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Abstract

Meta-complexity studies the complexity of computational problems about complexity
theory, such as the Minimum Circuit Size Problem (MCSP) and its variants. We show that
a relativization barrier applies to many important open questions in meta-complexity. We
give relativized worlds where:

1. MCSP can be solved in deterministic polynomial time, but the search version of MCSP
cannot be solved in deterministic polynomial time, even approximately. In contrast,
Carmosino, Impagliazzo, Kabanets, Kolokolova [CCC’16] gave a randomized approxi-
mate search-to-decision reduction for MCSP with a relativizing proof.

2. The complexities of MCSP[2n/2] and MCSP[2n/4] are different, in both worst-case and
average-case settings. Thus the complexity of MCSP is not “robust” to the choice of
the size function.

3. Levin’s time-bounded Kolmogorov complexity Kt(x) can be approximated to a factor
(2 + ε) in polynomial time, for any ε > 0.

4. Natural proofs do not exist, and neither do auxiliary-input one-way functions. In
contrast, Santhanam [ITCS’20] gave a relativizing proof that the non-existence of
natural proofs implies the existence of one-way functions under a conjecture about
optimal hitting sets.

5. DistNP does not reduce to GapMINKT by a family of “robust” reductions. This
presents a technical barrier for solving a question of Hirahara [FOCS’20].

∗rhl16@mails.tsinghua.edu.cn
†rahul.santhanam@cs.ox.ac.uk

 

ISSN 1433-8092 

Electronic Colloquium on Computational Complexity, Report No. 89 (2021)

mailto:rhl16@mails.tsinghua.edu.cn
mailto:rahul.santhanam@cs.ox.ac.uk


Contents

1 Introduction 1
1.1 Our Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Our Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Technical Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Preliminaries 10
2.1 Meta-Computational Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Projections and Single-Gate Circuits . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Auxiliary-Input One-Way Functions . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Useful Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Relativized Worlds Separating Variants of MCSP 14
3.1 search-MCSP vs. MCSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 MCSP[2δ1n] vs. MCSP[2δ2n] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3 MCSP[2δ1n] vs. MCSP[2δ2n], with Respect to Zero-Error Average-Case Complexity 21

4 A World Where GapMKtP Is Easy 23
4.1 Extension: A World Where K̃t Is Easy and EXP = ZPP . . . . . . . . . . . . . . 24
4.2 More on K̃t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5 Finding More Pessilands 26
5.1 The Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.2 Pessiland I: Ruling Out Natural Proofs . . . . . . . . . . . . . . . . . . . . . . . . 28
5.3 Pessiland II: MCSP Is Hard On Average . . . . . . . . . . . . . . . . . . . . . . . 29
5.4 Pessiland III: MINKT Is Hard On Average . . . . . . . . . . . . . . . . . . . . . . 32
5.5 Proof of Lemma 5.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.6 Proof of Lemma 5.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6 Limits of “Robust” Reductions to GapMINKT Oracles 36
6.1 NP-Intermediateness of GapMINKT under coNP-Turing Reductions . . . . . . . 37
6.2 Is GapMINKT the Hardest Problem in DistNP? . . . . . . . . . . . . . . . . . . . 39



1 Introduction

Meta-complexity refers to the complexity of computing complexity. A prominent example of a
meta-complexity problem is the Minimum Circuit Size Problem (MCSP): Given as input the
(length-2n) truth table of a function f : {0, 1}n → {0, 1}, output the size of the smallest circuit
that computes f . MCSP was recognized as a fundamental problem in the Soviet Union since
1950s [Tra84], and has received a lot of attention in the last two decades since the seminal
work of Kabanets and Cai [KC00]. Other examples include computing variants of Kolmogorov
complexity such as polynomial-time bounded Kolmogorov complexity and Levin’s time-bounded
Kolmogorov complexity Kt [Ko91,ABK+06]. Questions about the circuit size of Boolean func-
tions are closely related to Kolmogorov complexity and incompressibility, because a circuit is
essentially a compressed representation of the truth table of the function it computes.

There has been plenty of interplay between meta-complexity and other areas of complexity
theory such as average-case complexity [HS17,Hir18,Hir20a,Hir21], cryptography [RR97,LP20,
San20, RS21], learning theory [CIKK16,OS17] and pseudorandomness [KC00, ABK+06, OS17,
Hir20c].

We highlight a couple of recent breakthrough results. The first gives a non-black-box worst-
case to average-case reduction for a problem about Kolmogorov complexity (“GapMINKT”) that
many believe to be NP-hard.

Theorem 1.1 ([Hir18], building on [CIKK16]). There is a randomized polynomial-time worst-
case to average-case reduction for GapMINKT.

The second gives an equivalence between the existence of one-way functions and the bounded-
error average-case hardness over the uniform distribution of the functional version of MINKT.
This result characterizes the most fundamental primitive in cryptography by a notion in meta-
complexity.

Theorem 1.2 ([LP20]). One-way functions exist if and only if there is a polynomial p such that
the p(n)-time bounded Kolmogorov complexity of a string x of length n cannot be computed in
polynomial time on average, when x is chosen uniformly at random from n-bit strings.

Results such as these give hope for a rich theory connecting complexity lower bounds, meta-
complexity, average-case complexity, learning theory and cryptography, among other fields. How-
ever, despite much effort, many basic questions about meta-complexity remain elusive. In ad-
dition, the recent advances on meta-complexity also propose new questions, some of which are
seemingly beyond our reach. (See Section 1.1 for a sample of these questions.)

In this work, we seek a more fine-grained understanding of the current landscape of meta-
complexity by using the classical perspective of relativization [BGS75]. It is noteworthy that
Theorem 1.1 and Theorem 1.2 relativize. Of course, we need to be careful here to define what
relativization means, as the notion typically applies to complexity classes and not to compu-
tational problems. However, meta-computational problems do indeed have natural notions of
relativizations, where the algorithms solving the problem as well as the algorithms defining the
problem get access to the same oracle A. Results such as Theorem 1.1 and Theorem 1.2 use
techniques from the theory of pseudorandomness [NW94,IW01,TV07], which typically relativize,
and it is worth asking how much these techniques can achieve. Can they be used to solve the
major open problems in the area?

We give a largely negative answer to this question, by giving oracles relative to which many
of the questions in the area have answers opposite to what we expect. However, we do not nec-
essarily infer that there are fundamental barriers to solving the major open questions; we can
only say that new techniques will be required in many cases. Our perspective also contributes
to formulating new notions and questions which might still be approachable using current tech-
niques. We also note that there are some exciting recent works in meta-complexity by Ilango
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and others (e.g. [ILO20,Ila20a,Ila20b,Ila20c]) using gate elimination and related ideas. It is not
clear yet whether relativization is a barrier to these techniques.

1.1 Our Questions

We first introduce the questions with which we are concerned.

1.1.1 Easiness or Hardness of Meta-Complexity Problems

Arguably, the most important and fundamental problem about MCSP is whether MCSP is
easy or hard. Is MCSP in polynomial time, or if not, is MCSP NP-complete? It is reported in
[AKRR11,Lev] that Levin delayed the publication of his NP-completeness results [Lev73] because
he wanted to show NP-hardness for MCSP. A long line of research [KC00,MW17,HP15,HW16,
AH19, AIV19, SS20, Fu20] showed that the NP-completeness of MCSP implies breakthrough
results in complexity theory. For instance, if MCSP is NP-complete under polynomial-time
Karp reductions, then EXP 6= ZPP [MW17]. However, these results do not indicate whether
MCSP is or is not NP-complete; they merely suggest that this problem will be hard to solve.

Question 1.3. Is MCSP NP-complete under polynomial-time Karp reductions?

Just as with MCSP, it is open to show the NP-hardness of MINKT. A further motivation
for this problem is the recent “non-black-box” worst-case to average-case reduction for MINKT
[Hir18]. As a consequence, if GapMINKT is NP-hard, then the worst-case and average-case
complexities of NP are equivalent. As there are serious obstacles to showing the NP-completeness
of MINKT by “weak” reductions, [Hir18] proposed, as a weakening of Question 1.3, that MINKT
could be NP-hard via very powerful reductions:

Question 1.4. Is GapMINKT NP-hard under coNP/poly-Turing reductions?

In terms of unconditional lower bounds, there is an intriguing question about the meta-
complexity of Levin’s Kt complexity, raised in [ABK+06]. It is known that MKtP is EXP-
complete, but only under rather powerful reductions such as P/poly-truth-table reductions or
NP-Turing reductions. Therefore, it is reasonable to conjecture that MKtP is not in P. However,
the aforementioned reducibilities are too strong, so we cannot apply the time hierarchy theorem
directly to prove that MKtP 6∈ P. Still, it may be surprising that this problem has been open
for almost 20 years:1

Question 1.5. Is MKtP computable (or at least approximable) in polynomial-time?

(We note that a randomized version of MKtP, called MrKtP, is known to be not in BPP
unconditionally [Oli19].)

1.1.2 Structural Properties of Meta-Complexity Problems

Every NP-complete problem admits a search-to-decision reduction. For instance, given an oracle
that decides SAT, for every input formula ϕ that is satisfiable, we can find a satisfying assignment
of ϕ in polynomial time. However, it is unknown whether MCSP has this property.

Question 1.6. Does MCSP admit a search-to-decision reduction?

We remark that there has been some progress on Question 1.6: [CIKK16] showed that if
MCSP is in BPP, then a certain “weak” version of search-MCSP can be solved in probabilistic
polynomial time; [Ila20b] presented a “non-trivial” search-to-decision reduction for the problem
of minimizing formulas.

1The conference version of [ABK+06] was published in 2002.
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Another mystery about MCSP is whether its various parameterized versions are equivalent.
Specifically, let MCSP[s(n)] denote the problem that given a truth table of a function f :
{0, 1}n → {0, 1}, determine whether f can be computed by a circuit of size s(n). It is easy to
see that MCSP[2n/2] reduces to MCSP[2n/4],2 but the converse direction is unknown:

Question 1.7. Is MCSP[2n/4] reducible to MCSP[2n/2] under polynomial-time Karp reductions?

The average-case version of Question 1.7 is also open. It is observed in [HS17] that any
errorless heuristic for MCSP[2n/2] can be transformed into an errorless heuristic for MCSP[2n/4],
but the converse is unknown.

Question 1.8. If MCSP[2n/4] is easy on average, does this imply that MCSP[2n/2] is also easy
on average?

One drawback of the worst-case to average-case reduction of [Hir18] is that it only works
for zero-error average-case complexity. Ideally, we would like to establish a worst-case to two-
sided-error average-case reduction for MINKT. Can we extend the results in [Hir18] to the
two-sided-error setting?

Question 1.9. Is there a natural distribution such that, if MINKT is easy on this distribution
with two-sided error, then GapMINKT is solvable in the worst case? In particular, does the
uniform distribution satisfy the above condition?

1.1.3 Meta-Complexity, Average-Case Complexity and Cryptography

Some of the most compelling questions around meta-complexity relate to connections with
average-case complexity and cryptography. A partial converse of [Hir18] was established in
[Hir20c,Hir20a], where it was shown that if GapMINKTSAT ∈ P, then DistNP ⊆ AvgP, i.e. NP
is easy on average. Here GapMINKTSAT is the problem of determining the (time-bounded)
Kolmogorov complexity of a string with a SAT oracle. Based on this result, [Hir20a] character-
ized the average-case complexity of the polynomial hierarchy by the worst-case complexity of
meta-complexity. An important open question, a positive answer to which would imply a char-
acterization of the average-case complexity for NP, is whether the SAT oracle can be removed,
that is:

Question 1.10. Does GapMINKT ∈ P imply DistNP ⊆ AvgP?

There seems to be strong correspondences between the hardness of MCSP and problems in
cryptography. For example, if MCSP is easy, then one-way functions (OWFs) do not exist [RR97,
KC00]. Under the unproven Universality Conjecture, [San20] established the converse direction,
i.e. if MCSP is zero-error average-case hard, then OWFs exist. Of course, an unconditional
answer would be much more interesting:

Question 1.11. Can we base the existence of OWF from the nonexistence of natural proofs?

A recent exciting work [LP20] established the equivalence between the two-sided error average-
case hardness of MINKT and the existence of one-way functions. Given the result in [LP20], it
is perhaps natural to conjecture that GapMINKT ∈ CZK unconditionally, where CZK is the set
of languages with a computational zero-knowledge proof system [GMW91]. One could imagine
a win-win argument as follows: If MINKT is easy, then of course it is in CZK; on the other hand,
if MINKT is hard, then one-way functions exist, and by the result of [GMW91], every language
in NP is in CZK. However, there are some gaps between the “easy” and “hard” in the above
argument, as we do not know what happens if MINKT is only worst-case hard and one-way
functions do not exist.

2Given an input truth table f of length 2n, let f ′ be the concatenation of 2n copies of f , then f ′ : {0, 1}2n →
{0, 1} is a function that only depends on half of its input bits, and the circuit complexities of f and f ′ are exactly
the same. Therefore f ∈ MCSP[2n/2] if and only if f ′ ∈ MCSP[2n/4].
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Question 1.12. Does (some gap version of) MCSP or MINKT admit a computational zero
knowledge proof system?

1.2 Our Results

In this work, we investigate the above questions in the perspective of relativization.

1.2.1 Meta-Complexity Problems Are Not Robust in Relativized Worlds

In our first set of results, we present evidence for the following hypothesis: A slight change
in the definition of a meta-complexity problem could result in a completely different problem.
For example, we show that there are relativized worlds where MCSP is significantly easier than
search-MCSP, and relativized worlds where MCSP[2n/2] and MCSP[2n/4] have dramatically
different complexities.

Theorem 1.13 (Informal version). For each of the following items, there is a relativized world
where it becomes true.

• MCSP ∈ P, but search-MCSP is very hard.

• MCSP[2n/2] ∈ P, but MCSP[2n/4] is very hard.

• MCSP[2n/4] admits a polynomial-time errorless heuristic, but MCSP[2n/2] does not.

As direct consequences of Theorem 1.13, we have the following nonreducibility results: For
example, unless nonrelativizing techniques are used, MCSP does not admit a search-to-decision
reduction, and MCSP[2n/4] does not reduce to MCSP[2n/2].

1.2.2 Barriers for Proving Hardness of Levin’s Complexity

Our second result concerns Question 1.5.

Theorem 1.14 (Informal version). There is a relativized world where Levin’s Kt complexity can
be (2 + ε)-approximated in polynomial time.

We note that Question 1.5 also appeared in a stronger form in literature. In particular,
let RKt be the set of strings x such that Kt(x) ≥ |x|/3, it is conjectured that any “dense
enough” subset of RKt is not in polynomial time. Our result shows that this conjecture needs
nonrelativizing techniques to prove.

Actually, our message is even stronger than the above statement of Theorem 1.14. We define
a nonstandard variant of Levin’s Kt complexity, and denote it as K̃t, such that K̃t approximates
Kt, i.e. for every string x, K̃t(x) ≤ Kt(x) ≤ (2 + o(1))K̃t(x). Then we construct a relativized
world where K̃t is computable in polynomial time exactly, and Theorem 1.14 follows directly.

However, non-relativizing techniques already play an important role in characterizing the
complexity of RKt. It was shown that any dense subset of RKt is EXP-complete under P/poly-
truth-table reductions and NP-Turing reductions [ABK+06], and these results use the non-
relativizing “instance checkers” for EXP-complete problems [BFL91,BFNW93]. An algebrization
barrier would be more satisfying for showing limitations of such techniques. However, we could
not extend our oracle world to an algebrizing one in the sense of either [AW09], [IKK09], or
[AB18].

Nevertheless, we managed to construct an oracle world where K̃t is computable in polynomial
time, and EXP = ZPP holds simultaneously.

Theorem 1.15. There is a relativized world where K̃t complexity is computable in deterministic
polynomial time, and EXP = ZPP.
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In this world, EXP-complete problems have trivial instance checkers, since they are in ZPP.
We also get some other non-relativizing theorems such as IP = PSPACE for free, since PSPACE ⊆
EXP = ZPP ⊆ IP. As a result, we cannot prove that K̃t is not in polynomial time, even if we
combine IP = PSPACE or the instance checkers for EXP-complete problems with relativizing
techniques. We believe that this oracle world serves as a “fundamental obstacle” ([ABK+06]) to
proving MKtP 6∈ P.

We think our new complexity measure K̃t is of independent interest. Understanding K̃t
using nonrelativizing techniques may serve as the first step towards solving Question 1.5.

1.2.3 Natural Proofs Versus Cryptography

Our third set of results is motivated by Question 1.11. Under the so-called “Universality Con-
jecture”, [San20] answered Question 1.11 affirmatively, i.e. the non-existence of natural proofs
is equivalent to the existence of one-way functions. In contrast, we show that the answer of
Question 1.11 is false in some relativized world, establishing a barrier for constructing one-way
functions from nonexistence of natural proofs. We can even rule out auxiliary-input one-way
functions (a primitive weaker than one-way functions) in our world.

Consequently, the Universality Conjecture fails in this world. As we will discuss in Sec-
tion 1.3.3, in this world, the Universality Conjecture actually fails in a very intuitive way.

Theorem 1.16 (informal version). There is a relativized world where P/poly-natural properties
useful against SIZE[2δn] do not exist, and auxiliary-input one-way functions do not exist either.

The non-existence of natural proofs corresponds to the zero-error average-case hardness of
MCSP [HS17]. We also extend our results by showing a relativized world where MCSP or
MINKT is hard even for two-sided error heuristics.

Theorem 1.17 (informal version). There is a relativized world where GapMCSP is hard on
average under some samplable distribution, and auxiliary-input one-way functions do not exist.

Theorem 1.18 (informal version). There is a relativized world where GapMINKT is hard on
average under some samplable distribution, and auxiliary-input one-way functions do not exist.

Besides Question 1.11, we also show the following consequences based on our relativized
worlds:

(Question 1.9) Extending the results in [Hir18] to the bounded-error case requires nonrelativiz-
ing techniques, if the underlying distribution for MINKT is still the uniform distribution.
(This is because [LP20] showed the equivalence between the existence of one-way functions
and the bounded-error average-case hardness of MINKT under the uniform distribution.)

