
On the Probabilistic Degree of an n-variate Boolean Function

Srikanth Srinivasan∗

Aarhus University, Denmark.
srikanth@cs.au.dk

S. Venkitesh†

IIT Bombay, Mumbai, India.
venkitesh.mail@gmail.com

Abstract

Nisan and Szegedy (CC 1994) showed that any Boolean function f : {0,1}n→{0,1} that depends on
all its input variables, when represented as a real-valued multivariate polynomial P(x1, . . . ,xn), has degree
at least logn−O(log logn). This was improved to a tight (logn−O(1)) bound by Chiarelli, Hatami and
Saks (Combinatorica 2020). Similar statements are also known for other Boolean function complexity
measures such as Sensitivity (Simon (FCT 1983)), Quantum query complexity, and Approximate degree
(Ambainis and de Wolf (CC 2014)).

In this paper, we address this question for Probabilistic degree. The function f has probabilistic
degree at most d if there is a random real-valued polynomial of degree at most d that agrees with f at
each input with high probability. Our understanding of this complexity measure is significantly weaker
than those above: for instance, we do not even know the probabilistic degree of the OR function, the best-
known bounds put it between (logn)1/2−o(1) and O(logn) (Beigel, Reingold, Spielman (STOC 1991);
Tarui (TCS 1993); Harsha, Srinivasan (RSA 2019)).

Here we can give a near-optimal understanding of the probabilistic degree of n-variate functions f ,
modulo our lack of understanding of the probabilistic degree of OR. We show that if the probabilis-
tic degree of OR is (logn)c, then the minimum possible probabilistic degree of such an f is at least
(logn)c/(c+1)−o(1), and we show this is tight up to (logn)o(1) factors.

1 Introduction

1.1 Background and motivation

Representing Boolean functions f : {0,1}n→{0,1} by polynomials is a tried-and-tested technique that
has found uses in many areas of Theoretical Computer Science. In particular, such representations have led
to important results in Complexity theory [7, 9], Learning theory [19, 11], and Algorithm Design [29].

There are many different kinds of polynomial representations that are useful in various applications.
The most straightforward way to represent a Boolean function f : {0,1}n → {0,1} by a polynomial is by
finding a P ∈ R[x1, . . . ,xn]

1 such that P(a) = f (a) for all a ∈ {0,1}n. It is a standard fact (say by Möbius
Inversion or polynomial interpolation) that any f has such a representation2 has degree at most n, and the
smallest degree of such a P is called the degree of f (or sometimes the Fourier degree of f because of its
close relation to the Fourier spectrum of f [22]), and denoted deg(f).

∗On leave from Department of Mathematics, IIT Bombay. Supported by startup grant from Aarhus University.
†Department of Mathematics, IIT Bombay. Supported by the Senior Research Fellowship of the Human Resource Development

Group, Council of Scientific and Industrial Research, Government of India.
1We can represent f as a polynomial over any field, but in this paper, we will work over the reals.
2The representation is in fact unique if we restrict P to be multilinear, i.e. that no variable has degree more than 1 in f .

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 98 (2021)

The degree of f is an important notion of complexity of the function f and is closely related to a slew
of combinatorial measures of Boolean function complexity such as Sensitivity, Decision Tree complexity,
Quantum Query complexity, etc. (see, e.g., the survey of Buhrman and de Wolf [10] for a nice introduction).
Given a complexity measure µ(·) (such as deg(·)) on Boolean functions, a natural question to ask is the
following.

Question 1. How small can µ(f) be for a function f on n variables?

To make this question interesting, one must exclude trivial functions like the constant functions, and
more generally, functions that depend on just a small subset of their input variables. This brings us to the
following definition.

Definition 2 (Truly n-variate Boolean function3). We say that a Boolean function f (x1, . . . ,xn) depends on
its input variable xi, or equivalently that xi is influential for f , if there is an input a such that flipping the
value of the ith variable at a changes the value of f (in this case, we also say that xi is influential for f at
a). We say that a Boolean function f : {0,1}n→{0,1} is truly n-variate if it depends on all its n variables.

A number of results have addressed questions regarding how small complexity measures can be for truly
n-variate Boolean functions.

1. Motivated by problems in Learning theory and PRAM lower bounds, Nisan and Szegedy [21] showed
that any truly n-variate function has degree at least logn−O(log logn). Recently, this was improved
to logn−O(1) by Chiarelli, Hatami and Saks [13]. There are standard examples of Boolean functions
(see, e.g., the Addressing function defined below) for which this is tight.

2. Ambainis and de Wolf [4] studied the same question for the approximate degree of f , which is defined
to be the minimum degree of a polynomial P such that |P(a)− f (a)| < 1/3 for all a ∈ {0,1}n. This
complexity measure is closely related to the quantum query complexity of f [10].
Ambainis and de Wolf [4] showed that any truly n-variate function has approximate degree (and
also quantum query complexity) Ω(logn/ log logn). They also constructed variants of the Addressing
function for which this bound is tight up to constant factors.

3. Such results are also known for more combinatorial complexity measures, such as the sensitivity of
a Boolean function f , which is defined as follows. The sensitivity of f at a point a ∈ {0,1}n is the
number of input variables to f that are influential for f at a. The sensitivity of f is the maximum
sensitivity of f at any input.
Simon [25] showed that any truly n-variate f has sensitivity at least logn−O(log logn). This is also
tight up to the O(log logn) additive term (say, for the Addressing function).

We address Question 1 for another well-known polynomial-degree measure called the Probabilistic
degree. We define this notion first.

Definition 3 (Probabilistic polynomial and Probabilistic degree). Given a Boolean function f : {0,1}n →
{0,1} and an ε ≥ 0, an ε-error probabilistic polynomial for f is a random polynomial PPP (with some distri-
bution having finite support) over R[x1, . . . ,xn]

4 such that for each a ∈ {0,1}n,

Pr
PPP
[PPP(a) 6= f (a)]≤ ε.

(Note that PPP(a) need not be Boolean when PPP(a) 6= f (a).)

3Such functions are also called non-degenerate Boolean functions in the literature [25].
4This can also be defined over other fields.

2

We say that the degree of PPP, denoted deg(PPP), is at most d if the probability distribution defining PPP is
supported on polynomials of degree at most d. Finally, we define the ε-error probabilistic degree of f ,
denoted pdegε(f), to be the least d such that f has an ε-error probabilistic polynomial of degree at most d.

In the special case that ε = 1/3, we omit the subscript in the notation above and simply use pdeg(f).

The probabilistic degree is a fundamentally important and well-studied complexity measure of Boolean
functions. It was implicitly introduced (in the finite field setting) in a celebrated result of Razborov [23],
who showed how to use it to construct low-degree polynomial approximations to small-depth circuits, and
hence prove strong circuit lower bounds. The real-valued version was first studied by Beigel, Reingold
and Spielman [8] and Tarui [27] who were motivated by other circuit lower bound questions and oracle
separations. This measure has since found other applications in complexity theory [5, 7], Pseudorandom
generator constructions [9], Learning theory [11], and Algorithm design [29, 1]. Further, in many of these
applications (e.g, [5, 9, 1]) we need real-valued approximations.

Despite this, however, our understanding of probabilistic degree is much less developed than the other
measures above. For instance, near-optimal lower bounds of n1−o(1) on the probabilistic degree of an explicit
Boolean function f : {0,1}n → {0,1} were proved only recently by Viola [28], and are only known for a
function in the complexity class ENP; in comparison, the Parity function has degree and approximate degree
n, which is the largest possible. Another example is the OR function on n variables. It is trivial to estimate
the degree of OR (which is n) and well-known that its approximate degree is Θ(

√
n) [21, 15]. However,

its probabilistic degree (over the reals) remains unknown: the best known upper bound is O(logn) due to
independent results of Beigel et al. [8] and Tarui [27], while the best lower bound is (logn)1/2−o(1) due to
Harsha and the first author [16]. This indicates that we need better tools to understand probabilistic degree
in general and over the reals in particular. This is one of the motivations behind this paper.

Another motivation is to understand the contrast between the setting of real-valued probabilistic polyno-
mials and polynomials over constant-sized finite fields. At a high level, this helps us understand the contrast
between circuit complexity classes AC0 and AC0[p], as the former class of circuits has low-degree proba-
bilistic polynomials over the reals [8, 27], while the latter does not [26]. It is easy to show that there are
truly n-variate Boolean functions of constant degree over finite fields (e.g., the parity function is a linear
polynomial over the field F2). It is interesting to ask to what extent such phenomena fail over the reals.

