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Abstract

We present a Karchmer-Wigderson game to study the complexity of hazard-free formulas.
This new game is both a generalization of the monotone Karchmer-Wigderson game and an ana-
log of the classical Boolean Karchmer-Wigderson game. Therefore, it acts as a bridge between
the existing monotone and general games.

Using this game, we prove hazard-free formula size and depth lower bounds that are provably
stronger than those possible by the standard technique of transferring results from monotone
complexity in a black-box fashion. For the multiplexer function we give (1) a hazard-free formula
of optimal size and (2) an improved low-depth hazard-free formula of almost optimal size and
(3) a hazard-free formula with alternation depth 2 that has optimal depth. We then use our
optimal constructions to obtain an improved universal worst-case hazard-free formula size upper
bound. We see our results as a significant step towards establishing hazard-free computation as
an independent missing link between Boolean complexity and monotone complexity.
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1 Introduction

The study of the three-valued strong logic of indeterminacy dates back to Kleene ([Kle38| p. 153],
[Kle52, §64]). It found numerous applications, for example in logic (see e.g. [Kor66], [Mall4]),
in cybersecurity for information flow tracking at the gate level (see e.g. [TWM™09], [HOI"12],
[BHT™17]), the design of real-world circuits that communicate between unsynchronized clock do-
mains (see e.g. [FFL18], [FKLP17|, [TFL17], [BLM20]), and in the study of hazards in Boolean
circuits (see e.g. [Got49 [Cal58|, [YR64, Eic65, Muk72, Muk83al, Muk83bl, [ND92, [BS95, [BEIO1]). The
languages in these areas is different, but the underlying three-valued logic is the same and many
questions and results can be readily transferred between areas. We will use the language of hazards
in circuits in this paper. The use of three-valued logic to study hazards in Boolean circuits dates all
the way back to Goto [Got49], who used 0 and 1 to denote the Boolean values and used the symbol
% to denote the third value, which stands for any undefined, oscillating, unstable, or otherwise
somehow flawed state. In this paper we use the symbol u := % to denote this third state. Goto
modeled the Boolean operations A (and) and V (or) as min and max, respectively, and the = (not)
operation as 1 — z, which defines the behaviour of the three types of gates on inputs from {0, u, 1}.
Hence a Boolean circuit C' on n inputsﬂ computes a function {0, u, 1} — {0,u, 1} by induction over
the circuit structure. The design of the gate behaviour as min, max, and 1 —x is the result of a more
general construction principle that is called the hazard-free extensiowﬂ f:{0,u,1}" = {0,u,1} of
a Boolean function f: {0,1}" — {0,1}. It is defined as follows.

A binary string a € {0,1}" is called a resolution of a ternary string a € {0,u,1}" if for all
1 <i < n with a; # u we have «; = a;, i.e., all entries u are replaced by 0s and 1s. Note that the
set of all resolutions a of a forms a subcube of {0,1}". For a Boolean function f : {0,1}" — {0,1}
and for an input o € {0,u,1}" we define the evaluation of the function f : {0,u,1}" — {0,u,1}
at a via

1 if for all resolutions a of & we have f(a) =1
f(a) :== ¢ 0 if for all resolutions a of o we have f(a) =0 (1.1)
u otherwise.

A Boolean circuit C' that computes a Boolean function f : {0,1}"™ — {0,1} is called hazard-free if
for all @ € {0,u,1}" we have C(a) = f(a). An o where these two functions differ is called a hazard.
For example, consider the circuit in Part (a) of Figure [l that computes the multiplexer function
C(s,20,71) = MUX(s,20,71) = x5 for all (s,z0,21) € {0,1}3. We observe that C' has a hazard
at (u,1,1), because C(u,1,1) = uV u = u, whereas C(0,1,1) = C(1,1,1) = 1. The circuit can be
made hazard-free at the expense of using more gates, see Part (b) of Figure [1] (this construction
can be found for example in [FFLIR, Fig. 6a] and [IKL™19, Fig. 1b]).

Designing small hazard-free circuits for computing Boolean functions is a fundamental goal in
electronic circuit design. Huffman [Huf57] proved that all Boolean functions can be implemented by
hazard-free circuits and he already noted the large growth of the number of gates in his examples.
Eichelberger proved the first lower bound on hazard-free complexity in the restricted model of DNF
formulas, which is given by the number of prime implicants of the function that is computed. The
very recent paper [IKL 19| formally defines the notion of hazard-free complexity and shows that for
monotone functions the hazard-free complexity and the monotone complexity coincide. Fortunately,

LAll circuits in our paper have a single output.
2The function f is called the hazard-free extension of f (see [IKLT19]), or alternatively the ternary extension (see
[MSB12]) or the metastable closure (see [FFL18]).



(a) A size-optimal for- (b) The common hazard-free for- (¢) A size-optimal hazard-free
mula, but with a hazard at mula. There is visible symmetry formula. The symmetry is bro-
(s,20,71) = (u, 1,1). between xg and x1. ken.

