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Abstract

Cohen, Peri and Ta-Shma [CPTS20] considered the following question: Assume

the vertices of an expander graph are labelled by ±1. What “test” functions f :

{±1}t → {±1} can or cannot distinguish t independent samples from those obtained

by a random walk? [CPTS20] considered only balanced labelling, and proved that all

symmetric functions are fooled by random walks on expanders with constant spectral

gap. Furthermore, it was shown that functions computable by AC0 circuits are fooled

by expanders with vanishing spectral expansion.

We continue the study of this question and, in particular, resolve all open prob-

lems raised by [CPTS20]. First, we generalize the result to all labelling, not merely

balanced. In doing so, we improve the known bound for symmetric functions and

prove that the bound we obtain is optimal (up to a multiplicative constant). Fur-

thermore, we prove that a random walk on expanders with constant spectral gap

does not fool AC0. In fact, we prove that the bound obtained by [CPTS20] for AC0

circuits is optimal up to a polynomial factor.
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1 Introduction

Expander graphs are among the most useful combinatorial objects in theoretical computer sci-

ence, pivotal in derandomization [INW94, Rei05], complexity theory [Val76, AKS87, Din07] and

coding theory [SS96, KMRZS17, TS17] to name a few. Informally, expanders are sparse undi-

rected graphs that have many desirable pseudorandom properties. A formal definition can be

given in several equivalent ways and here we consider the algebraic definition. An undirected

graph G = (V,E) is a λ-spectral expander if the second largest eigenvalue of its normalized

adjacency matrix is bounded above by λ. For simplicity, we only consider regular graphs. In

this case, M is also the random walk matrix of G. Many works in the literature have studied

explicit constructions of expander graphs (see, e.g., [LPS88, Mar88, BL06, RVW00, BATS11,

MOP20]) and utilized their pseudorandom properties. We refer the reader to the excellent

expositions [HLW06, Tre17] and to Chapter 4 of [Vad12].

Expanders can be thought of as spectral sparsifiers of the clique. Let J be the normalized

adjacency matrix of the n-vertex complete graph with self-loops. That is, J is the n× n matrix

with all entries equal to 1
n . One can express the normalized adjacency matrix M of G by

M = (1 − λ)J + λE for some operator E with spectral norm bounded by 1. As such, one can

hope to substitute a sample of two independent vertices with the “cheaper” process of sampling

an edge from an expander and using its two (highly correlated) end-points. This is captured,

e.g., by the expander mixing lemma [AC88]. This idea also appears in many derandomization

results, e.g., [INW94, AEL95, RRV99, Rei05, RV05, BCG20].

1.1 Random walks on expanders

A useful generalization of the above idea is to consider not just an edge but rather a length t−1

random walk (where the length is measured in edges) on the expander as a replacement to t

independent samples of vertices. For concreteness, consider a labelling val : V → {±1} of the

vertices with mean µ = E [val(V )]. Quite a lot is known about random walks on expanders. In

particular, both the hitting property of expanders [AKS87, CW89, IZ89] as well as the expander

Chernoff bound [AKS87, Gil98, Hea08] on which we now elaborate.

The hitting property states that for every set A ⊂ V , a length t−1 random walk is contained

in A with probability at most (µ + λ)t. For λ � µ, this bound is close to µt–the probability

of the event with respect to t independent samples. The expander hitting property corresponds

to a random walk “fooling” the AND function, that is, for every λ-spectral expander and every

labelling val as above, the AND function cannot distinguish with good probability labels obtained

by t independent samples from labels obtained by taking a length t − 1 random walk. The

fundamental expander Chernoff bound states that the number of vertices in A visited by a

random walk is highly concentrated around its measure |A|/|V |. The expander Chernoff bound

corresponds to fooling functions indicating whether the normalized Hamming weight of the

input is concentrated around some number µ. Perhaps surprisingly, it was shown that even

the highly sensitive PARITY function is fooled by a random walk on expanders (this was noted

independently by Alon in 1993 for arbitrarily long walks, Wigderson and Rozenman in 2004 for

length 1 walks, and [TS17] where the result appears).

However, it is clear that sometimes a random walk is not a good replacement to independent
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samples. To see this, suppose G is a λ-spectral expander for some constant λ, that has a cut

A ⊂ V with |A| = |V |
2 and |E(A,A)| > µ|A| for µ > 1

2 + Ω̃(λ). Such graphs exist (see [?, Section

7]). If one samples t independent vertices (v1, . . . , vt) from the graph, we expect (vi, vi+1) to

cross the cut about half the time, and by the Chernoff bound the actual number of cut crossings

is highly concentrated around the mean. In contrast, when we take a random walk on the graph

we expect to cross the cut a µ-fraction of the time, and intuitively the number of cut crossings

should be concentrated around µ.1 Thus, the simple test function that counts the number of

times we cross the cut and apply a threshold at 1
2 + τ for some τ = Θ̃(λ) should distinguish with

probability close to 1 between a random walk and independent samples.

This brings to the front a natural question that was recently raised by [CPTS20] (see also

the work of Guruswami and Kumar [GK21] who considered a related question).

What test functions does a random walk on an expander fool?

Formally, we compare two distributions on the set {±1}t. The first “ideal” distribution is

obtained by sampling independently and uniformly at random t vertices v1, . . . , vt and returning

(val(v1), . . . , val(vt)). If we let µ = E[val(V )], the latter induces the distribution Uµt in which

the t bits are independent and each has mean µ. The second distribution, denoted by RWG,val,

is obtained by taking a length t− 1 random walk on the graph, namely, sample v1 uniformly at

random from V , and then for i = 2, 3, . . . , t, we sample vi uniformly at random from the set of

neighbors of vi−1, and return (val(v1), . . . , val(vt)). Denote

EG,val(f) = |E f(RWG,val)−E f(Uµt )| .

Informally, EG,val(f) measures the distinguishability between these two distributions as observed

by the test function f on the graph G with respect to the labelling val. We wish to have a

discussion that holds uniformly on all λ-spectral expanders (on any number of vertices) and

for every labelling. The bound, however, is expected to depend on the expectation µ of the

labelling. We denote by Eλ,µ(f) the supremum of EG,val(f) over all λ-spectral expanders G, on

any number of vertices, and all labelling functions val : V → {±1} with E[val(V )] = µ.

The work [CPTS20] focuses on the case µ = 0. Their main result states that for such

balanced labelling, for every symmetric function f : {±1}t → {±1},

Eλ,0(f) = O(λ · log3/2(1/λ)). (1.1)

This readily implies, for the specific case of balanced labelling, a central limit theorem with

respect to the total variation distance, strengthening the existing results that considered the

Kolmogorov distance [KV86, Lez01, Klo17]. [CPTS20] further considers non-symmetric func-

tions. In particular, they analyze test functions that are computable by AC0 circuits and prove

that if f is computable by a size-s depth-d circuit then

Eλ,0(f) = O(
√
λ · (log s)2(d−1)). (1.2)

Thus, for balanced labelling, every test function in AC0 cannot distinguish t independent labels

from those obtained by a random walk on a λ-spectral expander provided λ is taken sufficiently

1To show such a concentration one needs to prove a Chernoff bound for a walk on the corresponding directed

line graph.
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small. This result can be thought of as an analog of Braverman’s celebrated result [Bra10] (see

also [Tal17]) that studies the pseudorandomness of k-wise independent distributions with respect

to AC0 test functions.

1.2 Our contribution

The work of [CPTS20] left four open problems:

1. Can the results be extended to unbalanced labelling, namely, µ 6= 0?

2. Is the log3/2(1/λ) factor in Equation (1.1) inherent or rather it is an artifact of the proof?

3. Does a constant spectral expansion suffice to fool AC0 test functions or rather a bound

as given by Equation (1.2) is necessary?

