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Abstract

An Algebraic Formula for a polynomial P P Frx1, . . . , xN s is an algebraic expression for
P px1, . . . , xN q using variables, field constants, additions and multiplications. Such formulas
capture an algebraic analog of the Boolean complexity class NC1. Proving lower bounds
against this model is thus an important problem.

It is known that, to prove superpolynomial lower bounds against algebraic formulas, it
suffices to prove good enough lower bounds against restricted kinds of formulas known as Set-
Multilinear formulas, for computing a polynomial P px1, ..., xN q of degreeOplogN{ log logNq.
In the past, many superpolynomial lower bounds were found, but they are of the form
ΩpfpdqpolypNqq (where f is typically a subexponential function) which is insufficient to
get lower bounds for general formulas. Recently, the authors proved [13] the first non-FPT
lower bounds, i.e., a lower bound of the form NΩpfpdqq, against small-depth set-multilinear
formulas (and also for circuits). In this work, we extend this result in two directions.

1. Large-depth set-multilinear formulas. In the setting of general set-multilinear
formulas, we prove a lower bound of plog nqΩplog dq for computing the Iterated Matrix
Multiplication polynomial IMMn,d. In particular, this implies the first superpolynomial
lower bound against unbounded-depth set-multilinear formulas computing IMMn,n.

As a corollary, this also resolves the homogeneous version of a question of Nisan (STOC
1991) regarding the relative power of Algebraic formulas and Branching programs in
the non-commutative setting.

2. Stronger bounds for homogeneous non-commutative small-depth circuits.
In the small-depth homogeneous non-commutative case, we prove a lower bound of

nd
1{∆

{2Op∆q

, which yields non-FPT bounds for depths up to op
?

log dq. In comparison,
the bound in [13] works in the harder commutative set-multilinear setting, but only
up to depths oplog log dq. Moreover, our lower bound holds for all values of d, as
opposed to the set-multilinear lower bound of [13], which holds as long as d is small,
i.e., d “ Oplog nq.
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1 Introduction

Polynomials and Algebraic Formulas. Let P px1, . . . , xN q be a polynomial over a field
F. An Algebraic Formula computing a polynomial P px1, . . . , xN q is a directed tree in which
the leaves are labelled by variables from X “ tx1, . . . , xNu or field constants and the internal
nodes are labelled by addition or multiplication operators. If an internal node is labelled by
the addition operator, then it computes a linear combination of its inputs. Similarly, if it is
labelled by the multiplication operator, then it computes the product of its inputs1. The size of
the formula is the number of nodes in the tree. The product-depth of the formula is the largest
number of multiplication gates along any root-to-leaf path.

The class of polynomials that have algebraic formulas of polynomial size is denoted VPe
and is an algebraic analog of the Boolean complexity class NC1. Proving lower bounds for this
class is therefore an important problem in complexity theory in general, and in particular for
Algebraic Complexity theory, which is the study of the computational complexity of algebraic
problems of this kind (see, e.g. [2, 21, 19] for nice introductions to this area). The problem
has been investigated for many years and we have several lower bounds against many restricted
classes of formulas [1, 8, 15, 17, 5, 6, 11, 13].

Set-multilinear formula lower bounds. Recall that a polynomial P px1, . . . , xN q is homo-
geneous if each monomial has the same total degree. It is multilinear if every variable occurs
at most once in any monomial. Suppose the underlying variable set is partitioned into d sets,
X1, . . . , Xd, then the polynomial is set-multilinear with respect to this variable partition if each
monomial in P has exactly one variable from each set.

Many interesting and well-studied polynomials are set-multilinear. For example, the Deter-
minant and the Permanent polynomials, which are central to algebraic complexity theory, are
set-multilinear (w.r.t. the row variables). Another well-studied polynomial, namely the Iterated
Matrix Multiplication polynomial, is also set-multilinear. As we will use this polynomial in what
comes next, we recall the definition. The Iterated Matrix Multiplication polynomial IMMn,d

is defined on N “ dn2 variables, where the variables are partitioned into d sets X1, . . . , Xd of
size n2, each of which is represented as an n ˆ n matrix with distinct variable entries. The
polynomial IMMn,d is defined to be the polynomial that is the p1, 1qth entry of the product
matrix X1 ¨X2 ¨ ¨ ¨Xd.

Corresponding to the above variants of polynomials classes, we also define different models
of computation. An algebraic formula is set-multilinear with respect to a variable partition
pX1, . . . , Xdq if each internal node in the formula computes a set-multilinear polynomial. Simi-
larly, we define homogeneous formulas and multilinear formulas.

We have several interesting lower bound results against set-multilinear formulas. Nisan and
Wigderson [15] proved the first exponential lower bound for product-depth 1 set-multilinear for-
mulas. In particular, among other results, they proved that any product-depth 1 set-multilinear
formula computing IMMn,d must have size nΩpdq. They introduced the partial derivative tech-
nique to prove this lower bound. Building on this technique, Raz [17] showed the first super-
polynomial lower bound on the size of any arbitrary depth multilinear formula (of arbitrary
depth) computing the n ˆ n Determinant and Permanent. In follow-up works [16, 5] other
candidate multilinear polynomials, of varying complexity, were shown to be hard for arbitrary
depth polynomial sized multilinear formulas.

Given the large array of lower bounds for restricted models of computation and lack thereof

1More precisely, any internal node v with children u1, . . . , ur is labelled either ˆ or `. In the former case,
the nodes represent the products of its inputs. In the latter case, it computes a linear combination of the inputs,
where the coefficients of the linear combinations are field elements labelling the edges between the uis and v.
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for general formulas, the following question arises naturally. Can we use the known lower bounds
for restricted classes of formulas to obtain lower bounds for general formulas?

An intriguing observation of Raz [18] suggests a way. Raz showed that if a set-multilinear
polynomial of degree d has an algebraic formula of size s, then it also has a set-multilinear
formula of size polypsq ¨ plog sqOpdq. In particular, for a set-multilinear polynomial P of degree
d “ OplogN{ log logNq, it follows that P has a formula of size polypNq if and only if P has a
set-multilinear formula of size polypNq.

This offers us a possible route towards proving general algebraic formula lower bounds
via ‘hardness escalation’ from the set-multilinear case. It is not hard to show that a random
polynomial of degree d in N variables has no formulas of size Nopdq. If we could prove such
a lower bound against set-multilinear formulas for computing an explicit polynomial of small
degree d, then we would be done.

