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Abstract

A pair of sources X,Y over {0, 1}n are k-indistinguishable if their projections to any k coordinates
are identically distributed. Can some AC0 function distinguish between two such sources when k is big,
say k = n0.1? Braverman’s theorem (Commun. ACM 2011) implies a negative answer when X is uniform,
whereas Bogdanov et al. (Crypto 2016) observe that this is not the case in general.

We initiate a systematic study of this question for natural classes of low-complexity sources, including
ones that arise in cryptographic applications, obtaining positive results, negative results, and barriers.
In particular:

• There exist Ω(
√
n)-indistinguishable X,Y , samplable by degree-O(logn) polynomial maps (over

F2) and by poly(n)-size decision trees, that are Ω(1)-distinguishable by OR.

• There exists a function f such that all f(d, ε)-indistinguishable X,Y that are samplable by degree-
d polynomial maps are ε-indistinguishable by OR for all sufficiently large n. Moreover, f(1, ε) =
dlog(1/ε)e+ 1 and f(2, ε) = O(log10(1/ε)).

• Extending (weaker versions of) the above negative results to AC0 distinguishers would require
settling a conjecture of Servedio and Viola (ECCC 2012). Concretely, if every pair of n0.9-
indistinguishable X,Y that are samplable by linear maps is ε-indistinguishable by AC0 circuits,
then the binary inner product function can have at most an ε-correlation with AC0 ◦ ⊕ circuits.

Finally, we motivate the question and our results by presenting applications of positive results to
low-complexity secret sharing and applications of negative results to leakage-resilient cryptography.
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1 Introduction

A pair of sources X,Y over {0, 1}n are k-indistinguishable if their projections to any k coordinates are
identically distributed. Can some AC0 function distinguish between two such sources when k is big, say
k = n0.1? Braverman’s theorem [Bra11, Tal17] implies a negative answer when X is uniform, or equivalently
when X,Y are k-independent. What about the general case?

The above question was posed by Bogdanov et al. [BIVW16], who observed a tight connection1 (via LP
duality) with the approximate degree of the distinguisher. Using this connection, positive answers can be
derived from the literature on the approximate degree of AC0 functions [NS92, Pat92, Shi00, BBC+01, AS04,
She13, BT13, BT16, BT18, BT19, BT20a, BT20b, She20]. In particular, there exist

√
n-indistinguishable

sources that can be Ω(1)-distinguished by the OR function [NS94] and n1−δ-indistinguishable sources that
can be Ω(1)-distinguished by an AC0 function for every δ > 0 [BT20b]. On the other hand, upper bounds on
approximate degree imply limitations on the indistinguishability threshold k. In particular, the

√
n threshold

for OR distinguishers is known to be asymptotically tight, whereas the n1−δ threshold for AC0 distinguishers
is only conjectured to be tight.

The study of the bounded indistinguishability question in [BIVW16] was motivated by the following “win-
win” connection with cryptography. If the answer to the question turns out to be positive, namely there
exist k-indistinguishable X,Y that can be distinguished in AC0, this implies secret-sharing schemes2 where
the secret can be reconstructed in AC0. This is surprising in light of the fact that standard secret-sharing
schemes, such as Shamir’s scheme [Sha79], use a linear function to reconstruct the secret. On the flip side, a
negative answer is motivated by the goal of protecting cryptographic applications against leakage of partial
information on their internal state. Concretely, in any application that was designed to protect against local
leakage of k bits, a negative answer implies automatic protection against global AC0 leakage. Such applications
abound in the vast literature on secure multiparty computation (MPC), originating from [Yao86, GMW87,
BGW88, CCD88], and leakage-resilient circuits, originating from [ISW03]. Braverman’s theorem does not
apply here because the process of computing on secret-shared data, while respecting k-indistinguishability
by design, inevitably creates local dependencies. Obtaining provable resilience to AC0 leakage turned out to
be a challenging task that has led to more intricate constructions and analysis [FRR+14, Rot12, BIS19].

On the downside, both kinds of “win” come with a caveat. In the secret-sharing application, schemes
arising from the approximate degree literature minimize reconstruction complexity at the expense of a high
sharing complexity, of generating the shares. The question of simultaneously minimizing the complexity of
sharing and reconstruction remained largely open. For the leakage-resilience application, a general protection
even against benign leakage by an OR function (capturing so-called “selective failure” attacks, discussed
below) requires k �

√
n. Viewing n as the total number of wires in a circuit, existing constructions of

leakage-resilient circuits (such as [ISW03]) are far from achieving this k-local secrecy threshold, rendering
the generic “security upgrade” guarantee essentially useless in the context of natural applications.

Towards tackling both of the above challenges, we take a more fine-grained view of bounded indistin-
guishablity, asking the following main question:

Can some AC0 function distinguish between simple k-indistinguishable sources?

To make the question precise, we need to specify a class F of samplers that define a “simple” source. We
will also consider distinguisher classes C that are strict subclasses of AC0, such as depth 1 (OR) or depth 2
(DNF) distinguishers. Given F and C, the goal is to understand the achievable tradeoff between the threshold
k and the distinguishing advantage ε.

Braverman’s theorem resolves the analogous question for k-independent sources. As k-independent
sources can be sampled both linearly and locally, the fooling ability of such sources does not depend on

1The connection with approximate degree breaks down over non-binary alphabets [BIVW16]. Here we restrict the attention
to the binary case, which suffices for our motivating applications.

2Here we refer to a relaxation of standard threshold secret sharing that allows for a gap between the secrecy and the
reconstruction thresholds and for a small error probability. Bogdanov et al. [BIVW16] present general techniques for narrowing
the gap and making the error probability negligible by increasing the share size, while keeping reconstruction in AC0.
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their complexity. In contrast, in this work we demonstrate that the fooling power of k-indistinguishable
sources is significantly affected by their complexity.

Useful classes of simple sources. We will be mainly interested in sources that can be sampled by low-
degree polynomial maps over F2. Beyond the complexity-theoretic interest in such sources (see, e.g., [Rao09,
DGW09, DGRV11, BG13, Li16]), they are also motivated by the two kinds of cryptographic applications
discussed above. In the context of secret sharing, positive answers for degree 1 sources (also referred to as
linear or affine sources) would give rise to linear secret-sharing schemes with AC0 reconstruction. Linear
schemes have the useful feature of supporting local addition of shared secrets. Perhaps more surprisingly,
degree 2 (quadratic) sources are also naturally motivated by cryptographic applications. We observe that
many existing MPC protocols from the literature (including the most efficient ones [DIK10]) can be brought
to a form where, for every fixed input, the full transcript is a degree 2 function of the randomness. This holds
regardless of the complexity of the function being computed. If for quadratic sources we can get negative
answers for much smaller values of k than for general sources, this would enable strong leakage-resilience
guarantees for natural applications.

We also consider the minimal depth and locality required for sampling the sources. A positive result
from [BIVW16] shows that OR can distinguish between a pair of k-indistinguishable AC0-samplable sources.
However, a direct implementation of this sampler has depth 9. How low can the depth be? Considering
locality, can AC0 distinguish between NC0-samplable sources? Positive answers to the above questions are
motivated by the goal of simultaneously minimizing the complexity of sharing and reconstructing secrets.

Useful classes of distinguishers. As random parity-0 and parity-1 strings are (n − 1)-wise indistin-
guishable but samplable by essentially the simplest possible closed-under-projection class F of linear 2-local
sources,3 it is sensible to restrict attention to distinguisher classes C that cannot compute parities, such as
AC0 or some subclass of it. The simplest subclasses are depth 1 OR distinguishers (disjunction of a subset
of the source bits and their negations) and depth 2 DNF distinguishers. Positive results for OR give rise to
visual secret-sharing schemes [NS94], where the secret can be reconstructed by overlaying transparencies.
Negative results for OR and DNF are motivated by securing computations against selective failure attacks,
where there are multiple events that can trigger failure and only the existence of failure is leaked to the
attacker. Beyond this direct motivation, OR leakage comes up naturally in MPC protocols based on garbled
circuits [LP07, IKO+11]. DNF leakage can capture stronger selective failure attacks. See [BIVW16, BIS19]
for further discussion.

1.1 Overview of results

We now give a detailed account of our main results, for the classes of source samplers F and distinguishers
C discussed above. The results can be classified into three types: positive (distinguishability), negative
(indistinguishability), and barriers. They are summarized in Table 1.

Some of our results merely require that one of the sources X,Y be simple and allow the other to be of
arbitrary complexity. For given parameters k, ε, we say that

• F weakly ε-fools C if for every k-indistinguishable pair X,Y with X ∈ F and Y ∈ F and every C ∈ C,
|Pr[C(X) = 1]− Pr[C(Y ) = 1]| ≤ ε. We refer to this as MAIN(k, ε).

• F strongly ε-fools C if for every k-indistinguishable pair X,Y with X ∈ F or Y ∈ F and every C ∈ C,
|Pr[C(X) = 1]− Pr[C(Y ) = 1]| ≤ ε. We refer to this as GENERAL(k, ε).

In this terminology, Braverman’s theorem states that for k = polylog(n), the uniform distribution strongly
o(1)-fools AC0. We say that C distinguishes F if F does not fool C.

3The sampler for parity-b strings of length n is r1, r1 ⊕ r2, . . . , rn−2 ⊕ rn−1, rn−1 ⊕ b.
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Source (F) Distinguisher (C) Statement

Result Ref.

P
o
si

ti
v
e Symmetric, AC0 OR ¬MAIN(Θε(

√
n), 1− ε) [BIVW16]

Mixture of IID,
Poly-size decision trees,

Degree O(logn)
OR ¬MAIN(Θε(

√
n), 1− ε) Theorem 5.1

N
e
g
a
ti

v
e

Linear O(1)-local DNF GENERAL(O(log 1
ε ), ε) Corollary 6.44

Degree O(1) OR MAIN(Oε(1), ε) Corollary 6.6

Quadratic Unambiguous DNF GENERAL(poly(log n
ε ), ε) Lemma 6.8

Quadratic OR GENERAL(poly(log 1
ε ), ε) Corollary 6.7

Depth 1 Arbitrary MAIN(O(log log(n/ε)), ε) Theorem 6.33

B
a
rr

ie
r Linear AC0 MAIN(n/ logn, ε)⇒ IPAP(ε) Proposition 4.7

Linear (LDPC) AC0 No NC0 reduction to k-independence Claim 7.6

NC0 AC0 MAIN(nΩ(1), 1/3)⇒ Conjecture 7 Claim 8.6

Table 1: Our main results for sources in class F and distinguishers of type C. A positive result gives a value
of k such that there exist F-samplable, k-indistinguishable distributions that are ε-distinguished by C. A
negative result gives a value of k for which any F-samplable, k-indistinguishable distributions ε-fool C. A
barrier typically shows that proving a (stronger) negative result would settle a natural conjecture, implying
a conditional difficulty to do so. All distinguishers are poly(n) sized. LDPC refers to uniform distributions
over two distinct cosets of a good (linear) low-density parity-check code.

Positive results. In Section 5 we show the existence of an Oε(
√
n)-indistinguishable pair of sources that

are (1 − ε)-distinguishable by OR and samplable by (a) decision trees of size polynomial in n, and (b)
polynomials of degree O(log n) (Theorem 5.1) thereby showing that OR ε-distinguishes the sources described
in (a) as well as in (b). Part (a) improves on the aforementioned result of Bogdanov et al., by weakening the
circuit class from AC0 to decision trees. Moreover, these sources implement an evolving visual secret sharing
scheme [KNY16] of very low informational and computational complexities (see Section 5.5).

Our positive result for degree-O(log n) sources is obtained by applying a suitable randomized encoding
technique [Raz87, Smo87, AIK06] to sources sampled by decision trees. In Section 8 we consider other
applications of this technique, showing that a (hypothetical) positive result for o(log log n)-local sources
implies a positive result for 4-local sources. We also put forward a natural conjecture (Conjecture 7) on the
complexity of randomized encoding of AC0 functions that may be viewed as a barrier to negative results.

Negative results. In contrast to Theorem 5.1, we show that constant-degree sources are indistinguishable
by OR (see Figure 1):

1. O(log(n/ε))-indistinguishable linear sources strongly ε-fool polysize unambiguous DNFs and ORs of
O(1)-local functions. (Lemma 6.2 + Lemma 6.8)

2. O(log10(n/ε))-indistinguishable quadratic sources strongly ε-fool polysize unambiguous DNFs. (Theo-
rem 6.16 + Lemma 6.8)

3. Od,ε(1)-indistinguishable degree-d sources weakly ε-fool OR. (Corollary 6.15 + Corollary 6.6)

In applications to leakage-resilient cryptography, it is desirable to make the adversary’s advantage ε
a negligible function of the instance size n. The first two negative results allow a low indistinguishability
parameter k even when εmust vanish exponentially with n. In particular, the first result implies that all linear
secret-sharing schemes are automatically immune to selective failure attacks (see [BIVW16, Section 3.3]).
The second result implies the same kinds of immunity for efficient MPC protocols, as it turns out that the
joint view of the parties in such protocols can be sampled by quadratic polynomial maps (see Section 9.3.2).

As decision trees can be expressed by depth 2 AND/OR formulas (both CNFs and DNFs) of the same
size, our positive result leaves open the fooling power of depth 1 sources. We obtain a strong negative result
for such sources (see Figure 2):

3



Degree 1

GENERAL
local DNF

Degree 2

GENERAL
unambiguous DNF

Degree O(1)

MAIN
OR

Degree O(log n)

¬MAIN
OR

Figure 1: Main results in terms of degree for different classes of distinguishers.

4. O(log log(n/ε))-indistinguishable depth 1 sources weakly ε-fool all functions. (Theorem 6.33)

Depth 1

MAIN
arbitrary

Depth 2

¬MAIN
OR

Figure 2: Main results in terms of depth for different classes of distinguishers.

This result is optimal not only in terms of the depth, but also in terms of the indistinguishability
parameter, at least for constant ε (see a matching positive result in Lemma 6.39).

Barriers for linear sources. The basic building block of MPC protocols and other cryptographic appli-
cations is linear secret sharing. It is thus especially important to understand the consequences of bounded
indistinguishability for linear sources. We believe that it is plausible to conjecture the following:

Conjecture 1. k-indistinguishable linear pairs of sources on n bits o(1)-fool AC0 when k = polylog(n).

When one of the sources is uniform, this is implied by Braverman’s theorem [Bra11, Tal17]. When the
distinguisher is the OR function, it follows from our first negative result. In Section 4.2 we show, however,
that proving Conjecture 1 for any k = o(n/ log n) requires first proving the “IPAP conjecture” (Inner
Product by AC0 over Parities) of Servedio and Viola [SV12], which states that the binary inner product
function on n inputs (IP) cannot be computed by AC0 ◦ ⊕ circuits, i.e. bounded-depth AND/OR circuits
with a bottom layer of PARITY gates. While a number of partial results have been obtained in support of
IPAP [CS16, CGJ+16, BKT19], it currently remains out of reach.

While IP is known not to be computable by the subclass DNF ◦ ⊕ of AC0 ◦ ⊕ [SV12, ABG+14], its
approximability on a constant fraction of inputs remains open [CS16]. Proving even the special case of
Conjecture 1 when the class of distinguishers is restricted to DNFs requires resolving this problem.

One possible approach for making progress on Conjecture 1 (and therefore also IPAP) is to find, for
every pair of k-indistinguishable linear sources, an AC0 reduction that maps them to some pair of k′-
independent sources. Claim 7.6 in Section 7.2 rules out the existence of NC0 reductions of this type in
general. However, in Section 7.1 we give examples of linear NC0 reductions to bounded independence for
specific k-indistinguishable pairs of sources that describe the views of MPC protocols. The results of [BIS19]
are also proved via reductions of this type.

The examples in Section 7.1 are related to the study of the complexity of distributions [ASTS+98,
GGN10, Vio10, LV11, BIL12, DW12, Vio12, Vio14, Vio16, Vio20, Vio21], intimately related to the study
of extractors [VT00]. However, this line of study focuses on the complexity of sampling distributions given
uniform sources, whereas we allow arbitrary k-independent sources.
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On the gap between IPAP and Conjecture 1. While a positive resolution of the IPAP conjecture is
necessary to prove Conjecture 1, it is unclear if it is sufficient. Towards bridging this gap, in Section 4.2
we show that Conjecture 1 is implied by PREDICTION⊕(AC0,Ω(1/n)), where PREDICTION⊕(C, ε) is the
following statement (see Conjecture 5):

A class-C circuit on n inputs that is given as advice some set S of linear functions of its inputs,
such that no polylog(n) of the functions in S XOR to the parity of all inputs, cannot predict
parity on a (1 + ε)/2 fraction of inputs.

In the other direction, PREDICTION⊕(AC0,Ω(1)) implies the average-case IPAP conjecture (see Figure 3).
As additional evidence towards Conjecture 1, we prove that PREDICTION⊕(size-s DNF, 1 − Ω(1/s)) holds
for s = poly(n), thereby strengthening the results of Cohen and Shinkar [CS16] (see Corollary 4.6).

GENERAL MAIN PREDICTION IPAP
linear

linear

Figure 3: Relations between indistinguishability, prediction, and the IPAP conjecture

Cryptographic applications. We already discussed applications to low-complexity secret sharing and se-
lective failure attacks. In Section 9 we consider applications to leakage-resilient circuit compilers (LRCC) [ISW03],
which protect sensitive computations against leakage acting on the internal wires of the computation. More
concretely, an LRCC transforms a circuit C into a randomized circuit Ĉ mapping an encoded input to an
encoded output, such that partial leakage on wires of Ĉ reveals essentially nothing about the input. Much of
the work in this area focuses on obtaining efficient constructions for local leakage, confined to a small subset
of k wires. Following [MR04], Faust et al. [FRR+14] considered the global leakage model where the leakage
function acts on all the wires but is restricted to a low complexity class such as AC0. LRCC constructions
in this model, such as those of Rothblum [Rot12] and Bogdanov et al. [BIS19], are complex to analyze and

incur a significant overhead, compiling a circuit C to Ĉ of size Õ(λ2|C|) for a security error parameter 2−λ.
In contrast, the best known LRCC constructions in the local leakage model based on efficient MPC pro-
tocols [DN07, DIK10] can be quite efficient and only incur a polylogarithmic overhead in the local leakage
parameter k. A natural question is whether this gap is inherent.

We show that one can bridge the efficiency gap between the local leakage and the global leakage models
assuming our main conjecture holds for quadratic sources. Specifically, assuming this conjecture, we give a
construction of LRCC against AC0 circuits with |Ĉ| = |C| · polylog(λ) (plus additive terms that only depend
on the depth of C). As an additional application, we use the same conjecture for linear sources to show that
a construction of LRCC from [ISW03, BIS19] for the class of circuits that only contain XOR gates satisfies
a stronger security property. Namely, we show that security against AC0 circuits is retained even when the
output decoder is not implemented by a trusted hardware. We also show how to improve the efficiency of
this construction by relying on a high-rate variant of Shamir’s secret-sharing scheme [FY92]. Finally, we
give evidence for the difficulty of obtaining unconditional proofs of the same results.

Open questions

Our results suggest many open questions. We would like to single out the following.

Open Question 1. What is the smallest degree d for which there are Θ(
√
n)-indistinguishable degree d

sources which OR can Ω(1)-distinguish?

Our results show that d = ω(1) and d = O(log n).

Open Question 2. Are the GENERAL and MAIN conjectures equivalent? Is the PREDICTION conjecture
for linear sources implied by IPAP?

5



We are mainly interested in the case of AC0 distinguishers. GENERAL trivially implies MAIN, and
PREDICTION for linear sources implies IPAP, so the open question is asking for the converse directions.
We make this conjecture since we are able to show that MAIN and PREDICTION are equivalent for linear
sources (for general sources, we only know that MAIN implies PREDICTION).

Open Question 3. Is there a pair of nΩ(1)-indistinguishable sources, samplable in NC0, which can be
Ω(1)-distinguished in AC0?

A positive answer would imply an extreme form of low-complexity secret sharing, where secrets are shared
by NC0 circuits and reconstructed by AC0 circuits. Our positive results imply weaker secret-sharing schemes
with sharing by polynomial-size decision trees. In Section 8 we show that a negative answer to the question
would imply a natural conjecture on low-complexity randomized encodings of functions. Another reason why
settling Open Question 3 in the negative may be challenging is the difficulty of ruling out local sampling (up
to a small statistical error) even for some simple and explicit distributions [Vio20].

Paper organization. We give an overview of our techniques in Section 2. After brief preliminaries in Sec-
tion 3, we formally introduce our main conjectures in Section 4, where we also discuss some results on linear
sources. Our constructions of low-complexity Ω(

√
n)-indistinguishable sources which OR can distinguish

appear in Section 5. Our indistinguishability results appear in Section 6. The strategy of proving bounded
indistinguishability results by reduction to bounded independence is considered in Section 7. Randomized
encodings are considered in Section 8. Finally, the cryptographic applications appear in Section 9.

Acknowledgements. We thank Chin Ho Lee, Igor Oliveira, Rahul Santhanam, Amir Shpilka, Justin
Thaler, and Emanuele Viola for useful feedback. Special thanks go to Chin Ho Lee, who suggested Conjec-
ture 2, and Justin Thaler, who suggested the construction in Section 5.1.
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Y. Filmus was supported by ERC Project HARMONIC (802020) and ISF grant 1337/16. Y. Ishai was
supported by ERC Project NTSC (742754), BSF grant 2018393, and ISF grant 2774/20.

2 Overview of techniques

In this section we outline the proofs of some of our main results. In Section 2.1 we describe our construction of
Ω(
√
n)-indistinguishable sources that are samplable by sources of degree O(log n) and are Ω(1)-distinguished

by OR, which appears in Section 5. In Section 2.2 we describe our various indistinguishability results, which
comprise Section 6; we also cover the proof of Corollary 4.6. Finally, in Section 2.3 we outline the proof of
the equivalence of MAIN and PREDICTION for linear sources, and the proof that LDPC sources cannot be
reduced to bounded independence using local maps.

2.1 OR can distinguish logarithmic degree sources

Bogdanov et al. [BIVW16] showed that there exists a pair X,Y of
√
n-indistinguishable sources over {0, 1}n

which OR distinguishes, by appealing to LP duality. Explicit constructions appear in other works, for
example Špalek [Spa08] and Bun and Thaler [BT13]. However, except for a construction of AC0-sampleable
sources from [BIVW16], the corresponding distributions do not satisfy natural notions of computational
simplicity.

We convert an arbitrary pair of
√
n-indistinguishable distributions which OR can distinguish into a similar

pair samplable by simple sources using a sequence of reductions:

Arbitrary sources ====⇒ Mixtures of iid ====⇒ Decision trees ====⇒ O(log n) degree

Each of these reductions preserves indistinguishability (possibly modifying n) while having only a small
effect on the distinguishing advantage of OR.
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Mixtures of iid A distribution on {0, 1}n is a mixture of iid if we can sample it using a two-step process:

1. Sample a bias p ∈ [0, 1] according to some distribution on [0, 1].

2. Sample n iid bits with bias p.

Given an arbitrary source X0 over {0, 1}m, we construct a mixture of iid X1 using erase-all-subscripts
symmetrization [BT20a]: Sample x ∼X0, and then sample n uniform bits chosen from x.

If X0,Y 0 are k-indistinguishable and we construct X1,Y 1 in this fashion, then X1,Y 1 are still k-
indistinguishable. If X0,Y 0 are ε-distinguished by OR then this means that |Pr[X0 = 0]−Pr[Y 0 = 0]| ≥ ε.
Since

Pr[X0 = 0] ≤ Pr[X1 = 0] ≤ Pr[X0 = 0] +

(
1− 1

m

)n
,

if we choose n = Θ(m log(1/ε)) then X1,Y 1 are Ω(ε)-distinguished by OR. We can choose X0,Y 0 to be
k-indistinguishable for k = Θ(

√
m) = Θ(

√
n).

Decision trees The next step is to show that we can approximately sample X1,Y 1 using decision trees
whose randomness derives from a supply of unbiased random bits. If we had access to biased random bits,
then this would be immediate, and we can simulate biased random bits using unbiased random bits with
some small failure probability. In order to maintain k-indistinguishability, in case of failure we output the
constant vector 0. In this way we construct a pair of sources X2,Y 2 which are k-indistinguishable and are
Ω(ε)-distinguished by OR.