4. Note that the bound given by Equation (1.1) does not vanish with t. However, for all

the symmetric functions that were studied, such as majority and parity, the bound does

vanish with t. Can a bound that vanishes with t be obtained for all symmetric functions?

In this work we resolve all four open problems left by [CPTS20]. First, answering Problem

1 and Problem 2, we generalize their main result to any µ and without incurring the poly-

logarithmic factor. 2

Theorem 1.1. For every symmetric function f : {±1}t → {±1}, all µ ∈ (−1, 1) and 0 < λ <
1−|µ|
128e it holds that

Eλ,µ(f) 6
124√
1− |µ|

· λ.

Theorem 1.1 readily implies a central limit theorem with respect to the total variation dis-

tance that holds for all labelling. The proof of Theorem 1.1 can be found in Section 3.2.

Furthermore, in Section 3.3 we give bounds that vanish with t for specific functions such as

certain threshold functions (Theorem 3.10), generalizing the bound on the majority function

obtained by [CPTS20], and weight indicators (Theorem 3.12).

Second, addressing Problem 3, we prove that constant spectral expansion does not suffice to

fool AC0 circuits. In fact, the bound obtained by [CPTS20] is tight up to a polynomial.

Let us denote with AC(d) the class of all languages with polynomial size boolean circuit of

depth at most d.

Theorem 1.2. There exists a constant ε > 0 such that the following holds. For every integer

d > 3 there exist td, cd ∈ N, and a family of functions (ht)td6t∈N ⊂ AC(d) such that the following

holds. For every λ > cd
logd−2 t

there is a λ-spectral expander G = (V,E) and a labelling val : V →
{±1} with E[val(V )] = 0 such that EG,val(ht) > ε.

2 Aaron Potechin independently improved the bound obtained in [CPTS20] by removing the poly-logarithmic

factor, for the case µ = 0.
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The proof of Theorem 1.2 appears in Section 4.2.

Lastly, our third result addresses Problem 4. We show that the bound for general symmetric

functions does not vanish with t (even for µ = 0).

Theorem 1.3. There exists a family of symmetric functions (ft)t∈N where ft : {±1}t → {±1}
such that for every λ there is a λ-spectral expander G = (V,E), and a labelling val : V → {±1}
with E[val(V )] = 0 such that for all t, EG,val(ft) = Ω(λ).

The proof of Theorem 1.3 appears in Section 4.3.

1.3 Proof overview

In this section we give a brief overview of our proofs. We start by recalling the underlying

proof strategy of [CPTS20]. The key idea in [CPTS20] is to expand the test function under

consideration in the Fourier basis. The question of fooling general test functions then reduces

to the study of to what extent a Fourier character (namely, a parity) is fooled by an expander

random walk. [CPTS20] obtain their results by combining the above with known facts about

the Fourier expansion of the test function at hand.

1.3.1 Upper bound for symmetric functions – Theorem 1.1

For extending the result of [CPTS20] to all µ ∈ (−1, 1) we expand the test function f : {±1}t →
{±1} in a suitable variant of the “standard” Fourier basis. The basis we choose consists of∏
i∈S

xi−µ√
1−µ2

for all S ⊆ [t]. This change allows us to generalize the framework to all µ ∈ (−1, 1).

Recall, however that Theorem 1.1 also improves upon the bound obtained by [CPTS20] by

removing the poly-logarithmic factor (even for the special case µ = 0). To achieve this, we

deviate from the original analysis. The proof strategy of [CPTS20] is to bound the weight

indicator functions so to handle weights around the mean and invoke the expander Chernoff

bound for bounding the remaining weights. Our approach does not go through analyzing weight

indicator functions nor uses the expander Chernoff bound. Instead, we deviate from the original

analysis of [CPTS20] at a certain point and use a very simple bound on the Fourier mass

of symmetric functions (Claim 3.9). This allows us to save upon the poly-logarithmic factor.

Moreover, our proof is significantly simpler.

1.3.2 Tightness results

For the tightness results we work with a cayley graph over the communtative boolean group

G = Zn2 . Such Cayley graphs cannot give Ramanujan exapnders, but with logarithmic degree can

have vanishing second eigenvalue. The advantage of using such a graph is that the eigenvectors

of the graph correspond to the characterisitic functions of Zn2 (regardless of the set of the

generators used). The important property that we use is that all the eigenvectors of the fraph,

and in particular the eigenve tor with the second largest eigenvalue, has ±1 entries, up to

normalization. We then choose the labelling to correspond to the eigenvector with the second

largest eigenvalue.
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For a labelling ` : V → {±1} let us denote by P the diagonal matrix with `(u) in the i’th

element on the diagonal. Also, let G denote the transition matrix of the graph. It is an easy

excersie that

E[χS(RWG,val)] = 1T

(
t∏
i=1

P δiG

)
1,

where δ1 is 1 if i ∈ S an 0 otherwise. When we choose val to be the second eigenvector, then

P1 = v2 and Pv2 = 1. Also G1 = 1 and Gv2 = λv2. It follows that
(∏t

i=1 P
δiG
)
1 belongs to

the two dimensional subspace Span1, v2 and, furthermore, has a closed expression as a function

of t, λ and S. We then choose a function f (a thereshold function for the symmetric case and

an iterated Tribes function for the AC(d) case) to prove tightness.

1.3.3 Tightness for function in AC(d) – Theorem 1.2

To prove Theorem 1.2 we take the Boolean hypercube G and induce a balanced ±1 labelling val

of the vertices of G using an eigenvector corresponding to its second largest eigenvalue. The key

observation of the construction appears in Claim 4.7. The idea is that two adjacent bits obtained

by a random walk are λ correlated. Thus, valuating a function f on the parity of consecutive

bits obtained by a random walk, is the same as measuring the noise operator Tλ(f). Thus,

we construct functions that are highly sensitive to small noise. We start by constructing two

functions, f, g ∈ AC(2), and then define a family of functions recursively by composing f and g

in an alternating fashion. This recursive definition yields a family of functions hd ∈ AC(d+ 1)

for every d. In each step we increase the noise sensitivity of hd by a logarithmic factor, that

yields the desired of dependence of EG,val(hd) on d.

1.3.4 Tightness for symmetric functions – Theorem 1.3

To prove Theorem 1.3 we consider the threshold function f(x1, . . . , xt) = Sign(x1 +· · ·+xt−
√
t).

We again use the Boolean hypercube G with the same labelling.. Our proof uses the structure

of this specific graph (Corollary 4.3) to argue that not too many cancellations occur in the

contribution of the second Fourier level of f to EG,val(f). Further, f was chosen specifically so

to have high mass on its second Fourier level. On the other hand, we bound the absolute value

of the contribution of the higher Fourier levels to EG,val(f). Combining these two bounds, we

deduce the desired lower bound on EG,val(f).

1.4 Discussion and open problems

We conclude this section with several remarks and open problems that follow from our work.

1. Can one combine the distribution obtained by a random walk on an expander with another

pseudorandom distribution to obtain stronger results for functions in AC0. For example,

does permuting the values of the random walk with a pairwise independent permutation

yields a distribution that fools AC0?

2. The lower bounds proved in Section 4 are based on the tightness of our analysis for Caylay

Graphs over the Boolean cube. It is well-known that every Cayley Graph with constant
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expansion gap, has degree that is at least logarithmic in the number of vertices. Thus,

a natural question is whether we can give similar lower bounds for graphs with constant

degree.

3. On the other hand, it is still possible that there is a family of graphs that fools all symmetric

functions with vanishing bounds, and/or functions in AC0? Finding such graphs is a

compelling goal, that might require studying additional properties of expander graphs.