Non-FPT lower bounds. On the one hand, we have several lower bounds for set-multilinear
formulas and on the other hand we have the hardness escalation result by Raz. The missing piece
of the puzzle has been the quality of the lower bound needed for making escalation possible.
Specifically, all the lower bounds known for arbitrary depth set-multilinear formulas are of the
form ΩpfpdqpolypNqq (where f is typically a superpolynomial but at best exponential function).
Using an analogy to Parameterized Complexity Theory [4], we call such bounds FPT bounds.
However, we would like to prove Nωdp1q lower bounds. We call such bounds non-FPT bounds.

While we do not have non-FPT bounds for general set-multilinear formulas, we have such
bounds in the small product-depth setting. The result by Nisan and Wigderson, mentioned
above, is the first example of such a bound. Recently, the authors generalised that result [13]
and obtained non-FPT bounds for all constant product-depth formulas (and also for circuits)2.
This result also gave interesting consequences. Specifically, it gave the first superpolynomial
lower bounds against all constant depth formulas.

Our Results. In this work, we take a step towards proving non-FPT lower bounds for arbi-
trary depth set-multilinear formulas. Specifically, we prove the following theorem.

Theorem 1. Let n, d,∆ be growing parameters with ∆ ď Oplog dq. Then any set-multilinear

formula of product-depth at most ∆ for IMMn,d must have size at least plog nqΩp∆d
1{∆q. Further,

any set-multilinear formula for IMMn,d must have size at least plog nqΩplog dq.

To put the above result in context, this improves the above mentioned result of Nisan and
Wigderson, who proved a lower bound of exppΩpd1{∆qq, which can be improved to exppΩp∆d1{∆qq

with a slightly more careful analysis. On the other hand, the standard divide-and-conquer strat-
egy for constructing formulas for IMMn,d yields an upper bound of nOp∆d

1{∆q. If we conjecture
that this is tight, then we expect to change the base of the exponent in the lower bound to be
n. Our result seems to be the first to achieve any dependence on n.

The above result also extends the results from [13] in two ways.

• It gives a lower bound for IMMn,d against formulas of any depth. The result in [13] works
for depths up to Oplog log dq.

• It puts no restriction on the degree of the polynomial. The lower bound in [13] essentially
works for degree d “ Oplog nq.3

2This result holds for super-constant but small depths as well.
3One can also get lower bounds for larger degrees by reducing from the case of d “ Oplognq. However, we do

not get an improved lower bound as the degree increases.
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In the case that d “ nΩp1q, we get a superpolynomial bound of nΩplog lognq for set-multilinear
formulas computing IMMn,d.

Corollary 2. Any set-multilinear formula computing IMMn,n must have size at least nΩplog lognq.

Notice that Raz’s escalation result is only useful when we have a non-FPT lower bound for
d “ OplogN{ log logNq. But for small d (say d ď plog nqOp1q), our result yields a bound of less
than n, which is trivial. This may indicate that the above is not really useful from a hardness
escalation perspective.

However, we observe that there is an interesting connection. Here, notice that our lower
bound is for IMMn,n, which is a self-reducible polynomial. In this context, this refers to the fact
that we can construct formulas for IMMn,n by recursively using formulas for IMMn,d (for any
d ă n). In particular, if we had formulas of size noplog dq for IMMn,d, this would imply formulas
of size noplognq for IMMn,n. Stated in the contrapositive, this means that an optimal nΩplognq

lower bound for IMMn,n implies non-FPT lower bounds for d ă n, which would then imply
general formula lower bounds via escalation. Our superpolynomial lower bound makes the first
non-trivial progress towards this goal for unbounded depth set-multilinear formulas (but see
also Related work below).

The above corollary also implies an interesting result for Non-commutative Algebraic For-
mulas. A non-commutative algebraic formula is defined just as a standard algebraic formula,
except that the underlying variables do not commute.4 In this setting, explicit superpolynomial
formula lower bounds (and also non-FPT lower bounds) follow easily from work of Nisan [14].
However, it is still interesting to prove a superpolynomial lower bound against non-commutative
formulas computing IMMn,d, as this would separate VBP and VPe in the non-commutative set-
ting, which would solve an open question due to Nisan [14]. Our result, along with the fact that
non-commutative homogeneous formulas yield set-multilinear formulas (see Lemma 6), implies
that we have resolved Nisan’s question for homogeneous formulas.

Corollary 3. Any non-commutative homogeneous formula computing IMMn,n must have size
at least nΩplog lognq.

As mentioned above, the standard divide-and-conquer strategy gives set-mulilinear formulas
of product-depth ∆ and size nOp∆d

1{∆q computing IMMn,d. This means that we can potentially

prove a lower bound of nΩp∆d1{∆q in this setting. Unfortunately, we do not know how to prove
this kind of bound even for product-depth three5.

Here, we prove such a lower bound in the case of non-commutative homogeneous constant-
depth formulas. Specifically, we prove the following theorem.

Theorem 4. Let n, d be any growing parameters. Any constant product-depth ∆ non-commutative
homogeneous formulas for IMMn,d must have size nΩpd1{∆q. Further, if ∆ is any growing param-
eter, then any product-depth ∆ non-commutative homogeneous circuit for IMMn,d must have

size at least nd
1{∆{2Op∆q .

As any circuit of product-depth ∆ and size s can be converted into a formula of product-depth
∆ and size sOp∆q, the same lower bounds continue to hold for homogeneous non-commutative
circuits.

Note that, this gives a non-FPT lower bounds for product-depths all the way to Op
?

log dq.
Moreover, we can also easily compute such polynomials if we consider formulas of product-depth
∆` 1 (instead of ∆). It implies an exponential separation between non-commutative formulas
of different product-depth (see Corollary 17).

4Equivalently, the multiplications take place in the non-commutative polynomial ring Fxx1, . . . , xNy.
5As mentioned above, the best lower bound we know in this setting against set-multilinear formulas is

ndexpp´Op∆qq

due to [13]. Even for product-depth 3, this does not get the right bound of nΩpd1{3q.
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Related Work. We have set-multilinear formula lower bounds for unbounded-depth formulas
since the early 2000s. Raz [17] showed an nΩplognq lower bound on the size of any multilinear
(and hence in particular set-multilinear) formula for the Determinant, and Dvir, Malod, Perifel
and Yehudayoff [5] prove similar lower bounds for another multilinear polynomial on n variables.
Unfortunately, these polynomials are not self-reducible in the same sense as IMM is (as sketched
above) and so it is unclear if we can use these bounds to obtain non-FPT lower bounds.

