
Eliminating Intermediate Measurements
using Pseudorandom Generators

Uma Girish∗ Ran Raz†

Abstract

We show that quantum algorithms of time 𝑇 and space 𝑆 ≥ log 𝑇 with unitary operations
and intermediate measurements can be simulated by quantum algorithms of time 𝑇 ·poly(𝑆) and
space 𝑂(𝑆 · log 𝑇) with unitary operations and without intermediate measurements. The best
results prior to this work required either Ω(𝑇) space (by the deferred measurement principle) or
poly(2𝑆) time [FR21, GRZ21]. Our result is thus a time-efficient and space-efficient simulation of
algorithms with unitary operations and intermediate measurements by algorithms with unitary
operations and without intermediate measurements.

To prove our result, we study pseudorandom generators for quantum space-bounded algo-
rithms. We show that (an instance of) the INW pseudorandom generator for classical space-
bounded algorithms [INW94] also fools quantum space-bounded algorithms. More precisely, we
show that for quantum space-bounded algorithms that have access to a read-once tape consist-
ing of random bits, the final state of the algorithm when the random bits are drawn from the
uniform distribution is nearly identical to the final state when the random bits are drawn using
the INW pseudorandom generator. This result applies to general quantum algorithms which
can apply unitary operations, perform intermediate measurements and reset qubits.

1 Introduction

1.1 Eliminating Intermediate Measurements

The main motivation for this work is the following fundamental question: What is the relative power
of quantum algorithms with intermediate measurements and quantum algorithms without
intermediate measurements?

The textbook’s answer to this question is given by the Principle of Deferred Measurements.
The principle states that delaying measurements until the end of a computation doesn’t affect the
output, as long as the qubits that were supposed to be measured do not further participate in the

∗Department of Computer Science, Princeton University. Research supported by the Simons Collaboration on
Algorithms and Geometry, by a Simons Investigator Award and by the National Science Foundation grants No.
CCF-1714779, CCF-2007462. ugirish@cs.princeton.edu

†Department of Computer Science, Princeton University. Research supported by the Simons Collaboration on
Algorithms and Geometry, by a Simons Investigator Award and by the National Science Foundation grants No.
CCF-1714779, CCF-2007462. ranr@cs.princeton.edu

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 87 (2021)

ugirish@cs.princeton.edu
ranr@cs.princeton.edu

computation from that point on. This gives a very simple method to eliminate all intermediate
measurements in quantum computations. However, this simple method comes with a huge price
in terms of the space needed to perform the computation, as qubits that were supposed to be
measured cannot further participate in the computation.

More precisely, for any quantum algorithm of time 𝑇 and space 𝑆 ≥ log 𝑇 with intermediate
measurements, the principle of deferred measurements implies that it can be simulated by a quan-
tum algorithm of time 𝑇 and space 𝑆+𝑇 without intermediate measurements. Here, the overhead in
space is potentially exponential. It was recently shown that there is also a simulation by algorithms
of space 𝑂(𝑆) and time poly(𝑇, 2𝑆) without intermediate measurements [GRZ21, FR21]1. While
the space overhead in these simulations is optimal, the time overhead is potentially exponential.

In this work, we show a simulation where the space dependence is 𝑂(𝑆 · log 𝑇) and the time de-
pendence is 𝑇 · poly(𝑆). Our result applies to algorithms with unitary operations and intermediate
measurements and simulates them by algorithms with unitary operations and without intermedi-
ate measurements. Our result is thus a time-efficient and space-efficient simulation of algorithms
with unitary operations and intermediate measurements by algorithms with unitary operations
and without intermediate measurements. For example, our result implies that unitary quantum
algorithms of polylogarithmic space and polynomial time are no less powerful than ones that can
additionally perform intermediate measurements.

Theorem 1.1 (Informal). Every quantum algorithm of time 𝑇 and space 𝑆 ≥ log 𝑇 with unitary
operations and intermediate measurements can be simulated by a quantum algorithm of time 𝑇 ·𝑆2 ·
polylog(𝑆) and space 𝑂(𝑆 · log 𝑇) with only unitary operations and no intermediate measurements.

For quantum algorithms that can apply unitary operations, intermediate measurements and
reset qubits2, we can trivially eliminate intermediate measurements using one ancilla qubit and
with no overhead in time3. This is because the measurement of a qubit can be simulated by
copying the qubit to an ancilla qubit using a controlled-not gate and then resetting the ancilla
qubit.

1.2 Pseudorandom Generators for Quantum Space-Bounded Computations

It is well known that quantum measurements can be used to generate perfect random bits. The
converse is also true and is fascinating in its own right: An intermediate measurement of a qubit can
be implemented by unitary operations together with one random bit, as follows: with probability
1/2 apply the identity matrix and with probability 1/2 apply a reflection over |1⟩ (in that qubit).
Thus, intermediate measurements are, in some sense, equivalent to randomness and in particular

1Such a simulation was given in [GRZ21] for algorithms that can use only quantum registers and independently
in [FR21] for the more general case of algorithms that may also use classical registers.

2The reset operation maps a qubit in an arbitrary state to the |0⟩ state. If the algorithm has the ability to
perform measurements, then the reset operation can be simulated with additional classical memory (on which classical
operations are allowed). More precisely, to reset a qubit, we can measure it, swap the contents of this qubit with
a classical bit in the |0⟩ state by using two controlled-not operators and finally erase the contents of the classical
register. Conversely, classical memory can be simulated using the reset operator. Thus, quantum algorithms with
intermediate measurements and the ability to reset qubits correspond to quantum algorithms with both quantum
and classical memory.

3We thank anonymous reviewers for this observation.

2

could be simulated by random bits. From that perspective, it is very natural to try to derandomize
and use pseudorandom bits, that is, to simulate intermediate measurements by pseudorandom bits.
In particular, we will use in this work pseudorandom generators for space-bounded computation,
that are particularly suitable for our purpose.

Our main result is proved by studying (an instance of) the INW pseudorandom generator [INW94]
in the setting of quantum space-bounded algorithms. Let 𝑆, 𝑇 : N → N be computable functions
such that 𝑆 ≥ log 𝑇 . The INW pseudorandom generator 𝐺 for classical randomized algorithms
of space 𝑆 and time 𝑇 is a function that takes inputs in {0, 1}𝑁(𝑀+1) where 𝑀 = Θ(log 𝑇) and
𝑁 = Θ(𝑆) (we refer to the input as the seed to 𝐺) and outputs a string in {0, 1}𝑇 , furthermore,
this function is computable in space 𝑂(𝑆 · log 𝑇) and time 𝑇 · 𝑆2 · polylog(𝑆). For any classical
randomized algorithm of space 𝑆 and time 𝑇 , the output of the algorithm when the random bits
are drawn from the uniform distribution is nearly indistinguishable from the case when the random
bits are drawn from the output of 𝐺 on a uniformly random seed [INW94]. In this work, we show
that a similar result holds for quantum algorithms of space 𝑆 and time 𝑇 .

Theorem 1.2 (Informal). Consider any quantum algorithm of space 𝑆 and time 𝑇 with arbitrary
quantum operators that has access to a read-once tape consisting of random bits. Then, the final
state of the quantum algorithm when the random bits are drawn from the uniform distribution is
nearly indistinguishable from the final state when the random bits are drawn from the output of 𝐺
on a uniformly random seed.

This result applies to quantum algorithms that can apply unitary operators, perform measure-
ments or reset qubits. See Theorem 4.1 for a more formal statement. The INW pseudorandom
generator is defined recursively using repetitive application of a randomness extractor. For the
proof of Theorem 1.2, we use an instance of the INW generator, using a randomness extractor
that was proved by Fehr and Schaffner to be resilient to quantum side information [FS08]. Our
proof that the generator fools quantum algorithms is a modification of the proof in the classical
case, relying on tools and techniques from quantum information theory, in particular tools and
techniques from [Ren08, FS08].

1.3 Discussion and Additional Motivation

Pseudorandom generators for classical space-bounded computation have been studied in numerous
works (see for example [BNS89, Nis90, INW94, NZ96, RR99, RSV13, BRRY10, GR14, MRT19]).
To the best of our knowledge, pseudorandom generators for quantum space-bounded computation
have not been studied before, possibly because, as mentioned above, quantum measurements can
presumably generate perfect random bits, so the standard motivation of derandomizing randomized
computations does not apply to the quantum case. Nevertheless, we believe that the connection
to eliminating intermediate measurements gives a strong motivation for studying pseudorandom
generators for quantum space-bounded computation.

While eliminating intermediate measurements is our main motivation, we believe that pseudo-
random generators for quantum space-bounded computation are interesting in their own right for
various other reasons. First, any such generator implies in particular an indistinguishability result
that gives a lower bound for the resources needed to achieve a certain computational task, which
seems interesting from the point of view of complexity theory. Second, while in principle quantum

3

computers may use measurements to generate perfect random bits, in reality this is hardly the case
as quantum computers are likely to remain unreliable in the near future. In the last two decades,
this motivated a large body of work on problems such as device-independent quantum cryptogra-
phy, verifiable quantum computation and certified randomness generation, all of which assume a
setting where the quantum part of the device is unreliable and cannot be trusted. It’s possible that
pseudorandom generators for quantum space-bounded computations may find applications in these
areas. Finally, we find the question of how much true randomness is needed to simulate a quantum
system fascinating.

Let us also mention that eliminating intermediate measurements is also interesting from the
point of view of time-reversibility of computation. Landauer introduced the concept of time-
reversible computation and argued that any irreversible operation must be accompanied by entropy
increase [Lan61] (see also [Ben89]). An interesting aspect of Theorem 1.2 is that it shows that any
quantum algorithm can be implemented using only time-reversible operations (except for the final
measurement that gives the final output), with small overhead in time and space.

