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Abstract

We show that the number of variables and the quantifier depth needed to distinguish a
pair of graphs by first-order logic sentences exactly match the complexity measures of clause
width and positive depth needed to refute the corresponding graph isomorphism formula in
propositional narrow resolution.

Using this connection, we obtain upper and lower bounds for refuting graph isomorphism
formulas in (normal) resolution. In particular, we show that if k is the minimum number
of variables needed to distinguish two graphs with n vertices each, then there is an nO(k)

resolution refutation size upper bound for the corresponding isomorphism formula, as well
as lower bounds of 2k−1 and k for the tree-like resolution size and resolution clause space for
this formula. We also show a resolution size lower bound of exp

(
Ω(k2/n)

)
for the case of

colored graphs with constant color class size.
Applying these results, we prove the first exponential lower bound for graph isomorphism

formulas in the proof system SRC-1, a system that extends resolution with a global symmetry
rule, thereby answering an open question posed by Schweitzer and Seebach.

Keywords Proof Complexity · Resolution · Graph Isomorphism · k-variable fragment first-order
logic Lk · Immerman’s Pebble Game

1 Introduction
In an attempt to give a logical characterization of polynomial time graph properties, as well as
a description of general classes of graph canonization algorithms, Immerman identified certain
fragments of first-order logic suitable for expressing graph properties [Imm82, Imm99]. In
this setting, for such a language L of first-order logic sentences, two graphs G and H are
L -equivalent, denoted by G ≡L H if for all sentences ψ ∈ L it holds G � ψ ⇐⇒ H � ψ.
Immerman noticed that the number of variables needed for expressing a property is a good
complexity measure and defined the k-variable fragment of first-order logic Lk as the set of
first-order logic formulas with the edge and equality relations that use at most k different
variables (possibly re-quantifying them). He also defined the stronger class Ck by adding
counting quantifiers to the class Lk and defined two pebble games for proving (non)equivalence
of structures in these classes.
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It was shown in [CFI92] that two graphs are Ck-equivalent if and only if they cannot be
distinguished with the (k − 1)-dimensional Weisfeiler–Leman algorithm, a well-known method
for testing graph isomorphism. Roughly speaking, the 1-dimensional Weisfeiler–Leman algo-
rithm [WL68, Wei76], or color refinement algorithm, identifies non-isomorphic colored graphs by
updating in a series of steps the original vertex colors according to the multiset of colors of their
neighbors. This basic step is applied repeatedly until the coloring stabilizes. This procedure can
be generalized to the k-dimensional Weisfeiler Leman algorithm (k-WL) by partitioning the set
of k-tuples of vertices into automorphism-invariant equivalence classes (see e. g., [CFI92, Kie20]
for excellent overviews of the powers and limits of this procedure).

The GraphIso problem, deciding whether two given graphs are isomorphic, has been inten-
sively studied, as it is one of the few problems in NP that is not known to be complete for this
class nor to be in P. Also unknown is whether the problem is in co-NP. It has been conjectured
that GraphIso is solvable using the k-dimensional Weisfeiler–Leman algorithm, with k being
sublinear in the number of vertices of the graphs. However, this was shown to be false in the
seminal work of Cai, Fürer, and Immerman [CFI92], using the Ck pebble game as a central
tool. The WL method and its generalizations still play a central role in the algorithmic research
on GraphIso; for example, Babai’s celebrated algorithm for GraphIso [Bab16] uses the k-WL
method as a subroutine, with k being polylogarithmic in the number of vertices.

The field of proof complexity provides a different approach for studying the complexity of
the GraphIso problem. Roughly speaking, in this setting, one tries to find out the smallest size
of a proof in a concrete system of the fact that two graphs are non-isomorphic. It holds that
GraphIso would be in co-NP if and only if there is a concrete proof system with polynomial
size proofs of non-isomorphism. Similar to the Cook–Reckhow program for the unsatisfiability
problem UNSAT, this defines a clear line of research trying to provide superpolynomial lower
bounds for graph (non)isomorphism formulas in stronger and stronger proof systems. The
situation is even more interesting here as in the SAT case since it would not be too surprising
if GraphIso ∈ co-NP, and this fact would imply the existence of polynomial size proofs for the
problem in some system. In fact, well-known randomized polynomial size interactive proofs of
non-isomorphism do exist [GMW91].

A first example of such a lower bound was given in [Tor13], where it was shown that a family
of unsatisfiable formulas encoding pairs of non-isomorphic graphs in a natural way requires expo-
nential size resolution refutations. These graphs are based on the CFI construction from [CFI92].
The lower bound can be explained as an “encoding” of the Tseitin tautologies [Tse68] into graph
isomorphism instances. This result has been extended to stronger proof systems: In [BG15],
the authors proved linear degree lower bounds for the algebraic systems Polynomial Calculus
and Positivstellensatz by studying graphs arising from Tseitin tautologies. They furthermore
characterized the power of the Weisfeiler–Leman algorithm in terms of an algebraic proof system
lying between degree-k Nullstellensatz and degree-k Polynomial Calculus. Moreover, it has
been shown in [AM13, Mal14, GO15] that the expressive power of k-WL lies between the k-th
and (k + 1)-st level of the canonical Sherali–Adams LP hierarchy [SA90]. By the construction
in [CFI92], no sublinear level of Sherali–Adams suffices to decide GraphIso. Again, building
on the work of [CFI92], it was shown in [OWWZ14] that there exist pairs of non-isomorphic
n-vertex graphs such that any Sum-of-Squares proof of non-isomorphism must have degree Ω(n).
In related work [CSS14], it was shown that no sublinear level of the Lasserre hierarchy suffices
to decide GraphIso.

Very recently, a different view was considered by Schweitzer and Seebach in [SS21] by
introducing symmetry rules into the picture. The authors proved that resolution extended
with the well-known symmetry rule SRC-2 from Krishnamurthy [Kri85] has polynomial size
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refutations for all the instances of the graph isomorphism problem for which exponential size
lower bounds for (normal) resolution are known. They pointed to the search for hard instances
of graph isomorphism for resolution extended with the existing symmetry rules that define the
proof systems SRC-1, SRC-2, and SRC-3, a hierarchy of systems with more and more powerful
symmetry rules [AU00, Sze05]. They pose the question of whether graph non-isomorphism
formulas have superpolynomial resolution complexity in any of these proof systems. These
are very interesting questions since finding symmetries in a formula in order to be able to
apply Krishnamurthy’s rules is as hard as graph isomorphism itself. Finding lower bounds for
non-isomorphism in a system with symmetry rules can be seen as proving non-isomorphism
with the help of an “isomorphism subroutine”.