4. There is still a polynomial gap between the value of λ that fools functions in AC0 and

the lower bound obtained in Section 4.2. Any progress towards closing this gap will be

interesting.

2 Preliminaries

We let [n] denote the set {1, . . . , n}. We let 1 ∈ Rn denote the all 1s vector, i.e., 1 = (1, . . . , 1)T ∈
Rn. We let 1 ∈ Rn denote the normalize vector of 1, i.e 1 = 1√

n
·1. We let J = 11T.Throughout

the paper, we make use of the following well known inequalities about binomial coefficients.

Claim 2.1. Let 0 < λ < 1, and integers r > 0, a > b > 1. Then, (ab )b 6
(
a
b

)
6 ( eab )b.

2.1 Fourier analysis

Consider the space of functions f : {±1}t → R, along with the inner product

〈f, g〉 = 2−t
∑

x∈{±1}t
f(x)g(x).

It is a well-known fact that the set {χS | S ⊆ [t]}, where χS =
∏
i∈S

xi, forms an orthonormal

basis with respect to this inner product, which is called the Fourier basis. Thus every function

f : {±1}t → R can be uniquely represented as f(x) =
∑
S⊆[t]

f̂(S)χS(x), where f̂(S) ∈ R.

In this work we consider other bases, with respect to a similar inner product. Let µ ∈ [0, 1],

and by denote Uµt the distribution of the distribution over {±1}t where each bit is chosen

independently with expectation µ. Define 〈f, g〉 = Ex∼Uµt [f(x)g(x)]. Denote by σ =
√

1− µ2,

and let χµS(x) =
∏
i∈S

xi−µ
σ . It is easy to see that the set

{
χµS | S ⊆ [t]

}
, forms an orthonormal

basis with respect to this inner product, which is called the µ-biased Fourier basis. To see this,

note that by design for S 6= ∅, E[χµS ] = 0 and E[(χµS)2] = 1. Similarly to the standard Fourier

basis, every function f : {±1}t → R can be uniquely represented as f(x) =
∑
S⊆[t]

f̂µ(S)χµS(x),

where f̂µ(S) ∈ R.

3 Positive results

In this section we give upper bounds on Eλ,µ(f) for different families of functions. Hereby

generalizing, the results if [CPTS20] for µ ∈ (−1, 1). We start with presenting the general
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framework of the proofs, giving bounds on parity test functions in Section 3.1. We prove

Theorem 1.1 in Section 3.2. In Section 3.3 we improve the bounds obtained in Section 3.2

for certain families of functions.

Let G = (V,E) be a regular λ-spectral expander, and let val : V → {±1} be a labeling of the

vertices of G with E[val(V )] = µ. Let t > 1 an integer. We recall from the introduction that we

want to compare two distributions on {±1}t.

• The distribution obtained by sampling t vertices v1, . . . , vt uniformly and independently

at random, and outputting the ordered tuple (val(v1), . . . , val(vt)). Note that this is the

same distribution as sampling a sequence of t elements in {±1} independently such that

the marginal distribution of each entry has expectation µ. We denote this distribution by

Uµt .

• RWG,val is the distribution obtained by sampling a random length t−1 path v1, . . . , vt in G

and outputting the ordered tuple (val(v1), . . . , val(vt)). Equivalently, sample v1 uniformly

at random from V . Then, for i = 2, 3, . . . , t, sample vi uniformly at random from the

neighbors of vi−1.

Let f : {±1}t → {±1} be a test function. Expand f in the µ-biased Fourier basis,

f(x) =
∑
S⊆[t]

f̂µ(S)χµS(x).

Lemma 3.1. Let G = (V,E) be a regular λ-spectral expander, and let val : V → {±1} be a

labelling of the vertices of G with E[val(V )] = µ. Then, for every function f : {±1}t → R,

EG,val(f) 6
∑
S⊆T
S 6=∅

|f̂µ(S)|EG,val(χµS).

Proof. Since val has expectation µ, for S 6= ∅, E[χµS(Uµt )] = 0 and thus E[f(Uµt )] = f̂µ(∅).

EG,val(f) = |E f(RWG,val)−E f(Uµt )|

=
∣∣∣ ∑
S⊆T
S 6=∅

f̂µ(S) E[χµS(RWG,val)]
∣∣∣.

Thus, for S 6= ∅, EG,val(χµS) = |E[χµS(RWG,val)]|. The proof follows by the triangle inequality.

Lemma 3.1 motivates us to consider parity test functions. This is the content of the following

section.

3.1 Biased parity test functions

In this section we analyze to what extent expander random walks fool parity tests functions.

We start by introducing some notation. For an integer k > 2, we define the family Fk of subsets

of [k− 1] that, informally, consists of all subsets for which at least one of every two consecutive
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elements participate in the set. We also require the “end points” 1, k − 1 to participate in the

set. Formally, we define

Fk = {I ⊆ [k − 1] | {1, k − 1} ⊆ I and ∀j ∈ [k − 2] {j, j + 1} ∩ I 6= ∅} . (3.1)

So, for example, F6 consists of the elements {1, 3, 5}, {1, 2, 4, 5} as well as of all subsets of [5] that

has as a subset any one of these two elements, namely, {1, 2, 3, 5}, {1, 3, 4, 5} and {1, 2, 3, 4, 5}.
We extend the definition in the natural way to k = 0, 1 by setting F0 = F1 = ∅.

Definition 3.2. For an integer t > 1, and 2 6 k 6 t, and j ∈ [k−1] define the map ∆j :
([t]
k

)
→

N as follows. Let S ⊆ [t], of size k > 2, and denote S = {s1, . . . , sk} where s1 < · · · < sk. For

i ∈ [k − 2] write ∆i = si+1 − si. Define ∆j(S) = min(∆j ,∆j+1).

Definition 3.3. For an integer t > 1 define the map ∆ :
(

[t]
>2

)
→ N as follows. Let S ⊆ [t], of

size k > 2. For k = 2 we define ∆(S) = ∆1(S), and for k > 3,

∆(S) =

k−2∑
i=1

∆i(S). (3.2)

Proposition 3.4. Let G = (V,E) be a regular λ-spectral expander, and val : V → {±1} be a

labelling of the vertices of G with E[val(V )] = µ. Then, for every integers 1 6 k 6 t and every

subset S ⊆ [t] of size k,

EG,val(χµS) 6

(
1 + |µ|
1− |µ|

) k−1
2

·
∑
I∈Fk

λ
∑
j∈I ∆j(S).

Before proving Proposition 3.4, we remark that for sets of size |S| = 1, the sum is taken

over the empty index set F1 and so, by the standard convention, the sum equals to 0. We also

observe that Proposition 3.5 follows by Proposition 3.4. To see this, note that for every I ∈ Fk,

2
∑
i∈I

∆i >
k−2∑
i=1

min(∆i,∆i+1). (3.3)

Indeed, if we define δi to be the corresponding indicator for i ∈ I, namely, δi = 1 if i ∈ I and

δi = 0 otherwise, we see that

2
∑
i∈I

∆i >
k−2∑
i=1

δi∆i + δi+1∆i+1.

Equation (3.3) follows since δi∆i + δi+1∆i+1 > min(∆i,∆i+1) as indeed, for every i ∈ [k− 2], at

least one of i, i+1 is in I. Now, recall that in Equation (3.2), the right hand side of Equation (3.3)

was denoted by ∆(S). As |Fk| 6 2k−1, Proposition 3.5 follows by Proposition 3.4. We turn to

prove Proposition 3.4.