1.4 Proof Overview

We describe the proof of Theorem 1.2 in the classical case as in [INW94]. This exploits the
limited amount of information that is passed between successive states of the memory. Consider
an algorithm 𝐵 of space 𝑆 and time 2 · 𝑇 and assume that it uses a random bit at each time step.
Let 𝐵0 be the first half of the algorithm and 𝐵1 be the second half. The algorithm 𝐵0 uses a
uniformly random string 𝑈 ∼ {0, 1}𝑇 and 𝐵1 uses a uniformly random string 𝑈 ′ ∼ {0, 1}𝑇 that
is independent of 𝑈 . The only interaction between 𝐵0 and 𝐵1 is through the memory at time
𝑇 . Since the memory is of at most 𝑆 bits, intuitively, the amount of information passed from
𝐵0 to 𝐵1 is at most 𝑆 bits. One may hope to replace the 𝑇 truly random bits used by 𝐵1 with
𝑇 pseudorandom bits that essentially contain only 𝑆 truly random bits. The idea is to apply an
extractor to the random string used by 𝐵0 and a uniformly random seed of length Θ(𝑆). That is,
for a suitable extractor Ext : {0, 1}𝑇 × {0, 1}𝑑 → {0, 1}𝑇 , we run the algorithm 𝐵 on the random
string (𝑈, Ext(𝑈, 𝐷)) as opposed to (𝑈, 𝑈 ′), where 𝐷 ∼ {0, 1}𝑑 is uniformly random and 𝑑 = Θ(𝑆).
This would effectively reduce the amount of randomness from 2𝑇 bits to 𝑇 + Θ(𝑆) bits. The INW
generator builds on this idea and recurses for Θ(log 𝑇) steps, producing a pseudorandom generator
of seedlength Θ(𝑆 · log 𝑇). We now justify the application of an extractor. Since there are at most
2𝑆 possible memory states of the algorithm 𝐵0, for most states 𝒞 reached by 𝐵0 at time 𝑇 , the
uniform distribution 𝑈𝒞 on all strings which make 𝐵0 reach the state 𝒞 at time 𝑇 has min-entropy
at least 𝑇 − Θ(𝑆). Suppose the extractor Ext works against min-entropy at least 𝑇 − Θ(𝑆). (Such
extractors are known and well-studied.) Then, the distribution of Ext(𝑈𝒞 , 𝐷) would be close to the
uniform distribution over {0, 1}𝑇 . In particular, the final state of the algorithm 𝐵1 when starting at
the state 𝒞 would be nearly identical whether run according to 𝑈 ′ or according to Ext(𝑈𝒞 , 𝐷). Since
this holds for most states 𝒞 reached by 𝐵0 at time 𝑇 , the distribution of final state of 𝐵 is nearly
identical, whether we use the random string (𝑈, 𝑈 ′) or the pseudorandom string (𝑈, Ext(𝑈, 𝐷)).

To extend this idea to quantum algorithms, we have to deal with memory that is an arbitrary
quantum state. In particular, we cannot “condition” on the memory at a particular time step. We
instead use extractors that are resilient to quantum side information. These are extractors with
the following property: Suppose for each string 𝑢 ∈ {0, 1}𝑇 , we have some quantum state 𝜌𝑢 on
𝑆 qubits (this represents the memory of the first half of the algorithm when run on the string

4

𝑢), then the distribution of (Ext(𝑈), 𝜌𝑈) is close to the tensor product of the fully mixed state
over {0, 1}𝑇 and the state E𝑢∼{0,1}𝑇 [𝜌𝑢]. Such extractors have been studied and exhibited with
seedlength Θ(𝑆) [FS08]. We use these extractors and modify the proof from the classical case to
derive our result, relying on tools and techniques from quantum information theory, in particular
tools and techniques from [Ren08, FS08].

To prove Theorem 1.1, we make use of the aforementioned equivalence between intermediate
measurements and random bits. Given a quantum algorithm with 𝑇 intermediate measurements,
we consider the equivalent quantum algorithm with 𝑇 random bits. Consider the algorithm that
generates a uniformly random string on Θ(𝑆 ·log 𝑇) bits, computes the output of the INW generator
on this random string and simulates the above algorithm on the output of this generator as opposed
to 𝑇 uniformly random bits. Theorem 1.2 implies that this step introduces negligible error. Note
that the Θ(𝑆 · log 𝑇) random bits used by the algorithm can be simulated unitarily using additional
Θ(𝑆 · log 𝑇) space, by the principle of deferred measurements. The rest of the technical work is
devoted to the analysis of the space and time complexity of the INW generator with regards to
unitary quantum algorithms. For this, we make use of the property of the extractor in [FS08] that
for every fixed seed, the extractor is a bijection. This is useful with regards to unitary computation.
We show that each step of the recursion tree involved in computing the INW generator can be
executed reversibly and efficiently by unitary quantum algorithms of small space. This completes
the proof of our simulation result.

1.5 Organization

In Section 2, we formally define the various models of quantum computation with bounded space
and time. In Section 3, we define the INW pseudorandom generator and study its time and space
complexity with respect to unitary quantum algorithms. We state our main theorem in Section 4.
We prove Theorem 1.2 (Theorem 4.1) and Theorem 1.1 (Theorem 4.2) in Section 5 and Section 6
respectively.

2 Notation & Preliminaries

For a mathematical statement 𝒫, we use 1𝒫 ∈ {0, 1} to refer to a boolean value which is 1 if 𝒫 is
true and 0 if 𝒫 is false.

2.1 Probability Distributions

Let Σ be an alphabet and 𝐷 be a probability distribution over Σ. We use 𝑥 ∼ 𝐷 to denote 𝑥
sampled according to 𝐷. For a subset 𝑆 ⊆ Σ, we use 𝑥 ∼ 𝑆 to denote 𝑥 sampled according to
the uniform distribution on 𝑆. For a multiset 𝑆 of Σ, we use 𝑥 ∼ 𝑆 to denote 𝑥 sampled with
probability proportional to the number of times it occurs in 𝑆. Let 𝑁 ∈ N. We use 𝑈𝑁 to denote
the uniform distribution on {0, 1}𝑁 . For a function 𝐺 : Σ → R𝑁 , we use 𝐺(𝐷) := E𝑥∼𝐷[𝐺(𝑥)] to
denote the expected output of 𝐺 when the inputs are drawn according to 𝐷.

5

2.2 Quantum States

Let ℋ𝑚 be a Hilbert space of dimension 2𝑚. This is a vector space defined by the C-span of the
orthonormal basis {|𝑥⟩ : 𝑥 ∈ {0, 1}𝑚}, that is, every element in this space is a unique complex
combination of the vectors |𝑥⟩, where 𝑥 is a bit string in {0, 1}𝑚. We use |0𝑚⟩ to denote the state
|(0, . . . , 0⟩ on 𝑚 qubits. We omit the subscript 𝑚 when it is implicit. The complex conjugate of
the vector |𝑥⟩ is denoted by ⟨𝑥|. Let 𝒫(ℋ𝑚) be the set of all non-negative operators on ℋ𝑚, that
is positive semidefinite matrices in C2𝑚×2𝑚 . Let 𝒮(ℋ𝑚) be set of density operators on ℋ𝑚, that is,
matrices in 𝒫(ℋ𝑚) with trace 1. We typically use 𝜌 to refer to elements of 𝒮(ℋ𝑚). Every element
of 𝒫(ℋ𝑚) can be expressed uniquely as a complex combination of |𝑖⟩ ⟨𝑗| where 𝑖, 𝑗 ∈ {0, 1}𝑚. We
denote the identity matrix on 2𝑚 × 2𝑚 by I𝑚, and we omit the subscript if it is implicit. The
state of a quantum system 𝑀 on 𝑚 qubits is described by a density operator 𝜌𝑀 ∈ 𝒮(ℋ𝑚). The
completely mixed state on 𝑚 qubits is described by I𝑚

2𝑚 . A classical state is a diagonal density
operator in 𝒮(ℋ𝑚).

Let 𝑋 be a system of 𝑛 bits and 𝑆 be a system of 𝑠 qubits. A classical-quantum state 𝜌𝑋𝑆 is a
state of the form ∑︀

𝑥∈{0,1}𝑛 |𝑥⟩ ⟨𝑥| 𝜌𝑥 where 𝜌𝑥 ∈ 𝒫(ℋ𝑠) and ∑︀
𝑥∈{0,1}𝑛 Tr(𝜌𝑥) = 1. We say that 𝜌𝑋𝑆

is classical on 𝑋. We use 𝜌𝑋 = |𝑥⟩ ⟨𝑥| Tr(𝜌𝑥) to denote the induced classical state on the qubits
in 𝑋. Similarly, we use 𝜌𝑆 = ∑︀

𝑥∈{0,1}𝑛 𝜌𝑥 to denote the induced state on the qubits in 𝑆. In this
paper, it is often the case that the induced state on 𝑋 corresponds to the uniform distribution over
{0, 1}𝑛. In this case, we use E𝑥∼{0,1}𝑛 [|𝑥⟩ ⟨𝑥| 𝜌𝑥] to denote the state 𝜌𝑋𝑆 where 𝜌𝑥 ∈ 𝒮(ℋ𝑠) for all
𝑥 ∈ {0, 1}𝑛. We say that 𝜌𝑋𝑆 is uniform on 𝑋.

2.3 Quantum State Evolution

The evolution of a quantum state is described by a linear transformation 𝐸 : 𝒮(ℋ) → 𝒮(ℋ) which is
CPTP (that is, completely positive and trace preserving). In our work, we focus on transformations
between vector spaces of the same dimension. We focus on the following quantum operations.

• Unitary Operators: An arbitrary unitary map 𝑈 : ℋ → ℋ defines a CPTP map which maps
𝜌 ∈ 𝒮(ℋ) to 𝑈𝜌𝑈 †. We make use of the following two unitary matrices, these are universal
for unitary quantum computation [Shi03].

– Hadamard: 𝐻 : ℋ1 → ℋ1, 𝐻 = 1√
2

[︃
1 1
1 −1

]︃
.