Figure 1: Different De Morgan formulas for MUX;

good lower bounds are known on the monotone complexity of monotone Boolean functions (see
[Raz85al, Raz85b, [And&7, [AB87, [Raz87, Tar88, [(GS95, KW90, RW92, RM99l [HR00, I(GP14, PR17]).
A direct consequence of [IKL 19| is that the exponential gap between Boolean circuit complexity
and monotone circuit complexity transfers directly into an exponential gap between Boolean circuit
complexity and the hazard-free circuit complexity. [Juk21] proves that every Boolean circuit that
computes a monotone function and that is optimal with respect to hazard-free complexity must
automatically be a monotone circuit. Hence the study of hazard-free complexity does not yield any
new insights into monotone functions, but it is a natural generalization of monotone complexity
to the domain of all Boolean functions. This suggests that the study of hazard-free complexity, in
particular of non-monotone functions, should be of independent interest (apart from its applicabil-
ity in practice). As a first step in this direction, |[IKL"19] prove lower bounds for non-monotone
functions by using monotone circuit lower bounds for the hazard-derivative of the function, because
the monotone complexity of the hazard-derivative of f is a lower bound on the hazard-free com-
plexity of f. All existing lower bounds known for hazard-free computation are derived from this
wealth of known monotone complexity lower bounds.

However, the hazard-derivative method cannot always prove optimal lower bounds, because
some functions with high hazard-free complexity have hazard-derivatives of only low monotone
complexity (compare Proposition with Theorem . We call this problem the monotone
barrier. In this paper we take a radically different approach than all previous papers and translate
notions from communication complexity to the hazard-free setting. The result is a new type of
the Karchmer-Wigderson game that exactly describes the hazard-free De Morgan formula size and
depth. Our new game is at the same time a hazard-free analog of the classical Boolean Karchmer-
Wigderson game (Remark and a generalization of the monotone Karchmer-Wigderson game to
the set of all Boolean functions: it coincides with the monotone Karchmer-Wigderson game when
played on monotone functions (Theorem. In other words, the difference between the monotone
Karchmer-Wigderson game and the Boolean Karchmer-Wigderson game is precisely the presence
of hazards in the Boolean game. We use this new definition to precisely determine the hazard-free
formula size (Theorems and [5.12) and the depth of hazard-free formulas of alternation depthlﬂ 2
(Theorem of the multiplexer function MUX,, : {0,1}"*2" — {0, 1}, which is a (non-monotone)

3 Alternation depth is one plus thee maximum number of changes in the type of the gate in root-to-leaf paths.



Boolean function on n + 2" input bits, defined via

MUX, (81, -+, Sy ©0,0,...,05 0,0,...,0,1> L0,0,...,1,05 - - - s L1,1,...,1) ‘= Ty,
Our result breaks the monotone barrier, i.e., the hazard-derivatives of the multiplexer have lower
complexity than the bound we prove. To obtain matching upper and lower bounds on complexity
we use the Karchmer-Wigderson game interpretation to give two new efficient hazard-free imple-
mentations of the multiplexer function: One is optimal for the formula size and one is optimal for
the depth of hazard-free formulas of alternation depth 2.

In contrast to monotone complexity, which is mainly a theoretical concept, hazard-free com-
plexity has applications in practice, not only in cybersecurity ([TWM™09|, [HOI™12|, [BHT"17]),
but also for designing real-world circuits, for example when a distributed system of agents with un-
synchronized clock domains performs a parallel computation, see [FKLP17, [FFL18, [TFL17, [LM16),
BLM17, BLM18, BLM20|. The hazard-free circuit depth (which is equal to the hazard-free formula
depth) is a main parameter in this research area, directly correlated to a circuit’s execution time.

An interesting incremental approach towards proving super-polynomial formula size lower
bounds for explicit functions, is to make progress by proving good lower bounds for formulas
with more and more NOT gates [Fis7h, [TNB96, BNT9§]. In Section [8] we show that instead of
considering all implicants and implicates, we can choose any subset of implicants and implicates
to obtain upper and lower bounds on limited hazard-free formulas, formulas that are guaranteed
to be hazard-free on some inputs but not others. That is, we can parameterize our game by the
number of undefined inputs so that it interpolates between the hazard-free game and the general
Boolean game. This gives us a natural way to make progress towards proving super-polynomial
Boolean formula size lower bounds by proving super-polynomial lower bounds for more and more
limited hazard-free formulas, until we prove a lower bound on formulas that may have hazards
on any input. Limited hazard-free formulas are also of interest in practice, for example when it is
known that the unstable bit can only appear in the position where two adjacent Gray code numbers
differ [FKLP17, LM16, BLM17, BLM18, BLM20]. We are not aware of any applications of limited
negation circuits for designing real-world circuits.