1.1 Our Results
We show a strong connection between the Lk fragment of first-order logic and the proposi-
tional resolution proof system. This is done by proving that the number of variables and
the quantifier depth needed to distinguish two graphs G and H in first-order logic exactly
corresponds simultaneously to the width and positive depth of a narrow resolution refutation
of the unsatisfiable formula ISO(G,H) stating that the graphs are isomorphic (Theorem 17).
Narrow resolution [GT05] is a slight variation of (normal) resolution that allows a distinction by
cases rule, allowing to deal with the inconveniences of having long clauses in the formula. As in
the case of the clause width measure [BW01], narrow width allows, in our case, to derive upper
and lower bounds for the size of the resolution refutations of non-isomorphism. Furthermore, we
show that narrow width also provides a lower bound for the clause space needed in resolution,
as it is the case for the standard width measure. In particular, we prove that for any pair of
non-isomorphic graphs (G,H) with n vertices each and k ≥ 3:

• If G 6≡Lk
H, then there is a (normal) resolution refutation of ISO(G,H) of size nO(k);

• if G ≡Lk
H, then every tree-like resolution refutation of ISO(G,H) has size ≥ 2k;

• if G ≡Lk
H, then every (normal) resolution refutation of ISO(G,H) has clause space

≥ k + 1; and
• for a pair of graph colorings (λ, µ) with (G,λ) ≡Lk

(H,µ), every (normal) resolution
refutation of ISO(G,H) has size exp

(
Ω(k2/m2)

)
, where m := ∑

v∈G |color-class(v)|.
The last result allows to directly derive resolution size lower bounds from Immerman’s pebble
game for Lk. We use this result to prove that a version of the multipede graphs defined
in [DK19] has exponential resolution lower bounds. We also observe that Krishnamurthy’s
SRC-1 symmetry rule cannot be applied to the isomorphism formulas for asymmetric graphs and
conclude that the resolution size lower bound for the multipede graphs also holds for the SRC-1
system. This provides the first example of a class of graphs whose isomorphism formulas have
exponential size lower bounds for the size of resolution refutations with one of the symmetry
rules, thus solving a question from [SS21].

1.2 Organization of This Paper
The rest of this paper is organized as follows. In Section 2, we introduce resolution complexity
measures, narrow resolution, and Krishnamurthy’s symmetry rules, as well as the graph isomor-
phism formulas and Immerman’s pebble game. Then, in Section 3, we prove the connection
between narrow resolution width and Lk. This yields the upper bounds on resolution size and
the lower bounds on tree-like resolution size for refuting ISO(G,H). The exponential lower
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bound for the size of SRC-1 graph isomorphism formula refutations is shown in Section 4.
Finally, in Section 5, clause space lower bounds for proving graph non-isomorphism in resolution
are shown.

2 Preliminaries
We let N denote the set of positive integers. For n ∈ N, we let [n] := {k ∈ N | 1 ≤ k ≤ n}.

A literal ` over a Boolean variable x is either x itself or its negation x := ¬x. For a literal `,
we put ` := ¬x if ` = x, and ` := x if ` = ¬x; and call ` and ` complementary literals. A
clause C = (`1 ∨ · · · ∨ `k) is a (possibly empty) disjunction of literals `i. We let � denote the
contradictory empty clause (the clause without any literals). A CNF formula F = C1 ∧ · · · ∧Cm
is a conjunction of clauses. It is often advantageous to think of clauses as sets of literals and
CNF formulas as sets of clauses. For a clause C we put C := {` | ` ∈ C}. The set of variables
occurring in a clause C will be denoted by Vars(C). The set of literals occurring in a clause C
is given by Lits(C) := Vars(C) ∪ Vars(C). The notion of the set of variables and literals in a
clause is extended to CNF formulas by taking unions. An assignment/restriction α for a CNF
formula F is a function that maps some subset of Vars(F ), denoted by Dom(α), to {0, 1}. We
let |α| := |Dom(α)|. We denote the empty assignment with λ. By naturally extending α by the
definition α(x) := α(x), we can define the result of applying α to C, which we denote by C|α:
one deletes all occurrences of literals ` from C, where α(`) = 0; if there is a literal ` ∈ C with
α(`) = 1, then C|α = 1. The notation F |α denotes the formula, where all clauses containing
a literal ` with α(`) = 1 are deleted and each remaining clause C is replaced by C|α. If ` is a
literal that is not assigned by α, and a ∈ {0, 1}, then α{` = a} denotes the extension of α with(
α{` = a}

)
(x) := α(x) for all x 6= ` and

(
α{` = a}

)
(`) = a as well as

(
α{` = a}

)
(`) = 1− a.

2.1 Resolution and Complexity Measures
If B ∨ x and C ∨ x are clauses, then the resolution rule allows the derivation of the clause
R := (B ∨ C). In the resolution rule, we call B and C the parents and R the resolvent.

Definition 1. A resolution derivation of a clause D from a CNF formula F (denoted by
π : F `D) is an ordered sequence of clauses π = (C1, . . . , Ct) such that Ct = D, and each
clause Ci, for i ∈ [t], is
(1) either an axiom clause Ci ∈ F ,
(2) or a weakening of a clause Cj with j < i, i. e., Ci ⊇ Cj ,
(3) or is derived from clauses Cj and Ck with j < k < i by the resolution rule.

A derivation π : F `� of the empty clause from an unsatisfiable CNF formula F is called
refutation.

To every configurational refutation π, we can associate a refutation-DAG Gπ with the inferred
clauses of the refutation labeling the vertices of the DAG and edges from the parents to the
resolvent for each application of the resolution rule, and edges from the original to the weakened
clause for each weakening step.

Definition 2. The size of a resolution refutation π, denoted Size(π), is defined to be the number
of clauses in the underlying refutation DAG Gπ.

The width of a clause C is defined by Width(C) := |C|, whereas the width of a formula F is
given by Width(F ) := maxC∈F Width(C). Similarly, we put Width(π) := maxi∈[t] Width(Ci)
for a refutation π = (C1, . . . , Ct).
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The depth Depth(π) of a refutation π is the length of the longest path in the underlying
refutation DAG Gπ.

In the following, we will consider the one-sided version of depth, called positive depth, that
was recently introduced in [PR21].

Definition 3. The positive depth of a resolution refutation π, denoted by PosDepth(π), is the
maximum number of negative literals introduced (while also counting re-introductions) along
any path in the underlying proof graph from the empty clause to an axiom.

We will also refer to the clause space measure for resolution. Intuitively, the clause space of
a refutation π, denoted by CS(π), is defined as the maximum number of clauses that need to be
kept in memory simultaneously when verifying the proof π. A more formal definition can be
found in [ET01].

2.1.1 Narrow Resolution and Narrow Width

The standard definition of width is not well suited for the resolution of formulas having large
width themselves, like the isomorphism formulas (cf. Section 2.2). A more natural way to
deal with the width concept in such formulas was introduced by Galesi and Thapen in [GT05]
together with the concept of narrow resolution.

Definition 4. A narrow resolution derivation of a clause D from a CNF formula F is an ordered
sequence of clauses π = (C1, . . . , Ct) such that Ct = D, and for each i ∈ [t], the clause Ci is
obtained by rule (1), (2), or (3) of a (normal) resolution derivation or by the following distinction
by cases step:
(4) If (B ∨ x1 ∨ · · · ∨ xm) ∈ F , and if there are clauses Cj1 = (A1 ∨ x1), . . . , Cjm = (Am ∨ xm)

with j1 < · · · < jm < i, then we can derive Ci := (B ∨A1 ∨ · · · ∨Am).
We write N-Width(π) ≤ k if π is a narrow resolution and Width(Ci) ≤ k for all i ∈ [t], Ci 6∈ F .

The definition here is a slight generalization of the original one in [GT05] since, in rule (4), we
do not require all the Aj clauses to coincide, and we allow for a subclause B to be present in the
axiom clause (note, however, that the width of each Aj and B will be counted). This modification
also allows an exact characterization of the number of pebbles needed in Immerman’s game in
terms of the width measure in narrow resolution, as shown in Theorem 17.

Definition 5. For a complexity measure C ∈ {Size,Width,Depth,PosDepth,CS,N-Width}, by
taking the minimum over all refutations of a formula F , we define C(F `�) := minπ:F `� C(π) as
the size, width, depth, positive depth, clause space, and narrow width of refuting F in resolution,
respectively.

