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Abstract
We present an elementary, self-contained proof of the result of Goldwasser and Rothblum [GR07] that

the existence of a (perfect) statistically secure obfuscator implies a collapse of the polynomial hierarchy.
In fact, we show that an existence of a weaker object implies a somewhat stronger statement. In addition,
we extend the result of [GR07] to the case of imperfect statistically secure obfuscator.

1 Introduction

An indistinguishability obfuscator (IO) is a an efficient (potentially) randomized procedure that maps
Boolean circuits into “somewhat” larger, “unintelligible” circuits, yet preserving the original circuit input-
output functionality. This procedure has served as an ingredient in many cryptographic applications (see
e.g. [GGHR14, SW14] and references within). More formally speaking, IO maps a circuit C into another
circuit Ĉ with the same functionally, such that given two circuits C1, C2 of the same size and functionality,
the distributions of Ĉ1 and Ĉ2 are indistinguishable (for a formal definition, see Definition 2.3). The notion
of indistinguishability has been studied in two settings: the computational setting - when the distributions
are required to be indistinguishable only by polynomial-time algorithms, and the information-secure (a.k.a
statistical) setting - when distributions should be indistinguishable by any (even very inefficient) algorithm.

Several previous results exhibited negative consequences of the existence of obfuscators in various
regimes. In [GR07], Goldwasser and Rothblum showed that the existence of statistically-secure obfuscator
implies that NP ⊆ coAM. Brakerski et al. [BBF16] also considered the statistical setting, yet allowing
the obfuscator to output an “approximately” correct circuit. That is, with high probability the obfuscator
should output a circuit which is functionally close to the original circuit1. They have shown that the existence
of approximately correct statistically-secure obfuscator2 implies that either NP ⊆ coAM or that one-way
functions do not exists. It is to be noted that the containment NP ⊆ coAM is believed to be very unlikely as
it results in a collapse of the polynomial hierarchy (see e.g.[BHZ87]).

In the computational setting, Komargodski et al. [KMN+14] gave an easy argument that the existence of
computationally-secure obfuscator implies existence of one-way functions, unless NP ⊆ BPP. They have
also extended the result to “imperfect” computationally-secure obfuscators. That is, obfuscators that output
the correct circuit with high probability.

Indeed, approximately correct obfuscators are weaker than imperfect, since in the former case, the output
circuit Ĉ should, with high probably, agree with C on many (but not, necessarily all) inputs , whereas in the
latter case, Ĉ should agree with C on all inputs. Yet, the above negative results are incomparable.

∗Department of Computer Science, Boston College, Chestnut Hill, MA 02467. Email: ilya.volkovich@bc.edu
1The formal definition used in [BBF16] is somewhat different, however equivalent.
2In fact, they that shown that even a “correlated” obfuscator is sufficient. See Definition 2.3 for more details.
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1.1 Our Results

In this short note we put the final nail in the coffin of statistically-secure obfuscators, by presenting an
elementary, self-contained proof of the result of that the existence of a perfect statistically-secure obfuscator
implies a collapse of the polynomial hierarchy.

Theorem 1. If there exists a perfect statistical obfuscator for polynomial-size circuits or even 3CNF formulas
then NP ⊆ coNP.

In addition, we show a simple extension of the result of [GR07] to the case of imperfect statistically-secure
obfuscators.

Theorem 2. If there exists an imperfect statistical obfuscator for polynomial-size circuits or even 3CNF
formulas then NP ⊆ coAM.

The proofs of Theorems 1 and 2 is given in Section 3. We also remark that the result in Theorem 2 is
incomparable with [BBF16]. While, as was discussed earlier, the preconditions of [BBF16] are weaker, their
consequences also involve one-way functions.
We further observe that Theorem 1 extends to an intermediate indistinguishability setting when the obfuscator
is required to be secure against polynomial-time algorithms with an oracle access to the MCSP. Here MCSP
denotes the Minimal Circuit Size Problem. For more details see Section 4.

Theorem 3. If there exists a perfect obfuscator for polynomial-size circuits or even 3CNF formulas that is
secure against polynomial-time algorithms with an oracle to MCSP then NP ⊆ coNP.

1.2 Techniques

We follow the approach initiated by [GR07]. To provide more intuition, we sketch their result.
Let IO be a perfect statistically-secure obfuscator and let C be a circuit of size s. Rather than just

obfuscating C once, we consider the distribution on circuits associated with C by IO. To this end, we
define the function DC(r) := IO(C; r), where the input r denotes the random string used by IO. The
corresponding (induced) distribution DC is the output of DC(r) on r chosen uniformly at random. Given the
above, the result of [GR07] shows how to distinguish between satisfiable and unsatisfiable circuits C via the
statistical distances between their distributions DC (see Definition 2.1 for more details).

