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Abstract

We consider the approximability of constraint satisfaction problems in the streaming setting.
For every constraint satisfaction problem (CSP) on n variables taking values in {0, . . . , q − 1},
we prove that improving over the trivial approximability by a factor of q requires Ω(n) space
even on instances with O(n) constraints. We also identify a broad subclass of problems for
which any improvement over the trivial approximability requires Ω(n) space. The key technical
core is an optimal, q−(k−1)-inapproximability for the Max k-LIN-mod q problem, which is the
Max CSP problem where every constraint is given by a system of k − 1 linear equations mod q
over k variables.

Our work builds on and extends the breakthrough work of Kapralov and Krachun (Proc.
STOC 2019) who showed a linear lower bound on any non-trivial approximation of the Max-
Cut problem in graphs. MaxCut corresponds roughly to the case of Max k-LIN-mod q with
k = q = 2. For general CSPs in the streaming setting, prior results only yielded Ω(

√
n) space

bounds. In particular no linear space lower bound was known for an approximation factor less
than 1/2 for any CSP. Extending the work of Kapralov and Krachun to Max k-LIN-mod q to
k > 2 and q > 2 (while getting optimal hardness results) is the main technical contribution
of this work. Each one of these extensions provides non-trivial technical challenges that we
overcome in this work.
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1 Introduction

In this work we consider the approximability of constraint satisfaction problems (CSPs) by streaming
algorithms with sublinear space. We give tight inapproximability results for a broad class of CSPs,
while giving somewhat weaker bounds on the approximability of every CSP. We introduce these
terms below.

1.1 Background

We consider the general class of constraint satisfaction problems with finite constraints over finite-
valued variables. A problem in this class, denoted Max-CSP(F), is given by positive integers q
and k and a family of functions F ⊆ {f : Zkq → {0, 1}}. An instance of the problem consists of
m constraints placed on n variables that take values in the set Zq = {0, . . . , q − 1}, where each
constraint is given by a function f ∈ F and k distinct indices of variables j1, . . . , jk ∈ [n]. Given
an instance Ψ of Max-CSP(F), the goal is to compute the value valΨ defined to be the maximum,
over all assignments to n variables, of the fraction of constraints satisfied by the assignment. For
α ∈ [0, 1], the goal of the α-approximate version of the problem is to compute an estimate η such
that α · valΨ ≤ η ≤ valΨ.

In this work we consider the space complexity of approximating Max-CSP(F) by a single pass
(potentially randomized) streaming algorithm that is presented the instance Ψ one constraint at a
time. We consider “non-trivial” approximation algorithms for Max-CSP(F), where we first dismiss
two notions of “triviality”. First note that since we only consider space restrictions but not time
restrictions, one can sample O(n) constraints of Ψ and solve the Max-CSP(F) problem on the
sampled constraint optimally to get a (1 − ε)-approximation algorithm for every constant ε > 0
in Õ(n) space. Thus for this paper we view non-trivial algorithms to be those that run in o(n)
space.1 The other form of “triviality” we dismiss is in the approximation factor. Given a family
F , let ρmin(F) denote the infimum, over all instances Ψ of Max-CSP(F), of the value valΨ. Note
that the algorithm that outputs the constant ρmin(F) is a (O(1)-space!) ρmin(F)-approximation
algorithm for Max-CSP(F). Thus we consider ρmin(F) to be the “trivial” approximation factor
for a family F . With these two notions of “triviality” in mind, we define Max-CSP(F) to be
α-approximable (in the streaming setting) if α is the largest constant such that there exists an
α-approximation algorithm for Max-CSP(F) using o(n) space. We simply say that Max-CSP(F)
is approximable (in the streaming setting) if it is α-approximable for some α > ρmin. We define a
problem to be approximation-resistant (in the streaming setting) otherwise.

1.2 Results

Our first main result in this paper gives a sufficient condition for a problem to be approximation
resistant in the streaming setting. We say that f : Zkq → {0, 1} is a wide constraint if there exists

a ∈ Zkq such that for every i ∈ Zq we have f(a + ik) = 1 where ik = (i, i, . . . , i) and addition is

performed in the group Zkq . We say that a family F is wide if every function f ∈ F is wide.

Theorem 1.1. For every q, k and every wide family F , Max-CSP(F) is approximation-resistant.

Many natural CSPs are wide, including Max q-colorability and Boolean problems such as Max
k-SAT. Others, such as Max k-LIN(q) and the “Unique Games” problem, contain wide subfamilies

1We note that there is a gap between the o(n) space we allow and the O(n logn) space that is trivial, but we are
not able to get sharp enough lower bounds to address this gap.
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with the same “trivial” approximation factor, and thus Theorem 1.1 implies these are also approxi-
mation resistant. We elaborate on some of these examples in Section 4.1. However, clearly wideness
does not capture all CSPs. For general CSPs, while we do not pin down the approximability exactly,
we do manage to pin it down up to a multiplicative factor of q.

Theorem 1.2. For every q, k and every family F , if F is α-approximable then α ∈ [ρmin(F), q ·
ρmin(F)].

Both Theorems 1.1 and 1.2 follow from our more detailed Theorem 4.3. In Section 4.1 we give
a few examples illustrating how our theorems give tight lower bounds for some commonly studied
CSPs including Max q-coloring, Unique Games, and Max Linear Systems.

Neither of the theorems above give a complete classification of the approximability of CSPs
in sublinear space. Contrasting with [CGSV21a] one may have hoped that all lower bounds in
[CGSV21a] might simply extend, from ruling out o(

√
n)-space sketching algorithms, to ruling out

o(n)-spaced sketching algorithms. However subsequent work has shown that this hope is not re-
alizable. Specifically Saxena, Singer, Sudan and Velusamy [SSSV23] have shown that the Max
Dicut problem allows an Õ(

√
n)-space sketching algorithm that gets a .485 which beats the 4/9-

approximation upper bound for o(
√
n)-space algorithms, from the work of Chou, Golovnev and

Velusamy [CGV20]. Indeed there seems to be broader class of problems that might allow such
improvements in o(n)-space. This is hinted at in the work of Singer [Sin23] who shows that for
every k ≥ 2, there is a Õ(n1−1/k)-space algorithm for bounded-degree instances of the Max k-AND
problem that beats the approximability upper bound given in Boyland, Hwang, Prasad, Singer and
Velusamy [BHP+22] for o(

√
n)-space sketching algorithms. (A CSP instance has bounded degree if

each variable appears in O(1) constraints. Note that all lower bounds in this paper and prior works
are proven for bounded degree instances.) And for the Max Dicut problem on bounded degree
instances, Saxena, Singer, Sudan and Velusamy [SSSV23] have even given 1/2 − ε approximation
algorithms, for every ε > 0, using o(n) space. Thus the class of problems for which linear space
upper bounds on the approximability match the performance of polylogarithmic space sketching
algorithms is a strict subclass of all MaxCSPs. Finding where exactly this boundary lies remains
a wide open question.

1.3 Prior work

There have been a number of works in the broad area of approximations for streaming constraint
satisfaction problems and lower bound techniques for those [GKK+09, VY11, KKS15, AKL16,
KKSV17, GVV17, GT19, KK19, CGV20, AKSY20, AN21, CGSV21a, SSV21]. Among these our
work is the first work to aim to get tight inapproximability results for a broad class of CSPs for almost
linear space single-pass streaming algorithms. Previous works either did not get tight approximation
factors or were aimed at specific problems or only got Ω(

√
n)-space lower bounds, though some do

target multi-pass streaming algorithms [AKSY20, AN21] — which we do not do here. We describe
the state of the art prior to our work below. (More detailed descriptions of prior works can be
found in [CGSV21a].)

On the front of general lower bounds, Chou, Golovnev, Sudan and Velusamy [CGSV21a] ex-
plored the same set of CSP problems as we do, i.e, Max-CSP(F) for arbitrary q, k and F . Their
focus is on looser space lower bounds: specifically, they focus on problems that require nΩ(1) space
vs. those where no(1) space suffices. They give a complete dichotomy for sketching algorithms, a
special class of streaming algorithms. They also give sufficient conditions for approximation resis-
tance with respect to sub-polynomial space general streaming algorithms. Theorem 2.9 in their
paper shows that families F where the satisfying assignments of every function in the class support
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a one-wise independent distribution are approximation resistant. This theorem is incomparable
with our Theorem 1.1 in that they give approximation resistance for a broader collection of prob-
lems (all wide families support one-wise independence) but the space lower bound is weaker — they
give an Ω(

√
n) lower bound and we get Ω(n) lower bounds for wide families. [CGSV21a] does not

give an analogue of our Theorem 1.2, though such a result (with the weaker Ω(
√
n) space lower

bound) can be derived from their theorems equally easily. Indeed, our Section 4 is based on their
work.

Turning to linear space lower bounds, the breakthrough work here is due to Kapralov and
Krachun [KK19], who show that approximating Max Cut (which translates in our setting to
Max-CSP(F) for F = {⊕2} where ⊕2 : {0, 1}2 → {0, 1} is the binary XOR function) to within
a factor 1

2 + ε requires Ω(n) space for every ε > 0. Indeed, our work builds on their work and
we compare our techniques later. Prior to the work of Kapralov and Krachun, there was a weaker
result due to Kapralov, Khanna, Sudan and Velingker [KKSV17] showing that there exists ε > 0
such that (1 − ε)-approximation for Max Cut requires linear space. Finally, Chou, Golovnev
and Velusamy [CGV20] get a tight inapproximability for Max Exact 2-SAT (corresponding to
Max-CSP(F) for F = {∨2}, where ∨2 : {0, 1}2 → {0, 1} is the binary OR function) for linear space
algorithms, by a reduction from Max Cut.

Thus, prior to our work it was conceivable (though of course extremely unlikely) that every
Max-CSP(F) allowed a 1/2-approximating streaming algorithm using o(n) space. Our work is the
first to prove inapproximability α ≤ 1/2 for any Max-CSP(F). Indeed, we get inapproximabilities
going to 0 either as q → ∞ (e.g., for the Unique Games problem) or as k → ∞ (e.g., for the Max
k-equality problem with q = 2 as defined later in Section 1.4).

The main contribution of our work is to extend the techniques of [KK19] to problems beyond
Max Cut. Indeed the bulk of our proof takes the tour-de-force proof in [KK19] and finds the
correct replacements in our setting. In the process, we arguably even present cleaner abstractions
of their work. We elaborate on this further in the next section but first comment on why we feel
the extensions are not straightforward given [KK19]. First we note that the exact class of problems
we are able to deal with in Theorem 1.1 is not the fullest extension one may hope for. At the
very least we have expected to cover the same set of problems as [CGSV21a, Theorem 2.9], i.e.,
families supporting one-wise independent distributions, but this remains open. Indeed to get our
extensions we have to formulate a new communication problem which generalizes the one in [KK19]
and is different from the many variations considered in [CGSV21b] and [CGSV21a]. In particular
we are forced to work with a less expressive set of communication problems that already forces a
“linear-algebraic” restriction on the core problems we work with. (We do believe a slight extension
of our results to “families containing one-wise independent cosets of Zkq” should be more feasible.)
Having identified the right set of problems, carrying out the proof of Kapralov and Krachun is still
non-trivial. In particular one has to be careful to ensure that the improvement in the exponent of
the space bound (from n1/2 to n) is by a full factor of 2 and not a factor of k/(k − 1), which is
what one natural extension would lead to! We comment on these improvements in greater detail
in the following.

1.4 Techniques and new contributions

There are two lines of previous work that seem relevant to this work and we discuss our tech-
nical contributions relative to those here. We start with quick comparison with the previous
work [CGSV21a] that gives Ω(

√
n) lower bounds for a broader subset of problems than those ad-

dressed in this paper. We then move on to the work [KK19] which is much closer to our work and
needs more detailed comparison.
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Comparison with [CGSV21a]. While there is some obvious overlap in the set of problems
considered in [CGSV21a] and this paper (and also in the set of authors) we claim that, beyond
this aspect, the overlap in techniques is minimal. Both papers do use lower bounds on communi-
cation problems to establish lower bounds on streaming CSPs (which is standard in the context
of streaming lower bounds). But the exact set of communication problems is different, and the
tools used to establish the lower bounds are also different. In particular, [CGSV21a] create roughly
a new communication problem for every γ, β and F and the main technical contributions there
are lower bounds for these problems achieved mainly through a rich set of reductions among these
communication problems. In our work we essentially work with one communication problem (once
we fix k and q) and the core of our work is proving a lower bound for this problem. (This lower
bound is based on extending [KK19] and we will elaborate on this later.) We use this one prob-
lem to get hardness for many different γ, β and F — this part is arguably related to the work of
[CGSV21a] but we feel this is the obvious part of their work as well as our work. Finally, turning
to the communication problems, the natural communication problems used to analyze streaming
complexity involves one way communication among a large constant number of players. The exact
problem of this type that we focus on is different from the ones considered in [CGSV21a] due to a
concept we call “folding”. Folding makes our problems too restrictive to work for [CGSV21a] (i.e.,
would prevent them for addressing every (γ, β) −Max-CSP(F)), whereas we do not know how to
get our lower bounds without folding. We also note that [CGSV21a] derive their multiplayer lower
bounds from lower bounds for a corresponding 2-player game and all their reductions work only
for these 2-player games, which are inherently limited to yielding Θ(

√
n) space lower bounds.

We now turn to the more significant comparison, with [KK19]. We start with a quick review
of the main steps of [KK19] and then describe our analysis and conclude with a summary of the
differences/new contributions relative to [KK19].

Summary of [KK19]. Kapralov and Krachun [KK19] work with a distributional T -player one-
way communication game for some constant T . The game also has a parameter α > 0. In instances
of length n of this game, T players P1, . . . , PT get partial matchings M1, . . . ,MT on the vertex
set [n] along with respective binary labels z1, . . . , zT on the edges of the matchings, i.e., player t
receives input (Mt, zt). Each partial matching contains αn edges, while each corresponding label zt
is an element of {0, 1}αn. In the communication game, the players sequentially broadcast messages
as follows. Player t ∈ [T − 1] computes a small message ct which is a function of Mt, zt and all
“previous messages” c1, . . . , ct−1,2 after which the T -th player outputs a single 0/1 bit that is said
to be the output of the communication protocol. The complexity of the protocol is the maximum
over t ∈ [T ] of the message length ct, and the goal of the players is to distinguish input instances
drawn according to a YES distribution from those drawn according to a NO distribution, defined
as follows.

In instances chosen from the NO distribution, the matchings M1, . . . ,MT are chosen uniformly
and independently from the set of matchings containing αn edges on the vertex set [n]. Fur-
thermore, the vectors z1, . . . , zT are chosen uniformly and independently from {0, 1}αn. In the
YES distribution, the matchings are chosen as in the NO distribution, but in order to generate
z1, . . . , zT , we choose a common hidden vector x∗ ∈ {0, 1}n uniformly at random and set each zt
as zt(e) = x∗a ⊕2 x

∗
b for every edge e = (a, b). Thus, the label zt can be viewed as specifying which

edges of the i-th matching cross the cut determined by x∗. If T � 1
α then it can be seen that the

YES and NO distributions are very far. The key theorem shows that for every α > 0 and T , any

2For technical reasons the lower bounds are proved in the stronger model where player t get M1, . . . ,Mt−1 as well,
but this difference is not crucial for the current discussion.
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protocol distinguishing YES instances from NO instances with constant advantage requires Ω(n)
space. With this lower bound a space lower bound on Max Cut is straightforward.

Turning to the communication lower bound, the focus of the analysis are the sets B1, . . . , BT ⊆
{0, 1}n corresponding to the purported hidden vector x∗ that are consistent with the messages
c1, . . . , cT . Specifically for t ∈ [T ], Bt is the set of all vectors x∗ that are consistent with the first t
matchings M1:t and the first t messages c1:t. Kapralov and Krachun [KK19] argue that the sets Bt
are not shrinking too fast (in either the YES case or the NO case) using a property that they term
“C-boundedness,” defined by the Fourier spectrum of the indicator function of Bt (the function
from {0, 1}n to {0, 1} that is 1 on Bt). We do not give the exact definition of boundedness here
but roughly describe it as follows: Given an arbitrary set B of size S and a Fourier weight w, the
total Fourier mass (strictly the `1-mass) of the w-th level Fourier coefficients of B is well-known (by
classical Fourier analysis) to be bounded by some amount U(w) = US,n(w). For C-bounded sets,
the corresponding Fourier mass is required to be at most CwU(w/2). The factor of two gained here
in the argument of U is the crux to improvement in the space lower bound from

√
n to n. (If the

right hand side had been of the form CwU(αw) then the space lower bound would be Ω(n1/(2α)).)
This factor of two, in turn, is attributable to the fact that the zt only contain information about
pairs of bits of x∗. Their analysis shows that, for every t, Bt is Ct-bounded for some constant Ct.
(The proof is inductive on t but the inductive hypothesis is complex and we won’t reproduce it
here.) They further show that if BT is C-bounded for some constant C, then the distinguishing
probability is at most o(1).

Our Analysis. The core of our paper focuses on one problem for every given q and k, which we
call Max k-EQ(q). This is the problem given by Max-CSP(F) for F = {fb2,...,bk : Zkq → {0, 1}},
where fb2,...,bk(a1, . . . , ak) = 1 if and only if at = a1 + bt mod q for every t ∈ {2, . . . , k}. All our
lower bounds effectively come from a tight q−(k−1)-inapproximability of this problem for every q
and k.

To study this problem we introduce a T -player communication problem that we call the “Implicit
Randomized Mask Detection Problem” (IRMD) described as follows: There are T players each of
whom receives an αn k-hypermatching Mt (i.e., a set of αn k-uniform hyperedges on [n] that are
pairwise disjoint). Additionally, the players receive a label in Zkq for every hyperedge they see. Thus

the i-th player’s input is (Mt, zt) where zt ∈ (Zkq )αn. In the NO distribution the zt’s are drawn
uniformly. In the YES distribution a vector x∗ ∈ [q]n is drawn uniformly and the label associated
with an edge j = (j1, . . . , jk) is (x∗j1 + aj, . . . , x

∗
jk

+ aj) where aj ∈ [q] is chosen uniformly and
independently for each edge in each matching. The goal of the players is to distinguish between the
YES and NO distributions with minimal communication (with “one-way” communication from
the t-th player to all higher numbered players, as before).

To lower bound the communication complexity of IRMD we consider a folded version of the
problem we call IFRMD where the labels associated with an edge are from Zk−1

q and obtained by

mapping an IRMD label z = (z(1), . . . , z(k)) ∈ Zkq to the label z̃ = (z(2)− z(1), . . . , z(k)− z(1)). With
this folding we recover the same communication problem as [KK19] for the case of k = q = 2 and
the main focus of our work is proving lower bounds for higher k and q.

Our analysis of the communication complexity of IFRMD follows the same sequence of steps
(with imitation even within the steps) as [KK19]. In particular we also use the same sets B1, . . . , BT
and use the same notion of boundedness.

Turning to the induction and the analysis of boundedness of Bt for general t, we are able to
extract a clean lemma (Lemma 5.19) that makes the induction completely routine. To explain this
contribution note that Bt is the intersection of Bt−1 with a set say At where At is of the same type
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as Bt (both are obtained by looking at the vector x∗ projected to a matching followed by some
folding). Thus both Bt−1 and At are bounded sets. To complete the induction it would suffice to
prove that the intersection of bounded sets is bounded, but alas this is not true! To get that Bt
is bounded, we need to use the fact that the matching Mt is random and chosen independently of
Bt−1 but it turns out that that is all that is needed. This is exactly what we show in Lemma 5.19
— and of course this only happens with high probability over the choice of Mt.

Incremental contribution over [KK19]. Given that our result closely follows [KK19] we now
focus on some key differences, and why these contributions are conceptually significant.

1. The analysis of [KK19] is intricate and it is not a priori clear what problems it may extend to.
Our choice of Max k-EQ(q) is not the obvious choice, and was not our first choice. More
natural choices would be to go for more general linear systems, or even functions supporting
“one-wise independence”, but we are unable to push the analysis to more general cases. Our
choice reflects an adequate one to get coarse bounds on the approximability of every problem
while getting tight ones for many natural ones.

2. The choice of the communication problems to work with is also not obvious: Indeed working
with both IRMD and IFRMD seems necessary for our approach — the former is more useful
for our final inapproximability results whereas the latter is the one we are able to analyze.

3. The exact notion of boundedness that is necessary and sufficient for our results is also not
completely obvious. It is only in hindsight, after carrying out the entire analysis, does it
become clear that the notion that works is exactly the same as the one in [KK19]. Part of
the challenge is that in the inductive proof of boundedness even the base case (which is quite
simple in [KK19]) is not obvious in our case, and nor is the inductive step.

• With respect to the base case we note that if we had adopted a weaker notion of bound-
edness allowing w-th level Fourier mass to grow roughly as U((k− 1)w/k) boundedness
would have been easier to prove but the result would not be optimal. Getting a bound
of U(w/2) is not technically hard, but involves a non-trivial randomization in the choice
of folding purely for analysis purposes. (So there is an implicit passing back and forth
between the IRMD and IFRMD problems in this technical step.)

• We also feel that it is important that we are able to extract an induction lemma
(Lemma 5.19) that clearly separates the (Fourier and combinatorial) analytic ingredients
from the probabilistic setup. We believe the lemma is clarifying even when applied to
the proof of [KK19].

4. Finally we note that the underlying combinatorics are made significantly more intricate due
to the need to work with k > 2. A conceptual difference from [KK19] here is that whereas
they explore the distribution of the number of edges in a random matching that intersect
with a fixed set of vertices, we have to explore the distribution of edges that have an odd
intersection (or non-zero mod q intersection) with a random hypermatching. Indeed this part
is clarifying the role of some of the quantities explored in the previous work. Additionally, we
note that the number of parameters we have to track is much larger (and indeed it is fortunate
that the number of parameters remains a constant independent of k), and managing these in
our inequalities is a non-trivial technical challenge (even given the heavy lifting in [KK19]).

8



1.5 Organization of the rest of the paper

We start with some background material in Section 2. We introduce our communication problems
(IRMD and IFRMD) in Section 3 and state our lower bounds for these. We use these lower bounds
on communication problems to prove our streaming lower bounds in Section 4, and turn to proving
the communication lower bounds in Section 5. To do so, Section 5 introduces the notion of bounded
sets, states three lemmas on the properties of bounded sets, and proves the lower bound assuming
these some lemmas on the boundedness of sets encountered by the protocol. Finally Section 6
proves these lemmas on boundedness, concluding the proofs.

2 Preliminaries

We use the following notations throughout the paper. Let N = {1, . . . } denote the set of natural
numbers and let [n] = {1, 2, . . . , n}. For a discrete set X and a function f : X → R, we denote
‖f‖p = (

∑
x∈X |f(x)|p)1/p for every p > 0 and ‖f‖0 =

∑
x∈X 1f(x)6=0.

2.1 Total variation distance

In our analysis we will use the total variation distance between probability distributions, and several
bounds on it presented in this section.

Definition 2.1 (Total variation distance of discrete random variables). Let Ω be a finite probability
space and X,Y be random variables with support Ω. The total variation distance between X and
Y is defined as follows.

‖X − Y ‖tvd :=
1

2

∑
ω∈Ω

|Pr[X = ω]− Pr[Y = ω]| .

We will use the triangle and data processing inequalities for the total variation distance.

Proposition 2.2 (E.g.,[KKS15, Claim 6.5]). For random variables X,Y and W :

• (Triangle inequality) ‖X − Y ‖tvd ≥ ‖X −W‖tvd − ‖Y −W‖tvd.

• (Data processing inequality) If W is independent of both X and Y , and f is a function, then
‖f(X,W )− f(Y,W )‖tvd ≤ ‖X − Y ‖tvd.

Lemma 2.3. Let X, Y, W be random variables and let f be a function. If there exists δ > 0 such
that for every fixed x in the support of X, we have

‖f(x, Y )− f(x,W )‖tvd ≤ δ ,

then the following holds:
‖(X, f(X,Y ))− (X, f(X,W ))‖tvd ≤ δ .

Proof. Consider any statistical test T distinguishing the joint distributions (X, f(X,Y )) and (X, f(X,W )).
It suffices to prove that

EX,Y [T (X, f(X,Y ))]− EX,W [T ((X, f(X,W )))] ≤ δ .

We have

EX,Y [T (X, f(X,Y ))]− EX,W [T ((X, f(X,W )))]
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= Ex∼X
[
Ey∼Y |X=x[T (x, f(x, y))]

]
− Ex∼X

[
Ew∼W |X=x[T (x, f(x,w))]

]
= Ex∼X

[
Ey∼Y |X=x[T (x, f(x, y))]− Ew∼W |X=x[T (x, f(x,w))]

]
≤ Ex∼X [δ] = δ ,

where the last step follows from the hypothesis that for every fixed x, we have

‖f(x, Y )− f(x,W )‖tvd ≤ δ .

We will also need the following lemma from [KK19].