A final motivating reason is to understand more precisely the relationships between probabilistic degree
and other complexity measures such as approximate degree. A recent conjecture of Golovnev, Kulikov
and Williams [14] shows that porting results for approximate degree to probabilistic degree would have
interesting consequences for De Morgan formula lower bounds. By proving results such as the one in this
paper, we hope to be able to prove such connections and hopefully uncover others.

With these motivations in mind, we address Question 1 in the setting of Probabilistic degree. That
is, what is the lowest possible probabilistic degree of a truly n-variate Boolean function? As far as we
know, this question has not been addressed before. Putting together Simon’s bound on the sensitivity of a
truly n-variate function with known probabilistic degree lower bounds [16], one can show a lower bound of
(log logn)1/2−o(1). This is quite far from the best known upper bounds of O(logn), which hold for say the
OR function [8, 27] and the Addressing function defined below in Section 1.3.

1.2 Results

Our aim is to prove a result characterizing the minimum possible probabilistic degree of a truly n-variate
Boolean function. However, the gap even just in our understanding of the OR function (as mentioned
above) tells us that this may not yet be within reach. What we are able to do is to give a near-complete

3

characterization modulo the gap between known upper and lower bounds for pdeg(OR). Moreover, the
answer is non-trivial: it is not simply pdeg(OR).

More precisely, our results are the following. Below, ORn denotes the OR function on n variables. We
assume that we have bounds of the form pdeg(ORn) = (logn)c±o(1) for some c > 0.

Theorem 4. Assume that pdeg(ORn)≥ (logn)c−o(1) for some c > 0 and all large enough n ∈ N. Then, any
truly n-variate Boolean function f : {0,1}n→{0,1} satisfies pdeg(f)≥ (logn)(c/(c+1))−o(1).

Theorem 5. Assume that pdeg(ORn)≤ (logn)c+o(1) for some c > 0 and all large enough n∈N. Then, there
exists a truly n-variate Boolean function f : {0,1}n→{0,1} such that pdeg(f)≤ (logn)(c/(c+1))+o(1).

Thus, we get close-to-matching lower and upper bounds for truly n-variate Boolean functions assuming
close-to-matching lower and upper bounds for the OR function. However, the above statements also imply
unconditional lower and upper bounds on the probabilistic degrees of truly n-variate Boolean functions.
Using known results that yield (logn)(1/2)−o(1) ≤ pdeg(ORn)≤ O(logn) [8, 27, 16], we get

Corollary 6. Any truly n-variate Boolean function f : {0,1}n→{0,1} satisfies pdeg(f)≥ (logn)(1/3)−o(1).

Corollary 7. There exists a truly n-variate Boolean function f : {0,1}n → {0,1} such that pdeg(f) ≤
(logn)(1/2)+o(1).

Remark 8. The reader may wonder why we assume lower and upper bounds of the form (logn)c±o(1) for
pdeg(ORn). This is because the gaps between the known upper and lower bounds are (logn)Ω(1), and so it
makes sense to use a characterization that shrinks this gap to something relatively insignificant. Further-
more, the best known lower bound on pdeg(ORn) is of the form (logn)1/2−o(1) [16] (more precisely, it is
Ω((logn)/(log logn)3/2)).

If we instead assume a more precise characterization pdeg(ORn) = Θ((logn)c), then going through
the proofs of the above theorems would yield a sharper lower bound of Ω((logn)c/(c+1)/(log logn)2) for
any truly n-variate Boolean function and a better upper bound of O((logn)c/(c+1)) for some truly n-variate
Boolean function.

1.3 Proof Outline

Our proof is motivated by two important examples. The first of these is the ORn function which has
probabilistic degree at most O(logn) by results of [8, 27] and at least (logn)(1/2)−o(1) by [16]. The second
is the Addressing function, which we now define.

The Addressing function Addrr has n = r+2r variables. We think of the input variables as being divided
into two parts: there are r ‘addressing’ variables y1, . . . ,yr and 2r ‘addressed’ variables {za | a∈ {0,1}r} (the
latter part of the input is thus indexed by elements of {0,1}r). On an input (a,A) ∈ {0,1}r×{0,1}2r

, the
output of the function is defined to be Aa (i.e. the ath co-ordinate of the vector A). The Addressing function
satisfies deg(Addrr) = r+1 = O(logn). This example is quite relevant to this line of work: in particular, it
implies that the results of Nisan and Szegedy [21] and Chiarelli et al. [13] stated above are tight, and is also
a tight example for Simon’s theorem [25].

We now describe the upper and lower bound proofs, starting with the less technical upper bound.

The Upper Bound. Given that we have two natural families of truly n-variate functions that have degree
O(logn), one may suspect that this is the best possible. Indeed this was also our initial conjecture. However,
using the ideas of Ambainis and de Wolf [4], we can do better. Ambainis and de Wolf showed that there are

4

truly n-variate Boolean functions that have approximate degree O(logn/ log logn). Their construction5 uses
a modified Addressing function, where the addressing variables are present in an ‘encoded’ form. While
this blows up the size of the first part of the input, this does not affect n much as the addressing variables
take up only a small part of the input. On the other hand, the advantage is that the ‘decoding’ procedure can
be performed approximately by a suitable low-degree polynomial: a proof of this uses two famous Quantum
algorithms, the Bernstein-Vazirani algorithm and Grover search, along with the fact that efficient Quantum
algorithms yield approximating low-degree polynomials [6]. Putting things together yields an improved
approximate degree bound for some n-variate f .

We show how to port their construction to the probabilistic degree setting. The first observation is
that Grover search, which is essentially an algorithm for computing ORn, is much more ‘efficient’ in the
probabilistic degree setting, as pdeg(ORn) = O(logn), while its approximate degree is Ω(

√
n) [21]. The

second observation is that the Bernstein-Vazirani algorithm, which can be thought of as a decoding algorithm
for a suitable error-correcting code, can be replaced by polynomial interpolation. This gives a good idea of
why we should also be able to use a similar construction in the probabilistic degree setting. In fact, the
better probabilistic degree upper bound for ORn implies that we should be able to get a better bound than
what is possible for approximate degree. Indeed this is true. By a similar construction, we show that we can
construct a truly n-variate f with probabilistic degree O(

√
logn) unconditionally, which is quite a bit better

than previous results for any of the above degree measures. If we assume, moreover, that pdeg(ORn) ≤
(logn)c+o(1), the same construction yields a function with probabilistic degree (logn)(c/(c+1))+o(1).

The Lower Bound. Given that the upper bound construction uses the Addressing function as well as the
OR function, it is only natural that the lower bound would use the lower bounds for these two families
of functions. Our hypothesis already assumes a lower bound of (logn)c−o(1) for pdeg(ORn). For the ad-
dressing function Addrr described above, one can prove an Ω(r) = Ω(logn) lower bound in the following
way. We observe that by setting the 2r addressed variables uniformly at random, we obtain a uniformly
random function on the r addressing variables. By a counting argument, one can show that a uniformly
random Boolean function FFF on r variables has probabilistic degree Ω(r) with high probability. In par-
ticular, as setting some input variables to constants can only reduce probabilistic degree, this implies that
pdeg(Addrr) = Ω(r) = Ω(logn). Note that this is tight, as deg(Addrr) = r+1.

Our aim is to generalize the above lower bounds enough to prove a lower bound for any truly n-variate
f . The first informal observation is that the ORn function is the ‘simplest’ function on n variables to have
sensitivity n. Therefore, it is intuitive that any Boolean function with sensitivity n should have probabilistic
degree at least that of the ORn function. We show that this is true, up to (logn)o(1) factors. More generally,
we show that any Boolean function f with sensitivity s has probabilistic degree at least that of the OR
function on s variables (up to (logs)o(1) factors). The proof of this is in the contrapositive: we use a
probabilistic degree upper bound for f to construct a probabilistic polynomial for ORs. The ideas behind
this go back to a sampling argument used in the works of Beigel et al. and Tarui [8, 27]. Viewing this
argument more abstractly, we can use this to construct a reduction from ORs to f (for any f of sensitivity s)
in the probabilistic degree setting.

The above argument implies a strong lower bound for any n-variate f with large sensitivity. In particular,
it implies that if f has sensitivity at least s = nΩ(1), then its probabilistic degree is almost that of the OR
function. We now consider the case of functions with small sensitivity (specifically when s = no(1)), which
is the most technical part of the proof. By a recent breakthrough result of Huang [18], we also know
that f also has a decision tree (we refer the reader to [10] for the definition of Decision trees) of depth

5They actually give two, slightly different, constructions. We use the second one here.