(Question 1.12) It requires nonrelativizing techniques to show that GapMINKT ∈ CZK, or even
that GapMINKT can be solved on average by a CZK protocol, on infinitely many input
lengths. This is because [OW93] showed that if auxiliary-input one-way functions do not
exist, then CZK = BPP.

Note that the proof that if one-way functions exist then NP ⊆ CZK [GMW91] is already
nonrelativizing. On the other hand, we show that basing GapMINKT ∈ CZK on the
nonexistence of one-way functions also requires a nonrelativizing proof.

1.2.4 Limits of GapMINKT as an Oracle

We also present technical barriers for showing stronger reductions to the GapMINKT oracle,
such as coNP-Turing reductions or P/poly-Turing reductions.

We view (Turing) reductions to a promise problem L = (L.Yes, L.No) as machines that
interact with an (adversarial) oracle, and tries to solve a problem L′. We say a reduction is

5



robust, if it works even if the adversary is inconsistent on queries not in the promise. That is,
on queries outside (L.Yes∪L.No), the adversary can sometimes return 0 and sometimes return
1. Furthermore, the adversary is allowed to see the input of L′ or the nondeterministic branch
the reduction is running on, and decide whether to return 0 or 1 accordingly.

We show that a reduction that is both robust and relativizing cannot solve Question 1.10 or
(a harder version of) Question 1.4. However, as the requirement of robust reductions seem very
strong, we mainly treat these results as technical barriers rather than conceptual barriers. It is
also worth mentioning that we use the “Gap” in GapMINKT in a very crucial way.

Theorem 1.19 (informal version). Each of the following items cannot be proved by a reduction
that is both robust and relativizing.

• Either GapMINKT ∈ coNP, or GapMINKT is NP-complete under coNP-Turing reduc-
tions.

• Every problem in DistNP admits a polynomial-size two-sided error heuristic with GapMINKT
oracles.

We did not manage to prove non-hardness results under coNP/poly-Turing reductions, as
mentioned in Question 1.4. We leave it as an open problem.

Open Problem 1.20. Is there a relativized world where GapMINKT 6∈ coNP/poly, and GapMINKT
is not NP-complete under robust coNP/poly-Turing reductions?

1.3 Technical Overview

1.3.1 Meta-Complexity Problems Are Not Robust in Relativized Worlds

We briefly discuss the proof techniques of the first bullet of Theorem 1.13 here, i.e. there is an
oracle world such that MCSP is easy but search-MCSP is hard. The framework for the other
two bullets will be similar.

Making MCSP easy. We can add an MCSP oracle in our oracle world, but the circuit mini-
mization problem in our world becomes MCSPMCSP. Then we also need to add an MCSPMCSP

oracle, but again, the circuit minimization problem becomes MCSPMCSPMCSP
now. Therefore,

a natural approach is to add the “limit” of

MCSPMCSPMCSP...

into our oracle world. Indeed, this is what we do: We add an oracle itrMCSP (which stands for
“iterated MCSP”) into our world, such that (roughly speaking)

itrMCSP[k, x, s] = MCSPMCSPMCSP...︸ ︷︷ ︸
iterate k times

[x, s].

(Recall that MCSPO[x, s] = 1 if and only if in the oracle world with oracle O, the circuit
complexity of the truth table x is at most s.)

In our world, MCSP is indeed easy. Actually, let x be a truth table of length 2n, then the
circuit complexity of x is at most s in our world if and only if itrMCSP[2n, x, s] = 1.

Making search-MCSP hard. We define an oracleO that diagonalizes against every polynomial-
time Turing machineM , and define itrMCSP relative toO. (That is, for example, itrMCSP[1, x, s] =

MCSPO[x, s] and itrMCSP[2, x, s] = MCSPMCSPO [x, s].) For every Turing machine M , we find
a large enough integer N and a hard truth table xhard of length poly(N). Then we feed xhard
to M . How we answer the O queries of M is not important, but each time M makes a query
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itrMCSP[k, x, s], we pretend x has the lowest possible circuit complexity, and answer this query
accordingly.

To be more precise, we fix the oracle O up to input length N − 1 before we simulate M on
input xhard. This has the effect that for every integer k, truth table x, and parameter s ≤ N −1,
we already know whether itrMCSP[k, x, s] = 1 regardless of how we fix the rest of O; see
Claim 3.3. Then upon every query itrMCSP[k, x, s], if s ≤ N − 1 we already know how to reply
it; otherwise we simply reply 1.

At last, for every query itrMCSP[k, x, s] where s ≥ N and we returned 1, we need to put
the truth table x in the length-N slice of O so that its circuit complexity is indeed at most N .
Since M only runs in polynomial time, and only probes very few positions of O, we can indeed
put it somewhere in O without letting M notice. We do not need to care about the parameter
k here, as MCSP[x,N ] = 1 implies itrMCSP[k, x,N ] = 1 for every k.3 To diagonalize against
M , we also put xhard into the length-N slice of O, but in a place that M did not probe at all.
In this way, we can guarantee that there is a size-N circuit for xhard, but M fails to find it.

1.3.2 Barriers for Proving Hardness of Levin’s Complexity

We first define the complexity K̃t. For a string x, let K̃t(x) denote the minimum possible value
of |M |+ blog tc, where after we run the machine M on the empty input for t steps, the content
of some tape ofM is exactly x. The difference between Kt and K̃t is that in the definition of Kt,
we require M to halt after outputting x; while in the definition of K̃t, x can be an intermediate
step of the computation.

A fixed-point oracle. Our approach will be to find a “fixed-point” of K̃t: an oracle O such
that O[x] = K̃t

O
(x) for every string x. Then, in the world with oracle O, we can compute K̃t(x)

by simply calling O[x].
We proceed in stages, and in stage n, we fix the strings that have K̃t complexity exactly

n. We enumerate every (M, t) such that |M | + blog tc = n, and run M for t steps. For every
intermediate tape content x, if O[x] is not fixed yet, then we fix O[x] = n. A natural problem
is: how to respond to the O queries made by M? The answer is surprisingly simple: for every
query O[y] that M makes, we already have K̃t(y) ≤ n by definition, so if O[y] is not fixed to a
value smaller than n yet, then we can return O[y] = n confidently! It is not hard to show that
the oracle O is indeed a “fixed-point” of K̃t.

Achieving EXP = ZPP. It is also simple to achieve EXP = ZPP in the above oracle. To
simulate exponential time, we give the zero-error probabilistic polynomial-time machine a “cheat”
oracle Cheat that embeds the truth tables of a certain EXP-complete problem. It is natural to
choose the EXP-complete problem as

L = {(M, t) : M on empty input outputs 1 in time t},

since we can construct O and obtain the truth tables of L at the same time. We can reply
arbitrarily when M queries the Cheat oracle.

Now we have a “fixed-point” oracle O such that O[x] = K̃t
O,Cheat

(x) for every x. We also
have a length-2n truth table (of L), which we want to “embed” into Cheat. We can simply embed
it into the length-3n (say) slice of Cheat, as there are still many empty slots not asked in the
construction of O. Actually, the number of empty slots is so large (around 23n − 2npoly(n))
that we can embed it “everywhere we can”. A ZPP algorithm can simply guess a pointer in the
length-3n slice of Cheat, and it will likely point to the truth table of L.

3This depends on the low-level definition of itrMCSP, but it is true for our Definition 3.2.
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1.3.3 Natural Proofs Versus Cryptography

We only discuss how we prove Theorem 1.16. Our starting point is an oracle world in [Wee06,
Section 5], in which there is a hard-on-average problem but no auxiliary-input one-way functions.
Given a function f : {0, 1}n → {0, 1}n, chosen uniformly at random, the world consists of two
oracles: A PSPACE-complete oracle, and an “verification” oracle for f :

Vf [x, y] =

{
1 if f(x) = y,

0 otherwise.

Inverting auxiliary-input one-way functions. We use essentially the same argument as
in [Wee06]. Roughly speaking, given any circuit C of size s, it is possible to “eliminate” every
Vf gate in C, and obtain a circuit C ′ of size poly(s), such that C and C ′ agree on a 1 − 1/s
fraction of inputs, but C ′ does not use Vf at all. This is because Vf behaves like an oracle that
is both random and sparse. Therefore, for each Vf gate, we only need to store its answers to the
inputs that appear frequently, and Vf is likely zero on other inputs.

Now, given any circuit C, we want to “invert” C, i.e. given C(z) for a uniformly random
input z, output any string in C−1(C(z)). We simply find a circuit C ′ that is close to C, uses no
Vf gates, and is only polynomially larger than C. Then we use the PSPACE-complete oracle to
invert C ′.

Ruling out natural proofs. It suffices to show there is a succinct pseudorandom distribution,
i.e. a distribution D over truth tables with small circuits, such that D is indistinguishable from
the uniform distribution by small circuits. (Actually, this approach is inspired by recent circuit
lower bounds [HS17,CKLM20] for MCSP.)

Let D be any distribution over poly(s) strings, that fools PSPACE-oracle circuits of size s.
The existence of D can be proven by the probabilistic method. For each x ∈ {0, 1}O(log s), let
Dx be the x-th truth table in D. We “embed” Dx into the oracle Vf [x, f(x)], as follows:

Vf [x, y, β] =

{
Dx[β] if f(x) = y,

⊥ otherwise.

Here, Dx[β] is the β-th bit of Dx. Now we have artificially made D a succinct distribution: the
circuit complexity of every string in D is small. We also need to prove D is pseudorandom, i.e. it
fools every size so(1) circuit. For every circuit C with Vf gates and PSPACE gates, we use the
same method as above to eliminate every Vf gate in C, to obtain a circuit C ′ that is close to C.
Note that the distribution under which we measure the closeness of C and C ′ is a hybrid of D
and the uniform distribution. After that, we can use the fact that D fools C ′ to also show that
D fools C, therefore C cannot be a natural proof.

How did the Universality Conjecture fail? The Universality Conjecture of [San20] roughly
says that if there are succinct pseudorandom distributions, then there are efficiently samplable
succinct pseudorandom distributions. However, in our oracle world, the succinct pseudorandom
distribution D does not appear to be efficiently samplable: to sample from D, it seems that we
need be able to compute f , which is hard when f is a random function.

1.3.4 Limits of GapMINKT as an Oracle

At the core of our proofs is the following weakness of GapMINKT: It may hide a small change of
the oracle. In particular, suppose we have two oracles O and O′, such that they only differ at one
input, then the “Gap” in GapMINKT allows us to choose an instantiation of GapMINKT that
is both consistent with GapMINKTO and GapMINKTO

′
. (See Lemma 6.2.) This instantiation
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of GapMINKT would not help the reduction distinguish between O and O′ at all; however, an
NP problem on O and O′ may have very different answers.

NP-intermediateness under coNP-Turing reductions. It is not hard to construct a rel-
ativized world where GapMINKT 6∈ coNP (see, e.g. [Ko91, Theorem 4.1]). For the “non-
completeness” part, we construct a diagonalizing oracle O such that there is no robust reduction
from the NP problem

L = {0n : O ∩ {0, 1}n 6= ∅}

to GapMINKT. On input length N , we construct a GapMINKT oracle that is both consistent
with “O∩{0, 1}N = ∅” and “|O∩{0, 1}N | = 1”. This oracle does not reveal whether 0N ∈ L, and
we can still use the standard method to diagonalize against every co-nondeterministic Turing
machine. In particular, we run this machine and reply 0 to all its queries to O. If it rejects some
branch, we put a string of length N that is not probed in this branch into O; otherwise we do
nothing.

Non-DistNP-hardness under P/poly-Turing reductions. [GGKT05] showed that a random
permutation π : {0, 1}n → {0, 1}n cannot be computed on average by circuits of size 2o(n), even
with a verification oracle

Π[α, β] =

{
1 if π(α) = β,

0 otherwise.

We show the same thing for (robust) circuits with Π and GapMINKT oracle gates. To over-
simplify, the argument boils down to the following task: Given an input α, a circuit C that
computes π correctly on α, and every value {π(β)}β 6=α, recover π(α). Without GapMINKT
gates, it suffices to use log |C| bits to store a number k, such that on input α, the k-th Π gate
of C contains the correct answer π(α). (For comparison, the trivial solution needs to record
n� log |C| bits.)

Now, the circuit C has GapMINKT gates, and it is robust in the sense that CΠ,B(α) = π(α)
for every oracle B consistent with GapMINKT. Now we let B′ be the MINKT oracle in the
world where Π[α, π(α)] = 0, and other entries of Π are not changed. As the new oracle Π does
not depend on π(α) at all, we can simulate CΠ,B′(α) without knowing π(α). On the other hand,
we only modified one entry in Π, therefore B′ is still consistent with GapMINKT. We still record
the number k defined above for the simulation CΠ,B′(α), which suffices to recover π(α).

1.4 Related Works

In the paper that defined MINKT, Ko [Ko91] studied the properties of MINKT in relativized
worlds. Among other results, [Ko91] showed that there is a relativized world where MINKT
is neither in coNP, nor NP-complete under polynomial-time Turing reductions. This result
indicates that the MINKT counterpart of Question 1.3 cannot be shown affirmatively using
relativizing techniques. Also, [Ko91] constructed a relativized world where NP 6= coNP, but
MINKT is NP-complete under coNP-Turing reductions (“≤SNP

T -reductions”). This leads to the
conjecture [Ko91,Hir18] that MINKT might be NP-complete under coNP-Turing reductions in
the unrelativized world (Question 1.4).

Our results in Section 5 build upon the results of Wee [Wee06]. The motivation of [Wee06]
was to show that a certain cryptographic object (succinct noninteractive argument, SNARG)
does not imply one-way functions in a relativizing way. The framework of [Wee06] was very
helpful for us, as we also need to rule out (auxiliary-input) one-way functions. Moreover, it
turns out that the SNARG constructed in [Wee06, Section 4] can be transformed into hardness
of MCSP (Section 5.3)!
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We also mention the negative results of Hirahara and Watanabe [HW16] that has a different
but similar setting compared to ours. In particular, they consider reductions to MCSP (in the
unrelativized world) that are oracle-independent, i.e. work for MCSPA for every oracle A. Two
particular results in [HW16] are that deterministic oracle-independent reductions cannot reduce
problems outside P to MCSP, and that randomized oracle-independent reductions that only
make one query cannot reduce problems outside AM∩coAM to MCSP. As discussed in [HW16],
the difference between relativization and their model is that in the relativized world with A
oracle, a Turing reduction has access to not only MCSPA but also A itself; however in their
model, the reduction does not have access to A.

2 Preliminaries

In this paper, logarithms are base 2 by default. We use boldface letters such as x,y, z to denote
random variables. Let D be a distribution, then x ← D means that x is a random variable
drawn from the distribution D. Un denotes the uniform distribution over {0, 1}n.

We assume familiarity with the basic complexity classes, including NP, coNP, P/poly, ZPP,
EXP, etc. A good reference for these complexity classes can be found in [AB09, Gol08]. A
distributional problem (L,D) is a pair of a problem L and a distribution ensemble {Dn}n∈N,
where each Dn is a distribution over the length-n inputs. DistNP is the class of distributional
problems (L,D) where L ∈ NP and D is efficiently samplable. (That is, there is a randomized
algorithm that given input 1n, outputs a string distributed according to Dn.) AvgP is the class of
distributional problems (L,D) that admits polynomial-time errorless heuristics. (That is, there
is a polynomial-time algorithm that on input (x, 1δ

−1
), outputs either L(x) or “don’t know”, such

that the probability that it outputs “don’t know” on a random input x← Dn is at most δ.)
In oracle worlds, the size of a circuit is defined as the number of wires in this circuit [Wil85].

There can be NOT gates on each wire of the circuit, and we do not count them into circuit
complexity.

Let f : {0, 1}n → {0, 1} be a function, we denote CC(f) as the circuit complexity of f ,
i.e. the size of the smallest circuit computing f . For oracles O1,O2, . . . ,Ok, let CCO1,O2,...,Ok(f)
denote the circuit complexity of f , where the circuit has access to O1,O2, . . . ,Ok oracle gates
of any fanin. We do not distinguish between a function and its truth table, so given a truth
table x of length 2n, CC(x) is the circuit complexity of (the function with truth table) x, and
CCO1,O2,...,Ok(x) is the circuit complexity of x with oracles O1,O2, . . . ,Ok.

Let O : {0, 1}? → {0, 1} be an oracle, we say the length-n slice of O is the function O :
{0, 1}n → {0, 1}, i.e. O restricted on length-n inputs.

We make the following assumptions in our model of oracle Turing machines. Suppose there
is an oracle Turing machine with time complexity t and space complexity s, then:

• the total length of queries made to the oracles is at most t, and

• every query that the machine makes are of length at most s.

Note that this assumption is natural only when s is greater than the input length, which will
always be the case in this paper.4

2.1 Meta-Computational Problems

The meta-computational problems we deal with in this paper are the Minimum Circuit Size
Problem (MCSP, [KC00]), the Minimum Kt Problem (MKtP, [Lev84,ABK+06]), and the min-

4When s = o(n), it is sometimes problematic to assume that an oracle Turing machine with space complexity
s can only make queries of length at most s. For example, consider a logspace Turing reduction that shows a
certain problem L is P-complete. On input length n, this reduction needs to make oracle queries to L with length
nΩ(1).
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imum time-bounded Kolmogorov complexity problem (MINKT, [Ko91]).

2.1.1 Minimum Circuit Size Problem

Definition 2.1 (Minimum Circuit Size Problem). The Minimum Circuit Size Problem (MCSP)
is defined as follows:

• Input: a truth table x of length 2n (that corresponds to a function over n input bits), and
a size parameter s.

• Output: 1 if CC(x) ≤ s, and 0 otherwise.

We will also consider the parameterized version of MCSP.

Definition 2.2 (Parameterized Minimum Circuit Size Problem). Let s : N → R be a size
function, the problem MCSP[s(n)] is defined as follows:

• Input: a truth table x of length 2n.

• Output: 1 if CC(x) ≤ s(n), and 0 otherwise.

For MCSP, we maintain the convention that N is the length of the input truth table, n is
the arity of input function f : {0, 1}n → {0, 1}, and N = 2n.