How large are the decision trees used to sample X2,Y 2? This depends both on the failure probability
and on the complexity of X1,Y 1, as measured in the bit complexity of the probabilities used to define these
mixtures of iid. Taking a close look at the construction of Bun and Thaler [BT13], we show that if we use
it as our starting point X0,Y 0 then the resulting X1,Y 1 are low complexity, and so X2,Y 2 are samplable
using polynomial size decision trees for any constant failure probability.

Logarithmic degree The final step is converting X2,Y 2 to a pair of distributions X3,Y 3 samplable
by sources of degree O(log n). The idea is to used a randomized encoding inspired by the Razborov–
Smolensky [Raz87, Smo87] lower bound technique. (See Section 8 for a more general perspective using
the randomized encoding framework of [AIK06].)

Razborov and Smolensky approximate the AND function on ` bits to error 2−d using the degree-d F2

polynomial
d∏
i=1

1 +
∑̀
j=1

ri,j(1 + xj)

 .

Here x1, . . . , x` are the inputs, and ri,j are random bits. When x1 = · · · = x` = 1, this expression always
equals 1, and otherwise each factor is a random bit, and so the expression equals 0 with probability 1− 2−d.

A decision tree can be written as an “unambiguous” sum of conjunctions, that is, at most one conjunction
can be true. For example, the decision tree

x1

x2

0 1

x3

1 0

0 1

0 1 0 1

can be expressed as
(1− x1)(1− x3) + x1x2.
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We have one conjunction per leaf labeled 1, and the conjunction corresponds to the path leading to the leaf.
We convert the decision tree into a polynomial by replacing each conjunction with its Razborov–Smolensky

encoding. If the decision tree has size s then we need the error to be O(ε/s), and so the resulting degree is
log(s/ε). When s is polynomial, this is O(log(n/ε)).

We note that when attempting to apply the Razborov–Smolensky encoding to a general AC0 circuit,
rather than a decision tree or an unambiguous DNF, not only does the degree of the encoding grow to
polylog(n), but there is also an encoding privacy error. The latter results in an approximate notion of
k-indistinguishability in which the k-projections have 2−polylog(n) statistical distance. This relaxed notion,
studied in [BW17], is qualitatively weaker than the perfect notion we consider in this work. In particular,
it may totally break down when the projection set is chosen in an adaptive fashion. See Section 8 for more
details.

2.2 Fooling OR and DNFs

In this section we describe our various negative results, as described in Table 1. Most of these results are
proved via the notion of predictability, which we first explain. We then briefly outline the proofs of the
remaining negative results.

2.2.1 Predictability

Let X be a source over {0, 1}n. We say that a subset S of coordinates ε-predicts X if

Pr[X|S = 0 and X 6= 0] ≤ ε.

Roughly speaking, this means that in order to know the value of OR on X, it suffices to peek at the
coordinates in S.

If X,Y are each ε-predicted by a subset of k coordinates, then the union of the two subsets ε-predicts
both sources. Hence if X,Y are 2k-indistinguishable, then they ε-fool OR.

A more surprising observation is that if Y is ε/n-predicted by a subset S of k coordinates and X,Y are
(k + 1)-indistinguishable, then S also ε-predicts X; this is because for any coordinate i /∈ S,

Pr[Y |S = 0 and Y i 6= 0] ≤ ε

n
.

Accordingly, we define two notions of predictability for classes of sources:

• F is weakly predictable if for every ε > 0, any source from F is ε-predicted by a subset of C(ε)
coordinates.
If F is weakly predictable and X,Y are C(ε)-indistinguishable sources from F , then they ε-fool OR.

• F is strongly predictable if for every ε > 0, any source from F is ε-predicted by a subset of polylog(1/ε)
coordinates.
If F is strongly predictable and X,Y are polylog(n/ε)-indistinguishable sources, where Y ∈ F , then
they ε-fool OR.

Strongly predictable sources in fact fool not only OR, but also unambiguous DNFs. An unambiguous DNF
is a disjunction of conjunctions, with the promise that no two conjunctions can be satisfied simultaneously.
As explained in Section 2.1, a decision tree of size s can be converted to an unambiguous disjunction of at
most s conjunctions. Writing the unambiguous DNF as a sum of ANDs (over the reals!), it suffices to (ε/s)-
fool each AND in order to ε-fool the entire DNF. Consequently (since fooling ANDs and ORs is the same),
polylog(ns/ε)-indistinguishable sources ε-fool unambiguous DNFs as long as one of the sources belongs to a
strongly predictable class of sources which is closed under input negation.

8



2.2.2 Applying predictability

Our main results are:

• Constant degree sources are weakly predictable. This also includes sources of constant locality.

• Quadratic sources (i.e., degree 2 sources) are strongly predictable.

We also show that linear sources fool local DNFs, which are disjunctions of local functions. The proof is
very similar to the proof that local sources fool OR, and so we do not describe it here.

Linear sources We prove predictability using the structure vs randomness paradigm. As an example,
consider the class of linear sources, in which each output bit is an affine combination of input bits. For ease
of exposition, we consider the special case in which each output bit is a linear combination of inputs bits
(i.e., we disallow x1 = r1 ⊕ r2 ⊕ 1). We will show that every linear source X is ε-predicted by a subset of
log(1/ε) coordinates.

The source X is pseudorandom if it has rank at least log(1/ε). In this case, any subset S of log(1/ε)
linearly independent coordinates ε-predicts X, since Pr[X|S = 0] ≤ ε.

The source X is structured if it has rank at most log(1/ε). In this case, we choose a subset S such that
{Xi}i∈S spans X1, . . . ,Xn. This subset 0-predicts X since if X|S = 0 then X = 0.

Local sources A more sophisticated example is that of s-local sources, that is, sources where every output
bit Xi depends on at most s input bits, forming a set Ji. Suppose that we are given such a source X.

The source X is pseudorandom if we can find 2s log(1/ε) coordinates which depend on disjoint sets of
inputs. A short calculation shows that the probability that all this coordinates equal zero is at most ε.

Otherwise, the source X is structured : we can find a “hitting set” T of size s2s log(1/ε) for J1, . . . , Jn.
For each setting of the input bits in T , the source simplifies to an (s − 1)-local source, and we can find an
ε-predicting set by induction. Putting all of these sets together, we obtain an ε-predicting set for the original
source.

Constant degree sources We handle degree d sources using a similar argument. We need to find a
pseudorandomness condition for a set S of coordinates which will guarantee that Pr[X|S = 0] ≤ ε. Such a
condition is supplied by higher-order Fourier analysis: if all linear combinations of {Xi}i∈S have high rank
(a notion we explain below) and S is large enough, then Pr[X|S = 0] ≤ ε (pseudorandom case).

Otherwise (structured case), we choose a maximal set T such that all linear combinations of {Xi}i∈T
have high rank. By the definition of rank, this implies that each i /∈ T simplifies, modulo {Xi}i∈T , to a
function depending on a bounded number of degree d − 1 polynomials, and we can complete the proof by
induction.

Quadratic sources The arguments for local sources and for constant degree sources result in a very bad
dependence between ε and the size C(ε) of the ε-fooling subset of coordinates. In the case of quadratic
sources, we are able to use Dickson’s structure theorem for quadratic polynomials, via a series of careful
reductions, to obtain the much better dependence C(ε) = O(log10(1/ε)).

2.2.3 Other negative results

We prove two other negative results: the prediction variant holds for linear sources and DNF distinguishers,
and depth 1 sources fool arbitrary distinguishers.
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PREDICTION holds for linear sources and DNF distinguishers Given a DNF φ and a linear source
X, our goal is to show that if no k coordinates of X span some target parity π, then φ cannot compute π,
even with a small error.

If T is any term of φ, then the probability that T is satisfied is 2− rank(T ), where the rank of T is the rank
of the span of the corresponding coordinates of X. If T has large rank then it is unlikely to be satisfied, so
we can drop all of these terms, obtaining a narrow DNF ψ.

We now apply Jackson’s lemma [Jac94], according to which ψ must correlate with some Fourier character
χS , where S is a subset of the set of variables appearing in some term of ψ. Since all terms in ψ are narrow
and ψ computes π (with small error), this implies that π has nontrivial correlation with, and so is equal to,
a linear combination of a small number of coordinates in X, which contradicts our initial assumption.

Depth 1 sources fool arbitrary distinguishers Let X,Y be k-indistinguishable depth 1 sources, that
is, each coordinate is an AND or OR of literals. Since we allow arbitrary distinguishers, we can assume that
each coordinate is an AND of literals.

Wide conjunctive coordinates are hardly ever 1, so allowing for a small error, we can replace them with
constant 0 coordinates. We are left with only narrow coordinates, say of width at most log(n/ε). Applying
a result of Amano et al. [AIM+03], if k = log log(n/ε) + 2 then the two truncated sources are identically
distributed, completing the proof.

2.3 Other results

MAIN and PREDICTION are equivalent for linear sources To prove the equivalence between Con-
jecture 9 (MAIN⊕(AC0)) and PREDICTION⊕(AC0), we consider an equivalent formulation of PREDICTION⊕(AC0),
which we call COSET⊕(AC0). This is the special case of MAIN⊕(AC0) in which the two k-indistinguishable
sources arise from a single source by fixing the first bit of the seed. The resulting sources are uniformly dis-
tributed on two cosets of the same linear subspace, hence the name. The equivalence of the two formulations
is a simple exercise (see Section 4).

Two linear sources are k-indistinguishable if they satisfy the same affine constraints of width k or less. This
suggests the following strategy for proving MAIN⊕ (with parameters k, ε) given COSET⊕ (with parameters
k, δ): Given two k-indistinguishable linear sources X,Y , construct the “free k-indistinguishable source” Z
given by all affine constraints of width at most k satisfied by X. This is the most general linear source
which is k-indistinguishable from X. Moreover, we obtain exactly the same source if we apply the same
construction to Y . Therefore it suffices to show that X,Z fool C.

The idea is to construct a sequence of hybrids Z0, . . . ,Zt, where Z0 = Z, Zt = X, and Zi+1 is obtained
from Zi by imposing one more affine constraint. We can also define W i+1 in the same way, by imposing
the opposite constraint (for example, x1 ⊕ x2 = 1 rather than x1 ⊕ x2 = 0). By construction, Zi+1,W i+1

are cosets, and so COSET⊕(AC0) shows that they δ-fool C. On the other hand, Zi is a 1
2 - 1

2 mixture of
Zi+1,W i+1, and so Zi,Zi+1 δ/2-fool C.

In total, X,Z tδ/2-fool C, and so X,Y tδ-fool C. Clearly t ≤ n, and so it suffices to take δ = ε/n.

LDPC codes cannot be reduced to bounded independence using local maps An LDPC code is
a code whose parity-check matrix is sparse: every message bit appears in exactly D parity checks (this is
one of several common definitions). If we choose a θn×n parity-check matrix at random, then the bipartite
graph corresponding to the parity-check matrix will be an expander, and so the corresponding code will have
linear minimum distance, say at least γn.

A simple sensitivity argument shows that for large n, such a code C cannot be generated using B-local
maps from the uniform distribution over m bits: The n × m binary matrix describing which input bits
each output bit depends on contains at most Bn ones, and so there must be some input bit affecting at
most Bn/m output bits. Flipping this bit results in flipping at most Bn/m input bits. Since the minimum
distance of C is at least γn, this shows that m ≤ B/γ. On the other hand, m must be at least the rate
(1− θ)n of the code, and we obtain a contradiction for n > B/γ(1− θ).
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Does the picture change if we are allowed to reduce to an arbitrary k-independent distribution z? Let
P be the parity-check matrix of C, and let F denote the B-local reduction. Thus PF (z) = 0 for all z in
the support of z. Since every column of P contains D many ones, the average row of P contains D/θ many
ones, and so the typical entry of PF (z) depends on at most BD/θ many bits of z. If BD/θ � k then the
projection of z to these coordinates will have full support due to k-independence, and so PF (z) = 0 for
all z. Thus F also works as a reduction to the uniform distribution, allowing us to apply the earlier lower
bound.
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3 Preliminaries

Here, we provide definitions and notation that will be used throughout the paper.

Definition 3.1 (ε-approximation). Let f, g : {0, 1}m → {0, 1} be Boolean functions. We say that f ε-
approximates g if Prx[f(x) 6= g(x)] ≤ ε.

Definition 3.2 (ε-fooling). A pair of distributions X,Y over {0, 1}n is said to ε-fool a function f : {0, 1}n →
{0, 1} if |E [f(X)]− E [f(Y )]| ≤ ε. We say that f ε-distinguishes between X,Y if |E [f(X)]− E [f(Y )]| ≥ ε.
Finally, we say that X ε-fools f if X,Un ε-fool f , where Un is the uniform distribution over {0, 1}n.

Definition 3.3 (k-independence and k-indistinguishability). We say that a distribution X over {0, 1}n is
k-independent if its marginal distribution on any subset of k coordinates is the uniform distribution.

We say that two distributions X,Y over {0, 1}n are k-indistinguishable if for any subset I of k coordinates,
their marginal distributions on I are the same.

Definition 3.4 (Boolean circuits and distinguishers). We consider Boolean circuits with AND/OR/NOT
gates and unbounded fan-in. We refer to them interchangeably as circuits or distinguishers, where the latter
emphasizes the usage of circuits to distinguish between distributions. The depth of a circuit is the longest
path from any input gate to any output gate, and the size of a circuit is the number of wires it contains.

We are mainly interested in the following circuit subclasses: AC0 circuits, which are circuits of constant
depth and polynomial size; NC0 circuits, which are circuits of constant size; circuits of depth 2 with a top
OR gate and AND gates at the bottom layer, also known as DNFs; and the special case of a single OR/AND
gate.

Definition 3.5 (Local functions). A function is called `-local if it depends on at most ` input bits.

Definition 3.6 (Sources and types of sources). We call a source any distribution on {0, 1}n. Given a class
of Boolean functions F , we call a source X an F-samplable source if there exists a sampler consisting of n
functions f1, . . . , fn : {0, 1}m → {0, 1} in F such that X can be sampled by evaluating (f1(x), . . . , fn(x)) on
a uniformly random x ∈ Fm2 .4 We shall also use the term sampler to refer to a single function taken from F .

A sampler is called a degree-d sampler if it consists only of degree-d polynomials, and a source is called
a degree-d source if it is samplable by a degree-d sampler; we refer to degree 1 sources as linear sources, and
to degree 2 sources as quadratic sources. A sampler is called an `-local sampler if it consists only of `-local
functions, and a source is called an `-local source if it is samplable by an `-local sampler.

Informally, we call a source simple if it is simple in some intuitive sense, such as being a low-degree, local,
or low-complexity source.

4 Variants of bounded indistinguishability and prediction

In this section we investigate the effect of relaxing the complexity requirement on one of the two distributions,
as well as the relation between bounded indistinguishability and the problem of predicting the first bit of the
distributions from the others. While the connections we obtain are strongest for linear sources, we formulate
them in full generality whenever possible.

We present statements that serve as templates for our conjectures. We start with the most general
form of the statements and later instantiate them for specific sources and distinguishers, which arise in our
applications, along with their parameters. The conjectures are parameterized by a collection of F-samplable
sources; a class of circuits (distinguishers) C;

Conjecture 2 (General variant). GENERAL(F , C, k, ε): Let X be an F-samplable source, and Y an arbitrary
source. If X and Y are k-indistinguishable, then X,Y ε-fool C for any circuit C ∈ C.

4Note that we have two parameters here—n, which is the dimension of the distribution, and m, which is the number of
independent random bits used to sample the distribution. We think of m as being poly(n) when it comes to positive results;
for negative results, we assume no relation between the two parameters.
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Conjecture 3 (Main variant). MAIN(F , C, k, ε): Let X,Y be F-samplable sources. If X and Y are k-
indistinguishable, then X,Y ε-fool C for any circuit C ∈ C.

Conjecture 4 (Coset variant). COSET(F , C, k, ε): Let f1, . . . , fn ∈ F be a sampler, and for b ∈ {0, 1}, let
Xb be the distribution obtained from (f1(x), . . . , fn(x)) by setting the first input bit of each fi to b. If
(X0,X1) are k-indistinguishable, then X0,X1 ε-fool C for any circuit C ∈ C.

Conjecture 5 (Prediction variant). PREDICTION(F , C, k, δ): Let f1, . . . , fn ∈ F be a sampler such that for
any i1, . . . , ik, the marginal distribution of fi1 , . . . , fik is independent of x1, namely conditioned on x1 = 0
it is the same as conditioned on x1 = 1. Then, no circuit C ∈ C on top of f1, . . . , fn can ( 1−δ

2 )-approximate
x1.

The condition on f1, . . . , fn in the prediction variant means that no information about x1 can be obtained
from any k bits of (f1(x), . . . , fn(x)). In the special case of linear sources, it turns out that either no infor-
mation or complete information can be obtained, so we can equivalently require that no linear combination
of k sampler bits equals x1. However, this need not be true even for quadratic sources; indeed, consider the
quadratic source given by (x1x2, . . . , x1xn, x1xn+1), where no linear combination of the coordinates equals
x1, but x1x2 alone 1/4-approximates x1.

Another thing to note about linear sources is that the target function x1 can be replaced by any other
parity π over x, as we can obtain an equivalent condition with a suitable linear transform. This means that
for linear sources, we can restate PREDICTION as follows: Let f1, . . . , fn be a linear sampler, no k bits of
which span π. Then, no circuit C ∈ C on top of f1, . . . , fn can ( 1−δ

2 )-approximate π. This observation will
be useful in Section 4.2.

Equivalence of COSET and PREDICTION. For any choice of F , C, k, ε, we have that COSET(F , C, k, ε)
holds if and only if PREDICTION(F , C, k, ε) holds.

To see this, suppose, for the sake of contradiction, that the coset variant is true, but there exists a
sampler f1, . . . , fn ∈ F and a circuit C ∈ C such that C on top of the samplers ( 1−ε

2 )-approximates x1.
For b ∈ {0, 1}, let Xb be the source obtained by sampling (f1(x), . . . , fn(x)) with x1 = b. If (X0,X1) are
not k-indistinguishable, then we could deduce information about x1 from some k bits of (f1(x), . . . , fn(x)),
violating the premise of the prediction variant. Hence, X0,X1 are k-indistinguishable, yet C ε-distinguishes
between X0,X1, thus contradicting the coset variant.

For the converse direction, suppose, for the sake of contradiction, that the prediction variant is true, but
there exists a sampler f1, . . . , fn ∈ F such that the distributions X0,X1, where Xb is obtained from the
sampler when setting the first coordinate to b, are k-indistinguishable, yet some circuit C ∈ C ε-distinguishes
between X0, X1. By k-indistinguishability of (X0,X1), the premise of the prediction variant holds with the
sampler f1, . . . , fn, yet the circuit C on top of the sampler can ( 1−ε

2 )-approximates x1, contradicting the
prediction variant.

Is COSET equivalent to MAIN? While it is unclear if COSET captures the hardness of the MAIN con-
jecture, we show that up to some loss in parameters they are equivalent in two cases of interest. First, in
Section 4.1 we show that up to a factor n in distinguishing advantage, the two are equivalent for linear
sources. Second, COSET is also equivalent to MAIN for sources sampled by polynomial maps up to a loss of
one in the degree: If X,Y are degree d sources falsifying MAIN(degree-d, k, C, ε) then Z = z ·X+(1+z) ·Y ,
with z being a new variable, falsifies COSET(degree-(d+ 1), k, C, ε).

Linear sources A linear source is an F-samplable source, where F consists of all degree 1 polynomials.
The main and coset variants are equivalent for linear sources, up to loss in parameters, as we show in
Section 4.1.

We then show, in Section 4.2, that the prediction variant for linear sources holds for DNFs when the error
is required to be very small. We also relate the prediction variant to the IPAP question, which constitutes a
barrier to further progress on this front.
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To indicate that we restrict our attention to linear sources, we use the notation GENERAL⊕, MAIN⊕,
COSET⊕, PREDICTION⊕ for the corresponding conjectures stated in the preceding section.

4.1 Equivalence of COSET and MAIN for linear sources

We show that for linear sources the main variant (Conjecture 3) and the coset variant (Conjecture 4) are
equivalent up to a loss of 1

n factor in the indistinguishability advantage. To show that the coset variant
implies the main variant (the other direction is trivial), subject to some loss in parameters, we make use of
a characterization of k-indistinguishability over affine spaces.

Definition 4.1 (k-relatedness). We say that two affine spaces U, V over F2 are k-related if they satisfy the
same affine constraints involving up to k coordinates.

Proposition 4.2 (Characterization of k-indistinguishability over affine spaces). Let X,Y be distributions
that are uniformly distributed over affine spaces U, V ⊆ Fn2 , respectively. Then X,Y are k-indistinguishable
if and only if U, V are k-related.

Proof. The affine subspaces U, V are k-related iff the parity of any k coordinates of X,Y are k-indistinguishable.
By the XOR lemma, the latter condition is equivalent to the k-indistinguishability of X,Y .

We are ready now to show the target implication.

Theorem 4.3. COSET⊕(C, k, ε) implies MAIN⊕(C, k, nε).

Proof. Let X,Y be k-indistinguishable distributions distributed uniformly over affine spaces U, V , respec-
tively. Define W to be the affine space of all vectors satisfying all the affine relations of width at most k that
are satisfied by all vectors of U , and let Z be the uniform distribution over W .

Consider the following subspace chain W = U0 ) U1 ) . . . ) Ut = U , where t = dim(W ) − dim(U),
and for every 0 < i ≤ t, the subspace Ui is generated by taking the subspace Ui−1 and adding an affine
constraint involving more than k coordinates; and let Z = Z0,Z1, . . . ,Zt = X be distributions such that
Zi is uniform over Ui.

Let C ∈ C be an n-bit circuit. Fix 0 < i ≤ r, and let `(u) = b be an affine constraint that when
added to Ui−1 gives Ui. Consider the two distributions obtained from Zi−1 by conditioning on `(u) = b
and on `(u) = 1 − b. These distributions are uniform over two cosets of the same linear space, and are
k-indistinguishable by Proposition 4.2. Thus, we can apply our assumption, and get∣∣Pr[C(Zi) = 1]− Pr[C(Zi−1) = 1]

∣∣ =
∣∣Pr[C(Zi−1) = 1 | `(u) = b]− Pr[C(Zi−1) = 1]

∣∣
=

1

2
·
∣∣Pr[C(Zi−1) = 1 | `(u) = b]− Pr[C(Zi−1) = 1 | `(u) = 1− b]

∣∣
≤ ε/2.

Hence,

∣∣Pr[C(X) = 1]− Pr[C(Z) = 1]
∣∣ ≤ t∑

i=1

∣∣Pr[C(Zi) = 1]− Pr[C(Zi−1) = 1]
∣∣ ≤ tε/2 ≤ nε/2.

We can repeat the same analysis, this time with the affine space W ′ of all vectors satisfying all the affine
relations of width at most k that are satisfied by all vectors of V , and consider the uniform distribution Z ′

over W ′. Proposition 4.2 shows that W ′ = W , which implies Z ′ = Z; therefore,∣∣Pr[C(X) = 1]− Pr[C(Y ) = 1]
∣∣ ≤ ∣∣Pr[C(X) = 1]− Pr[C(Z) = 1]

∣∣+
∣∣Pr[C(Y ) = 1]− Pr[C(Z) = 1]

∣∣
≤ nε.
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4.2 DNFs cannot compute PARITY with locally random linear advice

A direct argument, outlined in Section 6.1, shows that PREDICTION⊕(C, k, 2−Ω(k)) holds for C = {OR,AND}.
Extending this even to DNFs is already difficult, and we are only able to prove PREDICTION⊕(DNF, k, 1−ε)
when ε is negligible (the exact statement appears below). To help explain this difficulty, we relate the question
the problem of computing parity from parities, related to various conjectures in complexity theory. Lack of
progress on these conjectures forms a barrier for our conjecture.

We will need the following result to prove our result for DNFs.