– Toffoli: 𝑈 : ℋ3 → ℋ3 maps basis states |𝑖, 𝑗, 𝑘⟩ to |𝑖, 𝑗, 𝑘 ⊕ 𝑖 · 𝑗⟩ for 𝑖, 𝑗, 𝑘 ∈ {0, 1}.

These operations naturally extend to operations on a larger Hilbert space by acting on a
subset of qubits.

• The measurement operator 𝑀 on the first qubit maps the state 𝜌 = ∑︀
𝑖,𝑗∈{0,1} |𝑖⟩ ⟨𝑗| 𝜌𝑖,𝑗 to

the state ∑︀
𝑖∈{0,1} |𝑖⟩ ⟨𝑖| 𝜌𝑖,𝑖 for all 𝜌 ∈ 𝒮(ℋ).

• The reset operator 𝑅 on the first qubit maps the state 𝜌 = ∑︀
𝑖,𝑗∈{0,1} |𝑖⟩ ⟨𝑗| 𝜌𝑖,𝑗 to the state

|0⟩ ⟨0|
(︁∑︀

𝑖∈{0,1} 𝜌𝑖,𝑖

)︁
for all 𝜌 ∈ 𝒮(ℋ).

6

2.4 Distance between States

For any matrix 𝑀 , we denote by ‖𝑀‖1 its trace norm, that is ‖𝑀‖1 := Tr(
√

𝑀𝑀 †). Let 𝜌, 𝜎 ∈ 𝒮(ℋ)
be density operators. We define the trace distance between 𝜌 and 𝜎 to be 𝑑1(𝜌, 𝜎) := ‖𝜌−𝜎‖1

2 . We will
use the following standard facts about the trace distance. Firstly, the trace distance satisfies triangle
inequality. Secondly, the trace distance between 𝜌 and 𝜎 is equal to the maximum probability with
which these states can be distinguished using a projective measurement 𝐸, I−𝐸 onto two subspaces.
Thirdly, quantum operations cannot increase the trace distance. More formally,

Fact 2.1. For all 𝜌1, 𝜌2, 𝜌3 ∈ 𝒮(ℋ), 𝑑1(𝜌1, 𝜌3) ≤ 𝑑1(𝜌1, 𝜌2) + 𝑑1(𝜌2, 𝜌3).

Fact 2.2. For all 𝜌, 𝜎 ∈ 𝒮(ℋ), 𝑑1(𝜌, 𝜎) = max
0⪯𝐸⪯I

Tr(𝐸(𝜌 − 𝜎)).

Fact 2.3. Let 𝜌, 𝜎 be two quantum states in 𝒮(ℋ) and 𝐸 be a quantum operation on 𝒮(ℋ). Then,

𝑑1(𝐸(𝜌), 𝐸(𝜎)) ≤ 𝑑1(𝜌, 𝜎).

2.5 Quantum Space Bounded Computation

There are two ways to define models of computation, one using uniform families of circuits and one
using Turing machines [Wat99]. Typically, these models are computationally equivalent, both in
the classical case and the quantum case. For instance, it is known that polynomial time quantum
Turing machines are equivalent to uniform families of quantum circuits of polynomial size [Yao93].
It is also known that logspace quantum Turing machines are equivalent to uniform families of
quantum circuits of logarithmic width [FR21]. With respect to computation with constraints on
both time and space, few results are known. In the classical case, every deterministic Turing
machine of space 𝑆 and time 𝑇 can be simulated by a logspace-uniform family of classical circuits
of size poly(𝑇) and width 𝑂(𝑆), conversely, every logspace-uniform family of classical circuits of
size 𝑇 and width 𝑆 can be simulated by deterministic Turing machines of space 𝑂(𝑆 · log 𝑇) and
time poly(𝑇, 𝑆) [Pip79]. In particular, Turing machines of polylogarithmic space and polynomial
time are computationally equivalent to logspace-uniform families of circuits of polynomial size
and polylogarithmic width. Thus, without loss of generality, we can define classical algorithms
of bounded space and bounded time as logspace-uniform families of circuits of bounded size and
bounded width. We are unaware of such a result for quantum Turing machines. Nevertheless, in
our paper, we define quantum algorithms based on the latter model, as it is easier to work with.
We define space 𝑆 time 𝑇 quantum algorithms as logspace-uniform families of quantum circuits
with 𝑆 qubits and 𝑇 operators. The formal definition is as follows.

Quantum Algorithms: Let 𝒢𝑈 be a universal family of unitary operators for quantum compu-
tation, for instance, the Hadamard gate and the Toffoli gate. Let 𝒢𝑀 = 𝒢𝑈 ∪ {𝑀} (respectively
𝒢𝑅 = 𝒢𝑈 ∪ {𝑅}) include the measurement operator (respectively the reset operator) in addition to
the previous operators.

Let 𝑆, 𝑇 : N → N be computable functions and 𝒢 ∈ {𝒢𝑈 , 𝒢𝑀 , 𝒢𝑅, 𝒢𝑀 ∪ 𝒢𝑅}. A space 𝑆 = 𝑆(𝑛)
time 𝑇 = 𝑇 (𝑛) quantum algorithm 𝑄 with input 𝑥 ∈ {0, 1}𝑛 consists of the initial state 𝜌0 :=

7

|0𝑆⟩ ⟨0𝑆 | and a sequence of 𝑇 operators 𝐸𝑖,𝑥 : 𝒮(ℋ𝑆) → 𝒮(ℋ𝑆), 𝐸𝑖,𝑥 ∈ 𝒢 for 𝑖 ∈ [𝑇]. Furthermore,
this sequence is logspace uniform, that is, there is a classical deterministic logspace Turing Machine
which on input 𝑥 outputs this sequence of operators along with the qubits on which they act. We use
𝑄𝜌0(𝑥) := 𝐸𝑇,𝑥 · · · 𝐸1,𝑥(𝜌0) =

(︁∏︀𝑇
𝑖=1 𝐸𝑖,𝑥

)︁
(𝜌0) ∈ 𝒮(ℋ𝑆) to refer to the final state of the algorithm.

The output of the algorithm is defined to be the outcome on measuring the first qubit of the final
state. Let ℱ = {𝑓𝑛 : {0, 1}𝑛 → {0, 1}}𝑛∈N be a family of partial boolean functions. We say that ℱ
is computable by an algorithm if the algorithm on input 𝑥 ∈ {0, 1}𝑛 outputs 𝑓𝑛(𝑥) with probability
at least 2

3 (whenever 𝑓𝑛(𝑥) is well defined). For families of functions with output of arbitrary length,
we say that ℱ is computable by an algorithm if the algorithm on input 𝑖 ∈ N, 𝑥 ∈ {0, 1}𝑛, computes
the 𝑖-th bit of 𝑓𝑛(𝑥).

An algorithm is said to be unitary if the operators are from 𝒢𝑈 , purely quantum if the operators
are from 𝒢𝑀 and simply quantum if the operators are from 𝒢𝑅 ∪ 𝒢𝑀 . The algorithm is said to have
no intermediate measurements if the operators are from 𝒢𝑅. We say that an algorithm ℬ simulates
an algorithm 𝒜 with error 𝜀 if for every 𝑥 ∈ {0, 1}* and 𝑏 ∈ {0, 1}* the probability that 𝒜(𝑥)
outputs 𝑏 and the probability that ℬ(𝑥) outputs 𝑏 differ by at most 𝜀.

Quantum Branching Programs with Randomness We now consider a model of quantum
computation which is equipped with an additional classical randomness tape. The random string
𝑟 ∈ {0, 1}𝑇 in the randomness tape is read exactly once from left to right and on reading the
bit 𝑟𝑖 at the 𝑖-th step, the program applies a quantum operator 𝐸𝑖,𝑟𝑖,𝑥. More formally, a quantum
branching program 𝐵𝜌0

𝑥 (𝑟) of space 𝑆 with input 𝑥 ∈ {0, 1}𝑛 and with 𝑇 bits of randomness consists
of a sequence of 2𝑇 operators 𝐸𝑖,0,𝑥, 𝐸𝑖,1,𝑥 : 𝒮(ℋ𝑆) → 𝒮(ℋ𝑆) for 𝑖 ∈ [𝑇], each of which is in 𝒢𝑅.
Furthermore, this sequence is logspace uniform, that is, there is a classical deterministic logspace
Turing Machine which on input 𝑥 outputs this sequence of operators. The branching program also
has an initial state 𝜌0 ∈ 𝒮(ℋ𝑆) (which is typically the all zeroes state) and takes an input string
𝑟 ∈ {0, 1}𝑇 in the randomness tape. We use 𝐵𝜌0(𝑟) := 𝐸𝑇,𝑟𝑇 ,𝑥 · · · 𝐸1,𝑟1,𝑥(𝜌0) ∈ 𝒮(ℋ𝑆) to refer to
the final state of the branching program on the string 𝑟. For any distribution 𝐷 on {0, 1}𝑇 we
will denote by 𝐵𝜌0(𝐷) the average final state E𝑟∼𝐷 [𝐵𝜌0(𝑟)]. The output of the branching program
is defined to be the outcome on measuring the first qubit of 𝐵𝜌0(𝑈𝑇). As before, we say that a
branching program computes a family ℱ = {𝑓𝑛 : {0, 1}𝑛 → {0, 1}}𝑛∈N of functions if on input
𝑥 ∈ {0, 1}𝑛, the branching program outputs 𝑓𝑛(𝑥) with probability at least 2

3 (whenever 𝑓𝑛(𝑥) is
well defined). For families of functions with outputs of arbitrary length, we use the same definition
as before.

2.6 Quantum Entropic Quantities

Let 𝑋𝑆 be a possibly correlated bipartite quantum system, where 𝑋 is on 𝑛 qubits and 𝑆 is on
𝑠 qubits. Let 𝜌𝑋𝑆 = ∑︀

𝑥 |𝑥⟩ ⟨𝑥| 𝜌𝑥 be a classical-quantum state which is classical on 𝑋 and let
𝜌𝑆 ∈ 𝒮(ℋ𝑠). We now define the min-entropy of the state 𝜌𝑋𝑆 .