1-1 Exact Bounds

In Section [5| we determine the exact hazard-free formula complexity of the multiplexer function.
We achieve this by using a combination of an improvement in the upper bound (Huffman’s [Huf57]
construction gives only size"(MUX,,) < 4" 4+ 2n3"~!) and an analysis of the hazard-free Karchmer-
Wigderson game for the lower bound:
size!(MUX,,) =2-3" — 1.

We note that there are De Morgan formulas (with hazards) of size 3 - 2" — 2 computing MUX,
[Weg87], i.e., size(MUX,) < 3-2" — 2. Our upper bound construction is a recursive application
of the improved implementation of MUX; in Figure (c) To prove the lower bound we reduce
the Karchmer-Wigderson game for MUX,, from a communication game for the subcube intersection
problem. Its communication matrix is highly structured, so that its rank can be determined and be
used to find the lower bound. The subcube intersection problem is the hazard-free generalization
of the classical equality problem from communication complexity and could be of independent
interest, especially for proving other hazard-free formula lower bounds.

Since all derivatives of MUX,, have monotone formulas of size at most (n+1)2" (Proposition [3.1]),
the separation that we achieve breaks the monotone barrier. Therefore, our lower bound is the first
to separate the Boolean complexity and the hazard-free complexity of a function while breaking the



monotone barrierﬂ We consider this an important step forward towards establishing hazard-free
computation as a new theoretical device that can serve as a true generalization of monotone circuit
complexity.

Considering the depth (which is the same for circuits and formulas), we immediately obtain
depth"(MUX,,) > logy(3)n > 1.58n. This lower bound separates the hazard-free circuit depth com-
plexity and Boolean circuit depth complexity of MUX,,, because depth(MUX,,) < depth,(MUX,,) <
n+logy(n) (see Theorem 5.1, Section 3.5 in [Weg87]). Analogously to formula size, since all deriva-
tives of MUX,, have monotone circuits of depth at most n + logy(n) + 1 (Proposition [3.1]), our
separation breaks the monotone barrier.

In Section [6] we focus on the depth of hazard-free formulas of alternation depth 2 for MUX,,.
These formulas are interesting in practice because certain programmable logic arrays produce im-
plementations that have alternation depth 2. We prove the exact complexity of the multiplexer
function using a combination of a new protocol for the upper bound and a hazard-free Karchmer-
Wigderson game for the lower bound:

depths(MUX,,) = 2n + 2.

Hence, in this restricted model we can precisely determine the depth complexity. For the proof we
exploit an old result by Huffman: the fact that in this restricted model Alice must communicate
her prime implicant to Bob before Bob starts communicating. Therefore small-depth formulas can
exist if and only if there are short prefix codes that allow Alice to communicate her prime implicant
efficiently to Bob. Then we show that there are prefix codes that achieve a depth upper bound
of 2n + 2, but they cannot achieve 2n + 1. One key idea is a distinction of cases between prime
implicants of logarithmic size and prime implicants of super-logarithmic size.

For general hazard-free formula depth the upper bound of 2n + 2 is not optimal for MUX,,
because we show in Theorem that the depth is at most 2n + 1. Note that this is significantly
lower than the depth 3n achieved by the formula of optimal size in Theorem and strictly
lower than the depth that can be achieved by any formula of alternation depth 2. Moreover,
the size of this formula is only a factor of % more than the optimal size, so we think that this
is an excellent size-depth trade-off. This construction is done recursively using the hazard-free
Karchmer-Wigderson game. It is crucial in this recursion that the induction hypothesis is not the
monochromatic partitioning of the communication matrix of MUX,_1, but of an enlarged matrix
that can be partitioned monochromatically using the same depth.

All upper bounds and lower bounds are proved using the framework of hazard-free Karchmer-
Wigderson games. The lower bound proofs rely heavily on this framework. The game also played
a crucial role in deriving the upper bounds given in Theorems and The upper bound in
Theorem can also be be proved without using the game (see Remark .

1-2 Universal Upper Bounds

One of the most fundamental and oldest questions in electronic circuit design is finding an upper
bound on the size of circuits or formulas that holds for all Boolean functions [Sha49]. For Boolean
circuits and formulas, this question has been very satisfactorily answered. It is known that any

4Note that breaking the monotone barrier can also be achieved using Khrapchenko’s method for the parity function
[Khr71], which was interpreted as a Karchmer-Wigderson game in [KW90], but for the parity function the hazard-
free complexity and the Boolean complexity coincide (every implementation of parity is automatically hazard-free):
Parity requires ©(n?) formula size, but the derivatives of parity are all equal to the OR function, which requires
O(n) formula size. For the parity function the Boolean Karchmer-Wigderson game coincides with our hazard-free
Karchmer-Wigderson game, so we obtain the same bounds.



n-bit Boolean function has circuits of size (1 + 0(1))2"/n [Lup58] and almost all Boolean functions
require circuits of size (14 0(1))2"/n [RS42, [Sha49, Lut92l [FMO05]. For Boolean formulas, the lower
bound is 2"/ log(n) [RS42] [Shad9], almost matched by the upper bound (1 + 0(1))102gnn [Lup60].