2.1.2 Krishnamurthy’s Symmetry Rules

Krishnamurthy [Kri85] observed that symmetries arise naturally in proofs of combinatorial
principles and suggested some rules to simplify such proofs.

Definition 6. Let L be a finite set of complementary literals. Then, a bijective mapping
f : L → L is called a renaming if for every ` ∈ L we have f(`) = f(`). For a clause C ⊆ L
and a renaming f , we set f(C) := {f(`) | ` ∈ C}. For a formula F with Lits(F ) ⊆ L we put
f(F ) := {f(C) | C ∈ F}.
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Definition 7 (The symmetry rules, [Kri85, Urq99]). Let F be a CNF formula and C a clause
that can be derived by a resolution proof π : F ′ `C from a subformula F ′ ⊆ F . If there
exists a renaming f : Lits(F ) → Lits(F ) with f(F ′) ⊆ F , then the local symmetry rule with
complementation allows the derivation of f(C) from C in one step in the extended proof
system. If we have the additional restriction F ′ = F , we speak of the global symmetry rule with
complementation.

Adding the global or local rule, respectively, to the proof system resolution (i. e., we consider
proofs in which each clause is inferred by resolution from two clauses listed earlier in the proof,
or by the respective symmetry rule from one clause earlier in the proof) yields the proof systems
SRC-1 and SRC-2 .

Allowing also to use so-called dynamic symmetries, i. e., symmetries in the clauses already
resolved and not restricting ourselves to symmetries in the original axioms, one can define the
proof system SRC-3 . We refer to [Sze05].

2.2 Graph Isomorphism and GI Formulas
An (undirected) graph is a tuple G =

(
VG, EG

)
, where VG is a finite set of vertices and EG ⊆

(VG
2
)

is the set of edges. A colored graph (G,λ) is a graph G together with a function λ : V → C, called
coloring, where C is some set of colors. We treat every uncolored graph as a monochromatic
graph.

Definition 8. Two colored graphs (G,λ) and (H,µ) are isomorphic, denoted by (G,λ) ∼= (H,µ),
if there is a color- and edge-respecting bijection ϕ : V (G) → V (H), called (color-preserving)
isomorphism from G to H, that is: {u, v} ∈ EG ⇐⇒

{
ϕ(u), ϕ(v)

}
∈ EH holds for all u, v ∈ VG

and additionally λ(v) = µ
(
ϕ(v)

)
. An automorphism of a graph (G,λ) is an isomorphism

from (G,λ) to (G,λ).
We denote by Iso(G,H) the set of isomorphisms between G and H and by Aut(G) the set

of automorphisms of G.

Every coloring λ : VG → C of a graph G induces a partition of VG: for a color c ∈ Im(λ), we
call λ−1(c) ⊆ V (G) a color class of G. The color class size of G is the cardinality of its largest
color class. It is known that the GraphIso problem can be solved in polynomial time when the
color classes have constant size [FHL80].

We encode instances of the GraphIso problem as Boolean formulas. As explained below, the
formulas used here are a slight modification from those in [Tor13].

Definition 9. Let G = (VG, EG) and H = (VH , EH) be two graphs with VG = {v1, . . . , vn} and
VH = {w1, . . . , wn}. The formula ISO(G,H) is defined by the following clauses:
Type 1 clauses: for every i ∈ [n] the clause (xi,1∨xi,2∨· · ·∨xi,n) indicating that vertex vi ∈ VG

is mapped to some vertex in VH ; and for every j ∈ [n] the clause (x1,j ∨ x2,j ∨ · · · ∨ xn,j)
indicating that vertex wj ∈ VH is the image of some vertex in VG.

Type 2 clauses: for every i, j, k ∈ [n] with i 6= j the clause (xi,k ∨ xj,k) indicating that not two
different vertices are mapped to the same one; and for every i, j, k ∈ [n] with j 6= k the
clause (xi,j ∨ xi,k) indicating that the variables encode a function.

Type 3 clauses: for every i, j, k, ` ∈ [n] with i < j and k 6= ` with {vi, vj} ∈ EG ⇔ {vk, v`} 6∈ EH ,
the clause (xi,k ∨ xj,`) expressing the adjacency relation (an edge cannot be mapped to a
non-edge and vice-versa).
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The formula ISO(G,H) has n2 variables and O(n4) clauses. The clauses of Type 2 and
Type 3 have width 2, while the clauses of Type 1 have width n.

Clearly, these formulas are satisfiable if the corresponding graphs are isomorphic. In the
original definition of the ISO(G,H) formulas [Tor13], the second possibility of Type 1 and
Type 2 clauses was not considered. The formulas with and without these clauses are equivalent
under satisfiability. We include these clauses here in order to obtain an exact characterization
of Immerman’s pebble game. Including these clauses can only make the lower bounds for the
resolution of these formulas for non-isomorphic graphs stronger. The situation is similar to
that for other principles, like the Pigeon-Hole-Principle, where the formulas with the additional
Type 1 and Type 2 clauses are called onto-functional-PHP formulas (see, e. g., [Raz01]). In
fact, the formula PHPn+1

n stating that n + 1 pigeons cannot be mapped to n holes coincides
with ISO(G,H) when G and H are the graphs with n+ 1 and n isolated vertices, respectively.
Observe that PHPn+1

n has exponential size resolution proofs, but as noticed in [Kri85, Urq99],
polynomial size proofs in SRC-1. All through the paper, we will consider only isomorphism
formulas corresponding to pairs of graphs having both the same number of vertices.

An advantage of the isomorphism formulas is that one can express colorings of the involved
graphs G and H as partial assignments of the variables:

Definition 10. Let G,H be as in Definition 9 and let λ : VG → C and µ : VH → C be two graph
colorings. Set

ρ :=
{
xi,j = 0

∣∣ i, j ∈ [n] with λ(i) 6= µ(j)
}
.

Define the ISO-formula for the colored graphs as

ISOλ, µ(G,H) := ISO(G,H)|ρ.

Observe that while every coloring can be represented by a restriction, a restriction does
not always encode a coloring. A coloring can drastically reduce the number of variables in the
isomorphism formula. We will later make use of this fact. It is not hard to see that, as in the
case of non-colored graphs, we have ISOλ, µ(G,H) ∈ UNSAT⇐⇒ (G,λ) 6∼= (H,µ).

Remark 11. Since every pair of colorings (λ, µ) of a pair of graphs (G,H) can be encoded as a
restriction ρ of the formula ISO(G,H) as explained, a lower bound on the size of a resolution
refutation of the ISOλ, µ-formula for colored graphs also holds for the ISO-formula of the
corresponding monochromatic graphs.

It is illustrative to contrast the ISOλ, µ-formulas with the ListIso problem which asks, given
two graphs G and H, where each vertex v ∈ VG is equipped with a list L(v) ⊆ VH , if there exists
an isomorphism ϕ : VG → VH such that ϕ(v) ∈ L(v) for all v ∈ VG. This problem can also be
easily expressed as a satisfiability problem by restricting the first kind of Type 1 clauses to contain
only the possibilities for each vertex (and doing analogously with the second kind of Type 1
clauses). However, this restriction would not encode a graph coloring in general. Moreover,
ListIso seems to be harder than Graph Isomorphism as it was shown in [Lub81, KKZ21] that
this problem is NP-complete.