𝐻min(𝜌𝑋𝑆) := sup
{︁

𝜆 ∈ R such that 𝜌𝑋𝑆 ⪯ I𝑛+𝑠

2𝜆

}︁
The conditional min-entropy of 𝜌𝑋𝑆 relative to 𝜎𝑆 is defined as

𝐻min(𝜌𝑋𝑆 |𝜎𝑆) := sup
{︁

𝜆 ∈ R such that 𝜌𝑋𝑆 ⪯ I𝑛

2𝜆
⊗ 𝜎𝑆

}︁
.

8

The conditional min-entropy of 𝜌𝑋𝑆 given 𝑆 is defined as

𝐻min(𝜌𝑋𝑆 |𝑆) = sup
𝜎𝑆∈𝒮(ℋ)

𝐻min(𝜌𝑋𝑆 |𝜎𝑆).

For any invertible 𝜎𝑆 ∈ 𝒮(ℋ𝑠), the conditional collision entropy of 𝜌𝑋𝑆 relative to 𝜎𝑆 is defined as

𝐻2(𝜌𝑋𝑆 |𝜎𝑆) := − log Tr
(︂(︁

(I ⊗ 𝜎
−1/4
𝑆)𝜌𝑋𝑆(I ⊗ 𝜎

−1/4
𝑆)

)︁2
)︂

.

The conditional collision entropy of 𝜌𝑋𝑆 is defined as

𝐻2(𝜌𝑋𝑆 |𝑆) := sup
𝜎𝑆∈𝒮(ℋ)

𝐻2(𝜌𝑋𝑆 |𝜎𝑆).

It has been shown that the conditional collision entropy is bounded from below by the condi-
tional min-entropy. The following fact appears as Remark 5.3.2 in [Ren08].
Fact 2.4. For any classical-quantum state 𝜌𝑋𝑆 and a quantum state 𝜎𝑆, we have 𝐻min(𝜌𝑋𝑆 |𝜎𝑆) ≤
𝐻2(𝜌𝑋𝑆 |𝜎𝑆).

It is known that conditioning on 𝑠 qubits cannot decrease the min-entropy by more than 𝑠. The
following fact follows from Lemma 3.1.10 and Definition 3.1.2 [Ren08].
Fact 2.5. For any classical-quantum state 𝜌𝑋𝑆, we have 𝐻min(𝜌𝑋𝑆 |𝑆) ≥ 𝐻min(𝜌𝑋𝑆) − 𝑠.

2.7 Extractors Resilient to Quantum Side Information

We make use of 𝛿-biased spaces over {0, 1}𝑛. There are many known constructions [NN90, AGH+90]
of such spaces. We make use of a simpler construction based on the work of [AGH+90]. We do
this mainly so that we can easily argue about the time and space complexity.

We use finite fields of characteristic two to define our 𝛿-biased spaces. We will use the fact that
given any 𝑚 ∈ N such that 𝑚 = 2 · 3𝑖 for some 𝑖 ∈ N, we can efficiently construct the finite field of
characteristic two of size 2𝑚. Futhermore, addition and multiplication of two elements in this field
can be done in space and time at most 𝑚 · polylog(𝑚). Similarly, raising elements of the field to
𝑘-th powers can be done in space 𝑚 · polylog(𝑚) + log 𝑘 and time 𝑚 · polylog(𝑚) · log 𝑘 by repeated
squaring. The proofs of these facts can be derived from properties about finite fields and can be
found in [LN83]. We defer this discussion to the appendix. We denote the finite field of size 2𝑚 by
F2𝑚 .

𝛿-biased spaces Let 𝒞 ⊆ {0, 1}𝑛 be a multiset and 𝛿 ≥ 0. We say that 𝒞 is a 𝛿-biased space if
for all 𝑆 ⊆ [𝑛], we have

⃒⃒⃒
E𝑥∼𝒞 [⊕𝑖∈𝑆𝑥𝑖] − 1

2

⃒⃒⃒
≤ 𝛿/2. We make use of the following construction of

𝛿-biased spaces over {0, 1}𝑛. This is implicit in the work of [AGH+90]. While their construction
obtains a better dependence on the field size, our variant is weaker but suffices for our purposes.

Let 𝑛 ∈ N. The 𝛿-biased space over {0, 1}𝑛 is defined as follows. Let 𝑚 ∈ N be any integer such
that 𝑚 ≥ log(𝑛/𝛿) and 𝑚 = 2 · 3𝑖 for some 𝑖 ∈ [𝑛]. Let ⟨·, ·⟩2 denote the inner product over F2.
Define 𝐴 : F2𝑚 × F2𝑚 → {0, 1}𝑛 at 𝛼, 𝛽 ∈ F2𝑚 by

𝐴(𝛼, 𝛽) =
(︁
⟨1, 𝛽⟩2, ⟨𝛼, 𝛽⟩2, . . . , ⟨𝛼𝑛−1, 𝛽⟩2

)︁
.

9

The proof of the following lemma follows from similar arguments as in [AGH+90].

Lemma 2.6. Let 𝒜 := {{𝐴(𝛼, 𝛽) | 𝛼, 𝛽 ∈ F2𝑚}}. Then, 𝒜 is a 𝛿-biased space over {0, 1}𝑛. Addition-
ally, there is a classical deterministic algorithm which given input 𝛼, 𝛽 ∈ F𝑚

2 and 𝑖 ∈ [𝑛], computes
the 𝑖-th coordinate of 𝐴(𝛼, 𝛽), furthermore, this algorithm uses space 𝑚 · polylog(𝑚) + log 𝑛 and
time 𝑚 · polylog(𝑚) · log 𝑛.

We now define weak quantum extractors, i.e., extractors that are resilient to quantum side
information.

Definition 2.7 (Weak Quantum Extractor). [FS08] Let 𝑡, 𝜀 ≥ 0. A function 𝐸 : {0, 1}𝑛 ×
{0, 1}𝑑 → {0, 1}𝑚 is called a (𝑡, 𝜀)-weak quantum extractor if the following holds. Let 𝜌𝑋𝑆 =
E𝑥∼{0,1}𝑛 [|𝑥⟩ ⟨𝑥| 𝜌𝑥] ∈ ℋ𝑛+𝑠 be any classical-quantum state that is classical and uniform on 𝑋.
Suppose 𝐻2(𝜌𝑋𝑆 |𝑆) ≥ 𝑡, then⃦⃦⃦⃦

⃦⃦E𝑥∼{0,1}𝑛

𝑦∼{0,1}𝑑

[|𝐸(𝑥, 𝑦)⟩ ⟨𝐸(𝑥, 𝑦)| 𝜌𝑥] − I𝑚

2𝑚
⊗ E𝑥∼{0,1}𝑛 [𝜌𝑥]

⃦⃦⃦⃦
⃦⃦

1

≤ 𝜀.

The seedlength of the extractor is defined to be 𝑑.

We make use of the following family of weak quantum extractors.

Theorem 2.8. [FS08] Let 𝛿 > 0, 𝑑, 𝑛 ∈ N, and 𝒜 = {𝑎1, . . . , 𝑎2𝑑} be a 𝛿-biased space over
{0, 1}𝑛 of size 2𝑑. Let Ext : {0, 1}𝑛 × {0, 1}𝑑 → {0, 1}𝑛 be defined at 𝑥 ∈ {0, 1}𝑛, 𝑖 ∈ {0, 1}𝑑 by
Ext(𝑥, 𝑖) := 𝑎𝑖 ⊕ 𝑥. For 0 ≤ 𝑡 ≤ 𝑛, Ext is a (𝑡, 𝛿 · 2(𝑛−𝑡)/2)-weak quantum extractor.

Theorem 2.8 follows from Theorem 3.2 in [FS08]. We remark that the result in [FS08] is stated
in terms of a 𝛿-biased family of distributions, however, we restrict ourselves to the case that there
is one 𝛿-biased distribution. We derive the following corollary.

Corollary 2.9. For any 𝑛, 𝑡 ∈ N and 𝛿 > 0, the function Ext : {0, 1}𝑛 × {0, 1}𝑑 → {0, 1}𝑛 is
a (𝑡, 𝛿)-weak quantum extractor provided 𝑑 ≥ Θ(𝑛 − 𝑡 + log 𝑛 + log(1/𝛿) + 𝑂(1)). Furthermore,
there is a deterministic algorithm of space 𝑂(𝑑 · polylog(𝑑) + log 𝑛) and time 𝑑 · polylog(𝑑) · log 𝑛
which computes any coordinate of the output of this extractor. Additionally, for every fixed seed
𝑦 ∈ {0, 1}𝑑, the function Ext𝑦 : {0, 1}𝑛 → {0, 1}𝑛 defined by Ext𝑦(𝑥) = Ext(𝑥, 𝑦) is a bijection.

The property about the extractor being a bijection for every fixed seed turns out to be a useful
property with regards to unitary (reversible) simulation.

3 The INW Pseudorandom Generator

We focus on a specific instantiation of the INW generator which uses the aforementioned extractors.
We do this for two reasons: firstly, these extractors are known to be resilient to quantum side
information; secondly, their time and space complexity is easier to analyze. Our construction is as
follows.

10

Fix parameters 𝑇, 𝑆, 𝜀 > 0 and let 𝑁, 𝑀 be integers such that

𝑁 = Θ(log 𝑇 + 𝑆 + log(1/𝜀)) and 𝑀 = ⌈log 𝑇 ⌉.

Since we assume that 𝑆 ≥ log 𝑇 , we have 𝑁 = Θ(𝑆 + log(1/𝜀)). For each 𝑖 ∈ [𝑀], let Ext(𝑖) :
{0, 1}𝑖𝑁 × {0, 1}𝑁 → {0, 1}𝑖𝑁 be as defined in Corollary 2.9 with parameters 𝑛 = 𝑖𝑁, 𝑑 = 𝑁, 𝑡 =
𝑖𝑁 − 𝑆 and 𝜀 = 𝜀/𝑇 2. We use Ext(𝑖)

𝑠 (𝑥) to denote the output of the extractor on input 𝑥 ∈ {0, 1}𝑖𝑁

and seed 𝑠 ∈ {0, 1}𝑁 .