2.1.2 Minimum Kt Problem

Definition 2.3 (Levin’s Kt Complexity). Let x be a binary string, we define Kt(x) to be the
smallest value of |M |+blog tc, over all machinesM and integers t such that on the empty input,
M outputs x in t steps.

Definition 2.4 (Minimum Kt Complexity Problem). The Minimum Kt Problem (MKtP) is
defined as follows:

• Input: a binary string x and an integer k.

• Output: 1 if Kt(x) ≤ k, and 0 otherwise.

2.1.3 Minimum Time-Bounded Kolmogorov Complexity Problem

Definition 2.5 (Time-Bounded Kolmogorov Complexity). Let x be a binary string and t ≥ |x|
be an integer. We define the t-time-bounded Kolmogorov complexity of x, denoted as Kt(x), to
be the length of the shortest program that outputs x in time t.

Definition 2.6 (Minimum Time-Bounded Kolmogorov Complexity Problem). The Minimum
Time-Bounded Kolmogorov Complexity Problem (MINKT) is defined as follows:

• Input: a binary string x, and two integers s and t in unary. (That is, (x, 1s, 1t).)

• Output: 1 if Kt(x) ≤ s, and 0 otherwise.

2.1.4 Natural Proofs and Average-Case Complexity of MCSP

We also define natural proofs [RR97], which correspond to zero-error average-case heuristics
for MCSP [HS17] under the uniform distribution. We will use the terms “natural proof” and
“natural property” interchangeably.
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Definition 2.7 (Natural Proofs). Let D be a complexity class (such as P or P/poly), 0 < δ(N) <
1 be a density parameter, and s(n) be a size parameter. A D-natural property with density δ(N)
that is useful against SIZE[s(n)] is an algorithm P, whose inputs are truth tables of size N = 2n,
such that:

(Constructivity) P can be implemented in complexity class D;

(Largeness) P accepts at least a δ(N) fraction of length-N truth tables; and

(Usefulness) P rejects every truth table of length N that has circuit complexity at most s(n).

For example, a P-natural property P useful against SIZE[2εn] is simply a one-sided error
heuristic for MCSP[2εn] under the uniform distribution: P is allowed to err on a 1 − δ(N)
fraction of inputs by recognizing a hard truth table as “easy”, but it is not allowed to recognize
any easy truth table as “hard”.

Since the fraction of truth tables that are easy is very small, [HS17] observed that natural
proofs also correspond to zero-error average-case heuristics for MCSP, under the uniform distri-
bution. For example, a P-natural property P useful against SIZE[2εn] can be seen as a zero-error
heuristic for MCSP[2εn], that outputs “hard” on the truth tables it accepts, and outputs “don’t
know” on the truth tables it rejects. The converse is also true: a zero-error heuristic A for
MCSP[2εn] can be transformed into a P-natural property, by accepting every truth table that A
outputs “hard”, and rejecting every truth table that A outputs either “easy” or “don’t know”.

In this paper, when we discuss about zero-error average-case complexity for MCSP, unless
stated otherwise, we will assume the underlying distribution is the uniform distribution. As
argued in [HS17], it is very natural to characterize the zero-error average-case complexity of
parameterized MCSP (i.e. MCSP[s(n)] for a function s(·)) under the uniform distribution.

2.2 Projections and Single-Gate Circuits

A projection is a (multi-output) function where every output bit depends on at most one input
bit. For example, if the projection receives n input bits, denoted as x1, x2, . . . , xn, then every
output bit of the projection is in

{0, 1} ∪ {x1, x2, . . . , xn} ∪ {¬x1,¬x2, . . . ,¬xn}. (1)

In Section 3, We will frequently consider single-gate circuits, i.e. oracle circuits with only one
oracle gate. Let n be the number of input bits, s be the circuit complexity, O be the length-s slice
of the oracle, then we can specify a single-gate circuit C by a projection proj : {0, 1}n → {0, 1}s,
and a bit b ∈ {0, 1}. More precisely, for every x ∈ {0, 1}n,

C(x) = O(proj(x))⊕ b.

We use the following fact regarding the number of single-gate circuits:

Fact 2.8. Let O be an oracle, and n, s be integers. The number of different n-input size-s
single-O-gate circuits is exactly (2n+ 2)s · 2.

Proof Sketch. By Eq. (1), there are 2n + 2 choices for each output bit of proj; there are two
choices for b.

2.3 Auxiliary-Input One-Way Functions

In this paper, we only consider the weakest definition of auxiliary-input one-way functions
(AIOWFs) in [OW93,Vad06], where for every adversary A, there are infinitely many auxiliary-
inputs I (possibly depending on A) on which A fails to invert. We will rule out AIOWFs in
Section 5, so considering the weakest definition makes our results stronger.
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Definition 2.9. An auxiliary-input one-way function is a collection of functions {fx : {0, 1}p(|x|) →
{0, 1}q(|x|)}x∈{0,1}? , where p(·), q(·) are polynomials, such that

(Easy to compute) There is a polynomial-time algorithm F that given inputs x ∈ {0, 1}?, y ∈
{0, 1}p(|x|), outputs fx(y).

(Hard to invert) For every polynomial-time adversary A, there is a negligible function µ (that
is, µ(n) < 1

nω(1) ), and an infinite set I ⊆ {0, 1}?, such that for every x ∈ I,

Pr
y←Up(|x|)

[A(x, fx(y)) ∈ f−1
x (fx(y))] < µ(|x|).

In Section 5, we will construct relativized worlds without AIOWFs. To prove there are no
AIOWFs, it suffices to present a polynomial-time algorithm A that inverts every circuit.

Claim 2.10. Suppose there is a polynomial-time algorithm A such that for every circuit C :
{0, 1}p → {0, 1}q of size at most s,

Pr
y←Up

[A(C, 1s, C(y)) ∈ C−1(C(y))] ≥ 1−O(1/s).

Then there are no auxiliary-input one-way functions. The proof relativizes.

Proof Sketch. Consider a candidate auxiliary-input one-way function {fx}x∈{0,1}? , the follow-
ing adversary Af inverts {fx} on almost every string x: On input x, fx(y), it constructs a
polynomial-size circuit C that given y, computes fx(y), and then outputs A(C, 1|C|, fx(y)).

2.4 Useful Lemmas

Existence of hard strings. In our constructions we will frequently use hard truth tables. A
basic fact is that there are some (in fact, a lot of) truth tables that have large complexity.

Claim 2.11. Let k be a constant, O1,O2, . . . ,Ok be oracles. For every large enough integer s, let
n = dlog(3.1s log s)e, then there is a function f : {0, 1}n → {0, 1} such that CCO1,O2,...,Ok(f) > s.

Proof. We show that every circuit of wire complexity s can be encoded in (3 log s+ 1 + log(k+
2))s < 3.1s log s bits. For every gate, we use log(k + 2) bits to write its type (AND, OR, O1,
. . . , Ok). For every wire w, we use 3 log s+ 1 bits to write down four integers f, t, i, b, where w
is an output wire of f and the i-th input wire of t, and b is a bit indicating whether there is a
NOT gate on w. Therefore, there are less than 23.1s log s circuits with complexity s. Since there
are 22n ≥ 23.1s log s functions on n inputs, the claim is true.

Claim 2.12. Let O be any oracle, s, t be two integers. Then there is a string x of length s+ 1
such that Kt,O(x) > s.

Proof Sketch. The number of strings x such that Kt,O(x) ≤ s is at most
∑s

i=0 2i = 2s+1−1.

Kolmogorov-random infinite strings. Let x be a (finite) binary string, we let C(x) be the
length of the shortest program that outputs x on the empty input. (As opposed to the definition
of time-bounded Kolmogorov complexity or Kt complexity, we do not place any requirement on
the time needed to execute this program except that it is finite.) We also denote C(x | y) as the
length of the shortest program that outputs x, given the information y. We need the existence
of Kolmogorov-random infinite strings:

Theorem 2.13 ([LV08, Theorem 2.5.4]). There is an infinite binary string ω such that for
almost every integer n,

C(ω1∼n | n) ≥ n− 2 log n,

where ω1∼n is the first n bits of ω.
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These random infinite strings will be used to construct “probabilistic” oracle worlds. Suppose
we proved that some properties hold with high probability if our oracles are chosen in some
random way. Then, to rigorously instantiate one such oracle world, we use a Kolmogorov-
random infinite string ω as the “randomness” in our construction. We use the incompressibility
method to show that these properties continue to hold in our world based on ω: otherwise, we
can select an integer N and compress ω1∼N in less than N − 2 logN bits.

Goldreich-Levin theorem. Let x, y be two strings of length n. We denote their inner product
as 〈x, y〉, which is defined as 〈x, y〉 =

∑n
i=1 xi ·yi mod 2. We will use the famous Goldreich-Levin

theorem:

Theorem 2.14 ([GL89]). Let ε > 0 be a parameter. For every string x ∈ {0, 1}n, let Ox be
an oracle such that Ox[r] = 〈x, r〉. There is an algorithm A such that, for every hidden input x
and every oracle Õ that (1/2 + ε)-approximates Ox, with probability at least 2/3, AÕ(1n, 1d1/εe)
outputs a list of O(n/ε2) strings one of which is equal to x. Moreover, A runs in time O(n3/ε4).

We will actually use the following corollary, that constructs a hard Boolean function from a
hard-to-compute permutation:

Corollary 2.15. Let ε > 0 be a parameter, π : {0, 1}n → {0, 1}n be a permutation, then the
following relativizes. Suppose that given α, β ∈ {0, 1}n, we can check whether π(α) = β in O(n)
size. Also suppose that no circuit of size s computes π successfully on an ε fraction of inputs.
Then the following problem Lhard is (1/2 + 2ε)-hard for circuits of size s

(n/ε)10 .

Lhard = {(α, r) : 〈π(α), r〉 = 1}.

Hoeffding bound. We also need the following bound:

Theorem 2.16 ([Hoe63]). Let x1,x2, . . . ,xn be independent random variables such that for
every 1 ≤ i ≤ n, we have ai ≤ xi ≤ bi. Let X =

∑n
i=1 xi, then for every t > 0, we have

Pr[X− E[X] ≥ t] ≤ e−2t2/
∑n
i=1(bi−ai)2

.

Miscellaneous. The following inequality will be useful.

Claim 2.17. Let k, n be integers such that 0 ≤ k < n/2, then log
(
n
k

)
≤ k(2− log(k/n)).

Proof Sketch. Let H(ε) = −(ε log ε+(1−ε) log(1−ε)) be the binary entropy function. The claim
is immediate from the following inequalities: log

(
n
k

)
≤ H(k/n)n and H(ε) < ε log(4/ε).

3 Relativized Worlds Separating Variants of MCSP

In this section, we show relativized worlds that support the following claim: A slight change in
the definition of a meta-complexity problem often results in a completely different problem. In
particular, we will prove the following theorem, where in each sub-section of this section, we will
prove one bullet of the theorem.

Theorem 3.1. For each of the following items, there is a relativized world where it becomes
true.

• MCSP is in linear time, but search-MCSP requires 2Ω(N/ logN) time to solve.

• Let 0 < δ1 < δ2 < 1 be two constants such that 1/δ1 − 1/δ2 > 1. MCSP[2δ2n] is in linear
time, but MCSP[2δ1n] requires 2N

δ1/Nω(1) time to solve.

• Let 0 < δ1 < δ2 < 1 be two constants. MCSP[2δ1n] admits a polynomial-time errorless
heuristic, but any errorless heuristic for MCSP[2δ2n] requires 2N

δ2/Nω(1) time.
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3.1 search-MCSP vs. MCSP

In this section, we construct a relativized world where MCSP is computable in linear time, but
search-MCSP requires 2Ω(N/ logN) time to solve.

Our world consists of two oracles: O and itrMCSP. Here, O is a carefully constructed
oracle that diagonalizes against every 20.01N/ logN -time Turing machine that attempts to solve
search-MCSP, and itrMCSP is an “iterated MCSP” oracle defined as follows.

Definition 3.2. The oracle itrMCSP receives three inputs: a nonnegative integer k which is
the “iteration number”, a truth table x, and a size parameter s. Its output is 1 if and only if
there is a circuit C of size at most s such that the following are true.

• The circuit C has oracle access to O and itrMCSP.

• The truth table of C is x.

• On every input to C, the iteration number (i.e. the first input parameter) of every call to
itrMCSP is at most k − 1. (In particular, if k = 0, then we do not allow oracle access to
itrMCSP.)

Given the oracle itrMCSP, it is easy to see that MCSP has a linear-time algorithm. (Recall
that in this oracle world, MCSP[x, s] = 1 if and only if there is a circuit of size s with access
to oracles O and itrMCSP, whose truth table is x.) Let x be a truth table of length N , and
C be the optimal circuit for computing x. It is easy to see that |C| ≤ N , therefore whenever
C makes any call to itrMCSP, the iteration number it feeds to itrMCSP is at most 2N − 1. It
follows that MCSP[x, s] should return 1 if and only if itrMCSP[2N , x, s] = 1. Therefore MCSP
has a linear-time algorithm.

Now we need to show that search-MCSP is hard. Let {Mi}i∈N be an enumeration of all
Turing machines that run in 20.01N/ logN time. We proceed in stages, and diagonalize against
one machine in each stage.5 At the end of stage i, there will be an input length Ni such that
every input to O with length at most Ni is fixed, i.e. we have decided whether O[x] = 1 for every
string x of length at most Ni.

We can see that O and itrMCSP are well-define oracles: For every string x, let i be the first
stage such that Ni ≥ |x|, then O[x] is defined in stage i. Moreover, by Definition 3.2, itrMCSP
is completely determined by O.

Actually, we claim that after we fixed every input to O with length at most Ni, the portion
of itrMCSP with circuit complexity at most Ni is already determined.

Claim 3.3. Let k ≥ 0 and s ∈ [0, Ni] be integers, and x be a truth table. After stage i,
itrMCSP[k, x, s] is already determined by the slices of O on input lengths at most Ni.

Proof. We proceed by induction on k. We will use k = −1 as the base case of the induction,
where the claim is vacuously true. Now suppose for every integer 0 ≤ k′ ≤ k−1, every truth table
x′ and every size parameter s′ ≤ Ni, we have already determined itrMCSP[k′, x′, s′]. Consider
a truth table x and a size parameter s ≤ Ni.

Let C be any oracle circuit of size at most s, that has access to O and itrMCSP oracles.
Suppose that for every invocation of itrMCSP[k′, x′, s′] on every possible input of C, we have
0 ≤ k′ < k; and the truth table of C is x. Since s ≤ Ni, every oracle gate in C has fanin at most
Ni. Consider an oracle gate g ∈ C:

• Suppose g is an O gate. As the behavior of O on every input of length at most Ni is fixed,
the behavior of g is fixed.

5We assume that each machine M appears in the list {Mi} infinitely many times, therefore no such machine
can solve search-MCSP on all but finitely many inputs. We also implicitly make this assumption in the subsequent
sections.
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• Suppose g is an itrMCSP gate. For every input (k′, x′, s′) that g may receive, we have
k′ < k and |x′| ≤ Ni. If s′ ≤ Ni, then by induction hypothesis, itrMCSP[k′, x′, s′] is
already fixed. If s′ > Ni, then s′ > |x′|, so itrMCSP[k′, x′, s′] is fixed to 1.

Therefore, the behavior of every circuit C of size at most Ni is fixed, as long as the iteration
number k′ of every possible invocation of itrMCSP by C is at most k − 1. It follows that
itrMCSP[k, x, s] is also fixed.

For each integer i ≥ 0, we will diagonalize against Mi in stage i + 1, as follows. Let Ñ be
the smallest power of 2 that is greater than 4Ni logNi, and xhard be a truth table of length Ñ
that is “complex enough”. (We will discuss how to choose xhard later; we guarantee that before
stage i+ 1, the circuit complexity of xhard is greater than Ni.) We run the machine Mi on input
xhard.

• Whenever Mi makes a query O[x], if O[x] is already fixed then we return O[x]; otherwise
we fix O[x] to be 0.

• Whenever Mi makes a query itrMCSP[k, x, s], if s ≤ Ni then we return the already deter-
mined value itrMCSP[k, x, s] by Claim 3.3; otherwise we return 1, indicating the circuit
complexity of x is at most s.

MachineMi runs in 20.01Ñ/ log Ñ < 20.09Ni time, and outputs an oracle circuit C that attempts
to compute xhard. We will set the oracle O such that the final circuit complexity of xhard will be
exactly Ni + 1, so we may assume that the size of C is exactly Ni + 1. We simulate the circuit
C on every input in {0, 1}log Ñ , and use exactly the same method as before to answer its queries
to O or itrMCSP. (That is, every query O[x] not fixed so far is fixed to be 0, and every query
itrMCSP[k, x, s] such that s > Ni is fixed to be 1.)

• Let QO be the set of queries made by either Mi or C to O, whose lengths are at least
Ni + 1. These are the queries to O that we have already fixed to 0.

• Let QitrMCSP be the set of truth tables in each query made by either Mi or C to itrMCSP,
whose circuit complexity parameter s is at least Ni + 1. We need to “embed” every truth
table in QitrMCSP into O such that they can be computed by a single-O-gate circuit with
fanin Ni + 1. We also require that the circuit complexity of xhard is exactly Ni + 1; we
simply add xhard into the set QitrMCSP.

Every truth table in QitrMCSP has length at most 20.09Ni . Now we “embed” them into O as
follows. For every truth table x ∈ QitrMCSP, we have CCO,itrMCSP(x) ≥ Ni+1, and we want that
its circuit complexity is exactly Ni + 1. We assign a distinct “prefix” pfxx of length 0.91Ni + 1
to this query. For every 0 ≤ j < |x|, we set

O[pfxx ◦ j ◦ 0Ni+1−|pfxx|−log |x|] = xj , ∀j ∈ {0, 1}log |x|. (2)

Here, ◦ denotes string concatenation operator, and j is interpreted as both an integer in [0, |x|)
and a string of length log |x|. We can see that the length of pfxx ◦ j ◦0Ni+1−|pfxx|−log |x| is exactly
Ni + 1.