2.3 Immerman’s Pebble Game
Definition 12 ([Imm82, Imm99]). For a given language L (of first-order logic sentences), we
say that two graphs G and H are L -equivalent, denoted by G ≡L H if for all sentences ψ ∈ L
it holds:

G � ψ ⇐⇒ H � ψ.
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Definition 13 (k-variable fragment of first-order logic). The k-variable fragment of first-order
logic Lk is the set of first-order logic formulas that use at most k different variables (possibly
re-quantifying them). Furthermore, Lk,m is the subclass of Lk, where the quantifier depth in
the formulas is restricted to m.

By allowing counting quantifiers, we can extend Lk to the more expressive fragment Ck. For
a graph G, we say that it has Weisfeiler–Leman dimension at most k if and only if G 6≡Ck+1 H
for all graphs H non-isomorphic to G.

We next describe a pebble game that is equivalent to testing Lk,m-equivalence (or Lk-
equivalence for the unrestricted game) and is a variant of an Ehrenfeucht-Fräıssé game [Fra50,
Ehr61]. We borrow the notation from [Kie20].

Definition 14 (Immerman’s pebble game, [Imm82]). Let m, k ∈ N. For graphs G = (VG, EG)
and H = (VH , EH) with an equal number of vertices, we define the m-move k-pebble game of
Immerman as follows: The game is played by two players called Player I and Player II 1 on
the graphs G and H with k pairs of pebbles. The game proceeds in rounds, each of which is
associated with a position consisting of pebble placements. The position after move r ∈ [m]
of the game is denotes by (~vr, ~wr) ∈ V `

G × V `
H with 0 ≤ ` ≤ k. The initial position is the pair(

(), ()
)

of empty tuples.
We now describe a round of the game. Suppose the current position of the game is

(~vr, ~wr) =
(
(v1, . . . , v`), (w1, . . . , w`)

)
.

• First, Player I chooses whether he wants to remove a pebble pair (only possible if ` > 0) or
to place a new pair of pebbles (only possible if ` < k).

– If he wants to remove a pair of pebbles, he chooses some i ∈ [`] and the position of
the game changes to

(
(v1, . . . , vi−1, vi+1, . . . , v`), (w1, . . . , wi−1, wi+1, . . . , w`)

)
and the

next round begins.
– Otherwise, he picks a graph K ∈ {G,H} and a vertex v ∈ VK .

• Player II then picks a vertex w ∈ VK̂ , where K̂ := {G,H} \ {K} is the graph not chosen
by Player I. The position of the game changes to

(~vr+1, ~wr+1) :=
{ (

(v1, . . . , v`, v), (w1, . . . , w`, w)
)

if K = G,(
(v1, . . . , v`, w), (w1, . . . , w`, v)

)
otherwise,

and the next round begins.
We say Player II survives round r of the game if and only if G[~vr] ∼= H[~wr], i. e., the map

vi 7→ wi (for i ∈ [`]) is an isomorphism of the subgraphs induced by the pebbled vertices. If any
difference between the induced ordered subgraphs is exposed within at most m rounds, then we
say that Player I wins the m-move game. This is precisely the case when there are i, j ∈ [`]
such that vi = vj 6⇔ wi = wj or {vi, vj} ∈ EG 6⇔ {wi, wj} ∈ EH or there is an i ∈ [`] such that
the colors of vi and wi are different.

If there is no restriction on the number of rounds m being played, Player I wins the game if
he wins some round, while Player II survives the game if she can survive forever.

Note that the interpretation of a configuration
(
(v1, . . . , v`), (w1, . . . , w`)

)
is that the i-th

pebble pair is placed on the vertices vi and wi (for i ∈ [`]).
1The players are also called Spoiler and Duplicator. However, we will not use these names here as we will also

consider the Spoiler–Duplicator game later on.

8



Graph Identification and the Resolution for GI Formulas Jacobo Torán & Florian Wörz

3 Connection Between Narrow Resolution Width and Lk

Immerman’s pebble game can be directly translated as a Spoiler–Duplicator type game played on
the ISO(G,H) formulas. This kind of game has often been used in proof complexity arguments.
The game defined here is a version of the game for the characterization of resolution width
from [AD08] except that now Spoiler can not choose variables but clauses, and Duplicator
has to satisfy some literal in the chosen clause. Very similar games have already been defined
in [EGM04] and [GT05]. The only difference is that in our game, Spoiler can only choose
Type 1 clauses (instead of any clause as in [EGM04] or even variables as in [GT05]). For
some of our proofs, we need to define the witnessing games also on restricted isomorphism
formulas ISO(G,H)|γ for some restriction γ. In this case, we say that the Type of an axiom C|γ
in ISO(G,H)|γ (1, 2, or 3) is the same as that of the original axiom C.

Definition 15 (k-witnessing game). For k ∈ N and a restriction γ, Spoiler and Duplicator
construct in rounds a partial assignment α for the formula ISO(G,H)|γ . Initially, α0 = λ.
At the beginning of round i, Spoiler chooses a subset of αi−1 of size at most k − 1 and a
Type 1 clause C|γ in ISO(G,H)|γ . Then, Duplicator extends the assignment to one literal
in C|γ , satisfying this clause and not falsifying any clause in ISO(G,H)|γ . If this is not possible,
Duplicator loses the game.

Observation 16. G 6≡Lk
H if and only if Spoiler wins the k-witnessing game on ISO(G,H).

Proof. The moves of Player I in Immerman’s game, placing a pebble on a vertex vi ∈ VG (or a
vertex wj ∈ VH), correspond to Spoiler choosing a Type 1 clause of the kind (xi,1 ∨ · · · ∨ xi,n)
(respectively one of the kind (x1,j ∨ · · · ∨ xn,j)). Player II’s answer corresponds to the literal
in these clauses chosen by Delayer. Player I wins Immerman’s game when two pebbles on
different vertices in one graph are answered with two pebbles on the same vertex in the other
graph, corresponding to a Type 2 clause being falsified, or when the pebbles contradict the local
isomorphism condition, and this corresponds to a Type 3 clause being falsified in the witnessing
game.

Using this game, we can show an equivalence between the number of variables needed to
distinguish two graphs and the width measure in narrow resolution. We also notice that the
number of rounds in both games matches. Since our witnessing game is a restriction of the game
in [GT05], the proof of the result in one direction follows similar arguments as in the result for
general formulas from the mentioned paper, but the bound we obtain is slightly better.

Theorem 17. For k ≥ 3, G 6≡Lk,m
H if and only if there is a narrow width resolution

refutation π of ISO(G,H) with N-Width(π) ≤ k − 1 and PosDepth(π) ≤ m simultaneously.

Proof. For the direction from left to right, suppose G 6≡Lk,m
H. By Observation 16, there is

a winning strategy for Spoiler in the k-witnessing game on ISO(G,H) in m moves. Such a
strategy has to be able to decide for each reachable partial assignment α in the game, what
variables can be deleted from the assignment, and what Type 1 clause C to query next. Such a
strategy can be represented as a strategy graph whose vertices store the information (α,C) with
|α| ≤ k − 1. From such a vertex and for every literal ` ∈ C, there is a directed edge pointing to
the vertex (α′`, C`). Here, α′` is the assignment obtained from α by setting ` = 1 and maybe
deleting some values (according to the strategy of Spoiler after knowing the answer of Duplicator
for C). Furthermore, C` is the Type 1 clause queried next or a clause falsified by α′`. In this
last case, (α′`, C`) is a winning position for Spoiler and a sink in the strategy graph. The only
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source of the graph is the initial vertex (α0, C0), where α0 is the empty assignment and C0 is
the first Type 1 clause queried by Spoiler. Observe that since we have supposed that Spoiler
has a winning strategy, this graph is acyclic. It is not necessarily a tree.