Computational Complexity of Our Extractors Let 𝑖 ∈ [𝑀] and 𝑗 ∈ [𝑖𝑁]. Note that com-
puting the 𝑗-th coordinate of Ext(𝑖)(𝑧, 𝑠) where 𝑧 ∈ {0, 1}𝑖𝑁 and 𝑠 ∈ {0, 1}𝑁 requires comput-
ing the 𝑗-th coordinate of 𝐴(𝑠) ∈ {0, 1}𝑖𝑁 . Due to Corollary 2.9, this can be done in space
𝑁 ·polylog(𝑁)+log(𝑖𝑁) ≤ 𝑁 ·polylog(𝑁) and time 𝑁 ·polylog(𝑁) · log(𝑖𝑁) ≤ 𝑁 ·polylog(𝑁). This
implies that for 𝑖 ≤ 𝑀 , the function Ext(𝑖) is computable in space and time at most 𝑁 ·polylog(𝑁).
We use the following facts about reversible simulation of deterministic computation. It is known
that deterministic Turing Machines of space 𝑆′ and time 𝑇 ′ can be simulated by reversible Turing
Machines of space 𝑂(𝑆′ · log 𝑇 ′) and time poly(𝑇 ′) [Ben89]. A different analysis of the algorithm
of [Ben89] shows that when 𝑆′ = Θ(𝑇 ′) (which is indeed the case for our range of parameters) the
algorithm can be reversibly simulated in space 𝑂(𝑆′) and time 𝑂(𝑇 ′) [LS90]. 4 In particular, it
follows that Ext(𝑖) can be computed by unitary quantum algorithms in space 𝑁 · polylog(𝑁) and
time 𝑁 · polylog(𝑁). (The time complexity is with regards to computing any coordinate of the
output.)

The INW generator The INW generator [INW94] for space 𝑆 branching programs with 𝑇 input
bits is defined recursively as follows. For 𝑖 ∈ N, the 𝑖-th generator 𝐺𝑖 : {0, 1}𝑁 ×{0, 1}𝑖𝑁 → {0, 1}2𝑖

is defined at 𝑥 ∈ {0, 1}𝑁 and 𝑠1, . . . , 𝑠𝑖 ∈ {0, 1}𝑁 by

𝐺0(𝑥) = 𝑥1

𝐺𝑖(𝑥, 𝑠1, . . . , 𝑠𝑖) := 𝐺𝑖−1(𝑥, 𝑠1, . . . , 𝑠𝑖−1) ∘ 𝐺𝑖−1(Ext(𝑖)
𝑠𝑖

(𝑥, 𝑠1, . . . , 𝑠𝑖−1)).
Here, 𝑥 ∘ 𝑦 denotes the concatenation of strings 𝑥 and 𝑦. The generator 𝐺𝑀 naturally defines a
binary tree of depth 𝑀 as follows. Consider a binary tree of depth 𝑀 where we number the layers
from bottom to top, that is, the root has height 𝑀 and the leaves have height 1. We label each
node by a string in {0, 1}𝑁 ·(𝑀+1) as follows. The root is labelled with the input (𝑥, 𝑠1, . . . , 𝑠𝑀) to
𝐺𝑀 . Given a label (𝑥′, 𝑠′

1, . . . , 𝑠′
𝑀) at any node at height 𝑖 ≤ 𝑀 where 𝑥′, 𝑠′

1, . . . , 𝑠′
𝑀 ∈ {0, 1}𝑁 ,

the label at the left child is the same as that of its parent, while the label at the right child is
(Ext(𝑖)

𝑠′
𝑖
(𝑥′, 𝑠′

1, . . . , 𝑠′
𝑖−1), 𝑠′

𝑖, . . . , 𝑠′
𝑀). The output of a leaf is defined to be the first coordinate of the

label of the leaf. Let 𝑗 ∈ [𝑇]. Note that the binary expansion of 𝑗 defines a path from the root to
the leaf of the tree. Observe that the leaf obtained by traversing the 𝑗-th path outputs the 𝑗-th
coordinate of 𝐺𝑀 (𝑥, 𝑠1, . . . , 𝑠𝑀).

Note that 𝐺𝑀 stretches 𝑁 ·(𝑀 +1) uniform bits to at least 𝑇 bits. This generator may produce
more bits than necessary, but we may truncate output to the first 𝑇 bits. The inputs to 𝐺𝑀 are
of length 𝑂((𝑆 + log(1/𝜀)) · log 𝑇). We refer to 𝐺𝑀 as the INW generator for space 𝑆 time 𝑇
algorithms.

4This can also be seen directly by simply copying bits into fresh memory whenever they are erased. Since the
time complexity of the original algorithm is comparable to the space complexity, this step is not costly.

11

Claim 3.1. The INW generator 𝐺𝑀 can be computed by unitary quantum algorithms in space
𝑂(𝑀 · 𝑁) and time poly(𝑀, 𝑁). That is, there is a unitary quantum algorithm which given input
(𝑥, 𝑠1, . . . , 𝑠𝑀) for 𝑥, 𝑠1, . . . , 𝑠𝑀 ∈ {0, 1}𝑁 and a coordinate 𝑖 ∈ [𝑇], runs in space 𝑂(𝑀 · 𝑁) and
time 𝑀2 · 𝑁2 · polylog(𝑁) and outputs the 𝑖-th coordinate of 𝐺(𝑥, 𝑠1, . . . , 𝑠𝑀).

Proof. Let (𝑥, 𝑠1, . . . , 𝑠𝑀) be an input to 𝐺𝑀 where 𝑥, 𝑠1, . . . , 𝑠𝑀 ∈ {0, 1}𝑁 . Consider the binary
tree associated to the computation of 𝐺𝑀 , as described before. Given any 𝑗 ∈ [𝑇], we show how
to simulate the process of traversing the 𝑗-th path in the tree using a unitary quantum algorithm.
At each time step 𝑖 = 1, . . . , 𝑀 , we will ensure that the working memory essentially only contains
the label of the 𝑖-th vertex in the 𝑗-th path. We now show how to update the memory to preserve
this property.

Suppose we are at a node of height 𝑖 ≤ 𝑀 and the current memory is (𝑥′, 𝑠′
1, . . . , 𝑠′

𝑇) for some
𝑥′, 𝑠′

1, . . . , 𝑠′
𝑇 ∈ {0, 1}𝑁 . Note that if 𝑗𝑀−𝑖+1 = 0, then we don’t have to update the memory. If

𝑗𝑀−𝑖+1 = 1, we wish to update the memory to (Ext(𝑖)
𝑠′

𝑖
(𝑥′, 𝑠′

1, . . . , 𝑠′
𝑖−1), 𝑠′

𝑖, 𝑠′
𝑖+1, . . . , 𝑠′

𝑇). Firstly, note
that this update operation is a reversible operation, in particular, it is its own inverse. This relies on
our particular choice of extractors based on xor with 𝛿-biased spaces as in Theorem 2.8. Secondly,
recall that Ext(𝑖) : {0, 1}𝑖𝑁 × {0, 1}𝑁 → {0, 1}𝑖𝑁 is computable by unitary quantum algorithms in
space and time at most 𝑁 · polylog(𝑁). This implies that there is a unitary quantum algorithm
which uses additional 𝑁 · polylog(𝑁) space and 𝑁 · polylog(𝑁) · (𝑖𝑁) time and can update the
memory from (𝑥′, 𝑠′

1, . . . , 𝑠′
𝑇) to (Ext𝑠′

𝑖
(𝑥′, 𝑠′

1, . . . , 𝑠′
𝑖−1), 𝑠′

𝑖, 𝑠′
𝑖+1, . . . , 𝑠′

𝑇). Note that in particular, it
returns any additional memory to the all zeroes state. Thus, the algorithm only requires 𝑂(𝑁 ·
𝑀) + 𝑁 · polylog(𝑁) = 𝑂(𝑁 · 𝑀) memory. The time complexity is 𝑂(𝑁 · polylog(𝑁) · (𝑖𝑁)) per
iteration and 𝑖 varies from 1 to 𝑀 . This completes the proof.

For a more refined bound on the time complexity of our simulation, we require the following
claim.

Claim 3.2. Consider the binary tree associated with the INW generator 𝐺𝑀 . Then, for every
node 𝑣 and a neighbor 𝑢 of 𝑣, there is a unitary quantum algorithm which maps each possible label
ℓ ∈ {0, 1}𝑁 ·(𝑀+1) at 𝑣 to the induced label at 𝑢. Furthermore, if 𝑣 is at height 𝑖, then this algorithm
runs in time 𝑂(𝑁 · polylog(𝑁) · (𝑖𝑁)) and space 𝑂(𝑁 · 𝑀).

Proof of Claim 3.2. The proof of this follows from the proof of Claim 3.1. Let ℓ = (ℓ0, ℓ1, . . . , ℓ𝑀)
where ℓ0, . . . , ℓ𝑀 ∈ {0, 1}𝑁 . Consider the special case when 𝑣 is the root. In this case, the left
child’s label is simply ℓ, while the right child’s label is Ext(𝑀)(ℓ). This proves the claim for the
root node. Suppose 𝑣 is an intermediate node, then Claim 3.1 demonstrates the desired algorithm
for the children of 𝑣. To obtain the label of the parent of 𝑣, if 𝑣 was the left child of its parent,
we return ℓ, otherwise we return (Ext(𝑖−1)

ℓ𝑖−1
(ℓ1, . . . , ℓ𝑖−2), ℓ𝑖−1, . . . , ℓ𝑀). The space complexity of this

algorithm is 𝑂(𝑁 · 𝑀) to store the label plus 𝑂(𝑁 · polylog(𝑁)) workspace. Overall, the space
complexity is 𝑂(𝑁 · 𝑀). The time complexity is 𝑂(𝑁 · polylog(𝑁)) per output bit for the first
𝑖𝑁 output bits (the rest of the bits are identical to those of the input). Thus, the overall time
complexity is 𝑂(𝑁 · polylog(𝑁) · (𝑖𝑁)).