5

y1

y2 y3

y3 y3 y4 y5

z1 0 z2 z3 z4 0 z5 1

0 1 0 1 0 1 0 1 0 1

(a) Before projection

y′1

y′2 y′3

y′3 y′3 z4 1

z1 0 z2 z3 0 1

0 1 0 1 0 1

(b) After projection

Figure 1: The function f (y1, . . . ,y5,z1, . . . ,z5) is defined by the decision tree on the left (we assume that the left
child corresponds to the queried variable taking value 0). When z1, . . . ,z5 are set i.u.a.r. to bbb1, . . . ,bbb5, we get a random
function FFF(y1, . . . ,y5) such that FFF(00000) = bbb1,FFF(01000) = bbb2,FFF(01100) = bbb3,FFF(10000) = bbb4,FFF(10100) = bbb5.
After a projection that maps y1 7→ y′1;y2 7→ y′2;y3,y4,y5 7→ y′3, we get the function f ′ computed by the tree on the right.
This reduces the number of addressing variables to 3. But also note that the variable z5 is no longer relevant as the
path leading to it is inconsistent with the projection. So the number of addressed variables falls to 4.

d = poly(s) = no(1).6 The prototypical example of such an f is the Addressing function which has a decision
tree of depth r+1 = blognc+1, which we argued a lower bound for above. The idea, in general, is to find
a copy of something like an Addressing function ‘inside’ the function f .

We illustrate how this argument works by considering a special case of the problem, which is only a
small variant of the Addressing function. Assume that a truly n-variate function f is computed by a decision
tree T of depth d = poly(logn). Note that as the function depends on all its variables, each of the underlying
n variables appear in the tree T . To make things even simpler, assume that we have n/2 ‘addressing’
variables y1, . . . ,yn/2 and n/2 ‘addressed’ variables z1, . . . ,zn/2. The tree reads d− 1 addressing variables
among y1, . . . ,yn/2 in some (possibly adaptive) fashion and then possibly queries one addressed variable, the
value of which is output. (See Figure 1 (a).)

How do we argue a lower bound on pdeg(f)? We could try to proceed as above and set the addressed
variables z1, . . . ,zn/2 as random to obtain a random function FFF in y1, . . . ,yn/2. However, this function is
not uniformly random, as it is sampled using only n/2 random bits, while the number of functions in n/2
variables is 22n/2

. Nevertheless, we can observe that the function FFF does take independent random values at
at least n/2 distinct inputs, those which are consistent with n/2 distinct paths in T leading to the various
addressed variables. (See Figure 1 (a).) We could try to lower bound pdeg(FFF) as above.

This leads to the following general question: given a random function FFF : {0,1}r → {0,1} that takes
independent and random values at M distinct inputs in {0,1}r, what can we say about the probabilistic
degree of FFF? By a more general counting argument, we are able to show that with high probability, the

6Strictly speaking, we do not need to use Huang’s result as we could also use the known polynomial relationship between the
decision tree height and the block sensitivity of a function [20]. But it is notationally easier to work with sensitivity.

6

probabilistic degree of FFF is at least Ω(logM/ logr). This is easily seen to be tight in the case that X is, say,
a Hamming ball of radius R≤ r1−Ω(1). (In the case that M = 2r, this leads to a bound of Ω(r/ logr), nearly
matching the claim for random functions that we mentioned above. A tight bound can be obtained in the
same way but is harder to state for general M.)

Given this bound for random functions, we can try to use it in the case of the function f above. Un-
fortunately, in this case, both parameters r and M are n/2, and hence we do not get any non-trivial bound.
However, we show that we can still reduce to a case where a non-trivial bound is possible (this is where
the depth of T comes in). More precisely, we reduce the number of addressing variables by projecting the
n/2 addressing variables to a smaller set of r′ variables Y ′ = {y′1, . . . ,y′r′}. That is, we randomly set each
variable Y to a uniformly random variable in Y ′ to get a different function in the variables Y ′ ∪ Z. This
has the effect of reducing the number of addressing variables to r′. But there is also a potential problem:
the projection could also render some of the addressed variables irrelevant, as the paths that lead to them
become inconsistent. (See Figure 1 (b).)

Nevertheless, if we choose r′ large enough (something like r′ = 4d2 is enough by the Birthday paradox),
the variables of each path are sent to distinct variables in Y ′ with high probability, which implies that each
addressed variable remains relevant with high probability. In particular, there is a projection that maps f
to an ‘Addressing function’ with only poly(logn) addressing variables and Ω(n) addressed variables. Now
applying the argument for random functions, we get a probabilistic degree lower bound of Ω(logn/ log logn)
for this function, nearly matching what we obtained for the Addressing function. As projections do not
increase probabilistic degree, the same bound holds for f , concluding the proof in this special case.7

A similar argument can be carried out in the general case by first carefully partitioning the variables into
the addressing and addressed variables. We do this by looking at the structure of the decision tree T . These
details are postponed to the formal proof. In general, this argument yields a lower bound of Ω(logn/ logs)
on the probabilistic degree of a truly n-variate function f with sensitivity at most s.

Using this lower bound along with the previous lower bound for functions of sensitivity at least s, and
optimizing our choice of s, yields a lower bound of (logn)c/(c+1)−o(1) for any truly n-variate function f .

2 Preliminaries

Functions, Restrictions, Projections. Throughout, we work with real-valued functions f : {0,1}n→ R.
Boolean functions (i.e. functions mapping {0,1}n to {0,1}) are also treated as real-valued. We use boldface
notation to denote random variables. A random function FFF is a probability distribution over functions.

A restriction on n variables is a map ρ : [n]→{0,1,∗}. Given a function f : {0,1}n→R and a restriction
ρ on n variables, we have a natural restricted function fρ defined by setting the ith input variable to f to
0, 1 or leaving it as is, depending on whether ρ(i) is 0, 1 or ∗ respectively. Note that the function fρ now
depends on |ρ−1(∗)| many variables. However, we sometimes also treat fρ as a function of all the original
variables that only depends on (a subset of) the variables indexed by ρ−1(∗).

A projection from n variables to m variables is a map ν : [n]→ [m]. Given a function f : {0,1}n→R and
a projection ν from n variables to m variables, we get a function f |ν : {0,1}m→ R by identifying variables
of f that map to the same image under ν .

Some Boolean functions. For any positive integer n, we use ORn,ANDn and Majn to denote the OR,
AND and Majority functions on n variables respectively.

7Random projections of this kind have been used recently to prove important results in circuit complexity [17, 12]. However, as
far as we know, they have not been used to prove probabilistic degree lower bounds.

7

Fact 9. We have the following simple facts about probabilistic polynomials.
1. (Interpolation) Any function f : {0,1}n→ {0,1} has an exact multilinear polynomial representation

of degree at most n. I.e. deg(f) := pdeg0(f)≤ n.

2. (Shifts and Restrictions) Fix any f : {0,1}n→ {0,1} and any ε ≥ 0. Then the function g : {0,1}n→
{0,1} defined by g(x) = f (x⊕ y) for a fixed y ∈ {0,1}n has the same probabilistic degree as f , i.e.,
pdegε(g) = pdegε(f).
If g : {0,1}m→{0,1} is a restriction or a projection of f , then pdegε(g)≤ pdegε(f).

3. (Error reduction [16]) For any δ < ε ≤ 1/3 and any Boolean function f , if PPP is an ε-error proba-
bilistic polynomial for f , then QQQ = M(PPP1, . . . ,PPP`) is a δ -error probabilistic polynomial for f where
` = O(log(1/δ)/ log(1/ε)), M is the exact multilinear polynomial for Maj` and PPP1, . . . ,PPP` are inde-
pendent copies of PPP. In particular, we have pdegδ (f)≤ pdegε(f) ·O(log(1/δ)/ log(1/ε)).

4. (Composition) For any Boolean function f on k variables and any Boolean functions g1, . . . ,gk on a
common set of m variables, let h denote the natural composed function f (g1, . . . ,gk) on m variables.
For ε,δ1, . . . ,δk ≥ 0, let PPP,QQQ1, . . . ,QQQk be probabilistic polynomials for f ,g1, . . . ,gk respectively with
errors ε,δ1, . . . ,δk respectively. Then, RRR = PPP(QQQ1, . . . ,QQQk) is a probabilistic polynomial for h with
error at most ε +∑i δi.

In particular, for any ε,δ > 0, we have pdegε+kδ (h)≤ pdegε(f) ·maxi∈[k] pdegδ (gi).

We will need the following known upper and lower bounds on pdeg(ORn).

Theorem 10 ([8, 27]). pdegε(ORn) = O(logn log(1/ε)).

Theorem 11 ([16]). pdeg(ORn)≥ (logn)1/2−o(1).