Let ⊥s denote a canonical unsatisfiable circuit of size s and let Ds(r) := IO(⊥s; r). If C is satisfiable,
then by the correctness requirement DC and Ds have completely disjoint supports and hence ∆(DC , Ds)
is “large”. Otherwise, if C is unsatisfiable, then by the security requirement ∆(DC , Ds) is “small”. Next,
they observe that the problem of distinguishing between a pair of distributions with a “large” statistical
distance and a pair with a “small” one was shown to lie in AM ∩ coAM (see Lemma 2.9 for more details). In
conclusion, the existence of a perfect statistically-secure obfuscator implies that NP ⊆ coAM, which in turn
results in a collapse of the polynomial hierarchy (see e.g.[BHZ87]).

We simplify the result by observing that it is actually sufficient to determine whether a pair of distributions
DC and Ds have a disjoint support. This task can be carried out easily in coNP. Consequently, we obtain
an elementary, self-contained proof that the existence of a perfect statistically-secure obfuscator implies
NP ⊆ coNP. In fact, we show that a somewhat stronger claim holds. See Lemma 3.1 for the formal statement.

Next, we extend the result of [GR07] to the case of imperfect statistically-secure obfuscator. As before,
if C is unsatisfiable, then by the security requirement ∆(DC , Ds) is “small”. However, if C is satisfiable,
then the support of DC and Ds may no longer be disjoint. We observe that, nonetheless, ∆(DC , Ds) is still
“sufficiently large” (see Lemma 2.7 for the exact statement).
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2 Preliminaries

A function negl(n) is negligible if for any k ∈ N there exists nk ∈ N s.t. for all n > nk, negl(n) < 1/nk.
Let X and Y be two random variables taking values in some finite domain U .

Definition 2.1 (Statistical Distance and Support). We define the support of a random variable X as

Supp(X) := {u ∈ U | Pr[X = u] > 0} .

The Statistical Distance between X and Y is defined as

∆(X,Y ) := max
A

Pr
u∼X

[A(u) = 1]− Pr
u∼Y

[A(u) = 1],

where A : U → {0, 1} is (possibly, inefficient and/or probabilistic) algorithm.
Note that the equality is attained for A such that A(u) = 1 ⇐⇒ Pr[X = u] ≥ Pr[Y = u].

Our main argument will rely on the following simple observation:

Observation 2.2. ∆(X,Y ) < 1 ⇐⇒ Supp(X) ∩ Supp(Y ) 6= ∅.

We now recall the definition of our main object of study - Indistinguishability Obfuscator.

Definition 2.3 (Indistinguishability Obfuscator [BGI+12, KMN+14, BBF16]). We say that a polynomial-
time procedure IO(C; r) is an Indistinguishability Obfuscator for a circuit class C with the following:

1. (Perfect/Imperfect) Correctness: We say that IO is ε-imperfect if for every circuit C ∈ C :
Prr[C ≡ IO(C; r)] ≥ 1− ε(|C|). If ε = 0, then we say that IO is perfect.

2. Polynomial slowdown: There is k ∈ N s.t. for every circuit C ∈ C and every r: |IO(C; r)| ≤ |C|k.

3. Security: We say that IO is δ-uncorrelated if for all pairs of circuits C1, C2 ∈ C such that C1 ≡ C2

and |C1| = |C2| = s it holds: ∆(DC1 , DC2) ≤ δ(s).
We say that IO is statistically secure, if δ(s) = negl(s), for some negligible function negl(s).
We say that IO is correlated, if ∀s : δ(s) < 1. (Remark: it is still possible that δ(s)→ 1).

Remark 2.4. Some definitions also contain a security parameter. In the above definition it is incorporated in
the circuit size. Any reasonable encoding scheme for Boolean circuits allows to represent/regard a circuit of
size s as a circuit of larger size.

Definition 2.5 (Obfuscation Distributions). For a circuit C, we define the function DC(r) := IO(C; r).

The corresponding (induced) distribution DC is the output of DC(r) on r chosen uniformly at random.
The following is an immediate and useful consequence of Part of 1 of Definition 2.3:

Observation 2.6. Let IO be a perfect obfuscator for a circuit class C and let C1, C2 ∈ C be such that
C1 6≡ C2. Then ∆(DC!

, DC2) = 1.