Proof of Proposition 3.4. Consider any nonempty set S ⊆ [t] of size |S| = k. As E[χS(Uµt )] = 0,

we have that

EG,val(χµS) =
∣∣E[χµS(RWG,val)]

∣∣ .
8



We wish to express the right hand side algebraically. Let n = |V | and identify V with [n] in an

arbitrary way. Let P be the n× n diagonal matrix with

Pv,v =
val(v)− µ√

1− µ2

for every v ∈ [n]. We slightly abuse notation and denote the random walk matrix (that is, the

normalized adjacency matrix) of G also by G. Define δi = 1 if i ∈ S and δi = 0 otherwise and

observe that

E[χµS(RWG,val)] = 1T

(
t∏
i=1

P δiG

)
1,

where recall 1 is the vector all of whose entries equal to 1√
n

. Indeed, informally, at the i’th

step we take a random step using G and then, depending on i being an element of I or not, we

multiply by P or by I, respectively. Thus, we can write

E[χµS(RWG,val)] = 1TGt−sk

(
k−1∏
i=1

PG∆i

)
PGs11 = 1T

(
k−1∏
i=1

PG∆i

)
P1, (3.4)

where we have used the regularity of G, namely, G1 = 1.

Next, we use the spectral decomposition of G. As G is a λ-spectral expander we know

that G = J + λE where ‖E ‖ 6 1. Similarly, As G` is a λ`-spectral expander we have that

G` = J + λ`E` for some operator E` with bounded norm ‖E` ‖ 6 1. Thus,

k−1∏
i=1

PG∆i =
∑

I⊆[k−1]

k−1∏
i=1

PBi(I), (3.5)

where

Bi(I) =

{
λ∆iE∆i i ∈ I;

J otherwise.

For I ⊆ [k − 1] let

eI = 1T

(
k−1∏
i=1

PBi(I)

)
P1.

Equations (3.4) and (3.5) imply that

E[χS(RWG,val)] =
∑

I⊆[k−1]

eI . (3.6)

Not all subsets I ⊆ [k − 1] contribute non-zero values eI to the sum. Indeed, if k − 1 6∈ I then

9



Bk−1(I) = J and so

eI = 1T

(
k−2∏
i=1

PBi(I)

)
(PJ)P1

= 1T

(
k−2∏
i=1

PBi(I)

)
(P11T )P1

= 1T

(
k−2∏
i=1

PBi(I)

)
P1(1TP1).

As

1TP1 =
1√

1− µ2
·
∑
i∈[n]

val(i)− µ
n

=
E[val(V )]− µ√

1− µ2
= 0,

we have that eI = 0. Similarly eI = 0 for I not containing 1. Moreover, if j, j + 1 are both not

contained in I for some j ∈ [k − 2] then

eI = 1T

(
j−1∏
i=1

PBi(I)

)
(PBj(I))(PBj+1(I))

 k−2∏
i=j+2

PBi(I)

P1

= 1T

(
j−1∏
i=1

PBi(I)

)
(PJ)(PJ)

 k−2∏
i=j+2

PBi(I)

P1.

However,

(PJ)(PJ) = (P11T )(P11T ) = P1(1TP1)1T = 0.

Thus, any subset I ⊆ [k − 1] that may contribute to the sum in Equation (3.6) is contained in

Fk as defined in Equation (3.1). Let M be the n× n diagonal matrix defined by Mv,v = val(v)

for all v ∈ [n]. Note that P = 1√
1−µ2

(M − µI). As ‖M‖ = 1, using the triangle inequality we

get

‖P‖ 6 ‖M‖+ ‖µI‖√
1− µ2

6
1 + |µ|√

1− µ2
=

√
1 + |µ|
1− |µ|

.

By the Cauchy-Schwartz inequality and by the sub-multiplicativity of the Euclidean norm, for

every I ∈ Fk we have that

eI = 1T

(
k−1∏
i=1

PBi(I)

)
P1

6
k−1∏
i=1

‖PBi(I)‖

6 ‖P‖k−1
∏
i∈I
‖Bi(I)‖.

Recall that for every i ∈ I, Bi(I) = λ∆iE∆i and that ‖E∆i‖ 6 1. Thus,∏
i∈I
‖Bi(I)‖ 6

∏
i∈I

λ∆i ,

10



which concludes that eI 6
(

1+|µ|
1−|µ|

) k−1
2 ∏

i∈I λ
∆i .

In particular, we prove the following.

Proposition 3.5. Let G = (V,E) be a regular λ-spectral expander, and val : V → {±1} a

labelling of the vertices of G with E[val(V )] = µ. Then, for every integers 1 6 k 6 t and every

subset S ⊆ [t] of size k,

EG,val
(
χµS
)
6

(
1 + |µ|
1− |µ|

) k−1
2

2k · λ∆(S)/2.

This follows immediately from Theorem 3.4

3.2 Symmetric test functions

In this section we prove Theorem 1.1. For convenience we restate it here,

Theorem 3.6. For every symmetric function f , µ ∈ (−1, 1) and 0 < λ < 1−|µ|
128e it holds that

Eλ,µ(f) 6
124√
1− |µ|

· λ.

Given a symmetric function f : {±1}t → R and k ∈ [t] we slightly abuse notation and denote

by f̂µ(k) = |f̂µ([k])|. For analyzing the random walk with respect to symmetric test functions,

we define for every integer k ∈ {0, 1, . . . , t},

βµk =
∑
S⊆[t]
|S|=k

E[χµS(RWG,val)]. (3.7)

Note that βk is independent of the choice of test function. However, for symmetric tests func-

tions, these quantities will appear in the analysis, and so we begin by analyzing them. By Propo-

sition 3.4,

βµk 6
∑
S⊆[t]
|S|=k

(
1 + |µ|
1− |µ|

) k−1
2

·
∑
I∈Fk

λ
∑
j∈I ∆j(S)

=

(
1 + |µ|
1− |µ|

) k−1
2

·
∑
S⊆[t]
|S|=k

∑
I∈Fk

λ
∑
j∈I ∆j(S).

Denote

βk =
∑
S⊆[t]
|S|=k

∑
I∈Fk

λ
∑
j∈I ∆j(S).

We have that βµk 6
(

1+|µ|
1−|µ|

) k−1
2
βk. A straightforward corollary of Lemma 3.1 is the following

11



Corollary 3.7. Let G = (V,E) be a regular λ-spectral expander, and val : V → {±1} a labelling

of the vertices of G with E[val(V )] = µ. Then, for every symmetric function f : {±1}t → R,

EG,val(f) 6
t∑

k=2

f̂µ(k)βµk 6
t∑

k=2

f̂µ(k)

(
1 + |µ|
1− |µ|

) k−1
2

βk.

We invoke the following bound on βk obtained in [CPTS20].

Lemma 3.8 ([CPTS20], Lemma 4.4).

βk 6 2k
(
t− 1

bk2c

)(
λ

1− λ

)d k
2
e

(3.8)

Claim 3.9. Let f : {±1}t → {±1} be a symmetric function, then for every µ ∈ (0, 1) and

S ⊂ [t] it holds that ∣∣∣f̂µ(S)
∣∣∣ 6 1√(

t
|S|
) .

Proof. By Parseval’s equality,

1 = E[f2] =
∑
S⊂[t]

f̂µ(S)2.

For a symmetric function, every S1, S2 ⊆ [t] with |S1| = |S2| satisfy f̂µ(S1) = f̂µ(S2) and thus

we can write

1 = E[f2] =
∑
k6t

f̂µ(k)2

(
t

k

)

which implies that for every k 6 t,
∣∣∣f̂µ(k)

∣∣∣ 6 1√
(tk)
.

We are now ready to prove Theorem 3.6.