Lemma 2.4 ([KK19, Lemma B.2]). Let X1, X2 be random variables taking values on finite sample
space Ω1. Let Z1, Z2 be random variables taking values on sample space Ω2, and suppose that Z2

is independent of X1, X2. Let f : Ω1 × Ω2 → Ω3 be a function. Then

‖(X1, f(X1, Z1))− (X2, f(X2, Z2))‖tvd ≤ ‖(X1, f(X1, Z1))− (X1, f(X1, Z2))‖tvd + ‖X1−X2‖tvd .

2.2 Concentration inequality

We will use the following concentration inequality from [KK19] which is essentially an Azuma-
Hoeffding style inequality for submartingales.

Lemma 2.5 ([KK19, Lemma 2.5]). Let X =
∑

i∈[N ]Xi where Xi are Bernoulli random variables
such that for every k ∈ [N ], E[Xk |X1, . . . , Xk−1] ≤ p for some p ∈ (0, 1). Let µ = Np. For every
∆ > 0, we have:

Pr [X ≥ µ+ ∆] ≤ exp

(
− ∆2

2µ+ 2∆

)
.

2.3 Fourier analysis

In this paper, we will use Fourier analysis over Zq (see, for instance, [O’D14, GT19]). For a function

f : Znq → C, its Fourier coefficients are defined by f̂(u) = 1
qn
∑

a∈Znq f(a) · ωu>a, where u ∈ Znq and

ω = e2πi/q is the primitive q-th root of unity. In particular, for every a, f(a) =
∑

u∈Znq f̂(u) ·ωu′>a.

Later we will use the three following important tools. Note that here we define the p-norm of f
as ‖f‖pp =

∑
x∈Znq |f(x)|p rather than the standard definition which uses expectation. This is for

future notational convenience.

Lemma 2.6 (Parseval’s identity). For every function f : Znq → C,

‖f‖22 =
∑
a∈Znq

f(a)2 = qn
∑
u∈Zkq

f̂(u)2 .

Note that for every distribution f on Znq , f̂(0n) = q−n. For the uniform distribution U on Znq ,

Û(u) = 0 for every u 6= 0n. Thus, by Lemma 2.6, for any distribution f on Znq :

‖f − U‖22 = qn
∑
u∈Znq

(
f̂(u)− Û(u)

)2
= qn

∑
u∈Znq \{0n}

f̂(u)2 . (2.7)
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We now introduce some standard facts about how convolutions interact with the Fourier trans-
form operation. For functions f, g : Znq → C, their convolution f ? g : Znq → C is defined as
(f ? g)(a) =

∑
v∈Znq f(v)g(a − v). The first lemma is the so-called “convolution theorem,” which

essentially states that, up to normalization factors, the Fourier transform of the convolution of two
functions is equal to the pointwise product of the individual Fourier transforms.

Lemma 2.8 (Convolution Theorem). For f, g : Znq → C, we have

f̂ ? g(u) = qn · f̂(u) · ĝ(u).

for all u ∈ Znq .

Proof. For every u,

f̂ ? g(u) =
1

qn

∑
a∈Znq

(f ? g)(a) · ωu>a

=
1

qn

∑
a∈Znq

∑
v∈Znq

f(v)g(a− v)

ωu>a

=
1

qn

∑
a∈Znq

∑
v∈Znq

f(v)ωu>v · g(a− v)ωu>(a−v)

=
1

qn

∑
v∈Znq

f(v)ωu>v ·
∑
a∈Znq

g(a− v)ωu>(a−v)

= qn · 1

qn

∑
v∈Znq

f(v)ωu>v · 1

qn

∑
a∈Znq

g(a)ωu>a

= qn · f̂(u) · ĝ(u),

as desired.

We will also need the following lemma, which states that the Fourier transform of the product
of two functions is given by the convolution of the individual Fourier transforms.

Lemma 2.9 (Fourier transform of product of functions). For every f, g : Znq → C, and u ∈ Znq , we
have

f̂ · g(u) =
∑

u′∈Znq

f̂(u′) · ĝ(u− u′) .

Furthermore, for every h ∈ [n],∑
u∈Znq
‖u‖0=h

f̂ · g(u) =
∑
u∈Znq

∑
u′∈Znq

‖u+u′‖0=h

f̂(u) · ĝ(u′) .

Proof. For every u ∈ Znq , we have

f̂ · g(u) =
1

qn

∑
a∈Znq

f(a) · g(a) · ωu>a
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=
1

qn

∑
a∈Znq

 ∑
u′∈Znq

f̂(u′) · ωu′>a

 · g(a) · ωu>a

=
∑

u′∈Znq

f̂(u′) ·

 1

qn

∑
a∈Znq

g(a) · ω(u−u′)>a


=
∑

u′∈Znq

f̂(u′) · ĝ(u− u′) .

Next, for every h ∈ [n], ∑
u∈Znq
‖u‖0=h

f̂ · g(u) =
∑
u∈Znq
‖u‖0=h

∑
u′∈Znq

f̂(u′) · ĝ(u− u′) . (2.10)

Letting w = u − u′ and switching the order of the summations, the right-hand side of (2.10)
becomes ∑

u′∈Znq

∑
w∈Znq

‖w+u′‖0=h

f̂(u′) · ĝ(w) ,

which, after renaming variables, proves the furthermore part of the lemma.

The hypercontractivity theorem states that the 2-norm of a function after the application of a
noise operator can be nicely upper bounded.

Lemma 2.11 (Hypercontractivity Theorem [O’D14, Page 278]). Let f : Znq → C be a square-

integrable function and let 1 < p < 2, 0 ≤ ρ ≤ 1√
p−1

(1/q)1/2−1/p, we have

‖Tρf‖2 ≤ ‖f‖p ,

where Tρ is the noise operator defined by Tρf(x) =
∑

u∈Znq f̂(u)ρ‖u‖0ωu>x.

Next, we prove the following consequence of the hypercontractivity theorem.

Lemma 2.12. There exists a constant ζ such that for every q ∈ N, f : Znq → {a ∈ C | |a| ≤ 1} and

B = {a ∈ Znq | f(a) 6= 0} the following holds: If |B| ≥ qn−b for some b ∈ N, then for every v ∈ Znq
and every h ∈ {1, . . . , 4b}, we have

q2n

|B|2
∑
u∈Znq

‖u+v‖0=h

|f̂(u)|2 ≤
(
ζ · b
h

)h
.

Proof. We prove the lemma for ζ = 6, though for now we treat it as a parameter.
First, let us consider v = 0n and f : Znq → {a ∈ C | |a| ≤ 1}. Let us pick p = 1 + h

ζb and

ρ = 1√
p−1

(1/q)1/2−1/p. Assume |B| ≥ qn−b.
The choices of p and ρ satisfy the preconditions of Lemma 2.11, and so applying Lemma 2.11

we have

∑
u∈Znq

ρ2‖u‖0 |f̂(u)|2 = ‖Tρf‖22 ≤ ‖f‖2p =

 1

qn

∑
x∈Znq

|f(x)|p
2/p

≤
(
|B|
qn

)2/p

.
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Now, suppose h ∈ {1, . . . , 4b}. Noting that ρ2h
∑

u∈Znq
‖u‖0=h

|f̂(u)|2 ≤
∑

u∈Znq ρ
2‖u‖0 |f̂(u)|2, we have

q2n

|B|2
∑
u∈Znq
‖u‖0=h

|f̂(u)|2 ≤ 1

ρ2h

(
qn

|B|

)2−2/p

≤ 1

ρ2h
q(2−2/p)b

=
q

(
1+ 2b

h
− 2
p
− 2b
hp

)
h

(p− 1)h

=

(
ζb

h
· q1+ 2b

h
− 2
p
− 2b
hp

)h
, (2.13)

where the first equality above is by our choice of ρ and the second by our choice of p. Observe that
the exponent of q in the final expression above can be bounded as follows:

1 +
2b

h
− 2

p
− 2b

ph
= 1 +

2b

h
−

2
(
1 + b

h

)
1 + h

ζb

=

(
1 +

h

ζb

)−1(2

ζ
+
h

ζb
− 1

)
≤
(

1 +
h

ζb

)−1(6

ζ
− 1

)
. (2.14)

Now we use our choice of ζ = 6 and note that for this choice the expression from (2.14) equals

0. Thus, for this choice of ζ, we have q
1+ 2b

h
− 2
p
− 2b
hp = 1 and so the expression from (2.13) can be

bounded from above by
(
ζb
h

)h
, implying that

q2n

|B|2
∑
u∈Znq
‖u‖0=h

|f̂(u)|2 ≤
(
ζb

h

)h
.

In order to extend the above to sums over translational shifts, i.e., u such that ‖u + v‖0 = h for

an arbitrary v ∈ Znq , consider the function g(x) = f(x) · ωx>v. We have for every x ∈ Znq ,

ĝ(u) = q−n
∑
a∈Znq

g(a)ωa>u = q−n
∑
a∈Znq

f(a)ωa>(u−v) = f̂(u− v) .

By applying the above analysis on g, we have

q2n

|B|2
∑
u∈Znq

‖u+v‖0=h

|f̂(u)|2 =
q2n

|B|2
∑
u∈Znq
‖u‖0=h

|ĝ(u)|2 ≤
(
ζb

h

)h
,

as desired.
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3 Communication problems

Throughout this paper, we will be dealing with k-hypermatchings on vertices from the set [n], i.e.,
a set of edges e1, . . . , em where ei ⊆ [n], |ei| = k and ei ∩ ej = ∅ for every i 6= j ∈ [m]. We let
ei = {(ei)1, . . . , (ei)k}. The direct encoding of a matching M = {e1, . . . , em} will be given by a
hypermatching matrix A ∈ {0, 1}km×n where Ak(i−1)+`,j = 1 if and only if j = (ei)`. (Thus, A is a
matrix with row sums being 1 and column sums being at most 1. Note that A also depends on the
ordering of e1, e2, . . . , em as well as the ordering of the nodes within each ei.)

We will also find it convenient to refer to edges by their indicator vectors in Znq . For an edge
ei, we will use the boldface notation ei ∈ Znq to refer to this vector, i.e., (ei)j = 1 if j = (ei)` for
some ` ∈ [k], while (ei)j = 0 otherwise.

We are now ready to define the communication game, which we term the Implicit Randomized
Mask Detection (IRMD) problem:

Definition 3.1 (Implicit Randomized Mask Detection (IRMD) Problem). Let q, k, n, T ∈ N and
α ∈ (0, 1/k) be parameters. Let DY and DN be distributions over Zkq . In the (DY ,DN )-IRMDα,T
game, there are T players and a hidden q-coloring encoded by a random x∗ ∈ Znq . The t-th player

has two inputs: (a.) At ∈ {0, 1}αkn×n, the hypermatching matrix (see above) corresponding to a
random hypermatching Mt of size αn and (b.) a vector zt ∈ Zαknq that can be generated from one
of two different distributions:

• (Yes) zt = Atx
∗+ bt where bt ∈ Zαknq is of the form bt = (bt,1, . . . ,bt,αn) and each bt,i ∈ Zkq

is sampled from DY .

• (No) zt = Atx
∗ + bt where bt ∈ Zαknq is of the form bt = (bt,1, . . . ,bt,αn) and each bt,i ∈ Zkq

is sampled from DN .

This is a one-way game where the t-th player broadcasts a message to all other players after
receiving messages from players 1, . . . , t − 1. The goal is for the T -th player to be able to de-
cide whether the {zt} have been chosen from the “Yes” distribution or “No” distribution. The
advantage of a protocol (in which the T -th player outputs either “Yes” or “No”) is defined as
|PrDY [the T -th player outputs Yes]− PrDN [the T -th player outputs Yes]|.

Remark. We remark that the inputs to the T players in the IRMD problem can be viewed as
a stream σ = σ(1) ◦ · · · ◦ σ(T ), where the t-th player’s input (At, zt) is converted to a stream
σ(t) = (σ(t)(i)|i ∈ [αn]) where the elements of the stream are of the form σ(t)(i) = (j(t)(i), z(t)(i))
with j(t)(i) ∈ [n]k is a sequence of k distinct elements of [n] and z(t)(i) ∈ Zkq . This “streaming”
representation will be used when we relate the complexity of IRMD to the approximability of various
Max-CSP(F) problems in Theorem 4.3.

We suppress the subscripts α and T when they are clear from context. Furthermore, we simply
use IRMD to refer to (DY ,DN )-IRMD with DY being the uniform distribution over {0k, 1k, . . . , (q−
1)k} and DN being the uniform distribution over Zkq . The following theorem shows that in this
special case, the IRMD problem requires linear communication. We remark that the theorem could
hold for other pairs of distributions and leave the question of when such a lower bound holds as an
interesting open problem.

Theorem 3.2 (Linear lower bound for IRMD). For every q, k ∈ N and δ ∈ (0, 1/2), there exists
α0 ∈ (0, 1/k) such that for every α ∈ (0, α0] and T ∈ N, there exists n0 ∈ N and τ ∈ (0, 1) such
that the following holds. If DY is the uniform distribution over {0k, 1k, . . . , (q − 1)k}, DN is the
uniform distribution over Zkq , and n ≥ n0 then every protocol for (DY ,DN )-IRMDα,T with advantage
δ requires τn bits of communication.
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Theorem 3.2 is proved at the end of this section. Its proof uses Theorem 3.5 and Lemma 3.6
which we state below.

We prove the hardness of IRMD by showing the hardness of a folded version of IRMD defined
below. In the folded version of the communication problem, we augment each hyperedge with an
associated center c ∈ e. Given a k-hypermatching M = (e1, . . . , em) and a sequence of centers
c = (c1, . . . , cm) with ci ∈ ei = {(ei)1, . . . , (ei)k} ⊆ [n], the c-centered folded encoding of M is the

matrix Ac ∈ Z(k−1)m×n
q given by

(Ac)(k−1)(i−1)+`,j =


1 , if j ∈ {(ei)`} and ` ∈ [k − 1]
−1 , if j = ci and ` ∈ [k − 1]
0 , otherwise

(3.3)

See Fig. 2 for an example. We define the folded version of the IRMD problem below (note that all
the arithmetic is over Zq):
Definition 3.4 (Implicit Folded Randomized Mask Detection (IFRMD) Problem). Let q, k, n, T ∈
N and α ∈ (0, 1/k) be parameters. In the IFRMD game, there are T players and a hidden q-coloring
encoded by a random x∗ ∈ Znq . The t-th player has a pair of inputs (At,ct ,wt) given as follows.

At,ct ∈ Zα(k−1)n×n
q gives a ct-centered folded encoding of a hypermatching Mt of size αn where Mt

is chosen uniformly at random and c is chosen uniformly from all possible centers for Mt. And

wt ∈ Zα(k−1)n
q is a vector that can be generated from two different distributions:

• (YES) wt = At,ctx
∗.

• (NO) wt is uniform over Zα(k−1)n
q .

This is a one-way game where the t-th player broadcasts a message to all other players after
receiving messages from players 1, . . . , t− 1. The goal is to decide (by the T -th player) whether the
{wt} are coming from the YES distribution or the NO distribution. The advantage of a protocol
is defined as∣∣∣∣ Pr

(At,ct ,wt)t∈T∼YES
[the T -th player outputs Yes]− Pr

(At,ct ,wt)t∈T∼NO
[the T -th player outputs Yes]

∣∣∣∣ .
The main technical theorem of this paper is the following Ω(n) communication lower bound for

IFRMD.

Theorem 3.5 (Linear lower bound for IFRMD). For every q, k ∈ N and δ ∈ (0, 1/2), there exists
α0 > 0 such that for every α ∈ (0, α0] and T ∈ N, there exists n0 ∈ N and τ ∈ (0, 1) such that
the following holds. When n ≥ n0, any protocol for IFRMD with advantage δ requires τn bits of
communication.

The proof of Theorem 3.5 is given in Section 5.1. We now establish a reduction from IFRMD
to IRMD that preserves the communication complexity. By this reduction, Theorem 3.2 will be an
immediate corollary of Theorem 3.5.

Lemma 3.6. Let n, k, α be the parameters. Suppose there exists a protocol for IRMD using at most
s bits communication with advantage δ, then there exists a protocol for IFRMD using at most s bits
communication with advantage δ.

Proof. Suppose we have an instance of IFRMD with input (At,ct ,wt) to the t-th player. We show
how to transform this into an instance of IRMD. For each t, the t-th player performs the following
computations on his/her input:
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1. Use At,ct to compute the underlying hypermatching Mt (by identifying the set of nonzero
columns for each block of k − 1 rows of At,ct) and compute the corresponding matrix Πt.

2. For each i ∈ [αn], sample at,i ∈ Zq uniformly at random. Let zt ∈ Zαknq be defined by
(zt)(i−1)k+j = (wt)(i−1)k+j + at,i for each j = 1, 2, . . . , k − 1 and zt,ik = at,i.

We claim that the inputs (At, zt) correspond to an instance of IRMD. It suffices to show that if
({(At,ct ,wt)}t∈[T ],x

∗) follows the YES (resp. NO) distribution of IFRMD, then ({(At, zt)}t∈[T ],x
∗)

follows the YES (resp. NO) distribution of IRMD.

Let m = αn. For each t, let e
(t)
1 , e

(t)
2 , . . . , e

(t)
m be the hyperedges corresponding to At,ct (in order),

with (e
(t)
i )k = ct,i.

We first focus on the YES case. Then, note that for j = 1, 2, . . . , k − 1, we have

(zt)(i−1)k+j = (wt)(i−1)k+j + at,i = (x∗
(e

(t)
i )j

+ x∗ct,i) + at,i = x∗
(e

(t)
i )j

+ (x∗ct,i + at,i).

Moreover,

(zt)ik = at,i = x∗ct,i + (x∗ct,i + at,i) = x∗
(e

(t)
i )k

+ (x∗ct,i + at,i).

Thus, it follows that zt = Πtx
∗ + bt, where bt = (bt,1, . . . ,bt,αn) is given by bt,i = (x∗ct,i + at,i) · 1k

where 1k is the all 1 vector of length k. Since at,i is uniform over Zq, this takes care of the YES
case.

The NO case is easier to see: Πt encodes a random k-hypermatching of size αn and zt is uniform
over Zαknq .

Proof of Theorem 3.2 (assuming Theorem 3.5). For the sake of contradiction, suppose there ex-
ists a protocol for IRMD with advantage δ using fewer than τn bits of communication. Then
by Lemma 3.6 there exists a protocol for IFRMD with advantage δ using fewer than τn bits of
communication, which contradicts Theorem 3.5. This completes the proof of Theorem 3.2.

In the following section we show how Theorem 3.2 yields the claimed hardness of streaming
problems. In the rest of this paper, we focus on the proof of Theorem 3.5, i.e., the linear commu-
nication lower bound for IFRMD.

4 Streaming problems and hardness

In this section we state our main technical theorem establishing linear space lower bounds for the
approximability of many CSPs. We also prove these lower bounds assuming Theorem 3.5 and in
particular its corollary Theorem 3.2.

Below we define the two crucial constants associated with a family F which lay out the “trivial”
approximability, and the inapproximability that we prove. In particular we define the notion of a
width ω(F) ∈ [1/q, 1] for every family F . The notion of a wide family from Theorem 1.1 corresponds
to a family with maximum width, i.e., ω(F) = 1.

Definition 4.1 (Minimum value, Width of F). For a family F , we define its minimum value
ρmin(F) to be the infimum over all instances Ψ of Max-CSP(F) of valΨ. For b ∈ Zkq and f : Zkq →
{0, 1} we define b-width of f , denoted ωb(f) to be the quantity

|{a∈Zq | f(b+ak)=1}|
q . The width of f ,

denoted ω(f), is given by ω(f) = maxb∈Zkq {ωb(f)}. Finally for a family F , we define its width to

be ω(F) = minf∈F{ω(f)}. We say that a family F is wide if ω(F) = 1.
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As described above ρmin(F) may not even be computable given F , but as pointed out in
[CGSV21a] it is a computable function. Key to this assertion is the following equivalent definition
of ρmin(F) which follows from Definition 2.4 and Proposition 2.5 of [CGSV21a].

Proposition 4.2 ([CGSV21a, Proposition 2.4]). For every k, q,F ⊆ {f : Zkq → {0, 1}} we have

ρmin(F) = ρ(F) := min
DF∈∆(F)

{
max
D∈∆([q])

{
E

f∼DF ,a∼Dk
[f(a)]

}}
.

We are now ready to prove the main theorem of the paper on the approximability of CSPs by
applying Theorem 3.2.

Theorem 4.3 (Linear Space Inapproximability of CSPs). For every k, q,F ⊆ {f : Zkq → {0, 1}}
and every ε > 0 we have the following: Every randomized single-pass streaming (1 + ε) · ρ(F)

ω(F) -

approximation algorithm for Max-CSP(F) requires Ω(n) space.

Proof. We assume 0 < ε ≤ 1/10, since the theorem only gets weaker for larger ε. Given k, q, F we
let α = min{α0, ε/(100k2q)} where α0 is the constant from Theorem 3.2 with δ = 1/6. We now set
T to be some large enough constant that only depends on q, k,F , ε, α (but not n).

Let ALG be a space s algorithm distinguishing instances from the set {Ψ | valΨ ≥ (1−ε/3)ω(F)}
from instances from the set {Ψ | valΨ ≤ (1 + ε/3)ρ(F)} with success probability at least 2/3. We
show how to use ALG to device an s-bit communication protocol for IRMD = IRMDα,T with
advantage at least 1/6.

For f ∈ F , let bf ∈ Zkq be a sequence maximizing ωbf (f) and let Sf = {bf + ak | a ∈ Zq}.
Further let DF ∈ ∆(F) be a distribution achieving the minimum in the equivalent definition of
ρ(F) from Proposition 4.2. Let σ = (σ1, . . . , σm) be an instance of IRMD with T players, so that
m = Tαn and σi = (j(i), z(i)) where j(i) ∈ [n]k is a sequence of k distinct elements of [n] and
z(i) ∈ Zkq . For each σi we either generate 0 or 1 constraint of Max-CSP(F) as follows: We sample
f(i) ∼ DF and output the constraint (f(i), j(i)) if z(i) ∈ Sf(i) and output no constraint otherwise.
Applying this step independently to each σi generates an instance Ψ of Max-CSP(F) with m̃ ≤ m
constraints on n variables. We make the following claims about Ψ.

(1) PrYES[m̃ > (1 + ε/10) · q−(k−1) ·m] = o(1) and PrNO[m̃ < (1− ε/10) · q−(k−1) ·m] = o(1), i.e.,
the number of constraints m̃ does not deviate (in the wrong direction) from its expectation
q−(k−1) ·m with too high a probability.3

(2) If σ is generated from the YES distribution with hidden vector x∗ then with high probability
the number of constraints of Ψ satisfied by x∗ is at least (ω(F) − ε/10) · q−(k−1) · m. In
particular,

PrYES[valΨ ≤ (1− ε/3) · ω(F)] = o(1).

(3) If σ is generated from the NO distribution with hidden vector x∗ then with high probability
for every ν the number of constraints of Ψ satisfied by ν is at most (ρ(F)+ε/10) ·q−(k−1) ·m.
In particular, PrNO[valΨ ≥ (1 + ε/3) · ρ(F)] = o(1).

With the above claims in hand, it is straightforward to convert ALG into an O(s)-bit commu-
nication protocol for IRMD with advantage at least 1/6 — the t-th player gets the state of ALG

3In these claims the o(1) term goes to zero as n → ∞. In fact, the proof will show that these terms go to zero
exponentially fast in n but we won’t need this additional fact.
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after processing constraints corresponding to the first t− 1 blocks from the (t− 1)-th player; gen-
erates the constraints corresponding to the t-th block of the stream σ, and simulates ALG on this
part of the stream corresponding to Ψ, and passes the resulting state on to the (t + 1)-th player.
The T -th player outputs 1 if ALG outputs 1 and 0 otherwise. It is straightforward to see that
if ALG is correct on every input with probability 2/3 and Claims (1)-(3) above hold, then the
resulting communication protocol achieves advantage at least 1/3− o(1) ≥ 1/6 on IRMD. Finally,
we invoke Theorem 3.2 and conclude that s = Ω(n).

We thus turn to proving claims (1)-(3). Given σ1, . . . , σm and ν ∈ Znq , we create a collection
of related variables as follows: For i ∈ [m], let Vi = 1 if σi results in a constraint and 0 otherwise.
Further, let Yi(ν) = 1 if Vi = 1 and the resulting constraint is satisfied by the assignment ν. (Note
all these are random variables depending on σ). Below, we bound the expectations of the sums of
these random variables in the YES and NO cases, and also argue that these variables are close
to their expectations (or at least give bounds on deviating from the expectation in one direction).
This will suffice to prove claims (1)-(3) and thus the theorem.

Proof of Claim (1). We start with m̃ =
∑m

i=1 Vi in the NO case: In this case E[Vi] = |Sf |/qk =
q−(k−1) (note that |Sf | = q for every f). Furthermore the Vi’s are independent since z(i)’s are
uniform and independent of each other. Thus m̃ is sharply concentrated around q−(k−1) ·m and we
get that PrNO[m̃ 6∈ (1± ε/10) · q−(k−1) ·m] = o(1).