Eq. (2) gives a circuit of size Ni + 1 (on input j) whose truth table is x, so the circuit
complexity of x is indeed Ni + 1. Finally, note that any string of length 0.91Ni + 1 that is
not a prefix of any string in QO can be a valid prefix pfxx. As |QO| ≤ 20.09Ni , there are
20.91Ni+1 − |QO| � 20.09Ni ≥ |QitrMCSP| such prefixes, so we can indeed assign a distinct prefix
to every truth table in QitrMCSP.

We have fixed the answer of some inputs of O, either in QO, or by Eq. (2). (And the length
of every such input is greater than Ni.) We define Ni+1 to be the maximum length of these
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inputs. Finally, every input to O with length in [Ni + 1, Ni+1] that is not fixed yet are fixed
arbitrarily. This completes the description of stage i+ 1.

Now we prove thatMi does not compute search-MCSP correctly on input xhard, for a suitably
chosen xhard. We define two oracles O? and itrMCSP? that simulate our strategy of answering
queries:

• For any input x, if |x| ≤ Ni then define O?[x] = O[x]; otherwise define O?[x] = 0.

• For any input (k, x, s), if s ≤ Ni then define itrMCSP?[k, x, s] = itrMCSP[k, x, s]; other-
wise define itrMCSP?[k, x, s] = 1.

Let xhard be any truth table of length Ñ ≥ 4Ni logNi such that CCO
?,itrMCSP?(xhard) ≥ Ni+2.

The existence of xhard is guaranteed by Claim 2.11. It is easy to see that if we choose xhard in
this way, Mi indeed fails to solve search-MCSP on input xhard. Actually, let C be the output of
Mi on input xhard. If |C| 6= Ni + 1, then clearly Mi is incorrect. If |C| = Ni + 1, then C does
not distinguish between (O, itrMCSP) and (O?, itrMCSP?). However, by the choice of xhard, we
have that CCO

?,itrMCSP?(xhard) ≥ Ni + 2, so xhard cannot be the truth table of C, thus Mi is still
incorrect.

The search version of GapMCSP is hard for deterministic algorithms. Actually, we
can also show that relativizing techniques do not suffice to show deterministic search-to-decision
reductions for MCSP, even if the search algorithm is allowed to only provide an approximately
smallest circuit. Actually, we can make the inapproximability gap very large: ω(n) vs. 2n/4n. In
contrast, such an approximate-search-to-decision reduction is already known in [CIKK16,Hir18,
San20], if we allow randomized solutions.

Theorem 3.4. For every constant c ≥ 2, there are oracles O, itrMCSP such that the following
hold.

• MCSPO,itrMCSP can be solved in linear time with an itrMCSP oracle.

• For every Turing machine M that runs in N c time, there is a truth table x of length
N = 2n and circuit complexity CCO,itrMCSP(x) ≤ 4cn, such that M on input x does not
output an (O, itrMCSP)-oracle circuit of size 2n/4n that computes x.

Proof Sketch. We adapt the above construction. In particular, the stage i+ 1 is as follows.
First, let Ñ = 2b(0.3/c)Nic, and xhard be a truth table of length Ñ such that CCO

?,itrMCSP?(xhard) >
Ñ/4 log Ñ . Again, by Claim 2.11, such a truth table xhard exists. We feed xhard to the machine
Mi, and whenever it asks queries to O or itrMCSP, we reply with O? or itrMCSP? instead.
Then Mi outputs a circuit C of size at most Ñ/4 log Ñ attempting to compute xhard.

Let T = Ñ c, then Mi makes at most T queries to the oracles (O and itrMCSP). As c ≥ 2,
the circuit C on all of its possible inputs also makes at most T queries to the oracles in total.

Now, we have 2T queries to O that are fixed to be 0, and 2T+1 truth tables (including xhard)
queried to itrMCSP, each of length at most T , which we want to embed into the length-(Ni+ 1)
slice of O. Since T ≤ 20.3Ni , this is possible. Let n = log Ñ , then we have CCO,itrMCSP(xhard) ≤
4cn, but the size-2n/4n circuit outputted by Mi does not compute xhard.

3.2 MCSP[2δ1n] vs. MCSP[2δ2n]

Let 0 < δ1 < δ2 < 1 be two constants such that 1/δ1− 1/δ2 > 1. The main result in this section
is an oracle relative to which MCSP[2δ1n] requires 2N

δ1/Nω(1) time to solve, but MCSP[2δ2n]
can be computed in linear time. Note that in any relativized world, MCSP[2δ1n] can always be
solved in 2Õ(Nδ1 ) time by brute force, so our result is nearly tight.
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As the same in Section 3.1, we provide two oracles O and itrMCSP. The first oracle O
will be constructed by careful diagonalization, and the second oracle itrMCSP is an “iterated”
version of MCSP[2δ2n]. More precisely:

Definition 3.5. The oracle itrMCSP receives two inputs: a nonnegative integer k which is the
“iteration number”, and a truth table x. Its output is 1 if and only if there is a circuit C of size
at most b|x|δ2c such that the following are true.

• The circuit C has oracle access to O and itrMCSP.

• The truth table of C is x.

• On every input to C, the iteration number (i.e. the first input parameter) of every call to
itrMCSP is at most k − 1. (In particular, if k = 0, then we do not allow oracle access to
itrMCSP.)

Again, itrMCSP is completely determined by O.
The same reasoning as in Section 3.1 shows that MCSP[2δ2n] is in linear time. So our task

is to carefully design the oracle O such that MCSP[2δ1n] is hard.
Let {Mi}i∈N be an enumeration of Turing machines running in 2N

δ1/Nω(1) time. We proceed
in stages, where at the end of stage i, there is a number Ni such that every input to O of length
at most Ni is fixed. Initially we set N0 to be a large enough constant, and (arbitrarily) fix every
input of length at most N0.

We diagonalize against Mi in stage i + 1. Every input to O of length Ni is already fixed,
and by the same reasoning as in Claim 3.3, for every integer k and every truth table x with
b|x|δ2c ≤ Ni, we can answer itrMCSP[k, x] with certainty. Therefore, we will call the following
queries “fixed”: every query to O with length at most Ni, and every query (k, x) to itrMCSP
where b|x|δ2c ≤ Ni.

In contrast to Section 3.1, we will show how to choose the hard input xhard at first, and then
diagonalize against Mi.

Let Nshort be the unique power of 2 such that b(Nshort)
δ2c = Ni+1. If Nshort does not exist or

is not unique, we increase Ni until there is a power of 2 in the interval [(Ni+1)1/δ2 , (Ni+2)1/δ2).
(When we increase Ni, we fix the length-Ni slice of O arbitrarily.) Let Nlong be the smallest
power of 2 such that b(Nlong)δ1c ≥ Ni + 1. As δ1 < δ2 and Ni is large enough, we have that
Nshort < Nlong.

Choosing the input xhard. Roughly speaking, we will feed a truth table xhard of length Nlong

to Mi, and the truth table in every “meaningful” query that Mi asks to itrMCSP has length
Nshort.

Let xhard be a truth table of length Nlong that satisfies the following two properties:

• If the only oracle gates we use are O gates of fanin at most Ni, and itrMCSP oracle gates
of fanin at most Ni + 1, then the circuit complexity of xhard is at least Ni + 2.

• xhard is a function that depends on all (logNlong) input bits.

The proof of Claim 2.11 can be adapted to show that a 1−o(1) fraction of length-Nlong truth
tables satisfy the first bullet. Also, a 1 − o(1) fraction of length-Nlong truth tables satisfy the
second bullet. Therefore there exists a suitable xhard.

Our plan is to run Mi on the input xhard, and trick Mi into incorrectly deciding whether the
circuit complexity of xhard is at most Ni+1. By the choice of xhard, we can see that if the circuit
complexity of xhard is at most Ni + 1, then its complexity is exactly Ni + 1, and it is computed
by a single-O-gate circuit. That is, there is a projection proj : {0, 1}logNlong → {0, 1}Ni+1 and a
bit b, such that for every j ∈ {0, 1}logNlong ,

(xhard)j = O[proj(j)]⊕ b.
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Recall that xhard is the truth table of a function that depends on all input bits. This means
that proj also has to depend on all input bits (of j). As proj is a projection, it is also an
injection. In the rest of this sub-section, we will implicitly assume every projection we consider
is an injection.

A noise function Onoise. Before runningMi on the input xhard, we need to construct a “noise”
function, which is a partial function Onoise on length-(Ni+1) inputs. Denote S as the domain of
Onoise, then every input in {0, 1}Ni+1 is in S with probability pnoise = 1/Nshort independently. If
an input x is in S, then the value of Onoise[x] is either 0 or 1 with equal probability independently.

In the following lemmas, we will show that with high probability, Onoise “kills” any single-
gate circuit trying to compute the length-Nlong truth table xhard, but leaves plenty room for
embedding truth tables of length Nshort.

Lemma 3.6. With probability 1−o(1), any oracle consistent with Onoise cannot “compute” xhard
by a single-gate circuit. More precisely, for every projection proj : {0, 1}logNlong → {0, 1}Ni+1 and
bit b ∈ {0, 1}, there is some j ∈ {0, 1}logNlong such that proj(j) ∈ S, but (xhard)j 6= Onoise[proj(j)]⊕
b.

Proof. For a single-gate circuit corresponding to the projection proj and the bit b, the probability
that it remains “intact”, i.e. the above j does not exist, is at most (1−pnoise/2)Nlong . By Fact 2.8,
there are at most 2 · (2 logNlong + 2)Ni+1 such single-gate circuits. By a union bound, the
probability that xhard is computed by some single-gate circuit is at most

2 · (2 logNlong + 2)Ni+1 · (1− pnoise/2)Nlong

≤ 2 · eO(Ni log logNlong) · (1/e)Nlong/2Nshort

≤ exp(O(Ni log logNlong)− Ω(Nlong/Nshort))

≤ exp
(
O(Ni log logNi)− Ω(N

1/δ1−1/δ2
i )

)
= o(1). (recall 1/δ1 − 1/δ2 > 1)

Let pfx be a string of length Ni + 1 − logNshort. For every string j ∈ {0, 1}logNshort , recall
that pfx ◦ j is the length-(Ni + 1) string obtained by concatenating pfx and j. We say pfx is a
good prefix, if every string of the form pfx ◦ j is not in S. (That is, we can safely “embed” any
length-Nshort truth table in the size-Nshort subcube indexed by pfx.)

Lemma 3.7. With probability 1− o(1), there are at least Ω(2Ni/Nshort) good prefixes pfx.

Proof. Suppose Nshort is large enough, then any fixed prefix pfx is good with probability

(1− pnoise)Nshort = (1− 1/Nshort)
Nshort > 0.36.

Since whether a prefix pfx is good is independent from all other prefixes, the lemma follows from
Chernoff bound.

At the beginning of stage i + 1, after choosing the input xhard ∈ {0, 1}Nlong , we will choose
Onoise such that the conclusions of both Lemma 3.6 and 3.7 hold.

Completing stage i+ 1. We run Mi on input xhard. The time complexity of Mi is at most

2(Nlong)δ1/(Nlong)ω(1) ≤ 2Ni/N
ω(1)
i .

Recall that the following queries are already “fixed”: every query to O with length at most
Ni, and every query (k, x) to itrMCSP with b|x|δ2c ≤ Ni. Each time Mi asks a query q, if it is
“fixed”, then we return the fixed value. Otherwise, if q is asked to O, and q ∈ S (which implies
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|q| = Ni + 1), then we answer Onoise[q]. Otherwise, no matter which oracle q is asked to, we
answer 1.

Machine Mi asked some queries (k, x) to itrMCSP that are not fixed. Let Quseful be the
set of those truth tables x such that |x| = Nshort (i.e. b|x|δ2c = Ni + 1), and Quseless be the
rest truth tables, i.e. those with b|x|δ2c ≥ Ni + 2. Recall that we answered 1 on every query
x ∈ Quseful ∪Quseless, so we need to ensure that the circuit complexity of x is at most b|x|δ2c.

Embedding useless truth tables. We first embed every truth table x ∈ Quseless into the
length-b|x|δ2c slice of O. These queries are “useless” as they will not influence the length (Ni+1)
slice of O, and thus will not influence the circuit complexity of xhard. Now we process the truth
tables x ∈ Quseless one by one. Let nx = b|x|δ2c. We assign a prefix pfxx of length nx+2− log |x|
to x, and embed x into O as

O[pfxx ◦ j] = xj ,∀j ∈ {0, 1}log |x|.

Every prefix pfxx of length nx + 2− log |x| is valid, unless

(a) pfxx is the prefix of some string queried by Mi to the length-nx slice of O, or

(b) pfxx = pfxx′ , where x′ is a truth table in Quseless processed before x, and nx′ = nx.

Let T = 2Ni/N
ω(1)
i be the time complexity of Mi. Each prefix satisfying (a) or (b) corre-

sponds to a query made by Mi which has length Ω(|x|), therefore the number of such prefixes is
at most O(T/|x|). We still have

2nx+2−log |x| −O(T/|x|) ≥ 2Ni/|x| − 2Ni/(Nω(1)|x|)� 1

valid prefixes, and we can pick an arbitrary one as pfxx. We can see that the circuit complexity
of every truth table x ∈ Quseless is at most b|x|δ2c.

Embedding useful truth tables. Now we embed every truth table in Quseful into the length-
(Ni + 1) slice of O. There are two cases depending on the output of Mi on input xhard.

Case I: Mi outputs 0 on xhard. In this case, to make Mi wrong, we want that the circuit
complexity of xhard is at most Ni + 1.

Let QO be the set of queries asked by Mi to the length-(Ni + 1) slice of O. Then |QO| ≤
2Ni/N

ω(1)
i . Our oracle O needs to be consistent with our responses on QO.

We first embed xhard into the length-(Ni + 1) slice of O. We pick any string pfxxhard of
length Ni + 1 − logNlong such that pfxxhard is not the prefix of any string in QO. As |QO| <
2Ni+1/10N

1/δ1
i ≤ 2Ni+1−logNlong , this is possible. Then we embed xhard into O: we set

O[pfxxhard ◦ j] = (xhard)j ,∀j ∈ {0, 1}logNlong .

We also need to embed every truth table in Quseful into O. For every such truth table
x ∈ {0, 1}Nshort , we find a (distinct) prefix string pfxx of length Ni + 1− logNshort, and set

O[pfxx ◦ j] = xj ,∀j ∈ {0, 1}logNshort .

Of course, we can use prefixes pfxx only if (1) pfxx is not the prefix of any string in QO, and (2)
pfxxhard is not a prefix of pfxx. The number of available prefixes is at least

2Ni+1−logNshort − |QO| −
Nlong

Nshort
≥ Ω(2Ni/Nshort),

which is greater than |Quseful| ≤ 2Ni/N
ω(1)
i . Therefore we can assign one prefix to each truth

table x ∈ Quseful.
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Case II: Mi outputs 1 on xhard. In this case, we want the circuit complexity of xhard to
be at least Ni + 2. By the choice of xhard, it suffices to construct the length-(Ni + 1) slice of O
such that any single-O-gate circuit of size Ni + 1 cannot compute xhard.

Our oracle O will be consistent with Onoise, thus by Lemma 3.6, the circuit complexity of
xhard is indeed greater than Ni + 1. Again, for every truth table x ∈ Quseful, we assign it a prefix
pfxx of length Ni + 1− logNshort, and set

O[pfxx ◦ j] = xj ,∀j ∈ {0, 1}logNshort .

By Lemma 3.7, there are Ω(2Ni/Nshort) good prefixes. Some of them are prefixes of strings
in QO, therefore we cannot use these strings. There are still

Ω(2Ni/Nshort)− |QO| = Ω(2Ni/Nshort) ≥ |Quseful|

prefixes we can use, therefore we can also embed every truth table in Quseful into the oracle O.

Finale. Let Ni+1 be the length of the longest currently-fixed input in O. We fix every unfixed
input of length at most Ni+1 in O arbitrarily, and conclude stage (i + 1). We can see that Mi

does not compute MCSP[2δ1n] on input length Nlong.

3.3 MCSP[2δ1n] vs. MCSP[2δ2n], with Respect to Zero-Error Average-Case Com-
plexity

Let 0 < δ1 < δ2 < 1 be two constants. With respect to zero-error average-case complexity,
it is easy to see that MCSP[2δ1n] is no harder than MCSP[2δ2n] [HS17]: Any algorithm that
solves MCSP[2δ2n] on average automatically solves MCSP[2δ1n] on average. In this section, we
construct a relativized world such that there is a linear-time zero-error average-case heuristic for
MCSP[2δ1n], but any zero-error average-case heuristic for MCSP[2δ2n] requires 2N

δ2/Nω(1) time.
Actually, there will be no useful property against SIZE[2δ2n] that is constructive in 2N

δ2/Nω(1)

time (regardless of density)! Again, our result is nearly tight: the brute force algorithm can
solve MCSP[2δ2n] in 2Õ(Nδ2 ) time in the worst case, in any relativized world.

Like Section 3.1, this world also contains two oracles: O and itrMCSP. However, the dif-
ference is that there is a (hidden) subset of strings Corrupt that plays a role in the defini-
tion of itrMCSP. This set is sparse: for every length N , there are at most o(2N ) strings in
Corrupt ∩ {0, 1}N . The precise definition of itrMCSP is as follows:

Definition 3.8. The oracle itrMCSP receives two inputs: a nonnegative integer k which is the
“iteration number”, and a truth table x. If x ∈ Corrupt, then itrMCSP outputs 1. Otherwise, it
outputs 1 if and only if there is a circuit C of size at most b|x|δ1c with O and itrMCSP gates
whose truth table is x, such that on every invocation of itrMCSP on every possible input of C,
the iteration number (i.e. the first input parameter) is at most k − 1. (In particular, if k = 0,
then we do not allow oracle access to itrMCSP.)

We can see that itrMCSP is completely determined by O and Corrupt. We can also con-
struct a linear time algorithm that solves MCSP[2δ1n] on average: On input x ∈ {0, 1}N , if
itrMCSP[2N , x] = 1, the algorithm outputs “easy”; otherwise it outputs “hard”. First, the prob-
ability that the algorithm outputs “hard” on a uniformly random input is at least

1− o(1)− |Corrupt ∩ {0, 1}
N |

2N
≥ 1− o(1).