For hazard-free circuits, the situation is very similar to that of Boolean circuits: any n-bit
Boolean function has a hazard-free circuit of size O(2"/n) (see, e.g., [Juk21, Section 7]), thus
matching Lupanov’s upper bound [Lup5§] up to constants. Since hazard-free circuits are also
Boolean circuits, Riordon and Shannon’s lower bound of 2" /n for almost all functions continues to
hold for hazard-free circuits.

For hazard-free formulas, this question is still open. Huffman [Huf57] gives hazard-free imple-
mentations for any function by representing it as a DNF where the set of terms is the set of all prime
implicants of the function. Since a function on n variables may have as many as 2(3"/y/n) prime
implicants [CMT78] and each prime implicant may contain as many as n literals, this translates into
a worst-case bound of O(y/n - 3™) on the hazard-free formula complexity.

We make progress on this question by studying the multiplexer function. In electronic
circuit design, the multiplexer is often used as a programmable logic device. Indeed, given
any Boolean function f : {0,1}" ~— {0,1}, we can implement it as: f(x1,...,2,) =
MUX,,(z1, ..., xn, f(0,0,...,0),..., f(1,1,...,1)). This implementation of f is hazard-free if the
implementation of MUX,, is hazard-free. Therefore, any hazard-free formula upper bound for MUX,,
gives an upper bound for the hazard-free formula complexity of all n-bit Boolean functions. Theo-
rem gives such an improved upper bound of 2-3" — 1 for the multiplexer function and hence our
construction gives a new best worst-case hazard-free formula size implementation of size 2 - 3™ — 1,
which was O(y/n - 3") before.

Observe that in the world of Boolean circuits, Boolean formulas, and hazard-free circuits, the
multiplexer upper bound is only a polynomial (in n) multiplicative factor away from the optimal
bound. We show in Theorem that our new bound is optimal for the multiplexer function. This
means that we cannot improve the universal upper bound further by directly using the multiplexer
function. However, the best known lower bound for hazard-free formulas for n-bit functions is still
the 2" /log(n) given by a counting argument. This creates an interesting situation that is different
from the other three settings described in this section.

e If there are n-bit functions such that the hazard-free formula size is asymptotically more than

2" /log(n), then a tight lower bound can be proved by only using some argument that exploits
the semantic property of hazard-freeness, such as the hazard-free Karchmer-Wigderson game
we introduce in this paper. This is in contrast to the other settings where tight lower bounds
can be obtained using a counting argument that only exploits the structure (or syntax) of the
model.

e Otherwise, all n-bit functions have hazard-free formulas that smaller than the optimal hazard-

free formula for the multiplexer function by a multiplicative factor that is exponential in n.
This is also in stark contrast to the situation in the other three settings.

2 Preliminaries

Formulas. A Boolean formula is a Boolean circuit whose graph is a tree. That is, it is a formula
over the De Morgan basis {V,A,=}. The V and A gates have fan-in two and — gates have fan-in
one. Using De Morgan’s laws (which also work over the three-valued logic) the negations can be
moved to the leaves: all internal nodes are labeled with V or A and all leaves are labeled with
literals x; or —x;. This is called a De Morgan formula. The size of a De Morgan formula F,



denoted size(F'), is defined to be the number of leaves in itﬂ The depth of a formula F', denoted
depth(F'), is defined to be the length of the longest root-to-leaf path in F. For a Boolean function
f:{0,1}"™ — {0,1}, we denote the minimal size of a De Morgan formula computing f by size(f)
and the minimal depth of a formula computing f by depth(f). Similarly, in the hazard-free setting,
let size"(f) and depth(f) denote the minimal size and minimal depth of a hazard-free De Morgan
formula computing f, respectively. For a monotone function f let size™ (f) and depth™ (f) denote the
minimal size and minimal depth of a monotone formula computing f, respectively. The alternation
depth of a formula is one plus maximum number of changes to the type of the gate in the sequence
of gates in a root-to-leaf path. For example, the alternation depth of the formula in Figure b) is
2 and that of the formula in Figure[Ic) is 3. We denote the minimal size and depth of hazard-free
formulas of alternation depth d using sizejj(f) and depthy(f), respectively.

