symposium on Discrete Algorithms, pages 1161–1178. SIAM, 2010.

[LSS+19] Nutan Limaye, Karteek Sreenivasaiah, Srikanth Srinivasan, Utkarsh Tripathi, and S Venkitesh.
A fixed-depth size-hierarchy theorem for AC0[⊕] via the coin problem. In Proceedings of the
51st Annual ACM SIGACT Symposium on Theory of Computing, pages 442–453, 2019.

[LV18] Chin Ho Lee and Emanuele Viola. The coin problem for product tests. ACM Transactions on
Computation Theory (TOCT), 10(3):1–10, 2018.

[MNSW98] Peter Bro Miltersen, Noam Nisan, Shmuel Safra, and Avi Wigderson. On data structures and
asymmetric communication complexity. Journal of Computer and System Sciences, 57(1):37–49,
1998.

[Rob55] Herbert Robbins. A remark on Stirling’s formula. The American mathematical monthly,
62(1):26–29, 1955.

28

[RSV13] Omer Reingold, Thomas Steinke, and Salil Vadhan. Pseudorandomness for regular branching
programs via fourier analysis. In Approximation, Randomization, and Combinatorial Optimiza-
tion. Algorithms and Techniques, pages 655–670. Springer, 2013.

[Ste13] John Steinberger. The distinguishability of product distributions by read-once branching pro-
grams. In 2013 IEEE Conference on Computational Complexity, pages 248–254. IEEE, 2013.

[SV10] Ronen Shaltiel and Emanuele Viola. Hardness amplification proofs require majority. SIAM
Journal on Computing, 39(7):3122–3154, 2010.

[Val84] Leslie G. Valiant. Short monotone formulae for the majority function. Journal of Algorithms,
5(3):363–366, 1984.

A Proofs from Section 4

A.1 Facts about Bias-Amplifying Random Process RP (k, k′, p)

Proof of Claim 4.1. Let Sj (j ∈ {−k′, . . . , k′}) be the set of all k-length sequences x = (x1, . . . , xk) ∈
{−1, 1}k such that sk(x) = j. By symmetry,

∀x, x ∈ Sj ⇐⇒ flip(x) ∈ S−j .

Recall that flip(x1, x2, . . . , xk) = (−x1,−x2, . . . ,−xk). Let |x| denote the number of 1s in the sequence x.

Fix j ∈ [k′ − 1]. We have that ∀x ∈ Sj ,
∑k
i=1 xi = 2|x| − k = j (either the process hits k′ or −k′, or ends

up at the sum of the bits). Let q(x) be the probability that the input to the random process RP (k, k′, p) is
x, and as xis are i.i.d. Ber(p),

q(x) = p|x|(1− p)k−|x|.

Thus,

q(x)

q(flip(x))
=
p|x|(1− p)k−|x|

pk−|x|(1− p)|x|
=

(
p

1− p

)j
. (2|x| − k = j)

Therefore,

Pr[sk = j]

Pr[sk = −j]
=

∑
x∈Sj q(x)∑
x∈S−j q(x)

=

∑
x∈Sj q(x)∑

x∈Sj q(flip(x))
=

(
p

1− p

)j
.

Next, we look at Pr[sk=k′]
Pr[sk=−k′] . Note that ∀x ∈ Sk′ , there exists step ix ∈ [k] such that six(x) = k′

(∀i > ix, si(x) = k′) and ∀i < ix, si(x) < k′. Let flipj(x) represent the sequence where only the first
j bits in the sequence are flipped, that is, flipj(x) = (−x1, . . . ,−xj , xj+1, . . . , xk). It is easy to see that

∀x ∈ Sk′ ,flipix(x) ∈ S−k′ . As ∀x ∈ Sk′ ,
∑ix
i=1 xi = k′,

q(x)

q(flipix(x))
=

Pr∀i,x′i∼Ber(p)[x
′ = x]

Pr∀i,x′i∼Ber(p)[x′ = flipix(x)]
=

pk
′

(1− p)k′
,

and as flipix defines a bijection from sequences in Sk′ to sequences in S−k′ , we get

Pr[sk = k′] =
pk
′

(1− p)k′
Pr[sk = −k′].