Proof of Theorem 3.6. Let G = (V,E) be a regular λ-spectral expander, and val : V → {±1} a

labelling of V with E(val) = µ. Write

f(x1, . . . , xt) =
∑
S⊆[t]

f̂µ(|S|)χµS(x1, . . . , xt).

Denote

ν =

√
1 + |µ|
1− |µ|

.

By Corollary 3.7,

EG,val(f) 6
t∑

k=2

f̂µ(k)νk−1βk.

Claim 3.9 and Lemma 3.8 then imply that

12



EG,val(f) 6
t∑

k=2

1√(
t
k

)νk−12k
(
t− 1

bk2c

)(
λ

1− λ

)d k
2
e

A straightforward calculation implies that

1√(
t
k

)(t− 1

bk2c

)
6 (2e)k/2

and so

EG,val(f) 6
t∑

k=2

νk−1(8e)k/2
(

λ

1− λ

)d k
2
e

6
t∑

k=2

νk−1(16e)k/2λ
k
2

= ν−1
t∑

k=2

αk

6
ν−1α2

1− α
,

where α =
√

16eν2λ. Per our assumption that λ < 1−|µ|
128e we have α 6 1

2 and so

EG,val(f) 6 2ν−1α2 = 32eνλ 6
124λ√
1− |µ|

.

3.3 Vanishing bounds

In this section we derive bounds on Eλ,µ that the vanish with length of the walk t for specific

functions. In particular, for the majority function (Section 3.3.1) and for weight indicator

functions (Section 3.3.2).

3.3.1 Bounds for the majority function

In this section we use the results developed so far to prove that random walks fool the majority

function. For w ∈ [t] we define Thw : {±1}t → {±1, 0} by Thw(x) = 1 if | {i ∈ [t] |xi = 1} | > w
and Thw(x) = −1 otherwise. Put differently,

Thw(x1, . . . , xt) = Sign(x1 + · · ·+ xt − 2w + t),

with the understanding that Sign(0) = 0. Note that for odd t, the function Tht/2 is the majority

function.

Theorem 3.10. For every µ ∈ (−1, 1), 0 < λ < 1−|µ|
192e and every t ∈ N

Eλ,µ(Th t+µt
2

) 6
1√
t
· (96e)2λ2

1− |µ|
.
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From here on, for ease of readability we denote Th t+µt
2

by f . Note that f = Sign(
∑

i xi−µt).

Claim 3.11. For |S| even, f̂µ(S) = 0.

Proof. Consider the transformation yi = 2µ− xi. It holds that

f(y1, . . . , yt) = Sign

(
t∑
i=1

(yi − µ)

)

= −Sign

(
−

t∑
i=1

(µ− xi)

)

= −Sign

(
t∑
i=1

xi − µt

)
= −f(x1, . . . , xt).

Expanding f in the respective Fourier basis we get

f(x1, . . . , xt) =
∑
S∈[t]

f̂µ(S)χµS(x1, . . . , xt).

Note that χµS(y1, . . . , yt) = (−1)|S|χµS(x1, . . . , xt), and so

∑
S∈[t]

−(f̂µ(S))χµS(x1, . . . , xt) = −f(x1, . . . , xt)

= f(y1, . . . , yt)

=
∑
S∈[t]

f̂µ(S)χµS(y1, . . . , yt)

=
∑
S∈[t]

(−1)|S|f̂µ(S)χµS(x1, . . . , xt).

By comparing both sides we get that f̂µ(S) = 0 for all S of even size.

Proof of Theorem 3.10. Let G = (V,E) be a regular λ-spectral expander, and val : V → {±1}
a labelling of V with E[val(V )] = µ. Expand

f(x1, . . . , xt) =
∑
S⊆[t]

f̂µ(|S|)χµS(x1, . . . , xt).

By Corollary 3.7,

EG,val(f) 6
t∑

k=2

f̂µ(k)νk−1βk.
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where ν =
√

1+|µ|
1−|µ| . By Claim 3.11 we get that

EG,val(f) 6

b t−1
2
c∑

k=1

f̂µ(2k + 1)ν2kβ2k+1.

Applying Claim 3.9 and Lemma 3.8

EG,val(f) 6

b t−1
2
c∑

k=1

1√(
t

2k+1

)ν2k22k+1

(
t− 1

k

)(
λ

1− λ

)k+1

.

A straightforward calculation using Claim 2.1 implies that

1√(
t

2k+1

)(t− 1

k

)
6

(6e)k√
t
.

Thus,

EG,val(f) 6
1√
t

b t−1
2
c∑

k=1

ν2k(6e)k22k+1

(
λ

1− λ

)k+1

6
ν−2

√
t

b t−1
2
c∑

k=1

(
48eν2λ

)k+1

6
ν−2

√
t

∞∑
k=2

αk

6
α2ν−2

√
t(1− α)

,

where α = 48eν2λ. Per our assumption that λ < 1−|µ|
192e we have α 6 1

2 and so

EG,val(f) 6
2α2ν−2

√
t
6

1√
t
· (96e)2λ2

1− |µ|
.

3.3.2 Bounds for weight indicators

For integers t and w ∈ {0, 1, . . . , t} let 1w : {±1}t → {0, 1} be the function indicating whether the

weight of the input is w. That is, 1w(x1, . . . , xt) = 1 if |{i | xi = 1}| = w and 1w(x1, . . . , xt) = 0

otherwise. In this section we prove

Theorem 3.12. For every µ ∈ (−1, 1), 0 < λ 6 1−|µ|
768e , every t ∈ N and 0 6 w 6 t, it holds that

Eλ(1w) 6
1√
t
· 192eλ

1− |µ|
.
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We analyze the weight indicator function in a similar way to the majority function, except

that we need a new argument in order to bound its Fourier coefficients. The analysis is more

delicate as the weight indicator function is not anti-symmetric and therefore has Fourier mass

on even layers. For integers t and w ∈ {0, 1, . . . , t} let 1>w : {±1}t+1 → {0, 1} be the function

indicating whether the weight of the input is greater w. That is, 1w(x1, . . . , xt) = 1 if
∑

i xi > w

and 1w(x1, . . . , xt) = 0 otherwise. Note that,

1w(x1, . . . , xt) = 1>w(1, x1, . . . , xt)− 1>w(0, x1, . . . , xt). (3.9)

Claim 3.13. For every S ⊆ [t], it holds that

(̂1w)µ(S) =
̂(1>w)µ(S ∪ {0})√

1− µ2
.

Proof.

1w(x1, . . . , xt) = 1>w(1, x1, . . . , xt)− 1>w(0, x1, . . . , xt)

=
∑

S⊆{0,...,t}

̂(1>w)µ(S)χµS(1, x1, . . . , xt)−
∑

S⊆{0,...,t}

̂(1>w)µ(S)χµS(0, x1, . . . , xt)

=
∑

S⊆{0,...,t}

̂(1>w)µ(S)(χµS(1, x1, . . . , xt)− χµS(0, x1, . . . , xt))

∑
S⊆{0,...,t}

0∈S

̂(1>w)µ(S)
1√

1− µ2
χµS\{0}(x1, . . . , xt),

and the claim follows.

Claim 3.14. For every k 6 t it holds that

(̂1w)µ(k)2 6
k + 1

(1− µ2)
(
t
k

)
(t+ 1)

.

Proof. As 1>w is symmetric with range {0, 1},

t+1∑
k=0

(
t+ 1

k

)
̂(1>w)µ

2
(k) 6 1.

In particular, for every k 6 t+ 1, ̂(1>w)µ
2
(k) 6

(
t+1
k

)−1
. By Claim 3.13, for every k 6 t,

(̂1w)µ
2
(k) =

̂(1>w)µ
2
(k + 1)

1− µ2
.