Implicants and Implicates. For a Boolean function f : {0,1}" — {0,1} the preimage of a
value ¢ € {0,1} is denoted by f~!(c). For the hazard-free extension f : {0,u,1}"™ — {0,u, 1} the
preimage of 7 € {0,u, 1} is denoted by f~!(y). Elements a € f~!(1) are called implicants of f.
A prime implicant is an implicant in which no value from {0, 1} can be replaced by a u such that
it is still an implicant, i.e., a prime implicant is an implicant that is maximal with respect to the
number of us. Elements o € f~1(0) are called implicates of f. A prime implicate is an implicate
in which no value from {0, 1} can be replaced by a u such that it is still an implicate, i.e., a prime
implicate is an implicate that is maximal with respect to the number of us. We occasionally identify
an implicant « with the Boolean function that is 1 exactly on the hypercube of resolutions of «, and
an implicate 8 with the Boolean function that is 0 exactly on the hypercube of resolutions of 3. An
implicant or implicate « can also be identified with the set of literals {z; | o; = 1} U{—a; | a; = 0}.
Communication. We assume familiarity with the basic definitions of communication complexity
(see, e.g., [KN96, RY20]). Let K: Ax B — 29 be a function that maps tuples to nonempty subsets
of a set O. For the purposes of this paper we will only be interested in deterministic communication
complexity where Alice gets aw € A, Bob gets 5 € B and their goal is to determine some value in
K (a, B) while minimizing the communication (number of bits) exchanged. Let II be a deterministic
communication protocol solving K. Then the communication cost of II, denoted CC(II), is defined
to be the maximum number of bits exchanged on any pair of inputs («, ) when following II.
Let CC(K) denote the minimum cost over all protocols solving K. Recall that the leaves of a
protocol induce a partition of A x B into combinatorial rectangles. We denote the number of such
combinatorial rectangles in a protocol II by monorect(Il) and the minimum number of leaves in a
protocol solving K by monorect(K).

We will often work with the communication matrix My of dimensions |A| x | B| associated with
a function K. The rows and columns of My are indexed by the elements of A and B, respectively.
The («, 8)-th entry of My is defined to be K(«, 8). The leaves of a protocol II solving K partitions
the communication matrix My into monorect(II) many monochromatic combinatorial rectangles,
where a combinatorial rectangle A’ x B’ (A’ C A, B’ C B) is called monochromatic if there exists
o€ O withV(a,p) € A’ x B': 0 € K(a, 3). We will often use K and Mg interchangeably.

5If all A and V gates have fan-in two, then the number of leaves is always exactly one more than the number of
gates (not counting negation gates) in F, which is a measure often used to describe circuit size.



3 Hazard-Derivatives and the Monotone Barrier

Let f be a Boolean function on n variables. Its hazard derivative is a Boolean function on 2n
variables denoted df(x;y) that evaluates to 1 if and only if f(z @ u-y) = u, i.e., there are two
resolutions of x @ u -y, say a and b, such that f(a) =0 and f(b) = 1. In other words, the function
f is not constant in the subcube of all resolutions of z @ u - y. Notice that for a fixed value a of z,
the restriction of df to y, i.e., the function df(a;y) : {0,1}"™ — {0, 1}, is a monotone function.
The key observation that connects hazard-free circuits to monotone circuits is that given a
hazard-free circuit C' for f and any Boolean string a, we can construct a monotone circuit for
df(a;y) that is no larger in size than C, see [IKLT19, Thm. 4.9]. Therefore, in order to prove
lower-bounds for hazard-free circuits for f, one only needs to identify a Boolean string a such that
df(a;y) is a hard function for monotone circuits, i.e., has high monotone circuit complexity. This
allows us to transfer a wealth of known monotone circuit lower bounds to the hazard-free world.
The best known construction for hazard-free De Morgan formulas for MUX,, has size 2-3" — 1
(See Theorem . Can we use derivatives to prove that this is optimal? No. We show that all
derivatives of MUX,, have monotone De Morgan formulas of size at most (n + 1)2". This is an
instance of the monotone barrier.
3.1 Proposition. Fiz any a € {0,1}"*2". The function dMUX,(a;y) : {0,1}"*2" — {0,1} has
monotone De Morgan formulas of size at most (n + 1)2".

Proof. Let (s%,2%) € {0,1}" x {0,1}?" denote the selector and data bits of a. Analogously, we
partition the sequence of Boolean variables y into n variables s¥ and 2" variables 2¥. For b € {0,1}",
we define the formula Dy(y) = /\i:bﬁésg s. Note that Dy(y) = 1 if and only if b is a resolution of
s* @ u-sY. Suppose MUX, (a) = 1 (The other case is symmetric). We now define Fy,(y). If a2 =1,
we define Fy(y) := Dy(y) A xy. If 2f = 0, we define F(y) := Dy(y). We have Fy,(y) = 1 if and only
if [bis a resolution of s* @ u - s¥ and zf & u - xj # 1]. Hence Fy(y) = 1 if and only if there exists
¥ € {0,1}?" such that (b,b') is a resolution of a @ u -y with MUX(b,b') = 0. We claim that the
formula \/ycrg 132 Fo(y) is an implementation of dMUX; (a;y). This is because dMUX;(a;y) = 1
exactly when there is a resolution of a @ u - y that evaluates to zero under MUX,,. Finally, this
formula is a monotone De Morgan formula of size at most (n + 1)2", because each Fj(y) has size
at most n + 1. O

The above proposition shows that the derivative method cannot yield a lower bound bigger than
(n+1)2" for hazard-free De Morgan formulas for MUX,,. We now proceed to develop a framework
that will allow us to prove that 2 - 3™ — 1 is the optimal size for MUX,,. This is the first result
that proves a hazard-free circuit lower bound without relying on an existing monotone circuit lower
bound, i.e., that breaks the monotone barrier.