Turning to the YES case, since z(i)’s are no longer independent, the Vi’s are correlated. To
enable the analysis, we define a vector x∗ to be γ-good for γ > 0 if for every τ ∈ Zq we have
Pri∈[n][x

∗
i = τ ] ∈ (1± γ)(1/q). Note that for every constant γ > 0, the probability that x∗ is not γ-

good is o(1). Fix x∗ that is γ-good. We claim that in this case, E[Vi |V1:i−1] ≤ q−(k−1)·(1+γ+αqk)k.
To see this note that the effect of conditioning on V1:i−1 only affects Vi due to the fact that now
j(i) is chosen from a smaller set of variables and not all of [n]. Let t ∈ [T ] denote the block
containing i (i.e., i ∈ ((t − 1)αn, tαn]). Let S denote the set of variables that do not participate
in the edges j((t − 1)αn + 1), . . . , j(i − 1). Note |S| ≥ (1 − kα)n and so for every τ ∈ Zq we have
Pr`∈S [x∗` = τ ] ≤ (1 + γ + αkq)/q. We conclude that the probability Pr[x∗|j(i) ∈ Sf |V1:i−1] ≤
|Sf | · ((1 +γ+αkq)/q)k = q−(k−1) · (1 +γ+αqk)k. Setting γ = ε/(100k) and using α ≤ ε/(100k2q),
we conclude E[Vi |V1:i−1] ≤ q−(k−1) · (1 + ε/(50k))k ≤ q−(k−1) · (1 + ε/20) (where we use ε ≤ 1/10
to get (1 + ε/(50k))k(1 + ε/20)). Applying Lemma 2.5 we conclude that here again we get that
PrYES[m̃ =

∑
i Vi > (1+ε/10)q−(k−1)m] = o(1). (Note that the o(1) term goes to zero exponentially

fast with m.)

Proof of Claim (2). Now we analyze the number of satisfiable constraints of the resulting
instance Ψ in the YES case, where we argue that x∗ satisfies a large fraction of constraints with
high probability. Again with probability 1 − o(1) we have that x∗ is γ-good. Now an argument
similar to the one in the analysis of X in the YES case shows that for every b ∈ Zkq , Pr[x∗|j(i) =

b |Y1:i−1] ≥ (1 − ε/50) · q−k. Fix f(i) and let W = Sf(i) ∩ f(i)−1(1). Note by definition of
ω(F) that |W | ≥ ω(F) · q. The event that the i-th constraint is satisfied by x∗ is equivalent
to the event that x∗j(i) ∈ T and the probability of this event, conditioned on Y1:i−1 is at least

|W | · (1 − ε/50) · q−k ≥ (1 − ε/50) · ω(F) · q−(k−1). Using Lemma 2.5 we conclude again that
Pr[Y (x∗) =

∑m
i=1 Yi(x

∗) ≤ (1 − ε/10) · ω(F) · q−(k−1) ·m] = o(1). Combining this with the lower
bound on m̃ from Claim (1) we conclude that Pr[valΨ ≤ (1− ε/3) · ω(F)] = o(1).

Proof of Claim (3). Finally we analyze the number of satisfiable constraints in the NO case.
Fix ν ∈ Zkq and let D ∈ ∆(Zq) be the distribution obtained by sampling a uniformly random ` ∈ [n]
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and outputting ν`. By Proposition 4.2 we have that Ef∼DF ,b∼Dk [f(b)] ≤ ρ(F). We use this to

prove that for every i ∈ [m], E[Yi(ν)|Y1:i−1(ν)] ≤ (1 + ε/50) · ρ(F) · q−(k−1).
First, as in the proof for Claim (2) we have that the total variation distance between b ∼ Dk and

{νj(i)|Y1:i−1(ν)} is at most k2α. (In particular, this is upper bounded by the probability that k uni-
formly and independently chosen elements of [n] either collide or fall in a set of size at most k(αn−
1).) We conclude that the probability that the i-th “potential constraint” (given by (f(i), j(i))) is
satisfied is at most ρ(F) + k2α. Next, note that the event Xi = 1 (i.e., the i-th constraint is chosen
in Ψ) is independent of Yi(ν) since in the NO case z(i) ∈ Zkq is uniform and independent of all other

random variables. We conclude that E[Yi(ν)|Y1:i−1(ν)] ≤ (1 + ε/50) ·ρ(F) · q−(k−1). Finally, we ap-
ply Lemma 2.5 again to conclude that Pr[Y (ν) =

∑m
i=1 Yi(ν) > (1+ε/10) ·ρ(F) ·q−(k−1) ·m] ≤ c−m

where c > 1 depends on q, k,F , α, ε but not on T or n. Thus by setting T large enough, we can
bound c−m ≤ q−2n. This allows us to use the union bound to conclude that the probability that
there exists ν ∈ Znq such that Y (ν) > (1 + ε/10) · ρ(F) · q−(k−1) ·m is at most q−n = o(1). Com-
bining with the lower bound on m̃ from Claim (1) we get that with probability 1 − o(1) we have
valΨ ≤ (1 + ε/3) · ρ(F) in this case.

This concludes the proofs of the claims and thus the proof of Theorem 4.3.

Theorems 1.1 and 1.2 follow immediately from Theorem 4.3 as we show below.

Proof of Theorem 1.1. The theorem follows from the fact that for a wide family ω(F) = 1 and in
this case Theorem 4.3 asserts that a ρ(F) + ε approximation requires linear space.

Proof of Theorem 1.2. The theorem follows from the fact that for every non-zero function f we
have ω(f) ≥ 1/q and so for every family F also we have ω(F) ≥ 1/q. Thus Theorem 4.3 asserts
that a ρ(F) · q + ε approximation requires linear space, where ρ(F) approximation is trivial.

4.1 Some examples

We now give some examples illustrating the power of Theorem 4.3. Our first example is the familiar
q-coloring problem.

Example 1 (Max-qCol).

Let k = 2 and q ≥ 2. Let F = {f : Z2
q → {0, 1}} where f(u, v) = 1 if and only if u 6= v.

The “Max q-Coloring” problem is defined to be Max-qCol = Max-CSP(F). It is easy to
verify ρ(F) = 1 − 1/q and ω(F) = 1. We thus conclude by Theorem 1.1 that Max-qCol is
approximation resistant.

Next we turn to the Unique Games Problem.

Example 2 (Max-qUG).

Let k = 2 and q ≥ 2. Let F = {f : Z2
q → {0, 1} | f−1(1) is a bijection}. The “q-ary Unique

Games” problem is defined to be Max-qUG = Max-CSP(F). We show below that ρ(F) = 1/q.
We also show that there exists F ′ ⊆ F such that ρ(F ′) = 1/q and ω(F ′) = 1. Applying
Theorem 1.1 to F ′ we get that 1/q + ε approximating Max-CSP(F ′) requires linear space
and the same holds for Max-qUG = Max-CSP(F) by monotonicity.
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We define the family F ′ to be F ′ = {fa|a ∈ Zq} where fa(u, v) = 1 if and only if u =
v + a. Let D = Unif(Zq). For every f ∈ F we have that E(u,v)∼D2 [f(u, v)] = 1/q. So for
every DF ∈ ∆(F) we have Ef∼DF E(u,v)∼D2 [f(u, v)] = 1/q. This proves ρ(F), ρ(F ′) ≥ 1/q.
To get the upper bound we let DF be uniform over F ′. For every (u, v) ∈ Z2

q we have

Ef∼DF [f(u, v)] = 1/q and so for every distribution D ∈ ∆(Zkq ) (which is more than we
need) we have Ef∼DF E(u,v)∼D[f(u, v)] ≤ 1/q. This proves ρ(F ′), ρ(F) = 1/q (since DF is
supported on F ′).
Now turning to ω(F ′), note that for every fa ∈ F ′ we have {(b + a, b)|b ∈ Zq} ⊆ f−1

a (1).
Thus ω(fa) ≥ ω(a,0)(fa) = 1. It follows that ω(F ′) = 1.

Our third example talks about constraints that are general linear systems.

Example 3 (Max-Link,r,q).

For k ≥ 2 and prime q and 0 ≤ r < k, we define Max-Link,r,q = Max-CSP(F) for F = Fk,r,q =
{fA,b : Zkq → {0, 1}|A ∈ Zr×kq ,b ∈ Zkq} where fA,b(x) = 1 if and only if Ax = Ab. (Thus
constraints are systems of satisfiable linear equations with solutions of dimension at least
k − r.) Let F ′k,r,q = {fA.b ∈ Fk,r,q|A · 1 = 0}. It is easy to verify that for every k, r, q,

ρ(F ′k,r,q) ≥ ρ(Fk,r,q) ≥ q−r. By choosing D′F to be uniform over fA,b with full rank matrices

A satisfying A · 1 = 0, we get ρ(Fk,r,q), ρ(F ′k,r,q) = q−r. For r < k, we also get ω(F ′) = 1
and thus, applying Theorem 1.1 to F ′ we get that Max-CSP(F ′) is approximation-resistant.
The same holds for Max-qUG = Max-CSP(F) by monotonicity.a

aWe believe this system is not approximation resistant for r = k. This is proved for q = 2 in [CGSV21b,
Lemma 2.14]. The case of general q may not have been explicitly resolved in previous work.

Finally we mention one more problem. This problem arises in the work of Singer, Sudan
and Velusamy [SSV21] who use it to show the approximation resistance of the “maximum acyclic
subgraph” problem to o(

√
n) space algorithms. We suspect the improved space lower bound should

improve their work to rule out o(n) space algorithms.

Example 4 (Max-Less-Thanq).

For k = 2 and q ≥ 2 we define F = {<q} where <q: Z2
q → {0, 1} is given by <q (u, v) = 1

if and only if u < v. It is possible to show ρ(F) = 1
2(1 − 1/q). Also ω(0,1)(<q) = 1 − 1/q

and this can be used to show that ω(F) = 1− 1/q. By Theorem 4.3 it follows that 1/2 + ε-
approximating Max-CSP(F) requires linear space.

5 Lower bound on the communication complexity

In this section we prove a linear lower bound on the communication complexity of IFRMD (Theo-
rem 3.5). Our proof is via a hybrid argument which starts with all players receiving inputs from
the NO distribution, and switching the players’ input distributions one at a time starting with
Player 1 to the YES distribution. We state a key “hybrid lemma” (Lemma 5.1) which asserts that
any one step of switching does not alter the distribution of the message output by the switched
player.

To state our lemma we recall some notations and set up a few new ones. Let α, n, k, q, T,m =
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αn ∈ N denote the usual parameters of IFRMD. Recall that the player t gets as input a matrix

At,ct ∈ Z(k−1)m×n
q corresponding to a k-uniform hypermatching Mt consisting of m hyperedges

folded over the center vector ct and a vector wt ∈ Z(k−1)m
q . For notational convenience, we will

separate the input At,ct into a matrix At ∈ Z(k−1)m×n
q and the center ct. For a sequence of objects

O1, O2, . . . , OT , we define O1:t = {O1, O2, . . . , Ot} for every t ∈ [T ]. With this notation we have
that the message St sent by the t-th player is a function of A1:t, c1:t,wt and S1:t−1.4 Next, note
that by Yao’s principle [Yao77], we may assume that the messages sent by the players in IFRMD
are all deterministic. Namely, a protocol for IFRMD can be specified by deterministic message
functions r1, r2, . . . , rT so that St = rt(A1:t, c1:t, S1:t−1,wt) denotes the message sent by the t-th
player. The communication complexity of a protocol is defined as the largest output length of
rt. When (A1:T , c1:T ,w1:T ) is drawn from the YES distribution (resp. the NO distribution), we
denote by SY1:T (resp. SN1:T ) the resulting messages. Without loss of generality ST is just a bit
“‘Yes/No” indicating the output of the protocol. Thus, to prove Theorem 3.5 we need to show that
SYT and SNT are close in total variation distance. For the induction we prove the much stronger
statement that (A1:T , c1:T , S

Y
1:T ) and (A1:T , c1:T , S

N
1:T ) are close in total variation distance, i.e.,

‖(A1:T , c1:T , S
Y
1:T )− (A1:T , c1:T , S

N
1:T )‖tvd ≤ δ .

The following lemma provides the key step in this analysis. Roughly it says that if the first t − 1
players’ inputs are according to the YES distribution then the t-th player’s output on the YES
input is typically distributed very similarly to the output on the NO distribution (even conditioned
on all previously announced hypermatchings, centers and messages). Formally, the lemma identifies
a sequence of events E1 ⊃ E2 ⊃ · · · ⊃ ET such that (i) Et enforces a “typicality” restriction on the
messages and inputs that the t-th player receives and (ii) if the messages and input received by
the t-th player are typical then the player cannot distinguish whether its input is sampled from
the YES distribution or the NO distribution (assuming all previous players’ inputs were from the
YES distribution).

Lemma 5.1 (Hybrid lemma). For every q, k ∈ N, there exists α0 > 0 such that for every T ∈ N,
and δ ∈ (0, 1), there exists τ ∈ (0, 1) and n0 <∞ such that the following holds for every n ≥ n0:

Let Π = (r1, . . . , rT ) be a deterministic protocol for IFRMD where each message function rt
outputs a message of at most τn bits. Let x ∼ Unif(Znq ) and let M1, . . . ,MT be independent random
hypermatching of size αn over [n] for some α ≤ α0. Let (At, ct) be an independent random folded
encoding of Mt for all t ∈ [T ]. Let SYt and SNt be the Yes and No messages of the t-th player
defined previously for message function rt for all t ∈ [T ]. Then there exists a sequence of events
E1 ⊃ E2 ⊃ · · · ⊃ ET such that (i) Et only depends on (A1:t, c1:t) and SY1:t−1, (ii) Pr[E1] ≥ 1−δ/T , (iii)
Pr[E t | Et−1] ≤ δ/T for all t = 2, 3, . . . , T , and (iv) for every fixed (A1:t, c1:t) and SY1:t−1 satisfying
Et, one has

‖SYt − rt(A1:t, c1:t, S
Y
1:t−1, Ut)‖tvd ≤ δ/T, (5.2)

where Ut ∼ Unif(Z(k−1)αn
q ).

(Note that the probabilities in items (ii) and (iii) above are based on the randomness of Mt and
ct, or equivalently on At,ct . The distribution of SYt in item (iv) alludes to the randomness of x∗

(conditioned on A1:t,c1:t and SY1:t−1) and the distribution of rt(A1:t, c1:t, S
Y
1:t−1, Ut) is based on the

randomness of Ut.)

4Note that even though the t-th player does not have access to A1:t−1, c1:t−1, and S1:t−2, allowing them to see
these only makes our lower bound stronger.
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Theorem 3.5 follows almost immediately from Lemma 5.1 as shown in Section 5.1. In the rest of
this paper we prove Lemma 5.1. In this section we introduce some new notions and state three key
lemmas that together suffice to prove Lemma 5.1. This (conditional) proof is given in Section 5.4.
In the following sections we prove the key lemmas. First we give an overview of the proof of
Lemma 5.1 that explains the nature of these key lemmas.

The general idea behind the proof of Lemma 5.1 is to argue that information about x∗ “leaked”
by the messages of the first t−1 players (i.e., S1:t−1) is not sufficient for the t-th player to distinguish
between the case where wt = At,ctx

∗ (the YES case) and the case where wt is uniform. The earlier
proofs of this type (in particular as in [KKS15]) simply counted the total information gleaned about
x∗ which is bounded by the total communication. Such proofs are inherently limited to achieving
only a

√
n lower bound. To go further [KK19] introduced the approach of reasoning about the

structure of the information learned about x∗. Note in particular that no player sees x∗ directly,
and the t′-th player only sees At′,ct′ · x

∗. (In particular no coordinate of x∗ is revealed directly,
though the sum of many pairs of coordinates are directly revealed.) Thus the information about x∗

comes from a “reduced space” and we would like to capture and exploit the structural restriction
imposed by this restriction. Information-theoretic tools seem to fail to capture this restriction and
the key to the work of [KK19] is to give a Fourier analytic condition, that they call “boundedness”,
that captures this restriction.

The boundedness condition applies to what we call the “posterior distribution” of x∗, i.e., the
distribution of x∗ conditioned on the first t messages. This distribution turns out to be the uniform
distribution over a set Bt ⊆ Znq (see Lemma 5.8). The boundedness condition places restrictions
on the Fourier spectrum of the indicator function of this set. (See Definition 5.14.) To use this
condition we need three ingredients elaborated below, which we abstract as lemma statements in
this section and prove in later sections. Given these three lemmas the proof of Lemma 5.1 follows
and is given in Section 5.4.

The first ingredient we need is that boundedness of Bt−1 does imply that the t-th player is
unable to distinguish between its input being from the YES distribution or the NO distribution.
This is stated as Lemma 5.18. Next we need to show that given information about At,ctx

∗, the
posterior distribution of x∗ is indeed bounded, and we assert this in Lemma 5.17. Note that this
also serves as the base case of our induction. Finally we argue that if Bt−1 is bounded, then for
most pairs of matchings At and centers ct the resulting set Bt is bounded. This is asserted in
Lemma 5.19. See also Fig. 1 for a pictorial overview of the proof structure of Lemma 5.1.

In the rest of this section, after showing that Lemma 5.1 implies Theorem 3.5 in Section 5.1,
we introduce the posterior sets and discuss their basic properties in Section 5.2, we introduce
boundedness and state the three lemmas above in Section 5.3, and finally conclude with the proof
of Lemma 5.1 in Section 5.4.

5.1 Proof of Theorem 3.5

We now show how the lemma suffices to prove Theorem 3.5. The proof is analogous to the proof of
Lemma 6.3 in [KK19]. We remark that the lemma is not immediate and effectively depends on the
fact that players can jointly sample from the NO distribution on their own. (Note the players can’t
jointly sample from the YES distribution since these samples are correlated by the hidden vector
x∗. So the proof is inherently asymmetric visavis the treatment of the YES and NO distributions.)

Proof of Theorem 3.5. For the sake of contradiction, assume that there exists a protocol Π =
(r1, . . . , rT ) that solves IFRMD with advantage more than δ and less than τn bits of communication
for some n ≥ n0. In what follows, we will show that ‖(A1:T , c1:T , S

Y
1:T )− (A1:T , c1:T , S

N
1:T )‖tvd ≤ δ,

22



which implies that the advantage of the protocol cannot be greater than δ, hence producing a
contradiction.

For every q, k ∈ N, we set α0 > 0 as in Lemma 5.1. For every α ∈ (0, α0], T ∈ N, and δ′ = δ/2,
we set n0 ∈ N and τ ∈ (0, 1) as in Lemma 5.1.

Let E1 ⊃ E2 ⊃ · · · ⊃ ET be the sequence of events guaranteed by Lemma 5.1 such that
Pr
[
Et | Et−1

]
≤ δ′/T for t = 2, 3 . . . , T . Note that by the properties of these events, with prob-

ability at least 1 − δ′, we have ‖SYt − rt(A1:t, c1:t, S
Y
1:t−1, Ut)‖tvd ≤ δ′/T for all t ∈ [T ]. We use

‖ · ‖tvd,Et to denote the total variation distance of distributions conditioned on Et. We inductively
show that for every t ∈ [T ],

‖(A1:t, c1:t, S
Y
1:t)− (A1:t, c1:t, S

N
1:t)‖tvd,Et ≤

tδ′

T
. (Induction hypothesis)

First, we prove the base case t = 1. Recalling that SY0 = SN0 , we have

‖(A1, c1, S
Y
1 )− (A1, c1, S

N
1 )‖tvd,E1 = ‖(A1, c1, S

Y
1 )− (A1, c1, r1(M1, c1, S

N
0 , U1))‖tvd,E1

= ‖(A1, c1, S
Y
1 )− (A1, c1, r1(M1, c1, S

Y
0 , U1))‖tvd,E1 .

Observe that for every fixed A1, c1 and SY0 satisfying E1, we have ‖SY1 −r1(M1, c1, S
Y
0 , U1)‖tvd ≤ δ′

T ,
where the randomness is over SY1 and U1. It follows from Lemma 2.3 that

‖(A1, c1, S
Y
1 )− (A1, c1, r1(M1, c1, S

Y
0 , U1))‖tvd,E1 ≤

δ′

T
,

which completes the base case.
Next, we tackle the induction step. For every t = 2, . . . , T , we have

‖(A1:t, c1:t, S
Y
1:t)− (A1:t, c1:t, S

N
1:t)‖tvd,Et

= ‖(A1:t, c1:t, S
Y
1:t−1, rt(A1:t, c1:t, S

Y
t−1, At,ctx

∗))− (A1:t, c1:t, S
N
1:t−1, rt(A1:t, c1:t, S

N
t−1, Ut))‖tvd,Et .

Let us define QYt−1 = (A1:t−1, c1:t−1, S
Y
1:t−1) and QNt−1 = (A1:t−1, c1:t−1, S

N
1:t−1). Then, we can rewrite

the above expression for total variation distance in terms of the new notation as follows:

‖(A1:t, c1:t, S
Y
1:t−1, rt(A1:t, c1:t, S

Y
t−1, At,ctx

∗))− (A1:t, c1:t, S
N
1:t−1, rt(A1:t, c1:t, S

N
t−1, Ut))‖tvd,Et

= ‖(QYt−1, At, ct, rt(Q
Y
t−1, At, ct, At,ctx

∗))− (QNt−1, At, ct, rt(Q
N
t−1, At, ct, Ut))‖tvd,Et . (5.3)

We now apply Lemma 2.4 to Equation 5.3. Applying this lemma with X1 = QYt−1, X2 = QNt−1,
Z1 = (At, ct, At,ctx

∗), Z2 = (At, ct, Ut), and f as the function that maps the tuple (X, (B,C)) to
(B, rt(X,B,C)), we get

‖(QYt−1, At, ct, rt(Q
Y
t−1, At, ct, At,ctx

∗))− (QNt−1, At, ct, rt(Q
N
t−1, At, ct, Ut))‖tvd,Et

≤ ‖QYt−1 −QNt−1‖tvd,Et + ‖(QYt−1, At, ct, rt(Q
Y
t−1, At, ct, At,ctx

∗))− (QYt−1, At, ct, rt(Q
Y
t−1, At, ct, Ut))‖tvd,Et

= ‖QYt−1 −QNt−1‖tvd,Et−1 + ‖(QYt−1, At, ct, rt(Q
Y
t−1, At, ct, At,ctx

∗))− (QYt−1, At, ct, rt(Q
Y
t−1, At, ct, Ut))‖tvd,Et ,

(5.4)

where the last equality follows from the fact that Et ⊂ Et−1 and condition (i) of Lemma 5.1 which
states that Et−1 only depends on (A1:t−1, c1:t−1) and SY1:t−2.

Now, by applying the induction hypothesis, we have that

‖QYt−1 −QNt−1‖tvd,Et−1 ≤
(t− 1)δ′

T
. (5.5)
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Next, we bound the second term on the right hand side of (5.4), i.e.,

‖(QYt−1, At, ct, rt(Q
Y
t−1, At, ct, At,ctx

∗))− (QYt−1, At, ct, rt(Q
Y
t−1, At, ct, Ut))‖tvd,Et ,

by applying condition (iv) from Lemma 5.1. According to this condition, for every fixed (A1:t, c1:t)
and SY1:t−1 satisfying Et, we have

‖rt(A1:t, c1:t, S
Y
1:t−1, At,ctx

∗)− rt(A1:t, c1:t, S
Y
1:t−1, Ut)‖tvd ≤

δ′

T
,

where Ut ∼ Unif(Z(k−1)αn
q ). Thus, by Lemma 2.3, it follows that

‖(QYt−1, At, ct, rt(Q
Y
t−1, At, ct, At,ctx

∗))− (QYt−1, At, ct, rt(Q
Y
t−1, At, ct, Ut))‖tvd,Et ≤

δ′

T
. (5.6)

Combining Eqs. (5.3) to (5.6), we have

‖(A1:t, c1:t, S
Y
1:t)− (A1:t, c1:t, S

N
1:t)‖tvd,Et ≤

δ′t

T
,

which completes the induction.
Substituting t = T , we conclude that

‖(A1:T , c1:T , S
Y
1:T )− (A1:T , c1:T , S

N
1:T )‖tvd,ET ≤ δ

′.

Finally, by removing the conditioning on ET , we have

|(A1:T , c1:T , S
Y
1:T )− (A1:T , c1:T , S

N
1:T )‖tvd ≤ |(A1:T , c1:T , S

Y
1:T )− (A1:T , c1:T , S

N
1:T )‖tvd,ET + Pr[ET ]

≤ δ′ + δ′ ≤ δ.

This implies that Π cannot have advantage more than δ, which contradicts the assumptions of the
theorem statement. Therefore, we conclude that any protocol for IFRMD with advantage δ requires
τn bits of communication, as desired.