Definition 12 (Some Complexity Measures of Boolean functions). Let f : {0,1}n→{0,1} be any Boolean
function. We use D(f) to denote the depth of the smallest Decision Tree computing f .

For a ∈ {0,1}n, we use s(f ,a) to denote the number of b ∈ {0,1}n that can be obtained by flipping a
single bit of a and satisfying f (a) 6= f (b). The Sensitivity of f , denoted s(f), is defined to be the maximum
value of s(f ,a) as a ranges over {0,1}n.

Huang [18] proved the following breakthrough result recently.

Theorem 13 (Huang’s Sensitivity theorem [18]). There is an absolute constant c0 > 0 such that for all large
enough n and all functions f : {0,1}n→{0,1}, D(f)≤ s(f)c0 .

Strictly speaking, we do not need to use Huang’s Sensitivity theorem in what follows as we could also
make do with a polynomial relationship between the decision tree height and the block sensitivity8 of f ,
which has been known for a long time [20]. However, it is notationally simpler to work with sensitivity.

3 The Lower Bound: Proof of Theorem 4

The proof is made up of two lower bounds. We first prove a lower bound on pdeg(f) for any function
f that has large sensitivity s(f); this is by a suitable reduction from the case of the OR function. We then

8The Block sensitivity of a function f : {0,1}n → {0,1} is defined as follows. Given a ∈ {0,1}n, define bs(f ,a) to be the
maximum number of pairwise disjoint sets B1, . . . ,Bt ⊆ [n] such that flipping all the bits indexed by any Bi in a results in an input
b(i) such that f (a) 6= f (b(i)). Then, the block sensitivity of f is defined to be the maximum value of bs(f ,a) over all inputs
a ∈ {0,1}n.

8

prove a lower bound on pdeg(f) for any function that depends on all its variables but has small sensitivity;
this is by a suitable reduction from a kind of Addressing function. Optimizing over the parameters of the
lower bounds will yield the lower bound of the theorem statement.

Throughout this section, we assume that pdeg(ORn)≥ (logn)c−o(1) for all large enough n.

3.1 The case of large sensitivity

The main result of this section is the following lower bound on the probabilistic degrees of Boolean
functions with large sensitivity.

Lemma 14. Let f : {0,1}n → {0,1} be any Boolean function that has sensitivity s. Then, pdeg(f) ≥
(logs)c−o(1).

The above lemma is proved via a probabilistic reduction from the OR function on s variables to the
function f . This is captured by the following lemma, which shows how a function that has large sensitivity
can be used to obtain a probabilistic representation of a large copy of the OR function.

Recall from above that a Boolean function h : {0,1}s → {0,1} is a restriction of a Boolean function
g : {0,1}s → {0,1} if h can be obtained by setting some inputs of g to constants. Though h no longer
depends on the variables that are set to constants, here we still treat h as a function on all s variables.

Lemma 15. Let g : {0,1}s→ {0,1} be any Boolean function such that g(0s) = 0 and g(x) = 1 for any x of
Hamming weight 1. Then, there exist `= O(logs) independent random restrictions ggg1, . . . ,ggg` of g such that
for any a ∈ {0,1}s,

Pr
ggg1,...,ggg`

[OR`(ggg1(a), . . . ,ggg`(a)) 6= ORs(a)]≤
1
10

.

We interpret the random function OR`(ggg1(a), . . . ,ggg`(a)) as a probabilistic representation of the ORs

function. The reader may be confused by the fact that the probabilistic representation itself uses an OR
function; however, note that this OR function is defined on `� s variables and consequently is a much
‘simpler’ function (in particular, for us, what is relevant is that pdeg(OR`) = O(log`) [8, 27] which is much
smaller than logs) .

The proof of Lemma 15 is closely related to the argument for constructing a probabilistic polynomial
for the OR function from [8, 27]. The observation here is that a similar argument can be used to give a
probabilistic reduction from ORs to any function g as above.

Assuming Lemma 15 for now, we first finish the proof of Lemma 14.

Proof of Lemma 14. We know that f has some input of sensitivity s. Then we note that we may assume
f (0n) = 0 and f (0 j−110n− j) = 1 for j ∈ [s]. For let a ∈ {0,1}n such that s(f ,a) = s. If f (a) = 1,
we may replace f by 1− f . (Obviously, pdegε(f) = pdegε(1− f), for all ε ≥ 0.) So we may as-
sume f (a) = 0. Now by permuting coordinates if required, we may assume that f (ã(j)) = 1, where
ã(j) := (a1, . . . ,a j−1,1− a j,a j+1, . . . ,an) for all j ∈ [s]. Further, if a 6= 0n, we may replace f by f ′, de-
fined as f ′(x) = f (x⊕ a), x ∈ {0,1}n. By Fact 9 Item 2, pdegε(f) = pdegε(f ′), for all ε ≥ 0. Clearly, we
have f ′(0n) = 0 and f ′(0 j−110n− j) = 1, for all j ∈ [s].

So now, by assumption, we have f (0n) = 0 and f (0 j−110n− j) = 1 for j ∈ [s]. Define g : {0,1}s→{0,1}
as g(x) = f (x0n−s). Then g satisfies the hypotheses of Lemma 15. Hence, by Lemma 15, there exist
`= O(logs) random restrictions ggg1, . . . ,ggg` of g such that

Pr
ggg1,...,ggg`

[OR`(ggg1(x), . . . ,ggg`(x)) 6= ORs(x)]≤
1
10

, for all x ∈ {0,1}s. (1)

9

We use the above representation to devise a probabilistic polynomial for ORs.
Let OOO be any (1/10)-error probabilistic polynomial for OR` and GGG1, . . . ,GGG` be any (1/10`)-error prob-

abilistic polynomials for ggg1, . . . ,ggg` respectively. Then, by Fact 9 and (1), OOO(GGG1, . . . ,GGG`) is a (1/3)-error
probabilistic polynomial for ORs.

Note that by Theorem 10, we can choose OOO to have degree at most O(log`). Further, by Fact 9, we have
pdeg(gggi) ≤ pdeg(g) ≤ pdeg(f) for each i ∈ [`]. In particular, this implies that we can choose GGGi to have
degree O(pdeg(f) · log`) for each i ∈ [`]. This yields

pdeg(ORs)≤ pdeg(f) ·O(log`)2 = pdeg(f) ·O((log logs)2) = pdeg(f) · (logs)o(1).

As pdeg(ORs)≥ (logs)c−o(1) by assumption, we get the desired lower bound on pdeg(f).

It remains to prove Lemma 15, which we do now.

Proof of Lemma 15. We will only use restrictions g′ of g obtained by setting some inputs of g to 0. The
basic observation [8, 27] is the following. For any such restriction g′ = gρ , the function g′ always agrees
with ORs at the all-zero input. Moreover, if a is non-zero and has weight t > 0, then g′(a) = ORs(a) = 1 as
long as exactly t−1 of the variables that are set to 1 in a are fixed to 0 by ρ (this follows from the fact that g
accepts any input of weight exactly 1). While we cannot always choose a single restriction that does this for
all possible a, it is possible to choose a small number of restrictions randomly such that for each non-zero
a, at least one of them is guaranteed to work with high probability. We now see the details.

For i ∈ [logs], let Di be the distribution over subsets of [s] where we pick each element independently
to be in the set with probability 2−i. For a (constant) parameter p to be chosen later, let SSSi

1, . . . ,SSS
i
p be

independent random subsets picked from distribution Di. Each such set SSSi
j is associated with the restriction

ρρρ i
j where each variable is set to 0 if it does not belong to SSSi

j, and left alive (i.e. set to ∗) otherwise. Note
that gggi

j := gρρρ i
j

is a random restriction of g. Also observe that the total number of such restrictions is ` :=

p logs = O(logs). The final probabilistic representation is the OR of all these gggi
js.

We now prove correctness. Consider any a ∈ {0,1}s. The case when a = 0s is easy, as each gggi
j is

obtained by setting some inputs of g to 0 and hence gggi
j(a) = 0 with probability 1. The same is therefore true

for the OR of these functions.
Now assume that a 6= 0. Thus |a|= t ∈ [s]. Fix i ∈ [logs] such that t ∈ (2i−1,2i]. We will show that, with

probability at least 0.9, some gggi
j evaluates to 1. This will finish the proof.

To see this, let S ⊆ [s] be the set of coordinates where a takes value 1. Note that gggi
j(a) = g(bbbi

j) where
bbbi

j denotes the indicator vector of SSSi
j ∩S. As g(b) = 1 for any input b of weight 1, we see that gggi

j(a) = 1 if
|SSSi

j ∩S|= 1 . Hence, we have

Pr
gggi

1,...,ggg
i
p

[gggi
1(a) = · · ·= gggi

p(a) = 0]≤ Pr
SSSi

1,...,SSS
i
p

[p∧
j=1

|SSSi
j ∩S| 6= 1

]
=

p

∏
j=1

Pr
SSSi

j

[|SSSi
j ∩S| 6= 1], (2)

where the last equality follows from the independence of the SSSi
js.