Second, for any string x such that CCO,itrMCSP(x) ≤ b|x|δ1c, by definition of itrMCSP, the
algorithm will output “easy”.
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Now we need to construct O and Corrupt carefully to diagonalize against every candidate
constructive property against SIZE[2δ2n]. Let {Mi}i∈N be an enumeration of Turing machines
that run in 2N

δ2/Nω(1) time. Again, our construction proceeds in stages. At the end of each
stage (say stage i), there will be finitely many inputs to O that are fixed, and finitely many
strings that are in Corrupt. We define Ni to be the smallest integer such that both of the
following hold:

• Every fixed input to O has length at most Ni.

• Let Nlong be the largest power of 2 such that b(Nlong)δ1c ≤ Ni, then every string in Corrupt
has length at most Nlong.

At the beginning of stage i+ 1, we fix every input to O with length at most Ni. Also, every
string of length at most Nlong that are not in Corrupt yet will never be in Corrupt. By the same
reasoning as Claim 3.3, every query itrMCSP[k, x] with |x| ≤ Nlong (i.e. b|x|δ1c ≤ Ni) are fixed.

Now we describe stage i+ 1, in which we diagonalize against Mi. Let Nshort be the smallest
power of 2 such that b(Nshort)

δ2c ≥ Ni + 1. For every input x ∈ {0, 1}Nshort , we run Mi on input
x.

• Whenever Mi asks a query O[x], if O[x] is already fixed then we return O[x]; otherwise
we return and fix O[x] to be 0.

• Whenever Mi asks a query itrMCSP[k, x], if |x| ≤ Nlong, then we return the already-fixed
itrMCSP[k, x]; otherwise we return 1.

During these 2Nshort invocations, Mi asked at most 2Nshort+(Nshort)
δ2 queries (k, x) to the

itrMCSP oracle. For every queried truth table x, if |x| > Nlong, then we add x into Corrupt. It
is easy to see that Corrupt is still a sparse set. Actually, since δ2 > δ1, for every input length
` > Nlong,

|Corrupt ∩ {0, 1}`|
2`

≤ 2Nshort+(Nshort)
δ2

2Nlong
=

2
O
(
N

1/δ2
i

)
2

Ω
(
N

1/δ1
i

) = o(1).

(Note that we have not added any string of length ` to Corrupt in previous stages; every such
string is added in the current stage.)

Suppose Mi outputs “easy” on every input. Then we immediately finish stage i + 1. We
can see that Mi cannot be a constructive property against SIZE[2δ2n], since it outputs “easy” on
every input of length Nshort.

Now suppose Mi outputs “hard” on some input x ∈ {0, 1}Nshort . We run Mi on x, and let QO
be the set of all queries made to O with length exactly Ni + 1, during the execution of Mi(x).
We will “embed” x into the length-(Ni+1) slice of O, such that CCO(x) ≤ Ni+1 ≤ b(Nshort)

δ2c.
Note that this would affect the execution of Mi on other inputs than x, but as Mi already
outputs “hard” on the easy input x, it is not a constructive property against SIZE[2δ2n] anyway.
Since Mi runs in 2(Nshort)

δ2/(Nshort)
ω(1) < 2Ni−log |Nshort| time, we have |QO| < 2Ni+1−log |Nshort|.

Fix an arbitrary prefix pfx of length Ni + 1 − log |Nshort| which is not a prefix of any string in
QO, and embed x as follows:

O[pfx ◦ j] = xj ,∀j ∈ {0, 1}logNshort .

We can finish stage i+1 now. As Mi outputs “hard” on the easy input x, it is not a constructive
property.

We have the following corollary that in some relativized worlds, the worst-case complexity
and average-case complexity of MCSP[2εn] can be very different:
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Corollary 3.9. Let 0 < ε < 1/2 be a constant. Then there is an oracle relative to which
MCSP[2εn] has a linear time zero-error heuristic, but the same problem MCSP[2εn] cannot be
solved deterministically in 2N

ε
/Nω(1) time in the worst case.

Proof. Consider the oracle in which MCSP[2εn] has a linear time zero-error heuristic, but there
is no useful property against SIZE[22εn] that is constructive in 2N

2ε
/Nω(1) time. Suppose, for

the sake of contradiction, that MCSP[2εn] can be solved in 2N
ε
/Nω(1) time in the worst case.

Let x be a length-N input to MCSP[22εn], and y be the concatenation of N copies of x.
Since the truth table y only depends on its last logN bits, we have CC(y) = CC(x). Therefore

y ∈ MCSP[2εn] ⇐⇒ CC(y) ≤ (N2)ε ⇐⇒ CC(x) ≤ N2ε ⇐⇒ x ∈ MCSP[22εn].

That is, using the algorithm for MCSP[2εn], we can solve MCSP[22εn] in the worst case in
2N

2ε
/Nω(1) time, which implies a (pretty dense) natural property against SIZE[22εn].

4 A World Where GapMKtP Is Easy

In this section, we construct a relativized world where Levin’s Kt complexity can be approx-
imated within a multiplicative factor of 2 + o(1) in linear time. Actually, we will introduce a
non-standard variant of Kt complexity, which we call K̃t, such that K̃t is computable exactly in
linear time, and for every string x, K̃t(x) ≤ Kt(x) ≤ (2 + o(1))K̃t(x). By the properties of K̃t,
it follows directly that the Kt complexity is easy to (2 + o(1))-approximate in this relativized
world.

The computational model we consider is Turing machines with (say) 3 working tapes. In
oracle worlds, one of these tapes is a query tape. For every oracle O in the oracle world, the
Turing machine has two special states: a query state sOquery and a state sOafterquery indicating a
query has just finished. Upon entering sOquery, we will treat the content of the query tape as the
query to O. After one step, the content of the query tape becomes the answer to this query, and
we enter the state sOafterquery.

For a string x, we define K̃t(x) to be the minimum of |M |+ blog tc over all Turing machine
M and time bound t, where after running M for t steps, the content of some tape is exactly x.
Note that we do not require M to terminate after t steps, which is the difference between our
definition of K̃t and the standard definition of Kt.

We first show that K̃t approximates Kt well.

Lemma 4.1. For every string x, we have K̃t(x) ≤ Kt(x) ≤ (2 + o(1))K̃t(x).

Proof. It is easy to see that K̃t(x) ≤ Kt(x), so we proceed to show that Kt(x) ≤ (2+o(1))K̃t(x).
Suppose K̃t(x) = |M | + blog tc, where M is a Turing machine such that after running M for t
steps, the content of some tape is exactly x. We hardcode t into the machine M , and force M
to terminate in t steps (which costs log t description length). We also hardcode the index of the
tape of M that contains x (which only costs O(1) length), so upon termination M outputs the
contents on this tape. Thus we obtain a machine with description length |M |+ log t+O(1) that
terminates in O(t) steps, and has x as the output. It follows that

Kt(x) ≤ |M |+ log t+O(1) + logO(t)

≤ |M |+ 2 log t+O(1)

≤ (2 + o(1))K̃t(x).

It is easy to see that the above proof relativizes, i.e. for every oracle O, K̃t
O

(x) ≤ KtO(x) ≤
(2 + o(1))K̃t

O
(x).

Now we prove our main theorem.
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Theorem 4.2. There is an oracle O relative to which K̃t is computable in linear time.

Proof. We will construct a “fixed-point” oracle O such that for every string x, O[x] = K̃t
O

(x).
(That is, O[x] is exactly the K̃t complexity of x in a world with O itself as an oracle.)

The construction is divided into stages, and in stage n, we will fix every input on which O
outputs n. In this stage, we enumerate every pair (M, t) such that |M |+ blog tc = n. Then for
each such (M, t), we run M for t steps. Whenever it makes a query x to O, if we have already
fixed O[x], then we simply return O[x]; otherwise we fix O[x] = n and return n. Finally, for
each tape of M with content y, if O[y] is not fixed, then we fix O[y] = n.

First we show that for every string x, K̃t
O

(x) ≤ O[x]. Suppose O[x] = n is fixed when we
run the machine M with time bound t, then |M |+ blog tc = n. If x is an oracle query asked by
M at time t′, then K̃t

O
(x) ≤ |M | + blog t′c ≤ |M | + blog tc = n. On the other hand, if O[x] is

fixed when we finish running M , then we also have K̃t
O

(x) ≤ n.
Then we show that for every string x, O[x] ≤ K̃t

O
(x). Suppose that K̃t

O
(x) = n, as

witnessed by a Turing machine M and a time bound t where |M | + blog tc = n. Moreover, M
is a Turing machine such that after running M for t steps, the content of some tape is exactly
x. At stage n, after running M for t steps, if O[x] is not already fixed (to a potentially smaller
value), we will always set O[x] to be equal to n. Thus O[x] ≤ K̃t

O
(x).

4.1 Extension: A World Where K̃t Is Easy and EXP = ZPP

The proof that MKtP is EXP-complete under P/poly-truth-table reductions and NP-Turing re-
ductions [ABK+06] already uses non-relativizing techniques (namely, an EXP-complete problem
with instance checkers [BFL91,BFNW93]). Therefore, the current relativization barrier seems
unsatisfactory. A natural direction would be to present an algebrization barrier [AW09], but
currently we are unable to do so. Nevertheless, we show that there is a relativized world where
K̃t is computable in polynomial time, and EXP = ZPP.6

Our world has two oracles: O and Cheat. The oracle O will compute K̃t exactly, i.e. for
every string x, O[x] = K̃t

O,Cheat
(x). The oracle Cheat will help a ZPP machine (trying to solve

an EXP problem) to “cheat”, by storing the truth table of some EXP-complete problem.
We proceed in stages. Let n be a positive integer. In the n-th stage, we assume that every

input to Cheat with length at most 3(n− 1) are fixed. At the end of this stage, we will fix the
inputs to Cheat with length at most 3n, and potentially a few longer inputs. In this stage, we
examine every pair (M, t), whereM is a Turing machine, t is a time bound, and |M |+blog tc = n.
We run M for t steps.

• Each time M makes a query O[x], if O[x] is already fixed, then we return O[x]; otherwise,
we fix and return O[x] = n.

• Each time M makes a query Cheat[x], if Cheat[x] is already fixed, then we return Cheat[x];
otherwise we fix and return Cheat[x] = 0.

• Finally, for each tape of M at the t-th step, suppose its content is x, then we fix O[x] = n.

Now, the construction of oracle O in stage n is done. However, we still need to construct
the Cheat oracle, so that EXP = ZPP in our relativized world. This is done by filling the Cheat
oracle with a string ttn that captures the truth table of some E-complete problem.

The precise definition of ttn is as follows. Let 〈·, ·〉 be a bijection from the set of (M, t)’s such
that |M |+ blog tc = n to the set [n · 2n]. For example, let M be a length-` Turing machine, and

6We also point out that in the unrelativized world, EXP = ZPP if and only if RKt = {x : Kt(x) ≥ |x|/3} is in
ZPP (see [ABK+06]). The proof uses IP = PSPACE and thus does not relativize.
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t be an integer in [2n−`, 2n−`+1), then 〈M, t〉 = (`− 1) · 2n +M · 2n−` + (t− 2n−`), where M is
naturally interpreted as an integer in [0, 2`). For every (M, t) such that |M |+ blog tc = n, if M
outputs exactly one bit b after t steps, then the 〈M, t〉-th bit of ttn is b; otherwise the 〈M, t〉-th
bit of ttn is (say) 0. Finally, we artificially define the (n · 2n)-th bit of ttn as 1 (i.e. append a bit
1 to the end of ttn). By this definition, ttn is a string of length n · 2n + 1, and given access to
ttO(n), we can solve an E-complete problem on input length n easily.

Now we put ttn into the length-3n slice of the Cheat oracle. Before we do that, we argue
that we have enough space to put ttn (in fact, a lot of copies of ttn) into Cheat. Actually, in the
first n stages, we enumerate every (M, t) where M is a Turing machine, and |M |+ blog tc ≤ n.
These Turing machines make queries to Cheat; let Q3n be the set of all queries these machines
make to the 3n-th slice of Cheat. Then

|Q3n| ≤
∑

M :|M |≤n

2n−|M | =
n∑
`=1

2` · 2n−` = n · 2n.

Let pfx be any string (“prefix”) of length 3n− dlog(n · 2n + 1)e. We say pfx is clear if there
is no string q ∈ Q3n such that pfx is a prefix of q. The number of clear prefixes is at least
2|pfx| − n · 2n, since each string in Q3n only “kills” at most one prefix. For every clear prefix pfx,
and every index 0 ≤ j ≤ n · 2n, we fix

Cheat[pfx ◦ j] = (ttn)j , (3)

where pfx ◦ j is the concatenation of pfx and j, and j is interpreted as a string of length
dlog(n2n + 1)e.

Finally, for every input to Cheat that is currently unfixed and has length at most 3n, we fix
it to 0. Note that there is an easy way to distinguish whether a prefix pfx is clear or not: let
j = n · 2n + 1, then pfx is clear if and only if Cheat[pfx ◦ j] = 1. This is because 1) we artificially
appended a bit 1 to the end of ttn, and 2) every query in Q3n and every query not fixed by
Eq. (3) are fixed to 0. This concludes the description of stage n.

Now we prove the desired properties of this oracle world.

Lemma 4.3. For every string x, K̃t
O,Cheat

(x) = O[x].

Proof Sketch. We use the same proof as in Theorem 4.2. In particular, every time we fix a query
O[x] = n, we already have a “witness” that K̃t

O,Cheat
(x) ≤ n. On the other hand, every O[x] is

fixed when we run the optimal machine for x.

Lemma 4.4. EXPO,Cheat ⊆ ZPPCheat.

Proof. Let M be a Turing machine of length ` that outputs one bit in t = 2` steps. We want to
compute the output of M in ZPPCheat.

Let n = 2`. First, we sample a clear prefix pfx. Over all strings pfx of length 3n − dlog(n ·
2n + 1)e, there are only n · 2n prefixes that are not clear, so a vast majority of prefixes are clear.
To check whether pfx is a clear prefix, we let j = n ·2n+1, and check whether Cheat[pfx◦ j] = 1.
Therefore we can sample a clear prefix pfx in ZPP.

Then, by Eq. (3), the output of M is exactly Cheat[pfx ◦ 〈M, t〉]. Therefore, we can simulate
any EXPO,Cheat machine in ZPPCheat.

4.2 More on K̃t

We think the notion of K̃t complexity is of independent interest. In this section, we prove a
preliminary result and pose some open questions about K̃t.

First, a random string has high K̃t complexity.
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Fact 4.5. For every integer n, w.p. at least 1/2, a random string x of length n has K̃t complexity
at least n− log n− 1.

Proof. Let k = n− log n− 2, we use a counting argument to show that there are at most 2n/2

strings with K̃t complexity at most k. For every integer ` ∈ [1, k], there are 2` Turing machines
of description length `. Each of these Turing machines, when given 2k−`+1 time, can generate at
most 2k−`+1 strings. (Note that in each step, the content of only one tape may change.) Thus,
the number of strings with K̃t complexity at most k that are contributed by some length-`
Turing machine is at most

2` · 2k−`+1 ≤ 2k+1.

To upper bound the number of strings with K̃t complexity at most k, we sum over every possible
` ∈ [1, k]. Therefore, there are at most

2k+1 · k ≤ 2n−logn−1 · n ≤ 2n/2

strings with K̃t complexity at most k.

However, we do not know whether Fact 4.5 is tight.

Open Problem 4.6. Is Fact 4.5 tight? For large enough n, are there length-n strings with K̃t
complexity at least n− 100?

It seems that Kt and K̃t should be two completely different complexity measures. However,
we do not know whether they are provably different (in the unrelativized world).

Open Problem 4.7. Are there infinitely many strings x such that Kt(x) 6= K̃t(x)? We conjec-
ture the answer is yes, but we do not have a proof yet. A more difficult question would be: Is
there a long-enough string x such that Kt(x) ≥ 1.9K̃t(x)?

Finally, consider the oracle O constructed in the proof of Theorem 4.2. Is this oracle O the
same oracle as the unrelativized K̃t, or are they different functions? We conjecture they are
different, but be careful: this conjecture needs nonrelativizing techniques to prove!

Open Problem 4.8. Is the oracle O constructed in Theorem 4.2 different from the unrelativized
K̃t function?

5 Finding More Pessilands

The word Pessiland, coined by Impagliazzo [Imp95], refers to a world where NP contains a lan-
guage that is hard on average, yet no one-way functions exist. In this section, we present Pes-
silands where not only one-way functions, but also auxiliary-input one-way functions (AIOWF;
see Definition 2.9) do not exist. Moreover, meta-complexity problems are hard on average in
our Pessilands.

Theorem 5.1. For each of the following items, there is a relativized world where the item is
true, yet auxiliary-input one-way functions do not exist.

• Let δ ∈ (0, 1) be a constant. There is no SIZE[2o(N
δ)]-natural property that is useful against

SIZE[2δn] and has density 2−o(N
δ).

• There is a polynomial-time samplable distribution under which no circuit of 2o(N) size
solves MCSP with error probability < 0.01.

• There is a polynomial-time samplable distribution under which no circuit of 2o(N) size
solves MINKT with error probability < 0.01.

Our techniques build on the paper titled “Finding Pessilands” by [Wee06], hence we name
this section as “Finding More Pessilands”.
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5.1 The Construction

Our Pessilands follow the same template. We will have a “base oracle” Π, and an oracle fPSPACE
which is a PSPACEΠ-complete oracle. For example, fPSPACE may be the following oracle:

• Given a Turing machine M that has access to Π oracles, and an integer s represented in
unary, fPSPACE outputs 1 if M accepts the empty input within space complexity s, and
outputs 0 otherwise.

However, fPSPACE does not need to be exactly the problem above. For example, in Section 5.3,
we will add some padding to the fPSPACE oracle. What is important is that fPSPACE should be
PSPACEΠ-complete.

For every input length n, we also have a function fn : {0, 1}n → {0, 1}n. For intuition,
we can think of the functions {fn}n∈N as chosen uniformly at random. More precisely, we will
choose fn to satisfy the following constraint:

Constraint 5.2. For every integer s, conditioned on the oracles Π and fPSPACE on input lengths
at most s, the functions {fn}sn=1 cannot be described in less than N − 5 logN bits, where
N =

∑s
n=1 n2n.