12

4 Main Result

We prove that the INW Generator fools quantum space-bounded branching programs which read
classical random bits.

Theorem 4.1. Let 𝐵𝛼 : {0, 1}𝑇 → 𝒮(ℋ𝑆) be any space 𝑆 quantum branching program reading 𝑇
random bits with initial state 𝛼 ∈ 𝒮(ℋ𝑆). Fix parameters 𝑁 = Θ (𝑆 + log(1/𝜀)) and 𝑀 = ⌈log 𝑇 ⌉
as before. Let 𝐺𝑀 : {0, 1}(𝑀+1)𝑁 → {0, 1}𝑇 be the INW generator as defined earlier. Then,⃦⃦⃦

𝐵𝛼(𝑈𝑇) − 𝐵𝛼(𝐺𝑀 (𝑈(𝑀+1)𝑁))
⃦⃦⃦

1
≤ 𝜀.

Fact 2.2 implies that the states 𝐵𝛼(𝑈𝑇) and 𝐵𝛼(𝐺𝑀 (𝑈(𝑀+1)𝑁)) cannot be distinguished by a
measurement with more than 𝜀/2 advantage. Thus, for 𝜀 = 1/2, we have that 𝐺𝑀 takes inputs
of length 𝑂(𝑆 · log 𝑇) and outputs a random string of length 𝑇 that is indistinguishable from the
uniform distribution over 𝑇 bits with more than 1

4 probability by any quantum branching program
of space 𝑆 and time 𝑇 . We derive the following consequence of this.

Theorem 4.2. Every quantum algorithm of time 𝑇 and space 𝑆 ≥ log 𝑇 with unitary operators and
intermediate measurements can be simulated with error 1

4 by a quantum algorithm with space 𝑂(𝑆 ·
log 𝑇) and time 𝑇 · 𝑆2 · polylog(𝑆) with unitary operators and without intermediate measurements.

5 Proof Of Theorem 4.1

The proof of Theorem 4.1 is immediate from the following lemma.

Lemma 5.1. Let 𝑖 ∈ Z≥0 and 𝑥 ∈ {0, 1}𝑛. Let 𝐵𝛼 := 𝐵𝛼
𝑥 (·) : {0, 1}2𝑖 → 𝒮(ℋ𝑆) be any space 𝑆

quantum branching program with initial state 𝛼 ∈ 𝒮(ℋ𝑆) and input 𝑥 ∈ {0, 1}𝑛 which reads 2𝑖 bits
of randomness. Let 𝑉, 𝑆1, . . . , 𝑆𝑖 ∼ 𝑈𝑁 be independent samples. Then, for all 𝛼 ∈ 𝒮(ℋ𝑆),

‖𝐵𝛼(𝑈2𝑖) − 𝐵𝛼(𝐺𝑖(𝑉, 𝑆1, . . . , 𝑆𝑖))‖1 ≤ 3𝑖 · 𝜀

𝑇 2 .

Setting 𝑖 = 𝑀 , ⌈log 𝑇 ⌉ in the above lemma implies that
⃦⃦⃦
𝐵𝛼(𝑈𝑇) − 𝐵𝛼(𝐺𝑀 (𝑈(𝑀+1)𝑁))

⃦⃦⃦
1

≤ 𝜀

and completes the proof of Theorem 4.1. It suffices to prove the above lemma.

Proof of Lemma 5.1. The proof is by induction on 𝑖. The base case is true since 𝐺0(𝑈𝑁) = 𝑈1.
Let us assume that the statement holds for all 𝑗 < 𝑖 for all bounded space branching programs.
Let 𝑈2𝑖 = (𝑈, 𝑈 ′) where 𝑈, 𝑈 ′ ∼ 𝑈2𝑖−1 are two independent uniformly distributed random variables
on 2𝑖−1 bits. We apply Triangle Inequality on the distance corresponding to the 𝑖-th generator as
follows.

13

Let 𝑊 = (𝑉, 𝑆1, . . . , 𝑆𝑖−1) ∼ 𝑈𝑖𝑁 and 𝑊 ′ ∼ 𝑈𝑖𝑁 , independently of 𝑊 .

‖𝐵𝛼(𝑈2𝑖) − 𝐵𝛼(𝐺𝑖(𝑉, 𝑆1, . . . , 𝑆𝑖))‖1

,
⃦⃦
𝐵𝛼(𝑈, 𝑈 ′) − 𝐵𝛼(𝐺𝑖−1(𝑊) ∘ 𝐺𝑖−1(Ext𝑆𝑖(𝑊))

⃦⃦
1

≤
⃦⃦
𝐵𝛼(𝑈, 𝑈 ′) − 𝐵𝛼(𝐺𝑖−1(𝑊) ∘ 𝑈 ′)

⃦⃦
1

+
⃦⃦
𝐵𝛼(𝐺𝑖−1(𝑊) ∘ 𝑈 ′) − 𝐵𝛼(𝐺𝑖−1(𝑊) ∘ 𝐺𝑖−1(𝑊 ′))

⃦⃦
1

+
⃦⃦
𝐵𝛼(𝐺𝑖−1(𝑊) ∘ 𝐺𝑖−1(𝑊 ′)) − 𝐵𝛼(𝐺𝑖−1(𝑊) ∘ 𝐺𝑖−1(Ext𝑆𝑖(𝑊))

⃦⃦
1

(1)

We show that the each of these terms are bounded by 3𝑖−1·𝜀
𝑇 2 . Let the branching program

𝐵𝛼 : {0, 1}2𝑖 → 𝒮(ℋ𝑆) be decomposed as (𝐵0 · 𝐵1)𝛼 where 𝐵𝛼
0 , 𝐵𝛽

1 : {0, 1}2𝑖−1 → 𝒮(ℋ𝑆). Here,
𝐵𝛼

0 (𝑟0) is a branching program that takes a (random) input 𝑟0 ∈ {0, 1}2𝑖−1 and runs the first
half of 𝐵𝛼 on the state 𝛼, and 𝐵

𝐵𝛼
0 (𝑟0)

1 (𝑟1) is a branching program that takes a (random) input
𝑟1 ∈ {0, 1}2𝑖−1 and runs the second half of 𝐵𝛼 on the final state of the first half.

We will first bound the first term by induction. By induction, the final state of the first branching
program 𝐵0 is nearly identical whether the inputs are drawn according to 𝑈2𝑖−1 or according to
𝐺𝑖−1(𝑊). More precisely, by induction, we have that

‖𝐵𝛼
0 (𝑈) − 𝐵𝛼

0 (𝐺𝑖−1(𝑊))‖1 ≤ 3𝑖−1 · 𝜀

𝑇 2 .

For any distribution 𝐷 ∼ {0, 1}2𝑖−1 , the state 𝐵
𝐵𝛼

0 (𝐷)
1 (𝑈 ′) , 𝐵𝛼(𝐷, 𝑈 ′) is obtained by taking the

state 𝐵𝛼
0 (𝐷) and acting on it by the quantum operation 𝐵1(𝑈 ′) = E𝑟1∼𝑈 ′ [𝐵1(𝑟1)]. Fact 2.3 implies

that quantum processing can only decrease the trace distance between two states. This, along with
the above inequality gives us the following bound on the first term.

⃦⃦
𝐵𝛼(𝑈, 𝑈 ′) − 𝐵𝛼(𝐺𝑖−1(𝑊), 𝑈 ′)

⃦⃦
1 ≤ 3𝑖−1 · 𝜀

𝑇 2 . (2)

The second term can be similarly bounded. Let 𝛽 = 𝐵𝛼
0 (𝐺𝑖−1(𝑊)) be the final state of the

first branching program 𝐵𝛼
0 on the initial state 𝛼 and input drawn according to the distribution

𝐺𝑖−1(𝑊). By the induction hypothesis applied on the second branching program 𝐵𝛽
1 , the final

state is nearly identical whether the inputs are drawn according to 𝑈 ′ or according to 𝐺𝑖−1(𝑊 ′).
That is, ⃦⃦⃦

𝐵𝛽
1 (𝑈 ′) − 𝐵𝛽

1 (𝐺𝑖−1(𝑊 ′))
⃦⃦⃦

1
≤ 3𝑖−1 · 𝜀

𝑇 2 .

Since 𝐵𝛽
1 (𝐷) = 𝐵𝛼(𝐺𝑖−1(𝑊), 𝐷) for all distributions 𝐷 ∼ {0, 1}2𝑖−1 , this gives us the following

bound on the second term.

⃦⃦
𝐵𝛼(𝐺𝑖−1(𝑊), 𝑈 ′) − 𝐵𝛼(𝐺𝑖−1(𝑊), 𝐺𝑖−1(𝑊 ′))

⃦⃦
1 ≤ 3𝑖−1 · 𝜀

𝑇 2 (3)

To bound the third term, we apply Corollary 2.9 with the following parameters. Let 𝑊 be the
uniform distribution over {0, 1}𝑖𝑁 as before. For all 𝑤 ∈ {0, 1}𝑖𝑁 , let 𝜌𝑤 := 𝐵𝛼

0 (𝐺𝑖−1(𝑤)) ∈ 𝒮(ℋ𝑆)
be the final state reached by the first half of the program on the random string 𝐺𝑖−1(𝑤) and let
𝜌𝑋𝑆 = E

𝑤∼𝑊
[|𝑤⟩ ⟨𝑤| 𝜌𝑤] where the system 𝑋 consists of 𝑖𝑁 registers and the system 𝑆 consists of

14

|𝑎⟩ |𝑎⟩

|1⟩ |1⟩

|𝑏⟩ |𝑐⟩𝐻 𝐻

Figure 1: Implementation of controlled-𝑈1 using Hadamard and Toffoli gates. Here, |𝑐⟩ =
|𝑈1(𝑏)⟩ if 𝑎 = 1 and |𝑏⟩ otherwise for bits 𝑎, 𝑏 ∈ {0, 1}.