Finally, note that for any j,

Pr
SSSi

j

[|SSSi
j ∩S|= 1] = ∑

k∈S
Pr
SSSi

j

[
k ∈ SSSi

j ∧
∧

k′∈S\k
k′ 6∈ SSSi

j

]
= t · 1

2i ·
(

1− 1
2i

)t−1

≥ 1
2
·
(

1− 1
2i

)2i−1

≥ 1
2e

,

10

where the first inequality follows from the fact that t ∈ (2i−1,2i] and the second from the standard fact that
(1−1/n)n−1 ≥ 1/e. Plugging the above into (2), we get

Pr
gggi

1,...,ggg
i
p

[gggi
1(a) = · · ·= gggi

p(a) = 0]≤
(

1− 1
2e

)p

≤ 1
10

,

for a large enough constant p. In particular, for this p, the probability that OR`(gggi
j : i ∈ [`], j ∈ [p]) evaluates

to 0 is at most 1/10, completing the proof of the lemma.

3.2 The case of small sensitivity

We prove the following lemma.

Lemma 16. Let f : {0,1}n→{0,1} be a function of sensitivity at most s that depends on all its n variables.

Then, we have pdeg(f) = Ω

(
log(n/sO(1))

logs

)
.

The proof of the lemma is in two steps. In the first step, we use a counting argument to prove a lower
bound on the probabilistic degrees of random functions FFF : {0,1}m → {0,1} which are chosen from a
distribution such that for a large subset X ⊆ {0,1}m, the random variables {FFF(x) | x ∈ X} are independently
and uniformly chosen random bits. In the second step, we show how any f as in the statement of Lemma 16
can be randomly restricted to a random function FFF where the lower bound for random functions applies.

We now state the lower bound for random functions and use it to prove Lemma 16. The lower bound for
random functions uses fairly standard ideas and is proved in the appendix (Section A).

Lemma 17 (Random function lower bound). The following holds for positive integer parameters m,M and
d such that M > m10d . Let FFF : {0,1}m→ {0,1} be a random function such that for some X ⊆ {0,1}m with
|X |= M, the random variables (FFF(x))x∈X are independent and uniformly distributed random bits. Then, we
have

Pr
FFF
[pdeg1/10(FFF)≤ d]<

1
10

.

Let us see how to use Lemma 17 to prove Lemma 16. This proof again breaks into two smaller steps.

Step 1: Show that, after a projection, f turns into something similar to an addressing function, that we will
call a Pseudoaddressing function.

Step 2: Show that any pseudoaddressing function has large probabilistic degree.

As any projection g of f satisfies pdeg(g)≤ pdeg(f) (Fact 9), the above implies a lower bound on pdeg(f),
hence proving Lemma 16.

To make the above precise, we need the following definition. We say that a function g : {0,1}r+t →
{0,1} is an (r, t)-Pseudoaddressing function if the input variables to g can be partitioned into two sets Y =
{y1, . . . ,yr} and Z = {z1, . . . ,zt} and g can be computed by a decision tree T with the following properties.

(P1) For each z j ∈ Z, there are two root-to-leaf paths π0
j and π1

j in T that diverge at a node labeled z j and
lead to outputs 0 and 1 respectively.

(P2) All the other nodes on these paths are labeled by variables in Y , and further these variables take the
same values on both paths. In particular, π0

j and π1
j differ only on the value of z j.

11

Example 18. Consider the standard Addressing function Addrr on n = r+ 2r variables as defined in Sec-
tion 1.3. This function is an (r,2r)-pseudoaddressing function as it can be computed by a decision tree of
depth r+ 1, which first queries all the addressing variables to determine a ∈ {0,1}r and then queries and
outputs the value of za (the two computational paths querying za give the desired root-to-leaf paths required
in the definition above).

In analogy with the Addressing function, given an (r, t)-pseudoaddressing function as above, we refer to
the variables in Y as the addressing variables and the variables in Z as the addressed variables.

The two steps of the proof as outlined above can now be formalized as follows.

Claim 19. Let f be as in the statement of Lemma 16. Then, there exist r ≤ sO(1) and t ≥ n/sO(1) and a
projection ν : [n]→ [r+ t] such that g = f |ν is an (r, t)-pseudoaddressing function.

Claim 20. Let g be any (r, t)-pseudoaddressing function. Then, pdeg(g) = Ω(log t/ logr).

As noted above, the above claims immediately imply Lemma 16. We now prove these claims.

Proof of Claim 19. We will first outline how to isolate a set of n/poly(s) variables that will (almost) be
the set of addressed variables. A projection will then be applied to the remaining variables to create the
pseudoaddressing function. Let us now see the details.

By Theorem 13, we know that f has a decision tree Tf of depth d ≤ poly(s). Fix such a tree Tf of
minimum size, i.e. with the smallest possible number of leaves. Let V = {x1, . . . ,xn} denote the input
variables of f .

Any variable xi ∈ V must be queried somewhere in the tree Tf , as f depends on all its input variables
by assumption. Fix any occurrence of this variable in the decision tree Tf , and let w denote the node of Tf

corresponding to this query. (Refer to Figure 2 (a) for an illustration.) Let πi denote the path from the root
of Tf to w and let T0 and T1 be the subtrees rooted at the left and right children of w. The decision trees T0
and T1 both compute functions of the n′ < n Boolean variables not queried in πi. Note that these decision
trees compute distinct functions since otherwise the query made at the vertex w is unnecessary, and a smaller
decision tree than Tf can be obtained by replacing the subtree rooted at w by T0 or by T1. This contradicts
the minimality of the size of Tf .

Thus, T0 and T1 compute distinct functions. In particular, there is an input a ∈ {0,1}n′ on which T0 and
T1 have different outputs; w.l.o.g., assume T0 and T1 output 0 and 1 respectively on a. Let π0

w and π1
w be the

root-to-leaf paths followed on the input a in T0 and T1 respectively. Note that any variable queried on both
π0

w and π1
w takes the same value on both paths, as both paths are consistent with the input a. (Again, see

Figure 2 (a) for an example.)
Concatenating each of π0

w and π1
w with the path πi gives us two root-to-leaf paths π0

i and π1
i in T such

that

P1′ The paths π0
i and π1

i diverge at the node w (labelled by variable xi) and lead to outputs 0 and 1
respectively.

P2′ The two paths agree on all variables other than xi, i.e., any other variable that is queried on π0
i and π1

i
takes the same value on both.

We have such a pair of paths π0
i and π1

i for each xi ∈V . Let Pi denote the set of all j 6= i such that x j is
queried on π0

i or on π1
i . Note that |Pi| ≤ 2d.

We claim that we can choose a large subset Z′ ⊆ [n] such that for all i ∈ Z′, the set Pi does not contain
any j where j ∈ Z′. To see this, define a graph G with vertex [n] and edges between vertices distinct i, j ∈ [n]

12

π8

π1
w π0

w

x1

x2 x2

x5 x3 x6 x7

x3 0 x8

w
x9 x3 0 x4 1

0 1 x4 x4 0 1 0 1 0 x10

0 1 1 0 0 1

(a) The tree Tf

π8

π1
w π0

w

y1

y2 y2

z1 y3 z2 z3

y3 0 z4

w
z5 y4 0 y4 1

0 1 y4 y4 0 1 0 1 0 1

0 1 1 0

(b) The tree T (after projection)

Figure 2: The decision tree on the left computes a truly 10-variate function f (x1, . . . ,x10). The paths obtained by
concatenating π8 with π0

w and π1
w are consistent with each other except for the value of x8, the variable queried at node

w. After a projection ν : [10]→ [9] defined by ν(i) = i for i ≤ 9 and ν(10) = 4, we get a tree T , which computes
a (4,5)-pseudoaddressing function g(y1, . . . ,y4,z1, . . . ,z5). Note that each path in T corresponds to a path in Tf but
not every path in Tf survives in T (e.g. the path leading to 0 through the node querying x10 is pruned away, as it is
inconsistent with ν).

if and only if Pi contains j or vice-versa. Since each |Pi| ≤ 2d, it is clear that this graph has average degree
at most 2d. By Turán’s theorem (see e.g. [3]), this implies that G has an independent set Z′ of size at least
n/4d. This set Z′ has the required property.