Lemma 4.4 (Jackson’s Lemma [Jac94]). For every DNF φ with s terms and for every distribution D on
the inputs to φ, there exist a term T and a subset S of the variables appearing in T such that∣∣∣Ex∼D

[
(−1)φ(x)χS(x)

]∣∣∣ ≥ 1

2s+ 1
,

where χS(x) = (−1)
∑
i∈S xi is the Fourier character associated with S.

Proposition 4.5. Suppose that P = {p1, . . . , pm} is a set of parities over {x1, . . . , xn}, such that no k
parities in P span a given parity π, and suppose that φ is a DNF of top fan-in s satisfying

Pr
x∼{0,1}n

[φ(p1(x), . . . , pm(x)) 6= π(x)] ≤ ε,

for some 0 ≤ ε < 1/(4s+ 2). Then:

k ≤ log

(
s(2s+ 1)

1− 2ε(2s+ 1)

)
.

Proof. Consider an AND term T in φ with r entries whose inputs are pi1(x), . . . , pir (x). We can represent
F using a matrix M ∈ Fr×n2 , whose jth row corresponds to the parity pij , such that T evaluates to True iff
Mx = b, for some b ∈ {0, 1}r representing the polarities of the variables in T .

Suppose now that we remove T from φ. The resulting DNF disagrees with φ only on inputs on which T
is False; hence, the probability of disagreement between the two circuits is bounded by

Pr
x

[Mx = b] =
2|ker(M)|

2n
= 2−(n−|ker(M)|) = 2− rank(M).

Thus, if we remove from φ all terms for which the representing matrix has rank more than k, we get a new
DNF ψ of top fan-in s′ ≤ s, that, by the union bound, satisfies

Pr
u

[ψ(u) 6= φ(u)] ≤ s2−(k+1),

where u = (p1(x), . . . , pm(x)).
It follows from Jackson’s lemma that there exists a term T in ψ, and a subset S of variables occurring in

it, such that ∣∣∣Eu

[
(−1)ψ(u)χS(u)

]∣∣∣ ≥ 1

2s′ + 1
≥ 1

2s+ 1
.

Since u itself consists of parities, the parity χS(u) can be written as a parity in terms of x, denote it χR(x).
Furthermore, χR is a parity spanned by |S| parities.

It is easy to verify the following fact (which we will use twice): |E[fh]| ≥ |E[gh]| − 2 Pr[f 6= g] for every
{−1, 1}-valued functions f, g, h. Thus, we have:∣∣∣Eu

[
(−1)φ(u)χS(u)

]∣∣∣ ≥ ∣∣∣Eu

[
(−1)ψ(u)χS(u)

]∣∣∣− s2−k ≥ 1

2s+ 1
− s2−k,
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by which it follows that∣∣∣Ex

[
(−1)π(x)χR(x)

]∣∣∣ ≥ ∣∣∣Ex

[
(−1)φ(p1(x),...,pm(x))χR(x)

]∣∣∣− 2ε

=
∣∣∣Eu

[
(−1)φ(u)χS(u)

]∣∣∣− 2ε

≥ 1

2s+ 1
− s2−k − 2ε.

Now, if k > log
(

s(2s+1)
1−2ε(2s+1)

)
, it follows that E[(−1)πχR] 6= 0, which implies that π and χR must correspond

to the same parity; however, this contradicts our assumption, because |S| ≤ |T | ≤ k and |S| parities from P
span χR.

This gives the following corollary.

Corollary 4.6. For the class C of DNFs with top fan-in at most s, PREDICTION⊕(C, k, 1− ε) holds for any

k > log
(

s(2s+1)
1−2ε(2s+1)

)
and 0 ≤ ε < 1/(2s+ 1). In particular, for the class C of poly-size DNFs, we have that

PREDICTION⊕(C, k, 1− ε) holds for k = ω(log n) and negligible ε, i.e., ε = n−ω(1).

Can we do better? It is still open as of now, however we can provide a barrier for this task. To this
end, let us consider the computational model of AC0 circuits with parity gates at the bottom, denoted by
AC0 ◦ ⊕, along with the inner product modulo 2 function, denoted by IP. Formally, we write the following
parameterized conjecture.

Conjecture 6 (Inner product computation from parities). IPAP(s, d, δ): There does not exist a circuit of
size s and depth d, whose inputs are parities over x, y, that (1−δ

2 )-approximates IPn(x, y).

The conjecture that inner product is hard for AC0 ◦⊕ circuits even on average, namely that Conjecture 6
holds with IPAP(poly(n), O(1), 1/poly(n)), was first raised by Servedio and Viola [SV12], and was further
motivated by cryptographic applications in [ABG+14]. Although this conjecture hasn’t been resolved thus
far, some progress has been made since. For the case of exact computation (i.e., δ = 1) and depth 2, Cohen
and Shinkar [CS16] give a tight exponential bound on computing IP by a DNF◦⊕ circuit (also known as DNF
of parities), and conjecture that such circuits must be exponential in size even to approximate IP (their result
improves on other results already providing exponential lower bounds [Gro94, Juk06]). Further progress on
the problem has been made in [CGJ+16], where they give superlinear lower bounds in the worst case, and
their result was later improved by [BKT19] to superlinear bounds for the average case.

Motivated by applications to cryptography, Rothblum [Rot12] made the similar conjecture that IP cannot
be computed using AC0 circuits whose inputs are arbitrary functions of one of the inputs, a model of
computation known as bipartite complexity [PRS88] (if we only allow linear functions, this is the same
as IPAP). Essentially the same question appears in communication complexity, where bipartite circuits

of quasipolynomial size 2logO(1) n correspond to the complexity class PHcc, the communication complexity
analog of the polynomial hierarchy [BFS86].

The following result provides a barrier for proving the prediction variant, or any other variant from our
web of conjectures.

Proposition 4.7. PREDICTION⊕(C, k, δ) =⇒ IPAP(s, d, δ) for k = Ω(n/ log s) and C the collection of all
unbounded fan-in circuits of size s and depth d.

Proof. We argue the contrapositive. Suppose there exists a set of parities P = {p1(x, y), . . . , pr(x, y)}
violating Conjecture 6 with parameters s, d, δ. Observe that every y ∈ {0, 1}n/2 we fix corresponds to a
collection of r parities in x, and the union over y of all these parities results in a set of the form P ′ =
{p′1(x), . . . , p′r(x), p′1(x)⊕ 1, . . . , p′r(x)⊕ 1}, where the p′i’s are parities in x. For a given k, the number of
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possible (nonempty) parities spanned by a subset of k parities from P ′ is bounded by
(

2r
≤k
)
≤ (2r+ 1)k. For

k < (n/2)/ log(2s+ 1), since r ≤ s we get(
2r

≤ k

)
≤ (2r + 1)k ≤ (2s+ 1)k < 2n/2,

which implies that there exists a nonempty parity π over {0, 1}n/2 not spanned by any subset of k parities
from P . This violates the assumed prediction variant.

As mentioned earlier, IPAP(poly(n), 2, 1) is known to hold; yet the question whether IPAP(poly(n), d, δ)
holds for d = 2 in the average case or for d ≥ 3 in the worst case, remains open. Thus, Proposition 4.7 gives
a barrier for proving PREDICTION⊕(DNF,Ω(n/ log n), δ) for some δ ∈ (0, 1], and on proving even the exact
version PREDICTION⊕(AC0,Ω(n/ log n), 1).

5 OR can distinguish between logarithmic-degree distributions

While our main conjectures are about fooling, in this section we consider the opposite goal.
Nisan and Szegedy [NS92] showed that the approximate degree of OR is Θ(

√
n). As noticed by Bogdanov

et al. [BIVW16], this implies (via LP duality) that for any ε > 0 there exists a pair X,Y of Θε(
√
n)-

indistinguishable distributions which OR can (1 − ε)-distinguish. This shows that Conjecture 3 fails for
arbitrary sources even when k is as large as Θ(

√
n). However, the two distributions X,Y are not guaranteed

to be simple.
In this section, we show how to reduce X,Y to sources samplable by polynomial size decision trees, as

well as to sources of degree Oε(log n), proving the following result.

Theorem 5.1. (a) For any ε > 0 there exists a pair X,Y of Θε(
√
n)-indistinguishable sources over {0, 1}n

samplable by decision trees of size Oε(n
3 log2 n) that the OR function OR(x) = x1 ∨ · · · ∨ xn can (1− ε)-

distinguish.

(b) For any ε > 0 there exists a pair X,Y of Θε(
√
n)-indistinguishable sources over {0, 1}n of degree

Oε(log n) that the OR function OR(x) = x1 ∨ · · · ∨ xn can (1− ε)-distinguish.

We prove this theorem in several steps:

1. The starting point is a pair X,Y of Θε(
√
n)-indistinguishable sources over {0, 1}n′ which OR can 1−ε′

distinguish, where ε′ < ε and n′ is linear in n.

2. We convert X,Y into mixtures of iid X′,Y ′ with similar properties. (We define this class of sources
below.)

3. We show how to sample X′,Y ′ using polynomial size decision trees. The sampling introduces a small
error, which is identical for both sources.

4. We use a randomized encoding based on the Razborov–Smolensky lower bound technique to convert
the decision trees into low-degree polynomials, introducing another small error which is identical for
both sources.

Definition 5.2 (mixture of iid). A source X on {0, 1}n is a mixture of iid if it can be sampled using the
following two step process:

1. Sample a bias p ∈ [0, 1] according to some finitely supported distribution D.

2. Sample n independent p-biased bits (that is, each bit equals 1 with probability p).
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The size of the decision trees constructed from X′,Y ′ is related to the complexity of the distribution D,
a notion we define formally below.

The pair X′,Y ′ can be used to give a very simple protocol for visual secret sharing [NS94], as we explain
in Section 5.5.

[BIVW16] exhibits a pair of Ωε(
√
n)-indistinguishable distributions which OR(x) can (1− ε)-distinguish

and is samplable by an AC0 circuits of poly(n) size and depth 9. Our result achieves the same with an OR
distinguisher while improving the depth of the AC0 sampler to 2.

The following sections follow the various steps of the construction, culminating in the proof of Theo-
rem 5.1. We complement the construction with a lower bound on the complexity of the distribution D in
Section 5.6.

5.1 Constructing mixtures of iid

Our starting point is a pair X,Y of indistinguishable sources which OR can distinguish. We will structure
the construction in such a way that it suffices to keep track of a single distribution in this pair.

In order to facilitate the construction of small decision trees (and so low-degree polynomials) later on,
we will need X,Y to have low complexity, in the following senses.

Definition 5.3 (weight-complexity of source). A source X over {0, 1}n has weight-complexity L if for all
i ∈ {0, . . . , n}, the probability that X is a vector of Hamming weight i is an integer multiple of 1/L.

Definition 5.4 (complexity of mixture of iid). A mixture of iid X, defined via a distribution D over biases,
has complexity L if every p in the support of D is an integer multiple of 1/L, and the probability that D
equals p is an integer multiple of 1/L. Its support size is the size of the support of D.

We convert X into a mixture of iid using a simple resampling procedure, which is similar to t-biased
symmetrization or erase-all-subscripts symmetrization (see [BT20a]).

Lemma 5.5. Suppose X is a source over {0, 1}n of weight-complexity L.
For every C > 0 there is a source X′ over {0, 1}Cn, which is a mixture of iid of complexity nL and

support size n+ 1, such that

(1− e−C) Pr[OR(X) = 1] ≤ Pr[OR(X′) = 1] ≤ Pr[OR(X) = 1].

Furthermore, if X,Y are k-indistinguishable then for every C > 0, the two sources X′,Y ′ constructed
in this way are also k-indistinguishable.

Proof. The source X′ is sampled as follows. First, we sample x ∼ X. Second, we sample m = Cn
independent indices i1, . . . , im uniformly distributed on {1, . . . , n}, and output x′ = xi1 , . . . , xim . This is
clearly a mixture of iid of complexity nL.

If x = 0 then x′ = 0 always. In contrast, if x 6= 0 then the probability that xij = 1 is at least 1/n, and so
the probability that x′ = 0 is at most (1− 1/n)Cn ≤ e−C . Therefore the probability that x′ 6= 0 is at least
1− e−C .

Finally, suppose that X,Y are k-indistinguishable. We can sample X′,Y ′ in tandem by first sampling
i1, . . . , im and then letting X′ = X|i1,...,im and Y ′ = Y |i1,...,im .

Now let j1, . . . , jk be any k indices in {1, . . . ,m}. The two distributions X′|j1,...,jk = X|ij1 ,...,ijk and
Y ′|j1,...,jk = Y |ij1 ,...,ijk are identical since X and Y are k-indistinguishable.

5.2 Constructing decision trees

In this step, we show how to approximately sample a mixture of iid using small decision trees. The sampling
procedure has an error probability which can be made as small as desired. In case of a sampling error, we
output the zero vector.
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The main difficulty is that using decision trees, we can only sample exactly from dyadic distributions,
that is, distributions in which the probability of each value is of the form a/2b. We can overcome this
difficulty by approximating a low-complexity distribution by a dyadic distribution.

First, a technical lemma about implementing a selection procedure using decision trees.

Lemma 5.6. Consider an arbitrary partition of {0, . . . , 2n − 1} into m intervals. The partition defines a
function f : {0, 1}n → {1, . . . ,m}.

There is a decision tree of size at most n(m− 1) + 1 computing f .

Proof. The proof is by induction on n. If n = 0 or m = 1 then the result is trivial, so suppose that n ≥ 1
and m ≥ 2.

After querying the most significant bit of the input, we know that the input lies in either the left half or
the right half of {0, . . . , 2n−1}. At most one of the m original intervals can be broken into two, and so if the
left half contains m0 intervals and the right half contains m1 intervals, then m0 +m1 ≤ m+ 1. According to
the induction hypothesis, there are decision trees computing f restricted to the two halves of sizes at most
(n− 1)(m0− 1) + 1 and (n− 1)(m1− 1) + 1. Combining them, we obtain a decision tree for f of size at most

(n− 1)(m0 − 1) + 1 + (n− 1)(m1 − 1) + 1 ≤ (n− 1)(m− 1) + 2 ≤ n(m− 1) + 1,

since by assumption m ≥ 2.

We can now show how to sample arbitrary distributions, with an arbitrarily small error.

Lemma 5.7. Let D be a distribution in which the probability of each element in the support is an integer
multiple of 1/L, and furthermore the support has size s.

For every δ > 0 we can construct a decision tree T of size O(log(L/δ)s) over r ∈ {0, 1}N (for some
N) whose leaves are labeled by elements in the support of D or by ⊥, satisfying the following two properties
(where r is uniformly distributed over {0, 1}N ):

• For every x in the support of D,

Pr[T (r) = x | T (r) 6= ⊥] = Pr[D = x].

• Pr[T (r) = ⊥] = γ, where γ ≤ δ depends only on δ and L.

Proof. Denote the support of D by x1, . . . , xs, and suppose that xi has probability pi/L.
Let N = dlog2(L/δ)e, and let K = b2N/Lc. We will construct a decision tree T that outputs xi with

probability Kpi/2
N and ⊥ with probability 1−KL/2N < L/2N ≤ δ.

The decision tree interprets r1, . . . , rN as encoding a value R ∈ {0, . . . , 2N − 1}, and computes the
following function:

f(R) =

{
xi if K(r1 + · · ·+ ri−1) ≤ R < K(r1 + · · ·+ ri),

⊥ if R ≥ 2n −KL.
According to Lemma 5.6, we can compute f using a decision tree of size O(Ns) = O(log(L/δ)s). This

decision tree satisfies all required properties.

Using this construction, we can show how to convert a mixture of iid into a source samplable by decision
trees.

Lemma 5.8. Suppose X is a mixture of iid over {0, 1}n of complexity L and support size s.
For every δ > 0 we can construct n decision trees T1, . . . , Tn of size O(log2(nL/δ)s) over r ∈ {0, 1}N (for

some N) such that
(T1(r), . . . , Tn(r)) ∼X′,

where r is the uniform distribution over {0, 1}N , and

Pr[OR(X) = 1]− δ ≤ Pr[OR(X′) = 1] ≤ Pr[OR(X) = 1].

Furthermore, if X,Y are k-indistinguishable then for any δ > 0, the two sources X′,Y ′ constructed in
this way are also k-indistinguishable.
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Proof. Let X be sampled using the distribution D over biases. We construct the decision tree Ti in the
following way. We partition the bit vector r into n + 1 parts r(0), r(1), . . . , r(n). We will use r(0) to sample
the bias, and r(i) to sample X′i given the bias.

We invoke Lemma 5.7 with δLemma 5.7 = δ/(n + 1) to construct a decision tree over r(0) which samples
a bias from D with failure probability γ′ ≤ δ/(n+ 1). If the sampling fails (that is, we reach a leaf labeled
⊥) then we output 0. Otherwise, if we sampled the bias p, then we invoke Lemma 5.7 with s = 2 and
δLemma 5.7 = δ/(n + 1) to construct a decision tree over r(i) which samples a random bit with bias p, with
failure probability γ′ ≤ δ/(n+ 1); if the sampling fails, then we output 0.

The distribution of (T1(r), . . . , Tn(r)) can be described as follows:

1. Start with a sample from X.

2. Zero the entire source with probability δ/(n+ 1).

3. Zero each bit individually with probability δ/(n+ 1).

This description explains the relation between Pr[OR(X) = 1] and Pr[OR(X′) = 1], and also makes it
clear that this operation preserves k-indistinguishability.

It remains to estimate the size of the decision trees Ti. Each such decision tree is obtained by taking a
decision tree of size O(log(nL/δ)s) and replacing each leaf with a decision tree of size O(log(nL/δ)), for an
overall size of O(log2(nL/δ)s)

5.3 Constructing low-degree polynomials

The final piece of the puzzle is converting the decision trees constructed by Lemma 5.8 into low-degree
polynomials. Just like the conversion from a mixture of iid into decision trees, this conversion introduces
an arbitrarily small error. The idea is to use a randomized encoding based on the technique used by
Razborov [Raz87] and Smolensky [Smo87] in their celebrated circuit lower bound.

We start with the special case of the AND function.

Lemma 5.9. For every n, d there is an F2 polynomial f of degree 2d, over variables x1, . . . , xn, r1, . . . , rN
for some N , such that if x1x2 · · ·xn = 1 then f(x, r) = 1, and otherwise Prr[f(x, r) = 1] = 2−d.

Proof. The polynomial is

f(x, r) =

d∏
i=1

1 +

n∑
j=1

ri,j(1 + xj)

 .

If x1 · · ·xn = 1 then all of the sums are identically 0, and so all of the factors are identically 1. If xi = 0
then each factor is distributed uniformly over F2, and so the probability that all factors are 1 is 2−d.

We can extend this to arbitrary decision trees by representing a decision tree as a sum of ANDs. (The
same idea works for any unambiguous DNF.)

Lemma 5.10. Let T be a decision tree over {0, 1}m of size at most s. For every δ > 0 there is a polynomial
f of degree O(log(s/δ)) such that if f(x) = b then

Pr
r

[f(x, r) 6= b] = γb

for some γb ≤ δ, where γ0, γ1 depend only on s, δ.

Proof. Let Λ be the set of all leaves of T labelled 1. For each leaf ` ∈ Λ, let T` be the indicator function of
reaching that leaf. Thus T` is a product of literals, and as functions, T =

∑
`∈Λ T`. Moreover, in this sum,

at most one summand is 1 on any input.
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Let d = dlog(s/δ)e, so that s/2d ≤ δ. Using Lemma 5.9, we construct a polynomial f` of degree
O(log(s/δ)) such that f`(x, r) = 1 whenever T`(x) = 1, and otherwise Prr[f`(x, r) = 1] = 2−d. For

t ∈ {1, . . . , s− |Λ|}, let gt =
∏d
i=1 ri We take

f(x, r) =
∑
`∈Λ

f`(x, r
(`)) +

s−|Λ|∑
t=1

gt(x, r
(t)),

where r is partitioned into s parts r(`), r(t).
If T (x) = 0 then the probability that f(x, r) = 1 is exactly the probability that the sum of s many

2−d-biased random bits is odd, which is at most s/2d.
Similarly, if T (x) = 1 then the probability that f(x, r) = 0 is exactly the probability that the sum of

s− 1 many 2−d-biased random bits is odd, which is also at most s/2d.

5.4 Proof of main theorem

We now put everything together. As our starting point, we use a construction of Θε(
√
n)-indistinguishable

sources which OR can (1− ε)-distinguish due to Bun and Thaler [BT13].

Theorem 5.11. For any ε > 0 there is a pair of Ω(
√
εn)-indistinguishable sources on {0, 1}n, of weight-

complexity nO(n), which OR can (1− ε)-distinguish.

Proof. Bun and Thaler define the following twisted polynomial:

Q(x) = (−1)x+s c
2m(m!)2

n!

∏
j∈{2,...,n}

j /∈{ck2:1≤k≤m}

(x− j),

where s ∈ {0, 1}, c = d8/εe, and m = b
√
n/cc. They show (Proposition 14) that

n∑
x=0

Q(x)xd = 0

for 0 ≤ d ≤ k := Ω(
√
εn), and

Q(0)−
∑n
x=1Q(x)∑n

x=0 |Q(x)|
≥ 1− ε.

Since
∑n
x=0Q(x) = 0, this implies that

2Q(0)∑n
x=0 |Q(x)|

≥ 1− ε.

Let S =
∑n
x=0 |Q(x)|/2, and define

Q+(x) =

{
Q(x)/S if Q(x) > 0,

0 otherwise,
Q−(x) =

{
−Q(x)/S if Q(x) < 0,

0 otherwise.

Since
∑n
x=0Q(x) = 0 we clearly have

∑
Q(x)>0Q(x) =

∑
Q(x)<0(−Q(x)) = S, and so Q+, Q− are probability

distributions. Moreover, if 0 ≤ d ≤ k then

n∑
x=0

Q+(x)xd −
n∑
x=0

Q−(x)xd =

n∑
x=0

Q(x)

S
xd = 0.
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We define two probability distributions P+, P− on {0, 1}n as follows. To sample P±, first sample x
according to Q±, and then sample a uniformly random vector of weight x. These will function as our X,Y .

We claim that P+, P− are k-indistinguishable. To see this, let i1, . . . , ik be any k coordinates, let
b1, . . . , bk ∈ {0, 1}, and let h = b1 + · · ·+ bk. Then

Pr[P+|i1,...,ik = (b1, . . . , bk)] =

n∑
x=0

Q+(x)

(
n−k
x−h
)(

n
x

) =
(n− k)!

n!

n∑
x=0

Q+(x)xh(n− x)k−h,

where xh = x(x − 1) · · · (x − h + 1). The coefficient next to Q+(x) is a polynomial of degree k, and so we
get an identical probability if we replace P+, Q+ by P−, Q−.

We claim that OR can (1−ε)-distinguish P+, P−. Indeed, assume without loss of generality that Q(0) > 0.
Then Q+(0) = Q(0)/S ≥ 1− ε, whereas Q−(0) = 0. Therefore Pr[OR(P+) = 0] ≥ 1− ε while Pr[OR(P−) =
0] = 0.

It remains to bound the weight-complexity of P+, P−. The probability that P+ or P− has Hamming
weight x is either 0 or |Q(x)|/S. In the latter case, it is equal to

2
∏
j∈U |x− j|∣∣∣∑n

y=0(−1)y
∏
j∈U (y − j)

∣∣∣ ,
where U is some subset of {2, . . . , n}. Thus P+, P− have weight-complexity L, where

L =

∣∣∣∣∣∣
n∑
y=0

(−1)y
∏
j∈U

(y − j)

∣∣∣∣∣∣ .
Each of the summands is at most n! in magnitude, and so we can bound L ≤ n · n! = nO(n).

We now put everything together.

Proof of Theorem 5.1. Let C = dln(4/ε)e, so that 1 − e−C ≤ η/4. Apply Theorem 5.11 to get a pair X,Y
of Θε(

√
n)-indistinguishable sources over {0, 1}n/C of complexity nO(n) which OR can (1− ε/4)-distinguish.