4 A Karchmer-Wigderson Game for Hazard-free Computation

In this section we give a natural generalization of the classical Karchmer-Wigderson game, which
captures the complexity of hazard-free computation. We begin with recalling the framework of
Karchmer-Wigderson games [KW90).

4.1 Definition ([KW90]). Let f: {0,1}" — {0,1} be a Boolean function. The Karchmer-
Wigderson game of f, denoted KW, is the following communication problem.: Alice getsa € {0,1}"
with f(a) =1, Bob gets b € {0,1}" with f(b) = 0 and their goal is to determine a coordinate i € [n]
such that a; # b;.



000 00u 001 u0O 100 1u0 110 000 O0Qu 001 u0O 100 1u0 110
010 2 2 2,3 2 1,2 1 1 010 2 2 2 2 1 1 1

0lu 2 2 2 2 1,2 1 1 0lu 2 2 2 2 1 1 1
011} 2,3 2 2 23 1,2,3 1,3 1,3 011 2 2 2 2 1 1 1
ull| 2,3 2 2 2,3 23 3 3 ull 2 2 2 2 3 3 3
101] 1,3 1 1 3 3 3 2,3 101 1 1 1 3 3 3 3
lul]| 1,3 1 1 3 3 3 3 lul 1 1 1 3 3 3 3
111\1,2,3 1,2 1,2 2,3 2,3 3 3 111 1 1 1 3 3 3 3
(a) The communication matrix Mywe, o, (b) The monochromatic partition of Mxws . It is a

MUX

result of applying the construction from Lemma to

Figure (C)

Figure 2: The communication matrix MKWLI\I/I x and a monochromatic partition.
1

They also gave the following monotone version of the game.

4.2 Definition ([KW90]). Let f: {0,1}" — {0,1} be a monotone Boolean function. The monotone
Karchmer-Wigderson game of f, denoted KW}L, is the following communication problem: Alice gets
a € {0,1}" with f(a) = 1, Bob gets b € {0,1}" with f(b) = 0 and their goal is to determine a
coordinate i € [n] such that 1 = a; # b; = 0.

The seminal work of Karchmer and Wigderson [KW90] showed that the communication com-
plexity of the KW, game (resp., KW}r game) characterizes the size and depth complexity of De
Morgan formulas (resp., monotone formulas).

4.3 Theorem ([KW90]). Let f:{0,1}" — {0,1} be a Boolean function. Then,
depth(f) = CC(KW,), and size(f) = monorect(KW ).
Let f:{0,1}™ — {0,1} be a monotone Boolean function. Then,
depth™(f) = CC(KW}L), and  size" (f) = monorect(KW}').

We now extend the Karchmer-Wigderson games to the hazard-free setting. For a Boolean

function f: {0,1}" — {0, 1}, recall from that f: {0,u,1}"® — {0,u,1} is the hazard-free
extension of f.
4.4 Definition (Hazard-free Karchmer-Wigderson game). Let f: {0,1}" — {0,1} be a Boolean
function. The hazard-free Karchmer-Wigderson game of f, denoted KWY, is the following commu-
nication problem: Alice gets a € {0,u, 1} with f(a) = 1, Bob gets f € {0,u,1}"™ with f(3) =0
and their goal is to determine a coordinate i € [n| such that o; # [; and furthermore o # u and
Bi # u.

An example of a communication matrix for this game is shown in Figure[2l Observe that, for
all (o, B) € f71(1) x f~1(0), there exists an i € [n] such that a; # 8, a; # u and B; # u[¥| which
implies that all cells in the communication matrix are nonempty.

4.5 Remark. Note that the wordy condition “a; # B; and a; # u and B; # u” is equivalent to the
simple a; ® B; = 1, which is in complete analogy to a; ®b; = 1 in the classical Karchmer- Wigderson

5Assume the contrary. Then o and B must have some resolution in common, which we call a. Hence f(a) = 1
and f(a) = 0, which is a contradiction.



game, see Def. whereas we will show in Theorem[].10 that our game is actually a generalization
of the monotone Karchmer-Wigderson game to the domain of all Boolean functions.

Now using this generalized game KW‘J‘c we characterize the complexity of hazard-free De Morgan
formulas for Boolean functions.