We are now ready to show that the required projection ν exists. Let r = 10d2 and let ννν ′ : [n]\Z′→ [r] be
a random map (i.e. the image of each element of the domain is independently and uniformly chosen from
[r]). We say that an i ∈ Z′ is good if ννν ′ is 1-1 on the set Pi. Let G be the set of all good i, with ttt := |G |.
Assume G = {i1, . . . , ittt}. We use this to define a random projection ννν : [n]→ [r+ ttt] by

ννν(i) =

ννν ′(i) if i 6∈ Z′,
1 if i ∈ Z′ \G , (here, any k ∈ [r] will do)
r+ j if i ∈ G and i = i j.

The random projection defines a random Boolean function ggg on r + ttt variables. We now show that,
with positive probability, ggg is an (r,n/poly(s))-pseudoaddressing function, where the first r variables are
the addressing variables. This will finish the proof. Note that the projection ννν applied to the tree Tf also
defines a random decision tree TTT computing ggg. We will in fact show that TTT serves as a witness for the fact
that ggg is an (r,n/poly(s))-pseudoaddressing function (with positive probability).

13

In fact, this happens whenever ttt = |G | is large enough. More precisely, note that

E
ννν ′
[|Z′|− ttt] = ∑

i∈Z′
Pr
ννν ′
[ννν ′ is not 1-1 on Pi]≤ ∑

i∈Z′
∑

j 6=k∈Pi

Pr
ννν ′
[ννν ′(j) = ννν

′(k)]≤ ∑
i∈Z′
|Pi|2 ·

1
r
≤ |Z′| · (2d)2

r
≤ |Z

′|
2

.

In particular, there is a setting ν ′ of ννν ′ such that the corresponding set of good variables |G | has size at least
|Z′|/2. Fix this ν ′ and let G , t,ν ,g,T be the corresponding fixings of G , ttt,ννν ,ggg,TTT respectively.

We have g = g(y1, . . . ,yr,z1, . . . ,zt). Observe that each root-to-leaf path of T can be identified with a
root-to-leaf path of Tf . Further, a path π of Tf survives in T exactly when it is consistent w.r.t. ν , i.e., if
two variables that are set to opposite values in π are not mapped to the same variable by ν (see Figure 2 (b)
for an example). In particular, if a path π has the property that the variables queried along π are mapped
injectively by ν , then the path π survives in T .

This implies that for any good i j ∈ G , the corresponding paths π0
i j

and π1
i j

survive in T . Moreover, as the
projection ν is injective on the entire set Pi j , these paths continue to agree with each other on all variables
except the variable z j queried at the point of their divergence. This gives both properties P1 and P2 stated
above. As this holds for each i j ∈ G , we see that g is indeed an (r, t)-pseudoaddressing function. Note that
r = 10d2 ≤ poly(s) and t ≥ n/4d ≥ n/poly(s). Hence, we have proved the claim.

Proof of Claim 20. The proof is via a reduction to Lemma 17.
Let g(y1, . . . ,yr,z1, . . . ,zt) be an (r, t)-pseudoaddressing function. Consider the random function FFF on

{0,1}r obtained by setting the addressed variables z1, . . . ,zt to bbb1, . . . ,bbbt ∈ {0,1} chosen i.u.a.r.. We show
that there is an X ⊆ {0,1}r of size t such that the random variables (FFF(a) : a ∈ X) are independent and
uniformly distributed bits. Then, Lemma 17 implies the statement of the claim.

Let us see how X is defined. Let T be the decision tree guaranteed for g by virtue of the fact that it
is an (r, t)-pseudoaddressing function. Further, for any z j, let π0

j and π1
j be the paths satisfying P1 and P2

above. By P2, we can fix a setting a(j) ∈ {0,1}r to the y-variables that is consistent with both paths. We set
X = {a(j) | j ∈ [t]}.

To analyze FFF(a(j)), note that setting the variables z1, . . . ,zt to bbb1, . . . ,bbbt in T gives us a (random) decision
tree TTT ′ that computes FFF . In particular, the path followed by TTT ′ on input a(j) is uniformly chosen among π0

j

and π1
j depending on the value of z j, and hence FFF(a(j)) is either bbb j or 1−bbb j (exactly which depends on the

value of z j that is consistent with π0
j and π1

j). In either case, however, FFF(a(j)) is a uniformly chosen random
bit depending only on bbb j. Hence, the random variables (FFF(a(j)) : j ∈ [t]) are independent and uniformly
distributed.

Thus, Lemma 17 implies that with positive probability, pdeg1/10(FFF) = Ω(log t/ logr). However, we
know by Fact 9 that, as FFF is a restriction of g, pdeg1/10(FFF)≤ pdeg1/10(g). Hence, we obtain the same lower
bound for pdeg1/10(g). Finally, by error reduction (Fact 9), the same lower bound (up to constant factors)
holds for pdeg1/3(g) = pdeg(g).

3.3 Finishing the proof of Theorem 4

Lemma 16 and Lemma 14 imply that

pdeg(f) = Ω

(
max

{
(logs)c−o(1),

log(n/sO(1))

logs

})

14

where s denotes the sensitivity of f . The above is minimized for s so that (logs)c+1 = Θ(logn) (note that
this implies that s = no(1)). For this s, we get

pdeg(f) = Ω((logn)c/(c+1)−o(1))≥ (logn)c/(c+1)−o(1),

proving the theorem.

4 The Upper Bound: Proof of Theorem 5

The construction is motivated by and closely follows a construction of Ambainis and de Wolf [2],
who used it to prove the existence of a truly n-variate Boolean function f whose approximate degree is
O(logn/ log logn). The construction of [2] uses the fact that the approximate degree of the ORn function
is O(

√
n) [15]. Using our assumption that the probabilistic degree of the ORn function is (logn)c+o(1) we

are able to prove a stronger degree upper bound for probabilistic degree. In particular, Theorem 10 allows
us to prove an unconditional upper bound of (logn)(1/2)+o(1) on the probabilistic degree of some n-variable
function.

The construction is a variant of the Addressing function, where the addressing bits are replaced by
elements of a larger alphabet [s], which are themselves presented in an encoded form that allows them to be
easily ‘decoded’ by low-degree polynomials. More precisely, we construct the function as follows.

Construction. Let s be a power of 2 and let H ⊆ {0,1}s be the set of codewords of the Hadamard code.
That is, assume s = 2t and identify elements of {0,1}s with functions h : {0,1}t → {0,1}. Then H consists
of precisely those elements h ∈ {0,1}s such that h is a linear function when considered as a mapping from
Fs

2 to F2 in the natural way. The set H contains precisely s elements, say {h1, . . . ,hs}.
We define a Boolean function f on n = sr+ sr +1 bits as follows. Any input a is parsed as

a = (g1, . . . ,gr,T,b)

where g1, . . . ,gr : {0,1}t →{0,1}, T : [s]r→{0,1} and b is a single bit. We define f by

f (a) =
{

T (i1, . . . , ir) if g1, . . . ,gr ∈ H and g1 = hi1 , . . . ,gr = hir ,
b otherwise.

Analysis. We have

f (g1, . . . ,gr,T,b) = ∑
i1,...,ir∈[s]

1(g1 = hi1 , . . . ,gr = hir) ·T (i1, . . . , ir)+(1−1(g1, . . . ,gr ∈ H)) ·b. (3)

Here 1(E) for a Boolean predicate E takes the value 1 when the Boolean predicate is satisfied and 0 other-
wise.

The above implies, in particular, that the function f is truly n-variate. To see this, say the variables of f
are

• x j,α (j ∈ [r],α ∈ {0,1}t) encoding the entries of the truth tables of g1, . . . ,gr, More formally, the
variable x j,α is set to g j(α).

• yi1,...,ir encoding the entries of T , and

15

• y0 which gives the value of b.

Any variable x j,α is influential at an input (g1, . . . ,gr,T,b) where g1, . . . ,gr are hi1 , . . . ,hir ∈ H respectively,
and b 6= T (i1, . . . , ir), which implies that flipping the value of x j,α at this point changes the output from
T (i1, . . . , ir) to b. The variable yi1,...,ir is also influential at the same point. The variable y0 is influential at
any input where not all the gi are in H. Thus, we see that f is indeed n-variate.

Now, we will show an upper bound on pdeg(f). This will be done by constructing two polynomials.

• A 1/3-error probabilistic polynomial QQQ(x j,α : j ∈ [r],α ∈ {0,1}t) for the Boolean function
1(g1, . . . ,gr ∈ H).