5.2 Posterior sets and functions

The main challenge in proving Lemma 5.1 lies in the condition (iv), i.e., requiring the close-
ness of the Yes message (i.e., SYt = rt(A1:t, c1:t, S

Y
1:t−1, At,ctx

∗)) and the hybrid No message (i.e.,
rt(A1:t, c1:t, S

Y
1:t−1, Ut)). Intuitively, if x∗ ∼ Unif(Znq ) and is independent of the other arguments,

then At,ctx
∗ is uniformly distributed over Z(k−1)αn

q and hence SYt follows the same distribution as
rt(A1:t, c1:t, S

Y
1:t−1, Ut). However, x∗ is correlated5 with the previous messages SY1:t−1 so the above

ideal situation would not happen in general. Nevertheless, we are able to analyze the conditional
distribution of At,ctx

∗ on the previous messages by explicitly characterizing the posterior distri-
bution of x∗ after receiving the messages from the first t − 1 players. That is, the conditional
distribution of At,ctx

∗ can be described by first sampling x∗ from the posterior distribution and
then applying At,ct .

For every fixed A1:t, c1:t and S1:t, we would like to identify a distribution Dt over Znq such that
Dt is the conditional distribution of x∗ given messages S1:t. Note that by the choice of the No case,
the conditional distribution of x∗ given messages S1:t is simply the uniform distribution over Znq .
Thus, we only need to worry about the Yes case.

5In particular, x∗ has to be consistent with the previous messages SY1:t−1.
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Definition 5.7 (Posterior sets and functions). Under the setting described above, for each t and
fixed A1:t, c1:t, and S1:t, define

• (Reduced posterior set) Br,t ⊆ Z(k−1)m
q be the set of possible values of zt = At,ctx that leads to

message St; Note that Br,t should be thought of as a function on At, ct, and St in the sense
that Br,t = g−1

t (St) where gt(·) = rt(A1:t, c1:t, S1:t−1, ·). Let 1Br,t be the indicator function of
Br,t.

• (Posterior set and function) Let

Bt := {x ∈ Znq |At,ctx ∈ Br,t} .

Also, let 1Bt : Znq → {0, 1} be the indicator function of Bt.

• (Aggregated posterior set and function) Let

B1:t := {x ∈ Znq |At′,ct′x ∈ Br,t′ , ∀t
′ = 1, . . . , t} =

t⋂
t′=1

Bt′ .

Also, let 1B1:t : Znq → {0, 1} be the indicator function of B1:t. Namely, 1B1:t =
∏t
t′=1 1Bt′ .

Now, we show that 1B1:t captures the posterior distribution (i.e., the conditional distribution)
of x given messages S1, S2, . . . , St:

Lemma 5.8 (Posterior function 1B1:t captures the posterior distribution.). For every t ∈ [T ], the
conditional distribution of x given messages S1, S2, . . . , St−1 is exactly given by 1B1:t(x)/‖1B1:t‖1.
In particular, for fixed A1:t, c1:t, and SY1:t−1, we have SYt = rt(A1:t, c1:t, S

Y
1:t−1, At,ctx

∗), where
x∗ ∼ Unif(B1:t).

Proof. Without loss of generality, let us focus on the case of t = T . The proof is done by some
direct manipulations of Bayes rule. By definition, the conditional probability of x given messages
S1, S2, . . . , ST would be

Pr
x∗,A1:T ,c1:T

[x∗ = x | At,ctx∗ ∈ Br,t ∀t ∈ [T ]]

=
Prx∗,A1:T ,c1:T [x∗ = x ∧At,ctx∗ ∈ Br,t ∀t ∈ [T ]]

Prx∗,A1:T ,c1:T [At,ctx
∗ ∈ Br,t ∀t ∈ [T ]]

=
Prx∗,A1:T ,c1:T [At,ctx

∗ ∈ Br,t ∀t ∈ [T ] | x∗ = x] · Prx∗ [x
∗ = x]

Prx∗,A1:T ,c1:T [At,ctx
∗ ∈ Br,t ∀t ∈ [T ]]

=
Prx∗ [x

∗ = x]

Prx∗,A1:T ,c1:T [At,ctx
∗ ∈ Br,t ∀t ∈ [T ]]

·
T∏
t=1

Pr
x∗,At,ct

[At,ctx
∗ ∈ Br,t | x∗ = x]

=
q−n

Prx∗,A1:T ,c1:T [At,ctx
∗ ∈ Br,t ∀t ∈ [T ]]

·
T∏
t=1

Pr
At,ct

[At,ctx ∈ Br,t] .

As the above quantity is proportional to 1B1:T
(x), we conclude that the conditional probability of

x given messages S1, S2, . . . , ST is given by 1B1:T
(x)/‖1B1:T

‖1.
Next, by definition we have SYT = rT (A1:T , c1:T , S

Y
1:T−1, At,cTx∗) where x∗ ∼ Unif(Znq ). Thus,

the conditional distribution of SYT on A1:T , c1:T , and SY1:T−1 is

Pr[SYT = S |A1:T , c1:T , S
Y
1:T−1] =

Pr[SYT = S,A1:T , c1:T , S
Y
1:T−1]

Pr[A1:T , c1:T , SY1:T−1]
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=
Prx∗∼Unif(Znq )[S = rT (A1:T , c1:T , S

Y
1:T−1, At,cTx∗), A1:T , c1:T , S

Y
t = rt(A1:t, c1:t, S

Y
1:t−1, At,ctx

∗) ∀t ∈ [T − 1]]

Pr[A1:T , c1:T , SY1:T−1]

=
Prx∗∼Unif(Znq )[S = rT (A1:T , c1:T , S

Y
1:T−1, At,cTx∗), A1:T , c1:T ,x

∗ ∈ B1:T ]

Pr[A1:T , c1:T , SY1:T−1]
.

Namely, SYt = rt(A1:t, c1:t, S
Y
1:t−1, At,ctx

∗), where x∗ ∼ Unif(B1:t).

Now that we have a characterization of the posterior distribution of x∗, the following corollary
shows that Equation 5.2 (i.e., the condition (iv) of Lemma 5.1) can be simplified to bounding the
total variation distance between the posterior distribution and the uniform distribution.

Corollary 5.9 (Reducing Equation 5.2). Let rt, S
Y
1:t−1, A1:t, c1:t, B1:t, Ut be defined as before, we

have
‖rt(A1:t, c1:t, S

Y
1:t−1, At,ctx

∗)− rt(A1:t, c1:t, S
Y
1:t−1, Ut)‖tvd ≤ ‖(At,ctx∗)− Ut‖tvd

where x∗ ∼ Unif(B1:t).

Proof. By Lemma 5.8, we have

SYt = rt(A1:t, c1:t, S
Y
1:t−1, At,ctx

∗)

where x∗ ∼ Unif(B1:t). Note that when we fix A1:t, c1:t, and SY1:t−1 (hence B1:t is also fixed), by
data processing inequality (see item 2 of Proposition 2.2) we have

‖rt(A1:t, c1:t, S
Y
1:t−1, At,ctx

∗)− rt(A1:t, c1:t, S
Y
1:t−1, Ut)‖tvd ≤ ‖(At,ctx∗)− Ut‖tvd .

Namely, Equation 5.2 (i.e., the condition (iv) of Lemma 5.1) can be replaced with ‖(At,ctx∗)−
Ut‖tvd ≤ γ/T , i.e., after applying a random folded hypermatching matrix At,ct to the posterior
distribution Unif(B1:t), the distribution of the resulting string is close to the uniform distribution

Unif(Z(k−1)αn
q ).

Finally, the following lemma shows that when the amount of communication is small, the
posterior set is large with high probability.

Lemma 5.10 (Posterior set is large). Let Π = (r1, . . . , rT ) be a deterministic protocol for IFRMD
where each message function rt outputs a message of length at most s bits for some 1 ≤ s ≤ n. Let
Bt be the posterior set defined in Definition 5.7 for every t ∈ [T ]. For every δ ∈ (0, 1) and t ∈ [T ],
we have |Bt| ≥ δ · qn−s with probability at least 1− δ over the randomness of x ∈ Znq .

Proof. Fix a hypermatching M and centers c, the t-th message function induces a partition P1 ∪
P2 ∪ · · · ∪ P2s of Znq . For each x ∈ Znq , we define P (x) to be the part that contains x, i.e, if x ∈ Pi,
then P (x) = Pi. Note that

E
x∈Znq

[
1

|P (x)|

]
=

2s∑
i=1

Prx∈Znq [x ∈ Pi]
|Pi|

=

2s∑
i=1

|Pi| · q−n

|Pi|
=

2s

qn
≤ qs−n .

By Markov’s inequality, we have |P (x)| < δ · qn−s with probability at most δ as desired.

5.3 Fourier analytic conditions

In this subsection, we define and analyze Fourier-analytic properties of the posterior set B and
show that these properties are sufficient for the condition (iv) (i.e., Corollary 5.9) of Lemma 5.1.
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5.3.1 Three key definitions

Recall that given a matching M = (e1, . . . , em) and centers c = (c1, . . . , cm), Ac is the c-centered
folded encoding of M . We are going to define three properties for sets B in Znq . First, we say a set
B ⊆ Znq is (M, c)-restricted if B is a union of cosets (affine shifts) of the null space of Ac.

Definition 5.11 (Restricted set). Let M be a k-hypermatching of size m and c be centers. We

say a set B ⊆ Znq is (M, c)-restricted if there exists a (“reduced”) set Br ⊆ Z(k−1)m
q such that

B = {x ∈ Znq |Acx ∈ Br}.
Note that the posterior set (Definition 5.7) of round t is (Mt, ct)-restricted.
Next, we introduce the notion of a subset of Znq being (strongly/weakly) bounded. These notions

are similar to those in [KK19, Definition 4.3]. They say that a set B is bounded if the Fourier
spectrum of the indicator function 1B can be appropriately bounded in terms of the `1 norm on
various Hamming levels.

First, we introduce some notation. Note that for every set B ⊆ Znq , the 0-th Fourier coefficient
of the indicator function 1B is |B|/qn. In what follows we study the Fourier coefficients of 1B after
scaling by qn/|B| so that the 0-th Fourier coefficient after scaling has value 1. In what follows
we define weak and strong bounding functions for the `1 norm of the Fourier coefficients based on
Hamming weight. Not all functions will satisfy the desired bounds, but indicators of posterior sets
turn out to satisfy these bounds and this is the crux of our (and [KK19]’s) analysis.

WC,s(h) :=


1, h = 0(
C
√
sn
h

)h/2
, 1 ≤ h ≤ s

∞, h > s.

. (5.12)

UC,s(h) :=

WC,s(h), 0 ≤ h ≤ s

min

{
WC,h(h),

(
2q2e2n
h

)h/2}
, h > s.

. (5.13)

(Above, U stands for Upper bound, while W stands for a Weak upper bound.)

Definition 5.14 ((Strongly/weakly) Bounded set). Let n, q ∈ N, 0 ≤ s ≤ n, C > 0, and B ⊂ Znq .
We say B (as well as its indicator function 1B) is (C, s)-(strongly)-bounded if, for every h ∈ [n],∑

u∈Znq
‖u‖0=h

qn

|B|

∣∣∣1̂B(u)
∣∣∣ ≤ UC,s(h). (5.15)

We say that B is (C, s)-weakly-bounded if the bound on the RHS above is replaced by WC,s(h).
(Unless otherwise specified we use “bounded” to mean “strongly bounded”.)

Remark. As we keep track of posterior sets that are inductively refined, we will need the entire
Fourier spectrum of the corresponding indicator functions to be bounded from above by the function
UC,s (for appropriate C, s > 0). The notion of boundedness is such that it allows us to show that

Acx is close to the uniform distribution on Z(k−1)αn
q when x is drawn from a bounded posterior

set B ⊂ Znq (see Lemma 5.18). Our upper bounds typically establish only the weak bound WC,s(h)
(particularly, Lemma 6.18 and Lemma 6.26), we usually prove this holds for every s in some large
interval and this allows us along with standard Fourier analysis (see Lemma 6.5) to establish the
stronger bound for a slightly worse choice of constant C.
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Finally, in what follows we will show that the intersection of a bounded set with a “restricted
set” is also bounded and this will be the core of our induction. To do this we need to understand
the Fourier behavior of restricted sets. It turns out that restricted sets satisfy a property stronger
than being bounded, which we term “reduced”-ness below.

Definition 5.16 ((Weakly/Strongly) Reduced set). Let n, q ∈ N, 0 ≤ s ≤ n, C > 0, and B ⊂ Znq .
Let M be a k-hypermatching. We say B (as well as its indicator function 1B) is (M,C, s)-(strongly)-
reduced if the following hold.

• For every u ∈ Znq , if there exists i ∈ [n] such that ui = 1 but i is not contained 6 in M (i.e.,

none of the hyperedges of M contains i), then 1̂B(u) = 0.

• For every u ∈ Znq , if there exists a hyperedge ei of M such that 〈u, ei〉 6≡ 0 mod q, then

1̂B(u) = 0.

• For every h ∈ {1, . . . , s} and v ∈ Znq ,

∑
u∈Znq

‖u+v‖0=h

qn

|B|

∣∣∣1̂B(u)
∣∣∣ ≤ UC,s(h) .

If the bound in the RHS is replaced by the weaker WC,s(h) bound, then we say that B is a weakly-
reduced set. (Again we usually suppress the word “strongly” and simply refer to strongly-reduced
sets as reduced set.)

As a remark, the first two conditions in the definition of reducedness are motivated by the
Fourier analytic properties of posterior sets (e.g., Lemma 6.1, and Claim 6.17). The third condition
is a strengthening of boundedness. In particular the third condition applied with v = 0 implies that
every (M,C, s)-(strongly/weakly)-reduced set B is also (C, s)-(strongly/weakly)-bounded. That is
why we say reducedness is the intersection of restrictedness and boundedness.

In summary, restrictedness (Definition 5.11) is a certain posterior property and boundedness is a
certain Fourier analytic condition while reducedness is the intersection of the two. By Definition 5.7,
we immediately have that each posterior set Bt is (Mt, ct)-restricted and in the lemmas stated below
we will establish that Bt is (Mt, C0, s)-reduced and the aggregated posterior set B1:t is (Ct, s)-
bounded with high probability (for some choices of parameters s, C0, C1, . . . , CT ). See also Fig. 1
for a pictorial view of these definitions.

5.3.2 Three key lemmas

There are three key lemmas about these Fourier analytic conditions. The first lemma establishes
the base case of the induction toward showing the aggregated posterior set being (C, s)-bounded
(for some C = O(1) and s = Ω(n)). In fact, we show a stronger guarantee in which every posterior
set Bt is (Mt, C, s)-reduced.

Lemma 5.17 (Base case). For every q, k ≥ 2, there exist constants ε0 > 0 and C0 <∞ such that
for every sufficiently large n, every k-hypermatching M on vertex set [n], every pair of integers b, s
satisfying 0 < b ≤ s ≤ ε0 · n the following holds. If B ⊆ Znq satisfies (i) there exists a sequence of

centers c such that B is (M, c)-restricted, and (ii) |B| ≥ qn−b, then B is (M,C0, s)-reduced.

6We use “contained in” and “touched by” interchangeably as in some later contexts it makes more sense to use
“touched by” when working with a set of vertices or hyperedges.
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The proof of Lemma 5.17 is given in Section 6.3.
Recall from Corollary 5.9 that the condition (iv) in Lemma 5.1 is implied by showing Acx is

close to the uniform distribution over Z(k−1)m
q with high probability over the choice of Ac where x

is sampled uniformly from the posterior set B1:t. The second key lemma shows that Acx
∗ is indeed

close to uniform when the posterior set is bounded.

Lemma 5.18 (Boundedness implies closeness to uniformity). For every q, k ≥ 2 there exists α0 =
α0(k, q) such that for every δ ∈ (0, 1/2) and C < ∞, there exists τ = τ(q, k, δ, C) such that the
following holds for every sufficiently large n:

Let B ⊂ Znq be a (C, s)-bounded set with |B| ≥ qn−b, for 4 logq(3/δ) ≤ b ≤ s ≤ τn. Let M be a
random k-hypermatching of size m ≤ α0n and c be a uniformly random sequence of centers for M
and let Ac denote the c centered folded encoding of M . Then, with probability at least 1 − δ over

the choice of M and c, for every z0 ∈ Z(k−1)m
q , we have that

1− δ < q(k−1)m Pr
x∼Unif(B)

[Acx = z0] < 1 + δ .

As a consequence, we also have (with probability at least 1− δ over the choice of (M, c)):

1. ‖(Acx)− U‖tvd ≤ δ where x ∼ Unif(B) and U ∼ Unif(Z(k−1)m
q ).

2. For every non-negative function f : Z(k−1)m
q → R≥0,

(1− δ) ≤
Ex∼Unif(B) [f(Acx)]

E
z∼Unif(Z(k−1)m

q )
[f(z)]

≤ (1 + δ) .

The proof of Lemma 5.18 is postponed to Section 6.4.
Our final lemma of this section asserts that if 1B1:t is (C, s)-bounded, then f1:t+1 is (O(C), s)-

bounded with high probability.

Lemma 5.19 (Induction step). For every q, k ∈ N there exist α0 > 0 and C0 > 0 such that
for every C ≥ C0, and δ ∈ (0, 1/2), there exist τ0 ∈ (0, 1) and C ′ > 0 such that the following
holds. For every n, b, b′, s,m ∈ N, satisfying m ≤ α0n, 0 < b, b′, s < τ0n and every (C, s)-bounded
set B ⊂ Znq satisfying |B| ≥ qn−b, we have that with probability at least 1 − 4δ over a uniformly
random k-hypermatching M of size at most m and every (M,C0, s)-reduced set B′ ⊂ Znq satisfying

|B′| ≥ qn−b′ and |B ∩B′| ≥ (1− δ) · |B| · |B′|/qn ≥ qn−s, we have B ∩B′ is (C ′, s)-bounded.

Lemma 5.19 is proved in Section 6.5. In our inductive application of the lemma above, we set
B ← B1:t−1 and B′ ← Bt for every t ∈ {2, 3, . . . , T} to get that all the Bt’s are bounded and this
is the core of the proof of Lemma 5.1.
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5.4 Proof of Lemma 5.1

Figure 1: A pictorial overview of the proof of Lemma 5.1. Each posterior set Bt (the blue
sets) is both (Mt, ct)-restricted (followed from Definition 5.7) and (Mt, C0, s)-reduced (followed
from Lemma 5.17). Each aggregated posterior set B1:t (the orange sets) is (Ct, s)-bounded (fol-
lowed from Lemma 5.19).

Proof of Lemma 5.1.

Overview of proof: (See Fig. 1 for a pictorial overview of the proof.) The rough overview of
the proof is to show that for an appropriate choice of the constants C1, . . . , CT , for every t ∈ [T ],
the posterior set B1:t is (Ct, s)-bounded. Once we have this, we can apply “boundedness implies
uniformity” lemma (Lemma 5.18) to conclude that the messages sent by the tth player on the YES
and NO distributions are indistinguishable. To show the boundedness condition for B1:t we use
induction to deduce that B1:t−1 is bounded, and then reason about Bt to conclude that it is large,
(M,C0, s)-reduced (for appropriate C0), and crucially that it is roughly independent of B1:t−1.
Proving the former parts uses Lemma 5.17 whereas the last part involves another application of the
boundedness implies uniformity lemma (on B1:t−1). With these ingredients in place the induction
step lemma (Lemma 5.19) yields the boundedness of B1:t. We give the details below.

Setting of parameters: We note that in addition to the parameters α0, τ and n0 required by the
lemma statement, we also need to specify the constants Ct alluded in the overview. Additionally
we also specify three integer parameters: s∗ which specifies the length of the message, b which
quantifies largeness of various posterior sets, and s which quantifies the boundedness of posterior
functions.

Given q and k, let α1
0 be the α0(k, q) from Lemma 5.18 and α2

0 be the α0(k, q) from Lemma 5.19.
We set α0 = min{α1

0, α
2
0}. Let ε0 = ε0(k, q) be the constant from Lemma 5.17. Now given

T and δ, we need to specify τ > 0 and n0 < ∞. We first set a large number of intermedi-
ate parameters that will be used in the rest of the proof. Recall that Lemma 5.19 takes as in-
put parameters q, k, δ and C ≥ C0 and gives constants C ′ = C ′(q, k, δ, C) and τ0(q, k, δ, C) for
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which the lemma holds. We let δ′ = min{1
2 , δ/(10T )}. We set C1 = C0(q, k) to be the con-

stant from Lemma 5.17. For t ∈ {2, . . . , T} we set Ct = C ′(q, k, δ′, Ct−1) where C ′(· · · ) is the
aforementioned function from Lemma 5.19. Next for every t ∈ [T ] we set γt = τ0(q, k, δ′, Ct).
Further, let τ(q, k, δ, C) be the function from Lemma 5.18. For t ∈ [T ], let ρt = τ(q, k, δ′, Cy).
Let ζ = min{ε0,mint∈[T ]{γt},mint∈[T ]{ρt}}. Let ν = ζ/(2T ) and let τ = ν/2. Finally we let

n0 = max{ 2
ν logq(1/δ

′), 4
ν logq(3/δ

′)}. 7 Finally, given n ≥ n0 we set s = ζn, b = νn and s∗ ≤ τn.
Note that these settings ensure b ≥ 1, s∗ ≤ b/2 ≤ b− logq(1/δ

′), 2tb ≤ s ≤ ε0n for every t ∈ [T ],
s ≤ τtn = τ0(q, k, δ′, Ct)n for every t ∈ [T ] and 4 logq(3/δ

′) ≤ 2tb ≤ s ≤ ρtn = τ(q, k, δ′, Ct)n for
every t ∈ [T ]. These inequalities will be used in the proof below,

The events E1, . . . , ET : Recall the notion of posterior sets Bt and aggregate posterior sets B1:t

for t ∈ [T ] from Definition 5.7. We define E1
1 to be the event that |B1| ≥ qn−2b and B1 is

(C1, s)-bounded. For t ∈ {2, 3, . . . , T}, let E1
t denote the event that Bt is (Mt, C0, s)-reduced and the

aggregated posterior set B1:t is (Ct, s)-bounded and large i.e., |B1:t| ≥ qn−2tb. Next, for t ∈ [T ], we

define E2
t to be the event that ‖At,ctx∗−Ut‖tvd ≤ δ′, where x∗ ∼ Unif(B1:t) and Ut ∼ Unif(Z(k−1)αn

q ).
Finally we let E1 = E1

1 ∩ E2
1 , and for t ∈ {2, 3, . . . , T}, we let Et = Et−1 ∩ E1

t ∩ E2
t . We now turn to

proving conditions (i)-(iv) hold for this choice of events.

Causality and Indistinguishability: It is immediate from the definition that E1 ⊃ E2 ⊃ · · · ⊃
ET and Et only depends on A1:t and c1:t. This establishes condition (i).

To verify condition (iv), note that by definition of Et we have that ‖(At,ctx∗) − Ut‖tvd ≤ δ′

where x∗ ∼ Unif(B1:t) and Ut ∼ Unif(Z(k−1)αn
q ). As SY1:t = rt(A1:t, c1:t, S

Y
1:t−1, At,ctx

∗) where x∗ ∼
Unif(B1:t), by the data processing inequality we have ‖SYt − rt(A1:t, c1:t, S

Y
1:t−1, Ut)‖tvd ≤ δ′ ≤ δ/T

as desired. This proves condition (iv).

Probability of bad events: By the setting s∗ = τn ≤ b− logq(1/δ
′) we get, by the “posterior set

is large” lemma (i.e., Lemma 5.10), that |B1| ≥ qn−b ≥ qn−2b with probability at least 1− δ′. Now
since B1 is (M1, c1)-restricted (by definition) and using 2b ≤ s ≤ ε0n we can apply the “base case”
lemma (i.e., Lemma 5.17) to conclude B1 is (M,C1, s)-reduced where C1 = C0(q, k) for C0(· · · )
being the function from the base case lemma. Thus, by the remark after Definition 5.16, B1 is also
(C1, s)-bounded. This establishes Pr[E1

1 ] ≤ δ′.
We now analyze E1

t for t > 1 (and return to E2
t ’s, including E2

1 , later). We show that, conditioned
on Et−1, E1

t holds with probability at least 1− 6δ′. The main part of it is proving that B1:t is large,
which we do in the claim below. (Proving boundedness is then a straightforward application of
Lemma 5.19, as we show later.)

Claim 5.20. Let Mt and ct be chosen uniformly conditioned on Et. Then with probability at least
(1− δ′) the posterior set B1:t satisfies

|B1:t| ≥ (1− δ′) · |B1:t−1| · |Bt|/qn .