However, both these families of polynomials lie in the complexity class VBP. Given that
IMMn,n is complete for this class, one might expect that we get a similar lower bound for this
polynomial. Curiously, however, these results do not imply any lower bound for IMMn,n. This
is because the underlying reductions to IMMn,n destroy the multilinearity of the formula, and
hence the multilinear formula lower bounds no longer apply. Therefore, as far as we know,
despite this progress, we did not have any unbounded-depth formula lower bounds for IMMn,n,
even in the set-multilinear setting, prior to this work.

Nisan and Wigderson [15] proved a non-FPT bound for a special kind of commutative set-
multilinear formulas called pure circuits6. More recently, Chatterjee [3] also proved a non-FPT
bound for another variety of restricted non-commutative formulas, called Abecedarian formulas.
Theorem 4 above strengthens the first result.7 However, it seems incomparable to the second
result, as the lower bound result of [3] is for a non-set-multilinear polynomial. At a higher level,
our techniques are also quite different, as we use rank-based arguments, while Chatterjee’s lower
bound uses a result of Hrubeš and Yehudayoff [7] that uses the sparsity (number of monomials)
in the underlying polynomial. Such a technique does not seem to be applicable in our setting.

Our Techniques. At a high level, the proof outline for our lower bound in Theorem 1 looks
very similar to that of many known lower bounds. We design a measure µp¨q on the space of
polynomials such that the measure is small for all the polynomials computed by set-multilinear
formulas, whereas it is large for the IMM polynomial.

Nisan and Wigderson defined the partial derivative measure and used it to prove the first
non-FPT lower bound for product-depth 1 set-multilinear formulas, which we mentioned earlier.
The measure has been extended in many ways over the years to obtain many strong lower bounds
(see for instance [16, 20, 9, 6, 10]).

We describe the measure here, as it will help in the proof outline. Let P,N be a partition of
rds. The variable sets pX1, . . . , Xdq are partitioned as positive variables pXi : i P Pq and negative
variable pXi : i P N q. Let us fix this variable partition. Let MP be the set of monomials over
positive variables and let MN be the set of monomials over negative variables. Given a set-
multilinear polynomial f over pX1, . . . , Xdq, we define a matrix Mf to be a matrix whose rows
are labelled by MP and columns are labelled by MN . For m1 P MP and m2 P MN , the
pm1,m2qth entry is the coefficient of m1 ¨m2 in f . The measure is defined as the rank of Mf .8.

The non-commutative homogeneous case. Theorem 4 strengthens the lower bound
proved in [13] in the non-commutative homogeneous setting. At a conceptual level, the proof
of Theorem 4 is similar to the proof of the lower bound in [13]. To describe the key idea, we
briefly recall the proof idea from [13].

The proof in [13] proceeds along similar lines as the high level proof idea described above.
The complexity measure used in [13] is the partial derivative measure, the same as in [15].

6Lagarde, Limaye and Srinivasan [12] proved a non-FPT bound for a special kind of non-commutative formulas
that are called Unique Parse Tree (UPT) formulas, which essentially reproves Nisan and Wigderson’s lower bound
for pure circuits.

7Our quantitative bound is weaker, but the model is stronger.
8For the sake of simplicity of exposition, we consider the matrix rank measure here. In the proof we use a

slightly different measure called the relative rank. We define that formally in Section 2.

5



In Nisan and Wigderson, |Xi| “ |Xj | for all i ‰ j P rds, that is, they defined the hard
polynomial over a variable partition where each set had the same size. The lower bound proof
in [13] deviates from this and chooses the set sizes carefully. All the positive sets are of the
same size, i.e. |Xi| “ |Xj | “ m for all i ‰ j P P, and all the negative sets are of the same size,
i.e. |Xi| “ |Xj | “ m1. for all i ‰ j P N , but m ‰ m1. In fact, m1 is m1´δ for a carefully chosen
δ.

This measure is then analysed for set-multinear formulas. Suppose F “ F1 ¨ F2 ¨ . . . ¨ Fr is a
specific product gate in the formula. We consider two cases. The first case is that, one of the
Fis has large degree. In this case, the argument proceeds inductively by bounding the measure
for a sub-formula inside Fi with one less product-depth.

The other case is that all the Fis have small degrees. The careful choice of set sizes helps
in bounding the measure for factors with small degree (say degree equal to Op1{δq). We can
observe that, as the degree of Fi is small, no matter how Fi uses the subsets of positive and
negative variables, the matrix MFi

9 will have fewer columns than rows, thereby causing some
rank deficiency. For a term F in which all factors have small degrees, we thus obtain rank
deficiency from each factor.

Here, for the non-commutative homogeneous lower bound, we use a similar proof idea. The
main difference is how we analyse the measure for non-commutative homogeneous formulas. In
the set-multilinear case each sub-formula depended on variable sets pXi : i P Jq, where J Ď rds.
Whereas here, each sub-formula depends on a subset of variable sets pXi : i P Jq, such that J
is an interval. It turns out that we can leverage this difference and quantitatively improve the
lower bounds.

The large depth case. To get lower bounds for set-multilinear formulas of product-depths
greater than 1, Nisan and Wigderson combined the partial derivative measure with the method
of random restrictions. A restriction ρ is a function that sets some of the variables to field
constants. It is a random restriction if this map is random. (The choice of the distribution can
play a key role in the proof.) They were able to show that the hard polynomial (say e.g. IMM)
continues to have a high measure even after being subject to a restriction, while the measure for
the set-multilinear formulas drops further under the random restriction with high probability.
Using this, they proved an FPT lower bound of polypnq ¨exppΩpd1{∆qq for product-depth ∆ ą 1.

In their proof, for the sets of variables X1, . . . , Xd, they choose a random subset I Ď rds and
then set all the variables in YjRIXj to constants. It is not very hard to see that their choice of
random restriction cannot give non-FPT lower bounds. Intuitively, this is because there are at
most 2d choices for I.