• For each i1, . . . , ir ∈ [s], a polynomial Ri1,...,ir(x j,α : j ∈ [r],α ∈ {0,1}t) such that at input (g1, . . . ,gr)∈
Hr, Ri1,...,ir(g1, . . . ,gr) = 1 if g1 = hi1 , . . . ,gr = hir , and 0 otherwise. (In other words, Ri1,...,ir computes
a δ -function on inputs from Hr. Note that we do not claim anything if (g1, . . . ,gr) 6∈ Hr.)

Given the above constructions, the following yields a probabilistic polynomial PPP for f .

PPP = QQQ ·

(
∑

i1,...,ir∈[s]
Ri1,...,ir · yi1,...,ir

)
+(1−QQQ) · y0 (4)

(The two copies of QQQ are chosen with the same randomness and are not independent of each other.) To
see that this works, fix any input a = (g1, . . . ,gr,T,b). If (g1, . . . ,gr) ∈ Hr, the term in the parenthesis
evaluates to T (i1, . . . , ir) with probability 1. Further, QQQ(g1, . . . ,gr) evaluates to 1 with probability 2/3.
Hence, PPP(a) = T (i1, . . . , ir) = f (a) with probability at least 2/3. On the other hand, if (g1, . . . ,gr) 6∈ Hr,
then QQQ(g1, . . . ,gr) evaluates to 0 with probability 2/3. When this event occurs, the first summand evaluates
to 0 and the second summand evaluates to b. Hence, PPP(a) = b = f (a) with probability at least 2/3.

It remains to construct the polynomials QQQ and Ri1,...,ir . We start with QQQ. Recall that a function g :
{0,1}t →{0,1} lies in H when it is linear over F2, or equivalently if g(α⊕β)⊕g(α)⊕g(β) = 0 for every
α,β ∈ {0,1}t . Thus, the condition that g1, . . . ,gr ∈ H can be rewritten as

r∧
j=1

∧
α,β∈{0,1}t

(1⊕g j(α⊕β)⊕g j(α)⊕g j(β)).

Let q(z1,z2,z3) be a constant-degree polynomial of 3 Boolean variables that evaluates to 1⊕ z1⊕ z2⊕ z3.
Then, the above can be rewritten as

∧r
j=1
∧

α,β∈{0,1}t q(g j(α),g j(β),g j(α ⊕ β)). Thus, we can define the
probabilistic polynomial to be

QQQ(x j,α : j ∈ [r],α ∈ {0,1}t) = QQQ1(q(x j,α ,x j,β ,x j,α⊕β) : j ∈ [r],α,β ∈ {0,1}t)

where Q1 is any probabilistic polynomial for the ANDr22t = ANDrs2 function. By assumption, pdeg(ORrs2)
and hence, by DeMorgan’s laws, pdeg(ANDrs2) is at most log(rs2)c+o(1) = (logr+ logs)c+o(1).

We now see how to construct Ri1,...,ir for any fixed i1, . . . , ir ∈ [s]. Recall the standard fact (see, e.g. [22])
that for hi1 6= hi2 ∈ H, the functions ĥi1 , ĥi2 : {0,1}t →{−1,1} defined by

ĥib(α) = 1−2hib(α), for all α ∈ {0,1}t and b ∈ {1,2},

are orthogonal to one another, i.e., ∑α ĥi1(α)ĥi2(α)= 0. Based on this observation, we define the polynomial
as follows.

Ri1,...,ir(x j,α : j ∈ [r],α ∈ {0,1}t) =
1
sr

r

∏
j=1

(
∑

α∈{0,1}t
ĥi j(α)(1−2x j,α)

)
.

16

Let us see that this polynomial has the desired properties. Consider input (g1, . . . ,gr)∈Hr. Assume g j = hi′j
for each j ∈ [r]. Then, we have

Ri1,...,ir(g1, . . . ,gr) =
1
sr

r

∏
j=1

(
∑

α∈{0,1}t
ĥi j(α)(1−2hi′j(α))

)

=
1
sr

r

∏
j=1

(
∑

α∈{0,1}t
ĥi j(α)ĥi′j(α)

)

and the latter quantity can be seen to be 1 if i′j = i j for all j ∈ [r] and 0 otherwise. Thus, Ri1,...,ir behaves as
stipulated. Note that deg(Ri1,...,ir) = r.

This concludes the construction of the probabilistic polynomial for f . The degree of the polynomial thus
constructed is at most deg(QQQ)+maxi1,...,ir deg(Ri1,...,ir) = O((logr+ logs)c+o(1)+ r) = O((logs)c+o(1)+ r).

Parameters. We set r =(logs)c = tc. This gives a truly n-variate Boolean function on n=O(sr)=O(2t1+c
)

variables with probabilistic degree tc+o(1) = (logn)(c/(c+1))+o(1).

References

[1] J. Alman, T. M. Chan, and R. R. Williams. Polynomial representations of threshold functions and al-
gorithmic applications. In I. Dinur, editor, IEEE 57th Annual Symposium on Foundations of Computer
Science, FOCS 2016, 9-11 October 2016, Hyatt Regency, New Brunswick, New Jersey, USA, pages
467–476. IEEE Computer Society, 2016. https://doi.org/10.1109/FOCS.2016.57.

[2] J. Alman and R. Williams. Probabilistic polynomials and hamming nearest neighbors. In 2015 IEEE
56th Annual Symposium on Foundations of Computer Science, pages 136–150, 2015. https://doi.
org/10.1109/FOCS.2015.18.

[3] N. Alon and J. H. Spencer. The Probabilistic Method, Third Edition. Wiley-Interscience series in
discrete mathematics and optimization. Wiley, 2008. ISBN: 978-0-470-17020-5.

[4] A. Ambainis and R. de Wolf. How low can approximate degree and quantum query complexity be for
total boolean functions? Comput. Complex., 23(2):305–322, 2014. https://doi.org/10.1007/

s00037-014-0083-2.

[5] J. Aspnes, R. Beigel, M. L. Furst, and S. Rudich. The expressive power of voting polynomials. Comb.,
14(2):135–148, 1994. https://doi.org/10.1007/BF01215346.

[6] R. Beals, H. Buhrman, R. Cleve, M. Mosca, and R. de Wolf. Quantum lower bounds by polynomials.
J. ACM, 48(4):778–797, 2001. https://doi.org/10.1145/502090.502097.

[7] R. Beigel. The polynomial method in circuit complexity. In Proceedings of the Eigth Annual Struc-
ture in Complexity Theory Conference, San Diego, CA, USA, May 18-21, 1993, pages 82–95. IEEE
Computer Society, 1993. https://doi.org/10.1109/SCT.1993.336538.

[8] R. Beigel, N. Reingold, and D. Spielman. The perceptron strikes back. In [1991] Proceedings of the
Sixth Annual Structure in Complexity Theory Conference, pages 286–291, 1991. https://doi.org/
10.1109/SCT.1991.160270.

17

https://doi.org/10.1109/FOCS.2016.57
https://doi.org/10.1109/FOCS.2015.18
https://doi.org/10.1109/FOCS.2015.18
https://doi.org/10.1007/s00037-014-0083-2
https://doi.org/10.1007/s00037-014-0083-2
https://doi.org/10.1007/BF01215346
https://doi.org/10.1145/502090.502097
https://doi.org/10.1109/SCT.1993.336538
https://doi.org/10.1109/SCT.1991.160270
https://doi.org/10.1109/SCT.1991.160270

[9] M. Braverman. Polylogarithmic independence fools AC0 circuits. J. ACM, 57(5):28:1–28:10, 2010.
https://doi.org/10.1145/1754399.1754401.

[10] H. Buhrman and R. de Wolf. Complexity measures and decision tree complexity: a survey. Theor.
Comput. Sci., 288(1):21–43, 2002. https://doi.org/10.1016/S0304-3975(01)00144-X.

[11] M. L. Carmosino, R. Impagliazzo, V. Kabanets, and A. Kolokolova. Learning algorithms from natural
proofs. In R. Raz, editor, 31st Conference on Computational Complexity, CCC 2016, May 29 to June
1, 2016, Tokyo, Japan, volume 50 of LIPIcs, pages 10:1–10:24. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2016. https://doi.org/10.4230/LIPIcs.CCC.2016.10.

[12] X. Chen, I. C. Oliveira, R. A. Servedio, and L. Tan. Near-optimal small-depth lower bounds for small
distance connectivity. In D. Wichs and Y. Mansour, editors, Proceedings of the 48th Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2016, Cambridge, MA, USA, June 18-21, 2016,
pages 612–625. ACM, 2016. https://doi.org/10.1145/2897518.2897534.

[13] J. Chiarelli, P. Hatami, and M. E. Saks. An asymptotically tight bound on the number of relevant
variables in a bounded degree boolean function. Comb., 40(2):237–244, 2020. https://doi.org/

10.1007/s00493-019-4136-7.