Nonetheless, it is easy to see that the above is no longer true for (even slightly) imperfect obfuscators. Next is
our key, but simple to prove lemma that extends the intuition behind the above observation to the imperfect
case. In particular, it shows that while the distributions of imperfect obfuscations of functionally different
circuits might not be disjoint, their statistical distance is still “large”.
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Lemma 2.7. Let IO be an ε-imperfect obfuscator for a circuit class C and let C1, C2 ∈ C be such that
C1 6≡ C2. Then ∆(DC!

, DC2) ≥ 1− 2ε.

Proof. Let A be an algorithm that given an obfuscated circuit Ĉ, outputs 1 iff Ĉ ≡ C1. Then

∆(DC1 , DC2) ≥ Pr
Ĉ∼DC1

[A(Ĉ) = 1]− Pr
Ĉ∼DC2

[A(Ĉ) = 1] ≥ (1− ε)− ε = 1− 2ε.

Definition 2.8 (Statistical Difference [SV03]). Let α(n) : N → N and β(n) : N → N be computable
functions, such that α(n) > β(n).
Then GapSD(α(n) , β(n)) := (GapSD

(α(n) , β(n))
Y ES ,GapSD

(α(n) , β(n))
NO ), where

GapSD
(α(n) , β(n))
Y ES = {(C1, C2) | ∆(C1, C2) ≥ α(n)},

GapSD
(α(n) , β(n))
NO = {(C1, C2) | ∆(C1, C2) ≤ β(n)}.

Here, C1 and C2 are Boolean circuits C1, C2 : {0, 1}n → {0, 1}m of size poly(n).

Lemma 2.9 ([SV03]). Suppose α(n)2 > β(n). Then GapSD(α(n) , β(n)) is SZK-complete.
SZK ⊆ AM ∩ coAM.

3 Proofs of the Main Results

In this section we prove our main results: Theorems 1 and 2. In fact, we prove somewhat technically stronger
versions of these results. We will use the following definition throughout this section: Ds(r) := IO(⊥s; r),
where ⊥s is a canonical unsatisfiable circuit from C of size s.

Lemma 3.1. Let IO be a perfect, correlated obfuscator for a circuit class C. Then C-SAT ∈ coNP.

Here C-SAT denotes the satisfiability (SAT) problem for a circuit class C.

Proof. Let C ∈ C be a circuit given as an input and let s = |C|. The algorithm will non-deterministically
guess r and r′, and accept if and only ifDC(r) = Ds(r

′). Now, if C is satisfiable, then by perfect correctness,
for all r, r′ : DC(r) 6= Ds(r

′) (Observation 2.6). On the other hand, if C is unsatisfiable, then by the security
requirement ∆ (DC , Ds) < 1 and hence by Observation 2.2, there exist r and r′ as required.

The following lemma extends the result of [GR07] to imperfect obfuscators.

Lemma 3.2. Let IO an ε-imperfect, δ-uncorrelated obfuscator for a circuit class C, such that (1− 2ε)2 > δ.
Then C-SAT ∈ AM ∩ coAM.

Proof. Similarly to [GR07], we claim that C-SAT reduces to GapSD(1−2ε , δ) and hence the claim follows
from Lemma 2.9. Let C ∈ C be a circuit given as an input and let s = |C|. If C is satisfiable then by
Lemma 2.7, ∆ (DC , Ds) ≥ 1− 2ε. On other hand, if C is unsatisfiable, then by the security requirement
∆ (DC , Ds) ≤ δ.
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4 Extensions

In this section we extend the conclusion of Theorem 1 to a weaker, intermediate indistinguishability setting.
While statistical security requires indistinguishability against all (possibly even very inefficient) algorithms,
we observe that the same conclusion still holds true even if we relax this requirement.

The Minimal Circuit Size Problem (MCSP), asks to decide, for a given truth table of a Boolean function
f and a parameter s, whether f can be computed by a Boolean circuit of size at most s. While it is easy
to see that MCSP ∈ NP, the exact complexity of the problem remains unknown, despite a large body of
work. In [IKV18], an IO-based approach was proposed. Specifically, it was shown that if there exists an
obfuscator IO that secure against efficient (randomized) algorithms with an oracle access to MCSP then
NP ⊆ BPPMCSP. We show that the same hypothesis, in fact, leads to the conclusion of Theorem 1 and is,
therefore, unlikely to hold. In particular, we show that the aforementioned security requirement implies that
such an IO must be correlated (see Corollary 4.4 for the formal statement). In order to formalize our result,
we extend the notion of security (Part 3 from Definition 2.3.)