The strategy graph can be interpreted as an upside-down resolution graph π of ISO(G,H).
We can associate to each vertex (α,C) the clause Cα, defined as the set of literals falsified
by α. With an inductive argument, starting at the sinks, we show that Cα can be resolved by
narrow resolution from the clauses associated with the successor vertices of (α,C). For the sink
vertices (α,C), by the way the graph and the witness game are defined, C is an axiom of width 2
falsified by α (since k ≥ 3 this implies |α| ≤ k − 1). Using weakening, we can identify Cα with
this vertex. For an interior vertex (α,C) with C = (`1 ∨ · · · ∨ `n) and with successor vertices
(β1, C1), . . . , (βn, Cn), we can suppose by induction that there are clauses Cβ1 , . . . Cβn associated
with the successor vertices. Each assignment βi has the form βi = αi ∪ {`i = 1} with αi ⊆ α
and |βi| ≤ k − 1. Because of this, C and each Cβi

have exactly the pair of complementary
literals (`i, `i) and can be resolved. Using a narrow resolution step, we can resolve all these
clauses with C in one step, obtaining a clause Cα′ with α′ ⊆ α, and with weakening, we
obtain Cα.

Since the clause mapped to the source vertex has to be falsified by the empty assignment,
this is the empty clause, and the process defines a correct narrow resolution of ISO(G,H).
Notice that all the clauses in the refutation have width at most k − 1.

The depth of the strategy graph for Spoiler in the k-witnessing game is the maximum number
of rounds m needed for Spoiler to defeat Duplicator in Immerman’s Lk-game. Following a
path from the empty clause towards a clause Cα being derived by a narrow resolution step
from (`1 ∨ · · · ∨ `n) and Cβ1 , . . . , Cβn , one can notice that this step increases the positive depth
measure by one when continuing the path towards the clauses Cβ1 , . . . , Cβn (the measure stays
the same when continuing towards the axiom (`1 ∨ · · · ∨ `n)). The positive depth measure
also increases by at most one in any ordinary resolution step. Any weakening step does not
increase the positive depth. By the correspondence between the game positions (βi, Ci) and the
clauses Cβi

of the proof π constructed above, this shows that we have N-Width(π) ≤ k − 1 and
PosDepth(π) ≤ m simultaneously.

For the other direction, consider a narrow resolution refutation π for ISO(G,H) of width k−1.
We describe a strategy for Spoiler to win the k-witnessing game. Starting at the empty clause,
Spoiler queries Type 1 clauses, and with the literals satisfied by Duplicator, he keeps a set S of
at most k variables xi,j assigned with value 1 by Duplicator. For a clause C ∈ π and such a
set S, we say that S contradicts C if the following conditions happen:

1. For every negated variable xi,j in C, xi,j ∈ S, and
2. for every positive variable xi,j in C, xi,j 6∈ S and ∃k ∈ [n] such that (xi,k ∈ S or xk,j ∈ S).

Starting at the empty clause and with the set S = ∅, S determines the predecessor clause in
the refutation π where Spoiler moves to. At each step, Spoiler makes a query, updates S, and
always moves to the predecessor clause contradicted by the current S. Let C be Spoiler’s clause
at a certain stage and S the corresponding set of variables.

If C is the (normal) resolvent of two clauses on variable xi,j , in case one of these clauses is
a Type 1 axiom, Spoiler queries it. Otherwise, Spoiler queries any of the two Type 1 clauses
in ISO(G,H) containing xi,j . If Duplicator assigns value 1 to this variable, Spoiler moves to
the parent clause in which this variable is negated and adds xi,j to S. If some other variable is
given value 1 by Duplicator, Spoiler adds it to S and moves to the contradicted parent clause.
In both cases, Spoiler deletes from S all the variables that are not needed for contradicting the
new clause.

10
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If C is the result of a narrow resolution step involving a Type 1 axiom D, Spoiler queries this
clause. The answer of Duplicator must satisfy some variable xi,j ∈ D. The set S together with
this variable contradicts a predecessor clause C ′, and this clause cannot be D unless some Type
2 axiom is falsified (see the claim below). Spoiler moves to C ′, and he then deletes from S all
the variables that are not necessary in S for contradicting the new clause. This means keeping
one variable for each negated literal in C ′ and at most one variable for each positive literal
in C ′. Because the clauses in π have narrow width at most k − 1, Spoiler needs to keep at
most k variables in S at any moment.

If C is the result of some weakening step, Spoiler just needs to forget some of the variables
in S.

After each new value of Duplicator, if some Type 2 or Type 3 axiom of ISO(G,H) is falsified,
Spoiler wins the game. We claim that if at some point S contradicts some Type 1 axiom, then
S falsifies some Type 2 axiom. Suppose that S contradicts the Type 1 clause (xi,1 ∨ · · · ∨ xi,n).
By definition, this means that xi,1, . . . , xi,n 6∈ S, and thus, again, by definition, there is a set
of n indices {k1, . . . , kn} ⊆ [n] such that xk1,1, . . . , xkn,n ∈ S. In case that {k1, . . . , kn} = [n],
there exists a j ∈ [n] with kj = i. Thus, xkj ,j = xi,j ∈ S. But then S does not contradict the
clause (xi,1 ∨ · · · ∨ xi,n), a contradiction. In case not all ki’s are different, there are i, i′ ∈ [n]
such that i 6= i′ but still ki = ki′ . Since xki,i ∈ S as well as xki′ ,i′ = xki,i′ ∈ S, the functionality
axiom (xki,i ∨ xki,i′) is falsified by S. The case in which S contradicts a Type 1 clause of the
form (x1,i ∨ · · · ∨ xn,i) can be treated symmetrically.

Eventually, some axiom is reached. This axiom is contradicted by the current set S. If it is
a Type 2 or 3 axiom, S falsifies it (these axioms have only negated literals), and Spoiler wins.
As we have observed, if this is a Type 1 axiom, then some Type 2 axiom is falsified, and Spoiler
wins.

In the described construction of a winning strategy, Spoiler always moves to the contradicted
predecessor of the clause he is currently standing on. Such a move increases the positive depth
of his position. Thus he needs at most m moves to win the Immerman game, where m is the
positive depth of the refutation.

Not surprisingly, the result above holds also for colored graphs, that is, the number of
pebbles and rounds in Immerman’s game on colored graphs correspond exactly to narrow width
and positive depth in resolution of the isomorphism formula under the restriction encoding
the coloring. We need, in fact, a version of the result for general restrictions, not only for
colorings, and therefore we have to make use of the witnessing game, which is also well defined
for restrictions. The proof follows the same steps as that for the result above. We state the part
of the result that we will need for our results.

Observation 18. For k ≥ 3, and for every restriction γ, Spoiler has a winning strategy for the
k-witnessing game on ISO(G,H)|γ if and only if N-Width

(
ISO(G,H)|γ `�

)
≤ k − 1.

The equivalence between the number of variables for graph identification and narrow width
allows us to give upper and lower bounds for the size of the resolution proofs for isomorphism
formulas.

Theorem 19. Let k ≥ 3, and G and F be two graphs with n vertices each. If G 6≡Lk
H, then

there is a (normal) resolution refutation of ISO(G,H) of size nO(k).

Proof. By the above result, if G 6≡Lk
H, then the narrow resolution width of ISO(G,H) is at

most k − 1. Since there are n2 variables in this formula, there are at most ∑k−1
i=1

(n2

i

)
2i clauses

that can appear in a (k−1)-narrow resolution refutation of the formula. But a narrow refutation

11
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is just like a normal one in which the distinction by cases is made in just one step. This can
be simulated by at most n steps (with at most n− 1 intermediate clauses that might be wider
than k) in normal resolution. The total number of different clauses in the refutation is thus
bounded by nO(k), and it is polynomial for constant k.