[14] A. Golovnev, A. S. Kulikov, and R. R. Williams. Circuit depth reductions. In J. R. Lee, editor, 12th
Innovations in Theoretical Computer Science Conference, ITCS 2021, January 6-8, 2021, Virtual Con-
ference, volume 185 of LIPIcs, pages 24:1–24:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2021. https://doi.org/10.4230/LIPIcs.ITCS.2021.24.

[15] L. K. Grover. A fast quantum mechanical algorithm for database search. In Proceedings of the Twenty-
Eighth Annual ACM Symposium on Theory of Computing, STOC ’96, page 212–219, New York, NY,
USA, 1996. Association for Computing Machinery. https://doi.org/10.1145/237814.237866.

[16] P. Harsha and S. Srinivasan. On polynomial approximations to AC0. Random Structures & Algorithms,
54(2):289–303, 2019. https://doi.org/10.1002/rsa.20786.

[17] J. Håstad, B. Rossman, R. A. Servedio, and L. Tan. An average-case depth hierarchy theorem for
boolean circuits. J. ACM, 64(5):35:1–35:27, 2017. https://doi.org/10.1145/3095799.

[18] H. Huang. Induced subgraphs of hypercubes and a proof of the sensitivity conjecture. Annals of
Mathematics, 190(3):949–955, 2019. https://doi.org/10.4007/annals.2019.190.3.6.

[19] A. R. Klivans and R. A. Servedio. Learning DNF in time 2Õ(n1/3). J. Comput. Syst. Sci., 68(2):303–318,
2004. https://doi.org/10.1016/j.jcss.2003.07.007.

[20] N. Nisan. Crew prams and decision trees. In Proceedings of the Twenty-First Annual ACM Symposium
on Theory of Computing, STOC ’89, page 327–335, New York, NY, USA, 1989. Association for
Computing Machinery. https://doi.org/10.1145/73007.73038.

[21] N. Nisan and M. Szegedy. On the degree of boolean functions as real polynomials. Comput. Complex.,
4:301–313, 1994. https://doi.org/10.1007/BF01263419.

[22] R. O’Donnell. Analysis of Boolean Functions. Cambridge University Press, USA, 2014. https:

//doi.org/10.1017/CBO9781139814782.

18

https://doi.org/10.1145/1754399.1754401
https://doi.org/10.1016/S0304-3975(01)00144-X
https://doi.org/10.4230/LIPIcs.CCC.2016.10
https://doi.org/10.1145/2897518.2897534
https://doi.org/10.1007/s00493-019-4136-7
https://doi.org/10.1007/s00493-019-4136-7
https://doi.org/10.4230/LIPIcs.ITCS.2021.24
https://doi.org/10.1145/237814.237866
https://doi.org/10.1002/rsa.20786
https://doi.org/10.1145/3095799
https://doi.org/10.4007/annals.2019.190.3.6
https://doi.org/10.1016/j.jcss.2003.07.007
https://doi.org/10.1145/73007.73038
https://doi.org/10.1007/BF01263419
https://doi.org/10.1017/CBO9781139814782
https://doi.org/10.1017/CBO9781139814782

[23] A. A. Razborov. Lower bounds on the dimension of schemes of bounded depth in a complete basis
containing the logical addition function. Mat. Zametki, 41(4):598–607, 623, 1987.

[24] A. Schrijver. Theory of linear and integer programming. John Wiley & Sons, 1998. ISBN: 978-0-471-
98232-6.

[25] H. U. Simon. A Tight Ω(log logn)-Bound on the Time for Parallel RAM’s to Compute Nondegen-
erated Boolean Functions. Inf. Control., 55(1-3):102–106, 1982. https://doi.org/10.1016/

S0019-9958(82)90477-6.

[26] R. Smolensky. Algebraic methods in the theory of lower bounds for boolean circuit complexity. In
A. V. Aho, editor, Proceedings of the 19th Annual ACM Symposium on Theory of Computing, 1987,
New York, New York, USA, pages 77–82. ACM, 1987. https://doi.org/10.1145/28395.28404.

[27] J. Tarui. Probabilistic polynomials, AC0 functions and the polynomial-time hierarchy. Theoretical
Computer Science, 113(1):167–183, 1993. https://doi.org/10.1016/0304-3975(93)90214-E.

[28] E. Viola. New lower bounds for probabilistic degree and AC0 with parity gates. Electron. Colloquium
Comput. Complex., 27:15, 2020. https://eccc.weizmann.ac.il/report/2020/015.

[29] R. R. Williams. Faster all-pairs shortest paths via circuit complexity. SIAM J. Comput., 47(5):1965–
1985, 2018. https://doi.org/10.1137/15M1024524.

A Proof of the Random function lower bound (Lemma 17)

The proof is via a counting argument.
We start with a standard observation, which follows from a simple averaging argument. If F : {0,1}m→

{0,1} has (1/10)-error probabilistic degree d, then for any probability distribution µ over {0,1}m, there is
a polynomial P of degree at most d such that

Pr
a∼µ

[P(a) = F(a)]≥ 9
10

. (5)

Conversely, if there is a probability distribution µ such that (5) does not hold for any polynomial of degree
at most d, then pdeg(F)> d. We will take the hard distribution to be the uniform distribution over X .

More precisely, call a function g : X → {0,1} bad if there is a polynomial P of degree at most d that
agrees with g on at least 9|X |/10 = 9M/10 points of X . Let B be the set of bad functions. The reasoning
above tells us that

Pr
FFF
[pdeg1/10(FFF)≤ d]≤ Pr

FFF
[FFF |X ∈B] =

|B|
2M . (6)

where for the latter inequality we have used the fact that the random variables (FFF(x) : x ∈ X) are indepen-
dently and uniformly distributed. Hence, it will suffice to bound |B| to prove the lemma.

To bound the size of B, it will suffice to give a short encoding of each element of B. Fix any g ∈B and
a polynomial P that agrees with g on a set X ′ ⊆ X such that |X ′| ≥ 9M/10. Note that g can be specified by

1. The set X ′.

2. The set of values of g on X \X ′ (in some pre-determined order).

19

https://doi.org/10.1016/S0019-9958(82)90477-6
https://doi.org/10.1016/S0019-9958(82)90477-6
https://doi.org/10.1145/28395.28404
https://doi.org/10.1016/0304-3975(93)90214-E
https://eccc.weizmann.ac.il/report/2020/015
https://doi.org/10.1137/15M1024524

3. A polynomial Q of degree at most d that agrees with g on X ′ (specified as a list of coefficients of
monomials).

Note that the number of choices for X ′ is at most
(M
≤M/10

)
, which is bounded by 2H(1/10)M, where

H(·) denotes the binary entropy function. Further, the number of possibilities for g on X \X ′ is at most
2|X\X

′| ≤ 2M/10.
It remains to bound the number of possibilities for Q. A priori, it is not completely clear how to bound

the number of Q as the coefficients of Q could be arbitrary real numbers. However, we note that if there is
a polynomial P that agrees with g on X ′, then there is also a Q that satisfies this property, and furthermore,
the coefficients of Q are rational numbers of small bit complexity.

Formally, we will use the following lemma, which is an easy consequence of [24, Corollary 3.2d].

Lemma 21. Consider a system of linear equations Ax = b over the rational numbers, where A is an p×q
Boolean matrix, and b ∈ {0,1}p. Then, if the system has a real solution, it has a rational solution that can
be specified (as a list of numerator-denominator pairs in binary) by at most 10q3 bits.

To use the above lemma, consider the problem of finding a polynomial Q of degree at most d that
agrees with g at all points in X ′. The coefficients of such a polynomial Q solve a linear system of p := |X ′|
many linear equations in q :=

(m
≤d

)
variables. By the existence of the polynomial P, this system has a

solution. Thus by Lemma 21, we know that there is a solution of bit-complexity at most 10q3≤m4d <M/10.
Therefore, we may always choose Q from the set Q of polynomials of bit-complexity (as specified above)
at most M/10. Note that |Q| ≤ 2M/10 by definition.

Overall, this gives a complete specification of any given g ∈B. More precisely, we have given a 1-1
map τ : B→X ×S×Q, where X is the collection of subsets of X of size at least 9M/10, S is the set of
Boolean tuples of length M/10, and Q is the set of polynomials of degree at most d of bit-complexity at
most M/10. Hence, |B| ≤ |X | · |S| · |Q| ≤ 2M·(H(1/10)+1/10+1/10) ≤ 29M/10. Plugging this into (6), we get

Pr
FFF
[pdeg1/10(FFF)≤ d]≤ 29M/10

2M <
1
10

.

This finishes the proof of the lemma.

20

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