29

Proof of 4.2. We assume 0 ≤ δ < 1
2 as the proposition is trivial to prove for δ = 1

2 . Note that as k is odd,
Pr[sk > 0] + Pr[sk < 0] = 1. Under the random process RP

(
k, k′, 1

2 + δ
)
,

Pr[sk > 0]− Pr[sk < 0] =

k′∑
j=1

Pr[sk = j]− Pr[sk = −j]

=

k′∑
j=1

(Pr[sk = j] + Pr[sk = −j]) ·

 Pr[sk=j]
Pr[sk=−j] − 1

Pr[sk=j]
Pr[sk=−j] + 1


=

k′∑
j=1

(Pr[sk = j] + Pr[sk = −j]) ·


(

1
2 +δ
1
2−δ

)j
− 1(

1
2 +δ
1
2−δ

)j
+ 1

 (Claim 4.1)

≥
k′∑
j=1

(Pr[sk = j] + Pr[sk = −j]) ·


(

1
2 +δ
1
2−δ

)
− 1(

1
2 +δ
1
2−δ

)
+ 1


(j, k′ ≥ 1,

(
1
2 +δ
1
2−δ

)j
increases with j, and t−1

t+1 = 1− 2
t+1 increases with t for t > 0)

= 2δ

As Pr[sk > 0] + Pr[sk < 0] = 1, we get that Pr[sk > 0] ≥ 1
2 + δ and Pr[sk < 0] ≤ 1

2 − δ. By symmetry, under
the random process RP

(
k, k′, 1

2 − δ
)
, we get that Pr[sk > 0] ≤ 1

2 − δ.

Proof of Lemma 4.3. As for odd k, Pr[sk > 0] + Pr[sk < 0] = 1, Pr[sk > 0] under the random process
RP (k, k′, 1

2 + δ) can be rewritten as follows:

Pr[sk > 0] =
1

2
(1 + Pr[sk > 0]− Pr[sk < 0])

=
1

2

1 +

k′∑
j=1

Pr[sk = j]− Pr[sk = −j]

 (20)

Claim 4.1 states that ∀j ∈ [k′], Pr[sk=j]
Pr[sk=−j] =

(
p

1−p

)j
under the random process RP (k, k′, p) . Thus, for

p = 1
2 + δ, ∀j ∈ [k′ − 1], Pr[sk = j] > Pr[sk = −j]. Coming back to Equation (20), we get (for 0 < δ ≤ 1√

k
)

the following:

Pr[sk > 0] >
1

2
(1 + Pr[sk = k′]− Pr[sk = −k′])

=
1

2
+

Pr[sk = k′]

2

(
1− Pr[sk = −k′]

Pr[sk = k′]

)
=

1

2
+

Pr[sk = k′]

2

(
1− (1/2− δ)k′

(1/2 + δ)k′

)
(Claim 4.1)

≥ 1

2
+

Pr[sk = k′]

2

(
1− (1− 2δ)k

′
)

≥ 1

2
+

Pr[sk = k′]

2

(
1− e−2δk′

)
(∀x, 1− x ≤ e−x)

≥ 1

2
+

Pr[sk = k′]

2
(1− (1− δk′)) (∀x ∈ [0, 1], e−x ≤ 1− x

2 and 2δk′ ≤ 2
⌊

1
2

√
k
⌋
· 1√

k
≤ 1)

=
1

2
+ Pr[sk = k′] · k

′

2
· δ

30

We prove that Pr[sk = k′] ≥ 1
4 for k′ =

⌊
1
2

√
k
⌋

and any p > 1
2 . Thus, continuing the calculations above, we

get the following bound on Pr[sk > 0], assuming that k ≥ camp ≥ 100:

Pr[sk > 0] >
1

2
+

1

8
·
⌊

1

2

√
k

⌋
· δ ≥ 1

2
+

1

20

√
k · δ (21)

Next, we lower bound Pr[sk = k′] for k′ =
⌊

1
2

√
k
⌋

as follows:

Pr[sk = k′] ≥ Pr
∀i∈[k],xi∼Ber(p)

[∑
i

xi ≥ k′
]

≥ Pr
∀i∈[k],xi∼Ber(1/2)

[∑
i

xi ≥ k′
]

(k′ > 0, p > 1/2)

=
1

2

1−
∑

j∈[k′] and j is odd

Pr
∀i∈[k],xi∼Ber(1/2)

[∑
i

xi = j

] (k is odd)

=
1

2

1− 1

2k

∑
j∈[k′] and j is odd

(
k
k+j

2

)
≥ 1

2

(
1− 1

2k
· k′ ·

(
k
k+1

2

))
≥ 1

2

(
1− k′ · 1√

k

)
(see calculations below)

≥ 1

4
(k′ =

⌊
1
2

√
k
⌋
≤ 1

2

√
k)

Using Striling’s approximation, we get the second last inequality (for k ≥ camp ≥ 4) as follows:

1

2k

(
k
k+1

2

)
=

1

2k
k!

k+1
2 !k−1

2 !

≤ 1

2k
ekk+ 1

2

2π
(
k+1

2

) k
2 +1 (k−1

2

) k
2

=
e

π
· kk

(k2 − 1)k/2
·
√
k

k + 1

≤ e

π
· 1(

1− 1
k2

)k/2 · 1√
k

≤ e

π
· 1(

1− 1
2k

) · 1√
k

(
(
1− 1

k2

)k/2 ≥ 1− k
2k2)

≤ 1√
k

(as k ≥ 4 and 8e
7π ≤ 1)

Thus, Pr[sk < 0] < 1
2 −

1
20

√
kδ. By symmetry, under the random process RP

(
k,
⌊

1
2

√
k
⌋
, 1

2 − δ
)

, we get

that Pr[sk > 0] < 1
2 −

1
20

√
kδ (for 0 < δ ≤ 1√

k
and k ≥ ck).

Proof of Claim 4.4. Claim follows easily using Chernoff bound[Che52]. Yi = Xi+1
2 are independent ran-

dom variables, each taking value 1 with probability p and 0 with probability 1− p. For p ≥ 1
2 + 1

r ,

Pr

[
m∑
i=1

Xi < 0

]
= Pr

[
m∑
i=1

Yi <
m

2

]

31

≤ Pr

[
m∑
i=1

Yi <

(
1− 1

r

)
· E

m∑
i=1

Yi

]
(E
∑m
i=1 Yi ≥

m
2 + m

r , and m
2r ≥

m
r2 as r ≥ 2)

≤ e−
1

2r2
·E

∑m
i=1 Yi (Chernoff bound)

≤ e−
1

2r2
·m2 (E

∑m
i=1 Yi ≥

m
2)

≤ e−
1

2r2
· 20r22

< 0.01

When p ≤ 1
2 −

1
r , we take Yi = 1−Xi

2 and then use the same inequality as above.

Pr

[
m∑
i=1

Xi > 0

]
= Pr

[
m∑
i=1

Yi <
m

2

]
< 0.01.

A.2 Bias-Amplification Recursion

Proof of Lemma 4.8. Using the recursion, we get that ni ≤ ri (where r = k
(

2
⌊

1
2

√
k
⌋

+ 1
)

), wi ≤ i · r

and δi = min

((
1
20

√
k
)i
· δ, 1√

k

)
.

We prove the bound on δi using induction. For i = 0 (base case), δ0 = min
(
δ, 1√

k

)
. Next, assuming that

δi−1 = min

((
1
20

√
k
)i−1

δ, 1√
k

)
(induction case), we prove the following.