𝑆 registers. Firstly, 𝜌𝑋𝑆 is a classical-quantum state that is classical and uniform on 𝑋. Note that
𝑡 := 𝐻2(𝜌𝑋𝑆 |𝑆) ≥ 𝐻min(𝜌𝑋𝑆 |𝑆) ≥ 𝐻min(𝜌𝑋𝑆) − 𝑆 ≥ 𝑖𝑁 − 𝑆 due to Fact 2.5 and Fact 2.4. We
chose 𝑁 = Θ(log 𝑇 + 𝑆 + log(1/𝜀)) ≥ 𝑆 + 2 log(𝑖𝑁) + 2 log(𝑇 2/𝜀) + 𝑂(1) ≥ 𝑖𝑁 − 𝑡 + 2 log(𝑖𝑁) +
2 log(𝑇 2/𝜀) + 𝑂(1). Corollary 2.9 implies we have ‖𝜎 − 𝜎′‖1 ≤ 𝜀

𝑇 2 , where

𝜎 := E
𝑤∼𝑈𝑖𝑁
𝑆𝑖∼𝑈𝑁

[︁
|Ext(𝑖)

𝑆𝑖
(𝑤)⟩ ⟨Ext(𝑖)

𝑆𝑖
(𝑤)| 𝐵𝛼

0 (𝐺𝑖−1(𝑤))
]︁

and 𝜎′ := I
2𝑖𝑁

⊗ E
𝑤∼𝑈𝑖𝑁

[𝐵𝛼
0 (𝐺𝑖−1(𝑤))]

Consider the controlled operator �̃�1 on 𝑖𝑁+𝑆 qubits defined by �̃�1(|𝑤⟩ ⟨𝑤| 𝜌) = |𝑤⟩ ⟨𝑤| 𝐵𝜌
1(𝐺𝑖−1(𝑤))

for 𝑤 ∈ {0, 1}𝑖𝑁 and 𝜌 ∈ 𝒮(ℋ𝑆). This operator has the effect of applying the quantum operation
𝐵1(𝐺𝑖−1(𝑤)) on the last 𝑆 qubits, provided the first 𝑖𝑁 qubits are in the state |𝑤⟩ ⟨𝑤|. Note that

�̃�1(𝜎) = E
𝑤∼𝑈𝑖𝑁
𝑆𝑖∼𝑈𝑁

[︁
|Ext(𝑖)

𝑆𝑖
(𝑤)⟩ ⟨Ext(𝑖)

𝑆𝑖
(𝑤)| 𝐵𝛼(𝐺𝑖−1(𝑤), 𝐺𝑖−1(Ext(𝑖)

𝑆𝑖
(𝑤)))

]︁
�̃�1(𝜎′) = E

𝑤∼𝑈𝑖𝑁
𝑤′∼𝑈𝑖𝑁

[︀
|𝑤′⟩ ⟨𝑤′| 𝐵𝛼(𝐺𝑖−1(𝑤), 𝐺𝑖−1(𝑤′))

]︀
Since ‖𝜎 −𝜎′‖1 ≤ 𝜀

𝑇 2 , Fact 2.3 implies that
⃦⃦⃦
�̃�1(𝜎) − �̃�1(𝜎′)

⃦⃦⃦
1

≤ 𝜀
𝑇 2 . Note that for the state �̃�1(𝜎),

ignoring the first 𝑖𝑁 qubits, the state on the last 𝑆 qubits is given by 𝐵𝛼(𝐺𝑖−1(𝑊), 𝐺𝑖−1(Ext𝑆𝑖(𝑊)))
while for �̃�1(𝜎′), it is given by 𝐵𝛼(𝐺𝑖−1(𝑊), 𝐺𝑖−1(𝑊 ′)). This implies that⃦⃦

𝐵𝛼(𝐺𝑖−1(𝑊), 𝐺𝑖−1(Ext𝑆𝑖(𝑊))) − 𝐵𝛼(𝐺𝑖−1(𝑊), 𝐺𝑖−1(𝑊 ′))
⃦⃦

1 ≤ 𝜀

𝑇 2 . (4)

Substituting Eq. (2), Eq. (3) and Eq. (4) in Eq. (1) completes the inductive step.

6 Proof of Theorem 4.2

We now demonstrate a proof of Theorem 4.2 with the same space bound of 𝑂(𝑆 · log 𝑇) but a
weaker running time bound of 𝑇 · (𝑆 · log 𝑇)2 · polylog(𝑆). We will then show how to modify the
algorithm so that the running time is 𝑇 · 𝑆2 · polylog(𝑆).

The proof of this theorem follows by an equivalence between quantum algorithms which perform
intermediate measurements and quantum branching programs with classical randomness. Consider
a qubit initialized to |0⟩ and repeatedly apply the Hadamard operator and the measurement oper-
ator. The sequence of outcomes of the measurement operator is a uniformly random string. Thus,
intermediate measurements allow quantum algorithms to simulate random coins. Conversely, in-
termediate measurements can be simulated using random coins as follows.

15

|0⟩ . . .

|0⟩ . . .

|0⟩ . . .

|0⟩ . . .

𝑆 space 𝑈1 𝑈2

1 qubit

𝒢(1)
𝑀 𝒢(1)

𝑀

−1
𝒢(2)

𝑀

𝑂((𝑆 + log 𝑇) · log 𝑇)
work space

𝑂((𝑆 + log 𝑇) · log 𝑇)
seed 𝐻⊗𝑟

Figure 2: Simulation in the proof of Theorem 4.2. Suppose the branching program ℬ consists of
a sequence of controlled unitaries 𝑈1, . . . , 𝑈𝑇 , controlled on a sequence of uniformly random bits.
The figure describes the simulation of ℬ by a unitary algorithm.

Lemma 6.1. Let 𝑀 refer to the measurement operator on the first qubit in the {|0⟩ , |1⟩} basis.
Let 𝑈0 = I be the identity operator and let 𝑈1 be the reflection operator of the first qubit about |1⟩.
Then, for all 𝜌 ∈ 𝒮(ℋ), we have 𝑀(𝜌) = 1

2

(︁
𝑈0𝜌𝑈0 + 𝑈1𝜌𝑈 †

1

)︁
.

Proof of Lemma 6.1. Let 𝜌 = |𝑖⟩ ⟨𝑗| ∈ 𝒮(ℋ) be a basis element of 𝒮(ℋ) for 𝑖, 𝑗 ∈ {0, 1}*. Note that

1
2

(︁
𝑈0𝜌𝑈0 + 𝑈1𝜌𝑈 †

1

)︁
= 1

2 (|𝑖⟩ ⟨𝑗| + (1𝑖1=𝑗1 − 1𝑖1 ̸=𝑗1) · |𝑖⟩ ⟨𝑗|)

= 1𝑖1=𝑗1 · |𝑖⟩ ⟨𝑗| = 𝑀(𝜌)

Since the above equality holds for all basis elements 𝜌 ∈ 𝒮(ℋ) and both sides are linear in 𝜌, this
equation holds for all 𝜌 ∈ 𝒮(ℋ).

Proof of Theorem 4.2. We begin by describing the simulation which runs in time 𝑇 · (𝑆 · log 𝑇)2 ·
polylog(𝑆). Let 𝒬 be a quantum algorithm of time 𝑇 and space 𝑆 ≥ log 𝑇 whose operators are in
𝒢𝑈 ∪ {𝑅, 𝑀}. From Lemma 6.1, it follows that every measurement operator can be simulated by
tossing a random coin, followed by applying controlled-𝑈1. The controlled-𝑈1 operator can be con-
structed using the Hadamard and the Toffoli gates as shown in Figure 1. Thus, the correspondence
from Lemma 6.1 defines a quantum branching program ℬ such that: The initial state is the all
zeroes state, the program uses (at most) 𝑇 bits of randomness and space 𝑆 + 1, the operators are
in 𝒢𝑈 ∪ {𝑅}, and most importantly, for all inputs 𝑥 ∈ {0, 1}𝑛, the expected output of ℬ𝑥 when run
on a uniformly random string in {0, 1}𝑇 is identical to the final state of the algorithm 𝒬 on input
𝑥. Note that the operators of the branching program ℬ are all unitary, furthermore, the sequence
of operators is indeed logspace-uniform.

Let 𝑀 = Θ(log 𝑇) and 𝑁 = Θ(𝑆) be the parameters in the definition of the generator 𝐺𝑀

with 𝜀 = 1/4. Claim 3.1 implies that 𝐺𝑀 is computable by unitary quantum algorithms in space
𝑂(𝑆 · log 𝑇) and time 𝑆2 · (log 𝑇)2 · polylog(𝑆). That is, there is a unitary quantum algorithm (call
it 𝒢(𝑖)

𝑀) which runs in space 𝑂(𝑆 · log 𝑇) and time 𝑆2 · (log 𝑇)2 · polylog(𝑆) and which on input
𝑟 ∈ {0, 1}𝑁 ·(𝑀+1) and a coordinate 𝑖 ∈ [𝑇], outputs the 𝑖-th coordinate of 𝐺𝑀 (𝑟). We use 𝒢(𝑖)

𝑀

−1

to refer to the inverse of the algorithm.