Apply Lemma 5.5 to get a pair X′,Y ′ of mixtures of iid over {0, 1}n of complexity nO(n) and support
size n/C + 1 which OR can (1− 2ε/4)-distinguish.

Apply Lemma 5.7 (with δ = η/4) to get a pair X′′,Y ′′ of Θε(
√
n)-indistinguishable sources samplable

by decision trees of size Oε(n
3 log2 n) which OR can (1− 3ε/4)-distinguish.

Apply Lemma 5.10 (with δ = ε/(8n)) to get a pair X′′′,Y ′′′ of Θε(
√
n)-indistinguishable sources of

degree Oε(log n) which OR can (1 − ε)-distinguish. (We chose the parameter δ so that the randomized
encoding embodied in Lemma 5.10 changes the output with probability at most ε/2.)

We outline an alternative construction of X′,Y ′ in Appendix A. The advantage of this construction
over Lemma 5.5 is that the distributions D are supported on only k + 1 different biases, where k is the
indistinguishability parameter. An appeal to linear programming duality allows strengthening Lemma 5.5
to give the same promise.

5.5 How to share an image, infinitely

Komargodski, Naor, and Yogev [KNY16] studied the information complexity of evolving threshold secret
sharing. In this model, a stateful dealer that does not know the number of parties in advance assigns the
shares in sequence. They showed the existence of an n-threshold scheme in which the t-th party is assigned
(n− 1) log t+ on(log t) bits, and showed that this is optimal for n = 2.

Our Theorem 5.11 and Lemma 5.5 give a simple evolving ramp secret sharing scheme with single bit
shares and imperfect reconstruction with error ε. The state of the dealer consists of a single probability
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p ∈ [0, 1] with O(k log k) bits of precision for secrecy parameter k. Sampling a share consists of tossing a p-
biased coin. Unlike in the proposals of Komargodski et al., the dealer’s state does not need to be updated, so
no synchronization is necessary in a distributed implementation. The reconstruction threshold is n = Ck2/ε
for some absolute constant C.

Moreover, owing to the one-sidedness of the error and the visual nature of our scheme, the “contrast”
improves as more parties become involved in reconstruction. If the scheme is used to share an image
described by a set B of black pixels, as the size n of the reconstruction set tends to infinity, the reconstructed
image will contain all pixels in B with probability approaching one, while every pixel outside B will appear
independently with probability approaching ε.

5.6 Lower bound on precision

One obstacle to a potential improvement of the degree of the sources in Theorem 5.1 is the exponential weight-
complexity of the sources of Bun and Thaler in Theorem 5.11. While the existence of k-indistinguishable
sources of weight complexity polylogarithmic in k that OR can distinguish would not immediately improve
Theorem 5.1, it would at least obviate the need for the randomized encoding step in Lemma 5.10, which
partially accounts for the logarithmic degree in our construction. We show that this exponential complexity
is unavoidable.

Theorem 5.12. The weight-complexity of any pair of distinct k-indistinguishable distributions over {0, 1}n
is at least exp(Ω(k)).

The same conclusion holds for the complexity of any pair of distinct k-indistinguishable mixtures of iid
by a similar proof.

Theorem 5.12 does not forbid the existence of low-complexity samplers for the two distributions. For
example, the uniform distributions over n-bit strings of parity 0 and 1 are (n − 1)-indistinguishable, have
weight complexities 2n−1, but are 2-locally samplable.5 We interpret Theorem 5.12 as a limitation of the
proof method for Theorem 5.1, and not as evidence against the existence of samplers of sublogarithmic
degree.

We now prove Theorem 5.12. Given two distributions X,Y of weight-complexity L over {0, 1}n, let ai
be the coefficient

ai = L
(
Pr[wt(X) = i]− Pr[wt(Y ) = i]

)
, 0 ≤ i ≤ n,

where wt stands for Hamming weight. By the distinctness and weight-complexity assumptions, (a0, . . . , an)
is a nonzero vector in the integer lattice Zn+1.

Claim 5.13. If X and Y are k-indistinguishable then

n∑
i=0

aip(i) = 0 for every polynomial p of degree at most k. (1)

Proof. The advantage of the distinguisher that checks whether all among a random set of t inputs evaluate
to 1 is

n∑
i=0

ai
L
· i
n
· i− 1

n− 1
· · · i− t+ 1

n− t+ 1
.

By k-indistinguishability,

n∑
i=0

ai · i(i− 1) · · · (i− t+ 1) = 0 for all 1 ≤ t ≤ k.

This equality also holds for t = 0 as ai/L is the difference of two distributions. The conclusion (1) follows
because the functions 1, i, i(i− 1), . . . , i(i− 1) · · · (i− k + 1) span all degree-k polynomials.

5Vectors of parity b can be sampled as r1, r1 ⊕ r2, . . . , rn−2 ⊕ rn−1, rn−1 ⊕ b, a construction attributed to [Bab87, BL86].
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The main technical result of this section is the following:

Proposition 5.14. If (1) holds then
∑n
i=0 a

2
i = exp Ω(k).

Proof of Theorem 5.12. Since ai/L represents the difference of two distributions, the 1-norm
∑n
i=0 |ai| can

be at most 2L. By Proposition 5.14, exp Ω(k) ≤
∑
a2
i ≤ (

∑
|ai|)2 ≤ 4L2, from which L = exp Ω(k).

We now prove Proposition 5.14. By the shift-invariance of (1) we may assume without loss of generality
that a0 6= 0. In the unrealistic case n ≤ 2(k + 1), Proposition 5.14 easily follows from the fact that the
exp(−Ω(k))-approximate degree of OR on n bits is at most k:

Fact 5.15 ([dW08]). For every k there exists a univariate polynomial p such that p(0) = 1 and |p(i)| ≤
exp(−Ω(k)) for all 1 ≤ i ≤ 2(k + 1).

Plugging this p into (1) we get that

|a0| =
∣∣∣∑n

i=1
aip(i)

∣∣∣ ≤ nmax{|a1| , . . . , |an|} · exp(−Ω(k)),

so because a0 is a nonzero integer, one of the other ai must be at least exp Ω(k).
The case of general n essentially reduces to this, but we do not know of a direct way of proving this

without a detour into lattices. Let A ⊆ Zn+1 be the lattice of integer solutions (a0, . . . , an) to (1).

Claim 5.16. The vectors v0, . . . , vn−k−1 ∈ Zn+1 given by vij = (−1)j−i
(
k+1
j−i
)
, where 0 ≤ j ≤ n, are a basis

of the lattice A. (
(
?
i

)
is zero for negative i.)

Proof. First we argue that all vi are in the lattice A. The polynomial Dp(x) = p(x)− p(x+ 1) has strictly
lower degree than p. If p has degree k then Dk+1p(x) =

∑
(−1)j

(
k+1
j

)
p(x + j) vanishes. Taking x = i we

conclude from (1) that v0, . . . , vn−k−1 all belong to the lattice A.
Now we argue that any solution to (1) can be written as an integer combination of the vi. First, the

dimension of the solution space is precisely n− k. The matrix with rows v0, . . . , vn−k−1 is upper triangular
with identity diagonal, so each integer vector in the solution space can be expressed as an integer combination
of the vi.

Claim 5.17. The length of the projection of vi on the subspace orthogonal to v0, . . . , vi−1 is minimized when
i = k + 1.

Proof. vi and vi′ are orthogonal whenever |i− i′| > k + 1 as they have disjoint support. Therefore the
projection of interest does not depend on v0, . . . , vi−k−2. Since vi is a shift of v0 (vij = v0(j−i)), the length of
the projection stays the same for all i ≥ k+ 1. The minimum must therefore be attained at some i between
0 and k + 1. Among these values of i, the projection of vi on the span of v0, . . . , vi−1 is the same as the
projection of vi−1 on the span of v0, . . . , vi−2 together with an additional vector v−1, so the length of the
projection of vi onto the subspace spanned by v0, . . . , vi−1 does not decrease with i. Therefore projection on
the orthogonal space does not increase with i and so must attain its minimum at i = k + 1.

The 2-norm of any nonzero vector in A, including (a0, . . . , an), is lower-bounded by the shortest vector
in the Gram–Schmidt orthogonalization of the lattice basis v0, . . . , vn−k−1 (see e.g. [MG02, Theorem 1.1]),
which by Claim 5.17 is precisely the projection of vk+1 onto the subspace orthogonal to v0, . . . , vk. For the
purpose of lower bounding this projection we may and will assume without loss of generality that n = 2(k+1).

Claim 5.18. Assume n = 2(k + 1). The subspace of Rn+1 dual to v0, . . . , vk is spanned by all degree-k
polynomials and the vector δ ∈ Rn+1 given by δj = 1 when j = n and 0 when 0 ≤ j < n.

Proof. Since v0, . . . , vk belong to A, the subspace of interest must contain all degree-k polynomials. Since
vi(n+1) = 0 for all 0 ≤ i ≤ k, it must also contain δ. As δ has n zeroes, its degree is strictly larger than k,
so it is linearly independent of the degree-k polynomials. By the rank-nullity theorem, the dimension of the
subspace is (n+ 1)− (k + 1) = k + 2 so it must be spanned by the degree-k polynomials and δ.
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Proof of Proposition 5.14. By [MG02, Theorem 1.1] and Claim 5.17, it is sufficient to prove that the orthog-
onal projection of vk+1 to the subspace dual to v0, . . . , vk has 2-norm at least exp Ω(k). Since the length of
this projection is the same for all n ≥ 2(k+ 1), we may assume that n = 2(k+ 1). By Claim 5.18, it is then
sufficient to lower bound the projection of vk+1 by the subspace spanned by δ and all degree-k polynomials.

By Fact 5.15 there exists a degree k polynomial p such that δ− p has infinity-norm at most exp(−Ω(k))
and therefore 2-norm at most

√
2(k + 1) exp(−Ω(k)). The projection of vk+1 onto the line spanned by δ− p

has then magnitude at least

|〈vk+1, δ − p〉|
‖δ − p‖

=
|〈vk+1, δ〉 − 〈vk+1, p〉|

‖δ − p‖
≥

∣∣(−1)k+1 − 0
∣∣√

2(k + 1) exp(−Ω(k))
= exp Ω(k).

6 Negative results

In this section we prove several special cases of Conjecture 2 and Conjecture 3, using the concept of pre-
dictability. We concentrate on sources of low degree or locality, and the circuit classes we consider are the
OR function, decision trees (and more generally, unambiguous DNFs), and local DNFs (a generalization of
narrow DNFs).

We describe predictability in Section 6.1, where we also work out the toy case of degree 1 sources. A
more complicated example is local sources, worked out in Section 6.2. We show that constant degree sources
are weakly predictable in Section 6.3, and that degree 2 sources are strongly predictable in Section 6.4. Con-
trasting these results, we show in Section 6.5 that depth 1 sources (sources computed by AND functions) are
not predictable. Using an ad hoc argument, we show that indistinguishable depth 1 sources are statistically
indistinguishable.

Finally, in Section 6.6 we use another notion of predictability to prove Conjecture 2 for linear sources
and local DNFs (disjunctions of arbitrary functions of O(1) input bits).

Our proof that quadratic sources are strongly predictable uses Dickson’s theorem, a structure theorem
for quadratic polynomials. Haramaty and Shpilka [HS10] proved a similar structure theorem for cubic
polynomials, leaving the tantalizing possibility of extending our proof to cubic sources.

Source Predictability Reference Section

Degree 1 log(1/ε) Lemma 6.2 Section 6.1

Degree 1 s2s log(1/ε) Theorem 6.43 Section 6.6

Degree 2 log10(1/ε) Theorem 6.16 Section 6.4

Degree d Od,ε(1) Corollary 6.15 Section 6.3

s-local (1/ε)O(s2s) Lemma 6.10 Section 6.2

Depth 1 log log(n/ε)∗ Theorem 6.33 Section 6.5

Table 2: Summary of negative results. For each type of source, we give a value of k such that this class of
sources is (O(k), ε)-predictable (see Definition 6.1). This implies that MAIN(O(k), ε) holds for this class of
sources and OR distinguishers by Corollary 6.6.
If k involves s, then MAIN(O(k), ε) holds for distinguishers which are ORs of s-local functions.
If k = polylog(1/ε) then GENERAL(polylog(1/ε), ε) holds for this class of sources and polynomial size unam-
biguous DNF distinguishers by Lemma 6.8.
For depth 1 sources, the stated bound is not predictability, but rather the parameter k for which MAIN(k, ε)
holds.
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6.1 Predictability

Intuitively, a source is predictable if we can predict the value of the OR function by looking at a small number
of bits. We formalize this in the following way.

Definition 6.1 (predictability). Let X be a source over {0, 1}n. The source is (k, ε)-predictable if there
exists a subset S ⊆ {1, . . . , n} of size at most k such that

Pr[X|S = 0 and X 6= 0] ≤ ε.

(Here X = 0 means that X is the zero vector.)
A set S with this property ε-predicts X.

As a simple example, let us show that degree 1 sources are (O(log2(1/ε)), ε)-predictable.

Lemma 6.2. Any degree 1 source is (dlog2(1/ε)e+ 1, ε)-predictable for any ε > 0.

Here and elsewhere in this section, we will omit floors and ceilings for brevity, and logarithms will always
be base 2.

Proof. Let X be a degree 1 source. We consider several cases.

Case 1. The source has dimension at least log(1/ε). In this case, let S be an arbitrary set of log(1/ε)
affinely independent coordinates of X. Then S ε-predicts X, since

Pr[X|S = 0 and X 6= 0] ≤ Pr[X|S = 0] = 2−|S| = ε.

Case 2. The source has dimension at most log(1/ε). In this case, let S be a set of at most log(1/ε)
coordinates such that every coordinate of X is an affine combination of Xi for i ∈ S.

Case 2a. Every coordinate of X is a linear combination of Xi for i ∈ S. In this case,

Pr[X|S = 0 and X 6= 0] = 0.

Case 2b. We have Xj =
∑
i∈T Xi + 1, where j /∈ S and T ⊆ S. In this case,

Pr[X|S∪{j} = 0 and X 6= 0] ≤ Pr[X|S∪{j} = 0] = 0.

We now give two ways of using predictability to show that indistinguishable sources fool OR: one which
is useful for proving special cases of Conjecture 3, and one which is useful for proving special cases of
Conjecture 2.

Lemma 6.3. Suppose that X,Y are 2k-indistinguishable sources which are (k, ε)-predictable. Then X,Y
ε-fool OR.

Proof. Let S, T be sets of at most k coordinates satisfying

Pr[X|S = 0 and X 6= 0] ≤ ε,
Pr[Y |T = 0 and Y 6= 0] ≤ ε.

Let R = S ∪ T . It is easy to check that the two inequalities above still hold if we replace S, T with R.
Therefore

Pr[X|R = 0] ≥ Pr[X = 0] = Pr[X|R = 0]− Pr[X|R = 0 and X 6= 0] ≥ Pr[X|R = 0]− ε.

Since X,Y are 2k-indistinguishable and |R| ≤ 2k, we have Pr[X|R = 0] = Pr[Y |R = 0], and so the lemma
follows.
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Lemma 6.4. Suppose that X,Y are (k + 1)-indistinguishable sources, and Y is (k, ε/n)-predictable. Then
X,Y ε-fool OR.

Proof. Let S be a set of at most k coordinates satisfying

Pr[Y |S = 0 and Y 6= 0] ≤ ε.

As in the proof of the preceding lemma,

Pr[Y |S = 0] ≥ Pr[Y = 0] ≥ Pr[Y |S = 0]− ε/n.

We will show that
Pr[X|S = 0 and X 6= 0] ≤ ε,

and so
Pr[X|S = 0] ≥ Pr[X = 0] ≥ Pr[X|S = 0]− ε.

This will complete the proof, since Pr[X|S = 0] = Pr[Y |S = 0] by k-indistinguishability.
To prove the remaining inequality, we use a simple union bound:

Pr[X|S = 0 and X 6= 0] ≤
∑
i/∈S

Pr[X|S = 0 and Xi = 1]

=
∑
i/∈S

Pr[Y |S = 0 and Y i = 1] ≤ nPr[Y |S = 0 and Y 6= 0] ≤ ε.

We will be able to prove predictability results in two different regimes, corresponding to the following
two definitions.

Definition 6.5 (weak and strong predictability). A class of sources is weakly predictable if for every ε > 0
there exists a constant k such that every source in the class is (k, ε)-predictable.

A class of sources is strongly predictable if there exists a polynomial p such that for every ε > 0, every
source in the class is (p(log(1/ε)), ε)-predictable.

For example, Lemma 6.2 shows that degree 1 sources are strongly predictable. In Section 6.4 we show
that degree 2 sources are also strongly predictable, and in Section 6.3 we show that constant degree sources
are weakly predictable.

There are two meta-theorems relating predictable classes of sources and our two main conjectures.

Corollary 6.6. If a class of sources is weakly predictable then MAIN(Oε(1), ε) holds for this class of sources
and OR distinguishers (on any subset of coordinates).

Corollary 6.7. If a class of sources is strongly predictable then GENERAL(polylog(n/ε), ε) holds for this
class of sources and OR distinguishers (on any subset of coordinates).

Let us now show how to extend the latter corollary to unambiguous DNFs (and so, in particular, to
decision trees).

Lemma 6.8. If a class of sources is strongly predictable and closed under negations of coordinates then
GENERAL(polylog(ns/ε), ε) holds for this class of sources and distinguishers which are unambiguous DNFs
with at most s clauses (for example, decision trees of size s).

Proof. Let p be the polynomial associated with the class of sources, and let X,Y be (p(log(s/ε)) + 1)-
indistinguishable sources, where Y belongs to the class.

Denote the DNF by f = f1 + · · · fs (here addition is over the reals), where f1, . . . , fs are disjoint ANDs.
Since the class of sources is closed under negations, Lemma 6.4 shows that X,Y ε/s-fool each fi. Therefore

|E[f(X)]− E[f(Y )]| ≤
s∑
i=1

|E[fi(X)]− E[fi(Y )]| ≤ ε.
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6.2 Local sources

In this subsection we show that local sources are weakly predictable. Our argument actually works for
local-over-linear sources, defined next.

Definition 6.9 (local-over-linear sources). A source is s-local-over-linear if every bit is a function of s many
degree 1 polynomials.

In the rest of this subsection, we prove the following result.

Lemma 6.10. For every s, the class of s-local-over-linear sources is weakly predictable: every s-local-over-
linear source is ((1/ε)O(s2s), ε)-predictable.

The proof is by induction on s. For every s, ε, we will show that an s-local-over-linear source is (c(s, ε), ε)-
predictable, for some constant c(s, ε) = (1/ε)O(s2s).

When s = 1, an s-local-over-linear is just a degree 1 source, and so we can take c(1, ε) = log(1/ε) + 1 by
Lemma 6.2.

Suppose now that s > 1. Suppose that Xi depends on the degree 1 polynomials Ji, where |Ji| ≤ s.
Without loss of generality, the polynomials in Ji are affinely independent. Also, we can assume that no Xi

is the constant zero, since such coordinates do not affect predictability.
Let I be a maximal set of coordinates such that the multiset

⋃
i∈I Ji is affinely independent. We consider

two cases, according to the size of I.

Case 1. The set I contains at least 2s log(1/ε) coordinates. Let S ⊆ I be a subset of size exactly 2s log(1/ε).
Since Xi is not identically zero, Pr[Xi = 0] ≤ 1−2−|Ji| ≤ 1−2−s. Since the sets Ji are affinely independent,

Pr[X|S = 0] =
∏
i∈S

Pr[Xi = 0] ≤ (1− 2−s)|S| ≤ ε.

Therefore X is (2s log(1/ε), ε)-predictable.

Case 2. The set I contains at most 2s log(1/ε) coordinates. Let J =
⋃
i∈I Ji, and let J ′ be the linear parts

of the polynomials in J .
Let V be the span of all rj appearing in all Ji. Decompose V into span(J ′) +U . Thus every polynomial

in every Ji can be written uniquely in the form P +Q+ b, where P ∈ span(J ′), Q ∈ U , and b ∈ F2.
For every assignment α to the polynomials in J ′, we can consider the source Xα which is obtained by

replacing each P +Q+ b by P (α) +Q+ b (using the terminology of the preceding paragraph).
The source Xα is clearly an s-linear-local source. We claim that it is in fact (s − 1)-linear-local. To

see this, first note that if i ∈ I then Xα
i is constant. If i /∈ I then, by definition of I, there is some

affine dependence in J ∪ Ji, which must involve some polynomial in Ji, say R1 + · · · + Rk + P = b, where
R1, . . . , Rk ∈ Ji, P ∈ span(J ′), and b ∈ F2. In Xα this implies that R1 = R2 + · · ·+Rk + Pk(α) + b, and so
we can rewrite Xα

i as depending on at most s− 1 polynomials.
By induction, each source Xα is (c(s− 1, ε), ε)-predictable, say witnessed by a set Sα. Take S =

⋃
α Sα.

Then
Pr[X|S = 0 and X 6= 0] ≤ 2−J

∑
α

Pr[Xα|Sα and Xα 6= 0] ≤ ε.

The set S has size

2|J|c(s− 1, ε) ≤ 2s2
s log(1/ε)c(s− 1, ε) = (1/ε)s2

s

c(s− 1, ε),

and so considering both cases together,

c(s, ε) ≤ max
[
2s log(1/ε), (1/ε)s2

s

c(s− 1, ε)
]
.

Solving the recurrence, we obtain
c(s, ε) = (1/ε)O(s2s).
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Note If X is s-local then the argument showing that Xα is (s− 1)-local is simpler: the set I is a hitting
set for the sets Ji, that is, I ∩ Ji 6= ∅ for all i, and so it is clear that if we fix the values of the coordinates
in I, then the resulting source is (S − 1)-local.

6.3 Constant degree sources

In this subsection we show that sources of constant degree are weakly predictable, using higher-order Fourier
analysis. The proof is very similar to the proof of the regularity lemma from higher-order Fourier analysis.

The only result we need from higher-order Fourier analysis is the following.

Definition 6.11 (regular factor). A set S of F2 polynomials is r-singular if there exists a non-empty subset
T ⊆ S such that

∑
P∈T P can be written as a function of r many polynomials of degree smaller than d,

where d is the maximum degree of a polynomial in T .
A set of F2 polynomials is r-regular if it is not r-singular.

Theorem 6.12 ([HHL19, Lemma 7.24]). For every d, ε > 0 there is a constant r = r(d, ε) such that if
{Q1, . . . , Qm} is an r-regular set of F2 polynomials of degree at most d then for all b1, . . . , bm ∈ F2,

2−m − ε ≤ Pr[Q1 = b1, . . . , Qm = bm] ≤ 2−m + ε.

The proof that degree d sources are weakly predictable proceeds by induction on a somewhat cumbersome
well-ordered poset. We will need several definitions.

Definition 6.13 (local function). Let λ ∈ Nd. A function is λ-local if it is a function of λ1 + · · ·+ λd many
F2 polynomials, where the i’th group consists of λi many polynomials of degree at most i.

For a subset Λ ⊆ Nd, a function is Λ-local if it is λ-local for some λ ∈ Λ.
A source is λ-local or Λ-local if each coordinate is.

We will prove the following result by induction.

Lemma 6.14. For any non-empty finite Λ, the class of Λ-local sources is weakly predictable.

Corollary 6.15. For every d, the class of degree d sources is weakly predictable.

Proof. Take Λ = {(0, . . . , 0, 1)}.

In the rest of this subsection, we prove Lemma 6.14, in the following form: for every non-empty finite Λ
and ε > 0, every Λ-local source is c(Λ, ε)-predictable for some constant c(Λ, ε). The proof is by induction on
max Λ, where the maximum is taken with respect to lexicographic ordering: λ ≺ µ if λj = µj for all j > i,
and λi < µi. It is well-known that this is a well-ordering.

The base case is when max Λ = (0, . . . , 0), or equivalently, Λ = {(0, . . . , 0)}. In this case, the source is
constant, and so it is trivially (1, 0)-predictable: either all coordinates are constant 0, or else, any constant 1
coordinate perfectly predicts the source.