In our proof, instead of setting all the variables from a set to constants, we choose a (random)
subset of variables inside each Xi and set those variables to constants. It is easy to see that in
our setting, we have up to nΩpdq many choices for the random restriction. Intuitively, this may
be the reason why we are able to get a non-FPT lower bound.

2 Preliminaries

We will consider the set of words on an alphabet A Ď Z. Let w “ pw1, . . . , wdq P A
d. For an

interval I Ď rds, let |wI | denote
ř

iPI wi. We define Pw “ ti | wi ě 0u and Nw “ ti | wi ă 0u,
i.e., the positive and negative indices of w respectively.

We say w is balanced if |wrds| “ 0 and k-unbiased if |wrts| ď k for t ď d.

Given w, we denote by Xpwq a tuple of d sets of variables pXpw1q, . . . , Xpwdqq where
|Xpwiq| “ 2|wi|.

9We are abusing the notion a bit and using Fi to also denote the polynomial computed by the formula Fi.
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We denote by FsmrT s the set of set-multilinear polynomials over the tuple of sets of variables
T . Similarly we denote by FsmxT y the set of non-commutative set-multilinear polynomials over
the tuple T (i.e., more formally, FsmxT y is the set of non-commutative polynomials that are
linear combination of monomials where each monomial is of the form x1 ¨ ¨ ¨xd with xi P Ti).

Notice that since T “ pT1, . . . , Tdq is chosen ordered, there is a natural bijection between
FsmrT s and FsmxT y. Indeed, let π : FsmxT y Ñ FsmrT s be the usual projection we got by
forgetting the order of the monomials. Then, given any monomial m P FsmrT s, we know there
is a permutation σ such that mi P Tσ´1piq for all i. It implies that π´1pmq “ mσp1q . . .mσpdq.
So, in the set-multilinear case, π is one-to-one.

2.1 The complexity measure

Let MPw and MNw denote the sets of the set-multilinear monomials over only the positive and
only the negative variable sets. Let f P FsmrXpwqs, we define Mwpfq as the matrix of size
|MPw | ˆ |MNw |, where the rows are indexed by MP

w and the columns by MNw and where the
coefficient at the entry pm1,m2q corresponds to the coefficient of the monomial m1m2 in f .

We associate with the space FsmrXpwqs the standard rank-based complexity measure relrkw
(short for “relative rank”) defined as follows. Let f P FsmrXpwqs and define

relrkwpfq “
rankpMwpfqq
a

|MPw | ¨ |MNw |
“

rankpMwpfqq

2
1
2

ř

iPrds |wi|
ď 1.

We use the following properties of relrkw. The (standard) proof can be found in [13].

Claim 5. 1. (Imbalance) Say f P FsmrXpwqs. Then, relrkwpfq ď 2´|wrds|{2.

2. (Sub-additivity) Say f, g P FsmrXpwqs. Then relrkwpf ` gq ď relrkwpfq ` relrkwpgq.

3. (Multiplicativity) Say w “ w1w2 (i.e., w is the concatenation of w1 and w2). Assume
fi P FsmrXpwiqs (i P r2s). Then

relrkwpf1 ¨ f2q “ relrkw1pf1q ¨ relrkw2pf2q.

If f is non-commutative, i.e., if f P FsmxXpwqy, then we define

relrkwpfq “ relrkwpπpfqq.

We can easily notice that the three assertions of Claim 5 still hold in the non-commutative
settings since π is additive and multiplicative.

2.2 Non-commutative algebraic models of computation

We recall some definitions and facts about non-commutative algebraic models of computation
(see, e.g. [14]).

Fix a variable set X and an ordered variable partition pX1, . . . , Xdq.
A non-commutative algebraic formula F over X is a directed tree where leaves are labelled

by variables and elements of the field F, and internal nodes are labelled by ` and ˆ. Each gate
in F computes a polynomial in the non-commutative ring FxXy. Gates labelled ` compute a
linear combination of their inputs (where the coefficients of the linear combinations are labels of
the corresponding incoming edges from the children) and gates labelled ˆ compute the products
of their inputs in a fixed order. The formula is said to be homogeneous if each gate computes a
homogeneous polynomial (of some degree). More precisely, each gate in the formula is associated
with an integer dg such that

7



• If g is a leaf, then dg “ 0 or 1 depending on whether the leaf is labelled by a constant
from F or a variable from X.

• If g is a ` gate with children g1, . . . , gr, then dg “ dg1 “ ¨ ¨ ¨ “ dgr .

• If g is a ˆ gate with children g1, . . . , gr, then dg “ dg1 ` ¨ ¨ ¨ ` dgr .

Moreover, the formula is ordered set-multilinear w.r.t. the ordered partition pX1, . . . , Xdq if
for each gate g of the formula, there is an interval Ig “ ti, i` 1, . . . , i ` t ´ 1u Ď rds such that
the polynomial computed by g lies in the space FsmxpXi, . . . , Xi`t´1qy. More precisely, we have
for each gate g an interval Ig Ď rds such that the following hold.

• If g is a leaf, then Ig “ H if g is labelled by a constant from F and Ig “ tiu if g is labelled
by a variable from Xi.

• If g is a ` gate with children g1, . . . , gr, then Ig “ Ig1 “ ¨ ¨ ¨ “ Igr .

• If g is a ˆ gate with children g1, . . . , gr (multiplied in this order), then Ig is a disjoint
union of Ig1 , . . . , Igr with max Ig1 ă max Ig2 ă ¨ ¨ ¨ ă max Igr .

It is easy to see that if F is an ordered set-multilinear formula, then each gate g computes a
homogeneous polynomial of degree |Ig| and hence any non-commutative ordered set-multilinear
formula is in particular homogeneous. The following lemma says that the two models are
essentially equivalent.

Lemma 6. Assume P P FsmxpX1, . . . , Xdqy has a non-commutative homogeneous formula F of
size s and product-depth at most ∆ (for some ∆ ě 1). Then P also has a non-commutative
ordered set-multilinear formula of size at most s and product-depth at most ∆.