We will also have an oracle Trapdoor, which receives three inputs x, y, β, where |x| = |y| = n
and |β| = dc log ne.7 (Here, c is a constant to be fixed.) The definition of Trapdoor is as follows:

• Given inputs x, y, β, if y 6= f|x|(x), we define Trapdoor[x, y, β] = ⊥; otherwise we define
Trapdoor[x, y, β] in some way, possibly depending on Π.

The above illustrates the basic framework of our Pessiland constructions. In this framework,
we have not specified the following items, and different specifications of these items lead to
different relativized worlds (many of which are Pessilands):

• The oracle Π.

• The exact definition of fPSPACE (we only need it to be PSPACEΠ-complete).

• The exact definition of Trapdoor[x, y, β] in case that y = f|x|(x). (Again, we stress that
this definition may depend on Π.)

Note that we do not take the functions {fn}n∈N into the “degree of freedom”: any choice of
{fn} satisfying Constraint 5.2 will work.

Even though the above items are not defined yet, we can already prove that there are no
auxiliary-input one-way functions in this oracle world, unless {fn} are not (Kolmogorov-)random.

The proof consists of two steps. In the first step, based on the (Kolmogorov-)randomness
of {fn}n∈N, we show that every circuit can be approximated by a slightly larger circuit without
Trapdoor gates. More precisely:

Lemma 5.3. Let s be an integer. For every circuit C : {0, 1}n → {0, 1}m of size s and every
distribution D over {0, 1}n that can be described in O(log n) bits, there is a circuit C ′ of poly(s)
size without Trapdoor gates, such that

Pr
z←D

[C(z) 6= C ′(z)] ≤ 1/s.

In the second step, we use the fPSPACE oracle and Lemma 5.3 to invert every AIOWF.
Roughly speaking, given a circuit C that implements a candidate OWF, we use Lemma 5.3
to find a circuit C ′ without Trapdoor gates that is close to C. Inverting C ′ can be done in
polynomial space with a Π oracle, therefore it can also be done in polynomial time with a
PSPACEΠ-complete oracle.

Lemma 5.4. There are no auxiliary-input one-way functions in our oracle worlds.

As the proofs are long and technical, we leave them in Section 5.5 and 5.6 respectively.
7The name “Trapdoor” will be justified in Section 5.3.
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5.2 Pessiland I: Ruling Out Natural Proofs

With the above framework, we can construct a relativized world where both AIOWFs and natural
proofs do not exist. We already ruled out AIOWFs in Lemma 5.4, and here we prove that our
world does not have SIZE[2o(N

δ)]-constructive natural proofs that is useful against SIZE[O(2δn)],
and has density 2−o(N

δ). Here we set c = 1/δ. (That is, for a valid input (x, y, β) to the Trapdoor
gate, we have |β| = dlog |x|/δe.)

Let Π = ∅ be a trivial oracle, and fPSPACE be the canonical PSPACE-complete oracle. We will
use a pseudorandom distribution to define Trapdoor[x, y, β] (for every y = f|x|(x)), as follows.

Consider a circuit C : {0, 1}n → {0, 1} and a parameter ε > 0, we say a multiset S ⊆ {0, 1}n
ε-fools C if ∣∣∣∣ Pr

x←S
[C(x) = 1]− Pr

x←Un
[C(x) = 1]

∣∣∣∣ ≤ ε.
Here, x← S means that x is drawn from the uniform distribution over (the multiset) S.

Now let N be a power of 2. A standard probabilistic argument (see, e.g. [Vad12, Proposition
7.8]) shows that there is a multiset S ⊆ {0, 1}N of size 24Nδ that (1/2N

δ
)-fools every circuit of

size 2N
δ with fPSPACE oracle gates. We define SN as the lexicographically smallest such multiset

(w.r.t. some encoding) of size exactly 24Nδ .
Now we can define Trapdoor[x, y, β]. For every N = 2n, integer x ∈ [0, 24Nδ

), and index
β ∈ {0, 1}n, we define Trapdoor[x, f|x|(x), β] as the β-th bit of the x-th string in SN . For all
other cases, we define Trapdoor[x, y, β] = ⊥. We can see that every string in SN has circuit
complexity at most O(N δ) in this world.

Theorem 5.5. In our Pessiland I, there are no SIZE[2o(N
δ)]-natural properties that is useful

against SIZE[O(2δn)] and has density 2−o(N
δ).

Proof. Let N = 2n and s = 2o(N
δ). Consider the following “hybrid” distribution Dhyb over

{0, 1}N : To sample from Dhyb, with probability 1/2 we sample a uniformly random string from
UN , and with probability 1/2 we sample a uniformly random string from SN . Let C be a circuit
of size s with fPSPACE and Trapdoor gates. Suppose C is a natural proof useful against SIZE[2δn].
Note that SN , thus Dhyb, can be described by O(logN) bits. By Lemma 5.3, there is a circuit
C ′ of size poly(s), that does not use Trapdoor gates, and satisfies

Pr
z←Dhyb

[C(z) 6= C ′(z)] ≤ 1/s.

By definition of Dhyb, we have

Pr
z←UN

[C(z) 6= C ′(z)] ≤ 2/s, and Pr
z←SN

[C(z) 6= C ′(z)] ≤ 2/s.

Now, for a distribution D and a circuit C?, let C?(D) denote the probability that C?(z) = 1
when z is sampled from D. Then we have

|C(UN )− C ′(UN )| ≤ 2/s, and |C(SN )− C ′(SN )| ≤ 2/s.

Since C ′ is a circuit of size 2o(N
δ) with only fPSPACE oracle gates, we have SN (1/s)-fools C ′.

This means
|C ′(UN )− C ′(SN )| ≤ 1/s.

It follows that
|C(UN )− C(SN )| ≤ 5/s.

However, since C is a natural proof useful against SIZE[O(2δn)], and every string in SN has
circuit complexity at most O(2δn), we have that C(SN ) = 0. It follows that C(UN ) ≤ 5/s,
contradicting the density of C.
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Finally, we use an incompressibility argument to instantiate our Pessiland I. Let ω be an
infinite binary string as in Theorem 2.13, such that for every large enough integer n, C(ω1∼n |
n) ≥ n − 2 log n. Let `n = n2n which is the number of bits needed to encode the function fn.
Let `≤n =

∑n
i=1 `i, and we define fn as the function decoded in some canonical way from

ω(`≤n−1+1)∼`≤n .

By definition of ω, Constraint 5.2 is satisfied. We have completed our description of Pes-
siland I by specifying {fn}n∈N, Π (an empty oracle), fPSPACE (a canonical PSPACE-complete
oracle), and Trapdoor[x, f|x|(x), β] (as above). By Lemma 5.4 and Theorem 5.5, there are nei-
ther AIOWFs nor natural proofs in our Pessiland I.

5.3 Pessiland II: MCSP Is Hard On Average

Our Pessiland II is a combination of the two Pessilands in [Wee06]. (Section 5.1 is adapted from
the second Pessiland of [Wee06], and we add some elements in the first Pessiland of [Wee06] in
this section.) We are able to show that MCSP is 0.01-hard under some samplable distribution.
(Note that in Pessiland I, MCSP is hard under the distribution Dhyb, but Dhyb is not necessarily
efficiently samplable.)

Let c be a very large constant (in the definition of Trapdoor). Besides the functions {fn}n∈N,
for every string y ∈ {0, 1}n, we will also have a permutation πy : {0, 1}dc logne → {0, 1}dc logne.
We can also think of each πy as independent and uniformly random variables; below is a rigorous
definition from Kolmogorov-randomness.

Definition 5.6. Again, let ω be an infinite binary string satisfying the promise of Theorem 2.13.
That is, for almost every integer n, C(ω1∼n | n) ≥ n− 2 log n. Let

`n = n2n + b2n log((2dc logne)!)c,

then we can encode the function fn and every permutation πy where y ∈ {0, 1}n in `n + 1 bits.
We will take some `n bits from ω and decode from it the pair

(
fn, {πy}y∈{0,1}n

)
. (We cannot

take `n + 1 bits from ω since some string of length `n + 1 may not correspond to any such
pairs; but taking `n bits is okay.) Fix an injection Decode that maps a string {0, 1}`n to a pair(
fn, {πy}y∈{0,1}n

)
, such that both Decode and its inverse Decode−1 are efficiently computable.

Let `≤n =
∑n

i=1 `i, then `≤n ≤ 3n for large enough n. We define(
fn, {πy}y∈{0,1}n

)
= Decode

(
ω(`≤n−1+1)∼`≤n

)
.

That is, we decode the function fn and permutations {πy}y∈{0,1}n from the corresponding seg-
ment of ω.

Oracles. Given {fn} and {πy}, we instantiate Pessiland II as follows:

• On inputs y and α, Π[y, α] returns πy(α).

• On inputs x ∈ {0, 1}n, y ∈ {0, 1}n, and β ∈ {0, 1}dc logne, if fn(x) = y, then Trapdoor[x, y, β] =
π−1
y (β); otherwise Trapdoor[x, y, β] = ⊥.

• We add suitable padding to the oracle fPSPACE, so it does not help too much for inverting
permutations πy. More precisely, this oracle receives inputs M, 1s and 1(|M |+s)c , where M
is a Turing machine with oracle access to Π (but not Trapdoor), and s is a space bound. It
returns 1 ifM accepts the empty input within space complexity s, and returns 0 otherwise.
(We emphasize that every query of M to Π also has length at most s.)
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(We call Trapdoor a “trapdoor” oracle because given a string y, if we know a “key” x such
that f|x|(x) = y, then the “trapdoor” oracle allows us to invert πy faster than brute force. Our
hardness result for MCSP will exploit this fact.)

We can see that Constraint 5.2 is satisfied. Indeed, suppose that conditioned on the oracles
Π and fPSPACE on input lengths at most s, we can describe {fn}sn=1 in less than N ′ − 5 logN ′

bits, where N ′ =
∑s

n=1 n2n. Now let N = `≤s, we can describe ω1∼N in less than N − 2 logN
bits, by writing down every {πy}|y|≤s in verbatim, and then compressing {fn}sn=1. (Note that
5 logN ′ > 2 logN .) This contradicts the Kolmogorov-randomness of ω, thus Constraint 5.2 is
satisfied.

Important problems. We define the following problems:

• Let Lhard = {y : ∃x, f|x|(x) = y}, then Lhard ∈ NP. (A valid witness for y ∈ Lhard would
be a pair of strings (x, β) such that Trapdoor[x, y, β] 6= ⊥.)

• Let GapApxδ(n)MCSP[a(n), b(n)] be the promise problem whose Yes instances are truth
tables with circuit complexity at most a(n), and No instances are truth tables that cannot
be δ(n)-approximated by size-b(n) circuits.

In this section, we show that Lhard cannot be solved by circuits of size 2o(n) with error 0.01
under the uniform distribution, and that Lhard Karp-reduces to MCSP. Actually, Lhard reduces
to the weaker problem

GapApx1/2+1/2n/100MCSP[O(2n/2c),Ω(2n/100)].

Therefore, MCSP is 0.01-hard for SIZE[2o(N)], under some samplable distribution.

Compressing a permutation by inverting it. Before we proceed, we need the following
lemma, and the fact that this lemma relativizes:

Lemma 5.7 ([GGKT05]). Let π : {0, 1}t → {0, 1}t be a permutation, A be a circuit that makes
q queries to π, and inverts π on an ε fraction of inputs. Then we can describe π in

2 log

(
2t

a

)
+ log((2t − a)!)

bits given A, where a = ε2t/(q + 1).

5.3.1 Reducing Lhard to GapApxMCSP

The reduction is simple. Given a length-n input y to Lhard, consider the function hy : {0, 1}dc logne×
{0, 1}dc logne → {0, 1}, where hy(β, r) is the inner product (over GF(2)) of π−1

y (β) and r. By
iterating through Π[y, ·], the truth table of hy can be computed in O(n2c) time.

If y ∈ Lhard, then hy has a circuit of size O(n). Indeed, suppose f(x) = y, then hy(β, r) is the
inner product of Trapdoor[x, y, β] and r. Therefore hy has a circuit of size O(n) that hardwires
x.

On the other hand, if y 6∈ Lhard, then we need to invert πy in order to compute hy, and such
a circuit requires Ω(nc/200) size. We prove it formally in the following lemma.

Lemma 5.8. Let n be an integer. For every y ∈ {0, 1}n \ Lhard, any circuit C of size at most
nc/200 cannot (1/2 + 1/nc/200)-approximate hy.
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Proof. Let s = nc/10 and ε = 1/2nc/200. Suppose there is a circuit C of size nc/200 ≤ s
(dc logne/ε)10

that (1/2 + 2ε)-approximates hy. By Corollary 2.15 on the permutation π = π−1
y , there is a

circuit C ′ of size s that computes π−1
y successfully on an ε fraction of inputs.

Note that this circuit C ′ only has Π, Trapdoor or fPSPACE gates of fanin at most nc/200. Let
N = `≤nc/200 , we show that the Kolmogorov complexity of ω1∼N (conditioned on N) is at most
N − nc/100 < N − 2 logN , contradicting the choice of ω.

We start by storing everything in ω1∼N except the permutation πy in verbatim, using at
most N − log((2t)!) +O(1) bits, where t = dc log ne. We also store y which costs n bits, and C ′

which costs at most nc/5 bits. After storing these data, we examine the oracle gates of C ′:

• Consider a query Π[y′, α′]. If y′ 6= y, then its answer is already stored, otherwise it can be
simulated by one oracle call to an oracle for πy.

• Any Trapdoor gate is completely determined by the already-stored value {πy′}y′ 6=y and
{fn}. This is because y 6∈ Lhard, and Trapdoor gate does not depend on πy at all.

• Any fPSPACE gate is also completely determined by what we have already stored. This
is because on input length nc/200, by our padding to the fPSPACE oracle, this oracle only
depends on the oracle Π with input length at most n1/100. Therefore πy has no influence
on fPSPACE gates.

Now, πy is a permutation over {0, 1}t where t = dc log ne, and a circuit C ′ making q = nc/10

queries to πy inverts πy on an ε ≥ 1/2nc/200 fraction of inputs. Let a = ε2t/(q + 1), then
n4c/5 ≤ a ≤ nc/2. By Lemma 5.7, we can compress πy in bit complexity

2 log

(
2t

a

)
+ log((2t − a)!)

≤ 2a(2− log(a/2t)) + (2t − a)(log(2t − a)− log e) + Θ(t) (4)
≤ log((2t)!)− a(log(2t − a)− 4− log e− 2 log(2t/a)) + Θ(t) (5)

≤ log((2t)!)− a(log(nc − nc/2)− 4− log e− 2 log(2nc/5)) + Θ(t) (6)

≤ log((2t)!)−Θ(n4c/5 log n). (7)

Here, Eq. (4) uses log
(
n
k

)
≤ k(2−log(k/n)) (Claim 2.17) and log(n!) = n(log n−log e)+Θ(log n),

Eq. (5) uses log((2t)!) = 2t(t− log e) + Θ(t), and Eq. (6) and (7) uses t = dc log ne and n4c/5 ≤
a ≤ nc/2.

Therefore, we can describe ω1∼N in

N − log((2t)!) + 2n+ nc/5 + log((2t)!)−Θ(n4c/5 log n) +O(1)

bits, which is less than N − nc/100 bits, contradicting the Kolmogorov-randomness of ω.

5.3.2 Hardness of Lhard

The hardness of Lhard is already shown in [Wee06], and the proof is also by compression method.
We present a sketch here.

Lemma 5.9. No circuit of size 20.1n can solve Lhard correctly on 0.99 fraction of inputs.

Proof Sketch. Suppose there is a circuit C of size 20.1n that solves Lhard correctly on 0.99 fraction
of inputs. Let N = `≤20.1n , we compress ω1∼N in N − 10 · 20.1n ≤ N − 2 logN bits.

First, we store everything in ω1∼N except fn by verbatim, using N − n2n bits. Lemma 7 of
[Wee06] showed how to represent the function fn by 2n(n− 0.35) bits, given our circuit C with
size 20.1n. Then we store the integer n and the circuit C using 20.2n bits. We can describe ω1∼N
in

N − n2n + 2n(n− 0.35) + 20.2n < N − 10 · 20.1n < N − 2 logN

bits, contradicting the Kolmogorov-randomness of ω.
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5.4 Pessiland III: MINKT Is Hard On Average

Our construction also works for other meta-computational problems, such as GapMINKT. In
particular, let σ, τ be two polynomials, we define Gapσ,τMINKT as the following promise prob-
lem:

Gapσ,τMINKT.Yes = {(x, 1s, 1t) : Kt(x) ≤ s},

Gapσ,τMINKT.No = {(x, 1s, 1t) : Kτ(t)(x) > σ(s)}.

Theorem 5.10. Let c be any large constant. There is a relativized world where there is no
auxiliary-input one-way functions, but under some samplable distribution, Gapsc,tcMINKT can-
not be 0.99-approximated by circuits of 2o(n) size.

Proof Sketch. In this world, apart from {fn}n∈N, we also have a function π that maps every
string of length n to a (random) string of length nc+1. We have the following oracles:

• Π
[
y, 1|y|

(c+1)2
]
outputs π(y) given a padding of length |y|(c+1)2 .

• Trapdoor[x, y] outputs π(y) if f|x|(x) = y, and outputs ⊥ otherwise.

• fPSPACE
[
M, 1s, 1(|M |+s)(c+1)2

]
outputs 1 if M is a Turing machine that does not invoke

the Trapdoor oracle, and accepts the empty input within space complexity s; otherwise it
outputs 0. We also require fPSPACE to receive a padding of length (|M |+ s)(c+1)2 .

Again, the language Lhard = {y : ∃x, f|x|(x) = y} is not 0.99-approximated by 2o(n)-size
circuits, and Lhard ∈ NP. It is easy to see that Lhard reduces to GapMINKT: Given an input y
of length n to Lhard, we can compute π(y) in O

(
n(c+1)2

)
time by the oracle Π.