δi = min

(
1

20

√
k · δi−1,

1√
k

)
= min

(
1

20

√
k ·min

((
1

20

√
k

)i−1

δ,
1√
k

)
,

1√
k

)
(induction case)

= min

(
1

20

√
k ·
(

1

20

√
k

)i−1

· δ, 1

20

√
k · 1√

k
,

1√
k

)

= min

((
1

20

√
k

)i
· δ, 1√

k

)
(
√
k ≥ 20)

Equation (11) easily follows from the fact that r = 2
⌊

1
2

√
k
⌋
≤
√
k and j =

⌊
logn−log (20k(40k+1))

1.5 log k+1

⌋
≤ log n.

To derive Equation (10), we note that 2
⌊

1
2

√
k
⌋

+ 1 ≤
√
k + 1 ≤ 2

√
k and thus,

nj ≤ rb
logn−log (20k(40k+1))

1.5 log k+1 c

≤ (k · 2
√
k)

logn−log (20k(40k+1))
1.5 log k+1

≤ n

(20k(40k + 1))
.

Next, we show that for all δ ≥ n−
1
3 +ε and large enough k and n,

(
1
20

√
k
)j
δ ≥ 1, implying that δi ≥ 1√

k
.

We assume that k > max(400, cε) (where cε > 0 is a large enough constant depending on ε such that
log k ≥ 2

ε log 20). Next, we assume that n ≥ ck,ε where ck,ε > 0 is a large enough constant depending on k, ε,
such that ε log n ≥ log(20k(40k+ 1)) + 1.5 log k+ 1. Under these assumptions, it is straightforward to prove

32

the bound on
(

1
20

√
k
)j
δ.

(
1

20

√
k

)j
=

(
1

20

√
k

)b logn−log (20k(40k+1))
1.5 log k+1 c

≥
(

1

20

√
k

) logn−log (20k(40k+1))
1.5 log k+1 −1

≥
(

1

20

√
k

) (1−ε) logn
1.5 log k+1

(ε log n ≥ log(20k(40k + 1)) + 1.5 log k + 1)

≥
(

1

20

√
k

) (1−ε) logn
1.5 log k
(1−ε/3) (1.5 log k + 1 ≤ 1.5 log k

(1−ε/3) as log k ≥ 2/ε)

≥
(

1

20

√
k

) (1−4ε/3) logn
1.5 log k

≥ 2
log k

2 ·
(1−4ε/3) logn

1.5 log k

20
logn

1.5 log k

≥ n
1
3−

4ε
9

n
log 20

1.5 log k

≥ n
1
3−

4ε
9

nε/3
(log 20

1.5 log k ≤
ε
3)

≥ n 1
3−ε

Thus, for all δ ≥ n− 1
3 +ε,

(
1
20

√
k
)j
δ ≥ 1. This completes the proof.

B nΩ(1) Width Lower Bound for Coin Problem with Bias O(n−
1
2)

In this section, we use the result from [BGW20] to prove nΩ(1)-width lower bounds for the coin problem.
[BGW20] (Theorem 1) states that

Theorem B.1. Let X1, . . . , Xn be a stream of uniform i.i.d. {−1, 1} bits. Let A be a n-length read-once
branching program which reads X1, . . . , Xn in order and outputs the majority bit with probability at least
0.999. Then A uses nΩ(1) width.

Theorem 1 of [BGW20] states the result as a lower bound on the memory used by streaming algorithms,
but it actually proves a width lower bound for ROBPs and translate it into memory bounds for one-pass
streaming algorithms. Let c > 0 be a small enough constant and we consider the coin problem for the
parameter δ = cn−

1
2 . Let Dδ be the probability distribution on {−1, 1}n where each coordinate is i.i.d.