Observe that this result suggests a way to automatically generate short proofs for (non)-
isomorphism formulas, following the same ideas as those in the algorithm proposed in [BW01]
and [GT05] for general formulas. The algorithm would generate in stages all clauses that can be
derived by narrow resolution of width 3, 4, . . . , until the empty clause is derived. By the above
result, the running time of this algorithm is nO(k).

Lower bounds for the narrow width also imply lower bounds on the size of a resolution
refutation for ISO(G,H), in the same way that width lower bounds imply size lower bounds in
general resolution, as shown by Ben-Sasson and Wigderson in [BW01]. For this, we follow the
same steps as in the mentioned paper, adapted to the concept of narrow width. The general
fact that narrow width provides lower bounds for resolution size has also been proved in [GT05].
By concentrating on the isomorphism formulas, we obtain tighter results. The following lemma
is the basis for our lower bounds. It is a version in our context of [BW01, Lemma 3.2] or [GT05,
Lemma 6].

Lemma 20. Let γ be a restriction and let ` be any literal in ISO(G,H)|γ. If Spoiler has a
winning strategy for the k-witnessing game on ISO(G,H)|γ{`=1} as well as for the (k − 1)-
witnessing game on ISO(G,H)|γ{`=0}, then he wins the k-witnessing game on ISO(G,H)|γ.

Proof. We distinguish two cases depending on whether literal ` is positive or negative:
Case 1: ` = xi,j. The formula ISO(G,H)|γ{xi,j=1} is like ISO(G,H)|γ without the two

Type 1 clauses containing literal xi,j and without all occurrences of the literal xi,j . If Spoiler
selects in the game on ISO(G,H)|γ the same sequence of Type 1 clauses as in the game
on ISO(G,H)|γ{xi,j=1}, Duplicator either loses the game or sets a literal xa,b to 1 for a clause C =
(xa,b, xi,j) ∈ ISO(G,H)|γ . When this happens, Spoiler restricts the assignment to γ{xa,b = 0},
and then simulates the strategy for ISO(G,H)|γ{xi,j=0} on ISO(G,H)|γ . If Duplicator does not
assign xi,j = 1, she loses the game eventually by the assumption. If she does, then the clause C
is falsified, and she also loses. Spoiler needs to keep an assignment of size at most k at any
moment.

Case 2: ` = xi,j. In this case, Spoiler simulates the strategy for ISO(G,H)|γ{xi,j=0} on the
formula ISO(G,H)|γ , either winning the game or forcing Duplicator to assign xi,j = 1 (by a Type 1
clause that contains xi,j and which was falsified in the ISO(G,H)|γ{xi,j=0}-game). Restricting
then the assignment to this literal, Spoiler now plays the strategy for ISO(G,H)|γ{xi,j=1} and
Duplicator loses.

From this result, lower bounds as in [BW01] follow directly. The advantage here is that we
do not have to subtract the width of the axioms of ISO(G,H) from the exponent of the lower
bound results, as in [BW01, Corollary 3.4].

Theorem 21. Let k ≥ 3, and G and H be two non-isomorphic graphs with n vertices each. If
G ≡Lk

H, then the size of a (normal) tree-like resolution refutation of ISO(G,H) is at least 2k.

Proof. We show that for any restriction γ, that if there is a tree-like resolution refutation π of
ISO(G,H)|γ of size at most 2b for b ∈ N, then the narrow resolution width of ISO(G,H)|γ is at
most b. This is done by induction on b and m, the number of variables in ISO(G,H)|γ . The
result follows by considering γ to be the empty assignment.

12
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For the base case b = 0, we have that ISO(G,H)|γ contains the empty clause and there is
nothing to prove.

For the other base case, i. e., m = 1, the formula ISO(G,H)|γ is unsatisfiable and contains
only one variable x. Thus, the formula is x ∨ x. Clearly, this formula can be refuted in narrow
width 1.

For the induction step, let xi,j be the last variable resolved in π. The two literals xi,j
and xi,j have two tree like derivations π1 and π2 and at least one of them, w. l. o. g. π1, has
size at most 2b−1. There is then a tree-like refutation of ISO(G,H)|γ{xi,j=0} of size 2b−1,
and by induction hypothesis the narrow width of ISO(G,H)|γ{xi,j=0} is at most b − 1. The
formula ISO(G,H)|γ{xi,j=1} has at most m−1 variables and a tree-like refutation of size bounded
by 2b. By the induction on m, the narrow resolution width of this formula is at most b. Applying
the equivalence of narrow width and the witnessing game from Observation 18 and Lemma 20,
we obtain the result.

Lower bounds on narrow width also imply, as noted in [GT05] lower bounds on general
resolution size. Using (a version for narrow width) from [BW01, Theorem 3.5], one can show
that if G and H are two non-isomorphic graphs with n vertices each with G ≡Lk

H, then
the size of a resolution refutation of ISO(G,H) is at least exp

(
Ω(k2/n2)

)
. However, since the

maximum number k of variables needed for distinguishing G and H is at most the number of
vertices n, this only provides trivial lower bounds. A way to avoid this problem is to consider
graph colorings under which the number k is still large, but the number of variables in ISO(G,H)
is smaller. Since such a coloring can be expressed as a restriction ρ applied to Vars

(
ISO(G,H)

)
,

and using the fact that for every restriction ρ, the size of a resolution refutation of ISO(G,H) is
at least the size of the refutation of the formula under the restriction, ISO(G,H)|ρ, we obtain
Theorem 23 below.

Definition 22. Let (G,λ) and (H,µ) be two colored graphs. For a vertex v ∈ VG, we set
color-class(v) := µ−1(λ(v)

)
, i. e., the set of vertices in VH that have the same color as v.

If (G,λ) and (H,µ) are two colored graphs in n vertices each, m := ∑
v∈VG

|color-class(v)| is
between n and n2.

Theorem 23. Let G = (VG, EG) and H = (VH , EH) be two non-isomorphic graphs with
n vertices each, and let k ≥ 3 and λ, µ be colorings such that (G,λ) ≡Lk

(H,µ). Then, the size of
a resolution refutation of ISO(G,H) is at least exp

(
Ω(k2/m)

)
, where m := ∑

v∈VG
|color-class(v)|

is the sum of the sizes of the color classes.

Proof. Let ρ :=
{
xi,j = 0

∣∣ i, j ∈ [n] with λ(i) 6= µ(j)
}
, and consider the unsatisfiable formula

ISO(G,H)|ρ. The set of variables of this formula is
{
xi,j

∣∣ i, j ∈ [n] with λ(i) = µ(j)
}

and con-
tains exactly m = ∑

v∈VG
|color-class(v)| variables. Since (G,λ) ≡Lk

(H,µ), by Observation 18,
N-Width

(
ISO(G,H)|ρ `�

)
≥ k. Following the same steps of that of [BW01, Theorem 3.5], with

the modifications needed to deal with restrictions as done in Theorem 21, it can be shown that

N-Width
(
ISO(G,H)|ρ `�

)
∈ O

(√
m · ln

(
Size

(
ISO(G,H)|ρ `�

)))
.

Observe that since we are dealing with narrow resolution, we do not need the width of the axioms
in ISO(G,H)|ρ as an additional term. It follows that Size

(
ISO(G,H)|ρ `�

)
= exp

(
Ω(k2/m)

)
.