• If y ∈ Lhard and y = f(x), then π(y) = Trapdoor[x, y], so KO(nc+1)(π(y)) ≤ 2n+O(1).

• If y 6∈ Lhard, then let t = 0.9n(c+1)2 , π(y) is “independent” from every oracle with fanin at
most t. Therefore, Kt(π(y)) ≥ nc+1 −O(1).

It follows from the hardness of Lhard that Gapsc,tcMINKT is hard on average in this oracle world.
Again, by Lemma 5.4, there are no AIOWFs in this world.

Remark 5.11. The Gapsc,tcMINKT has much larger gap than the GapMINKT variants defined
in [Hir18,Hir20a]. For example, to solve the GapMINKT in [Hir18], we need to approximate the
shortest program within additive error Õ(

√
s), but here we only need to c-approximate log s.

5.5 Proof of Lemma 5.3

Lemma 5.3. Let s be an integer. For every circuit C : {0, 1}n → {0, 1}m of size s and every
distribution D over {0, 1}n that can be described in O(log n) bits, there is a circuit C ′ of poly(s)
size without Trapdoor gates, such that

Pr
z←D

[C(z) 6= C ′(z)] ≤ 1/s.

In this section, we fix the distribution D, and for two circuits C,C ′, we use ∆(C,C ′) as a
shorthand for Prz←D[C(z) 6= C ′(z)].

Our strategy is to eliminate every Trapdoor gate from bottom to top. For each Trapdoor
gate, we will construct a small set H, and replace this gate by

TrapdoorH [x, y, β] =

{
Trapdoor[x, y, β] if f|x|(x) = y and x ∈ H ,

⊥ otherwise.
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Intuitively, H is the set of “heavy hitter” of this Trapdoor gate. The distribution D over the
inputs to C induces a certain distribution over the inputs to the Trapdoor gate, and H can be
seen as the set of strings x that appear frequently in this distribution. We will prove that since
{fn}n∈N are “random” functions, if x 6∈ H then Trapdoor[x, y, β] is likely to be ⊥.

Therefore, TrapdoorH will be a good approximation of Trapdoor. Let C ′ be the circuit
obtained from C by replacing each Trapdoor gate by a suitable TrapdoorH gate, then C and C ′

are close. If for each Trapdoor gate, the set H we choose is small, then we can write C ′ as a
small circuit without Trapdoor gates, and we are done.

Construction of C ′. Let C : {0, 1}n → {0, 1}n′ be a size-s circuit. Our goal is to find a
circuit C ′ of size poly(s) such that ∆(C,C ′) ≤ 1/s.

We set ε = 1/s10. Let g1, g2, . . . , gs be the sequence of Trapdoor gates in C from bottom to
top, i.e. for i < j, the sub-circuit with gi as output gate does not contain gj . We will define
H1, H2, . . . ,Hs in this order, each with size at most poly(s), and finally replace each gi by a
TrapdoorHi gate. For every 1 ≤ i ≤ s, we define some intermediate circuits:

• Ci is the circuit obtained by replacing gj with TrapdoorHj for each 1 ≤ j ≤ i. (We also
define C0 = C.)

• Csub
i is the sub-circuit of Ci with gi (i.e. TrapdoorHi) as output gate.

• Csub′
i is the sub-circuit of Ci−1 with gi as output gate. (The only difference between Csub

i

and Csub′
i is that gi is replaced by a TrapdoorHi gate in C

sub
i , while gi is a genuine Trapdoor

gate in Csub′
i .)

Fix 1 ≤ i ≤ s, the precise definition of Hi is as follows. Let gi be a Trapdoor gate of fanin
2mi + dc logmie. If mi ≤ 20 log s, then we let Hi = Hi−1 ∪ {0, 1}mi . It is easy to see that
TrapdoorHi coincides with Trapdoor. If mi > 20 log s, we decompose the circuit Csub′

i as

Csub′

i (z) = Trapdoor[Cx(z), Cy(z), Cβ(z)],

where Cx : {0, 1}n → {0, 1}mi , Cy : {0, 1}n → {0, 1}mi and Cβ : {0, 1}n → {0, 1}dc logmie are
size-s circuits. Note that each Trapdoor gate gj in Cx, Cy, Cβ is replaced by a TrapdoorHj gate.
Now, for every string x ∈ {0, 1}mi , we define αx as the probability over a random z ← D that
Cx(z) = x. We let

Hi = Hi−1 ∪ {x ∈ {0, 1}mi : αx ≥ ε2}.

Note that only strings of length mi in Hi will take a role in defining TrapdoorHi . However, for
convenience (of defining further Hi′ (i′ > i)), we also carry everything in Hi−1 with Hi.

If mi ≤ 20 log s, then |Hi| ≤ |Hi−1| + 2mi ≤ |Hi−1| + 1/ε2. If mi > 20 log s, then as∑
x αx = 1, it is also easy to see that |Hi| ≤ |Hi−1|+ 1/ε2. Therefore, |Hi| ≤ i/ε2 for every i.
Finally, we define C ′ = Cs. Equivalently, C ′ is the circuit obtained by replacing every

gate gi by a TrapdoorHi gate. Note that C ′ is equivalent to a circuit of size poly(s) without
Trapdoor gates. Since the portion of Ci−1 and Ci outside Csub′

i (or Csub
i ) are the same, we have

∆(Ci−1, Ci) ≤ ∆(Csub′
i , Csub

i ). In what follows, we will prove that ∆(Csub′
i , Csub

i ) ≤ 1/s2 for
every integer 1 ≤ i ≤ s, hence

∆(C,C ′) ≤
s∑
i=1

∆(Ci−1, Ci) ≤
s∑
i=1

∆(Csub′

i , Csub
i ) ≤ 1/s.

Theorem 5.12. Let 1 ≤ i ≤ s, then ∆(Csub′
i , Csub

i ) ≤ 1/s2.

Proof. When mi ≤ 20 log s, we have ∆(Csub′
i , Csub

i ) = 0. Thus, in what follows we will assume
that mi > 20 log s.
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Warm-up: a proof assuming fmi is random. To get started, let us pretend that fmi :
{0, 1}mi → {0, 1}mi is a random function, drawn from the following distribution. We assume
that the set Hi and every function {fm′}m′ 6=mi are fixed. We also assume that the values of fmi
on inputs in Hi are also fixed. Denote Σ = {0, 1}mi \Hi, for every x ∈ Σ, fmi(x) is independently
drawn from {0, 1}m uniformly at random.

Recall that
Csub′

i (z) = Trapdoor[Cx(z), Cy(z), Cβ(z)].

For every string x ∈ Σ, we introduce the random variables px:

px = Pr
z←D

[Cx(z) = x and Cy(z) = fmi(x)]. (8)

(Here, px is a random variable over the choice of fmi , and for every fixed fmi , it is defined
as a probability over the choice of z.) Consider the random variable P =

∑
x∈Σ px, then

∆(Csub′
i , Csub

i ) ≤ P. This is because Csub′
i (z) 6= Csub

i (z) only when Cy(z) = fmi(Cx(z)) and
Cx(z) ∈ Σ.

Recall that αx = Prz←D[Cx(z) = x]. Therefore, for every x ∈ Σ, αx is an upper bound
for px. Note that each px only depends on fmi(x), thus the random variables {px}x∈Σ are
independent. We can use Hoeffding’s inequality (Theorem 2.16):

Pr[P− E[P] ≥ t] ≤ e−2t2/
∑
x∈Σ α

2
x . (9)

It is easy to see that
∑

x∈Σ αx ≤ 1 and maxx∈Σ αx ≤ ε2. Therefore
∑

x∈Σ α
2
x ≤ ε2. We

calculate E[P]:

E[P] = Pr
fmi ; z←D

[Cx(z) ∈ Σ and Cy(z) = fmi(Cx(z))]

= E
z←D

[
I[Cx(z) ∈ Σ] · Pr

fmi

[Cy(z) = fmi(Cx(z))]

]
≤ 1

2mi
.

Plugging t =
√
ε and E[P] ≤ 1/2mi into Eq. (9), we have that over the choice of fmi ,

Pr[P ≥
√
ε+ 1/2mi ] ≤ e−2t2/ε2 ≤ e−2/ε. (10)

Since P ≥ ∆(Csub′
i , Csub

i ) and
√
ε+ 1/2mi ≤ 1/s2, we also have

Pr[∆(Csub′

i , Csub
i ) ≥ 1/s2] ≤ e−2/ε. (11)

The incompressibility argument. Recall that fmi is not a random variable, but a fixed
incompressible function. Now, assuming P =

∑
x∈Σ px ≥ 1/s2, we use the above argument to

compress the functions {fn}sn=1, contradicting Constraint 5.2. Let N =
∑s

n=1 n2n, then N ≤ 3s.
We show that if ∆(Csub′

i , Csub
i ) ≥ 1/s2, then conditioned on the portion of Π and fPSPACE with

input length at most s, we can compress {fn}sn=1 into at most N − 10s < N − 5 logN bits.
First, we write down D which costs O(log n) bits. Then, we write down the circuit C and

subsets H1, H2, . . . ,Hi. For every x ∈ Hi, we also write down f|x|(x). Note that we do not have
enough space to write them down in verbatim, but fortunately we do not have to. For every
1 ≤ j ≤ i, given C, Hj−1, and {f|x|(x)}x∈Hj−1 , we can compute Hj as follows:

• Compute Csub′
j from the description of C, and decompose Csub′

j = Trapdoor[Cx(z), Cy(z), Cβ(z)].

• Replace each Trapdoor gate in Cx, Cy or Cβ by the corresponding TrapdoorHk gate; this
is possible since k < j and we already know Hk and {fmk(x)}x∈Hk .
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• Compute the set Hj = Hj−1 ∪ {x : Prz←D[Cx(z) = x] ≥ ε2}.

Then, we use |Hj \ Hj−1| · mj bits to write down fmj (x) for every x ∈ Hj \ Hj−1, in
some canonical order. It follows that we only need |C| +

∑
x∈Hi |x| bits to record C, Hi, and

{f|x|(x)}x∈Hi .
Next we write down the functions {fl}l 6=mi . Note that we only need to write f|x|(x) for the

strings x that are not in Hi. This costs∑
1≤l≤s,l 6=mi

(2l − |{0, 1}l \Hi|) · l

bits. The total number of bits we have used so far is

O(log n) + |C|+
∑
x∈Hi

|x|+
∑

1≤l≤s, l 6=mi

(2l − |{0, 1}l \Hi|) · l

=O(log n) +N + |C| − (2mi − |{0, 1}mi ∩Hi|) ·mi.

Now, let F be the set of functions f : {0, 1}mi → {0, 1}mi such that f is consistent with
fmi on Hi, and if we replace fmi by f , then P ≥ 1/s2. From Eq. (10), we can see that
|F| ≤ 2mi·σe−2/ε, where σ = |{0, 1}mi \ Hi|. For every function f , given the information we
have already recorded, there is an algorithm that determines whether f ∈ F in finitely many
steps: Given Hi and {f|x|(x)}x∈Hi , we can compute the descriptions of Cx, Cy, and compute
each px from Eq. (8). Note that fmi is replaced by f here. Then we can compute P =

∑
x px

and compare it with 1/s2 to decide whether f ∈ F .
Therefore, it suffices to record a number k such that fm is the lexicographically k-th smallest

function in F , and this number costs mi · σ − (2/ε) log e + O(1) bits. It follows that we can
record {fn}sn=1 in

O(log n) +N + |C|+mi · σ − (2/ε) log e− 2mi ·mi + |{0, 1}mi ∩Hi| ·mi +O(1)

≤N +O(s log s)− (2/ε) log e

≤N − 10s

bits, contradicting Constraint 5.2. Thus we have ∆(Csub′
i , Csub

i ) ≤ P < 1/s2.

5.6 Proof of Lemma 5.4

Lemma 5.4. There are no auxiliary-input one-way functions in our oracle worlds.

Proof. It suffices to show an algorithm that inverts every circuit in the sense of Claim 2.10.
Let C,C ′ : {0, 1}p → {0, 1}q be two circuits, in this section, we will denote ∆(C,C ′) =
Prz←Up [C(z) 6= C ′(z)]. That is, instead of the (arbitrary) distribution D as in Section 5.5,
here we define ∆(C,C ′) to be the distance between C and C ′ w.r.t. the uniform distribution.

Let C : {0, 1}p → {0, 1}q be a circuit of size s, then by Lemma 5.3, there is a circuit C ′ of size
s′ = poly(s) without any Trapdoor gate, such that ∆(C,C ′) ≤ 1/s. Unfortunately, the circuit
C ′ may not be efficiently computable from C. (It seems that we need to be able to compute
each fmi in order to compute C ′ from C.) However, we can still use the following sampling trick
to “learn” C ′.

We sample ` = s′s3 random inputs x1,x2, . . . ,x` ← Up. Then for every i, we define yi =

C(xi). We find a circuit C̃ of size s′ that does not use Trapdoor gates, such that the “empirical
error”

err(C̃) := Pr
i←[`]

[C̃(xi) 6= yi]
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is minimized. Given the data {(xi,yi)}i∈[`], we can enumerate C̃ and calculate err(C̃) in poly(s′)

space without invoking Trapdoor gates, therefore we can also compute C̃ in poly(s′) time with
the aid of the fPSPACE oracle. We claim that ∆(C, C̃) ≤ 3/s with high probability.

First, fix an arbitrary circuit Cfar such that ∆(C,Cfar) > 3/s. Let δi ∈ {0, 1} be the indicator
of whether Cfar(xi) = yi, and δ =

∑`
i=1 δi, then E[δ] > 3`/s, where the expectation is over the

random choices of {xi}i∈[`]. By Theorem 2.16, we have

Pr[err(Cfar) ≤ 2/s] = Pr[E[δ]− δ > `/s] ≤ exp(−2`/s2).

By a union bound over all circuits of size at most s′, the probability that there is a circuit Cfar

of size at most s′ such that ∆(C,Cfar) > 3/s but err(Cfar) ≤ 2/s is at most

exp(O(s′ log s′)− 2`/s2) ≤ exp(−s′s).

On the other hand, consider the circuit C ′ which is (1/s)-close to C. Again, by Theorem 2.16,
the probability that err(C ′) > 2/s is at most exp(−2`/s′) ≤ exp(−s′s). Therefore, w.p. at least
1− 2e−s

′s, we have ∆(C, C̃) ≤ 3/s.
Things become easy when we find a circuit C̃ such that ∆(C, C̃) ≤ 3/s and C̃ contains no

Trapdoor gate. Given an output y ← C(Up), we find a uniformly random preimage z̃ over the
set C̃−1(y). We output “failure” if C̃−1(y) = ∅. This preimage can be found in poly(s) space
with s random bits, and the distribution of z̃ is 1/2O(s)-close to the uniform distribution over
C̃−1(y). Therefore, we can use an fPSPACE oracle (together with s random bits) to find a random
z̃ sampled uniformly (with 1/2O(s) bias) from C̃−1(y), in poly(s) time. Then we output z̃ if
C(z̃) = y, and output “failure” otherwise.

We prove that the above algorithm inverts y with probability 1 − O(1/s). Let D be the
distribution of C(Up), and D̃ be the distribution of C̃(Up). Since ∆(C, C̃) ≤ 3/s, the statistical
distance between D and D̃ is also at most 3/s. If the algorithm is given y← D̃ instead of y← D,
then the distribution of z is 1/2O(s)-close to the uniform distribution, and the probability that
the algorithm outputs “failure” is at most the probability that C(z) 6= C̃(z), which is at most
3/s + 1/2O(s) < 4/s. Therefore, if the algorithm is given y ← D, then its failure probability is
at most 7/s.

6 Limits of “Robust” Reductions to GapMINKT Oracles

We study the limitation of robust reductions to the promise problem GapMINKT in relativized
worlds. Here, a reduction is robust, if it is correct even if the oracle for GapMINKT knows the
input (and possibly nondeterministic bits) of the reduction, and answers adversarially on every
query not in the promise of GapMINKT.

Definition 6.1 (Robust Reductions). Let L = (L.Yes, L.No) be a promise problem, and L′ be
a computational task (e.g. a language, a promise problem, or solving a problem on average-case).

• We say that a coNP-Turing reductionM from L′ to L is robust, ifM is a co-nondeterministic
machine such that the following holds. For any adversary that (knows the input and the
nondeterministic bits of M and) answers L-queries asked by M , as long as the adversary
answers correctly on L.Yes ∪ L.No (and arbitrarily otherwise), M solves L′ successfully.

• Similarly, we say that a P/poly-Turing reduction C from L′ to L is robust, if C is a circuit
such that the following holds. For any adversary that (knows the input of C and) answers
L-queries asked by C, as long as the adversary answers correctly on L.Yes ∪ L.No, C
solves L′ successfully.

In this section, we show that techniques that are both robust and relativizing cannot prove
either of the following statements:

36



1. GapMINKT is NP-hard under coNP-Turing reductions;8 or

2. GapMINKT is the hardest problem in DistNP.

Definition of GapMINKT. Fix a large enough constant c. We define GapMINKT as the
following promise problem:

GapMINKTΠ.Yes = {(x, 1s, 1t) : Kt,Π(x) ≤ s},
GapMINKTΠ.No = {(x, 1s, 1t) : Kct,Π(x) > s+ c log t}.

We remark that the “gap” of GapMINKT in our definition is quite small, compared to the
variants of GapMINKT in [Hir18,Hir20b,Hir20a]. Therefore, our GapMINKT is harder to solve,
and our negative results are stronger.

Weakness of GapMINKT. As discussed in Section 1.3.4, the weakness of GapMINKT is that
for two oracles worlds O and O′ that are very close, it does not provide information about which
world we are in. We summarize it in the following lemma:

Lemma 6.2. Let c be a large enough constant, O and O′ be two oracles that only differ at one
input. Let x be a string, t be an integer, s = Kt,O(x). Then K

√
c·t,O′(x) ≤ s+ (c/3) log t.