Suppose now that max Λ � (0, . . . , 0). For λ ∈ Λ, let |λ| = λ1 + · · ·+ λd, and let |Λ| = maxλ∈Λ |λ|.
Suppose that Xi is a λi-local function depending on the polynomials Ji. We can assume that Xi is not

constant zero, since such coordinates do not affect predictability.
Let I be a maximal set of coordinates such that the multiset

⋃
i∈I Ji is r(d, δ)-regular, where δ is defined

as follows: m = 2|Λ| log(2/ε), and δ = 2−|Λ|m(ε/2). We consider two cases, according to the size of I.

Case 1. The set I contains at least m coordinates. Let S ⊆ I be a subset of size exactly m. For each
i ∈ S, since Xi is not identically zero, we can find some assignment αi to the polynomials in Ji which causes
Xi = 1.

Let α be an assignment for J =
⋃
i∈S Ji. According to Theorem 6.12, since J is r(d, δ)-regular,

Pr[J = α] ≤ 2−|J| + δ.
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Call an assignment α bad if α|Ji 6= αi for all i ∈ S. Thus

Pr[X|S = 0] ≤
∑
α bad

(2−|J| + δ) ≤
∏
i∈S

(1− 2−|Ji|) + 2|J|δ ≤ (1− 2−|Λ|)m + 2|Λ|mδ.

We chose m and δ so that each term is at most ε/2, and so we conclude that S ε-predicts X.

Case 2. The set I contains at most m coordinates. Let J =
⋃
i∈J Ji. Let α be any assignment to the

polynomials in J such that X|I = 0.
By definition of I, for each i /∈ I the multiset J ∪ Ji is not r(d, δ)-regular. Therefore there must be a

non-empty subset Ai ⊆ Ji and a subset Bi ⊆ J such that
∑
P∈Ai P +

∑
Q∈Bi Q can be written as a function

of at most r(d, δ) many polynomials of degree less than e, where e is the maximal degree of a polynomial in
Ai ∪Bi. In particular, if J = α then we can rewrite Xi as a coordinate Xα

i which is λ′i-local, where λ′i ≺ λi
is obtained by subtracting 1 from the e’th index and (if e > 1) adding r(d, δ) to the (e − 1)’th index. This
creates a new source Xα which is Λ′-local for some finite set Λ′ satisfying max Λ′ ≺ max Λ.

By induction, every source Xα is 2−|Λ|mε-predicted by a set Sα of size at most c(Λ′, 2−|Λ|mε). Let
S = I ∪

⋃
α S

α. Then

Pr[X|S = 0 and X 6= 0] ≤
∑

α : X|I=0

Pr[Xα|Sα = 0 and Xα 6= 0] ≤ ε.

This shows that
c(Λ, ε) ≤ m+ 2|Λ|mc(Λ′, 2−|Λ|mε).

Note One might be tempted to use ε rather than 2−|Λ|mε, like in the preceding section. However, if we
condition on J = α, we no longer get a Λ′-source. Instead, we apply a union bound: if X|S = 0 and X 6= 0
then Xα|S = 0 and Xα 6= 0 for some α, namely the value of the polynomials in J .

6.4 Quadratic sources

In this subsection we prove that for quadratic sources, the conclusion of Corollary 6.15 can be improved to
strong predictability.

Theorem 6.16. The class of quadratic sources is (O(log10(1/ε)), ε)-predictable.

Our argument is structured in two parts: A proof of the statement for a special subclass of quadratic
sources that we call low-rank bilinear, and a reduction of the general case to this special case.

Definition 6.17. A set of quadratics Q is (r, d)-bilinear if there exists a partition of the common variables
into two disjoint sets x and x′ such that

• Every q ∈ Q can be written as q(x,x′) =
∑rq
i=1 yiq(x)y′iq(x

′), where rq ≤ r and y1q, . . . , yrqq and
y′1q, . . . , y

′
rqq are linear forms that are linearly independent.

• The span of all the linear forms {yiq : 1 ≤ i ≤ rq, q ∈ Q} has dimension at most d.

The linear independence condition can be assumed without loss of generality:

Fact 6.18. If q(x,x′) =
∑r
i=1 yi(x) ·y′i(x′) for some linear forms yi, y

′
i then there exist linearly independent

linear forms zi ∈ span{y1, . . . , yr}, z′i ∈ span{y′1, . . . , y′r} such that q(x,x′) =
∑s
i=1 zi(x) · z′i(x′), where

s ≤ r.

Proposition 6.19. All (r, d)-bilinear quadratic sources are (rd2 log(d/ε), dε)-predictable.

Proposition 6.20. If all (O(log5(1/ε)), O(log2(1/ε)))-bilinear quadratic sources are (k, ε/16)-predictable
then all quadratic sources are (k +O(log4(1/ε)), ε)-predictable.
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Proof of Theorem 6.16. By Proposition 6.19, all (O(log5(1/ε)), O(log2(1/ε)))-bilinear quadratic sources are
(O(log10(1/ε)), ε/32)-predictable. By Proposition 6.20 all quadratic sources are (O(log10(1/ε)), ε)-predictable.

The proofs of both propositions rely on the following reducibility property of predictable sources:

Claim 6.21. Let X, X ′ and Y be jointly distributed bit sequences. Assume X ′ is (k, ε)-predictable and
Pr[X = 0 and Y 6= X ′] ≤ δ. Then (X,Y ) is (k + |X| , ε+ δ)-predictable.

Proof. Let S be the set of indices of X and T be the set of indices that (k, ε)-predicts X ′. Then

Pr[(X,Y )|S∪T = 0, (X,Y ) 6= 0] = Pr[X = 0, Y |T = 0, (X,Y ) 6= 0]

= Pr[X = 0, Y |T = 0, Y 6= 0]

≤ Pr[X = 0, Y |T = 0, Y 6= 0, Y = X ′] + Pr[X = 0, Y 6= X ′]

≤ Pr[X ′|T = 0, X ′ 6= 0] + Pr[X = 0, Y 6= X ′]

= ε+ δ.

Proof of Proposition 6.19

We first illustrate the proof in the special case r = 1 and y′1q(x
′) = x′q. Then all quadratics in this source

have the form
q(x,x′) = yq(x)x′q.

Let ∅ = A0 ⊂ A1 ⊂ A2 ⊂ · · · be an increasing sequence of subsets of Q such that the linear forms
Yi = {yq : q ∈ Ai \ Ai−1} are a basis of {yq : q ∈ Q \ Ai−1}. Then |Ai \Ai−1| ≤ d for all i. If the sequence
has length at most k = blog(d/ε)c then |Q| ≤ d log(d/ε) and predictability follows trivially. Otherwise we
argue that Ak predicts Q except with probability ε.

Claim 6.22. Let Y1, . . . , Yk be (multi)sets of vectors and V be a subspace such that spanY1 ⊇ spanY2 ⊇
· · · ⊇ spanYk ⊇ V . Then for a uniformly random subset S of the disjoint union Y1 ] · · · ] Yk,

Pr
[
V 6⊆ spanS] ≤ (dimV ) · 2−k.

We apply Claim 6.22 to V = span{yq : q 6∈ Ak} and S = {yq : x′q = 1} to conclude that except with

probability at most d2−k ≤ ε, the forms {yq : q ∈ Ak, x′q = 1} span all of V . When Q|Ak = 0 all these forms
must vanish. Then V must also vanish and Q|Ak = 0, so Q is (k, ε)-predictable.

Proof of Claim 6.22. Let Si = Yi∩S and V i = V ∩span(S1]· · ·]Si). Then 0 = V 0 ⊆ V 1 ⊆ · · · ⊆ V k ⊆ V .
Since Yi spans V , for every fixing of S1, . . . ,Si−1 there must exist a subset Y i ⊆ Yi of linearly independent
vectors that satisfies the direct sum decomposition V = V i−1 ⊕ spanY i, from which

dim spanY i = codimV V i−1. (2)

Since Y i ∩ Si is a uniformly random subset of Y i and the vectors in Y i are linearly independent, we have

E[dim span(Y i ∩ Si) | S1, . . . ,Si−1] =
dim spanY i

2
. (3)

Since V i contains V i−1 ⊕ span(Y i ∩ Si),

dimV i ≥ dimV i−1 + dim span(Y i ∩ Si).

Then

E codimV V i ≤ E codimV V i−1 − Edim span(Y i ∩ Si) by linearity of expectation

= E codimV V i−1 − (Edim spanY i)/2 by (3)

= (E codimV V i−1)/2 by (2).

31



Since V 0 = 0 has codimension dimV , iterating for k rounds and applying Markov’s inequality gives

Pr[codimV V k 6= 0] ≤ E codimV V k ≤ (dimV ) · 2−k.

Therefore, except with probability (dimV ) · 2−k, V k must equal V .

In general the forms y′iq may not be linearly independent. The proof strategy is to isolate sufficiently
many linearly independent forms among them so that Claim 6.22 can be applied. If this fails the space
of forms {y′iq : 1 ≤ i ≤ rq, q ∈ Q} must have small dimension. All of Q then has small dimension and is
therefore predictable.

Fact 6.23. If v1, . . . , vm are linearly independent vectors and w1, . . . , wm are arbitrary vectors, then a1v1 +
w1, . . . , amvm + wm are linearly independent for some a ∈ {0, 1}m.

Proof. Since w1 and v1 +w1 span v1, there must be a choice for a1 so that a1v1 +w1, v2, . . . , vm are linearly
independent. By the same reasoning, a1v1 + w1, a2v2 + w2, v3, . . . , vm are linearly independent for some a2.
Continuing all the way to m proves the fact.

Proof of Proposition 6.19. We prove the proposition by strong induction on d. When d = 0 the source is
constant so it is (0, 0)-predictable. We now assume the proposition is true for all d′ < d and show that it is
true for d.

Let Y = {yiq : i ≤ rq, q ∈ Q} and Y ′ = {yiq : i ≤ rq, q ∈ Q}. Let B ⊆ Q be a maximal set with
the following property: For each q ∈ B there exists an index iq ≤ rq such that y′iqq is not in span of

Y ′−q = {y′iq′ : i ≤ rq′ , q′ ∈ B \ {q}}.
For a given q ∈ B, the forms {y′iq : i ≤ rq} may be linearly dependent modulo Y ′−q. To address that,

we do a change of basis, moving from Yi = {y′1q, . . . , y′rqq} to another basis z′1q, . . . , z
′
rqq formed by joining a

basis C1 of span(Yi) ∩ span(Y ′−q) and a basis C2 of its dual with respect to span(Yi), rewriting

q =

rq∑
i=1

ziqz
′
iq.

We can construct the new basis so that z′iqq = y′iqq. Modulo Y ′−q, C1 goes to zero, while C2 remains

linearly independent. Since z′iqq ∈ C2, this shows that z′iqq cannot be written as a linear combination of

Y ′−q ∪ {z′iq : i 6= iq}. Therefore the forms {z′iqq : q ∈ B} are linearly independent modulo the span of

Y ′− = {z′iq : q ∈ B, i 6= iq}.

Let ∅ = A0 ⊂ A1 ⊂ A2 ⊂ · · · be an increasing sequence of subsets of B so that the linear forms
Zi = {ziqq : q ∈ Ai \Ai−1} are linearly independent and span all of {ziqq : q ∈ Q \Ai−1}.

If the length of the sequence is at most k = blog(d/ε)c, then |B| ≤
∑
|Ai \Ai−1| ≤ dk. By the maximality

of B, all the forms {y′iq : q 6∈ B} are in the span of {y′iq : q ∈ B}, so spanY ′ can have dimension at most dkr,

and Q viewed as a linear space of quadratic forms can have dimension at most d2kr. Any basis of this space
(kd2r, 0)-predicts Q.

Otherwise, let V = span{ziq : q ∈ Q \ Ak}. For every q ∈ B, every assignment a′− to spanY ′−, and every
assignment a′+ to {z′iqq : q ∈ B}, if we substitute a′+ and a′− then q becomes a linear form

ziqqa
′
+(z′iqq) +

∑
i 6=iq

ziqa
′
−(z′iq).

For every i ≤ k, span{ziqq : q ∈ Ai \ Ai−1} contains V . Fact 6.23 shows that for every assignment a′− we
can find an assignment b′+ so that the quadratic forms in Ai \ Ai−1 simplify under a′−, b

′
+ to linear forms

spanning V , for every i ≤ k.
Sample Y ′ in two stages. First, sample Y ′− to get an assignment a′−, and let b′+ be the assignment

constructed above. Then, sample an assignment a′+ to Y ′+. Let S be the random subset of Ak corresponding
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to indices where a′+ = b′+. By Claim 6.22, except with probability d2−k = ε over the assignment to Y ′,
the forms {ziqq : q ∈ Ak} span all of V . Therefore Pr[Q|Ak = 0 and V 6= 0] ≤ ε. The source Q mod V is
(r, d − |V |)-bilinear for |V | 6= 0, so by the inductive hypothesis it is (r(d − 1)2 log((d − 1)/ε), (d − 1)ε)-
predictable. By Claim 6.21 we get that Q is (kd, ε)-predictable, where

kd = max
{
rd2 log(d/ε), |Ak|+ r(d− 1)2 log((d− 1)/ε)

}
= rd2 log(d/ε).

Proof of Proposition 6.20

To prove Proposition 6.20, we gradually refine the class of quadratic sources whose strong predictability is
sufficient to establish Theorem 6.16.

Our starting point is a quantitative version of Theorem 6.12 for quadratic sources, for which it can be
shown that r(2, ε) ≤ 2 log(1/ε) + 1. We do not rely on this bound explicitly but instead use an essentially
equivalent characterization of the rank of quadratic maps, a notion that gives more structural information
about the quadratic map.

Fact 6.24 (Dickson’s Theorem [MS78]). For every quadratic polynomial q there exist a unique number r
and bits c, d such that

q(x) = y1y2 + · · ·+ y2r−1y2r + cy2r+1 + d, (4)

where y = (y1, . . . , y2r+c) = Ax + b for some matrix A with independent rows.

The value r is called the rank of q. The bias of a random variable X is E[(−1)X ] = Pr[X = 1]−Pr[X = 0].

Claim 6.25. |bias(q)| ≤ 2−rank(q).

Proof. Since the transformation A preserves the output distribution of q, the rank determines the bias
E[(−1)q(x)] of the polynomial q:

bias(q) = E[(−1)y1y2+···+y2r−1y2r+cy2r+1+d] = (−1)dE[(−1)cy2r+1 ]

r∏
i=1

E[(−1)y2i−1y2i ] = (1− c)(−1)d2−r.

Therefore |bias(q)| = (1− c)2−r ≤ 2−r.

We first show that it is sufficient to prove predictability for quadratic sources of small rank. The rank of
a quadratic source is the maximum rank of all the quadratics in it.

Claim 6.26 (Rank reduction). If all quadratic sources of rank at most log(2/ε) are (k, ε)-predictable then
all quadratic sources are (k + log(2/ε), ε)-predictable.

We will need the following fact about pseudorandomness of small-biased random variables with respect
to point functions:

Fact 6.27. For every random variable X over {0, 1}n, |Pr[X = 0]− 2−n| ≤ max∅6=T⊆[n]

∣∣bias
∑
i∈T Xi

∣∣.
Proof.

Pr[X = 0] = E
n∏
i=1

1 + (−1)Xi

2
=
∑
T⊆[n]

2−nE
∏
i∈T

(−1)Xi = 2−n + 2−n
∑
T 6=∅

bias
∑
i∈T

Xi.

By the triangle inequality, |Pr[X = 0]− 2−n| ≤ 2−n(2n − 1) maxT 6=∅
∣∣bias

∑
i∈T Xi

∣∣.
Proof of Claim 6.26. Let Q be an arbitrary quadratic source. If Q contains a subset A of more than log(2/ε)
quadratics all of whose nontrivial sums have rank more than log(2/ε), by Claim 6.25 bias

∑
i⊂T qi ≤ ε/2 for

every nonempty subset T of A. By Fact 6.27,

Pr[q = 0 for all q ∈ A] ≤ 2−|A| + max
T 6=∅

∣∣∣bias
∑

q∈T
q
∣∣∣ < ε

2
+
ε

2
= ε,
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so Q is (log(2/ε), ε)-predictable.
Otherwise, let A be a maximal subset of quadratics all of whose nontrivial sums have rank more than

log(2/ε). By maximality, for every quadratic p 6∈ A there exists a nonempty subset T of A such that
p′ = p +

∑
q∈T q has rank at most log(2/ε). Let P be the set of all such p′. When Q|A = 0, P = Q|A. By

Claim 6.21, Q is (|A ∪B| , ε)-predictable.

We next argue that with a small loss in parameters, the source can be “homogenized” in the sense
that in the definition of rank the change of variable map is linear and the constants b and c are set to
zero. We say a source Q has homogeneous rank at most R if every q ∈ Q can be written as q(x) =
y1(x)y′1(x) + · · ·+ yt(x)y′t(x) for some linear and linearly independent y1, y

′
1, . . . , yr, y

′
r and r ≤ R.

Claim 6.28 (Homogenization). If all quadratic sources of homogeneous rank at most R + 2 are (k, ε/16)-
predictable then all quadratic sources of rank at most R are (k, ε)-predictable.

Proof. Given a rank r source Q, we define a new source Q′ whose seed consists of the seed of Q plus four
new seed inputs u, s, t. By Fact 6.24, each q ∈ Q of rank r ≤ R can be written in the form (4). We include
in Q′ the corresponding quadratic

q′ = y′1y
′
2 + · · ·+ y′2r−1y

′
2r + cy′2r+1v + dst,

where y′ = (y′1, . . . , y
′
2r+1) = Ax + bu. To check that q′ has homogeneous rank at most r + 2 we verify that

the linear forms y′1, . . . , y
′
2r+1, v, s, t are linearly independent. Independence of the y′i follows from the full

rank of A, and v, s, t are independent from the rest because these variables do not appear in the y′i. Since
Q′ projects to Q when u = v = s = t = 1,

Pr[Q|S = 0,Q 6= 0] = Pr[Q′|S = 0,Q′ 6= 0 | u = v = s = t = 1] ≤ Pr[Q′|S = 0,Q′ 6= 0]

Pr[u = v = s = t = 1]
=
ε/16

1/16
= ε

for the set S that witnesses the (k, ε)-predictability of Q′.

To complete the proof we reduce low-rank homogeneous sources to low-rank bilinear sources:

Claim 6.29 (Bilinearization). If all (O(R3 log2 1/ε), O(R log 1/ε))-bilinear sources are (k, ε)-predictable then
all homogeneous sources of rank R are (k +O(R2 log2 1/ε), ε)-predictable.

To prove Claim 6.29 we will use the following expansion of homogeneous quadratics. Given a direct sum
decomposition L⊕M of the space of linear forms over the variables x we can uniquely expand every linear
form y as yL + yM with yL ∈ L and yM ∈ M . A homogeneous quadratic form q =

∑r
i=1 yiy

′
i can then be

expanded as

q =

r∑
i=1

(yLi + yMi )(y′
L
i + y′

M
i ) =

r∑
i=1

yMi y
′M
i +

r∑
i=1

(yMi y
′L
i + yLi y

′M
i ) +

r∑
i=1

yLi y
′L
i . (5)

We will say that q linearizes modulo L if q mod L ≡ 0, that is if the first summand
∑r
i=1 y

M
i y
′M
i in this

decomposition vanishes.

Claim 6.30. If q does not linearize modulo L then for every fixing a of all the linear forms in L, the
probability that q mod (L+ a) evaluates to zero is at most 3/4.

Proof. The degree of q modulo L+ a as a quadratic form over M is exactly two if and only if the first term
in (5) does not vanish. Claim 6.25 shows that q mod (L+a) has bias between −1/2 and 1/2, and so evaluates
to zero with probability at most 3/4.
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Proof of Claim 6.29. Let Q be a rank R homogeneous source. Let A be a minimal subset of Q for which all
the forms q ∈ Q \A linearize modulo the span L of the linear forms in A.

If |A| ≥ k0 = log4/3(1/ε), take an arbitrary subset {q1, . . . , qk0
} of A, and let Li be the span of the

linear forms in qi. By the minimality of A, qi does not linearize modulo L1 + · · ·+ Li−1 for any i ≤ k0. By
Claim 6.30,

Pr[qi = 0 | q1, . . . , qi−1] ≤ max
a

Pr[qi = 0 | L1 + · · ·+ Li−1 = a] ≤ 3
4 ,

so Pr[q1 = · · · = qk0 = 0] ≤ (3/4)k0 ≤ ε. The set {q1, . . . , qk0} then witnesses the (k0, ε)-predictability of A.
If |A| < k0 then L has dimension at most k0R, so span(A), viewed as a linear space of quadratic forms,

can have dimension at most (k0R)2. For every q ∈ Q, the leading term in the summation (5) vanishes, giving
a simplified decomposition

q = qL + qLM where qL =

r∑
i=1

yLi y
′L
i , qLM =

r∑
i=1

(yMi y
′L
i + yLi y

′M
i ).

Since qL ∈ span(A), there must exist a subset B of Q of size at most (k0R)2 for which the set of forms
{qL : q ∈ B} form a basis of span(A). Then for every p ∈ Q, pL can be expressed as a linear combination
pL =

∑
q∈B′p

qL for some B′p ⊆ B. For every p ∈ Q \B define

p′ = pLM +
∑
q∈B′p

qLM ,

and let P be the source consisting of all p′ for p ∈ Q \B.
Under an invertible change of variables that identifies some bases of linear forms in L and M with new

variables x and x′, respectively, each p′ becomes bilinear. The dimension of the span of all forms that depend
on x is at most dimL ≤ k0R and the rank of each p′ is at most (

∣∣B′p∣∣+ 1)R ≤ 2k2
0R

3. By assumption, P is
(k, ε)-predictable. If Q|B = 0 then

p′ = pLM +
∑
q∈B′p

qLM = pLM +
∑
q∈B′p

qL = pLM + pL = p,

and therefore Q|B = P. By Claim 6.21, Q is (k + |B| , ε)-predictable.

Proof of Proposition 6.20. Set R = log(32/ε) + 2 and apply Claim 6.29, Claim 6.28, and Claim 6.26 in
sequence.

6.5 Depth 1 sources

In this subsection we give a simple example of a class of sources which is not predictable.

Definition 6.31 (depth 1 sources). A source X on {0, 1}n is a depth 1 source if Xi is a conjunction or
disjunction of literals over the rj .

Lemma 6.32. Fix a constant ε > 0. For each n there is a value m such that the following source on {0, 1}n
is (k, ε)-predictable only if k = Ωε(n):

Xi =

m∧
j=1

ri,j .

Proof. Let S be an arbitrary set of size s. Then

Pr[X|S = 0 and X 6= 0] = (1− 2−m)s[1− (1− 2−m)n−s] ≥
(

exp−O
( s

2m

))
·
(

1− exp−n− s
2m

)
.

If this is at most ε, then at least one of the factors is at most
√
ε. Therefore either s = Oε(2

m), or
n− s = Ωε(2

m). Choosing 2m = Θε(n), we obtain the lemma.
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In the rest of this subsection, we give an ad hoc argument showing that indistinguishable depth 1 sources
fool arbitrary distinguishers.

Theorem 6.33. If X,Y are two (log log(n/ε) + 2)-indistinguishable depth 1 sources then the statistical
distance between X and Y is at most ε.

Let us start by classifying the coordinates of X or Y into four types:

• Constant coordinates.

• Balanced coordinates, i.e., Pr[Xi = 1] = 1/2.

• Conjunctive coordinates, i.e., Pr[Xi = 1] < 1/2.

• Disjunctive coordinates, i.e., Pr[Xi = 1] > 1/2.

For the sake of proving Theorem 6.33, we can ignore constant coordinates, since a coordinate is constant in
X iff it is constant in Y . By complementing conjunctive coordinates, we can assume that all coordinates
are balanced or conjunctive, and so expressible as a conjunction. We call such a source a conjunctive source.

Definition 6.34 (conjunctive sources). A source X on {0, 1}n is conjunctive if each coordinate is a con-
junction of literals over the rj .

The width of a conjunctive source is the maximal number of literals in any conjunction.

We will show that every conjunctive source is statistically close to a narrow source, and that two indis-
tinguishable narrow sources are equidistributed. We start with the latter, which follows almost directly from
the following result of Amano, Iwama, Maruoka, Matsuo, and Matsuura [AIM+03], which we translate from
disjunctive sources to conjunctive sources.