Ber(1
2 + δ), and D−δ be the probability distribution on {−1, 1}n where each coordinate is i.i.d. Ber(1

2 − δ).
Given two distributions P.Q : X → [0, 1], let |P −Q|1 denote the statistical distance between P and Q, that
is, |P −Q|1 =

∑
x∈X |P (x)−Q(x)|. Let B be a length-n width-w ROBP as

Pr
x∼Dδ

[B(x) = 1]− Pr
x∼D−δ

[B(x) = 1] ≤ |P −Q|1
2

,

the an advantage of B in solving the coin problem for parameter δ = cn−
1
2 can at most be |Dδ−D−δ|12 . Using

Theorem B.1, we prove that if B solves the coin problem for parameter δ = cn−
1
2 with an advantage at least

|Dδ−D−δ|1
2 − 10−15, then w = nΩ(1).

33

Lemma B.2. Let B be a length-n width-w ROBP. There exists a small enough constant c > 0 such that if

B solves the coin problem for parameter δ = cn−
1
2 with an advantage of at least |Dδ−D−δ|12 − 10−15, then B

has at least nΩ(1) width.

Note that |Dδ − D−δ|1 = Ω(1) for δ = Ω(n−1/2), so the coin problem is statistically interesting for

δ = cn−
1
2 for any constant c > 0

Proof. By Definition 3.2,

Pr
x∼Dδ

[B(x) = 1]− Pr
x∼D−δ

[B(x) = 1] ≥ |Dδ −D−δ|1
2

− 10−15

and Pr
x∼D−δ

[B(x) = −1]− Pr
x∼Dδ

[B(x) = −1] ≥ |Dδ −D−δ|1
2

− 10−15.

For x ∈ {−1, 1}n, let |x| equal to the number if 1s in x.

Pr
x∼D−δ

[B(x) = −1]− Pr
x∼Dδ

[B(x) = −1]

=
∑

x∈{1,−1}n
(D−δ(x) −Dδ(x)) · 1B(x)=−1

=
∑

x∈{1,−1}n,|x|<n
2

(D−δ(x)−Dδ(x)) · 1B(x)=−1 +
∑

x∈{1,−1}n,|x|≥n2

(D−δ(x)−Dδ(x)) · 1B(x)=−1

=
∑

x∈{1,−1}n
(D−δ(x)−Dδ(x)) · 1B(x)=−1 and |x|<n

2
−

∑
x∈{1,−1}n,|x|≥n2

(Dδ(x)−D−δ(x)) · 1B(x)=−1

≤ |Dδ −D−δ|1
2

−
∑

x∈{1,−1}n,|x|≥n2

(Dδ(x)−D−δ(x)) · 1B(x)=−1.

As Prx∼Dδ [B(x) = 1]− Prx∼D−δ [B(x) = 1] ≥ |Dδ−D−δ|12 − 10−15, we get that∑
x∈{1,−1}n,|x|≥n2

(Dδ(x)−D−δ(x)) · 1B(x)=−1 ≤ 10−15. (22)

We prove that there exists a small enough constant c > 0 such that for δ = cn−
1
2 , Equation (22) implies that

1
2n

∑
x∈{1,−1}n,|x|≥n2

1B(x)=−1 ≤ 10−4. Similarly, we prove that 1
2n

∑
x∈{1,−1}n,|x|<n

2
1B(x)=1 ≤ 10−4. Hence,

Prx∼D0
[B(x) = majority(x)] ≥ 1 − 2 · 10−4 and Theorem B.1 implies that B has at least nΩ(1) width. To

prove by contradiction, we assume that

1

2n

∑
x∈{1,−1}n,|x|≥n2

1B(x)=−1 > 10−4,

and calculate the minimum value that
∑
x∈{1,−1}n,|x|≥n2

(Dδ(x)−D−δ(x)) · 1B(x)=−1 can take.