Proof. By the event Et−1 holding we have that B1:t−1 is (Ct−1, s)-bounded and hence using the
conditions τ ≤ ρt−1 := τ0(q, k, δ′, Ct−1) and 4 logq(3/δ

′) ≤ b ≤ s ≤ τt−1n = τ(q, k, δ′, Ct−1)n, by

7The reader may notice that one of these terms obviously dominates the other and we could have simplified this
expression. But we keep them separate for easier verifiability in the proof. We follow this practice through most of
this paper.
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Part (2) of the “boundedness implies uniformity” lemma (i.e., Lemma 5.18) we have

(1− δ′) ≤
Ex∼Unif(B1:t−1) [f(At,ctx)]

E
z∼Unif(Z(k−1)αn

q )
[f(z)]

≤ (1 + δ′) (5.21)

for every non-negative function f over Z(k−1)αn
q , with probability at least 1− δ′ (over the choice of

Mt and ct). Setting f to be the indicator function of Br,t (recall that Br,t is the “reduced posterior
set” from Definition 5.7) and applying Eq. (5.21), we have

Ex∼Unif(B1:t−1)

[
1Br,t(At,ctx)

]
=
|B1:t|
|B1:t−1|

,

and

E
z∼Unif(Z(k−1)αn

q )

[
1Br,t(z)

]
=
|Br,t|

q(k−1)αn
=
|Bt|
qn

.

We have

|B1:t|
qn

=
|B1:t−1|
qn

· Ex∼Unif(B1:t−1)

[
1Br,t(At,ctx)

]
≥ (1− δ′) |B1:t−1|

qn
· E

z∼Unif(Z(k−1)αn
q )

[
1Br,t(z)

]
= (1− δ′) |B1:t−1|

qn
· |Bt|
qn

.

To use the claim above we first analyze |Bt|. By the “posterior set is large” lemma (i.e., Lemma 5.10)
we have |Bt| ≥ qn−b (again using s ≤ b − logq(1/δ

′)). When Bt is large, then by the “base case”
lemma (i.e., Lemma 5.17) we have Bt is (Mt, C0, s)-reduced using b ≤ s ≤ ε0n. Furthermore if
|Bt| ≥ qn−b, then combined with the inductive bound that |B1:t−1| ≥ qn−2(t−1)b (implied by Et−1),
Claim 5.20 implies

|B1:t| = |B1:t−1 ∩Bt| ≥ (1− δ′) · |B1:t−1| · |Bt|/qn ≥ (1− δ′)qn−(2t−2)bq−b ≥ qn−2tb ,

where the final inequality uses the very crude (but true) inequality 1− δ′ ≥ 1
2 ≥ q

−b.
Conditioned on Bt being large and reduced, we can finally invoke the “induction step” lemma

(i.e., Lemma 5.19) with B = B1:t−1 and B′ = Bt with C = Ct−1 to get that B1:t = B1:t−1 ∩ Bt
is (Ct, s)-bounded with probability at least 1 − 4δ′ where we use Ct = C ′(q, k, δ′, Ct−1). We note
this application requires max{b, 2(t− 1)b, s} ≤ γt−1n := τ0(q, k, δ′, Ct−1)n which is ensured by our
setting of parameters.

Taking the union bound over the three error events, namely (a) Bt not being large, (b) B1:t not
being large conditioned on Bt being large and (c) B1:t not being bounded condition on being large,
we get that E1

t holds with probability at least 1− 6δ′ conditioned on Et−1.
Finally we turn to bounding E2

t conditioned on E1
t . Since |B1:t| ≥ qn−2tb and B1:t is (Ct, s)-

bounded, we apply Lemma 5.18 to analyze ‖(At,ctx∗)−Ut‖tvd. The application requires 4 logq(3/δ
′) ≤

2tb ≤ s ≤ ρtn := τ(q, k, δ′, Ct)n which we do have with our setting of parameters. We conclude
that ‖(At,ctx∗) − Ut‖tvd ≤ δ′ with probability at least 1 − δ′ for every fixing of A1:t−1,c1,t−1 and
SY1:t−1 (over the choice of Mt and ct). We thus have that E2

t holds with probability at least 1− δ′
condition on E1

t .
Putting the two together we get for every t ∈ [T ] (including t = 1), we have Et holds with

probability at least 1− 7δ′ = 1− 7δ/(10T ) ≥ 1− δ/T as required for conditions (ii) and (iii).
This completes the proof of Lemma 5.1.
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6 Analysis of bounded functions

In this section, we provide the complete proof for the three important lemmas in Section 5: the “base
case” lemma (i.e., Lemma 5.17), the “boundedness implies uniformity” lemma (i.e., Lemma 5.18),
and the “induction step” lemma (i.e., Lemma 5.19). We first establish useful structure on the
Fourier coefficients of restricted sets (posterior set is a special case of restricted set) in Section 6.1.
Next, we prove useful properties for the Fourier analytic conditions in Section 6.2. Finally, we prove
the three lemmas in Section 6.3, Section 6.4, and Section 6.5 respectively.

6.1 Fourier coefficients of the posterior function

Given a k-hypermatching M = (e1, . . . , em) and centers c = (c1, . . . , cm) we say that a set B ⊆ Znq is

(M, c)-restricted if there exists a (“reduced”) set Br ⊆ Z(k−1)m
q such that B = {x ∈ Znq |Acx ∈ Br},

where Ac is the c-centered folded encoding ofM . In this section we aim to prove that large restricted
sets are bounded. Recall that given a k-hypermatching M = (e1, . . . , em) on vertex set [n] with
m = αn edges and sequence of centers c = (c1, . . . , cm) with ci ∈ ei ⊆ [n], the c-centered folded

representation of M was denoted Ac ∈ Z(k−1)m×n
q . We say that a set B ⊆ Znq is (M, c)-restricted

if there exists a (“reduced”) set Br ⊆ Z(k−1)m
q such that B = {x ∈ Znq |Acx ∈ Br}. For our next

lemma we will also need a variant of this matrix named the c-centered projection induced by M ,

which we denote Ãc ∈ Z(k−1)m×n
q , which is simply the matrix Ac with the columns corresponding

to c1, . . . , cm zeroed out. (In Ac each of these columns has (k − 1) −1’s. See Figure 2.) With this
definition in place we can now relate the Fourier coefficients of the indicator of a restricted set to
its image.

Figure 2: An example of Ac, Ãc, A
(1)
c , Ã

(1)
c with m = 1, n = 7, k = 4, e1 = {1, 3, 5, 7} and c1 = {5}.

Recall that we use ei ∈ Znq to denote the indicator vector of hyperedge ei (see Section 3).

Lemma 6.1 (Fourier coefficients of the posterior function). Let M be a k-hypermatching of size m
and c be a sequence of centers. Let Ac be the folded representation of M and Ãc be the projection

induced by M . Furthermore, let B ⊆ Znq be an (M, c)-restricted set with Br ∈ Z(k−1)m
q satisfying

B = {x ∈ Znq |Acx ∈ Br}. Let 1B denote the indicator function of B. Then for every u ∈ Znq we
have:

1̂B(u) =


0, if u contains a node not in M .

0, if ∃i ∈ [m] such that 〈u, ei〉 6≡ 0 (mod q)

1̂Br(Ãcu), otherwise.

.

Proof. From the definition of the Fourier coefficient we have 1̂B(u) = 1
qn
∑

x∈Znq 1B(x)ωu>x where

ω = e2πi/q being the primitive q-th root of unity. Using the fact that B is restricted, we get

1̂B(u) =
1

qn

∑
x∈Znq

1B(x) · ωu>x =
1

qn

∑
z∈Z(k−1)m

q

∑
x∈Znq
Acx=z

1Br(z) · ωu>x =
1

qn

∑
z∈Br

∑
x∈Znq
Acx=z

ωu>x.
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We now fix z ∈ Br and explore the final term
∑

x∈Znq ,Acx=z ω
u>x. Let z = (z(1), . . . , z(m))

where z(i) ∈ Zk−1
q . Also let A

(1)
c , . . . , A

(m)
c ∈ Z(k−1)×n

q denote the blocks of Ac corresponding to the
m edges. Now, think of Znq as a free module over Zq and consider the direct sum decomposition

Znq = W (0) ⊕ · · · ⊕W (m) where for i ∈ [m], W (i) is the sub-module of Znq generated by ei, W
(0) is

the sub-module generated by [n]− (∪iei), and “⊕” denotes the direct sum of modules. Let us write
x = x(0) + · · ·+ x(m) where for i ∈ {0, . . . ,m}, x(i) ∈ W (i). Similarly write u = u(0) + · · ·+ u(m).
Since (u(i))>x(j) = 0 if i 6= j we have u>x =

∑m
i=0(u(i))>x(i). Note also that z = Acx if and only

if z(i) = A
(i)
c x(i) for every i ∈ [m]. Using this notation, we have

∑
x∈Znq
Acx=z

ωu>x =

 ∑
x(0)∈W (0)

ω(u(0))>x(0)

 · m∏
i=1

 ∑
x(i)∈W (i)

A
(i)
c x(i)=z(i)

ω(u(i))>x(i)

 .

Now note that if u(0) = 0 then the first term is |W (0)| = qn−km, else it is zero. Similarly for i ∈ [m],

there are exactly q vectors x(i) ∈ W (i) such that A
(i)
c x(i) = z(i) (which are additive shifts of each

other on coordinates in ei). Concretely, these two solutions are of the form (Ã
(i)
c )>z(i) +ak for some

a ∈ Zq. So we have∑
x(i)∈W (i):A

(i)
c x(i)=z(i)

ω(u(i))>x(i)
=
∑
a∈Zq

ω(u(i))>(Ã
(i)
c )>z(i)+(u(i))>ak = ω(u(i))>(Ã

(i)
c )>z(i)

∑
a∈Zq

ωa·‖u
(i)‖1 .

Moreover, ∑
a∈Zq

ωa·‖u
(i)‖1 =

{
0 if ‖u(i)‖1 6≡ 0 mod q

q otherwise.
.

Putting all the above together we get

∑
x∈ZnqAcx=z

ωu>x =


0 if u contains a node not in M .

0 if ∃i ∈ [m] such that 〈u, ei〉 6≡ 0 mod q

qn−(k−1)m · ω(Ãcu)>z otherwise.

.

Summing up over all z ∈ Z(k−1)m
q and normalizing yields the lemma.

6.2 Basic properties of large weakly-bounded sets

In this section, we relate weakly bounded sets to strongly bounded ones, and also show that
the notion of restricted-ness of sets is independent of the choice of centers. These help us prove
boundedness in the base case.

We start by stating an immediate consequence of Parseval’s lemma applied to our indicator
functions.

Lemma 6.2. For every B ⊆ Znq we have
∑

v∈Znq 1̂B(v)2 ≤ |B|/qn.

(Lemma 6.2 follows from Lemma 2.6 by noticing that
∑

a∈Znq 1B(a) = |B|.) Recall that the

(C, s)-bounded criterion bounds the sum of Fourier coefficients with a fixed weight at most s. As
we also need to bound the sum of Fourier coefficients of high weight, this can be guaranteed from
Parseval’s inequality as shown in the following lemma.
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Lemma 6.3. Suppose B ⊆ Znq satisfies |B| ≥ qn−b for some b ∈ N. Then, for every v ∈ Znq and
b < h ≤ n, we have ∑

u∈Znq
‖u+v‖0=h

qn

|B|

∣∣∣1̂B(u)
∣∣∣ ≤ (2q2e2n

h

)h/2
.

Proof. From Lemma 6.2, we have that
∑
‖u+v‖0=h

∣∣∣1̂B(u)
∣∣∣2 ≤ |B|/qn. Using

∣∣{u ∈ Znq | ‖u + v‖0 = h
}∣∣ ≤ (q − 1)h ·

(
n

h

)
≤
(qen
h

)h
and the Cauchy-Schwarz inequality we get that∑

u∈Znq
‖u+v‖0=h

qn

|B|

∣∣∣1̂B(u)
∣∣∣ ≤ qn

|B|

√
(|B|/qn) · (qen/h)h

=
√

(qn/|B|) · (qen/h)h

≤
√
qb(qen/h)h (∵ |B| ≥ qn−b)

≤
√
qh(qen/h)h (∵ h > b)

≤ (2q2e2n/h)h/2.

Next, we note a basic monotonicity property of the notion of boundedness which will be useful
in the future. Recall the function WC,s(·) used in the notion of weakly-bounded sets from Defini-
tion 5.14.

Lemma 6.4 (Monotonicity of boundedness). The following monotonicities hold for W and U .

1. If h ≤ s ≤ s′ then WC,s(h) ≤WC,s′(h).

2. If s ≤ s′ then for every h, UC,s(h) ≤ UC,s′(h). Consequently, if a set B is (C, s)-(strongly-
)bounded then it is also (C, s′)-(strongly-)bounded.

3. If C > e, then WC,s(h) and UC,s(h) are monotonically increasing in h ∈ [1, s].

Proof. The first two monotonicities are definitional, whereas the third one requires some calcula-
tions. Details are provided below.

1. The inequality holds trivially for h = 0. For 1 ≤ h ≤ s ≤ s′, we have that WC,s(h) =
(C
√
sn/h)h/2 ≤ (C

√
s′n/h)h/2 = WC,s′(h).

2. Here we consider three possible ranges for h. For h ≤ s ≤ s′, UC,s(h) = WC,s(h) and
UC,s′(h) = WC,s′(h) and the inequality follows from Item (1). For h > s′, we have UC,s(h) =
min{WC,h(h), (2q2e2n/h)h/2} = UC,s′(h) yielding the desired inequality as an equality. For
s < h ≤ s′, we have UC,s(h) = min{WC,h(h), (2q2e2n/h)h/2} ≤ WC,h(h) ≤ WC,s′(h) =
UC,s′(h), where the second inequality again follows from the Item (1). Thus in all cases
we have UC,s(h) ≤ UC,s′(h) and so if a set B is (C, s)-(strongly-)bounded then it is also
(C, s′)-(strongly-)bounded.
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3. Recall that the function f(x) = x1/x is decreasing in the interval (e,∞) (since f ′(x) =

x1/x · 1−lnx
x2

is negative for x > e). Note that for h ∈ [1, s], WC,s(h) = UC,s(h) = x
C
√
sn

2x

for x = C
√
sn
h . Note that x is a strictly decreasing function of h. Moreover, for h ≤ s, we

have x ≥ C
√
sn
s ≥ C > e. Hence, it follows from monotonically decreasing property of f that

WC,s(h) and UC,s(h) are monotonically increasing in the described interval, as desired.

We now show how weak boundedness of a large set in an entire regime of s implies it is strongly
bounded.

Lemma 6.5 (From weak-boundedness to strong-boundedness). For every q, C, and ε0 there exists
C ′ s.t. for all n and s ≤ ε0n the following holds: If B ⊆ Znq with |B| ≥ qn−s is (C, s′)-weakly-
bounded for every s ≤ s′ ≤ ε0n then B is (C ′, s)-strongly bounded. Similarly, if B ⊆ Znq with
|B| ≥ qn−s is (C, s′)-weakly-reduced for every s ≤ s′ ≤ ε0n then B is (C ′, s)-strongly reduced.

Proof. We prove the lemma for C ′ := max{C, 2q2e2/ε
1/2
0 }. We prove the reducedness condition

(and the boundedness follows similarly). Fix B ⊆ Znq with |B| ≥ qn−s and v ∈ Znq . Let

wt(h) :=
∑
u∈Znq

‖u+v‖0=h

qn

|B|

∣∣∣1̂B(u)
∣∣∣ ,

and let W̃ (h) = (2q2e2n/h)h/2. Our goal is to prove that for h ≤ s, wt(h) ≤ UC′,s(h) = WC′,s(h),
and for h > s that wt(h) ≤ min{WC′,h(h), W̃ (h)}. For h ≤ s, by the fact that B is (C, s)-
weakly-reduced, we have wt(h) ≤ WC,s(h) ≤ WC′,s(h) where the second inequality follows from
the definition of WC,s which is monotone in C. For every h > s we have that wt(h) ≤ W̃ (h) by
Lemma 6.3 and so it suffices to prove that wt(h) ≤ WC′,h(h) for every h > s. For h ≤ ε0n we use
that B is (C, s′)-weakly-reduced for s′ = h (this is ok since s ≤ s′ = h ≤ ε0n) to conclude that
wt(h) ≤WC,h(h) ≤WC′,h(s). For h > ε0n we note that

WC′,h(h) = (C ′
√
hn/h)h/2 = (C ′

√
n/h)h/2 ≥ (2q2e2

√
n/ε0h)h/2 ≥ (2q2e2n/h)h/2 = W̃ (h) ,

where the first inequality uses C ′ ≥ (2q2e2/ε
1/2
0 ) and the next inequality uses h > ε0n.

Thus in this case we have wt(h) ≤ W̃ (h) ≤WC′,h(h) as desired, concluding the proof that B is
(C ′, s)-strongly-reduced.

Finally we show that the notion of a set being restricted is independent of the choice of centers.
Recall the definition of set being restricted from Definition 5.11.

Lemma 6.6 (Recentering). Let c = (c1, . . . , cm) and c′ = (c′1, . . . , c
′
m) be two sequences of centers

for the same matching M . Then a set B ⊆ Znq is (M, c)-restricted if and only if it is (M, c′)-
restricted.

Proof. Let e
(t)
i = ((e

(t)
i )1, . . . , (e

(t)
i )k = ct) (for t = 1, 2, . . . ,m) be the ordering of hyperedges

corresponding to centering c, and let e′
(t)
i = ((e′

(t)
i )1, . . . , (e

′(t)
i )k = c′t).

Given a permutation π : [k]→ [k], let Pπ be a (k − 1)× (k − 1) matrix defined as follows: For
1 ≤ i, j ≤ k − 1, let

(Pπ)i,j =


1 if j = π(i) ,

−1 if j = π(k) ,

0 otherwise .
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For t = 1, 2, . . . ,m, let πt : [k]→ [k] be the permutation defined by (e′
(t)
i )j = (e

(t)
i )π(j), and let

π′t : [k] → [k] be the permutation defined by (e
(t)
i )j = (e′

(t)
i )π(j). Then, it is not hard to see that

Ac′ = Q ·Ac and Ac = Q′ ·Ac′ where

Q =


Pπ1

Pπ2
. . .

Pπm

 , Q′ =


Pπ′1

Pπ′2
. . .

Pπ′m

 ,

and QQ′ = Q′Q = I, the (k − 1)m× (k − 1)m identity matrix.

Now, suppose B ⊆ Fn2 is (M, c)-restricted. Let Br ⊆ Z(k−1)m
q be the corresponding reduced set

satisfying B = {x ∈ Znq | Acx ∈ Br}. Then, let B′r = {Qy | y ∈ Br}.
Note that if x ∈ B, then Ac′x = Q(Acx) ∈ B′r. Similarly, if Ac′x ∈ B′r, then there is some

y ∈ Br such that Ac′x = Qy, and so, Acx = Q′Ac′x = Q′Qy = y ∈ Br, implying that x ∈ B. It
follows that B is (M, c′)-restricted with reduced set B′r.

In an analogous fashion, it follows that if B is (M, c′)-restricted, then B is also (M, c)-restricted.
This completes the proof.

6.3 Proof of the “base case” lemma

In this subsection, we prove the “base case” lemma (Lemma 5.17), which shows that every poste-
rior set Bt is (Mt, C, s)-reduced for some constant C. We include the statement again below for
convenience.

Lemma 5.17 (Base case). For every q, k ≥ 2, there exist constants ε0 > 0 and C0 <∞ such that
for every sufficiently large n, every k-hypermatching M on vertex set [n], every pair of integers b, s
satisfying 0 < b ≤ s ≤ ε0 · n the following holds. If B ⊆ Znq satisfies (i) there exists a sequence of

centers c such that B is (M, c)-restricted, and (ii) |B| ≥ qn−b, then B is (M,C0, s)-reduced.

To see how the above lemma connects to posterior sets, think of B as Bt, M as Mt, and c as ct.
Note that condition (i) of Lemma 5.17 holds by the definition of Bt. As for condition (ii), it holds
when the message St is typical and we know by averaging argument that this is the case with high
probability (see Lemma 5.10 for more details).

We now turn to the proof of Lemma 5.17. The overall proof follows the outline of [KK19],
but we require extra care in our case, and the proof crucially depends on the ability to recenter
(Lemma 6.6) and a slightly more careful probabilistic analysis.

Proof of Lemma 5.17. Let ζ be the constant from Lemma 2.12. Let ζ1 = max{1, ζ}. Given k

and q, let ε0 = min{1, k/(8ζ1)}. Further let C1 =

√
27/2ζ

1/2
1 ek3/2q2k and C2 = (28ζ1e

2kq2k)1/2 and
C = max{2, C1 +C2}. For this choice of C and ε0 let C ′ be the constant given by Lemma 6.5. We
prove the lemma for C0 = C ′.

Let M be a hypermatching with m edges. (Note we must have m ≤ n/k.) Recall the definition
of (M,C, s)-reducedness (Definition 5.16). The first two conditions of (M,C, s)-reducedness are
immediate corollaries of Lemma 6.1. In the rest of the proof we focus on showing for every b ≤ s ≤
ε0n and every h ∈ {1, . . . , s} and v ∈ Znq ,∑

u∈Znq
‖u+v‖0=h

qn

|B|

∣∣∣1̂B(u)
∣∣∣ ≤WC,s(h) . (Goal of Lemma 5.17)
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Since this holds for every s ∈ [b, ε0n], by Lemma 6.5, we get that there is a C ′ such that B is
(C ′, s)-reduced for every s ∈ [b, ε0n] and this yields the lemma given the bound above.

Fix an arbitrary v ∈ Znq . For each h ∈ {1, . . . , s}, let Sh = Sv,h = {u : ‖u + v‖0 = h}, i.e.,
the set of Fourier coefficients in the LHS of the above inequality. We prune Sh to eliminate some
terms that are zero. Recall by Lemma 6.1 that 1̂B(w) = 0 if supp(w) 6⊆ supp(M), or if there exists
i ∈ [m] such that 〈w, ei〉 6≡ 0 mod q. Let

Tv,h,M = {u ∈ Sv,h | supp(u) ⊆ supp(M), 〈u, ei〉 ≡ 0 mod q ∀i ∈ [m]},

denote the resulting set of vectors which includes all non-zero Fourier coefficients. Roughly, our
approach below is to (1) give an upper bound on the size of the set Tv,h,M and (2) bound the
sum of the squares of the coefficients in this set. Once we have both these bounds, we can use the
Cauchy-Schwartz inequality to conclude the desired bound. Before we undertake these steps, we
make some simplifications and some refinements.

Step 0: Regular condition of v. First note that we can assume supp(v) ⊆ supp(M). If this
is not the case, consider the vector ṽ given by ṽi = vi if i ∈ supp(M) and ṽi = 0 otherwise.
Also, let a = |{i | vi 6= 0 and i 6∈ supp(M)}| be the number of nodes in the support of v that are
not contained in the hypermatching M . Then note that Tv,h,M = Tṽ,h−a,M . If we show that

(qn/|B|) ·
∑

u∈Tṽ,h−a,M |1̂B(u)| ≤ UC,s(h − a) then, by the monotonicity of UC,s(·) in the interval

[1, s] (see Lemma 6.4), it follows that (qn/|B|) ·
∑

u∈Tv,h,M |1̂B(u)| ≤ UC,s(h). Thus, from now on,

we assume supp(v) ⊆ supp(M).

Step 1: A partition of Tv,h,M . We now further refine Tv,h,M , i.e., the set of non-zero Fourier
coefficients. For an integer `, let Tv,h,`,M = {u ∈ Tv,h,M |#{i ∈ [m] | ei ∩ supp(u + v) 6= ∅} = `} be
the set u ∈ Tv,h,`,M ’s such that the support of u + v touches exactly ` edges. Since v, h and M
will be fixed in the rest of this proof, we simplify the notation and refer to this set as T`. Note that
h/k ≤ ` ≤ min{m,h}. Thus, the quantity we are interested in this lemma can be upper bounded
as follows. ∑

u∈Znq
‖u+v‖0=h

qn

|B|

∣∣∣1̂B(u)
∣∣∣ =

qn

|B|
∑
u∈Sh

∣∣∣1̂B(u)
∣∣∣

=
qn

|B|
∑

u∈Tv,h,M

∣∣∣1̂B(u)
∣∣∣

=

min{m,h}∑
`=h/k

qn

|B|
∑
u∈T`

∣∣∣1̂B(u)
∣∣∣

≤
min{m,h}∑
`=h/k

qn

|B|

√
|T`|

∑
u∈T`

1̂B(u)2 (6.7)

where the second equality is due to Lemma 6.1, the third equality is due to the partition, and the
last inequality is by Cauchy-Schwarz inequality. (The reason why we partition Tv,h,M into T`’s is
that the Fourier square-mass within T` and the cardinality of T` can be properly upper bounded
respectively.)
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Step 2: Upper bounding the squared Fourier mass within T`. To upper bound the squared
Fourier mass within T`, we utilize the fact that the posterior set B is independent to the choice of
center c (i.e., Lemma 6.6) and hypercontractivity (i.e., Lemma 2.12). We stress that in the bound
we establish below it is crucial that the exponent of b is h− ` (as opposed to the more trivial h, or
h(k − 1)/k). In turn this bound is obtained by using a random center c and this randomization is
permitted at the analysis stage by Lemma 6.6.