Theorem 6.35 ([AIM+03, Theorem 3.1]). Let k ≥ 2, and define λk = blog2 kc+ 2.
If X,Y are λk-indistinguishable conjunctive sources of width at most k then Pr[X = 0] = Pr[Y = 0].
Furthermore, the theorem doesn’t hold for λk = blog2 kc+ 1.

Corollary 6.36. If X,Y are λk-indistinguishable conjunctive sources of width at most k then X,Y are
equidistributed.

Proof. Applying the theorem to all projections of X,Y , we obtain that for each S ⊆ [n],

Pr[X|S = 0] = Pr[Y |S = 0].

The inclusion-exclusion principle shows that for each T ⊆ [n],

Pr[X|T = 0,X|T = 1] =
∑
R⊆T

(−1)|R| Pr[X|T∪R = 0],

and so these probabilities are identical for X and Y .

To complete the proof of the theorem, we show how to reduce to the case of narrow sources; Theorem 6.33
follows by taking k = log(n/ε).

Lemma 6.37. Let X,Y be two λk-indistinguishable conjunctive sources. Then X,Y have statistical dis-
tance at most 2−kn.

Proof. Let X ′,Y ′ be the sources obtained by replacing every coordinate of width more than k by zero. A
coordinate i has width more than k iff Pr[Xi = 1] < 2−k, showing that the replaced coordinates are found in
identical positions in X and Y , and so X ′,Y ′ are also λk-indistinguishable. By construction, X ′,Y ′ have
width at most k, and so are identically distributed by Corollary 6.36.

36



To complete the proof of the lemma, we show that the statistical distance between X and X′ is at most
2−k−1n. To this end, we consider a source Z obtained by zeroing a single coordinate i, and show that X
and Z are at statistical distance at most 2−k−1.

By definition, the statistical distance between X and Z is∑
x : Pr[X=x]>Pr[Z=x]

(Pr[X = x]− Pr[Z = x]).

It is easy to see that if Pr[X = x] > Pr[Z = z] then xi = 1, and conversely if xi = 1 then Pr[X = x] ≥
Pr[Z = x] (both could be zero). Therefore the statistical distance is exactly∑

x : xi=1

(Pr[X = x]− Pr[Z = x]) = Pr[Xi = 1]− Pr[Zi = 1] = 2−ki ,

where ki ≥ k + 1 is the width of Xi.

To complete the picture, we now give an example of two Θ(log log n)-indistinguishable depth 1 sources
which can be distinguished by a DNF, using a construction of Amano et al. [AIM+03].

Theorem 6.38 ([AIM+03, Section 3.2]). Let ` be an integer. For i ≤ 1 ≤ `, let

Xi = Y i =
∧

S⊆{1,...,`}
i∈S

rS ,

and define

X`+1 =
∧

S⊆{1,...,`}
|S| odd

rS , Y `+1 =
∧

S⊆{1,...,`}
|S| even

rS .

The two sources X,Y are `-indistinguishable.

Proof sketch. By inclusion-exclusion, it suffices to show that for every T ( {1, . . . , ` + 1}, Pr[X|T = 1] =
Pr[Y |T = 1]. It suffices to consider T of the form R ∪ {`+ 1}, where R ( {1, . . . , `+ 1}.

For such R, T , Pr[X|T = 1] = 2−a, where a is the number of subsets of {1, . . . , `} containing R and
having odd size, and Pr[Y |T = 1] = 2−b, where b is the number of subsets of {1, . . . , `} containing R and
having even size. It is not hard to check that a = b = 2`−1−|R|.

As an example, if ` = 2 then the sources are

X = r1 ∧ r12, r2 ∧ r12, r1 ∧ r2

Y = r1 ∧ r12, r2 ∧ r12, r∅ ∧ r12

We can now construct our example, following Amano et al.

Lemma 6.39. For infinitely many n there exists a pair Z,W of Θ(log log n)-indistinguishable depth 1
sources over {0, 1}n which can be Ω(1)-distinguished by a DNF.

Proof. Let ` = Θ(log log n) be a parameter to be determined. We create Z,W by taking n/(`+ 1) indepen-

dent copies X(i),Y (i) of the sources X,Y given by Theorem 6.38. According to the theorem, the resulting
sources are (`+ 1)-indistinguishable.

The source X mentions 2`−1 variables (all but r∅), and the source Y mentions all 2` variables. Therefore

Pr[X(i) 6= 1 for all i] =
(

1− (1/2)2`−1
)n/(`+1)

≈ exp− n

(`+ 1)22`−1
,

Pr[Y (i) 6= 1 for all i] =
(

1− (1/2)2`
)n/(`+1)

≈ exp− n

(`+ 1)22`
.

We choose ` so that n ≈ (` + 1)22` (this is possible for infinitely many n). Defining f to be the CNF
corresponding to the event considered above, we obtain Pr[f(Z) = 1] ≈ e−2 while Pr[f(W ) = 1] ≈ e−1.
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6.6 Local DNFs

In this subsection we adapt the definition of predictability to more general classes of functions, and prove
that degree 1 sources are predictable in this sense for local DNFs.

Definition 6.40 (local DNF). An s-local DNF is a disjunction of functions depending on at most s bits.

We will use the following notion of predictability. Since it does not generalize the earlier notion, we use
a different term, approximability.

Definition 6.41 (approximability). A source X on {0, 1}n is (k, ε, f)-approximable, where f : {0, 1}n →
{0, 1}, if there exists a decision tree of depth k, whose leaves are labelled 0, 1,⊥, with the following properties:

• If an input x reaches a leaf labelled b ∈ {0, 1}, then f(x) = b.

• The probability that X reaches a leaf labelled ⊥ is at most ε.

Approximability is useful for the following reason.

Lemma 6.42. Suppose that X,Y are k-indistinguishable, and that Y is (k, ε, f)-approximable. Then X,Y
ε-fool f .

Proof. Let T be the decision tree promised by the definition of (k, ε, f)-approximability. Let Λb be the set
of leaves of T labelled b. Thus

Pr[T (X) ∈ Λ1] ≤ E[f(X)] ≤ Pr[T (X) /∈ Λ0].

Since T has depth k, the probabilities on the left and on the right are the same for X and for Y . Moreover,
the difference between the two sides is

Pr[T (X) /∈ Λ0]− Pr[T (X) ∈ Λ1] = Pr[T (X) ∈ Λ⊥] ≤ ε,

implying the lemma.

Our main result in this subsection states that degree 1 sources are (k, ε, f)-approximable for local DNFs
(for appropriate choices of parameters).

Theorem 6.43. If f is an s-local DNF and X is a degree 1 source then X is (O(s2s log(1/ε)), ε, f)-
approximable.

Proof. The proof is by induction on s. We will show that for every s there is a constant cs = O(s2s log(1/ε))
such that every degree 1 source is (cs, ε, f)-approximable for every s-local DNF f .

The base case, s = 0, is trivial: we can take c0 = 0.
Now suppose that s > 0. Let f be the disjunction of non-zero local functions fi depending on coordinates

Ji, where |Ji| ≤ s. We can assume, without loss of generality, that X|Ji are affinely independent.
Let I be an inclusion-maximal set of coordinates such that all coordinates in the multiset

⋃
i∈I Ji are

affinely independent. We consider two cases, according to the size of I.

Case 1. The set I contains at least 2s log(1/ε) coordinates. Let B ⊆ I have exactly 2s log(1/ε) coordinates.
By assumption, fi 6= 0 for all i ∈ B, and so Pr[fi(X) = 0] ≤ 1− 2−|Ji| ≤ 1− 2−s. By construction,

Pr[fi(X) = 0 for all i ∈ B] =
∏
i∈B

Pr[fi(X) = 0] ≤ (1− 2−s)|B| ≤ ε.

Accordingly, we construct a decision tree of depth s|B| = s2s log(1/ε) which queries all variables in
⋃
i∈B Ji.

After querying all variables, either we discover that fi(x) = 1 for some i ∈ B and so f(x) = 1, or else
fi(x) = 0 for all i ∈ B; but the latter case happens with probability at most ε. Hence X is (s2s log(1/ε), ε, f)-
approximable.
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Case 2. The set I contains at most 2s log(1/ε) coordinates. Using a decision tree T of depth s2s log(1/ε),
we can query all of these coordinates, either determining that f(x) = 1 or that fi(x) = 0 for all i ∈ I. In the
latter case, we also know the values of all coordinates in J =

⋃
i∈I Ji. By definition of I, we can now write

every fj for j /∈ I as a function of at most s− 1 many input coordinates (since some linear combination in
Jj is affinely dependent on J). In this way, we obtain an (s − 1)-local DNF g` which agrees with f on the
coset X` corresponding to the leaf `. Note that X` is also a degree 1 source.

By induction, X` is (cs−1, ε, g`)-approximable. Attaching the corresponding decision trees to the leaves
of T , we obtain a decision tree of depth s2s log(1/ε) + cs−1 which satisfies the definition of (cs, ε, f)-
approximability for

cs = cs−1 + s2s log(1/ε).

Finally, notice that

cs =

s∑
t=1

t2t log(1/ε) = O(s2s log(1/ε)).

Corollary 6.44. GENERAL(s2s log(1/ε), ε) holds for the class of degree 1 sources and the class of s-local
DNF distinguishers.

7 From bounded independence to bounded indistinguishability

A potential method for proving AC0-indistinguishability of a specific pair of distributions X,Y is by reduction
to bounded independence.

Braverman’s Theorem [Bra11, Tal17] k-independence ε-fools AC0 circuits of depth d and size s, where

k =
(
log s

ε

)O(d)
.

If X,Y are k-indistinguishable and one of the distributions, say X, happens to be k-independent, then
so must Y be, and the pair 2ε-fools AC0. More generally, it may be possible to reduce X,Y to a pair of
locally independent distributions X ′,Y ′. Such reductions are modeled by the following definition:

Definition 7.1 (k-similarity). Let F be a collection of samplers. We say that two distributions X,Y are
k-similar with respect to F if there exists a sampler F ∈ F and a pair of k-independent distributions X′,Y ′

such that X ∼ F (X′) and Y ∼ F (Y ′).

In particular, if F consists of AC0 circuits of size s′ and depth d′ then by Braverman’s theorem, any
log((s+ s′)/ε)O(d+d′)-similar pair 2ε-fools AC0 circuits of size s and depth d.

In Section 7.1 we give two examples of pairs of distributions that are locally similar with respect to NC0.
In contrast, in Section 7.2, for every k we exhibit a distribution X such that the pair (X,X) is not k-similar
with respect to NC0 (that is, we cannot find an NC0 sampler F and a k-independent distribution X′ such
that X ∼ F (X′). We conjecture that the lack of similarity holds even with respect to AC0. Section 9.2.2
discusses the relevance of this example for proving security of multiparty computation protocols against AC0

adversaries.

7.1 Examples of locally similar distributions

In this subsection we give two examples of locally similar pairs of distributions. The first example is a
natural secure multiparty protocol for the parity function. The second example, inspired by the degree-
reduction step in MPC protocols such as [BGW88], concerns parity tree computations over certain pairs of
distributions of disjoint support. This example illustrates the connection between k-indistinguishability and
k-independence.
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MPC for Computing Parity. Consider a setting where there are n parties, and each party i ∈ [n] holds
a bit xi. The parties wish to compute the parity of their bits securely. A simple protocol for this task starts
with each party secret-sharing its private input using an n-out-of-n secret sharing. The parties then send the
corresponding shares to the other parties and they locally compute the parity of the shares obtained. They
then send the resultant values to each other and compute the parity of these values to obtain the parity of
their private inputs.

Once the parties have exchanged their shares with each other, the joint distribution of the values held
by the parties can be described by a matrix M ∈ {0, 1}n×n such that the columns correspond to the secret
shares of x1, . . . , xn. The rows correspond to the shares held by each party. The local computation done by
the parties corresponds to computing the parity of each row to obtain a column vector. The final output
computation done by the parties corresponds to computing the parity of this column vector.

Let X and Y be the distribution on the wires of the joint computations performed by the protocol on
any pair of inputs (x1, . . . , xn) and (y1, . . . , yn) of identical parity.

Proposition 7.2. X,Y are (n− 1)-similar with respect to 3-local samplers.

The identical parity restriction is necessary, since otherwise X and Y can be distinguished by the output
wire.

Proof of Proposition 7.2. The distribution X (resp., Y ) consists of:

• The entries mi,j of M , which are random bits conditioned on the column sums m1,j + · · ·+mn,j being
equal to xj (resp., yj), 1 ≤ i, j ≤ n;

• The partial row sums ri,j = m1,j + · · ·+mi,j , 1 ≤ i, j ≤ n;

• The partial column sums c1 = r1,n, c2 = r1,n + r2,n, . . . , cn = r1,n + · · · + rn,n = x1 + · · · + xn =
y1 + · · ·+ yn.

Consider the distribution X ′ (resp., Y ′) consisting of the n(n − 1) partial row sums ri,j , 1 ≤ i ≤ n,
1 ≤ j ≤ n − 1 and the (n − 1) partial column sums c1, c2, . . . , cn−1. Then X ′ (resp., Y ′) is (n − 1)-
independent: these values are random conditioned on r1,j + · · · + rn,j = xj (resp., yj), and so any n − 1 of
them are linearly, and therefore statistically, independent.

It remains to describe the sampler F . The bits ri,n can be computed 2-locally as ci + ci−1 for i < n
and 1-locally as cn−1 + x1 + · · · + xn = cn−1 + y1 + · · · + yn for i = n. The bits mi,j can be computed
as ri,j + ri−1,j , which is a 2-local function in the entries of X ′ (resp., Y ′) when j < n and 3-local when
j = n.

Parity Tree Computations. A parity tree is a circuit consisting of a full binary tree where each gate is
the XOR of its two children. Such a tree computes the XOR of N = 2m bits. For example, when m = 2,
the tree is:

x1 ⊕ x2 ⊕ x3 ⊕ x4

x1 ⊕ x2

x1 x2

x3 ⊕ x4

x3 x4

The parity-tree vector PT(x) in {0, 1}2N−1 is the vector that consists of all the wire values within the
parity tree; e.g.,

PT(x1, x2, x3, x4) = (x1, x2, x3, x4, x1 ⊕ x2, x3 ⊕ x4, x1 ⊕ x2 ⊕ x3 ⊕ x4).

40



Our next step is to introduce a pair of (linear) sources on {0, 1}2N−1. Suppose m ≥ 1, and consider a
parity tree on x1, x2, . . . , xN and the corresponding parity-tree vector. Let π be a parity over {0, 1}N , let
X = PT(x) where x is chosen uniformly over all vectors in {0, 1}N satisfying π(x) = 0, and let Y = PT(y)
where y is chosen uniformly over all vectors in {0, 1}N satisfying π(y) = 1.

We would like to exhibit a parity π such X,Y are Ω(N)-indistinguishable and Ω(N)-similar with respect
to NC0. The problem is that we cannot generate the parity tree even in AC0 given the values of the leaves,
since the output is a parity of N bits; however, we can generate it in NC0 in a different way, as follows. Start
with m = 0:

z0 ⊕ z1

Associate the root with a new variables z2, and use it to split z0 ⊕ z1:

z0 ⊕ z1

z0 ⊕ z2 z1 ⊕ z2

Associate the leaves with new variables z3, z4, and split again:

z0 ⊕ z1

z0 ⊕ z2

z0 ⊕ z3 z2 ⊕ z3

z1 ⊕ z2

z1 ⊕ z4 z2 ⊕ z4

We can set z0 = 0 and still get the same distribution, using the optimal number of input bits:

z1

z2

z3 z2 ⊕ z3

z1 ⊕ z2

z1 ⊕ z4 z2 ⊕ z4

This idea can be easily generalized, and thus provides us with a way of generating the parity-tree vector
with a 2-local sampler.

Having that in mind, we choose the parity to be π(x) = x1 +x3 +x5 + · · ·+xN−1. This parity translates
to a parity ρ in terms of z, which denotes the randomness used to sample the parity tree, and following the
above construction it is easy to observe that, although some cancellations may occur among the zi’s, the
number of zi’s on which ρ depends is Ω(N). Thus, if we define X′ and Y ′ to be the uniform distributions
over z ∈ {0, 1}N satisfying ρ(z) = 0 and ρ(z) = 1, respectively, we get that X′,Y ′ are Ω(N)-independent.
Moreover, X and Y are the image of X′ and Y ′, respectively, under our parity-tree sampler, which implies
that X,Y are Ω(N)-similar with respect to 2-local samplers.

It also follows that X,Y are Ω(N)-indistinguishable by the following argument: more generally, suppose
that X′,Y ′ are k-independent distributions and C is a linear NC0 circuit such that X = C(X′) and Y =
C(Y ′), and suppose that each output of C depends on at most B bits; then X,Y are (k/B)-indistinguishable,
because any subset of k/B outputs of C depends on at most k of its inputs.

Thus far, we showed a concrete pair of indistinguishable distributions that are similar with respect to our
2-local sampler, and we argued indistinguishability using similarity. It turns out that the converse is true as
well, namely that indistinguishability of distributions based on a parity tree and a linear constraint implies
their similarity. This is summarized in the following proposition.
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Proposition 7.3 (indistinguishability implies similarity under local sampling). Let π be a parity over
{0, 1}N . Let x be the uniform distribution over all vectors x ∈ {0, 1}N satisfying π(x) = 0, and let y be the
uniform distribution over all vectors y ∈ {0, 1}N satisfying π(y) = 1. Define X , PT(x) and Y , PT(y).
If X,Y are k-indistinguishable, then X,Y are k-similar with respect to 2-local samplers.

Proof. Suppose that X,Y are k-indistinguishable. Consider the parity tree on N variables, and think of π
as a subset S of the tree leaves. Perform the following simplification repeatedly: if S contains two siblings,
replace them with their parent. Eventually we reach a set S of vertices in the parity tree with the following
two properties: (i) if a vertex v belongs to S then the sibling of v is not in S; (ii) the constraint π(x) = b is
the same as the constraint

⊕
v∈S πv(x) = b, where πv is the parity associated with the vertex v. Since X,Y

are k-indistinguishable, it must be that |S| > k; in fact, the optimal indistinguishability of X,Y is exactly
|S| − 1.

The 2-local construction of the parity tree expresses every vertex as a sum of two zi’s. It can be checked
that for any two siblings, there is a variable that appears in both siblings and only in them. Therefore, the
constraint π(x) = b translates to a constraint ρ(z) = b, where the number of zi’s that appear in ρ is greater
than k. Such a constraint corresponds to an r-independent distribution with r ≥ k. Hence, we can define
X′ and Y ′ to be uniformly distributed over vectors z satisfying ρ(z) = 0 and ρ(z) = 1, respectively, thus
showing that X,Y are k-similar with respect to 2-local samplers.

7.2 A distribution that is not locally self-similar

In this section, we exhibit a distribution X that cannot be k-locally sampled by a sampler from any O(k)-wise
independent source. The distribution of interest is uniform over the codewords of a low-density parity-check
code with sufficiently large unique expansion.

Such codes can be constructed using bipartite graphs with desired expansion properties. We call a
bipartite graph G(L ∪ R,E), where |L| = n and |R| = m, an (n,m,D, ε, γ)-bipartite expander graph if it
is D-left-regular, and any S ⊆ L with |S| ≤ γn has at least (1 − ε)D|S| neighbors in R. For a bipartite
expander graph G, let C(G) denote the linear code over F2 with the bipartite adjacency matrix P ∈ Fm×n2

of G as its parity-check matrix; that is, C(G) = {z ∈ Fn2 | Pz = 0}. Let us denote θ , m/n. The code
C(G) is an [n, (1 − θ)n]2-code and is called an expander code. If D = Θ( 1

ε log 1
θ ) and we pick a graph at

random, it satisfies the following property: every set S ⊆ L of up to γn nodes on the left has at least
(1 − ε)D|S| neighbors on the right, where γ = Θ(ε2θ/ log 1

θ ) (cf. [Gur10]). This implies that S has at least
(1 − 2ε)D|S| unique neighbors on the right, by which it follows that the minimum distance of C(G) is at
least γn (assuming ε < 1/2).

We can now state the main result of this section.

Proposition 7.4. For every large enough D there exists β > 0 such that for every k and sufficiently large
n there exists a D-left-regular G for which the uniform distribution X over C(G) is not samplable from any
k-independent distribution by βk-local samplers.

By a result of Lovett and Viola [LV11], the same conclusion holds when the sampler is in AC0, but is
given a uniformly random distribution instead of it being k-independent.

Proposition 7.4 explains why Braverman’s theorem cannot be directly used to argue the security of the
LRCC construction of Fig. 4. See Section 9.2.2 for details.

We show that for any sampler F in NC0 and any k-independent distribution z, F (z) cannot be distributed
according to X.

In what follows, we assume that the parameters θ, ε are constant, and n grows to infinity. Let C(G) be an
expander code. As a warm up, we show that given a uniform distribution z ∈ {0, 1}t, no O(1)-local sampler
can sample uniformly from C(G).

Claim 7.5. Let G be an (n, θn,D, ε, γ)-bipartite expander, B > 0 a constant, and t any integer. Let
F : {0, 1}t → {0, 1}n be an arbitrary B-local function. If n > B/γ(1 − θ) then F cannot sample uniformly
from C(G) given the uniform distribution z ∈ {0, 1}t.
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Proof. We can assume that each bit in z is used by the function F . Since each of the n output bits depends
on at most B input bits, the average input bit affects nB/t output bits. Therefore, there is an input bit
which affects at most nB/t many output bits. Moreover, since F depends on all bits in z, there exists a
setting of the remaining bits such that flipping this input bit will change 0 6= a ≤ nB/t many output bits,
and so by the minimum distance property, nB/t ≥ γn. Therefore, t ≤ B/γ. This implies that the entropy
of the output H(F (z)), which is bounded by H(z), is at most B/γ, which is impossible for large enough n,
since the entropy of a random sample from C(G) is at least (1− θ)n.

We extend this argument to show that the same holds if we replace the uniform distribution by a k-
independent distribution, which we use to complete the proof of Proposition 7.4.

Claim 7.6. Let G be a (n, θn,D, ε, γ)-bipartite expander, where ε < 1/4. Let F : {0, 1}t → {0, 1}n be a
B-local function. Then, for k > max{B/εγ,BD/θ,B/((1 − θ)ε) + BD/(1 − θ)} and large enough n, F
cannot sample uniformly from C(G) given a k-independent distribution z over {0, 1}t.

Proof. Let P be the θn× n bipartite adjacency matrix of G. By assumption, each output bit of F depends
on at most B input bits. Since F (z) must lie in C(G), we must have PF (z) = 0 always.

We extend G to a graph on W ∪ L ∪ R, where W , [t], by adding an edge between every w ∈ W and
` ∈ L if the output bit ` of F depends on the input bit w. Thus each vertex in L has D neighbors in R and
at most B neighbors in W . Hence there are at most nBD paths between vertices in R and W .

We will classify vertices of L and R as good or bad (the typical vertex will be good), starting with
R. A vertex r ∈ R is good if the number of paths starting from r to some vertex in W is at most k.
This means that the r’th entry of PF (z) can be expressed as a function of at most k variables in z, say
(PF (z))r = fr(zi1 , . . . ,zis), where s ≤ k. By k-independence, the marginal distribution of (zi1 , . . . ,zis) is
uniform over {0, 1}s, and so fr ≡ 0. In other words, the r’th coordinate of PF (z) must always evaluate to
zero, for any z ∈ {0, 1}t (not necessarily one in the support of z). Since there are most BDn many paths
between vertices in R and W , by Markov’s inequality there can be at most (BD/k)n bad vertices in R.

A vertex ` ∈ L is bad if it has at least 2εD bad neighbors in R; otherwise it is good. How many vertices
in L can be bad? Let S ⊆ L be a set of at most γn bad vertices. On the one hand, by expansion, S
must have at least (1− ε)D|S| neighbors in R. On the other hand, each vertex in S has at most (1− 2ε)D
neighbors in R which are good, and so considering also the (BD/k)n bad vertices in R, we see that S has
at most (BD/k)n + (1 − 2ε)D|S| neighbors in R. It follows that εD|S| ≤ (BD/k)n and so |S| ≤ (B/εk)n.
We conclude that at most (B/εk)n vertices of L are bad.