Definition 4.1 (Security Against Class of Algorithms). Let A be a class of algorithms. We say that IO is
secure against A, if for all pairs of circuits C1, C2 ∈ C such that C1 ≡ C2 and |C1| = |C2| = s and for any
algorithm A ∈ A it holds: ∣∣∣∣∣ Pr

Ĉ∼DC1

[A(Ĉ) = 1]− Pr
Ĉ∼DC2

[A(Ĉ) = 1]

∣∣∣∣∣ ≤ negl(s)

for some negligible function negl(s) .

We remark that in the special case when A is the class of all (possibly, inefficient and/or probabilistic)
algorithms, the notion of security against A is, in fact, equivalent to statistical security. Hence, in general
security against A can be seen as a relaxation of statistical security. Another interesting special case is the
case when A is the class of all efficient (randomized) algorithms. The notion of security against A in this
case is referred to as computational security.

Let us now consider the security requirement from a different perspective. Fix two circuits C1, C2 ∈ C.
Given an obfuscated circuit Ĉ, which results from either C1 or C2, the goal of a “distinguisher” A ∈ A is
to distinguish between Ĉ-s originating from C1 and those originating from C2. As DC1(r) and DC2(r) can
be computed efficiently, we can assume wlog that A has access to both DC1(r) and DC2(r). Motivated by
the study of DC(r) as a candidate for one-way function (see e.g. [KMN+14]) we ask the natural question
“would A benefit from (oracle) access to their inverters”? To this end, we define an inverter formally.

Definition 4.2 (Inverters). Fix an obfuscator IO for a circuit class C and let C ∈ C. We say that M is an
inverter for DC if

Pr
Ĉ∼DC ,τ

[
DC(M(Ĉ, τ)) = Ĉ

]
≥ 1/ poly(|C|)

here τ denotes the randomness of M .

We show that an oracle access just to one of the inverters already implies that the obfuscator must be
correlated and hence unlikely to exist by previous results.

Lemma 4.3. Let IO be an obfuscator secure against efficient algorithms with an oracle access to an inventor
of one of the obfuscated circuits. Then IO is correlated.
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Proof. Let C1, C2 ∈ C s.t. C1 ≡ C2 and |C1| = |C2| = s. Assume for contradiction ∆(DC1 , DC2) = 1.
WLOG, let M be an inverter for DC1 and let p = Pr

Ĉ∼DC1
,τ

[
DC1(M(Ĉ, τ)) = Ĉ

]
denote the success

probability of M . Consider the following algorithm:

Given an obfuscated circuit Ĉ as an input:

1. Run M on Ĉ to obtain r; If DC1(r) = Ĉ, output 1

2. Otherwise, output 0 or 1 uniformly at random

We observe the following:

• By definition: Pr
Ĉ∼DC1

[A(Ĉ) = 1] = p+ 1−p
2 = 1+p

2

• By assumption and Observation 2.2, as DC1 and DC2 are disjoint, M will always fail to invert Ĉ
produced by DC2 . Therefore, Pr

Ĉ∼DC2

[A(Ĉ) = 1] = 1
2 .

• Consequently: Pr
Ĉ∼DC1

[A(Ĉ) = 1]− Pr
Ĉ∼DC2

[A(Ĉ) = 1] ≥ p
2 .

As p = 1/ poly(s), this contradicts the security requirement. Therefore, ∆(DC1 , DC2) < 1.

Finally, as was shown in [ABK+06], oracle access to any inventor can be simulated given oracle access
to MCSP. Therefore, we obtain the following corollary:

Corollary 4.4. Let IO be an obfuscator secure against efficient (randomized) algorithms with an oracle
access to MCSP. Then IO is correlated.

Proof. Using a result of [ABK+06] as instantiated in [IKV18]: there exists a polynomial-time probabilistic
oracle Turing machine M and k ∈ N such that for any circuit C:

Pr
Ĉ∼DC ,τ

[
DC(MMCSP(C, Ĉ, τ)) = Ĉ

]
≥ 1/|C|k

where τ denotes the randomness of M . Consequently, there exists an efficient algorithm with an oracle access
to MCSP that can simulate an inventor. The claim follows from the previous lemma.

5 Discussion & Open Questions

In this note we presented an elementary, self-contained proof that the existence of a perfect statistically-
secure obfuscator implies that NP = coNP. Could we extend the conclusion to P = NP (under the same
hypothesis)? Indeed, as was noted in [BGI+12], if P = NP, then there exists a trivial 0-uncorrelated
obfuscator. Therefore, such an extension would establish an equivalence between the two.

In terms of further simplification, can one use Lemma 2.7 to provide a simpler proof for the result of
[KMN+14]? In particular, combining with the result of [Gol90]? Finally, can we show that NP ⊆ BPPMCSP

under the assumption that computational IO exist?
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