Proof. Let F be a non-commutative homogeneous formula for P . We recall that for such a
formula, each node g is associated with a degree dg. We start by labelling the nodes g of F by
intervals Ig Ď rds such that |Ig| “ dg. We do it inductively (starting by the root):

• the output node is labelled by rds,

• if g is a ` gate with children g1, . . . , gr, then we choose Ig1 “ Ig2 “ . . . “ Igr “ Ig,

• if g is a ˆ gate with children g1, . . . , gr (in this order), then we have Ig “ ra, a ` dg ´ 1s
for some a. We choose for 1 ď j ď r, Igj “ ra`

ř

j1ăj dgj1 , a`
ř

j1ďj dgj1 ´ 1s (notice they
actually form an ordered partition of Ig).

From this labelled form of F , we define our new formula F 1 by modifying some of its degree-1
leaves. More precisely, if a degree-1 leaf g of F computing a variable from Xi is labelled by the
interval tiu, we let it unchanged. If it is labelled by another interval, we change this leaf to 0.

To any gate g of F , we associate its corresponding gate g1 in F 1. We can see now by
induction on the formula that the polynomial computed by g1 equals the projection of the
polynomial computed by g on FsmxXIgy. Indeed,

• if g is a leaf of F which computes a variable x from Xi, then its projection on FsmxXIgy

is x if Ig “ tiu and 0 otherwise,

• if g is a` gate with children g1, . . . , gr, then the projection of g is the sum of the projections
of the gj ,

• if g is a ˆ gate with children g1, . . . , gr, then the projection of g along the interval Ig
equals the ordered product of the projections of gj along the intervals Igj .
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Given the above lemma, we use the terminology ‘non-commutative homogeneous formula’ or
‘non-commutative set-multilinear formula’ or ‘non-commutative ordered set-multilinear formula’
interchangeably.

A non-commutative layered Algebraic Branching Program [14] (ABP) A is a directed acyclic
graph with layers labelled 0, . . . , d, where the first and last layer have a single source vertex s and
sink vertex t each, all edges go from a layer labelled i to a layer labelled i`1 (for 0 ď i ă d), and
each such edge is labelled with a variable10 in Xi`1. The polynomial PA P FsmxpX1, . . . , Xdqy

computed by the ABP is the sum, over all the paths ρ going from s to t, of the product of
the edge labels of the edges of ρ (in increasing order of the source layer). A commutative set-
multilinear ABP is defined in the same way, except that the polynomial PA is interpreted as an
element of FsmrpX1, . . . , Xdqs.

11 The width of the ABP A is the maximum number of vertices
in any layer.

The following fact is standard and easy to show.

Fact 7. Given a non-commutative layered ABP A as above with width at most n, there is a
set-multilinear ‘reduction’ from this polynomial to the Iterated Matrix Multiplication polynomial
in the following sense. Fix the polynomial IMMn,d defined on variable sets Y1, . . . , Yd with
|Y1| “ |Yd| “ n and |Yi| “ n2 for 1 ă i ă d. Then, for each i P rds there are maps Li mapping
Yi to Xi Y t0u such that applying this substitution to IMMn,d yields the polynomial PA.

An analogous fact also holds for commutative set-multilinear ABPs.

2.3 ABPs with large relative rank

We note that for every w which does not have too much bias, there is a polynomial Pw P

FsmxXpwqy that has large rank w.r.t. w and is a simple projection of a small instance of the
Iterated Matrix Multiplication polynomial.

The following was proved in the commutative set-multilinear setting in our earlier work [13].
Essentially the same proof translates to the non-commutative setting.

Theorem 8. Let w P Ad be any word that is b-unbiased. Then, there is an explicit polynomial
Pw P FsmxXpwqy such that relrkwpPwq ě 2´|wrds|{2 and has a non-commutative layered ABP of
width at most 2b.

Since a non-commutative set-multilinear ABP computing some polynomial f can be seen as
a commutative set-multilinear ABP computing πpfq, Theorem 8 is still true in the commutative
setting. (This was already proved in [13].)

Corollary 9. Let w P Ad be any word which is b-unbiased. If there is a set-multilinear (resp.
non-commutative set-multilinear) formula computing IMMn,d of size s where n ě 2b, then there
is also a set-multilinear (resp. non-commutative set-multilinear) formula of size at most s
computing a polynomial Pw P FsmxXpwqy such that relrkwpPwq ě 2´|wrds|{2.

Proof. By Theorem 8, we know that there is a non-commutative layered ABP of width at most
2b computing a polynomial Pw P FsmxXpwqy such that relrkwpPwq ě 2´b{2. By Fact 7, the
polynomial Pw can be obtained from IMMn,d via a simple variable substitution. If IMM2b,d has

10One can also define the labels to be homogeneous linear polynomial in Xi`1, but this more restrictive
definition is sufficient in our setting.

11There is another, more general, definition of a set-multilinear ABP due to Arvind and Raja [22]. This
definition is not suitable for our purposes here.
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a formula F of size s, applying this substitution to F yields a formula F 1 (also of size at most
s) computing Pw. It is easy to check that F 1 is a non-commutative set-multilinear formula.

For the commutative setting, we apply the set-multilinear analog of the above argument
w.r.t. the polynomial πpPwq.

2.4 Product lemma

We recall a well-known property of formulas. Analogs of this property have been proved in
various previous settings (see, e.g. [21, Chapter 3]) but as far as we know, the statement below
does not appear anywhere. We give the (fairly standard) proof.

Lemma 10 (Product lemma). Assume that F is a set-multilinear formula with at most s leaves.
Then, we can write

F “
s
ÿ

i“1

ź̀

j“1

Fi,j

where ` “ log2 d and for each i P rss, the product is set-multilinear. Moreover, if F has product-
depth at most ∆ with ∆ ď ln d, then we can choose ` “ ∆d1{∆ ´∆.

Proof. We prove the result by induction on the number of leaves. If the formula has no leaves
(i.e., computes 0), then the result is trivial.

So assuming that the lemma is proved for formulas of at most s leaves, let us prove it for a
formula F with s` 1 leaves.

A leaf α will be called maximal if for each multiplication gate β on the path from the root
ρ to α, the child of β along this path has maximal degree amongst the children of β.

Let α be a maximal leaf of F . Let β1, . . . , βp (p ď ∆) be the multiplication gates which lie
on the path between the root and α. For each βi, let us denote by βi,1 its child on the path
from the root to α and by βi,2, . . . , βi,ri its other children. If µ is a gate of F , we will denote
by F̂µ the polynomial computed by the subformula rooted in µ. Then, we can easily proved by
induction on p that:

Claim 11.