From now on, we restrict attention only to good vertices. Let L′ ⊆ L and R′ ⊆ R be the good vertices,
and let G′, P ′, F ′ be the corresponding restrictions of G,P, F . Let W ′ ⊆ W be all the input bits that F ′

depends on, let t′ = |W ′|, and let z′ be the corresponding restriction of z. Thus |L′| ≥ (1 − B/εk)n,
|R′| ≥ (θ −BD/k)n, |W | − |W ′| ≤ (BD/k)n, and P ′F ′(z′) = 0 for any z′ ∈ {0, 1}t′ .

Let us consider the code C(G′). We claim that its minimum distance is at least γn. Indeed, if S ⊆ L′ is a
subset of up to γn vertices then S has at least (1−2ε)D|S| unique neighbors in R and so at least (1−4ε)D|S|
unique neighbors in R′ (since all vertices in S are good). Since ε < 1/4, this is positive, and so the vector
corresponding to S doesn’t belong to C(G′).

Since P ′F ′(z′) = 0 for all z′ ∈ {0, 1}t′ , F ′(z′) must be a codeword of C(G′), and so it either consists
entirely of zeroes, or contains at least γn many ones. On the other hand, each output bit of F ′ depends on
most B many inputs, and so there exists an input bit that affects at most B|L′|/|W ′| many outputs. Again,
since F ′ depends on all bits in z′, there exists a setting of the remaining bits such that flipping this bit will
change 0 6= a ≤ B|L′|/|W ′| ≤ Bn/|W ′| output bits, giving Bn/|W ′| ≥ γn. It follows that F ′ depends on at
most B/γ many coordinates of z′. Consequently, the entropy of F ′(z′) is at most B/γ.

Since F is obtained from F ′ by removing at most (B/εk)n many output bits and (BD/k)n many input
bits, the entropy of output H(F (z)), is at most H(F ′(z′)) + (B/εk +BD/k)n. On the other hand, F (z) is
uniformly distributed over C(G), which has rate at least (1 − θ)n. We conclude that n ≤ (B/γ)/(1 − θ −
B/εk −BD/k).
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Proposition 7.4 now follows. Indeed, for our choice of ε and θ, we fix D = Θ( 1
ε log 1

θ ) and γ = Θ(ε2θ/ log 1
θ )

so that an (n, θn,D, ε, γ)-bipartite expander G is guaranteed to exist. For any `, let F be a `-local sampler.
Applying Claim 7.6 for this choice of parameters and for sufficiently large n tells that for ` > kβ, where
β = max{1/εγ,D/θ, 1/((1− θ)ε) +D/(1− θ)}, the sampler F cannot sample uniformly from C(G) given a
k-independent distribution.

8 Simplifying sources via randomized encoding

In this section we explore a generalization of the technique that was used in Section 5.3 to convert a
positive result for sources sampled by poly(n)-size decision trees to a positive result for sources sampled
by degree O(log n) polynomial maps. The high-level idea is to replace each output bit of the sampler by
an s-bit randomized encoding (RE) of this bit that admits a lower-complexity sampler. This transformation
respects k-indistinguishability, and can respect the distinguishing advantage by incorporating the decoder of
the RE into the distinguisher.

The rest of this section is organized as follows. After formalizing the notion of randomized encoding of
functions and its application to encoding samplers (Section 8.1), in Section 8.2 we use known RE constructions
to show that a (hypothetical) positive result with o(log log n)-local nΩ(1)-indistinguishable sources and an ε-
distinguisher in AC0 can be converted into a similar positive result with 4-local sources. Finally, in Section 8.3
we put forward a natural conjecture about the complexity of RE for AC0 that may be viewed as a barrier to
negative results for local sources.

8.1 Encoding samplers

We start by recalling the standard notion of a randomized encoding of functions, focusing on the case of
perfect privacy and statistical correctness.

Definition 8.1 (Randomized encoding of functions [IK00, AIK06]). Let f : {0, 1}m → {0, 1}. A function

f̂ : {0, 1}m × {0, 1}ρ → {0, 1}s is a (perfectly private) randomized encoding (RE) of f with decoder Dec and
error δ if there exist distributions D0, D1 on {0, 1}s such that for every x ∈ {0, 1}m:

• Privacy : If we choose r ∈ {0, 1}ρ at random then f̂(x, r) ∼ Df(x);

• Correctness: Prr[Dec(f̂(x, r)) = f(x)] ≥ 1− δ.

We use RE in a natural way to encode a pair of k-indistinguishable sources X,Y . Without loss of
generality, we consider here the coset variant of our main question, where X = F (0,x) and Y = F (1,x).6

Lemma 8.2 (Encoding samplers). Let F : {0, 1}m → {0, 1}n be a sampler defining a pair of sources X =

F (0,x) and Y = F (1,x). Let fi : {0, 1}m → {0, 1} be the ith output of F and f̂i : {0, 1}m×{0, 1}ρi → {0, 1}si
an RE of fi with decoder Deci and error δi. Consider the encoded sampler F̂ defined by F̂ (b, x, r1, . . . , rn) =

(f̂1(b, x, r1), . . . , f̂n(b, x, rn)) and the encoded sources X̂ = F̂ (0,x, r1, . . . , rn) and Ŷ = F̂ (1,x, r1, . . . , rn).
Then:

• If X,Y are k-indistinguishable then so are X̂, Ŷ ;

• If C : {0, 1}n → {0, 1} ε-distinguishes between X,Y then Ĉ : {0, 1}s1 × · · · × {0, 1}sn → {0, 1}, defined
by Ĉ(ŷ1, . . . , ŷn) = C(Dec1(ŷ1), . . . ,Decn(ŷn)), ε̂-distinguishes between X̂, Ŷ for ε̂ = (1−δ)ε−δ, where
δ =

∑n
i=1 δi.

6The coset variant is equivalent to the main variant up to a difference of 1 in the locality and degree of the sampler, which
will not matter for the sampler classes considered in this section. Alternatively, one could directly handle the main variant by
encoding each source separately using a pair of encoders that share the same decoder.
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Proof. The k-indistinguishability of X̂, Ŷ follows from the privacy requirement of the RE and the fact that
each RE instance f̂i uses fresh randomness ri. Indeed, the latter ensures that a sample from the output
distribution of F̂ (b,x, r1, . . . , rn) can be obtained via the following two-step process: (1) sample an output
from F (b,x); (2) independently replace each bit σi in this output by a fresh sample from the RE output

distribution Dσi corresponding to f̂i. In particular, the joint distribution of every k bits in the output of F̂
is fully determined by the joint distribution of a corresponding set of k bits in the output of F . If the latter
is insensitive to the choice of b, then so is the former.

Finally, to see that the distinguishing advantage of Ĉ is at least ε̂, note that conditioned on the good
event that none of the decoders Deci errs, which occurs with at least 1 − δ probability, the distinguishing
advantage of Ĉ is the same as that of C.

8.2 Useful instances

In order to effectively apply Lemma 8.2 to instances of our problem with AC0 distinguishers, we need the RE
decoders Deci to be implemented in AC0 and have low error probability. For instance, δ = o(1/n) suffices
for constant ε.

There are two kinds of useful RE constructions in the literature. The first, which is implicit in the
circuit lower bound proofs of Razborov [Raz87] and Smolensky [Smo87], can be used to encode an AC0

function f : {0, 1}m → {0, 1} by a degree-polylog(m) function f̂ : {0, 1}m × {0, 1}poly(m) → {0, 1} with error
δ = 2−polylog(m). (Here Dec is simply the identity function.) However, a crucial problem with this general
construction is that it also has privacy error φ = 2−polylog(m), namely it only satisfies a relaxed version
of Definition 8.1 where f̂(x, r) and Df(x) should be φ-close in statistical distance. This limitation seems
inherent to the Razborov–Smolensky-based RE technique (see [BI05]), and is at odds with the goal of
respecting (perfect) k-indistinguishability.7 Fortunately, for decision trees or (more generally) unambiguous
DNFs, it is possible to eliminate the privacy error completely while keeping the correctness error δ sufficiently
small. See Lemma 5.10 for the exact quantitative statement. We leave open the question of obtaining a
similar RE for general AC0 or even just DNF:

Open Question 4. Does every AC0 function f : {0, 1}m → {0, 1}, or even just DNF, admit a degree-

polylog(m) (perfectly private) RE f̂ : {0, 1}m × {0, 1}poly(m) → {0, 1} with error δ = 0.1?

A different class of useful RE constructions encode functions f in complexity classes such as NC1, ⊕L,
or NL by polynomial-size f̂ ∈ NC0. Unlike the Razborov–Smolensky-based RE, here f̂ has multiple bits
of output, and the correctness can be perfect in most cases (namely, δ = 0). However, unlike the typical
applications of such RE (see, e.g., [Ish13, App17]), where polynomial-time decoding suffices, here we must

insist on decoding in AC0. With f̂ in NC0, this is only possible when f ∈ AC0. The existence of such RE for
every f ∈ AC0, or even just for the m-input OR function, is open; see Section 8.3 below. Here we observe
that existing RE constructions suffice when applied to functions f with low (but super-constant) locality,
yielding an AC0-decodable RE with locality 4.

Claim 8.3 (Encoding formulas and branching programs [AIK06]). Suppose f : {0, 1}m → {0, 1} can be
computed by a Boolean formula or branching program of size S. Then f admits a perfectly correct, degree 3,
4-local RE f̂ : {0, 1}m × {0, 1}poly(S) → {0, 1}poly(S).

Combining Lemma 8.2 with Claim 8.3, we get the following.

Theorem 8.4 (From low locality to locality 4). Let X,Y be `-local k-indistinguishable sources over {0, 1}n,
where ` = o(log log n). Suppose X,Y can be ε-distinguished by poly(n)-size, depth-d AC0 circuits. Then
there exist k-indistinguishable degree 3, 4-local sources X̂, Ŷ over {0, 1}N , where N = n1+o(1), that can be
ε-distinguished by poly(n)-size, depth (d+ 1) AC0 circuits.

7The RE-based compiler from Lemma 8.2 can also be applied with a φ-private RE if one relaxes k-indistinguishability to
tolerate a kφ statistical distance between k-projections of X̂, Ŷ . However, this relaxed form of k-indistinguishability, with
inverse-quasipolynomial statistical error, is qualitatively different from the perfect one. In particular, it can totally break down
when the projection set is chosen in an adaptive fashion, and it gives rise to simpler and stronger positive results that are not
possible with perfect k-indistinguishability (or even with 2−Ω(k) error). See [BW17] for further discussion.
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Proof. First, using b as a selector between the sources, both X,Y can be sampled by a single “coset” sampler
F (b,x) with locality `+ 1. Since each output fi of F can be computed by a formula (or branching program)

of size 2`+1, by Claim 8.3 it admits an RE f̂i with output length s = 2O(`), with a “brute force” (depth 2)

DNF or CNF decoder of size 22O(`)

= o(n). The sources X̂, Ŷ are obtained by applying Lemma 8.2 to F

with the RE f̂i, suitably using either a CNF or a DNF decoder to increase the depth of the distinguisher C
by 1 instead of 2.

Remark 8.5 (Extensions). If we allow the depth of the distinguisher in the conclusion of Theorem 8.4 to be
d+O(1) instead of d+ 1, then the theorem can be extended in several ways. First, the o(log log n) locality
bound in the assumption can be relaxed to O(log log n). In fact, it suffices to assume that each bit of the
source is samplable by a polylog(n)-size formula. This follows from the fact that, in the case of formulas, the
decoder in Claim 8.3 has formula size poly(S). When S = polylog(n), a size-poly(S) formula can be emulated
by a poly(n)-size, O(1)-depth AC0 circuit (cf. [Bus13], Theorem 1). Finally, in the case of polylog(n)-local
linear sources, a simple RE for linear functions (cf. [AIK06]) implies a similar conclusion where X̂, Ŷ are
2-local linear sources.

8.3 A conjecture on local RE with AC0 decoders

To obtain a positive result for NC0 sources with AC0 distinguishers, settling Open Question 3 in the affir-
mative, it would suffice to obtain an RE in NC0 with decoder in AC0 for every f ∈ AC0, or even just for
polynomial-size decision trees. We conjecture this to be impossible.

Conjecture 7. There are f ∈ AC0 that do not admit an RE in NC0 with an AC0 decoder.

In fact, we believe that Conjecture 7 holds even for f = OR. Combining Lemma 8.2 with the decision-tree
samplable sources from Theorem 5.1, we get that a negative answer to Open Question 3, which seems likely,
would imply Conjecture 7 for decision trees. Concretely:

Claim 8.6 (RE barrier). Suppose every polynomial-size decision tree admits RE in NC0 with AC0 decoder.
Then there exists a pair X,Y of NC0-samplable sources over {0, 1}n that are nΩ(1)-indistinguishable and are
Ω(1)-distinguishable by AC0.

Thus, proving Conjecture 7 serves as a natural barrier to settling Open Question 3 in the negative.

9 Applications

In this section, we describe two cryptographic applications of our conjectures. Specifically, we show that
these conjectures lead to better constructions of Leakage-Resilient Circuit Compilers (LRCC) [ISW03] that
are secure against global leakage functions (such as AC0 [FRR+14]). This section is organized as follows. In
Section 9.1, we give the definition of an LRCC. In Section 9.2, we show that assuming the degree 1 version
of our main conjecture (see Conjecture 3), the construction of stateless LRCC given in [ISW03, BIS19]
for computing linear functions satisfies a stronger security property. In Section 9.3, we give an efficient
construction of LRCC for computing general functions assuming the degree 2 version of our main conjecture.

9.1 Leakage-resilient circuit compilers

We give the definition of a leakage-resilient circuit compiler taken verbatim from [BIS19].

Definition 9.1 ((L, ε)-leakage resilient implementation). Let C : {0, 1}` → {0, 1}m be a deterministic state-

less circuit, L be a leakage class, and ε be an error parameter. We say that (I, Ĉ, O) is a (L, ε)-leakage
resilient implementation of C if:

• I : {0, 1}` → {0, 1}̂̀ is a randomized input encoder which maps an input x to an encoded input x̂.
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• Ĉ is a randomized circuit that maps an encoded input x̂ to an encoded output ŷ ∈ {0, 1}m̂.

• O : {0, 1}m̂ → {0, 1}m is the deterministic output decoder that maps an encoded output ŷ to y.

• Correctness: For every input x ∈ {0, 1}`, Pr[O(Ĉ(I(x))) = f(x)] = 1 where the probability is over

the random coins of I and Ĉ.

• Security: For any two inputs x0, x1 ∈ {0, 1}`, let (W0, ŷ0) W Ĉ(I(x0)) and (W1, ŷ1) W Ĉ(I(x1))

where W0 (resp. W1) represents the assignment to every wire of Ĉ on input I(x0) (resp. I(x1)). For
any leakage function ` ∈ L, the statistical distance between `(W0) and `(W1) is at most ε.

Definition 9.2 (LRCC for Circuits). Let λ be the security parameter and let C be a class of circuits taking
` input bits and having m output bits. A leakage resilient stateless circuit compiler for the class C is a tuple
of polynomial-time algorithms (Enc,T,Dec) where

• Enc is a randomized input encoder which maps the security parameter 1λ and an input x ∈ {0, 1}` to
an encoded input x̂.

• T is a deterministic algorithm that maps the security parameter 1λ and a deterministic circuit in C ∈ C
to another randomized circuit Ĉ. Ĉ maps an encoded input x̂ to an encoded output ŷ.

• Dec is the deterministic output decoder that maps an encoded output ŷ to y ∈ {0, 1}m.

For a leakage class L(λ) and the error parameter ε(λ), we say that (Enc,T,Dec) is a (L(λ), ε(λ))-leakage
resilient circuit compiler for C if for every C ∈ C, (Enc(1λ, ?),T(1λ, C),Dec) is a (L(λ), ε(λ))-leakage resilient
implementation of C.

Prior Work. The works of Rothblum [Rot12] and Bogdanov, Ishai, and Srinivasan [BIS19] gave con-
structions of leakage resilient circuit compiler that are secure against AC0 circuits. Rothblum’s [Rot12]
construction relied on the IPPP conjecture whereas the work of [BIS19] gave an unconditional result with
the same asymptotic efficiency as that of Rothblum. We now recall the main result from their work.

Theorem 9.3 ([BIS19]). Let λ denote the security parameter, d ∈ N and let C denote the class of poly(λ)
size circuits mapping ` input bits to m output bits. There exists a construction (Enc,T,Dec) of a LRCC for
C that is secure against leakage by size 2λ, depth d circuits with error parameter 2−λ. Furthermore, for every
C ∈ C, the size of T(1λ, C) is O(λ2d|C|).

If we restrict the class C to only consist of XOR gates, then the size of T(1λ, C) is O(λd|C|).

9.2 Application 1: LRCC for linear functions

In this section, we prove that the construction of LRCC given in [ISW03, BIS19] for computing linear
functions satisfies a stronger security property assuming the degree 1 version of our conjecture. Before we
state the stronger property, we first recall the construction of [ISW03, BIS19] in Figure 4 for computing
linear functions.

9.2.1 Stronger Security Property

The construction given in Figure 4 was proved in [BIS19] to unconditionally satisfy Definition 9.2 when the
leakage class is restricted to AC0 functions. However, this proof crucially relied on the fact that the wires
of the output decoder are not subject to leakage and only the wires of T(1λ, C) are subject to leakage by
an AC0 function. In other words, they assumed that the decoder is implemented using a trusted hardware
whose wires are not subject to leakage. A natural question is whether this assumption is necessary or, can we
show that even if the wires of the decoder are subject to leakage, the above construction is resilient against
AC0 leakage functions. Before we try to answer this question, we first augment Definition 9.1 to satisfy this
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Let λ denote the security parameter. Let C be a linear function (i.e., consisting only of XOR gates)
mapping ` input bits to m output bits.

• Enc(1λ, x ∈ {0, 1}`) :

1. Parse x as (x1, . . . , x`) where each xi ∈ {0, 1}.
2. For each i ∈ [`], choose a random λ-out-of-λ additive secret sharing of xi given by

(xi,1, . . . , xi,λ).

3. Output {(xi,1, . . . , xi,λ)}i∈[`].

• T(1λ, C : {0, 1}` → {0, 1}m) :

1. Each wire w in the original circuit C is transformed into a bundle of λ wires w in T(1λ, C).
The invariant that will be maintained is that the parity of the wire bundle will be equal to
the value carried by the wire.

2. Each XOR gate in C taking in wires a and b is replaced by a gate gadget that takes in a and
b and outputs a + b (where + denotes bitwise XOR).

• Dec(ŷ):

1. For each output wire in C, compute the parity of the corresponding bundle in T (1λ, C) and
output the parity.

Figure 4: [ISW03, BIS19] Construction for Linear Functions

stronger property (the correctness property remains the same).

Stronger Security: For any two inputs x0, x1 ∈ {0, 1}` such that C(x0) = C(x1), let (W0, ŷ0) W
O ◦ Ĉ(I(x0)) and (W1, ŷ1) W O ◦ Ĉ(I(x1)) where W0 (resp. W1) represents the assignment to every wire of

O ◦ Ĉ on input I(x0) (resp. I(x1)). For any leakage function ` ∈ L, the statistical distance between `(W0)
and `(W1) is at most ε.

In the above definition, it is necessary to restrict the two inputs x0 and x1 to have the same output as
there is a trivial distinguishing attack in the case where the outputs are not the same.

We show is that assuming the degree 1 version of our main conjecture, the construction in Figure 4 satisfies
the stronger security property when the leakage function is restricted to AC0 circuits.

9.2.2 Proof of Stronger Security

Before we move on to our security analysis, we discuss some barriers to give a reduction to Braverman’s
theorem.

Barriers in Reducing the Security to Braverman’s theorem. Fix C to be the generator matrix
of an expander code (see Section 7.2 for the definition) and C ′ be another linear function with a single
output bit. Now, consider a linear function C‖C ′ that takes an ` bit string (x1, x2) (where x1, x2 are `/2
bit strings) and outputs C(x1)‖C ′(x2).8 We argue that there does not exist an NC0 circuit that takes any

8We include C′ so that there exists two different (x1, x2) and (x′1, x
′
2) s.t. C‖C′(x1, x2) = C‖C′(x′1, x′2).
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input (x1, x2) ∈ {0, 1}` and some k-wise independent distribution z and outputs the distribution of all the
wires of Dec◦T(1λ, C‖C ′) on Enc(1λ, (x1, x2)). If such a circuit exists, then there exists a reduction from the
stronger security property to the Braverman’s theorem. Assume for the sake of contradiction there exists
such a circuit. Then, if x is randomly chosen then the output distribution of C corresponds to a random
codeword of this expander code. However, by Proposition 7.4, this is impossible. We note that in Section 7.1,
we gave an instance where the reduction to Braverman’s theorem is possible when the function is computing
the parity of all the bits. In other words, we showed that such a reduction is possible when the output of the
linear function is a single bit. However, when we consider linear functions that may output multiple bits,
there exist some barriers as mentioned above.

Security. We show that assuming the conjecture for linear sources stated below, the construction given in
Figure 4 satisfies the stronger security property.

Conjecture 8 (MAINLIN(C, n′, k, ε) restated:). Let X and Y be sources on n′ bits that are samplable by
linear functions. If X and Y are k-indistinguishable, then any circuit in C can only distinguish between X
and Y with ε(n′, k) advantage.

Theorem 9.4. Let λ be the security parameter and let C be a circuit that computes a linear function from
{0, 1}` to {0, 1}m. Set n′ to be equal to the number of wires in the Boolean implementation of Dec ◦T(1λ, C)
(described in Figure 4) and k = λ − 1. Assume MAINLIN(C, n′, k, ε). Then, (Enc(1λ, ?),T(1λ, C),Dec)
described in Figure 4 satisfies the stronger security property.

Proof. Let x0 and x1 be two inputs such that C(x0) = C(x1). Let W0 W Dec ◦ T(1λ, C)(Enc(1λ, x0)) and
W1 W Dec ◦ T(1λ, C)(Enc(1λ, x1)) where W0 (resp. W1) represents the assignment to every wire in the
Boolean implementation of Dec ◦ T(1λ, C) on input Enc(1λ, x0) (resp. Enc(1λ, x1)). Assume for the sake of
contradiction that there exists a function g ∈ C such that the statistical distance between g(W0) and g(W1)
is greater than ε(n′, k). We will show that this contradicts Conjecture 8.

Consider two sources X0 and X1 where Xb is same as Wb. We first observe that X0 and X1 are both
linear sources since the circuit C consists only of XOR gates. We now argue that X0 and X1 are k-wise
indistinguishable. We, in fact, show a stronger property where we argue that the joint distribution of any k
wires of T(1λ, C) along with all the wires of Dec in W0 and W1 are identically distributed.

Note that each XOR gadget in T(1λ, C) can be viewed as λ computational components where the j-th
component involves computing the XOR of j-th bits of the bundles a and b. We first consider a partition
P1, . . . , Pλ of the wires of T(1λ, C) where for each j ∈ [λ], Pj contains all the wires in the j-th computational
component of each XOR gadget. Naturally, any set of k wires in T(1λ, C) corresponds to at most k of these
partitions. To complete the proof, it is sufficient to show that the joint distribution of wires in at most k
partitions along with the wires of Dec in W0 and W1 are identically distributed. We argue this via an hybrid
argument. Fix any k partition indices i1, . . . , ik.

• Hyb0 : This corresponds to the joint distribution of all the wires in Pi1 , . . . , Pik along with the wires of
Dec in W0.

• Hyb1 : In this hybrid, we do not make any changes to the distribution of the wires in Pi1 , . . . , Pik but
change the input to Dec, namely ŷ, to be a fresh additive sharing of C(x0) conditioned on the values
in {Pj}j∈{i1,...,ik}. This hybrid is identically distributed to the previous hybrid since the partition
{Pj}j 6∈{i1,...,ik} is not revealed.