4.6 Theorem. Let f: {0,1}" — {0,1} be a Boolean function. Then,
depth”(f) = CC(KW}),  and size"(f) = monorect(KWY}).
The proof is a natural generalization of the proof of Theorem and is provided in Section [7]

4.7 Remark. We remark thal a variant of the game KW} has been considered in prior works
[Has98, [FMT21)]. In this variant, the inputs to Alice and Bob remains the same but the goal is
different. More formally, Alice gets o € f=1(1), Bob gets 3 € f~1(0) and their goal is to determine
a coordinate i € [n] such that o; # B;. That is, now a coordinate where one of them has u and the
other has 0 or 1 is a valid answer. This is the subtle but crucial difference with respect to our game
(Definition , where we forbid such answers by requiring that a;; # u and B; # u.

4-1 Restriction to prime implicants and prime implicates

We now prove that we can restrict our attention to small (in some cases significantly smaller)
submatrices of the communication matrix. We will use this restricted version of the game to
show that for monotone functions the hazard-free Karchmer-Wigderson game is equivalent to the
monotone Karchmer-Wigderson game, see Theorem

4.8 Theorem. For any function f, the complexity (works for size and also for depth) of the game
KW;’c remains unchanged even if we restrict Alice’s input to prime implicants and Bob’s input to
prime implicates.

Proof. The complexity of the restricted game is obviously at most the complexity of the original
game, since the game is now being played on a submatrix of the original matrix. For the other
direction, observe that given an arbitrary implicant « and an arbitrary implicate 3, Alice can
choose a prime implicant o’ that is obtained by flipping some stable bits in « to u and Bob can
choose a prime implicate 3’ that is obtained by flipping some stable bits in 8 to u, and play the
restricted game on the input (o/, 8’). Any valid answer in the restricted game is also a valid answer
in the original game, since we are only flipping stable bits to u. This proves that the complexity
of the original game is at most the complexity of the restricted game. Therefore, both games have
the same complexity. O

For example, consider the communication matrix of KWy x, given below, where we restricted
the rows and columns to prime implicants and prime implicates. It is a submatrix of Figure a).

00u u00 1u0
0lu / 2 2 1
ullf 2 2,3 3 |. (4.9)

lul \ 1 3 3
We will use this equivalent reduced form of the hazard-free Karchmer-Wigderson game in the rest
of the paper.

There is a natural counterpart to Theorem [4.8]in the monotone world: in Definition [4.2] we can
assume without loss of generality that Alice’s input has minimal number of ones and Bob’s input
has maximal number of ones. We show that we can view the hazard-free Karchmer-Wigderson
game as a generalization of the monotone Karchmer-Wigderson game.



4.10 Theorem. Let f: {0,1}" — {0,1} be a monotone function. Then, the games KW} and KW}r
are equivalent.

Proof. First, we show that the complexity of KW} is at most that of KW}F. Using Theorem we
can assume that Alice’s input is a prime implicant and Bob’s input is a prime implicate. Since f
is monotone, any prime implicant of f contains only 1s and us. Similarly, any prime implicate of f
contains only 0s and us. Now, Alice can flip every u in her input to 0 and Bob can flip every u in
his input to 1 and play the game KW?. Notice that by Definition the output of this game will
be a position where Alice’s and Bob’s input had different stable values originally.

For the other direction, Alice can flip every 0 in her input to u and Bob can flip every 1 in his
input to u. Since f is monotone, Alice still has an input in f~'(1) and Bob still has an input in
f71(0). Now, the output of the game KW?% on these new inputs will also be a valid output for the
game KW? since all stable bits in Alice’s input are 1 and all stable bits in Bob’s input are 0. [

5 Hazard-Free Formulas for the Multiplexer Function

We now use the hazard-free Karchmer-Wigderson game to give improved constructions of hazard-
free formulas as well as proofs of their optimality. Our starting point is the observation that the
commonly used hazard-free formula for MUX; in Figure [I[b) is not optimal w.r.t. size. We find
an optimal formula for it (Figure which in turn leads to an optimal formula of size 2 - 3" — 1
for MUX,,. Following the discussion in Subsection this upper bound also applies to all n-bit
Boolean functions and improves upon Huffman’s construction [Huf57]. However, a gap between
the upper and lower bound still remains. We begin with some necessary basics on the multiplexer
function.

5-1 The Multiplexer Function and its Communication Matrix

Recall, the multiplexer function MUX,, : {0,1}"+2" — {0, 1} is a Boolean function on n+2" variables
defined as