The last observation needed is that for every restriction ρ, it holds Size
(
ISO(G,H) `�

)
≥

Size
(
ISO(G,H)|ρ `�

)
.
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This result can then be automatically applied to graphs in which the maximum size of a
color class is small.

Corollary 24. Let G and H be two graphs with n vertices each, and let k ≥ 3 and λ, µ be
colorings with constant size color classes such that (G,λ) ≡Lk

(H,µ). Then, any resolution
refutation of ISO(G,H) has size at least exp

(
Ω(k2/n)

)
.

Such constant size color classes are the case for the CFI graphs [CFI92, Tor13] and the
variant of the multipede graphs from [DK19]. In both examples, the maximum size of a color
class is 4, while the number of variables needed to distinguish the graphs is linear in n. Thus, for
both examples, the above result gives a resolution size lower bound of exp

(
Ω(n)

)
. One can also

imagine this result being useful for proving resolution size lower bounds in cases in which not
all color classes of the graphs have constant size, but the sum of the class sizes is still smaller
than the number of variables needed to distinguish the graphs.

4 An Exponential Lower Bound for the Size of SRC-1 proofs for
Graph (Non)Isomorphism

In this section, we show that there is a family of non-isomorphic graph pairs that has only
exponentially long proofs in the SRC-1 system. Exponential size lower bounds in SRC-1 are
known [Urq99], but not for graph isomorphism formulas. Our result is proven by observing that
the global symmetry rule cannot be applied to formulas corresponding to graphs having only
trivial automorphisms and restricting ourselves to such graphs.

Definition 25. A colored graph (G,λ) is called asymmetric2 if its only automorphism is the
identity map.

To characterize the possible symmetries in an isomorphism formula, we need the notions of
graph anti-automorphism and anti-isomorphism.

Definition 26. Let G = (VG, EG) and H = (VH , EH) be two graphs. An anti-isomorphism σ
from G to H is a bijection between the vertices of G and H exchanging edges and non-edges,
that is:

∀u, v ∈ VG × VG : {u, v} ∈ EG ⇐⇒
{
σ(u), σ(v)

}
6∈ EH .

An anti-automorphism of a graph G is an anti-isomorphism from G to G.
We denote by A-Iso(G,H) the set of anti-isomorphisms between G and H and by A-Aut(G)

the set of anti-automorphisms of G.

We will also need the following simple observation.

Observation 27. Asymmetric graphs do not have any anti-automorphisms.

Proof. Let G = (VG, EG) be an asymmetric graph, and suppose σ is an anti-automorphism
in G. Then, σ2 is an automorphism since it maps edges to edges and non-edges to non-edges,
and because G is asymmetric, σ2 = id. For some vertex u ∈ VG, let v := σ(u). Since σ is an
anti-automorphism we have {u, v} =

{
u, σ(u)

}
∈ EG if and only if

{
σ(u), σ(σ(u)

}
6∈ EG, but

this is a contradiction since
{
σ(u), σ(σ(u)

}
= {v, u}.

2In some publications, this property is called rigid.
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Szeider observed in [Sze05, Lemma 10] that if a formula is asymmetric, then the size of a
resolution refutation and the size of an SRC-1 refutation of the formula are equal. The next
Lemma shows that if two graphs are asymmetric, then the corresponding isomorphism formula
is also asymmetric.

Lemma 28. Let G and H be two graphs with |VG| = |VH | =: n ≥ 3, and let F := ISO(G,H).
Further, let f : Lits(F ) → Lits(F ) be a renaming of the literals in F . Then f(F ) ⊆ F if and
only if one of the following two cases hold:

1. There are two permutations σ, γ ∈ Sn such that for every (i, j) ∈ [n]× [n], f(xi,j) = xσ(i),γ(j)
and (σ, γ) ∈ Aut(G)×Aut(H) or (σ, γ) ∈ A-Aut(G)×A-Aut(H); or

2. there are two permutations σ, γ ∈ Sn such that for every (i, j) ∈ [n]× [n], f(xi,j) = xγ(j),σ(i)
and (σ, γ−1) ∈ Iso(G,H)× Iso(G,H) or (σ, γ−1) ∈ A-Iso(G,H)×A-Iso(G,H).

Proof. From left to right, let f be a renaming of the literals in F = ISO(G,H) with f(F ) ⊆ F .
Since the Type 1 clauses have length at least 3, and the clauses of length two have only negative
literals, the sign of the literals remains under f . We can consider the Type 1 clauses of ISO(G,H)
represented in the form of an (n× n)-matrix, in which in position (i, j), we have variable xi,j .
The Type 1 clauses are the rows and the columns of this matrix, and f can be seen as a
transformation mapping the set of rows and columns to itself. The image of two literals in a
row i, for example, f(xi,1) and f(xi,2), determines whether this row is mapped to a row or to a
column. In the first case there is a permutation σ so that row i is mapped to row σ(i). Since in
this case columns have to be mapped to columns, there has to be another permutation γ such
that for each pair i, j, f(xi,j) = xσ(i),γ(j). In the case in which rows are mapped to columns, we
would have f(xi,j) = xγ(j),σ(i). We analyze the first situation; the other case is analogous.

If σ and γ are both anti-automorphisms, then there is nothing to prove. Thus, suppose γ
is not an anti-automorphism in H, then there are two vertices u, v ∈ VH such that {u, v} ∈
EH ⇔

{
γ(u), γ(v)

}
∈ EH . If σ 6∈ Aut(G), then there are two vertices a, b ∈ VG such that

{a, b} ∈ EG ⇔
{
σ(a), σ(b)

}
6∈ EG, but then we would have (xa,u∨xb,v) ∈ F ⇔ (xσ(a),u∨xσ(b),v) 6∈

F ⇔ (xσ(a),γ(u) ∨ xσ(b),γ(v)) 6∈ F , contradicting the fact that f(F ) ⊆ F . Therefore, if γ is
not an anti-automorphism, then σ is an automorphism. By a symmetric argument, if σ is an
automorphism (and therefore not an anti-automorphism), then γ also has to be an automorphism.
This shows that σ and γ are both automorphism or both anti-automorphism.

For the direction from right to left, we prove the second case; the first one is similar. If f is
defined as f(xi,j) = xγ(j),σ(i) with σ, γ−1 ∈ Iso(G,H), then Type 1 row clauses are transformed
into column clauses and vice-versa. Every Type 2 clause (xi,k ∨ xj,k) with i 6= j is transformed
into (xγ(k),σ(i) ∨ xγ(k),σ(j)), which is also a Type 2 clause in F since σ and γ are bijections.

Finally, for every Type 3 clause (xa,u ∨xb,v) ∈ F , we would have {a, b} ∈ EG ⇔ {u, v} 6∈ EH ,
and this implies

{
σ(a), σ(b)

}
∈ EH ⇔

{
γ(u), γ(v)

}
6∈ EG, and therefore (xγ(u),σ(a) ∨ xγ(v),σ(b))

also belongs to F . The situation in which σ and γ are both anti-isomorphisms is completely
analogous.

Notice that if the graphs G and H are non-isomorphic and f(F ) ⊆ F , then we can only be
dealing with Case 1 in the Lemma. Moreover, by Observation 27, if the graphs G and H do not
have any non-trivial automorphisms, they cannot have anti-automorphisms either. In this case,
a renaming f with f(F ) ⊆ F cannot exist, and therefore the global symmetry rule cannot be
applied. This implies that size lower bounds for the resolution of (non)isomorphism formulas for
asymmetric graphs coincide with their size lower bounds for the system SRC-1.