• Hyb2 : In this hybrid, we change the distribution of Pi1 , . . . , Pik to be sampled from W1. This hybrid
is identically distributed to the previous hybrid from the security of additive secret sharing.

• Hyb3 : In this hybrid, we reverse the change made in Hyb1. Since C(x0) = C(x1), via an identical
argument as before, this hybrid is identically distributed to the previous hybrid. Note that Hyb3 is
identical to Pi1 , . . . , Pik and the wires of Dec sampled from the distribution W1.
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Thus, X0 and X1 satisfy the premise of Conjecture 8 and hence, the existence of a function g mentioned
above contradicts this conjecture.

Assume that our degree 1 conjecture has the same error parameter as Braverman’s theorem (the formal
statement appears below).

Conjecture 9. Let λ denote the security parameter and d ∈ N. Let X and Y be sources on poly(λ) bits
that are samplable by linear functions. If X and Y are λO(d)-indistinguishable, then any circuit of size 2λ

and depth d can only distinguish between X and Y with 2−λ advantage.

By setting k = λO(d) in the above construction (i.e., using a (k+ 1)-out-of-(k+ 1) additive secret sharing
scheme), we get the following corollary.

Corollary 9.5. Let λ denote the security parameter, d ∈ N and let C be a circuit computing a linear function
from {0, 1}` to {0, 1}m. Assume Conjecture 9. Then, the construction described in Figure 4 satisfies stronger
security property against leakage by 2λ-size and depth-d circuits with error parameter 2−λ. Furthermore, the
size of T(1λ, C) is O(|C|λO(d)).

9.2.3 Efficiency Extensions

We observe that we can improve the efficiency of this construction further. We first observe that the proof
of Theorem 9.4 holds if we use a linear secret sharing scheme that is secure against k corruptions. Thus,
instead of relying on additive secret sharing, we can use packed Shamir secret sharing [FY92] over a finite
field of characteristic 2 as the underlying secret sharing scheme. Specifically, we consider packed secret
sharing scheme among n parties where the security holds against k = λO(d) parties. We set n = O(k) and
pack O(n) secrets in each sharing. As a result, we get the following corollary (using a proof that is similar
to the Theorem 9.4).

Corollary 9.6. Let λ denote the security parameter, d ∈ N, and C be circuit that computes linear function
mapping ` bits to m bits. Assume Conjecture 9. Then, for any ρ, there exists an leakage-resilient implemen-
tation of ρ instantiations of C (on possibly different inputs) that satisfies stronger security against 2λ-size
and depth-d circuits with error parameter 2−λ. Furthermore, for large enough ρ, the size of T(1λ, (1ρ, C)) is

Õ(ρ|C|).

9.3 Application 2: LRCC for general functions

In this section, we give an efficient construction of LRCC for general functions that is resilient to global
leakage functions such as AC0. We show the security of this construction based on the degree-2 variant of
our main conjecture. The construction uses the following building blocks.

9.3.1 Building Blocks

Multiplicative Secret Sharing. We make use of a multiplicative secret sharing scheme which is a gen-
eralization of threshold secret sharing discussed below.

Definition 9.7 (Threshold Secret Sharing). A t-out-of-n threshold secret sharing scheme for secrets in F is
a tuple of algorithms (Share,Rec) where:

• Share is a randomized algorithm that takes a secret s ∈ F and outputs (Sh1, . . . ,Shn) where each
Shi ∈ F.

• Rec is a deterministic algorithm that takes T ⊆ [n] of size at least t and {Shi}i∈T and outputs the
secret s.
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• Correctness: For any secret s ∈ F and for any T ⊆ [n] of size at least t, we have:

Pr[Rec(T, {Shi}i∈T ) = s] = 1

where (Sh1, . . . ,Shn)← Share(s).

• Secrecy: For any two secrets s0, s1 ∈ F and for any K ⊂ [n] of size < t, we have:{
{Shi}i∈K : (Sh1, . . . ,Shn)← Share(s0)

}
≡
{
{Shi}i∈K : (Sh1, . . . ,Shn)← Share(s1)

}
Definition 9.8 (Multiplicative Secret Sharing). A t-out-of-n (for n ≥ 2t − 1) threshold secret sharing
(Share,Rec) for secrets in a finite field F (where |F| > n) is said to be a multiplicative secret sharing if:

1. Share is a linear function of the input and the randomness.

2. There exists an linear function Rec′ such that for any (a1, . . . , an) which is in the support of Share(a)
for some a ∈ F and (b1, . . . , bn) which is in the support of Share(b) for some b ∈ F, we have Rec′(a1 ·
b1, . . . , an · bn) = a · b.

We note that Shamir secret sharing [Sha79] is an example of a multiplicative secret sharing.

Arithmetic Emulation of a Boolean Circuit. Let C be a circuit that maps ` bit inputs to m bit
outputs. We consider the characteristic 2 finite field F = F2q and consider the circuit C ′ over F` → Fm
which is same as C except that each XOR gate is replaced with + and each AND gate is replaced with ×.
Note that 0 and 1 in the Boolean world naturally map to elements 0 and 1 in F2q . Hence, for any input
x ∈ {0, 1}n, C(x) = C ′(x). We call this C ′ to be the arithmetic emulation of C. One useful property of F2q

is that the addition operation is implemented using a Boolean circuit where each wire is a linear function of
the input bits. Another property is that the multiplication operation is implemented by a Boolean circuit
where each wire of this circuit is a quadratic function of the input bits.

Linear Circuit Encoder. A linear circuit encoder is obtained by the circuit implementation of an MPC
protocol for computing linear functions on inputs held by different parties which is secure against all but
one corruptions.

Lemma 9.9 (Linear Circuit Encoding). Let f : Fn × Fr → Fn be a randomized linear function that takes in
n field elements as inputs, r field elements as randomness and outputs n field elements. There exists another
randomized linear circuit f̂ : Fn × Fr′ → Fn such that:

1. For any input x ∈ Fn, the output distribution of f on input x is identically distributed to the output
distribution of f̂ on input x.

2. There exists n partitions P1, . . . , Pn of the wires of the Boolean circuit implementation of f̂ such that:

(a) The bundle of wires representing the i-th input and the i-th output wire belong to partition Pi.

(b) For any input x ∈ Fn and any subset K ⊂ [n] of size at most n− 1, the joint distribution of the

wires in the partitions {Pi}i∈K when f̂ is run on input x and uniform randomness is identically
distributed to a randomized function D({xi, yi}i∈K) where yi is the i-th output of f(x;UFr ).

9.3.2 Leakage-Resilient Circuit Compiler for General Functions

Construction. We give the description of the construction in Figure 5.
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Let λ be the security parameter and let F = F2q . Set t = λ and n ≥ 2t − 1. Let C : {0, 1}` → {0, 1}m.
Let (Share,Rec) be a t-out-of-n multiplicative threshold secret sharing scheme over F.

• Enc(1λ, x ∈ {0, 1}`):

1. Parse x as (x1, . . . , x`) where each xi is 0 or 1 in F.

2. For each i ∈ [`], compute (x̂i,1, . . . , x̂i,n)← Share(xi).

3. Output {(x̂i,1, . . . , x̂i,n)}i∈[`].

• T(1λ, C : {0, 1}` → {0, 1}m):

1. Let C ′ : F` → Fm be the arithmetic emulation of C.

2. Every wire w ∈ F in C ′ is replaced by a wire bundle (w1, . . . , wn) ∈ Fn in Ĉ = T(1λ, C) that
represents a t-out-of-n secret sharing of the value carried in w.

3. Each addition gate in C ′ taking in wires a and b is replaced by a gate gadget in Ĉ that takes
wire bundles (a1, . . . , an) and (b1, . . . , bn) and outputs another bundle (a1 + b1, . . . , an + bn).

4. Each multiplication gate in C ′ taking wires a and b is replaced by a gate gadget in Ĉ that
takes wire bundles (a1, . . . , an) and (b1, . . . , bn) that does the following:

(a) It computes (a1 · b1, . . . , an · bn).

(b) Let g be the randomized linear circuit that computes Share ◦ Rec′ and let ĝ be the
randomized linear circuit implementation of g from Lemma 9.9.

(c) It computes (c1, . . . , cn)← ĝ(a1 · b1, . . . , an · bn).

(d) It outputs (c1, . . . , cn).

• Dec(ŷ ∈ Fmn):

1. Parse ŷ as {ŷi,1, . . . , ŷi,n}i∈[m].

2. For each i ∈ [m], output yi := Rec([n], ŷi,1, . . . , ŷi,n).

Figure 5: Leakage-Resilient Circuit Compiler for General Functions

Security. We state the quadratic version of the conjecture which is used in our main theorem.

Conjecture 10 (Quadratic Variant (MAINQUAD(C, n′, k, ε))). Let X0 and X1 be quadratic sources over
n′ bits. If (X0,X1) are k-indistinguishable, then the pair X0,X1 ε(n

′, k)-fool any circuit C ∈ C.

Theorem 9.10. Let λ be the security parameter and let C be an arbitrary circuit mapping {0, 1}` → {0, 1}m.
Set n′ to be equal to the number of wires in Dec ◦ T(1λ, C) (described in Figure 5) and k = t − 1. Assume
MAINQUAD(C, n′, k, ε). Then, (Enc(1λ, ?),T(1λ, C),Dec) described in Figure 5 is a (C, ε(n′, k))-leakage
resilient implementation of C.

Proof. Let x0 and x1 be two inputs such that C(x0) = C(x1). Let W0 W T(1λ, C)(Enc(1λ, x0)) and
W1 W T(1λ, C)(Enc(1λ, x1)) where W0 (resp. W1) represents the assignment to every wire of the Boolean
implementation of T(1λ, C) on input Enc(1λ, x0) (resp. Enc(1λ, x1)). Assume for the sake of contradiction
that there exists a function h ∈ C such that the statistical distance between h(W0) and h(W1) is greater
than ε(n′, k). We will show that this contradicts Conjecture 10.

Consider two sources X0 and X1 where Xb is same as Wb. In the following two claims, we show that
X0 and X1 are quadratic sources and show that they are k-wise indistinguishable.
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Claim 9.11. For each b ∈ {0, 1}, Xb is a quadratic source.

Proof. Let Ĉ = T(1λ, C). We first argue that (i) the output wire bundle (w1, . . . , wn) of each gate gadget in

Ĉ is in the support of Share(w) where w is the actual value carried by that wire in C when run on input xb,

and (ii) the elements of the wire bundle are an affine function Lw of the randomness used in Ĉ and Enc. We
show this through an induction on the depth of the circuit. The base case is the input wire bundles and the
induction hypothesis trivially holds. Assume that the hypothesis holds for all wire bundles up to a depth d
from the input level. Let (w1, . . . , wn) be a wire bundle in depth d + 1 and let w be the value carried by
the wire in C. If (w1, . . . , wn) is the output of an addition gate gadget, then the induction hypothesis holds
from the fact that Share is linear function (see Property 1 in Definition 9.8). If (w1, . . . , wn) is the output
bundle of a multiplication gadget, it follows from Property 2 of Definition 9.8 that the output distribution of
g = Share ◦ Rec′ is identical to Share(w) (with uniform randomness). Since Property 1 of Lemma 9.9 states
that the output distribution of ĝ is identical to g, the induction hypothesis holds.

We now argue that for any gate gadget, the internal wires of the Boolean circuit implementation of the
gadget is a quadratic function of the input to this gadget and the random bits. For the case of addition
gadget, this follows directly from property of F2q that the addition operation can be implemented by a
Boolean circuit which is computing a linear function on the input bits. For the case of multiplication gadget,
we first observe that since multiplication over F2q can be implemented by a Boolean circuit where every wire
is a quadratic function of the input bits, there exists a Boolean circuit computing (a1 · b1, . . . , an · bn) where
each wire of this circuit is a quadratic function of the bits representing (a1, . . . , an) and (b1, . . . , bn). Since ĝ
is a linear randomized function, it again follows from the above mentioned property of computing addition
operations over F2q that the wires of ĝ is a linear function of the input and the random bits and hence, each
wire of the multiplication gate gadget is a quadratic function of the input and random bits.

Since (i) the input wire bundle to each gate gadget is a linear function of the randomness and the value
carried by the wire, and (ii) the internal wires of each gate gadget is a quadratic function of the input and
random bits, it follows that Xb is a quadratic source.

Claim 9.12. X0 and X1 are k-indistinguishable.

Proof. Let Ĉ = T(1λ, C). We view the execution of Ĉ as the joint computation done by each party in an
n-party protocol. Specifically, in this protocol, the j-th party receives {xi,j}i∈[`] as the initial input. The
parties now jointly compute each gate of the circuit C via a secure distributed protocol where at the end of
the protocol the parties hold a secret sharing of the output.

Specifically, to compute an addition gate where the parties hold a t-out-of-n secret sharing of the input
wires, each party locally adds the shares to obtain the share of the output. This precisely corresponds to the
implementation of the addition gate gadget in Ĉ. To compute a multiplication gate, the j-th party locally
multiply the shares of the inputs to obtain aj · bj . Now, the parties run a distributed protocol to securely
implement the randomized linear functionality Share◦Rec′. This precisely corresponds to running the circuit
ĝ from Lemma 9.9.

Via a standard argument (see [AL17, Theorem 4.2]), this protocol can be shown to be perfectly secure
against k corruptions. To show k-wise indistinguishability, we consider a partition P1, . . . , Pn of the wires of
Ĉ where for each j ∈ [n], Pj corresponds to all the computation done by the j-th party in the above described

multiparty protocol. Naturally, any set of k wires in Ĉ corresponds to at most k of these partitions. To
complete the proof, it is sufficient to show that the joint distribution of wires in at most k partitions in W0

and W1 are identically distributed. This directly follows from the security of above MPC protocol against k
corruptions.

From Claim 9.11 and Claim 9.12, we infer that X0 and X1 satisfy the premise of Conjecture 10. Thus,
the function h ∈ C such that the statistical distance between h(X0) and h(X1) is greater than ε(n′, k)
contradicts this conjecture.
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Remark 9.13. We note that the above construction can be proved to satisfy the stronger security property
given in the previous subsection. Specifically, the k-wise indistinguishability of X0 and X1 holds even when
the wires of the output decoder are leaked. This actually follows from the security property of the MPC
protocol.

Assume the quadratic version of our main conjecture has the same parameters as that of Braverman’s
theorem.

Conjecture 11. Let λ denote the security parameter and d ∈ N. Let X0 and X1 be quadratic sources over
poly(λ) bits. If (X0,X1) are λO(d)-indistinguishable, then the pair X0,X1 2−λ-fool any 2λ size and depth
d circuit.

By setting t = λO(d) (instead of λ) and instantiating the linear circuit encoder with a protocol from
[BGW88]), we get

Corollary 9.14. Let λ be the security parameter, d ∈ N and let C be an arbitrary poly(λ) size circuit
mapping {0, 1}` → {0, 1}m. Assume Conjecture 11. Then, (Enc(1λ, ?),T(1λ, C),Dec) described in Figure 5
is a leakage resilient implementation of C against leakage by size 2λ and depth d circuits with error parameter
2−λ. Furthermore, the size of T(1λ, C) is Õ(λO(d)|C|).

Though the efficiency of this construction is worse than that of [BIS19], we build on this construction
and give a more efficient instantiation of LRCC in the next subsection.

9.3.3 Extension to SIMD Circuits

We now give a leakage-resilient circuit compilers for special class of circuits called SIMD circuits. In a SIMD
circuit, each gate is replaced with an instruction (either + or ×) that act on multiple data points. Further, we
will assume a special structure on the data points that are given as inputs to each instruction (see Figure 6).
We then rely on routing networks as in [DIK10] to transform any general circuit to a SIMD circuit (with a
poly logarithmic overhead).

Construction. We give the construction of a leakage resilient circuit compiler for SIMD circuits in Figure 6.
The difference between this construction and one presented in Figure 5 is that here, we use a packed secret
sharing scheme. Specifically, we use packed t-out-of-n Shamir secret sharing and let t′ = O(t) denote the
number of secrets that are packed. Note that packed secret sharing is multiplicative (see Definition 9.8).

Proof of Security. The proof of security follows via an identical argument to the proof of Theorem 9.10.

Theorem 9.15. Let λ be the security parameter and let C be an arbitrary SIMD circuit mapping F` → Fm.
Set n′ to be equal to the number of wires in Dec ◦ T(1λ, C) (described in Figure 6) and k = t − 1. Assume
MAINQUAD(C, n′, k, ε). Then, (Enc(1λ, ?),T(1λ, C),Dec) described in Figure 6 is a (C, ε(n′, k))-leakage
resilient implementation of C.

Instantiation. We will instantiate the construction in Figure 6 with the linear circuit encoder from [DN07].

Theorem 9.16 ([DN07]). Let g = Share ◦ Rec′. There exists a linear circuit ĝ that satisfies the conditions
of Lemma 9.9 and for large enough ρ, implementing ρ instantiations of ĝ (on possibly different inputs) can

be done by a circuit of size Õ(ρ · n).

By setting t = λO(d) (instead of λ) and using the above linear circuit encoder in Figure 6, we get the
following corollary.

Corollary 9.17. Let λ be the security parameter, d ∈ N and let C be an arbitrary poly(λ) size SIMD circuit
mapping F` → Fm. Assume Conjecture 11. There exists a leakage-resilient implementation (Enc(1λ, ?),T(1λ, C),Dec)
of C that is secure against circuits of size 2λ and depth d and error parameter 2−λ. Furthermore, for large
enough |C|, the size of T(1λ, C) (described in Figure 6) is Õ(|C| · λO(d)).

54



Damg̊ard et al. [DIK10] gave a transformation from arbitrary circuits to SIMD circuits that incurs a
polylogarithmic (amortized) overhead to the circuit size. The transformation uses a routing network to
compile an arithmetic circuit C (which is assumed to be at least ` gates wide) into another circuit C ′ with
the following properties:

1. C ′(x) = C(x) for all inputs x.

2. Every layer of C ′ contains only one type of gate.

3. If the values in each layer are arranged in blocks of size ` (a power of 2), the action between any two
layers to achieve correct line-up is to permute the blocks and then in some blocks permute the elements
within the block, where the same permutation applies to all blocks in the layer. In the entire circuit,
only log ` different permutations are needed to handle permutations within blocks.

4. |C ′| = O(|C| log |C|+d2λ log3 |C|) where d is the depth of the circuit C and depth of C ′ is O(d log2 |C|).

To achieve permutation π within each block, we generate a packed secret sharing of r and π(r). To
permute a block x which is packed secret shared, we add the corresponding shares of r and x and then
reconstruct to obtain x+ r. We then apply the permutation π on this value to obtain π(x) + π(r). We then
subtract this value from secret shares of π(r) to obtain a secret sharing of π(x). We generate the sharing

of r and π(r) with Õ(1) amortized cost using the protocol from [DN07] (this is possible since there are
only log l different permutations needed). Thus, the total computational cost needed to achieve the correct

permutation within each block throughout the circuit is Õ(|C ′|).

Corollary 9.18. Let λ be the security parameter, d ∈ N and let C be an arbitrary poly(λ) circuit mapping
{0, 1}` → {0, 1}m. Assume Conjecture 11. There exists a leakage-resilient implementation (Enc(1λ, ?),T(1λ, C),Dec)
of C that is secure against leakage by size 2λ and depth d circuits with error parameter 2−λ. Furthermore,
for large enough |C|, the size of T(1λ, C) is Õ(|C| log |C|+ d2λ log3 |C|).
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A Mixtures of iid

The main theorem of Section 5 constructs a pair of Θ(
√
n)-indistinguishable mixtures of iid over {0, 1}n

which OR can Ω(1)-distinguish. The construction starts with an arbitrary pair of Θ(
√
n)-indistinguishable

distributions over {0, 1}Θ(n) which OR can Ω(1)-distinguish, and then applies a simple resampling procedure,
Lemma 5.5. In this section, we outline a direct construction from first principles. In the interest of space,
we skip some tedious calculations.

As in the proof of Theorem 5.11, we construct our indistinguishable pair from a measure which is orthog-
onal to all low-degree polynomials.
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Lemma A.1. Let 1 = x0 > x1 > · · · > xm ≥ −1, and let f : {x0, . . . , xm} → R satisfy

m∑
i=1

f(xi)p(xi) = 0

for all polynomials p(x) of degree at most k.
Define two mixtures of iid over {0, 1}n as follows. Let X+ = {xi : f(xi) > 0} and X− = {xi : f(xi) < 0}.
The source X+ is sampled by first sampling a bias xi ∈ X+ with probability 2f(xi)/

∑
j |f(xj)|, and then

sampling n many independent 1−xi
2 -biased bits.

The source X− is sampled by first sampling a bias xi ∈ X− with probability −2f(xi)/
∑
j |f(xj)|, and

then sampling n many independent 1−xi
2 -biased bits.

The two sources X+,X− are k-indistinguishable, and OR can distinguish them with advantage at least

2|f(x0)|∑
j |f(xj)|

−
(

1 + x1

2

)n
.

Proof. By assumption
∑
j f(xj) = 0, and this shows that

∑
x∈X+

f(x) =
∑
x∈X− −f(x) =

∑
j |f(xj)|/2.

Therefore the measures according to which the biases in X+,X− are sampled are indeed probability distri-
butions.

Let z ∈ {0, 1}k consist of a zeroes and k − a ones. Then

Pr[X+|{1,...,k} = z]− Pr[X−|{1,...,k} = z] =

m∑
i=1

2f(xi)∑
j |f(xj)|

(
1 + xi

2

)a(
1− xi

2

)k−a
= 0,

since the right-hand side is a polynomial of degree k. Therefore X+,X− are k-indistinguishable.
Now suppose without loss of generality that f(x0) > 0. On the one hand,

Pr[X+ = 0] ≥ 2f(x0)∑
j |f(xj)|

.

On the other hand,

Pr[X− = 0] ≤
(

1 + x1

2

)n
.

We will aim at f(x0) = Θ(
∑
j |f(xj)|) and x1 = 1−Θ(1/n), which will guarantee a constant distinguishing

advantage for OR (given appropriate hidden constants).
Given arbitrary k + 2 points 1 = x0 > x1 > · · · > xk+1 ≥ −1, it turns out that the unique (up to a

constant factor) function f satisfying the requirements of Lemma A.1 alternates in sign, and is given by

f(xi) =
∏
j 6=i

(xi − xj)−1. (6)

Of particular interest are the points xi = cos(θi), where

θ0, θ2, θ3, . . . , θk+1 =
0

k
π,

1

k
π, . . . ,

k

k
π,

and θ1 ∈ (0, π/k) is arbitrary. Tedious calculations show that up to a constant factor (which is different
from the constant factor in (6)), the resulting f is given by

f(0) = (1− cos θ1)−1

f(1) = 4k(cos((k + 1)θ1)− cos((k − 1)θ1))−1

f(i) = (−1)i2(cos(θ1)− cos(θi))
−1

f(k + 1) = (−1)k+1(cos(θ1)− cos(θk+1))−1
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where 2 ≤ i ≤ k. Furthermore,

2|f(x0)|∑
j |f(xj)|

=

(
1 + k tan

kθ1

2
tan

θ1

2

)−1

.

If θ1 = ρ
kπ, where ρ ∈ (0, 1), then as k →∞ we have

1− x1

2
∼ ρ2π2

4k2

2|f(x0)|∑
j |f(xj)|

→
(

1 +
ρπ

2
tan

ρπ

2

)−1

Choosing k = Θρ(
√
n), Lemma A.1 construct a pair of k-indistinguishable mixtures of iid which OR

distinguishes with constant advantage. We can get the weight-complexity down to nO(n) by discretizing the
xi to multiples of 1

N for N = Θ(n). The parameters appearing Lemma A.1 change only slightly, as the
explicit formula (6) implies.

We close this section by mentioning the limiting form of the function g(x) = f(x)/
∑
j |f(xj)| obtained

by fixing ρ and letting k →∞:

g(0)→
(

2 + ρπ tan
ρπ

2

)−1

g(1)→ −
(

2

ρπ
sin(ρπ) + 2 sin2 ρπ

2

)−1

g(i)→ (−1)i

(((
i− 1

ρ

)2

− 1

)(
1 +

ρπ

2
tan

ρπ

2

))−1
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