Hence,

(̂1w)µ
2
(k) 6

1

(1− µ2)
(
t+1
k+1

) ,
which concludes the proof.
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Proof of Theorem 3.12. Let G = (V,E) be a regular λ-spectral expander, and val : V → {±1}
a labelling of V with E[val(V )] = µ. Expand

f(x1, . . . , xt) =
∑
S⊆[t]

f̂µ(|S|)χµS(x1, . . . , xt).

By Corollary 3.7,

EG,val(1w) 6
t∑

k=2

(̂1w)µ(k)νk−1βk.

where ν =
√

1+|µ|
1−|µ| . Using Claim 3.14 to upper bound (̂1w)µ and Lemma 3.8 to bound βk we get,

EG,val(1w) 6
t∑

k=2

√
k + 1

(1− µ2)(t+ 1)

1√(
t
k

) · νk−12k
(
t− 1

bk2c

)(
λ

1− λ

)d k
2
e
.

As in the calculation in Theorem 3.10, it is not hard to verify that

1√(
t
k

) · (t− 1

bk2c

)
6 (3e)

k
2 .

Thus,

EG,val(1w) 6
t∑

k=2

√
k + 1

(1− µ2)(t+ 1)
· νk−1(3e)

k
2 2k

(
λ

1− λ

)d k
2
e

6
1√
t
· ν−1√

1− µ2

t∑
k=2

(ν2)
k
2 (96e)

k
2λ

k
2

=
1√
t
· ν−1√

1− µ2

t∑
k=2

αk

6
1√
t
· ν−1√

1− µ2
· α2

1− α
,

where α =
√

96eν2λ. Per our assumption that λ < 1−|µ|
768e we have α 6 1

2 and so

EG,val(1w) 6
1√
t
· 192eλ

1− |µ|
.

4 Lower Bounds

In this section we prove Theorems 1.2 and 1.3. In Section 4.1 we choose an expander graph for

which we obtain a precise analytic formula for the expectation of characters under the input

distribution given by the random walk. In Section 4.3 we use this formula to lower bound the

bias of a certain symmetric function, thus proving Theorem 1.3. Furthermore, based on this

formula, in Section 4.2 we prove Theorem 1.2.
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4.1 Choosing the graph

Definition 4.1. For S ⊆ [t], we denote ∆odd(S) =
∑b(|S|−1)/2c

i=1 ∆2i+1(S).

Claim 4.2. Let G = ([n], E) be a Cayley graph over the boolean cube, with second largest

eigenvalue λ2 and corresponding eigenvector v2. Define val : [n]→ {±1} by val2(i) = v2(i) . Let

S ⊆ [n], |S| = k. Let P be the diagonal matrix corresponding to val2, that is, Pi,i = val2(i) =

v2(i). Then, (
k−1∏
i=1

PG∆i

)
P1 =

{
λ
∑k−2/2
i=1 ∆2i+11 k ∈ Neven,

λ
∑k−1/2
i=1 ∆2i+1v2 k ∈ Nodd.

Proof. We will prove the claim using induction. For the base case k = 1 it holds that
∏k−1
i=1 PG

∆i =

I, and the statement follows as IP1 = v2 = λ0v2. For the induction step, note that(
k∏
i=1

PG∆i

)
P1 = PG∆k

(
k−1∏
i=1

PG∆i

)
P1.

If k ∈ Neven than k − 1 ∈ Nodd and, using the induction hypothesis we get that

PG∆k

(
k−1∏
i=1

PG∆i

)
P1 = PG∆kλ

∑(k−2)/2
i=1 ∆2i+1v2

= λ
∑k/2
i=1 ∆2i+11,

which is what we wanted to prove. The proof in the case that k ∈ Nodd is similar.

Corollary 4.3. Let G = ([n], E) be a Cayley graph over the boolean cube, with second largest

eigenvalue λ2 and corresponding eigenvector v2. Define val : [n] → {±1} by val2(i) = v2(i) .

Then,

E[χS(RWG,val)] =

{
λ∆odd(S) |S| ∈ Neven,
0 |S| ∈ Nodd.

Proof. Note that Pv2 = 1 and P1 = v2. As before, it holds that

E[χS(RWG,val)] = 1T

(
k−1∏
i=1

PG∆i

)
P1 =

1

n
1T

(
k−1∏
i=1

PG∆i

)
P1.

The fact that G is regular implies that 1Tv2 = 0, which finishes the case that k is odd; the case

that k is even is handled similarly by noting that 1T1 = n.

Cayley graphs over an Abelian groups commute and share an orthonormal basis of eigenvec-

tors, which turns out to be the set of all characters of the group. The eigenvalues have a directe

correspendence to the set of generators of the Caylely graph. Building on that [AR94] proved

that for every 0 < λ < 1, of the form 1
m for m ∈ N, and m 6 n ∈ N there is a Cayley graph on

the n dimensional boolean cube, with λ2 = λ.
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Throughout this section, we let G be a Cayley graph on the Boolean cube with λ2 = λ

(which is given as parameter in the various statements of the results).

A technical tool that we use in Section 4.2 is the noise operator. The definitions and following

claims appear in [O’D14].

Definition 4.4. Let ρ ∈ [−1, 1]. For a fixed x ∈ {±1}t we write y ∼ Nρ(x) to denote the

random string y that is drawn as follows: for each i ∈ [t] independently,

yi =

{
xi with probability 1+ρ

2 ,

−xi with probability 1−ρ
2 .

Definition 4.5. Let ρ ∈ [−1, 1]. The noise operator Tρ is the linear operator on functions

{±1}t → R defined by Tρf(x) = Ey∼Nρ(x) f(y) The fact that the operator is linear follows

directly from the linearity of the expectation.

Notice that T1(f) = f whereas T0(f) is the constant function T0(f) = E f . We make use of

the following lemma.

Lemma 4.6. For every function f : {±1}t → R it holds that: Tρf(x) =
∑

S⊂[t] f̂(S)ρ|S|χS(x).

Claim 4.7. For f : {±1}t → R, define g : {±1}2t → R by

g(x1, x2, . . . , x2t−1, x2t) = f(x1 · x2, . . . , x2t−1 · x2t).

It holds that E[g(RWG,val2)] = (Tλf)(1).

Proof: For {s1, . . . , sk} = S ⊆ [t] denote 2S : = {2s1 − 1, 2s1, . . . , 2sk − 1, 2sk} ⊆ [2 · t].
Note that ∆odd(2S) = |S|. It is easy to verify that

g(x1, x2, . . . , x2t−1, x2t) =
∑
S⊆[t]

f̂(S)χ2S(x1, x2, . . . , x2t−1, x2t).

Therefore,

E[g(RWG,val2)] =
∑
S⊆[t]

f̂(S) E[χ2S(RWG,val2)] =
∑
S⊆[t]

f̂(S)λ|S| =
∑
S⊆[t]

f̂(S)λ|S|χS(1),

which is equal to Tλ(f)(1) by Lemma 4.6. In the second equality we used Corollary 4.3. �

4.2 Lower bound for a function in AC(d)

In this section, we prove Theorem 1.2, restated below. we continue with the choice of G and val

as in the previous section.

Theorem 4.8 (Theorem 1.2; restated). There are universal constants ε > 0, k ∈ N, satisfying

the following. For every 3 6 d ∈ N, there exists a constant td, and a family of functions

(ht)td6t∈N ⊂ AC(d), such that for every λ > (40(d−2)k)d−2

logd−2 t
there is a λ-spectral expander G =

(V,E), and a labelling val : V → {±1} with E[val(V )] = 0 such that

EG,val(ht) > ε.
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As before, we will choose G to be a Cayley graph on the boolean cude with λ2 = λ and

val = val2. Our construction of the function fd will be iterative, and we begin by presenting the

basic building blocks used in it.