The Cai–Fürer–Immerman construction [CFI92] gave graphs with a large Weisfeiler–Leman
dimension, more precisely with a linear lower bound on the WL-dimension. A related construction
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of graphs satisfying this property, known as multipedes, was given in [GS96]. However, the
resulting graphs are very large in terms of the WL-dimension. Neuen and Schweitzer improved
in [NS18] the multipede construction combining it with size reduction techniques. Using a
different construction, Dawar and Khan [DK19] showed how to obtain graphs whose Weisfeiler–
Leman dimension is linear in the number of their vertices (as with the CFI graphs) and without
any non-trivial automorphisms.

Theorem 29 ([DK19]). For k ∈ N, there is (a random process that produces with high probability)
a family of asymmetric pairs of non-isomorphic graphs (Gk, Hk) with O(k) vertices, color classes
of size 4, and Weisfeiler–Leman dimension k.

In [DK19], it was furthermore demonstrated by conducting experiments that the resulting
graphs provide hard examples for graph isomorphism solvers, matching the hardest known
benchmarks for graph isomorphism. The following result can be seen as a theoretical explanation
for this phenomenon.

Corollary 24 implies that the isomorphism formulas for the pairs (Gk, Hk) of non-isomorphic
graphs from the above-mentioned construction have resolution refutations of size exp

(
Ω(n)

)
,

where n is the number of vertices in the graphs (linear in the WL-dimension k). Since these
graphs are asymmetric, from Lemma 28, we conclude:

Theorem 30. There is a (non-constructive) family of non-isomorphic graph pairs (Gn, Hn)
with Θ(n) vertices each, such that any refutation of ISO(Gn, Hn) requires size exp

(
Ω(n)

)
in the

SRC-1 proof system.

5 Lower Bounds on Clause Space for Proving Non-Isomorphism
Atserias and Dalmau [AD08] gave a combinatorial characterization of resolution width and
used it to show the relation CS(F `�) ≥Width(F `�)−Width(F ) + 1 for any unsatisfiable
formula F . We will show in this section that this also holds for narrow width, with the advantage
that, again, in this case, we do not have to worry about the width of the axioms. From this
result, we obtain clause space lower bounds for the (normal) resolution of isomorphism formulas.

Definition 31 (w-NW Family). Given an unsatisfiable CNF formula F and a natural num-
ber w ∈ N, we say that a family of assignments F for F is a w-NW family if all of the following
properties hold:
(1) F 6= ∅,
(2) ∀α ∈ F and ∀C ∈ F : C|α 6= �,
(3) ∀α ∈ F : |Dom(α)| ≤ w,
(4) ∀α ∈ F and ∀β ⊆ α: β ∈ F ,
(5) ∀α ∈ F with Dom(α) ≤ w − 1 and ∀C ∈ F |α: ∃` ∈ C such that α{` = 1} ∈ F .

Theorem 32. If F is an unsatisfiable CNF formula with N-Width(F `�) > w, then there
exists a (w + 1)-NW family for F .

Proof. Let N-Width(F `�) > w. We will construct a (w + 1)-NW family F for F by first
considering the set

C :=
{
C
∣∣ N-Width(F ` C) ≤ w

}
.
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Then, we can define the (w + 1)-NW family for F as

F := {α | ∀C ∈ C ∪ F : C|α 6= �} ∩ {α | |Dom(α)| ≤ w + 1}.

We proceed by verifying properties (1) – (5) for the constructed family F . Since it holds
N-Width(F `�) > w, we know that � 6∈ C , thus the empty assignment λ is in F , implying
that F 6= ∅. Hence, property (1) holds. By construction, F clearly also has properties (2) and
(3). Property (4) is trivial.

It is only left to show that (5) holds: Suppose, to reach a contradiction, we have an assignment
α ∈ F with |Dom(α)| ≤ w and a clause C = (`1 ∨ · · · ∨ `m) ∈ F |α such that for all i ∈ [m] we
have α`i := α{`i = 1} 6∈ F . By construction of the family F , this means that each α`i falsifies
a clause C`i ∈ F |α. But since by assumption, α does not falsify any clause in C ∪F , and each
α`i only differs from α in the literal `i, we have C`i = (`i). It is possible to use narrow resolution
to make the derivation

C = (`1 ∨ · · · ∨ `m) (`1) · · · (`m)
�

.

Thus, there are clauses B,A1, . . . , Am being falsified by α such that (B∨C), (A1∨`1), . . . , (Am∨
`m) ∈ F and

B ∨ C (A1 ∨ `1) · · · (Am ∨ `m)
B ∨A1 ∨ · · · ∨Am

is a valid narrow resolution step. Hence, it is possible to derive the clause B ∨ A1 ∨ · · · ∨ Am
from F in narrow resolution width |B ∨A1 ∨ · · · ∨Am| ≤ |Dom(α)| ≤ w. This clause is falsified
by α. This is a contradiction to the definition of F .

Theorem 33. If there is a (w + 1)-NW family for a unsatisfiable CNF formula F , then
CS(F `�) ≥ w + 2.

Proof. This follows from an adaptation of [AD08, Lemma 5], by noticing that the original
constant for the initial width of the formula vanishes by modifying point (5) of the definition
of an Atserias–Dalmau family as we did. Playing the Spoiler–Duplicator game on F , as in the
proof of [AD08, Lemma 5], Duplicator has an answer to satisfy the queried clause in one round,
making it not necessary for Spoiler to repeatedly query the variables in a clause until he gets a
satisfying assignment.

Corollary 34. For any unsatisfiable CNF formula F , it holds

CS(F `�) ≥ N-Width(F `�) + 1.

Using the equivalence of between narrow width and Immerman’s game (cf. Theorem 17) we
obtain:

Theorem 35. Let k ≥ 3. Further, let G and H be two graphs with G ≡Lk
H. Then

CS
(
ISO(G,H) `�

)
≥ k + 1.

By the CFI construction [CFI92], for every n ∈ N, there is a pair of non-isomorphic
graphs (Gn, Hn) such that Gn and Hn have O(n) vertices but Gn ≡Cn Hn. Hence, for these
graphs,

CS
(
ISO(Gn, Hn) `�

)
= Ω

(√
Vars

(
ISO(Gn, Hn)

))
.
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6 Conclusions
We have given an exact characterization for the number of variables needed to distinguish two
graphs in first-order logic in terms of the clause width in a narrow resolution refutation of the
corresponding isomorphism formulas. This fact allowed us to obtain upper and lower bounds for
the size and space of (normal) resolution refutation of such formulas. The size upper bound
justifies a clause length increasing algorithm for the resolution (and solving) of isomorphism
formulas of the kind proposed in [BW01] for general formulas. With the bound on narrow width,
we can avoid the inconvenience of isomorphism formulas having long axioms.

The lower bounds techniques provide a simplified method to obtain resolution size lower
bounds directly from the structure of the graphs, without having to deal with the isomorphism
formulas directly. All the known resolution size lower bounds for isomorphism formulas can
be easily derived from this result. Moreover, we have been able to use the method to obtain
exponential lower bounds for isomorphism formulas in the stronger system of SRC-1, which
includes a global symmetry rule, a question posed in [SS21].

The obvious open question is to prove superpolynomial size lower bounds for isomorphism
formulas in the stronger systems SRC-2 and SRC-3. However, one would need different ideas for
this, since, as shown recently in [SS21], the families of graphs based on the CFI construction,
like the ones used in all known lower bounds, have polynomial size SRC-2 refutations.
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