Claim 6.8. Let ζ1 = ζ be the constant from Lemma 2.12. If |B| ≥ qn−b for some b ∈ N then for
every 1 ≤ ` < h ≤ b, we have

∑
u∈T`

1̂B(u)2 ≤ k`
(
|B|
qn

)2( ζ1 · b
h− `

)h−`
.

The proof of this claim uses Lemma 6.1 to relate the Fourier coefficients of the function 1B to
those of 1Br . But note that the “reduced set” Br depends on the choice of the center. Furthermore
the weight of the Fourier coefficient in the reduced space depends on how the centers overlap
with supp(u + v). Specifically we have that for centers c, ‖Ãc(u + v)‖0 = ‖u + v‖0 − t, where
t = |{i ∈ [m] | ci ∈ u + v}| is the number of centers contained in u + v. Note that t ≤ ` since the
number centers in supp(u + v) can not exceed the number of edges touching this set. The crux
of this proof is that we if choose the centers randomly then there is a positive probability that all
centers (of the edges that touch supp(u+v)) are in supp(u+v). We argue the formal details below.

Proof of Claim 6.8. For a random center c, let Ac denote the c-centered folded encoding of M ,

and let Br,c = {Acx |x ∈ B} ⊆ Z(k−1)m
q . For u ∈ T`, let Iu(c) = 1 if ci ∈ supp(u + v) for every

i ∈ [m] with ei ∩ supp(u + v) 6= ∅ and 0 otherwise. Note that Prc[Iu(c) = 1] ≥ k−`. Now consider
the following expression:

E
c


∑

w∈Z(k−1)m
q

‖w+Ãc·v‖0=h−`

1̂Br,c(w)2

 ≥ E
c

∑
u∈T`

Iu(c) · 1̂B(u)2

 (∵ Lemma 6.1)

=
∑
u∈T`

(
1̂B(u)2 E

c
[Iu(c)]

)
(∵ B and T` are independent to c)

≥ k−`
∑
u∈T`

1̂B(u)2 . (∵ Pr
c

[Iu(c) = 1] ≥ k−`)

Rearranging the above we get

∑
u∈T`

1̂B(u)2 ≤ k` · E
c


∑

w∈Z(k−1)m
q

‖w+Ãc·v‖0=h−`

1̂Br,c(w)2

 . (6.9)

On the other hand, since B is (M, c)-restricted, we have |B| = |{x ∈ Znq | Acx ∈ Br,c}| =

|Br,c| · qn−rank(Ac). As rank(Ac) = (k− 1)m and |B| ≥ qn−b, we have that |Br,c| = |B|/qn−(k−1)m ≥
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q(k−1)m−b. Hence, by Lemma 2.12 (invoked with n← (k− 1)m and B ← Br,c), for every c we have

∑
w∈Z(k−1)m

q

‖w+Ãc·v‖0=h−`

1̂Br,c(w)2 ≤
(
|Br,c|
q(k−1)m

)2( ζ1b

h− `

)h−`
,

where ζ1 = ζ is the constant from Lemma 2.12. Also, by |B| = |Br,c| · qn−(k−1)m, the above
inequality becomes

∑
w∈Z(k−1)m

q

‖w+Ãc·v‖0=h−`

1̂Br,c(w)2 ≤
(
|B|
qn

)2( ζ1 · b
h− `

)h−`
.

Taking expectations over c we thus get:

E
c


∑

w∈Z(k−1)m
q

‖w+Ãc·v‖0=h−`

1̂Br,c(w)2

 ≤
(
|B|
qn

)2( ζ1 · b
h− `

)h−`
. (6.10)

Putting the inequalities Eq. (6.9) and Eq. (6.10) together we get

∑
u∈T`

1̂B(u)2 ≤ k`
(
|B|
qn

)2( ζ1 · b
h− `

)h−`
,

thus proving the claim.

Step 3: Upper bounding the cardinality of T`. Next, we turn to bounding the size of the
set T`. To do so we explore the structure of the vectors in T`. We start with some notation. Let
E = {i ∈ [m] | 〈v, ei〉 ≡ 0 (mod q)} and O = {i ∈ [m] 〈v, ei〉 6≡ 0 (mod q)}. Given a vector u,
we define We = We(u) = (u + v) �

(∑
i∈E ei

)
and Wo = Wo(u) = (u + v) �

(∑
i∈O ei

)
, where

� is used to denote the Hadamard product (entrywise product) of two vectors. Let η denote the
number of edges touched by We and let o denote the number of edges touched by Wo. Note the
following conditions hold when u ∈ T`.

Claim 6.11. If u ∈ T`, then all the following conditions hold: (1) |O| ≤ h, (2) η + o = `, and (3)
η ≤ h/2.

Proof. We prove each of the individual claims below:

1. Note that 〈u + v, ei〉 6≡ 0 (mod q) for every i ∈ O, since 〈u, ei〉 ≡ 0 (mod q) and 〈v, ei〉 6≡ 0
(mod q). Therefore, |supp(u+v)∩ei| ≥ 1 for every i ∈ O, implying that |O| ≤

∑
i∈O |supp(u+

v) ∩ ei| ≤ ‖u + v‖0 = h.

2. Since u + v touches ` edges, η + o = `.

3. Note that 〈u + v, ei〉 ≡ 0 (mod q) for every i ∈ E, since 〈u, ei〉 ≡ 0 (mod q) and 〈v, ei〉 ≡ 0
(mod q). Therefore, if i ∈ E is touched by We (i.e., We � ei 6= 0), then it follows that We

touches it in at least two points, i.e., |supp(We � ei)| ≥ 2 (see Figure 3). Combined with the
fact that |supp(We)| ≤ ‖u + v‖0 = h, we obtain η ≤ h/2, as desired.
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Figure 3: Upper bound the cardinality of T`. In this example, q = 3, k = 5,m = 5, and v is
specified by integers in red. Note that E = {2, 3, 5} and O = {1, 4}. Next, we consider h = 8, ` = 4
and a u ∈ T` specified by integers in blue. Note that by definition we have η = o = 2. In particular,
the tuple (We(u),Wo(u)) is described on the right and u + v is specified by integers in green. It
is immediate to see that (We(u),Wo(u),v) uniquely specifies u because one can subtract We(u)
and Wo(u) by v to get the value of u in those coordinates. In the rest of the coordinates, u has
the same values as v. Moreover, observe that every hyperedge in We(u) should contain at least 2
non-zero points because both u and v sum up to 0 mod q within those hyperedges.

Based on these restrictions on u ∈ T`, we can now get the following bound on |T`|.

Claim 6.12. For every ` ∈ {h/k, . . . ,min{h,m}} we have:

|T`| ≤ (4q2k)h(em/η∗)η
∗
, where η∗ := min{`, h/2} .

Proof. Recall that each u ∈ T` is uniquely specified by the pair (We,Wo) (see Figure 3) and it
therefore suffices to count the number of distinct choices of (We,Wo). First, we see that the number
of possibilities for Wo is at most (qk)|O| ≤ qkh (since |O| ≤ h by the first item of Claim 6.11). Now,
having fixed Wo and o, consider the number of possibilities of We. We may choose We by picking
a set F ⊆ E with η edges, and then picking |supp(We)| = h− |supp(Wo)| elements from the union
of the edges in F , each of which is given a value in Zq \ {0}. Note that F can be chosen in at most(|E|
η

)
≤
(
m
η

)
ways, after which We can be chosen in ≤ qkη ways. Finally, note that by the second

and third items of Claim 6.11 we have η ≤ min{`, h/2} =: η∗. Putting these together we get:

|T`| ≤
η∗∑
η=0

{
qkh
(
m

η

)
qkη
}
≤ q2kh

η∗∑
η=0

(
m

η

)
,

where the second inequality uses η ≤ h. Now we consider two cases based on whether η∗ ≤ m/3 or
not. If η∗ > m/3, since η∗ ≤ ` ≤ m we have

η∗∑
η=0

(
m

η

)
≤

m∑
η=0

(
m

η

)
= 2m ≤ 22h ,
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where the final inequality uses min{`, h/2} > m/3 to infer m < 3h/2 < 2h. Thus in this case we
get

|T`| ≤ q2kh4h = (4q2k)h ≤ (4q2k)h(em/η∗)η
∗
,

where the final inequality above uses em ≥ m ≥ η∗. In the case, η∗ ≤ m/3 we note that
(
m
η

)
≥

2
(
m
η−1

)
for every η ∈ {0, . . . , η∗} and thus

∑η∗

η=0

(
m
η

)
is a telescoping sum bounded by 2

(
m
η∗

)
which

in turn is bounded by 2(em/η∗)η
∗ ≤ 22h(em/η∗)η

∗
. Again the desired bound on |T`| follows.

Step 4: Completing the proof of Lemma 5.17. The boundedness of B now follows from
some straightforward (though tedious) calculations. Continuing with the RHS of Eq. (6.7), we
have:

min{h,m}∑
`=h/k

qn

|B|

√
|T`|

∑
u∈T`

1̂B(u)2 ≤
min{h,m}∑
`=h/k

qn

|B|

√
(4q2k)h · (em/η∗)η∗ · k` ·

(
|B|
qn

)2

·
(
ζ1s

h− `

)h−`
(By Claim 6.8 and Claim 6.12, and using b ≤ s)

=

min{h,m}∑
`=h/k

√
(4q2k)h · (em/η∗)η∗ · k` ·

(
ζ1s

h− `

)h−`
= S1 + S2

where

S1 :=

h/2∑
`=h/k

√
(4q2k)h · (em/η∗)η∗ · k` ·

(
ζ1s

h− `

)h−`
,

and

S2 :=

min{h,m}∑
`=h/2+1

√
(4q2k)h · (em/η∗)η∗ · k` ·

(
ζ1s

h− `

)h−`
.

Using η∗ = ` for the regime in S1 and η∗ = h/2 in the S2 regime we can simplify the above two
sums as follows:

S1 =

h/2∑
`=h/k

√
(4q2k)h · (em/`)` · k` ·

(
ζ1s

h− `

)h−`

≤
h/2∑
`=h/k

√
(4ekq2k)h · (m/`)` ·

(
ζ1s

h− `

)h−`

≤
h/2∑
`=h/k

√
(4ekq2k)h · (m/`)` ·

(
2ζ1s

h

)h−`
(Using ` ≤ h/2)

= (8ζ1ekq
2k)h/2

( s
h

)h/2 h/2∑
`=h/k

√(
mh

2ζ1s`

)`

≤ (8ζ1ekq
2k)h/2

( s
h

)h/2 h/2∑
`=h/k

√(
km

2ζ1s

)`
(Using ` ≥ h/k)
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≤ (8ζ1ekq
2k)h/2

( s
h

)h/2 h/2∑
`=h/k

√(
kn

2ζ1s

)`
(Using m ≤ n)

≤ (8ζ1ekq
2k)h/2

( s
h

)h/2
· 2 ·

(
kn

2ζ1s

)h/4
(Using s ≤ ε0n. See footnote8.)

= 2(25/2ζ
1/2
1 ek3/2q2k)h/2

(√
sn

h

)h/2
≤ Ch1

(√
sn

h

)h/2
,

for C1 ≥
√

27/2ζ
1/2
1 ek3/2q2k. We now turn to simplifying S2. We have

S2 =

min{h,m}∑
`=h/2+1

√
(4q2k)h · (em/η∗)η∗ · k` ·

(
ζ1s

h− `

)h−`

=

min{h,m}∑
`=h/2+1

√
(4q2k)h · (2em/h)h/2 · k` ·

(
ζ1s

h− `

)h−`
(Using η∗ = h/2 in this regime)

≤
h∑

`=h/2+1

√
(4q2k)h · (2em/h)h/2 · k` ·

(
ζ1s

h− `

)h−`

≤ (8ekq2k)h/2(m/h)h/4
h∑

`=h/2+1

√(
ζ1s

h− `

)h−`

= (8ekq2k)h/2(m/h)h/4
h/2−1∑
`′=0

√(
ζ1s

`′

)`′

≤ (8ekq2k)h/2(m/h)h/4
h/2−1∑
`′=0

√(
ζ1s

h/2

)`′
eh/2 (Using (x/y)y ≤ (x/z)y · ez for every x > 0 and y, z ≥ 1)9

≤ (8e2kq2k)h/2(m/h)h/4
h/2−1∑
`′=0

√(
ζ1s

h/2

)`′
≤ (8e2kq2k)h/2(n/h)h/4ζ

h/2
1 4((2s)/h)h/4 (Using m ≤ n, ζ1 ≥ 1 and h ≤ s)

≤ Ch2
(√

sn

h

)h/2
,

for C2 ≥ (28ζ1e
2kq2k)1/2. Combining the bounds on S1 and S2 we get∑

u∈Znq
‖u+v‖0=h

qn

|B|

∣∣∣1̂B(u)
∣∣∣ =

qn

|B|
∑
u∈Sh

∣∣∣1̂B(u)
∣∣∣ ≤ S1 + S2 ≤ (Ch1 + Ch2 )(

√
sn/h)h/2 ≤ Ch(

√
sn/h)h/2

for C ≥ max{2, C1 + C2}.

8Since s ≤ ε0n ≤ kn/8ζ1, we have
√

kn
2ζ1s
≥ 2 and so the sum

∑h/2

`=h/k

√
( kn
2ζ1s

)` telescopes to at most 2
(
kn
2ζ1s

)h/4
.

9This inequality is derived by seeing (x/y)y = (x/z)y(z/y)y and (z/y)y ≤ ez for every y, z ≥ 1.
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Thus, we conclude thatB is (M,C, s)-weakly-reduced for every s ∈ [b, ε0n], and so by Lemma 6.5,
B is (M,C0, s)-strongly-reduced for every s ∈ [b, ε0n]. This concludes the proof of Lemma 5.17.

6.4 Proof: boundedness implies near uniformity

In this section we prove Lemma 5.18 which is used to prove condition (iv) of Lemma 5.1. We restate
the lemma below for convenience.

Lemma 5.18 (Boundedness implies closeness to uniformity). For every q, k ≥ 2 there exists α0 =
α0(k, q) such that for every δ ∈ (0, 1/2) and C < ∞, there exists τ = τ(q, k, δ, C) such that the
following holds for every sufficiently large n:

Let B ⊂ Znq be a (C, s)-bounded set with |B| ≥ qn−b, for 4 logq(3/δ) ≤ b ≤ s ≤ τn. Let M be a
random k-hypermatching of size m ≤ α0n and c be a uniformly random sequence of centers for M
and let Ac denote the c centered folded encoding of M . Then, with probability at least 1 − δ over

the choice of M and c, for every z0 ∈ Z(k−1)m
q , we have that

1− δ < q(k−1)m Pr
x∼Unif(B)

[Acx = z0] < 1 + δ .

As a consequence, we also have (with probability at least 1− δ over the choice of (M, c)):

1. ‖(Acx)− U‖tvd ≤ δ where x ∼ Unif(B) and U ∼ Unif(Z(k−1)m
q ).

2. For every non-negative function f : Z(k−1)m
q → R≥0,

(1− δ) ≤
Ex∼Unif(B) [f(Acx)]

E
z∼Unif(Z(k−1)m

q )
[f(z)]

≤ (1 + δ) .

In the following, we denote m = αn for simplicity. Let us start with defining a combinatorial
quantity p(h, k,m, n) and showing an upper bound on it.

Definition 6.13. Suppose k,m, n > 0 are integers. We define p(h, k,m, n) to be the probability
that a uniformly random k-hypermatching M on vertex set [n] with m hyperedges each of size k,
the support of M contains [h] and further satisfies the condition that every hyperedge of M contains
either 0 or at least two vertices from [h].

Lemma 6.14 ([CGSV21a, Lemma 6.8]). For every β0 > 0 and k there exists α0 > 0 such that for
all integers n, k, α ∈ (0, α0], m = αn, and 0 ≤ h ≤ km, we have

p(h, k,m, n) ≤
(
β0h

n

)h/2
.

Furthermore, p(h, k,m, n) = 0 if h > km.

We include a proof for convenience.

Proof. We prove the lemma for α0 = β0/(8e
3k5). The definition of p(· · · ) explores the probability

that a fixed set H = [h] satisfies some conditions with respect to a random matching M . By
symmetry we can instead view it as the probability that a uniformly random set H satisfies the
same conditions with respect to a fixed matching M with edges e1, . . . , em. (We abuse notation to
also use M to denote ∪i∈[m]ei, i.e., the subset of vertices incident to the matching.)
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Given a matching M , let F = {H ⊆ [n] | |H| = h,H ⊆M, |H∩ei| 6= 1}. We have p(h, k,m, n) =
|F|/

(
n
h

)
, and so it suffices to bound |F| from above. Given H ∈ F , let E(H) = {i ∈ [m]|H ∩ei 6= ∅}

denote the set of edges touching H and let η = |E(H)|. We have that h/k ≤ η ≤ h/2 since every
edge includes at least two vertices of H. To choose an H ∈ F we may choose η ∈ [h/k, h/2],
E ⊆ [m] of size η and then choose H of size h from the set of vertices incident to E. (There are
further conditions that we will ignore to get the upper bound.) Given η there are

(
m
η

)
ways of

choosing E, and given E, there are at most
(
kη
h

)
ways of choosing H from the vertices touched by

E. We thus get that |F| ≤
∑h/2

η=h/k

(
m
η

)(
kη
h

)
. Applying this we now get the following inequalities:

p(h, k,m, n) ≤
(
n

h

)−1

·
h/2∑

η=h/k

(
m

η

)(
kη

h

)

≤
h/2∑

η=h/k

(
m

η

)
(ekη/h)h(h/n)h (Using (a/b)b ≤

(
a
b

)
≤ (ea/b)b)

≤ (ekh/n)h
h/2∑
η=1

(
m

η

)
(Using η ≤ h)

≤ 2h(ekh/n)h(2ekm/h)h/2

= (8e3k5αh/n)h/2 ,

where the last inequality uses
∑h/2

η=1

(
m
η

)
≤ 2h(2ekm/h)h/2 for every m and h ∈ [km]. (If h ≤

m the final term is the largest and bounded by (2ekm/h)h/2 and so the entire sum is at most
h(2ekm/h)h/2 ≤ 2h(2ekm/h)h/2. If h ∈ (m, km], then the sum is at most 2m while the RHS
is at least 2h (in particular 2ekm/h ≥ 1).) So we have that p(h, k,m, n) ≤ (8e3k5αh/n)h/2 ≤
(8e3k5α0h/n)h/2 = (β0n/h)h/2 since β0 = 8e3k5α0.

The following lemma is an immediate corollary of Lemma 6.14 and will be useful later in the
proof of Lemma 5.18.

Lemma 6.15. For every k, q ≥ 2 there exists α0 > 0 such that for every δ ∈ (0, 1/2) and C < ∞
there exists τ > 0 such that for all integers n, s and m satisfying 4 logq(3/δ) ≤ s ≤ τn, m ≤ α0n
we have:

p(h, k,m, n)UC,s(h) ≤


δ2h , 1 ≤ h ≤ s
2−h/2 , s < h ≤ km
0 , h > km

.

Specifically,
n∑
h=2

p(h, k,m, n)UC,s(h) ≤ δ2 .

Proof. Let β0 = 1
4q2e2

, and let α0 be as in Lemma 6.14 for this choice of β0. Let τ = δ8/(C2β2
0).

By Lemma 6.14 and the definition of (strongly-)boundedness we have the following:

• If 1 ≤ h ≤ s, then

p(h, k,m, n)UC,s(h) ≤
(
β0h

n

)h/2
·
(
C
√
sn

h

)h/2
=

(
β0C
√
s√

n

)h/2
≤ (β0C

√
τ)h/2 ≤ δ2h,

where the second inequality uses s ≤ τn and the third uses β0C
√
τ ≤ δ4.
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• If s < h ≤ km, then

p(h, k,m, n)UC,s(h) ≤
(
β0h

n

)h/2
·
(

2q2e2n

h

)h/2
= (β02q2e2)h/2 ≤ 2−h/2,

where the final inequality uses β02q2e2 ≤ 1/2.

• If h > km, we have p(h, k,m, n) = 0 and hence p(h, k,m, n)UC,s(h) = 0.

Finally, we have

n∑
h=2

p(h, k,m, n)UC,s(h) ≤
s∑

h=2

δ2h +

km∑
h=s+1

2−h/2

≤ δ4

1− δ2
+

2−s−1/2

1− (1/
√

2)

≤ δ2

2
+

2−s−1/2

1− (1/
√

2)

≤ δ2

2
+
δ2

2
= δ2,

where the second inequality uses δ < 1/2 and the third uses s ≥ 4 logq(3/δ).

Now, we are ready to prove the main lemma of this subsection.

Proof of Lemma 5.18. Given k, q ≥ 2 and δ > 0 and C < ∞ let α0 = α0(k, q) > 0 and τ =
τ(k, q, δ, C) > 0 be as given by Lemma 6.15.

Let m ≤ α0n, 4 logq(3/δ) ≤ b ≤ s ≤ τn, and let B ⊂ Znq be a (C, s)-bounded set with

|B| ≥ qn−b. The goal is to prove that with probability at least 1− δ over a uniform random choice
of k-hypermatching M on m edges and a random choice of center sequence c the following holds

for every z0 ∈ Z(k−1)m
q ,

1− δ ≤ q(k−1)m Pr
x∼Unif(B)

[Acx = −z0] ≤ 1 + δ

(Recall that Ac was defined in Eq. (3.3). Note that the switch from z0 to −z0 in the event described
above does not alter the statement being proved since we are proving this for every vector z0.)

Now, for a fixed k-hypermatching M and fixed choice of centers c, let us expand the marginal
probability as follows. Let f : Znq → {0, 1} be the indicator function of the set B. For a fixed

z0 ∈ Z(k−1)m
q , let g = gAc,z0 : Znq → {0, 1} be the function given by g(x) = 1Acx=z0 . Letting

g = gAc,z0 , we have

q(k−1)m Pr
x∼Unif(B)

[Acx = −z0] =
q(k−1)m

|B|
∑
x∈Znq

f(x)g(−x)

=
q(k−1)m

|B|
(f ? g)(0)

=
q(k−1)m

|B|
∑
u∈Znq

f̂ ? g(u)
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=
q(k−1)m+n

|B|
∑
u∈Znq

f̂(u)ĝ(u) (By Lemma 2.8)

= 1 +
qn+(k−1)m

|B|
∑
u∈Znq
u6=0n

f̂(u)ĝ(u) (6.16)

(Since qnf̂(0) = |B| and qnĝ(0) = qn−(k−1)m).

We now analyze the Fourier coefficients of g and use this to bound the right hand side above.
Roughly the claim below establishes basic properties of the function g that show that g is also a
somewhat reduced function (as in Definition 5.16). This, combined with the boundedness of B
allows us to establish the near-uniformity of the posterior distribution.

Claim 6.17. Let M be a k-hypermatching of size m, c be centers, and z0 ∈ Z(k−1)m
q . Let g(x) =

1Acx=z0. For every u ∈ Znq , the following conditions hold:

1. If supp(u) 6⊆ supp(M) then ĝ(u) = 0. 10

2. If there exists i ∈ [m] such that 〈u, ei〉 6≡ 0 mod q where ei denotes the i-th hyperedge of M ,
then ĝ(u) = 0.

3. |ĝ(u)| ≤ q−(k−1)m.

Proof of Claim 6.17. Recall that qnĝ(u) =
∑

x g(x)ωu>x.

1. If supp(u) 6⊆ supp(M), then there exists i ∈ [n] such that ui 6= 0 but the i-th column of
Ac is zero. For each x ∈ Znq , for every a ∈ Zq we have g(x) = g(x + aδi), where δi ∈ Znq
denotes the coordinate vector in the i-th direction (i.e., δi = 0i−110n−i). Also, note that∑

a∈Zq ω
u>(x+aδi) = ωu>x

∑
a∈Zq ω

ui·a = 0. This implies ĝ(u) = 0.

2. Suppose 〈u, ei〉 6≡ 0 mod q. For each x ∈ Znq and a ∈ Zq, note that g(x) = g(x + aei) because

ak lies in the kernel of the folded matrix of this hyperedge. Second, since 〈u, ei〉 6≡ 0 mod q,

we have
∑

a∈Zq ω
u>x+aei = ωu>x

∑
a∈Zq ω

a·〈u,ei〉 = 0. This implies ĝ(u) = 0.

3. By definition, we have qnĝ(u) =
∑

x 1Acx=z0ω
u>x. Note that for fixed M, c, z0, there are at

most qn−(k−1)m x such that g(x) = 1. Thus, we have |ĝ(u)| ≤ q−(k−1)m as desired.

Now, we can use Claim 6.17 to further upper bound Equation 6.16 as follows. Recall that �
stands for the coordinate-wise product of vectors.

qn+(k−1)m

|B|
∑
u∈Znq
u 6=0n

f̂(u)ĝ(u) ≤ qn

|B|
∑
u∈Znq
u6=0n

u is matched by M
‖u�ei‖1≡0 mod q ∀i∈[m]

|f̂(u)| .