16

Consider a quantum algorithm 𝒬′ of space 𝑂(𝑆 · log 𝑇) where the first 𝑆 qubits correspond to
the memory of the branching program 𝒬, the next qubit is the random bit, the next 𝑂(𝑆 · log 𝑇)
qubits correspond to the workspace of the pseudorandom generator plus the space to store and
iterate over coordinates in [𝑇] and the last 𝑂(𝑆 · log 𝑇) qubits are the seed to the generator. The
algorithm applies the Hadamard operator to the seed, which creates the uniform superposition of
all possible seeds. It then computes the first output bit of 𝐺𝑀 on this superposition of seeds,
simulates one step of the branching program using this bit, and uncomputes this bit. It similarly
simulates all 𝑇 steps of the branching program. Finally, the algorithm measures the first qubit
and outputs the outcome. Note that this algorithm exactly simulates the branching program ℬ
on input 𝑥 and a random string drawn from the output 𝐺𝑀 (𝑈𝑁(𝑀+1)) of the generator. We now
apply Theorem 4.1 to conclude that the output of the branching program ℬ on inputs drawn from
𝑈𝑇 is indistinguishable with more than 1

4 advantage from the case when the inputs are drawn from
𝐺𝑀 (𝑈𝑁(𝑀+1)). Thus, the algorithm 𝒬′ described above simulates the original algorithm with error
1
4 . The overall space complexity is 𝑂(𝑆 ·log 𝑇) and the time complexity is 𝑇 ·𝑆2 ·(log 𝑇)2 ·polylog(𝑆).

We now describe the modification required to achieve a time dependence of 𝑂(𝑇 ·𝑆2 ·polylog(𝑆)).
We will use Claim 3.2 as opposed to Claim 3.1. The main observation is that we don’t need to
uncompute at every time step, instead, we only need to uncompute to the point that we can
compute the next coordinate. More precisely, consider the binary tree of depth ⌈log 𝑇 ⌉ associated
with the computation of 𝐺𝑀 and consider performing a left-to-right DFS (depth-first-search) on
this tree. If we consider the sequence of leaves reached by this DFS, the first coordinates of the
labels give rise to the output 𝐺𝑀 (𝑥, 𝑠1, . . . , 𝑠𝑀) (furthermore, the bits are in the correct order).
Thus, performing a left-to-right DFS on this tree and computing the labels of the vertices along
the DFS would allow us to sequentially compute the coordinates of the output 𝐺𝑀 (𝑥, 𝑠1, . . . , 𝑠𝑀).
To perform a DFS and compute the labels, we use the unitary maps given by Claim 3.2. It suffices
to analyze the space and time complexity of this procedure.

Claim 3.2 implies that the space complexity of any individual walk step is at most 𝑂(𝑁 ·𝑀) and
since we walk on a binary tree of depth 𝑀 , the overall space complexity is at most 𝑂(𝑁 ·𝑀 +𝑀) =
𝑂(𝑁 · 𝑀). The time complexity at a vertex of height 𝑖 ∈ [𝑀] is at most 𝑁 · polylog(𝑁) · (𝑖𝑁).
Since there are at most 4𝑇/2𝑖 vertices at height 𝑖, it follows that the overall time complexity is at
most

𝑁 · polylog(𝑁) ·
𝑀∑︁

𝑖=1
4𝑇 · (𝑖𝑁) · 1

2𝑖
≤ 𝑇 · 𝑁2 · polylog(𝑁) · .

This implies that the overall time complexity of the simulation is 𝑇 ·𝑆2 ·polylog(𝑆). This completes
the proof.

7 Acknowledgements

We thank anonymous reviewers for helpful comments and for pointing out the simulation of inter-
mediate measurements using reset operations.

17

A Appendix

A.1 Finite Field Arithmetic

We use F2[𝑥] to denote the set of univariate polynomials over F2. This is a ring with the usual
notions of addition and multiplication of polynomials. Furthermore, the addition of two polynomials
of degree at most 𝑚 can be done in space 𝑂(𝑚) and time 𝑂(𝑚), while multiplication can be done in
space and time at most 𝑂(𝑚 log 𝑚 log log 𝑚). (See Theorem 8.23 from [GG99].) Overall, arithmetic
in this ring can be done in space and time at most 𝑚 ·polylog(𝑚). Let 𝑓(𝑥) ∈ F2[𝑥] be a polynomial
of degree 𝑚. We use ⟨𝑓(𝑋)⟩ , {𝑔(𝑥) · 𝑓(𝑥)|𝑔(𝑥) ∈ F2[𝑥]} to denote the ideal generated by 𝑓(𝑥).
The quotient space F2[𝑥]/ ⟨𝑓(𝑥)⟩ consists of cosets of the form [𝑔(𝑥)] = 𝑔(𝑥) + ⟨𝑓(𝑥)⟩ where 𝑔(𝑥) is
an arbitrary polynomial in F2[𝑥] of degree at most 𝑚−1. This quotient space is a ring and inherits
the addition and multiplication operations from F2[𝑥], that is [𝑔(𝑥) + ℎ(𝑥)] = [𝑔(𝑥)] + [ℎ(𝑥)] and
[𝑔(𝑥) · ℎ(𝑥)] = [𝑔(𝑥)] · [ℎ(𝑥)]. The time and space complexity of division of polynomials of degree
at most 𝑚 is bounded by that of multiplication. In particular, arithmetic in the ring F2[𝑥]/⟨𝑓(𝑥)⟩
can be performed in space and time at most 𝑚 · polylog(𝑚). (See Theorem 9.6 from [GG99].)
The polynomial 𝑓(𝑥) is irreducible if and only if the quotient space F2[𝑥]/ ⟨𝑓(𝑥)⟩ is a finite field.
(See Theorem 1.61 in [LN83].) Furthermore, if 𝑓 has degree 𝑚, then the corresponding field is of
size 2𝑚. It is well known that the polynomials 𝑓𝑖(𝑥) := 𝑥2·3𝑖 + 𝑥3𝑖 + 1 for 𝑖 ∈ N are irreducible
over F2[𝑥]. (See Exercise 3.96 in [LN83].) Thus, given any 𝑚 ∈ N such that 𝑚 = 2 · 3𝑖, we can
efficiently construct a finite field of characteristic two of size 2𝑚 by considering the quotient space
F2[𝑥]/⟨𝑓𝑖(𝑥)⟩. Futhermore, addition and multiplication of two elements in this field can be done in
space and time 𝑚 · polylog(𝑚). Similarly, raising elements of the field to 𝑘-th powers can be done
in space 𝑚 · polylog(𝑚) + log 𝑘. and time 𝑚 · polylog(𝑚) · log 𝑘 by repeated squaring.

References

[AGH+90] Simple Constructions of Almost k-wise Independent Random Variables - Noga Alon,
Oded Goldreich, Johan Hastad, Rene Peralta. FOCS 1990: 544-553

[Ben89] Time/Space Trade-offs for Reversible Computation - Charles H. Bennett. SIAM J. Comput.
18(4): 766-776 (1989)

[BNS89] László Babai, Noam Nisan, Mario Szegedy: Multiparty Protocols, Pseudorandom Gener-
ators for Logspace, and Time-Space Trade-Offs. STOC 1989: 1-11

[BRRY10] Mark Braverman, Anup Rao, Ran Raz, Amir Yehudayoff: Pseudorandom Generators
for Regular Branching Programs. FOCS 2010: 40-47

[FR21] Eliminating Intermediate Measurements in Space-Bounded Quantum Computation - Bill
Fefferman, Zachary Remscrim. STOC 2021

[FS08] Randomness Extraction Via 𝛿-Biased Masking in the Presence of a Quantum Attacker -
Serge Fehr, Christian Schaffner. TCC 2008: 465-481

[GG99] Modern Computer Algebra, 3rd edition - Joachim von zur Gathen, Jurgen Gerhard.
CanadaISBN 9781139856065

18

[GR14] Anat Ganor, Ran Raz: Space Pseudorandom Generators by Communication Complexity
Lower Bounds. APPROX-RANDOM 2014: 692-703

[GRZ21] Quantum Logspace Algorithm for Powering Matrices of Bounded Norm - Uma Girish,
Ran Raz, Wei Zhan. ICALP 2021

[INW94] Pseudorandomness for Network Algorithms - Russel Impagliazzo, Noam Nisan, Avi
Wigderson. STOC 1994: 356-364

[Lan61] R. Landauer: Irreversibility and heat generation in the computing process. IBM Journal
of Research and Development, 5(3):183–191, 1961.

[LN83] Introduction to Finite Fields and their Applications - Rudolf Lidl, Harald Niederreiter,
ISBN 9781139172769

[LS90] A Note on Bennett’s Time-Space Tradeoff for Reversible Computation - Robert Y. Levin,
A. Sherman

[MRT19] Raghu Meka, Omer Reingold, Avishay Tal: Pseudorandom generators for width-3 branch-
ing programs. STOC 2019: 626-637

[Nis90] Noam Nisan: Pseudorandom generators for space-bounded computation. STOC 1990: 204-
212

[NN90] Small-bias probability spaces: efficient constructions and applications - Joseph Naor, Moni
Naor. STOC 1990: 213-223

[NZ96] Noam Nisan, David Zuckerman: Randomness is Linear in Space. J. Comput. Syst. Sci.
52(1): 43-52 (1996)

[Pip79] On Simultaneous Resource Bounds - Nicholas Pippenger. FOCS 1979: 307-311

[Ren08] Security of Quantum Key Distribution - Renato Renner. International Journal of Quantum
Information 6(01): 1-127 (2008), Ph.D. Thesis

[RR99] Ran Raz, Omer Reingold: On Recycling the Randomness of States in Space Bounded
Computation. STOC 1999: 159-168

[RSV13] Omer Reingold, Thomas Steinke, Salil P. Vadhan: Pseudorandomness for Regular Branch-
ing Programs via Fourier Analysis. APPROX-RANDOM 2013: 655-670

[Shi03] Both Toffoli and controlled-Not need little help to do universal quantum computation - Y.
Shi. Quantum Information & Computation 3(1): 84–92 (2003)

[Wat99] Space-Bounded Quantum Complexity - John Watrous. J. Comput. Syst. Sci. 59(2): 281-
326 (1999)

[Yao93] Quantum Circuit Complexity - Andrew Yao. FOCS 1993: 352-361

19
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