Dδ(x)−D−δ(x) =

(
1

2
+ δ

)|x|(
1

2
− δ
)n−|x|

−
(

1

2
− δ
)|x|(

1

2
+ δ

)n−|x|
,

and as it increases with increasing |x|, the minimum is obtained when B(x) = −1 for smaller values |x|. Let
y be the smallest 0 ≤ y′ ≤ n

2 such that

1

2n

∑
x∈{1,−1}n,y′+n

2≥|x|≥
n
2

1 =
1

2n

y′+n
2∑

|x|=n
2

(
n

|x|

)
> 10−4.

34

As using Stirling’s Approximation (similarly to as used in the proof of Lemma 4.3), for large enough n,(
n
|x|
)

2n
≤

(
n
bn/2c

)
2n

≤ 1√
n
,

we get that y ≥ 10−4
√
n. Let z = 10−4

√
n ≤ y. Therefore, minimum of

∑
x∈{1,−1}n,|x|≥n2

(Dδ(x) −
D−δ(x)) · 1B(x)=−1, conditioned on 1

2n

∑
x∈{1,−1}n,|x|≥n2

1B(x)=−1 > 10−4, is obtained when B(x) = −1 for
n
2 ≤ |x| ≤

n
2 + y. Assuming n is large enough,∑

x∈{1,−1}n,n2 +y≥|x|≥n2

(Dδ(x)−D−δ(x))

≥
∑

x∈{1,−1}n,n2 +z≥|x|≥n2 +z/2

(Dδ(x)−D−δ(x))

=
1

2n

n
2 +z∑

|x|=n
2 +z/2

(
n

|x|

)(
(1 + 2δ)|x|(1− 2δ)n−|x| − (1− 2δ)|x|(1 + 2δ)n−|x|

)

≥

 1

2n

n
2 +z∑

|x|=n
2 +z/2

(
n

|x|

)((1 + 2δ)n/2+z/2(1− 2δ)n/2−z/2 − (1− 2δ)n/2+z/2(1 + 2δ)n/2−z/2
)

Let a = 10−4 and thus, z = a
√
n. Using Stirling’s approximation,

1

2n

(
n

n
2 + z

)
≥ 2

√
2πnn+ 1

2

e2(n+ 2z)
n
2 +z+ 1

2 (n− 2z)
n
2−z+

1
2

=
2
√
π

e2

nn+ 1
2

(n2 − 4z2)
n
2 (n− 2z)

(
n+2z
n−2z

)z
=

2
√
π

e2

√
n

n− 2a
√
n

(
1−2 a√

n

1+2 a√
n

)a√n
(
1− 4a

2

n

)n
2

≥ 2
√
π

e2

1√
n

(
1− 2 a√

n

1 + 2 a√
n

)a√n
(n is large enough)

≥ 2
√
π

e2

1√
n

(
e
−10 a√

n

)a√n
(1−x

1+x ≥ e
−5x for 0 ≤ x ≤ 0.5)

≥
√
π

e2
√
n

(
(
e
−10 a√

n

)a√n
≥ 0.5 for a < 10−2)

≥ 0.2√
n

Therefore, ∑
x∈{1,−1}n,n2 +y≥|x|≥n2

(Dδ(x)−D−δ(x)) ≥ z

2
· 0.2√

n
·
(

(1 + 2δ)n/2+z/2(1− 2δ)n/2−z/2 − 1
)

=
a

10
·
(

(1 + 2δ)n/2+z/2(1− 2δ)n/2−z/2 − 1
)

For − 1
3 ≤ x ≤ 1

3 , we show that 1 + x ≥ ex−x
2

. ∂(1+x−ex−x
2
)

∂x = 1 − (1 − 2x)ex−x
2

. For 1
3 ≥ x ≥ 0, we have

that 1 + 2x ≥ e1.5x ≥ ex+x2

, and thus,

35

1. For 1
3 ≥ x ≥ 0, 1 ≥ (1 + 2x)(1 − 2x) ≥ (1 − 2x)e1.5x ≥ (1 − 2x)ex−x

2

, implying that 1 + x − ex−x2

is
increasing in x ∈ (0, 1/3].