10Recall that supp(u) = {i|ui 6= 0} and supp(M) is the subset of [n] consisting of vertices that are incident to some
hyperedge in the matching M .
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One key observation here is that the above bound is independent of z0 and therefore holds even if

we take the maximum of the left hand side over all z0 ∈ Z(k−1)m
q . We thus get, for every M and c:

max
z0∈Z(k−1)m

q

∣∣∣∣q(k−1)m Pr
x∼Unif(B)

[Acx = −z0]− 1

∣∣∣∣ ≤ qn

|B|
∑
u∈Znq
u6=0n

u is contained in M
‖u�ei‖1≡0 mod q ∀i∈[m]

|f̂(u)|

Finally, let us take the expectation of the above quantity over the randomness of M and c.

E
M,c

[
max

z0∈Z(k−1)m
q

∣∣∣∣q(k−1)m Pr
x∼Unif(B)

[Acx = −z0]− 1

∣∣∣∣
]
≤ E

M,c


qn

|B|
∑
u∈Znq
u6=0n

u is contained in M
‖u�ei‖1≡0 mod q ∀i∈[m]

|f̂(u)|


.

Next, we partition the summation according to the `0-norm of the Fourier coefficients.

≤
n∑
h=1

E
M,c


qn

|B|
∑
u∈Znq
‖u‖0=h

u is contained in M
‖u�ei‖1≡0 mod q ∀i∈[m]

|f̂(u)|


Observe that the event ‖u� ei‖1 ≡ 0 (mod q) implies that either ‖u� ei‖0 = 0 or ‖u� ei‖0 ≥ 2
holds. Hence, the above summation can be replaced with a summation beginning at h = 2, and
the equation becomes

≤
n∑
h=2

E
M,c


qn

|B|
∑
u∈Znq
‖u‖0=h

u is contained in M
‖u�ei‖0=0 or ‖u�ei‖0≥2 ∀i∈[m]

|f̂(u)|


≤

n∑
h=2

p(h, k,m, n)
qn

|B|
∑
u∈Znq
‖u‖0=h

|f̂(u)|

When B is (C, s)-bounded, we can further upper bound the above quantity as follows.

≤
n∑
h=2

p(h, k,m, n) · UC,s(h) ≤ δ2,

where the last inequality is due to Lemma 6.15. Thus, when x ∼ Unif(B) and U ∼ Unif(Z(k−1)αn
q ),

we have

E
M,c

[
max

z0∈Z(k−1)m
q

∣∣∣∣q(k−1)m Pr
x∼Unif(B)

[Acx = −z0]− 1

∣∣∣∣
]
≤ δ2 .
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By Markov’s inequality, we have

max
z0∈Z(k−1)m

q

∣∣∣∣q(k−1)m Pr
x∼Unif(B)

[Acx = −z0]− 1

∣∣∣∣ ≤ δ
with probability at least 1 − δ. This yields the main part of the lemma. The consequences follow
directly from the main part (since pointwise bounds on the distance between distributions imply
total variation distance as well as expectation of a non-negative weight).

This completes the proof of Lemma 5.18.

6.5 Proof of the “induction step” lemma

The goal of this section is to prove the “induction step” lemma. By Markov’s inequality, it suffices
to prove the following lemma which is the expectation version of Lemma 5.19. We first show
how Lemma 6.18 implies Lemma 5.19 and then focus on proving the former in the rest of this
subsection.

Lemma 6.18 (Induction step in expectation). For every q, k ∈ N there exist α0 > 0 and C0 > 0
such that for every C > C0, there exist τ0 ∈ (0, 1) and C ′′ > 0 such that the following holds: For
every n,m, s, h ∈ N satisfying m ≤ α0n and 0 < s < τ0n and 1 ≤ h ≤ s, and every B ⊂ Znq that is
(C, s)-strongly-bounded we have:

∑
u∈Znq

qn

|B|

∣∣∣1̂B(u)
∣∣∣ E
M

max
B′


∑

u′∈Znq
‖u+u′‖0=h

qn

|B′|

∣∣∣1̂B′(u′)∣∣∣

 ≤WC′′,s(h) ,

where the expectation is taken over a uniform random k-hypermatching M on m hyperedges, and
the maximum is taken over all B′ that are (M,C0, s)-reduced.

We first restate and prove Lemma 5.19 using Lemma 6.18.

Lemma 5.19 (Induction step). For every q, k ∈ N there exist α0 > 0 and C0 > 0 such that
for every C ≥ C0, and δ ∈ (0, 1/2), there exist τ0 ∈ (0, 1) and C ′ > 0 such that the following
holds. For every n, b, b′, s,m ∈ N, satisfying m ≤ α0n, 0 < b, b′, s < τ0n and every (C, s)-bounded
set B ⊂ Znq satisfying |B| ≥ qn−b, we have that with probability at least 1 − 4δ over a uniformly
random k-hypermatching M of size at most m and every (M,C0, s)-reduced set B′ ⊂ Znq satisfying

|B′| ≥ qn−b′ and |B ∩B′| ≥ (1− δ) · |B| · |B′|/qn ≥ qn−s, we have B ∩B′ is (C ′, s)-bounded.

Proof of Lemma 5.19. Let α0, C0 be as in Lemma 6.18. Given α,C and δ, let C ′′ and τ0 be the
constants given by Lemma 6.18. Let C ′ be the constant from Lemma 6.5 for C = C ′′/δ2 and
ε0 = τ0. We prove our lemma with these choices of parameters.

For every matching M , fix a set B′ = B′(M) that is (M,C0, s)-reduced and satisfies |B′| ≥ qn−b′

and |B∩B′| ≥ (1−δ) · |B| · |B′|/qn ≥ qn−s. We prove the lemma for every such fixing. (In particular
B′ below is short for B′(M).)

Fix s ≤ τ0n. For every h ∈ {1, . . . , s}, by the convolution theorem (see Lemma 2.9) for Fourier
coefficients, we have

∑
v∈Znq
‖v‖0=h

qn

|B ∩B′|

∣∣∣1̂B∩B′(v)
∣∣∣ =

∑
v∈Znq
‖v‖0=h

qn

|B ∩B′|

∣∣∣∣∣∣
∑
u∈Znq

1̂B(u)1̂B′(v − u)

∣∣∣∣∣∣
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≤
∑
v∈Znq
‖v‖0=h

qn

|B ∩B′|
∑
u∈Znq

∣∣∣1̂B(u)
∣∣∣ · ∣∣∣1̂B′(v − u)

∣∣∣
=
∑
u∈Znq

∑
u′∈Znq

‖u′+u‖0=h

qn

|B ∩B′|

∣∣∣1̂B(u)
∣∣∣ · ∣∣∣1̂B′(u′)∣∣∣

=
|B| · |B′|

qn · |B ∩B′|
∑
u∈Znq

qn

|B|

∣∣∣1̂B(u)
∣∣∣ ∑

u′∈Znq
‖u+u′‖0=h

qn

|B′|

∣∣∣1̂B′(u′)∣∣∣
≤ 1

1− δ
∑
u∈Znq

qn

|B|

∣∣∣1̂B(u)
∣∣∣ ∑

u′∈Znq
‖u+u′‖0=h

qn

|B′|

∣∣∣1̂B′(u′)∣∣∣ ,
where the first inequality above is from the triangle inequality and the second from the assumption
in the lemma statement on the cardinality of B ∩B′.

For h ∈ [s], let F (h) denote the event that the random matching M is such that

1

1− δ
∑
u∈Znq

qn

|B|

∣∣∣1̂B(u)
∣∣∣ ∑

u′∈Znq
‖u+u′‖0=h

qn

|B′|

∣∣∣1̂B′(u′)∣∣∣ > 1

δh
·WC′′,s(h) = WC′′/δ2,s(h).

Further, for h ∈ (s, τ0n], let F (h) denote the event that the random matching M is such that

1

1− δ
∑
u∈Znq

qn

|B|

∣∣∣1̂B(u)
∣∣∣ ∑

u′∈Znq
‖u+u′‖0=h

qn

|B′|

∣∣∣1̂B′(u′)∣∣∣ > 1

δh
·WC′′,h(h) = WC′′/δ2,h(h). (6.19)

Let F = ∪h∈[τ0n]F (h) be the union of these events. Note that if F does not hold, then, for
every s′ ∈ [s, τ0n], B ∩B′ is (C ′′/δ2, s′)-weakly-bounded, and so, by Lemma 6.5, B ∩B′ is (C ′, s)-
strongly-bounded as desired. So we turn to bounding the probability of F .

For h ∈ [s], an application of Markov’s inequality to Lemma 6.18 yields that

Pr[F (h)] ≤
WC′′,s(h)

(1− δ) ·WC′′/δ2,s(h)
=

WC′′,s(h)

(1− δ) · 1
δh
WC′′,s(h)

≤ δh

1− δ
.

For h ∈ (s, τ0n], we first note that since B is (C, s)-bounded then it is also (C, h)-bounded (by
Item (2) of Lemma 6.4). Similarly we also have that B′ is (M,C0, h)-reduced. This allows us to
invoke Lemma 6.18 with sLemma 6.18 = h and then proceed as in the case above. Specifically for
this choice of sLemma 6.18 we get by Lemma 6.18 that the expected value of the LHS of Eq. (6.19)
is at most WC′′,h(h)/(1− δ). Now an application of Markov’s inequality yields:

Pr[F (h)] ≤
WC′′,h(h)

(1− δ) ·WC′′/δ2,h(h)
=

WC′′,h(h)

(1− δ) · 1
δh
WC′′,h(h)

≤ δh

1− δ
.

We thus get Pr[F ] ≤
∑

h∈[τ0n] F (h) ≤ 1
1−δ

∑
h δ

h ≤ 4δ where the final step uses the fact that
δ < 1/2. We conclude that with probability at least 1− 4δ over the randomness of M , the event F
does not hold and B ∩B′ is (C ′, s)-bounded.
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Now we turn to proving Lemma 6.18. The proof involves three steps. In the first step we
partition the inner sum over u′ based on a combinatorial structure that allows us to say how much
the expected contribution of u′ would be, based on a few parameters. In the second step we give
bounds on these expected contributions in different cases and analyze the probability of each case.
In the final step we then combine these different bounds to prove the lemma.

Step 1: Partitioning the inner sum via a combinatorial structure. We start by defining
the following combinatorial quantity, based on intersection properties of a random k-hypermatching.

Definition 6.20. Let n, q, k, u ∈ N and α ∈ (0, 1/k). Let u ∈ (Zq\{0})u × 0n−u be a vector that
is non-zero on exactly the first u coordinates. For a k-hypermatching M of size m, let Ku(M) :=
{i ∈ [m] | 〈u, ei〉 6≡ 0 (mod q)} be the set of edges with “odd intersection” (formally non-zero inner
product mod q) with u. Let Eu(M) := {j ∈ [n] | uj 6= 0, ∃i 6∈ Ku(M), j ∈ ei} denote the set
of vertices in the support of u that are in “even” edges.11 Finally, let Ou(M) := {j ∈ [n] | uj 6=
0, ∃i ∈ Ku(M), j ∈ ei} be the vertices in the support of u from odd edges. For o, η, κ ∈ N, we
define

pq,α(n, u, o, η, κ) := max
u∈(Zq\{0})u×0n−u

Pr
M

[|Ku(M)| = κ, |Eu(M)| = η, |Ou(M)| = o] , (6.21)

where M is a uniformly random k-hypermatching of size αn. (In other words pq,α is the maximum
probability of a vector u of support size u having κ odd edges, η even vertices and o odd vertices
when the matching M is drawn at random.)

Fig. 4 illustrates some of the parameters in the definition above. We remark that pq,α(· · · ) should
not be confused with the function p(· · · ) defined in Definition 6.13, which is a similar combinatorial
quantity but not the same.

Note that as each edge in Ku(M) contributes at least one element to Ou(M), we have o ≥ κ.

Figure 4: A graphical intuition for the parameters appeared in Definition 6.20.

We now show how to bound a certain expected value of the sum of Fourier coefficients of a fixed
“level” from above in terms of the combinatorial quantity defined in Definition 6.20.

11Informally we refer to edges as “even” (or “odd”) which would be the right terminology if q = 2. For q 6= 2 these
words are formalized as having zero (or non-zero) inner product with u.
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Lemma 6.22. Let n, q, k, u ∈ N, α ∈ (0, 1/k), 0 ≤ s ≤ n, and C > 0. For every u ∈ Znq with
u = |supp(u)| and h ∈ [s], we have

E
M

 max
B′⊂Znq

B′ is (M,C, s)-reduced


∑

u′∈Znq
‖u+u′‖0=h

qn

|B′|

∣∣∣1̂B′(u′)∣∣∣



≤
∑
o,η,κ

pq,α(n, u, o, η, κ) · (h+ 1) · qkκ · UC,s(h+ o+ η − (u+ κ)) .

Furthermore, if pq,α(n, u, o, η, κ) > 0 then (1) u ≥ η+o, (2) κ ≤ o ≤ k ·κ and (3) h+η+o−(u+κ) ≥
0.

Proof. As suggested by the right hand side, we consider the various possibilities for o, η, κ and
bound the left hand side conditioned on the event defined by the probability (6.21).

Let u = |supp(u)|. Consider a fixed matching M = {e1, . . . , em} with m = αn and |Ku(M)| = κ,
|Eu(M)| = η, and |Ou(M)| = o (see the relevant definitions in Definition 6.20). Given M , let
A = supp(u) \ (Eu(M) ∪ Ou(M)) be the set of unmatched vertices of supp(u). Furthermore, let
a = |A|, so that a = u − (η + o). For ease of notation, we drop the dependence on u and M and
simply write E = Eu(M) and O = Ou(M). We also abuse notation and often use M to denote the
subset of [n] given by ∪i∈[m]ei. (The distinction is hopefully clear from context.)

Note that since |A| ≥ 0 we must have u − (η + o) ≥ 0 for such a matching to exist. This
establishes condition (1) of the “Furthermore” part of the lemma. Note further that each edge in
Ku(M) contributes at least one vertex, and at most k vertices, to O and so κ ≤ o ≤ k ·κ establishing
condition (2). We now proceed to proving the rest of the lemma (and will prove condition (3) along
the way).

Let B′ ⊂ Znq be an (M,C, s)-reduced set. We give an upper bound on

∑
u′∈Znq

‖u+u′‖0=h

qn

|B′|

∣∣∣1̂B′(u′)∣∣∣
in terms of the parameters o, η, κ, which will suffice to establish the lemma. We start by establishing
some conditions that are necessary to get 1̂B(u′) 6= 0.

We start with some more notation: For a set S ⊆ [n], we define the restriction of u with respect
to S to be the vector u|S ∈ Znq where (u|S)j = uj if j ∈ S; otherwise (u|S)j = 0. We define the

closure of S (with respect to the matching M) to be the set S = ∪{i∈[m]|S∩ei 6=∅}ei, i.e., S takes all
the vertices that are contained in edges that touch S. (We only apply the notion of the closure to
sets S ⊆M .)

Claim 6.23. For every u there exists a vector ũ such that for every vector u′ ∈ Znq satisfying

‖u + u′‖0 = h, we have 1̂B′(u
′) 6= 0 only if there exists z = z(u′) ∈ Znq with supp(z) ⊆ O and

τ = τ(u′) ∈ [κ, h− a] such that ‖u′ + (z + ũ)‖0 = h− a− τ . In particular, κ ≤ h− a.

Before proving the claim we note that the claim implies condition (3) of the “Furthermore” part
of the lemma since κ ≤ h−a and a = u−η−o imply together that h+η+o−(u+κ) = h−a−κ ≥ 0.
We now prove the claim.
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Proof. We prove the claim for ũ := u|[n]\A. Note that for every vector v and set S ⊆ [n] we can
write v = v|S + v[n]\S , and we also have ‖v‖0 = ‖v|S‖0 + ‖v[n]\S‖0. We use this to decompose
u = u|A + ũ.

Now consider u′ ∈ Znq such that 1̂B′(u
′) 6= 0 and ‖u+u′‖0 = h. First, as B′ is (M,C, s)-reduced,

by Lemma 6.1 we have supp(u′) ⊆ M . Again we write u′ = u′|A + u′|[n]\A. Since A ∩M = ∅ we
must have u′|A = 0. Thus we get that ũ + u′ = u|[n]\A + u′|[n]\A and so

‖ũ + u′‖0 = ‖u|[n]\A + u′|[n]\A‖0 = ‖u + u′‖0 + ‖u|A + u′|A‖0 = h− a,

where the final equality uses ‖u|A + u′|A‖0 = ‖u|A‖0 which equals a since A ⊆ supp(u).
We show now that for z := −(ũ+u′)|O and τ := ‖ũ|O+u′|O‖0, we have ‖(ũ+z)+u′‖0 = h−a−τ .
Note that the definition of z is such that we have (ũ + z + u′)|O = 0. This ensures

‖(ũ + z) + u′‖0 = ‖ũ|[n]\O + u′|[n]\O‖0 = ‖ũ + u′‖0 − ‖ũ|O + u′|O‖0 = h− a− τ .

Finally, we would like to bound the range of possible values for τ . For the upper bound, we have

τ := ‖ũ|O + u′|O‖0 ≤ ‖ũ + u′‖0 = h− a.

For the lower bound we for claim that ‖u|ei + u′|ei‖0 ≥ 1 for every edge ei with i ∈ K. This is
so since 〈u, ei〉 6= 0 (definition of K) and 〈u′, ei〉 = 0 (since 1̂B′(u

′) 6= 0), and together they imply
〈u + u′, ei〉 6= 0 which can only happen if (u + u′)|ei 6= 0, which in turn implies ‖u|ei + u′|ei‖0 =
‖(u + u′)|ei‖0 ≥ 1.

From the above claim it follows that

‖ũ|O + u′|O‖0 = ‖u|O + u′|O‖0 =
∑
i∈K
‖u|ei + u′|ei‖0 ≥

∑
i∈K

1 = κ.

This concludes the proof of the claim.

We now return to analyzing the summation in the LHS of the lemma statement. Let ũ be as
given by Claim 6.23. We have:

∑
u′∈Znq

‖u+u′‖0=h

qn

|B′|

∣∣∣1̂B′(u′)∣∣∣ =

h−a∑
τ=κ

∑
z∈Znq

supp(z)⊆O


∑

u′∈Znq
z(u′)=u,τ(u′)=τ

‖(z+ũ)+u′‖0=h−a−τ

qn

|B′|
|1̂B′(u′)|


(Using Claim 6.23)

≤
h−a∑
τ=κ

∑
z∈Znq

supp(z)⊆O

 ∑
u′∈Znq

‖(z+ũ)+u′‖0=h−a−τ

qn

|B′|
|1̂B′(u′)|


≤

h−a∑
τ=κ

∑
z∈Znq

supp(z)⊆O

UC,s(h− a− τ)

(Using the (C, s)-reducedness of B′ with respect to the vector v := ũ + z)
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≤
h−a∑
τ=κ

qkκ · UC,s(h− a− τ)

(Using |O| = kκ to get |{z | supp(z) ⊆ O}| ≤ qkκ)

≤
h−a∑
τ=κ

qkκ · UC,s(h− a− κ)

(Using monotonicity of UC,s(h) when h ∈ [s] by Lemma 6.4)

= (h− a− κ+ 1) · qkκ · UC,s(h− a− κ)

≤ (h+ 1) · qkκ · UC,s(h+ η + o− (u+ κ)).

This proves the lemma.

Step 2: Useful inequalities about the boundedness parameters and the combinatorial
structure. In order to quantify the upper bound in Lemma 6.22, we need to obtain an upper
bound for the combinatorial quantity pq,α(n, u, o, η, κ).

Lemma 6.24. For every q, k ∈ N there exists a constant C such that for every α ∈ (0, 1/k] and
every n, u, κ, o, η ∈ N we have:

pq,α(n, u, o, η, κ) ≤ α(o+η)/k · Cu · (n/κ)κ · (u/√nη)η · (u/n)o .

Proof. We prove the lemma for C = 2qe3k. We start by establishing some (significant amount
of) notation for the proof. The proof consists of two steps: (i) upper bounding pq,α(· · · ) by∑η/2

d=η/κNq(u, d, o, η, κ)/
(
n
u

)
where Nq(· · · ) is a certain well-defined combinatorial quantity and (ii)

upper bounding Nq(· · · ).

Step (i) of the proof for Lemma 6.24. For u = (u1, . . . ,un) ∈ Znq , let supp(u) ⊆ [n] denote
the subset of non-zero coordinates of u. Further, for i ∈ Zq, let suppi(u) denote the subset
{j ∈ [n] | uj = i}. Now given non-negative integers u1, . . . , uq−1 and u = u1 + · · · + uq−1, let
Su1,...,uq−1 = {u ∈ Znq | |suppi(u)| = ui ∀i ∈ [q − 1]} and let Su = {u ∈ Znq | |supp(u)| = u}.

Given a vector u ∈ Znq and hypermatching M containing m = αn hyperedges e1, . . . , em where
each ei is viewed as a subset of [n] of size k, we define four associated sets below. Let:

• K = {i ∈ [m] | 〈u, ei〉 6≡ 0 (mod q)},

• O = {j ∈ supp(u) | ∃i ∈ K, j ∈ ei},

• E = {j ∈ supp(u) | ∃i ∈ [m] \K, j ∈ ei}, and

• D = {i ∈ [m] : E ∩ ei 6= ∅}.

Note that pq,α(· · · ) bounds the maximum over u with |supp(u)| = u of the probability, over
a random hypermatching M , that |K| = κ, |O| = o and |E| = η. By symmetry however we can
fix the matching M and consider the maximum, over u1, . . . , uq−1 s.t. u1 + · · · + uq−1 = u, of the
probability that |K| = κ, |O| = o and |E| = η, when u is chosen uniformly from Su1,...,uq−1 . In
notation, we have

pq,α(n, u, o, η, κ) = max
{u1,...,uq−1|u1+···+uq−1=u}

{
Pr

u∈Su1,...,uq−1

[E(u, o, η, κ)]

}
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where E(u, o, η, κ) is the event that |K| = κ, |O| = o, and |E| = η. Now let Ed(u, o, η, κ) denote the
event that |K| = κ, |O| = 0, |E| = η, and |D| = d. Note that each hyperedge in D contributes at
least two elements to E (since 〈u, ei〉 ≡ 0 (mod q) for i ∈ D). Hence, d ≤ η/2. Moreover, as each
edge in D can contribute at most k elements to E, we also have d ≥ η/k. Thus we get:

pq,α(n, u, o, η, κ) = max
{u1,...,uq−1|u1+···+uq−1=u}


η/2∑

d=η/k

Pr
u∈Su1,...,uq−1

[Ed(u, o, η, κ)]


≤

η/2∑
d=η/k

(
max

{u1,...,uq−1|u1+···+uq−1=u}

{
Pr

u∈Su1,...,uq−1

[Ed(u, o, η, κ)]

})
.

Define T+((u1, . . . , uq−1), d, o, η, κ) to be the set {u0 ∈ Su1,...,uq−1 | |K| = κ, |O| = o, |E| =
η, |D| = d}, let Tq(u, d, o, η, κ) = ∪{u1,...,uq−1|u1+···+uq−1=u}T

+((u1, . . . , uq−1), d, o, η, κ). Intuitively,
Tq is the set that contains all the possible u0 in the event Ed while T+ forms a partition for Tq. For
every u1, . . . , uq−1 we have

Pr
u∈Su1,...,uq−1

[Ed(u, o, η, κ)] =
∑

u0∈T+((u1,...,uq−1),d,o,η,κ)

Pr
u∈Su1,...,uq−1

[u = u0].

The final probability above Pru∈Su1,...,uq−1
[u = u0] is upper bounded by 1/

(
n
u

)
. (u is chosen by

picking disjoint sets U1, . . . , Uq−1 uniformly subject to |Ui| = ui. The event u = u0 holds iff Ui =
suppi(u0) which in turn happens only if ∪iUi = supp(u0) which in turn happens with probability
1/
(
n
u

)
.) Finally let Nq(u, d, o, η, κ) = |Tq(u, d, o, η, κ)|. We thus have

pq,α(n, u, o, η, κ) ≤
η/2∑

d=η/k

(
max

{u1,...,uq−1|u1+···+uq−1=u}

{
Pr

u∈Su1,...,uq−1

[Ed(u, o, η, κ)]

})

≤
η/2∑

d=η/k

 max
{u1,...,uq−1|u1+···+uq−1=u}

 ∑
u0∈T+((u1,...,uq−1),d,o,η,κ)

Pr
u∈Su1,...,uq−1

[u = u0].




≤
η/2∑

d=η/k

(
max

{u1,...,uq−1|u1+···+uq−1=u}

{
|T+((u1, . . . , uq−1), d, o, η, κ)| · 1(

n
u

)})

≤
η/2∑

d=η/k

(
max

{u1,...,uq−1|u1+···+uq−1=u}

{
Nq(u, d, o, η, κ) · 1(

n
u

)})

=

η/2∑
d=η/k

Nq(u, d, o, η, κ)(
n
u

) . (6.25)

Thus to upper bound pq,α(· · · ) it suffices to upper bound Nq(· · · ).