Fix t; we choose parameters r, h such that r · h 6 t by taking h = log(t)− log log(t) and r =

b t
log t ln(2)c. Partition [t] into disjoint sets I1, . . . , Ir, each of size h, and consider f, g : {−1, 1}t →
{0, 1} defined as

f(z1, . . . , zt) =
∨
i∈[r]

∧
j∈Ii

zj , g(z1, . . . , zt) =
∧
i∈[d]

∨
j∈Ii

zj . (4.1)

Here, −1 is interpreted as “true”, 1 is interpreted as “false”. Note that f, g ∈ AC(2).

Claim 4.9. The functions f and g are almost balanced with respect to the uniform distribution.

Quantitatively, E[f ],E[g] ∈
[

1
2 −O

(
log(t)
t

)
, 1

2 +O
(

log(t)
t

)]
.

Proof. From De Morgan’s identity we have g(x1, . . . , xt) = 1− f(x1, . . . , xt), so E[g] = 1−E[f ]

and it is enough to prove the statement for f . To see that, we first write

E[f ] = Pr[f = 1] = 1−
r∏
i=1

Pr[
∧
j∈Ii

zj = 0] = 1−
r∏
i=1

1−Pr[
∧
j∈Ii

zj = 1]

 = 1−
(

1− 1

2h

)r
.

Using the fact that 1− ε = e−ε+O(ε2) we obtain that

1−
(

1− 1

2h

)r
= 1− e−2−hr+O(r2−2h) = 1− e− ln 2+O( log t

t ) =
1

2
+ Θ

(
log t

t

)
,

as desired.

Denote by µp the product distribution over {±1}t, wherein for each i we have that Pr[zi =

−1] = p. Abusing notations, we denote µ(f) = Ex∼µp [f(x)].

Claim 4.10. There is sufficiently large constant k > 0 such that the following holds. Suppose

p = 1−ε
2 is such that k2

t 6 ε 6
k

log(t) . Then,

µp(f), µp(g) 6
1− hε

20k

2
.

Proof. First, we analyze µp(f). By definition, it is equal to

Pr
µp

[f = 1] 6 1− (1− ph)r = 1− (1− 2−h(1− ε)h)r = 1− e−r·2−h(1−ε)h+O(2−2hr(1−ε)2h)

Using (1− ε)h 6 1− εh
10k that holds as εh 6 k, we may upper bound the previous expression by

1− e−r·2−h(1− hε
10k )+O(2−2hr(1−ε)2h) 6 1− e− ln 2+hε ln 2

10k
+O( log t

t ) = 1− 1

2
e
hε ln 2
10k

+O( log t
t ).

which is at most 1
2−

hε
40k provided that k is sufficiently large. Here, we used the bound ez > 1+z.

Now we analyze µp(g). By definition, it is equal to

Pr
µp

[g = 1] = (1− (1− p)h)r = (1− 2−h(1 + ε)h)r 6 e−r·2
−h(1+ε)h+O(2−2hr(1+ε)2h).
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Using the fact that (1 + ε)h 6 1 + hε, we may further upper bound this by

6 e−r·2
−h(1+h·ε)+O( log t

t ) 6 e− ln 2−hε ln 2+O( log t
t ) 6

1

2
e−hε ln 2+O( log t

t
)

Using e−z 6 1− z
10k that holds for 0 6 z 6 k, we may upper bound this by

1

2

(
1− hε ln 2

20k
+O

(
log t

t

))
6

1

2
− hε

40k
,

where the last inequality holds provided that k is sufficiently large.

Claim 4.11. Let p = 1−ε
2 , then if ε > k

log(t) . Then,

µp(f), µp(g) 6 e−k/10.

Proof. First, we analyze µp(f). By definition it is equal to

Pr
µp

[f = 1] = 1− (1− ph)r = 1− (1− 2−h(1− ε)h)r = 1−

(
1− 2−h

(
1− k

log t

)h)r
6 1−

(
1− 2−he−k

)r
.

Using (1− δ)r > 1− rδ, we get that the above expression is at most r2−he−k 6 e−k. Next, we

upper bound µp(g). By definition, it is equal to

Pr
µp

[g = 1] 6 (1− (1− p)h)r = (1− 2−h(1 + ε)h)r =

(
1− 2−h

(
1 +

k

log t

)h)r
.

Using (1 + δ)r > δr for δ > 0, we get that this is at most

(1− 2−hk)r 6 e−r2
−hk 6 e−k/10.

Claim 4.12. Let p = 1−ε
2 . There exists k ∈ N such that for k2

t 6 ε 6
1√
t
, then,

µp(f), µp(g) >
1− 20h · ε

2
.

Proof. First, we analyze µp(f). By definition, it is equal to

Pr
µp

[f = 1] = 1− (1− ph)r = 1− (1− 2−h(1− ε)h)r = 1− e−r·2−h(1−ε)h+O(2−2hr(1−ε)2h).

Using (1− ε)h > 1− εh, we may lower bound the previous expression by

1− e−r·2−h(1−hε)+O(2−2hr(1−ε)2h) > 1− e− ln 2+hε ln 2+O( log t
t ) = 1− 1

2
ehε ln 2+O( log t

t ).
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which is at least 1
2 − 20hε. Here, we used the bound ez 6 1 + 2z, provided 0 6 z 6 1. Now

we analyze µp(g). By definition, it is equal to

Pr
µp

[g = 1] = (1− (1− p)h)r = (1− 2−h(1 + ε)h)r > e−r·2
−h(1+ε)h+O(2−2hr(1+ε)2h).

Using the fact that (1 + ε)h 6 1 + 10 · hε as hε 6 1, we may lower bound this by

> e−r·2
−h(1+10h·ε)+O( log t

t ) = e− ln 2−10h·ε ln 2+O( log t
t ) >

1

2
e−h·ε·10 ln 2+O( log t

t
)

Using e−z > 1− z, we may lower bound this by

1

2

(
1− 10 ln 2h · ε+O

(
log t

t

))
>

1− 20h · ε
2

,

Remark 4.13. Notice that when we take h(x1, y1, . . . , xt, yt) = f(x1 ⊕ y1, . . . , xt ⊕ yt), we can

use Claim 4.7 to obtain that E[h(RWG,val2)] = Tλ(f)(1) = µ 1−λ
2

(f) and thus, if λ > k
log t we get

that E[h(RWG,val2)] < e−C while E[h] = E[f ] > 1
2 − O( log t

t ). This implies that h distinguishes

between the two distributions.

We want to generalize this result for AC(d). In order to do so, we define a sequence of func-

tions {hd}d∈N as follows. The function h1 is defined to be g; the function h2 operates on t2 coordi-

nates, denote them by x1, . . . , xt ∈ {±1}t, and is defined as h2 = g(f(x1), . . . , f(xt)). Iteratively,

once hd has been defined, we view the input to hd+1 : {±1}td+1 → {0, 1} as y1, . . . , yt ∈ {±1}td

and define

hd+1(y1, . . . , yt) =

{
hd(g(y1), . . . , g(yt)) 1 < d ∈ Neven
hd(f(y1), . . . , f(yt)) 2 < d ∈ Nodd

Observe that hd ∈ AC(d+ 1).

Claim 4.14. There is c ∈ N. Let p = 1−ε
2 . such that for c2

t 6 ε 6
1

20d logd t
√
t
, then,

µp(hd) >
1− (20h)dε

2
.

Proof. Using induction. When d = 1 the claim follows from Claim 4.12. Assume that the claim

holds for d′ < d, and that d ∈ Neven.

µp(hd) = µµp(f)(hd−1) > µ 1−20hε
2

(hd−1).