2. For − 1
3 ≤ x < 0, 1− 2x ≥ e−x+x2

=⇒ (1− 2x)ex−x
2 ≥ 1, implying that 1 + x− ex−x2

is decreasing
in x ∈ [−1/3, 0).

Therefore, 0 is the minimum for the function 1 + x − ex−x
2

in [−1/3, 1/3], implying 1 + x ≥ ex−x
2

in
[−1/3, 1/3]. Thus for large enough n,

(1 + 2δ)n/2+z/2(1− 2δ)n/2−z/2 ≥ e(2δ−4δ2)·(n/2+z/2)+(−2δ−4δ2)·(n/2−z/2)

= e2δz−4δ2n

= e2ca−4c2 (for δ = cn−
1
2 and z = a

√
n)

≥ eca (for c ≤ a
4)

≥ 1 + ca.

Taking c = a
10 , we get that (recall a = 10−4)

∑
x∈{1,−1}n,n2 +y≥|x|≥n2

(Dδ(x)−D−δ(x)) ≥ a

10
·
(
a2

10

)
≥ 10−14

This contradicts Equation (22) and we prove the lemma.

C Facts about simple random walks

Lemma C.1. Let t1, t2, . . . , tr be a random walk where if ti > 0 then ti+1 distributes uniformly between ti−1
and ti + 1 and if ti = 0 then ti+1 distributes uniformly between 0 and 2. The expected number of indices j
such that tj = 0 is at most 2√

π

√
r.

Proof. Consider a standard uniform one-dimensional random walk t′1, t
′
2, . . . , t

′
2r of length 2r. If |t′i| > 0

then |t′i+1| is distributed uniformly between |t′i| − 1 and |t′i| + 1. On the other hand, if |t′i| = 0 then t′i = 0
and thus t′i+1 distributes uniformly between −1 and 1 and t′i+2 distributes among −2, 0, 2 with respective
probabilities 1

4 ,
1
2 ,

1
4 . In particular, |t′i+2| distributes uniformly between 0 and 2. We conclude that the

expected number of times ti equals zero is at most the expected number of times t′i equals zero. For
completeness, we also include a proof for a well-known bound on the number of times a uniform one-
dimensional random walk visits the origin. If t′0 = 0 then t′i = 0 can hold only for even indices i = 2j. The
probability that t2j = 0 is (

2j
j

)
22j
≤ 1√

πj
,

where the inequality follows from a standard upper bound on the central binomial coefficient. By linearity
of expectation, the expected number of indices in which t′2j = 0 is at most

r∑
j=1

1√
πj
≤ 1√

π

(
1 +

∫ r

1

dx√
x

)
=

1√
π

(
1 + 2

√
r − 2

√
1
)
≤ 2√

π

√
r.

Lemma C.2. The probability of a simple random walk of length T to pass through −(k+1) or k+1 is lower

than 4 exp
(
− k2

2T

)
.

36

Proof. Denote the random walk by s0 = 0, s1, . . . , sT . Denote by m` := max{s0, . . . , s`} the maximal value
reached in the first ` steps. It is known that for any r ≥ 1,

Pr(mT ≥ r) = Pr(sT = r) + 2Pr(sT > r) ≤ 2Pr(sT ≥ r).

By symmetry, the probability that the walk ever passed −(k + 1) or k + 1 is thus at most 4Pr(sT > k).
Let R be the number of +1 steps taken, this is the sum of T i.i.d uniform Bernoulli variables. By Hoeffding’s
inequality,

Pr (sT > k) = P

(
R >

1

2
(T + k)

)
= Pr

(
sT >

(
1

2
+

k

2T

)
T

)
< exp

(
−2

(
k

2T

)2

T

)
.

37

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