Step (ii) of the proof for Lemma 6.24. A vector u ∈ Tq(u, d, o, η, κ) can be specified by
specifying the sets O, E, supp(u)− (O ∪E), and then by specifying u|supp(u) i.e., the restriction of
u to supp(u). There are (q−1)u choices of u|supp(u). So we turn to counting the number of possible
O’s and E’s. O may be specified by first specifying K and then selecting O from ∪i∈Kei. (There
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are further restrictions on the choices of O which we will ignore to get an upper bound.) There
are

(
m
κ

)
choices of K and at most

(
kκ
o

)
choices of O given K. Similarly for E we have at most(

m
d

)
choices of D and then at most

(
kd
η

)
choices of E given D. Finally, there are at most

(
n−km
u−o−η

)
choices of supp(u) \ (O ∪ E), since they must be a set of u− o− η vertices outside the m edges of
our hypermatching. Putting all this together we get the following upper bound on Nq(· · · ):

Nq(u, d, o, η, κ) ≤
(
αn

κ

)(
αn

d

)(
kκ

o

)(
kd

η

)(
n(1− αk)

u− o− η

)
(q − 1)u.

Using the bounds
(
a
b

)b ≤ (ab) ≤ ( eab )b, we have that

Nq(u, d, o, η, κ)(
n
u

) ≤
(eαn
κ

)κ (eαn
d

)d(ekκ
o

)o(ekd
η

)η (n(1− αk))u−o−η

(u− o− η)!
(q − 1)u ·

(u
n

)u
≤ nκ+d−η−oκ−κd−d

uu

(u− o− η)!
·
(
ακ+deκ+d+o+ηko+η(q − 1)u ·

(κ
o

)o(d
η

)η
(1− kα)u−o−η

)
.

Recall from Lemma 6.22 and step (i) of the proof that κ ≤ o, 2d ≤ η, and o + η ≤ u. Hence, we
have that 0 ≤ κ/o, d/η ≤ 1 and eκ+d+o+ηko+η(q − 1)u ≤ e2u · ((q − 1)k)u ≤ (qe2k)u. Moreover,

uu−o−η

(u− o− η)!
≤ eu.

Therefore, letting Ck = qe3k, we have

Nq(u, d, o, η, κ)(
n
u

) ≤ Cukακ+d · nκ+d−η−oκ−κd−duo+η =
(αn
d

)d
· Cukακ · nκ−η−oκ−κuo+η .

Hence, by (6.25), we have that for C = 2Ck = 2qe3k,

pq,α(n, u, o, η, κ) ≤ Cukακ · nκ−η−oκ−κuo+η
η/2∑

d=η/k

(αn
d

)d

≤ Cukακ+ η
k · nκ−η−oκ−κuo+η

η/2∑
d=η/k

(n
d

)d
≤ Cukα

η+o
k · nκ−η−oκ−κuo+η · η

2

(
2n

η

)η/2
(Using o ≤ k · κ from Lemma 6.22)

≤ α
η+o
k · Cu · (n/κ)κ · (u/√nη)η · (u/n)o,

where the second-to-last inequality follows from the fact that n/d ≥ e and x1/x is a decreasing
function of x on x ∈ (e,∞). This completes the proof of Lemma 6.24.

Finally, we prove an additional inequality about the boundedness parameters. This will simplify
the final proof of Lemma 6.18.

Lemma 6.26. For every q, k ∈ N, there exists α0 ∈ (0, 1/k) so that the following holds. For
every C1, C2 > 0 there exists ε0 > 0 and C3 > 0 such that for every α ∈ (0, α0), ε ∈ (0, ε0) and
s, n, u, h, η, o, κ ∈ N with s = εn ≤ ε0n and h ∈ [s] and u ∈ [n], we have

UC1,s(u) · pq,α(n, u, o, η, κ) · h · 2kκ · UC2,s(h+ η + o− (u+ κ)) ≤ 4−u−2WC3,s(h).
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Proof. Given q and k, let C be the constant from Lemma 6.24. Let C0 =
√

2 · 4e · q ·C · 2k, and let
α0 = 1/(e2C0)k. Now given C1, C2, let C4 = 4 ·

√
C1 ·C ·2k, C5 = max{1, 2

√
C2, 2C2} and C6 = eC5

(where e is the base of the natural logarithm). Now let ε0 = min
{

1
(e2C4)4

, 1
(2e2C4)4

, (e−2/C4)16
}

and

C3 = max{(16e3C4C6)2, (16C6/ε
1/4
0 )2, (32C6/α

1/k
0 )2, 256C2

6 , (16C6/α
1/k
0 )2}. We prove the lemma

for this choice of α0, ε0 and C3. Note in particular that this choice of α0 depends only on q and k
but not on C1 and C2 (as required).

Note that if η + o > u or h + η + o − (u + κ) < 0 or o < κ then by Lemma 6.22 we have
pq,α(n, u, o, η, κ) = 0 and the lemma is immediately true. So we assume η+o ≤ u, h+η+o−(u+κ) ≥
0 and o ≥ κ in the rest of this proof. Let h′ = h + η + o − (u + κ). By the inequalities above we
have 0 ≤ h′ ≤ h.

We divide the analysis into five cases depending on the choice of u. (The cases differ first
because UC1,s(u) differs in behavior depending on whether u ≤ s or not. Further differences arise
in the analysis depending on the relationship between u and h, as also how close u is to s.) The five
cases are: (1) 1 ≤ u ≤ h, (2) h < u ≤ s, (3) s < u ≤ 16s, (4) 16s < u ≤

√
εn, and (5)

√
εn < u ≤ n.

Case 1: 1 ≤ u ≤ h: Expanding the definition of UC1,s(u), UC2,s(h
′), WC3,s(h) and invoking the

upper bound on pq,α(n, u, o, η, κ) from Lemma 6.24, we have that it suffices to prove that:

(
C
u/2
1 ((sn)/u2)u/4

)(
α(o+η)/kCu(n/κ)κ(u/

√
nη)η(u/n)o

)(
C
h′/2
2 (sn/h′2)h

′/4
)
· h · 2kκ

≤ 4−u−2 · Ch/23 · (sn/h2)h/4 = 4−u−2 · UC3,s(h) , (6.27)

We multiply the LHS above by 4u+2(h2/sn)h/4 and show it is upper bounded by C
h/2
3 :

L1 := 16(16C1)u/2(sn/u2)u/4 · α(o+η)/kCu(n/κ)κ(u/
√
nη)η(u/n)o · Ch

′/2
2 (sn/h′2)h

′/4 · h · 2kκ · (h2/(sn))h/4

≤ 16Cu4C
h
5 · (sn/u2)u/4 · (n/κ)κ · (u/√nη)η · (u/n)o · (sn/h′2)h

′/4 · (h2/(sn))h/4

(Using α ≤ α0 ≤ 1, h′ ≤ h, h ≤ 2h, κ ≤ o ≤ u, C4 ≥ 4
√
C1 · C · 2k, C5 ≥ 2

√
C2)

≤ 16Cu4C
h
6 · (sn/u2)u/4 · (n/κ)κ · (u/√nη)η · (u/n)o · (sn/h2)−(h−h′)/4

(Using (h/h′)h
′/2 ≤ eh and C6 ≥ eC5 )

= 16Cu4C
h
6 · (sn/u2)u/4 · (n/κ)κ · (u/√nη)η · (u/n)o · (sn/h2)−(u+κ−(η+o))/4

= 16Cu4C
h
6 · (h2/u2)u/4 · (h2n3/(sκ4))κ/4 · (su4/(nη2h2))η/4 · (su4/n3h2)o/4

= 16Cu4C
h
6 · (h2/u2)u/4 · (h2n2/(εκ4))κ/4 · (εu4/(η2h2))η/4 · (εu4/(n2h2))o/4

=: S1.

Thus far we have not used u ≤ h. (We have only used u ≤ s and this was to establish our goal
as Eq. (6.27).) We now use u ≤ h to analyze S1.

S1 = 16Cu4C
h
6 · (h2/u2)u/4 · (h2n2/(εκ4))κ/4 · (εu4/(η2h2))η/4 · (εu4/(n2h2))o/4

= 16Cu4C
h
6 · ε(−κ+η+o)/4 · (h2/u2)u/4 · (h2n2/κ4)κ/4 · (u4/(η2h2))η/4 · (u4/(n2h2))o/4

(Collecting ε terms)

≤ 16Cu4C
h
6 · (h2/u2)u/4 · (h2n2/(κ4))κ/4 · (u4/(η2h2))η/4 · (u4/(n2h2))o/4

(Using η ≥ 0, o ≥ κ and ε ≤ 1)

≤ 16(e2C4)uCh6 · (h/u)u/2 · (hn/(u2))κ/2 · (u/h)η/2 · (u2/(nh))o/2
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(Using (u/κ)κ ≤ eu and (u/η)η ≤ eu)

= 16(e2C4)uCh6 · (h/u)u/2 · (u/h)η/2 · (u2/(nh))(o−κ)/2

≤ 16(e2C4)uCh6 · (h/u)u/2 · (u/h)η/2 · (u/h)(o−κ)/2

(Using u ≤ n and o ≥ κ)

= 16(e2C4)uCh6 · (h/u)(u−η−o+κ)/2

≤ 16(e2C4C6)h · (h/u)(u−η−o+κ)/2 (Using u ≤ h and e2C4 ≥ C4 ≥ 1)

≤ 16(e2C4C6)h · (h/u)u/2

(Using h ≥ u and u ≥ u− o+ κ− η since o ≥ κ and η ≥ 0)

≤ 16(e2C4C6)h · eh

(Using (h/u)u/2 ≤ eh/2 ≤ eh.)

≤ 16(
1

256
C3)h/2 (Using C3 ≥ (16e3C4C6)2)

≤ C
h/2
3 (Using h ≥ 1).

This yields Eq. (6.27) in the range u ∈ [h].

Case 2: h < u ≤ s: Here again our goal is to prove Eq. (6.27) and we still have L1 ≤ S1. We
proceed as follows:

S1 = 16Cu4C
h
6 · (h2/u2)u/4 · (h2n2/(εκ4))κ/4 · (εu4/(η2h2))η/4 · (εu4/(n2h2))o/4

≤ 16Cu4C
h
6 ε

(u−h)/4 · (h2/u2)u/4 · (h2n2/(κ4))κ/4 · (u4/(η2h2))η/4 · (u4/(n2h2))o/4

(Collecting ε terms and using η + o− κ ≥ u− h)

≤ 16Cu4C
h
6 ε

(u−h)/4
0 · (h2/u2)u/4 · (h2n2/(κ4))κ/4 · (u4/(η2h2))η/4 · (u4/(n2h2))o/4

(Using ε ≤ ε0 and h ≤ u)

≤ 16(e2ε
1/4
0 C4)u(C6/ε

1/4
0 )h · (h/u)u/2 · (hn/(u2))κ/2 · (u/h)η/2 · (u2/(nh))o/2

(Using (u/κ)κ ≤ eu and (u/η)η ≤ eu)

= 16(e2ε
1/4
0 C4)u(C6/ε

1/4
0 )h · (h/u)u/2 · (u/h)η/2 · (u2/(nh))(o−κ)/2

≤ 16(e2ε
1/4
0 C4)u(C6/ε

1/4
0 )h · (h/u)u/2 · (u/h)η/2 · (u/h)(o−κ)/2

(Using u ≤ n and o ≥ κ)

= 16(e2ε
1/4
0 C4)u(C6/ε

1/4
0 )h · (h/u)(u−η−o+κ)/2

≤ 16(e2ε
1/4
0 C4)u(C6/ε

1/4
0 )h (Since h ≤ u and u− η − o+ κ ≥ u− η − o ≥ 0)

≤ 16(C6/ε
1/4
0 )h (Using ε0 ≤ 1

(e2C4)4
)

≤ C
h/2
3 (Using C3 ≥ (16C6/ε

1/4
0 )2, h ≥ 1) .

This concludes Eq. (6.27) in Case 2.

Case 3: s < u ≤ 16s: The form for UC1,s(u) now changes and forces a change in our goal. Using

UC1,s(u) ≤ Cu/21 (n/u)u/4 our new goal becomes:(
C
u/2
1 (n/u)u/4

)(
α(o+η)/kCu(n/κ)κ(u/

√
nη)η(u/n)o

)(
C
h′/2
2 (sn/h′2)h

′/4
)
· h · 2kκ

≤ 4−u−2 · Ch/23 · (sn/h2)h/4 = 4−u−2 · UC3,s(h) , (6.28)

58



Again multiplying the LHS by 4u+2(h2/sn)h/4 we get the quantity L3 below which we show to be

upper bounded by C
h/2
3 . We have:

L3 := 16(16C1)u/2(n/u)u/4 · α(o+η)/kCu(n/κ)κ(u/
√
nη)η(u/n)o · Ch

′/2
2 (sn/h′2)h

′/4 · h · 2kκ · (h2/(sn))h/4

= (u/s)u/416(16C1)u/2(sn/u2)u/4 · α(o+η)/kCu(n/κ)κ(u/
√
nη)η(u/n)o · Ch

′/2
2 (sn/h′2)h

′/4 · h · 2kκ · (h2/(sn))h/4

= (u/s)u/4L1

≤ 16u/4L1

We now use the fact that the inequality L1 ≤ S1 in Case 1, did not use u ≤ s to conclude

L3 ≤ 16u/4L1 ≤ 16u/4S1. Similarly the inequality S1 ≤ 16(e2ε
1/4
0 C4)u(C6/ε

1/4
0 )h from Case 2 also

did not use u ≤ s, and so we get L3 ≤ 16u/4S1 ≤ 16u/4 · 16(e2ε
1/4
0 C4)u(C6/ε

1/4
0 )h which we simplify

below. We have:

L3 ≤ 16u/4 · 16(e2ε
1/4
0 C4)u(C6/ε

1/4
0 )h

= 16(2e2ε
1/4
0 C4)u(C6/ε

1/4
0 )h

≤ 16(C6/ε
1/4
0 )h (Using ε0 ≤ 1

(2e2C4)4
)

≤ Ch/23 (Using C3 ≥ (16C6/ε
1/4
0 )2, h ≥ 1) .

This concludes Case 3.

Case 4: 16s < u ≤
√
εn: Here again it suffices to prove Eq. (6.28) which is equivalent to proving

L3 ≤ Ch/23 . We have

L3 = 16(16C1)u/2(un/u2)u/4 · α(o+η)/kCu(n/κ)κ(u/
√
nη)η(u/n)o · Ch′2 (sn/h′2)h

′/4 · h · 2kκ · (h2/(sn))h/4

= 16(16C1)u/2(u/s)u/4(sn/u2)u/4 · α(o+η)/kCu(n/κ)κ(u/
√
nη)η(u/n)o · Ch′2 (sn/h′2)h

′/4 · h · 2kκ · (h2/(sn))h/4

≤ 16(16C1)u/2ε−u/8(sn/u2)u/4 · α(o+η)/kCu(n/κ)κ(u/
√
nη)η(u/n)o · Ch′2 (sn/h′2)h

′/4 · h · 2kκ · (h2/(sn))h/4

(Using s = εn and u ≤
√
εn yielding u/s ≤

√
ε/ε = ε−1/2)

≤ 16(C4/ε
1/8)uCh5 · (sn/u2)u/4 · (n/κ)κ · (u/√nη)η · (u/n)o · (sn/h′2)h

′/4 · (h2/(sn))h/4

(Using α ≤ α0 ≤ 1, h′ ≤ h, h ≤ 2h, κ ≤ o ≤ u, C4 ≥ 4
√
C1 · C · 2k, C5 ≥ max{1, 2C2})

≤ 16(C4/ε
1/8)uCh6 · (sn/u2)u/4 · (n/κ)κ · (u/√nη)η · (u/n)o · (sn/h2)−(h−h′)/4

(Using (h/h′)h
′/2 ≤ eh) and C6 ≥ eC5 )

= 16(C4/ε
1/8)uCh6 · (sn/u2)u/4 · (n/κ)κ · (u/√nη)η · (u/n)o · (sn/h2)−(u+κ−(η+o))/4

= 16(C4/ε
1/8)uCh6 · (h2/u2)u/4 · (h2n3/(sκ4))κ/4 · (su4/(nη2h2))η/4 · (su4/n3h2)o/4

= 16(C4/ε
1/8)uCh6 · (h2/u2)u/4 · (h2n2/(εκ4))κ/4 · (εu4/(η2h2))η/4 · (εu4/(n2h2))o/4

= 16Cu4C
h
6 · ε−u/8−κ/4+η/4+o/4 · (h2/u2)u/4 · (h2n2/κ4)κ/4 · (u4/(η2h2))η/4 · (u4/(n2h2))o/4

(Collecting ε terms)

≤ 16Cu4C
h
6 ε

u/8−h · (h2/u2)u/4 · (h2n2/(κ4))κ/4 · (u4/(η2h2))η/4 · (u4/(n2h2))o/4

(Using η + o− κ ≥ u− h)

≤ 16Cu4C
h
6 ε

u/16 · (h2/u2)u/4 · (h2n2/(κ4))κ/4 · (u4/(η2h2))η/4 · (u4/(n2h2))o/4
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(Using u ≥ 16s ≥ 16h in the form h ≤ u/16 to conclude u/8− h ≥ u/16.)

≤ 16Cu4C
h
6 ε

u/16
0 · (h2/u2)u/4 · (h2n2/(κ4))κ/4 · (u4/(η2h2))η/4 · (u4/(n2h2))o/4

(Using ε ≤ ε0)

≤ 16(e2ε
1/16
0 C4)uCh6 · (h/u)u/2 · (hn/(u2))κ/2 · (u/h)η/2 · (u2/(nh))o/2

(Using (u/κ)κ ≤ eu and (u/η)η ≤ eu)

= 16(e2ε
1/16
0 C4)uCh6 · (h/u)(u+κ−η−o)/2 · (u/n)(o−κ)/2

≤ 16(e2ε
1/16
0 C4)uCh6 · (h/u)(u+κ−η−o)/2 (Using u ≤ n)

≤ 16(e2ε
1/16
0 C4)uCh6 (Using h ≤ u and u+ κ− η − o ≥ κ ≥ 0)

≤ 16Ch6 (Using ε0 ≤ (e−2/C4)16)

≤ 16(C
1/2
3 /16)h (Using C3 ≥ 256C2

6 )

≤ Ch/23 (Using h ≥ 1).

This establishes Eq. (6.28) in Case 4.

Case 5:
√
εn < u ≤ n: Here we use UC1,s(u) ≤ (2q2e2n/u)u/2. With this modification we need

to prove:(
(2q2e2)u/2(n/u)u/2

)(
α(o+η)/kCu(n/κ)κ(u/

√
nη)η(u/n)o

)(
C
h′/2
2 (sn/h′2)h

′/4
)
· h · 2kκ

≤ 4−u−2 · Ch/23 · (sn/h2)h/4 = 4−u−2 · UC3,s(h) , (6.29)

Multiplying the LHS by 4u+2(h2/sn)h/4 we get the term L5 defined below which we wish to upper

bound by C
h/2
3 .

L5 := 16 · 4u · (2q2e2)u/2(n/u)u/2 · α(o+η)/kCu(n/κ)κ(u/
√
nη)η(u/n)o · Ch

′/2
2 (sn/h′2)h

′/4 · h · 2kκ · (h2/(sn))h/4

≤ 16Cu0C
h
5α

(o+η)/k · (n/u)u/2 · (n/κ)κ · (u/√nη)η · (u/n)o · (sn/h′2)h
′/4 · (h2/(sn))h/4

(Using h′ ≤ h ≤ 2h, κ ≤ u, C0 ≥
√

2 · 4e · q · C · 2k, C5 ≥ 2
√
C2)

≤ 16Cu0C
h
6α

(o+η)/k · (n/u)u/2 · (n/κ)κ · (u/√nη)η · (u/n)o · (sn/h2)−(h−h′)/4

(Using (h/h′)h
′/2 ≤ eh and C6 ≥ eC5 )

= 16Cu0C
h
6α

(o+η)/k · (n/u)u/2 · (n/κ)κ · (u/√nη)η · (u/n)o · (sn/h2)−(u+κ−(η+o))/4

= 16Cu0C
h
6α

(o+η)/k · (nh2/(su2))u/4 · (h2n3/(sκ4))κ/4 · (su4/(nη2h2))η/4 · (su4/n3h2)o/4

= 16Cu0C
h
6α

(o+η)/k · (h2/(εu2))u/4 · (h2n2/(εκ4))κ/4 · (εu4/(η2h2))η/4 · (εu4/(n2h2))o/4

= 16Cu0C
h
6α

(o+η)/k · ε(−u−κ+η+o)/4 · (h2/(u2))u/4 · (h2n2/(κ4))κ/4 · (u4/(η2h2))η/4 · (u4/(n2h2))o/4

≤ 16(e2C0)uCh6α
(o+η)/k · ε(−u−κ+η+o)/4 · (h/u)u/2 · (hn/(u2))κ/2 · (u/h)η/2 · (u2/(nh))o/2

(Using (u/κ)κ ≤ eu and (u/η)η ≤ eu)

= 16(e2C0)uCh6α
(o+η)/k · ε(−u−κ+η+o)/4 · (h/u)u/2 · (u/h)η/2 · (u2/(nh))(o−κ)/2

≤ 16(e2C0)uCh6α
(o+η)/k · ε(−u−κ+η+o)/4 · (h/u)u/2 · (u/h)η/2 · (u/h)(o−κ)/2

(Using u ≤ n and o ≥ κ)

≤ 16(e2C0)uCh6α
(u−h)/k · ε(−u−κ+η+o)/4 · (h/u)(u−η−o+κ)/2
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(Using α ≤ 1 and u− h ≤ η + o)

≤ 16(e2C0)uCh6α
(u−h)/k
0 · ε(−u−κ+η+o)/4 · (h/u)(u−η−o+κ)/2

(Using α ≤ α0 and u− h ≥ 0)

= 16(α
1/k
0 e2C0)u(C6/α

1/k
0 )h(h2/(εu2))(u−η−o+κ)/4

≤ 16(α
1/k
0 e2C0)u(C6/α

1/k
0 )h

(Using h ≤ s = εn and u ≥
√
εn to conclude h2/(εu2) ≤ 1. Also using u− η − o+ κ ≥ 0)

≤ 16(C6/α
1/k
0 )h (Using α0 ≤ 1/(e2C0)k)

≤ 16(C
1/2
3 /16)h (Using C3 ≥ (16C6/α

1/k
0 )2)

≤ Ch/23 (Using h ≥ 1).

This concludes the analysis of Case 5 and proves the lemma.

Step 3: Proof of Lemma 6.18. We are now ready to combine the ingredients from the previous
steps to prove Lemma 6.18.

Proof of Lemma 6.18. Let α0 be the as given by Lemma 6.26. Let ε0 and C3 be the parameters
given by Lemma 6.26 for C1 = C and C2 = C0. We prove the lemma for C ′′ = C3 and τ0 = ε0.

Let α ≤ α0 and m = αn. For every s ≤ ε0n, we prove that the LHS in the lemma statement
is upper bounded by WC3,s(h) for every h ∈ [s]. In the following, for every matching M of size m,
we fix a B′ = B′(M) that is (M,C0, s)-reduced. (The inequalities hold for every such fixing.) We
have

∑
u∈Znq

qn

|B|

∣∣∣1̂B(u)
∣∣∣ E
M

 ∑
u′∈Znq

‖u+u′‖0=h

qn

|B′|

∣∣∣1̂B′(u′)∣∣∣


=
n∑
u=0

∑
u∈Znq

|supp(u)|=u

qn

|B|

∣∣∣1̂B(u)
∣∣∣ E
M

 ∑
u′∈Znq

‖u+u′‖0=h

qn

|B′|

∣∣∣1̂B′(u′)∣∣∣


≤
n∑
u=0

∑
u∈Znq

|supp(u)|=u

qn

|B|

∣∣∣1̂B(u)
∣∣∣ ·∑

o,η,κ

pq,α(n, u, o, η, κ) · h · 2kκ · UC0,s(h+ o+ η − (u+ κ)) (6.30)

≤
n∑
u=0

∑
o,η,κ

UC,s(u) · pq,α(n, u, o, η, κ) · h · 2kκ · UC0,s(h+ o+ η − (u+ κ)) (6.31)

≤
n∑
u=0

∑
o,η,κ

4−u−2WC3,s(h) (6.32)

≤
n∑
u=0

(u+ 1)3 · 4−u−2 ·WC3,s

≤ WC3,s(h),
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where (6.30) follows from Lemma 6.22 and the fact that B′ is (M,C0, s)-reduced, (6.31) follows
from the fact that B is (C, s)-bounded, and (6.32) follows from Lemma 6.26 for C3 as defined above.
This proves the lemma.
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