F̂ “ F̂α

p
ź

i“1

˜

ri
ź

j“2

F̂βi,rj

¸

` F̂αÐ0

where FαÐ0 is the subformula we get by replacing the gate α by 0. Furthermore the product is
still set-multilinear.

Proof. If p “ 0, then F̂ “ F̂α ` F̂αÐ0.
Let us show the result for p` 1. Let F “ F1 ` . . .` Ft where α is in F1. So in the subtree

rooted in β1,1, there are p multiplication gates between the root and α. By induction hypothesis,
we have

F̂ “

˜

F̂α

p`1
ź

i“2

˜

ri
ź

j“2

F̂βi,rj

¸

` F̂β1,1αÐ0

¸

¨

r1
ź

j“2

F̂β1,j
` F̂2 ` . . .` F̂s.

The result follows from

FαÐ0 “ Fβ1,1αÐ0 ¨

rp`1
ź

j“2

Fβ1,j
` F2 ` . . .` Fs.

10



Let us come back to the proof of Lemma 10. The formula FαÐ0 has at most s leaves. So
by induction hypothesis,

FαÐ0 “

s
ÿ

i“1

ź̀

j“1

Fi,j .

So it is sufficient to prove that 1 `
řp
i“1pri ´ 1q ě `. The maximality condition and the

homogeneity of the formula ensure that for all i, degpβiq ď ri degpβi,1q “ ri degpβi`1q. In
particular,

śp
i“1 ri ě d. By the AM-GM inequality, we can bound the number of factors by

1`

p
ÿ

i“1

pri ´ 1q ě 1´ p` p

˜

p
ź

i“1

ri

¸1{p

ě 1´ p` pd1{p.

Finally, the derivative of x ÞÑ xd1{x is negative for 0 ă x ă ln d, and positive for x ą ln d.
Hence, the number of factors is always bounded by below by 1 ` pe ´ 1q ln d ą log2 d since
pe´ 1q ln 2 ą 1. Moreover, when ∆ ď ln d, we have a better lower bound ∆d1{∆ ´∆.

3 Lower bounds for large depth formulas

Here we prove Theorem 1. We start with a definition and the main observation, which follows
simply from the properties of relrk from an earlier section.

Definition 12 (Bias of a word w.r.t. a partition). Let S “ pS1, . . . , S`q be an ordered partition of
rds (each Si Ď rds). We assume that the Sis are ordered with respect to their maximal elements
(i.e., i ă j ùñ maxpSiq ă maxpSjq).

Let w P Zd be arbitrary. Given a partition S “ pS1, S2, . . . , S`q of rds, we define the S-bias
of w — biaspS, wq — to be the quantity

ř

jPr`s |wSj | where |wSj | “ |
ř

iPSj
wi|.

Note that unlike biaspwq which we introduced earlier, the values of biaspS, wq do not corre-
spond to sums of wis over some intervals, but over the parts of S.

Lemma 13. Let w P Zd be arbitrary. Assume S “ pS1, . . . , S`q is an ordered partition of rds
such that biaspS, wq ě r. Then, for any choice of polynomials fj P FsmrXpwSj qs (j P r`s), we
have

relrkwpf1 ¨ f2 ¨ ¨ ¨ f`q ď 2´r{2.

Proof. We know that

relrkwpf1 ¨ ¨ ¨ frq “
ź̀

j“1

relrkw|Sj
pfjq ď

ź̀

j“1

2
´|wSj

|{2
ď 2´r{2

where the equality follows from the multiplicativity of relrk and the inequality follows from the
imbalance bound (Claim 5).

To find w that has high bias w.r.t. a given ordered interval partition, we use a random
restriction idea.

Lemma 14 (Random restrictions induce high bias). Let k be any positive integer. There is a
probability distribution D on k-unbiased w P Zd such that for any partition S “ pS1, . . . , S`q of
rds and any ε ě 1{k, we have

Pr
w„D

rbiaspS, wq ď εk`s ď p6εq`{2.

11



Proof. We first define the probability distribution D. Choose a function u : t0, . . . , du Ñ
t´k,´k ` 1, . . . , k ´ 1, ku by setting up0q “ 0 and choosing upiq independently and uniformly
at random from t´k, . . . , ku. Now, we fix w P Zd so that wi “ upiq ´ upi ´ 1q for each i P rds.
Note that for any interval, we have wrts “ ut ´ u0 “ ut (with t ď d) and hence in particular w
is k-unbiased.

Note the following property of w, which will be important in the sequel. Given any i P rds
and conditioned on up0q, . . . , upi´ 1q, the random variable wi is uniformly distributed in some
interval of length 2k ` 1.

For each j P r`s, let Ej denote the event that |wSj | ď εk. Note that we have

Pr
w
rbiaspS, wq ď εk`s ď Pr

w
rDB Ď r`s : |B| “ `{2,

ľ

jPB

Ejs

ď
ÿ

BĎr`s:|B|“`{2

Pr
w
r
ľ

jPB

Ejs

ď 2` ¨ max
BĎr`s:|B|“`{2

Pr
w
r
ľ

jPB

Ejs.

So to prove the lemma it suffices to prove that for any B Ď r`s of size at least `{2, we have

Pr
w
r
ľ

jPB

Ejs ď p3ε{2q`{2. (1)

We show that (1) follows easily using a conditioning argument. Fix some B Ď r`s such that
B “ tj1 ă ¨ ¨ ¨ ă jtu. We have

Pr
w
r
ľ

jPB

Ejs “ Pr
w
rEj1 ^ ¨ ¨ ¨ ^ Ejts “

t
ź

p“1

Pr
w
rEjp | Ej1 ^ ¨ ¨ ¨ ^ Ejp´1s. (2)

Note that for any p P rts, the event Ej1 ^ ¨ ¨ ¨ ^ Ejp´1 depends only on up0q, . . . , upq1q where
q1 “ maxS1 Y ¨ ¨ ¨ Y Sp´1. Let q “ maxSp and note that the order chosen of the parts of S
implies q ą q1. So let us condition on any choice of up0q, . . . , upq´ 1q such that Ej1 ^ ¨ ¨ ¨ ^ Ejp´1

holds. Now, conditioned on up0q, . . . , upq ´ 1q we have wSjp
“ wq ` θ where θ P R is fixed.