Where the last transition holds as hd−1 is monotone, and µp(f) > 1−20hε
2 by Claim 4.12.

As ε 6 1
20d logd t

√
t
, using the induction hypothesis, it holds that µp(hd) > µ 1−20hε

2
(hd−1) >

1−(20h)dε
2 . When d ∈ Nodd the analysis is analogous.

Corollary 4.15. For every δ > 0, d ∈ N there is td ∈ N such that for every td 6 t ∈ N.

E[hd] >
1

2
− δ.
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Proof. This follows immediately from Claim 4.14 and Claim 4.9.

Claim 4.16. There is sufficiently large constant k > 0 such that the following holds. If k2

t 6
λ 6 k

log t then, µ 1−λ
2

(hd) 6 µ 1−(h/20k)·λ
2

(hd−1).

Proof. Denote p = 1−λ
2 . If 2 < d ∈ Nodd, then µp(hd) = µp(hd−1(g1, . . . , gt)) = µq(hd−1(x1, . . . , xt))

Where q = Prµp [g = 1]. Using Claim 4.10, we get that q 6 1−(h/20k)·λ
2 and from monotonicity

we get that µ 1−λ
2

(hd) 6 µ 1−(h/20k)·λ
2

(hd−1). When 2 < d ∈ Neven the proof is identical.

Claim 4.17. Let p = 1−ε
2 , then if ε > k

log(t) . Then, for every d ∈ N,

µp(hd) 6 e
−k/10.

Proof. Using induction. d = 1 implies hr = g and the claim follows from Claim 4.11. Assuming

the claim holds for d′ 6 d, then, if d+ 1 ∈ Nodd

µp(hd+1) = µp(hd(g1, . . . , gt)) = µµp(g)[hd(x1, . . . , xt)]

From Claim 4.11 we know that mp(g) 6 e−k/10, which means that ε = 1−2p > 1−2e−k/10 >
k

log t , and thus we can use the induction hypothesis and conclude that

µp(hd+1) 6 e−k.

The induction step when r ∈ Neven is identical.

Claim 4.18. For all k ∈ N, setting Cd = k(20k)d, if λ > Cd
logd t

then µ 1−λ
2

(hd) 6 e−k/10.

Proof. Using induction, if λ > k
log t , the claim follows from Claim 4.17.

For 0 6 j < d, denote λj = ( h
20k )jλ. While λj 6 k

log t , we can use Claim 4.16, to obtain that

µ 1−λj
2

(hd−j) 6 µ 1−λj+1
2

(hd−j−1).

The assumption that λ > Cd
logd t

implies that λd−1 = (h/20k)d−1λ > logd−1 t
(20k)d−1

Cd
logd t

> k/ log t.

Thus, we may consider the minimal j such that λj > k/ log t and get that

µ 1−λ
2

(hd) 6 µ 1−λj
2

(hd−j) 6 e
−k/10,

where in the last inequality we used Claim 4.17.

Proof of Theorem 4.8. Let C ′d = (2d)d+1Cd. As before consider, h̃d(x1, y1, . . . , xt, yt) = hd(x1 ⊕
y1, . . . , xt ⊕ yt). Note that h̃d : {±1}t′d → {0, 1} where t′d = 2td. Thus log(t′d)/2d 6 log(t), and
Cd

logd t
6

C′d
logd t′d

It holds that h̃d ∈ AC(d+ 2). Using Claim 4.7 we obtain that E[h̃d(RWG,val2)] =

Tλ(hd)(1) = µ 1−λ
2

(hd). From Claim 4.18 we obtain that if λ >
C′d

logd t′d
> Cd

logd t
then

E[h̃r(RWG,val2)] = µ 1−λ
2

(h) 6 e−k/10.

Corollary 4.15 implies that

E[h̃d(Ind2t)] = E[hd(Indt)] = µ 1
2
(hd) >

1

2
− o(1).

This implies that h̃d distinguish between the distribution obtained by a random walk on G with

λ >
C′d

logd t′d
and t′d independent bits, as we wanted to show.
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4.3 Lower bound for symmetric functions

The main goal of this section is to prove the following theorem.

Theorem (Theorem 1.3, restated). There exists a universal constant c, and a family of sym-

metric functions (ft)t∈N where ft : {±1}t → {±1} satisfying the following. For every λ there is

a λ-spectral expander G = (V,E), and a labelling val : V → {±1} with E[val(V )] = 0 such that

for every t, EG,val(ft) > c · λ.

Theorem 4.19. For all 0 < c0 6 1, if 0 < λ <
c20

12800·e and f : {±1}t → {±1} is a symmetric

function with
∣∣∣f̂(2)

∣∣∣ > c0√
(t2)

, then

EG,val2(f) > 0.001c0λ.

Proof. Denote by B2 = {{i, i+ 1} | i ∈ [t− 1]}. Note that |B2| = t− 1 and that for every S ∈ B2

it holds that ∆odd(S) = 1.

EG,val2(f) =

∣∣∣∣∣∣∣∣
∑
S⊆[t]
|S|>2

f̂(|S|) E[χS(RWG,val)]

∣∣∣∣∣∣∣∣
>
∣∣∣f̂(2)

∣∣∣
∣∣∣∣∣∣

∑
S⊆[t],|S|=2

E[χS(RWG,val)]

∣∣∣∣∣∣−
∣∣∣∣∣∣

∑
S⊆[t],|S|>2

f̂(|S|)EG,val2(χS)

∣∣∣∣∣∣
It holds that ∣∣∣f̂(2)

∣∣∣
∣∣∣∣∣∣

∑
S⊆[t],|S|=2

E[χS(RWG,val)]

∣∣∣∣∣∣ >
∣∣∣f̂(2)

∣∣∣ ∑
S⊆B2

λ

> c0

√
2

√
(t− 1)

t
λ

>
c0√

2
λ,

and, ∣∣∣∣∣∣
∑

S⊆[t],|S|>2

f̂(S)EG,val2(χS)

∣∣∣∣∣∣ 6
∑
k>3

∣∣∣f̂(k)
∣∣∣βk 6∑

k>3

1√(
t
k

)2k
(
t− 1

bk2c

)(
λ

1− λ

)d k
2
e
,

where in the last inequality we used Lemma 3.8 and Claim 3.9. Simplifying, this is bounded by∑
k>3

(16e)k/2λk/2 6 124λ1.5.

We omit the calculations (a similar calculation appears in Theorem 3.6). Assume that λ 6
c20

128e·100 . Overall, we get

EG,val2(f) >
c0√

2
λ− 124λ1.5 > 0.04c0λ.
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We are now ready to prove Theorem 4.19.

Proof of Theorem 4.19. We take f = 1>w for w = t−
√
t

2 , and appeal to Theorem 4.19. Thus, it

suffices to show that
∣∣∣f̂(2)

∣∣∣ > c0√
(t2)

, for some absolute constant c0 > 0. Indeed, by Claim 3.13

we have f̂(2) = 1̂w(1) for 1w : {±}t−1 → {0, 1}. To compute the last Fourier coefficient we

appeal to [CPTS20, Claim 4.9] for w = t−
√
t

2 and get

∣∣∣1̂w(1)
∣∣∣ =

∣∣∣∣∣∣∣
1

2t−1

(
t−1
w

)(
t−1

1

) b 12c∑
`=0

(−1)1−`
(
w

`

)(
t− 2w − 1

1− 2`

)∣∣∣∣∣∣∣ =
1

2t−1

(
t−1
w

)
t− 1

(t− 1− 2w).

Substituting w = t−
√
t

2 , together with the fact that
( t−1
t−
√
t

2

)
> Ω

(
1√
t
2t
)

, finishes the proof.
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