Proof. LetM be the O-oracle Turing machine with description length s that outputs x in t steps.
Let α be the input at which O and O′ differs. If M does not query O[α], then it is clear that
Kt,O′(x) ≤ s. Otherwise, let i be the timestamp of the first query O[α] that M makes. Consider
the Turing machineM ′ with oracle access toO′, that hardcodes i, simulatesM , records the query
α at time i and then flips every response of the query O′[α]. Its behavior is exactly the same as
M , so it also outputs x. For a large enough constant c, the description length of M ′ is at most
s+ (c/3) log t, and M ′ runs in at most

√
c · t steps. Therefore K

√
c·t,O′(x) ≤ s+ (c/3) log t.

6.1 NP-Intermediateness of GapMINKT under coNP-Turing Reductions

In this section, we construct a relativized world where GapMINKT 6∈ coNP, but coNP-Turing
reductions that are robust cannot show NP-hardness of GapMINKT either.

Theorem 6.3. There is a relativized world such that the following are true:

(GapMINKT Is Not NP-Complete) There is a language Lhard ∈ NP, such that there is no co-
nondeterministic Turing reduction from Lhard to GapMINKT that runs in 2N/Nω(1) time.

(GapMINKT Is Not Easy) Every co-nondeterministic Turing machine that runs in 2N/Nω(1)

time does not solve GapMINKT.

Proof. Our oracle world has an oracle O that diagonalizes against every nondeterministic Turing
machine. The hard problem in NP is simply

Lhard = {0n : O ∩ {0, 1}n 6= ∅}.

Let {Mi}i∈N be an enumeration of nondeterministic Turing machines with time complexity
2N/Nω(1). We proceed in stages, where in each stage, we will fix finitely many inputs to O. Let
Ni be the smallest integer such that at the end of stage i, every fixed string has length at most
Ni. In stage 2i, we will guarantee that Mi with a GapMINKT oracle does not compute Lhard

(the complement of Lhard) in 2N/Nω(1) time. In stage 2i + 1, we will guarantee that Mi does
not compute the complement of GapMINKT in 2N/Nω(1) time.

8Actually, for this result, it is possible to weaken the requirements of robust reductions; however for the other
result, it is unclear to the authors how to weaken the requirement that the reduction has to be robust.
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Stage 2i. In this stage, we want that Mi does not compute Lhard even given a GapMINKT
oracle.

Let N = N2i−1 + 1, we simulate Mi on input 0N . Let O2i−1 denote the oracle O at the end
of stage 2i − 1. (That is, except for the inputs that we already fixed in the first 2i − 1 stages,
O2i−1 rejects every input.) We will provide Mi the following oracle MINKT′ as a GapMINKTO

oracle:
MINKT′[x, 1s, 1t] = MINKTO2i−1 [x, 1s+(c/2) log t, 1

√
c·t].

Also, each time Mi asks a query to O, if it is not already fixed, then we return 0 to this
query. (Equivalently, we use O2i−1 to reply queries to O.)

Recall thatMi is a nondeterministic Turing machine, and we want thatMi does not compute
Lhard. Therefore, if some nondeterministic branch of Mi returns 1, we should put some strings
into the length-N slice of O, so that 0N 6∈ Lhard; if every nondeterministic branch of Mi returns
0, we should put nothing in the length-N slice of O, so that 0N ∈ Lhard.

Case 1: Suppose that some nondeterministic branch of Mi returns 1. In this branch, Mi

asks at most 2N/Nω(1) queries to O. We can simply find any string x of length N such that
O[x] was not asked in this branch of Mi, and set O[x] = 1. Since O and O2i−1 only differ at one
input, we can see that MINKT′ satisfies the promise of GapMINKTO. Actually, let (x, 1s, 1t)
be an input:

• If Kt,O(x) ≤ s, then by Lemma 6.2, K
√
c·t,O2i−1(x) ≤ s + (c/3) log t, thus (x, 1s, 1t) ∈

MINKT′.

• If Kct,O(x) > s + c log t, then by the contrapositive of Lemma 6.2, K
√
c·t,O2i−1(x) > s +

(c/3) log t, thus (x, 1s, 1t) 6∈ MINKT′.

Therefore, it is valid to replace the GapMINKTO oracle by MINKT′. For a suitable choice of
GapMINKTO oracle, Mi accepts the input 0N on some nondeterministic branch, thus does not
solve Lhard on input length N .

Case 2: Suppose that every nondeterministic branch of Mi returns 0. We simply let the
length-N slice of O be empty. Since O = O2i−1, MINKT′ satisfies the promise of GapMINKTO.
Again, for a suitable choice of GapMINKTO oracle, Mi rejects the input 0N on every nondeter-
ministic branch, thus does not solve Lhard on input length N .

Finishing stage 2i. Note that if O contains strings of length > N , then MINKT′ may
not be consistent with the final GapMINKTO oracle. Therefore, we need to set N2i = 2N . For
every string x with length at most N2i, if O[x] is not already fixed, then we fix O[x] = 0. Now,
for every (x, 1s, 1t) such that t ≤ N2i (which includes every GapMINKT query that Mi might
ask), MINKT′[x, 1s, 1t] is indeed consistent with GapMINKTO[x, 1s, 1t].

Stage 2i+1. In this stage, we want thatMi does not compute the complement of GapMINKT.
Let N = N2i + 2c logN2i, s = N2i +O(1), and t = 10cN . Let xhard be an input of length N

such that
Kct,O2i(xhard) > s+ c log t,

where, again, O2i is the oracle O at the end of stage 2i. By Claim 2.12, such an input xhard
exists. Here, the choice of s and t ensures that if we “embed” xhard in the length-(N2i + 1) slice
of O, then there is a length-s program that outputs xhard in time t.

We simulate Mi on input (xhard, 1
s, 1t). Each time Mi asks a query to O, if the query is not

fixed, we simply return 0. Now we want that Mi fails to solve the complement of GapMINKT,
and there are two cases.
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Case 1: Suppose some nondeterministic branch ofMi returns 1, then we want Kt,O(xhard) ≤
s. On this branch, Mi asks at most 2N/Nω(1) � 2N2i−dlogNe queries to O. Therefore we can
find a string pfx of length N2i−dlogNe, such that pfx is not a prefix of any query that Mi made
to O. Then we “embed” xhard into the length-(N2i + 1) slice of O:

O[pfx ◦ j] = (xhard)j ,∀0 ≤ j < N.

Here, we regard j as a length-dlogNe string, and pfx ◦ j is the concatenation of pfx and j. Then
we can see that Mi accepts the input (x, 1s, 1t), but Kt,O(xhard) ≤ s.

Case 2: Suppose every nondeterministic branch ofMi returns 0, then we want Kct,O(xhard) >
s+ c log t. In this case, for every string x of length at most ct, if O[x] is not fixed yet, then we
fix O[x] = 0. Now O and O2i are the same oracle on input lengths up to ct. We have that Mi

rejects the input (x, 1s, 1t), but Kct,O(xhard) > s+ c log t.

Finishing stage 2i + 1. Let N2i+1 be the length of the longest string currently fixed to
O. We arbitrarily fix every input of length at most N2i+1 to O that are not fixed yet, and finish
stage 2i+ 1.

6.2 Is GapMINKT the Hardest Problem in DistNP?

In this section, we construct a relativized world where there is no robust reduction proving the
statement “if GapMINKT is easy, then DistNP ⊆ AvgP/poly”. In particular, we show that any
circuit with GapMINKT gates that robustly solves some NP problem on a (1/2+1/2o(n))-fraction
of inputs requires 2Ω(n) size.

We recall that an oracle circuit C is a robust reduction from a DistNP problem (L,D) to
GapMINKT, if for every adversary A that (knows the input x to C and) answers GapMINKT
queries, we have

Pr
x∼Dn

[CA(x) = L(x)] ≥ 2/3.

Actually, we may assume that on a particular input, the circuit never asks the same query
twice. This can be achieved by storing the answers for every previously asked query in a hash
table. Then, there is an equivalent definition of robust reductions. We say that an oracle
circuit C is a robust reduction from (L,D) ∈ DistNP to GapMINKT, if with probability at least
2/3 over a random input x ← Dn, for every oracle O consistent with GapMINKT, we have
CO(x) = L(x). (Note that the weaker, and more natural, definition of Turing reductions to a
promise problem switches two quantifiers: For every oracle O consistent with GapMINKT, CO

solves L on average.)

Theorem 6.4. There is a relativized world such that the following holds. There is an NP
problem Lhard, such that every circuit C that is a robust reduction from (Lhard, {Un}n∈N) (i.e. a
distributional problem which is Lhard paired with the uniform distribution) to GapMINKT requires
size 2Ω(n).

Proof. We consider the simplest world with a hard-on-average problem. For every integer n,
we have a random permutation πn : {0, 1}n → {0, 1}n. We provide an oracle Π that on input
strings α, β of the same length, outputs 1 if π|α|(α) = β, and outputs 0 otherwise. At the end
of this section, we will use the incompressibility method to rigorously define this world.

Recall that 〈·, ·〉 denotes the inner product function over GF(2). Our hard language is

Lhard = {(α, r) : 〈π|α|(α), r〉 = 0}.

It is easy to see that Lhard ∈ NPΠ. (Actually, (UP ∩ coUP)Π.) We will show that any circuit
with GapMINKT gates that solves Lhard on a (1/2+1/20.005n)-fraction of inputs requires 20.005n
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size. By Corollary 2.15, it suffices to show that any circuit with (Π and) GapMINKT gates that
computes πn on a 2−0.1n fraction of inputs requires 20.1n size.

Our proof strategy will be similar as [GGKT05, Theorem 2.1]. Suppose there is a circuit C
of size 20.1n with Π and GapMINKT gates that computes πn (on a 2−0.1n fraction of inputs).
We show that given C and every other permutation {πn0}n0 6=n, we can compress πn into less
than log2((2n)!) bits.

Compression algorithm. Without loss of generality, we assume that on input α, our circuit
C always queries Π[α,C(α)] at the end. We record C which has at most 20.1n gates. Besides C,
we also record the following data to represent πn.

• We write down a subset S ⊆ {0, 1}n which is “not too large”, and the value of πn on S.
Equivalently, we write down a list of pairs (α, πn(α)) for every α ∈ S (of course, in an
information-theoretically optimal way).

• For every input α ∈ {0, 1}n \ S, we also record an integer pα which is between 1 and |C|.
This information will be helpful for recovering πn(α).

Initially we let S be the set of strings α ∈ {0, 1}n on which C fails, i.e. for some oracle B
consistent with GapMINKTΠ, πn(α) 6= CB,Π(α).

Let α1, α2, . . . , α2n be the list of length-n strings in lexicographical order. We use the notation
α ≺ α′ to denote that α is lexicographically smaller than α′. We proceed in iterations. For each
1 ≤ i ≤ 2n, in the i-th iteration, if αi ∈ S, we do nothing. If αi 6∈ S, we will simulate the
circuit C on input αi, where GapMINKTΠ is replaced by a suitable oracle (consistent with the
promise of GapMINKTΠ) that depends on αi. Also, we will potentially add some elements (but
never αi itself) into S. At last we will record an integer pαi . In this iteration, we may assume
that for every α ∈ S, πn(α) is “fixed” (for the decompression algorithm). As we proceed in the
lexicographical order, we can also assume that πn(α) is “fixed” for every α ≺ αi.

In the i-th iteration, we will use the oracle “MINKT−i” to replace GapMINKTΠ, defined
as follows. Let Π−i be an oracle identical to Π, except that Π−i[αi, π

n(αi)] = 0. On input
(x, 1s, 1t), the oracle MINKT−i outputs 1 if K

√
ct,Π−i(x) ≤ s+ (c/3) log t, and outputs 0 other-

wise. Since Π and Π−i only differ at one input, we can show that MINKT−i satisfies the promise
of GapMINKTΠ:

• if Kt,Π(x) ≤ s, then by Lemma 6.2, K
√
ct,Π−i(x) ≤ s + (c/3) log t, thus (x, 1s, 1t) ∈

MINKT−i;

• if Kct,Π(x) > s + c log t, then by the contrapositive of Lemma 6.2, K
√
ct,Π−i(x) > s +

(c/3) log t, thus (x, 1s, 1t) 6∈ MINKT−i.

Now we define exactly what the i-th iteration does (if αi 6∈ S). We run C on input αi. Each
time we make a query to Π, namely Π[α, β]:

• We reply with Π[α, β] honestly.

• If α � αi and α 6∈ S, then we add α into S.

• If α = αi and β = πn(αi), we write down that pαi = k, where the current query is the k-th
gate in C. Then we stop simulating C, finish the i-th iteration immediately, and proceed
to the next iteration. (Since we require C to query its own output, i.e. Π[αi, C(αi)], at the
end, pαi will always be defined.)

• Otherwise we do not perform extra operations.

Each time we make a query to GapMINKTΠ, namely GapMINKTΠ[x, 1s, 1t]:
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• We return the answer MINKT−i[x, 1
s, 1t]. As discussed above, this is a valid answer for

GapMINKTΠ[x, 1s, 1t].

• Suppose the returned answer is 1. Let M be any Π−i-oracle machine of description length
s+(c/3) log t that outputs x in

√
ct time. For every query Π′[α, β] thatM makes, if α � αi

and α 6∈ S, then we add α into S.

After the 2n-th iteration terminates, we obtain a set S ⊆ {0, 1}n and an integer pα for every
α ∈ {0, 1}n \ S.

Decompression algorithm. We need to show that the above data suffices to recover πn. As
we stored πn(α) for every α ∈ S explicitly, we only need to recover πn(α) for every α 6∈ S.

Again, let α1, α2, . . . , α2n be the list of length-n strings in lexicographical order. For each
1 ≤ i ≤ 2n, if αi 6∈ S, then we need to recover πn(αi). We simulate C on the input αi.

Whenever C makes a query Π[α, β], we know that either α � αi or α ∈ S. If α ≺ αi or
α ∈ S, then we already know πn(α), thus also know which value we should reply to Π[α, β].
Otherwise (i.e. α = αi), suppose the current query is the k-th gate of C. If k = pαi , then we
know that πn(αi) = β, so we immediately terminate this iteration, and proceed to the next
iteration. Otherwise we know that we should return 0 to this query.

Whenever C makes a query to GapMINKTΠ, namely GapMINKTΠ[x, 1s, 1t], we reply 1 if
there is a Turing machine M satisfying the following requirements.

• The description length of M is at most s + (c/3) log t, M runs in at most
√
ct time, and

M outputs x.

• M has access to a Π−i oracle, but for every query Π−i[α, β] it asks, either α � αi or α ∈ S.

It is easy to see that if we reply 1, then K
√
ct,Π−i(x) ≤ s+(c/3) log t, therefore by Lemma 6.2,

(x, 1s, 1t) is not a NO instance of GapMINKTΠ. On the other hand, if x is a YES instance of
GapMINKTΠ, then again by Lemma 6.2, we have Kct log t,Π−i(x) ≤ s+c log t. By our construction
of S, there is a Turing machine M satisfying the above conditions, hence we reply 1. Therefore,
queries to GapMINKTΠ are also answered correctly.

As every oracle gate of C on input αi are answered correctly, we can successfully recover
C(αi) = πn(αi).

The compressed length of πn. The number of bits we need to describe πn, including C is

log

((
2n

|S|

)2

|S|!

)
+ (2n − |S|) log |C|+ |C| log |C|. (12)

Now we upper bound |S|. There are 20.9n inputs on which C is correct; these are the inputs
not in S initially. Each time we perform the i-th iteration for some i such that αi 6∈ S, we add
at most |C|(

√
c + 1) inputs to S. This is because C can make at most |C| queries to Π, and

the sum of
√
ct over all queries GapMINKTΠ[x, 1s, 1t] made by C is at most

√
c|C|. Put in

other words, each time we ensure that a new element (αi) is not in the final S, we add at most
|C|(
√
c+ 1) elements into S. Therefore

2n − |S| ≥ Ω

(
20.9n

|C|

)
≥ Ω(20.79n).
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Now let 2n − |S| = 2λn, then λ ≥ 0.78. The number of bits we save is

log((2n)!)− (12) ≥ log((2λn)!)− log

(
2n

2λn

)
− (2λn + |C|) log |C|

≥ 2λn(λn− log e)− 2λn(2− (λ− 1)n)− (2λn + |C|) log |C| −Θ(n) (13)

≥ 2λn((2λ− 1)n− 4)− (2λn + |C|) log |C| −Θ(n)

≥20.78n(0.56n− 4)− 20.78n · 0.11n+ Θ(n) (14)

≥0.4n · 20.78n.

Here, Eq. (13) uses the fact that log
(
n
k

)
≤ k(2 − log(k/n)) (Claim 2.17), and log(n!) =

n(log n− log e) + Θ(log n); and Eq. (14) uses the fact that λ ≥ 0.78 and |C| ≤ 20.1n.

Putting it together. Let ω be an infinite binary string that satisfies the promise of Theo-
rem 2.13. That is, for almost every integer n, C(ω1∼n | n) ≥ n− 2 log n. Let `n = blog((2n)!)c,
then the number of permutations πn : {0, 1}n → {0, 1}n is in the range of [2`n , 2`n+1). Let
`≤n =

∑n
i=1 `i, then `≤n ≤ 3n for large enough n. We define πn as the permutation decoded

from the string
ω(`≤n−1+1)∼`≤n .

For any large enough n, suppose that there is a circuit of size 20.005n with Π and GapMINKT
gates that computes Lhard on a (1/2 + 1/20.005n) fraction of inputs. Then there is a circuit C
of size 20.1n with Π and GapMINKT gates that inverts πn on a 2−0.1n fraction of inputs. Let
N = `≤20.1n , we will compress ω1∼N into less than N − 2 logN bits.

We first write down every permutation πn′ in verbatim, where n′ ≤ 20.1n and n′ 6= n. Then
we use the above method to compress πn into log((2n)!) − 0.4n · 20.78n bits. Note that since C
only have access to Π gates of fanin at most 20.1n, given the information of every πn′ (n′ ≤ 20.1n

and n′ 6= n), we can recover πn from these log((2n)!)− 0.4n · 20.78n bits. It follows that we can
compress ω1∼N into less than N −0.4n ·20.78n < N −2 logN bits, contradicting the Kolmogorov
randomness of ω.

In conclusion, in our oracle world, any circuit of size 2o(n) cannot (1/2+1/2−o(n))-approximate
Lhard even with a GapMINKT oracle gate.
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