As noted above, conditioned on up0q, . . . , upq ´ 1q, wpqq is still uniformly distributed over an
interval of length 2k ` 1. In particular, the probability that |wSjp

| “ |wq ` θ| ď εk is at most

2εk ` 1

2k ` 1
ď

3εk

2k ` 1
ď 3ε{2

where for the first inequality we used the fact that ε ě 1{k. As the above holds for any condi-
tioning of up0q, . . . , upq ´ 1q, it implies that

Pr
w
rEjp | Ej1 ^ ¨ ¨ ¨ ^ Ejp´1s ď 3ε{2

for any p P rts. By (2), we have

Pr
w
r
ľ

jPB

Ejs ď p3ε{2qt

for any B Ď r`s of size t. This implies (1) and thus finishes the proof of the lemma.

We are now ready to prove the main theorem.
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Proof of Theorem 1. If log d ď 2 logn
log logn , then the result is trivial, so we will assume this is not

the case. We assume without loss of generality that n is a power of 2 and that k “ log2 n.
Assume IMMn,d has a set-multilinear formula F of size at most s. We assume that the input
variables of IMMn,d are partitioned into pX1, . . . , Xdq where Xi is the set of variables in the ith
matrix.

Using the Product Lemma (Lemma 10), we have

IMMn,d “

s
ÿ

i“1

ź̀

j“1

Fi,j (3)

where ` ě log d and for each i P rss, there is a partition Si “ pSi,1, . . . , Si,`q such that Fi,j is
a set-multilinear polynomial in the variables pXp : p P Si,jq. If F has product-depth ∆ ď ln d,
then we may further assume that ` “ ∆d1{∆ ´∆.

We will show that for any ε ě 1{k, we have

s ě mintp1{εqΩp`q, 2Ωpεk`qu. (4)

Given the above bound, we can set ε “ plog k{kq “ Θplog log n{ log nq to finish the proof. It
therefore suffices to prove (4).

By Lemma 14, there is a probability distribution over k-unbiased words w P Zd such that
for any ε ě 1{k we have

Pr
w
rDi P rss : biaspSi, wq ď εk`s ď p6εq`{2 ¨ s

where the inequality uses a union bound.
If s ě p1{6εq`{2, then the inequality (4) holds trivially and we are done. So we assume

s ă p1{6εq`{2. In particular, we see that there is a w such that biaspSi, wq ą εk` for each i P rss
and fix such a w for the rest of the proof.

Since w is k-unbiased, we know by Corollary 9 that there is a polynomial Pw which is a set-
multilinear restriction of IMM2k,d “ IMMn,d such that relrkwpPwq ě 2´k{2. Thus, by applying
this linear substitution to both sides of (3) we get

Pw “
s
ÿ

i“1

ź̀

j“1

Pi,j

where Pi,j is the result of applying the linear substitutions to all the variables of Fi,j . Note in
particular that Pi,j is a set-multilinear polynomial in just the variables of XpwSi,j q. Hence, by
Lemma 13, we have for each i P rss,

relrkw

˜

ź̀

j“1

Pi,j

¸

ď 2´εk`{2.

On the other hand, by the sub-additivity of relrk we have

2´k{2 ď relrkwpPwq ď
s
ÿ

i“1

relrkw

˜

ź̀

j“1

Pi,j

¸

ď s ¨ 2´εk`{2.

Using the fact that ` log log n ě 2 log n and ε “ plog kq{k, this implies that s ě 2Ωpεk`q implying
(3) and finishing the proof.
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4 Non-commutative homogeneous lower bound

In this section, we prove Theorem 4, which yields a stronger lower bound for non-commutative
homogeneous formulas of small depth. In view of Lemma 6, it suffices to prove the lower bound
for non-commutative ordered set-multilinear formulas.

Proposition 15. Let d, k ě 1 and any positive integer ∆ ď plog2 dq{3. There is a w∆ P Zd
that is balanced and k2∆-unbiased such that for any non-commutative ordered set-multilinear
formula F of product-depth ∆ over Xpw∆q of size at most s, we have

relrkwpF q ď s ¨ expp´kd1{∆{10q.

Corollary 16. Let n, d,∆ P Nzt0u. Any non-commutative ordered set-multilinear formula F

of product-depth ∆ computing IMMn,d has size at least nΩpd1{∆{2∆q.

Proof. We assume that ∆ ď log d{3 since otherwise the result is trivial.
We now split the analysis into two cases. If 2∆ ě log n, then we need to argue a lower

bound of exppΩpd1{∆qq. For this, we appeal to a result of Nisan and Wigderson [15] which yields
such a lower bound for commutative set-multilinear formulas of product-depth ∆. This also
implies a lower bound for the non-commutative case, as we can just treat any non-commutative
set-multilinear formula for IMMn,d as a commutative formula for the same polynomial. Hence,
we are done.

Now assume that 2∆ ă log n. Fix integer k “ tlogpn1{2∆
qu ě 1 such that there is a balanced

word w as guaranteed by Proposition 15 that is tlog nu-unbiased. By Corollary 9, if IMMn,d has a
set-multilinear formula F of size s and product-depth ∆, then so does some polynomial Pw such
that relrkwpPwq “ 1. By Proposition 15, we must then have s ě exppΩpkd1{∆qq “ nΩpd1{∆{2∆q.
This finishes the proof.

Our previous result [13] proves a weaker bound than the one above for commutative set-
multilinear formulas under the additional assumption that d “ Oplog nq. This result is incom-
parable to that one, as the model is weaker but the quantitative bounds obtained are stronger.

Proof of Proposition 15. Let us begin by defining w∆. For simplicity, let us assume that d “
r∆ ´ 1 for some odd number r ě 3. (This assumption can easily be removed by fixing r to be
the largest odd number such that r∆ ´ 1 ď d and working with a word w that is as defined
below on the first d1 “ r∆´ 1 co-ordinates and 0 on all other co-ordinates. In particular we can
always get r ě pd` 1q1{∆ ´ 2 ě d1{∆{2 ě 3 where the last two inequalities uses ∆ ď plog dq{3.)
More generally, let di “ ri ´ 1 for i ď ∆.

Define, for each i ď ∆, a word wi P Zdi as follows.

w1 “ pk,´k, k,´k, ¨ ¨ ¨ , k,´kq

wi`1 “ pwi, pBi ` kq, w
i,´pBi ` kq, ¨ ¨ ¨ ,´pBi ` kq, w

iq (5)

where Bi :“ maxI |w
i
I | where I ranges over intervals contained in rdis that begin at 1 or end

at di (i.e. the intervals that measure how unbiased wi is). Note that wi`1 contains exactly r
copies of wi.

It can be checked by induction on i that the following hold.

(P1) Each wi is balanced: the sum of its entries is 0.

(P2) For every interval I Ď rdis that begins at 1, |wiI | ě 0 and for every interval I Ď rdis that
ends at di, |w

i
I | ď 0.
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(P3) If i ă ∆, then Bi`1 ď 2Bi ` k.

The last condition implies that Bi ď kp2i ´ 1q ď k2i for each i P r∆s. In particular, the word
w∆ is balanced and k2∆-unbiased as claimed.

We call the positions of wi`1 that contain pBi ` kq or ´pBi ` kq the extremal positions of
wi`1. We have set things up so that wi`1 has exactly r ´ 1 many extremal positions.

We prove the following stronger claim by induction on the product-depth. For i ď ∆, let
F be any (non-commutative ordered set-multilinear) formula of product-depth i over a XpW q
where W is a (contiguous) subword of w∆ that contains wi. Then

relrkW pF q ď s ¨ expp´kr{5q

where s denotes the size of F . This claim finishes the proof since r ě d1{∆{2.
The base case of the induction corresponds to product-depth 1. Let F be a formula over

XpW q where W contains w1 as a subword. We have F “ F1 ` ¨ ¨ ¨ ` Fs where Fis are products
of linear functions. Note that by Claim 5, any linear function Lj over the variable set XpWjq

satisfies relrkWj pLjq ď 2´|Wj |{2. In particular, each product of linear functions Fi satisfies

relrkW pFiq ď 2´
ř

j |Wj |{2. Hence, by the subadditivity of relrkW p¨q, we have

relrkW pF q ď
s
ÿ

i“1

relrkW pFiq ď s ¨ 2´
ř

j |Wj |{2 ď s ¨ 2´
ř

j |w
1
j |{2 ď s ¨ expp´kr{5q.

where for the second-last inequality we used the fact that w1 is a subword of W and for the last
one, the fact that r ě 3.

Now for the inductive case. Assume the above is already proved for depth i ă ∆ and
consider depth i` 1. Again assume that W contains wi`1 and F has product-depth i` 1. We
have F “ F1 ` ¨ ¨ ¨ ` Fs where each Fi has a product gate as output gate. By subadditivity of
relrkW it suffices to show that for each i P rss, we have

relrkW pFiq ď si ¨ expp´kr{5q, (6)

where si is the size of the subformula Fi.
Fix any Fi. We have Fi “ G1 ¨ ¨ ¨G` which corresponds to splitting the word W into `

disjoint subwords W 1, . . . ,W `. Let si,j denote the size of Gj . We consider two cases.

1. There is a j P r`s such that W j contains a copy of wi: In this case, we can bound
relrkW pFiq by

relrkW pFiq ď relrkW j pGjq ď si,j ¨ expp´kr{5q ď si ¨ expp´kr{5q.

2. There is no such j P r`s: In this case, the extremal positions of wi`1 are in different
words (if two extremal positions belonged to the same word W j , then W j would contain
a copy of wi, which is assumed to be false). Let W j1 , . . . ,W jr´1 be the words that contain
the extremal positions.

By the construction of wi`1 in (5), each such word W jp (p P rr´ 1s) is a (possibly empty)
partial suffix u of a copy of wi, followed by the extremal position, which is then followed
by a (possibly empty) partial prefix v of wi. By our choice of Bi, it follows that the sum
of entries of W jp is at least k in absolute value for each p P rr´ 1s. To see this, note that
if the entry in the extremal position is positive, then by (P2) above, the sum of the entries
of v only increase this value, while the sum of the entries of u can only reduce this value
by Bi, hence implying that the overall sum is at least k. A similar argument shows that
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if the extremal position has a negative entry, the sum of the entries of W jp is at most ´k
and hence at least k in absolute value.

Hence, by Claim 5, we have relrkW jp pGjpq ď 2´k{2 for each p P rr ´ 1s. We can thus
bound relrkW pFiq by

relrkW pFiq ď 2´kpr´1q{2 ď expp´kr{5q ď si expp´kr{5q.

We have thus proved (6) which completes the induction.

Finally, we can even get a depth hierarchy result. We notice that there are polynomials P∆
w

set-multilinear over Xpw∆q which are computable by non-commutative ordered set-multilinear
polynomial-sized formulas of product-depth ∆ ` 1 where the words w are those chosen in
the proof of Proposition 15. Intuitively, these polynomials are constructed from nested inner
products according to w. Indeed, let us define

P 1
w

`

Xra,a`r´2s

˘

“

pr´1q{2
ź

u“1

2k
ÿ

v“1

xa`2u´2,vxa`2u´1,v,

and P i`1
w

`

Xra,a`ri`1´2s

˘

“ P iw
`

Xra,a`ri´2s

˘

¨

pr´1q{2
ź

u“1

2Bi`k
ÿ

v“1

2
ź

j“1

xa`p2u`j´2qri´1,vP
i
w

`

Xra`p2u`j´2qri,a`p2u`j´1qri´2s

˘

where Xra,bs corresponds to the sets of variables
Ť

iPra,bsXi. Notice that P iw is always associated

with an interval of variables of length ri´1. Finally, each set Xi has at most maxip2
k`Biq ď 2k2i

variables, so the polynomials P iw depend on at most N “ d2k2∆
variables.

It is clear by definition that P iw is computed by a non-commutative ordered set-multilinear

circuit of product-depth ∆ ` 1 and size at most 2∆ ¨ r ¨maxip2
Bi`kq ď 2∆d2k2∆

ď Op∆ ¨ Nq.
Moreover, the inner product structure ensures that relrkpP iwq “ 1 for all i. Consequently,
combined with Proposition 15, we get

Corollary 17. Let ∆ be a positive constant and N, d be growing parameters. There exist
non-commutative homogeneous N -variate polynomials of degree d which are computed by non-
commutative ordered set-multilinear formulas of product-depth ∆ ` 1 and size OpNq, but such
that any such formula of product-depth ∆ has size at least

s ě NΩpd1{∆q.
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