MUXn(Sl, ey Sy Ly Ly e e vy .CCQn_l) = xbin(sl,...,sn)v (51)
where bin(si, ..., sy) is the natural number represented by the binary number sysg - - s,. We will
be studying the communication matrix MKWUMUXn of the hazard-free game KWy, . Following
Theorem we will restrict our attention to the submatrix given by prime implicants and impli-
cates of MUX,,. The following proposition gives the structure of the prime implicants and prime
implicates.
5.2 Proposition. For any n > 1 and any string o € {0,u,1}"™, there erist unique strings o €
{u,1}?" and B' € {0,u}?" such that ac’ € {0,u,1}"+2" is a prime implicant of MUX,, and o3’ €
{0,u, 1}"*2" is a prime implicate of MUX,,.
Proof. For a € {0,u,1}", consider the string o/ € {u,1}?" that has 1s at positions indexed by
the resolutions of « and that has us elsewhere. We have MUX,,(aa’) = 1 showing that aa’ is an
implicant. We now show it is a prime implicant. If any 1s in o/ are made a u, then the output
becomes a u, because a resolution of a now indexes into a u. If any Boolean value in « is made a u,
then at least one resolution of the selector bits is a position in the data bits that is a u. Therefore
this implicant is minimal. This is also that only prime implicant that can be obtained by extending
a because the o/ part is minimal and all 1s in it are necessary. The argument for prime implicates
is symmetric. O

The following proposition states the inductive structure of communication matrices of MUX,,.
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001uuu
Oulluu
Oluluu
uOlulu
uullll
ululul
10uulu
luuull
11uuul

5.3 Proposition. The communication matriz of KWyyx, , when restricted to prime implicants

000uuu
Zo
0
52
0
xg
52
S1
S1
S1, 82

Ou00uu
Zo
Zo, T1
1
Zo
Zo, T1
x1
S1
S1
S1

01uOuu

52
z1
x1
82
T
x1
81,89
S1
S1

u00uOu
o
Zo
52
Zo, X2
Zo, T2
52
€2
€2
52

uu0000 uluOu0
o S92
Zo,T1 X1
T T
Zo, T2 52
To,T1,22,T3 X1,T3
xT1,x3 T1,x3
) S2
xr2,x3 x3
€3 3

10uuOu
S1
S1
S1, 59
Z2
x2
52
x2
Z2
52

Figure 3: The communication matrix for KWy x, -

and prime implicates, has the following inductive structure:
e Forn=1,

e Forn > 2,

where the row (resp., column) labeled v € {0,u,1} represents the set of prime implicants

Mywy, ., =

0lu

= ull

lul

0
u
1

00u
Zo
o
s

0
M
My

S1

u00  1u0
) S
To,T1 I1
z1 r1
u 1
M() S1
MoU M, M,
My M,

(resp., prime implicates) with sy = ~y. We define the formulas

FO = MUXn_l(SQ ey Sn—1,20,y - -
F1 = MUanl(SQ,..

3y SnyLon—1, ..

S Ton-1_1) = MUX,(0, s, ..
S xon_1) = MUX, (1, s2, ..
and matrices My = MKWuFO, My = MKWuFl, s1 stands for a block matrix of all entries sq,
and Mo U My is obtained by taking entry-wise union of My and M. In other words, MyU M

9

<y Sny L0y L1y -

Tuuu00 11uuuO

51
51
51
L2
L2, T3
L3
T2
T2, I3
3

51,52
51
51
52
T3
T3
52
T3
T3

. 7x2"—1)7

SNy LOy Ly ey Qj‘Qn,l),

represents the matriz where the (i,7) entry equals (Mo);; U (M1); ;.

Note that in the communication matriz we have changed the entries from indices of variables to
their labels, as in instead of 1,2,3 we write the more intuitive symbols s1, ..., Sp, xo, T1,- .

for better readability (cp. (4.9)).

See Figure [3] for the example of My
Proof of Proposition|5.5. For n = 1 the proof follows by inspection and when n > 2 it follows from

u
MUXq

the following recursive decomposition: MUX,, = MUX; (s1, Fo, F1).

We also need the following well-known general technique used in communication complexity

that allows us to exploit repeated submatrices within a communication matrix.

5.4 Proposition. Let M be a communication matriz such that M = <

11

A A
A A

) or M= (A A).

., Lon 1



Then,
CC(M)=CC(A) and monorect(M) = monorect(A).
Proof. Since A is a submatrix of M, the following inequalities are self-evident
CC(M) > CC(A) and monorect(M) > monorect(A).

A A

For the other direction we treat only the case M = < A A

), as the other case follows because

(A A) is a submatrix of <ﬁ ﬁ) We consider a protocol IT of A. Using IT we give a protocol I’

for M such that CC(II") = CC(II) and monorect(II') = monorect(II).

Without loss of generality, assume Alice is the first player to start in IT and she sends a bit to
indicate whether her input lies in the set of rows R; or Rs such that the disjoint union R; W Ry is
the set of all rows in A. Now let R} be the union of rows R; from each copy of A within M and Rj
be the union of rows Rs from each copy of A within M. Clearly, R} W R}, is the set of all rows in M.
Then in II' too, Alice will start by sending a bit to indicate whether her input lies in R} or R}. Upon
receiving the message from Alice, Bob now communicates using completely analogous adjustments
to the protocol II. The two players proceed in this way and keep making these adjustments until
they reach the end of II. From the protocol it follows that at the end of II' each rectangle in M
is a union of the same rectangles from each copy of A, and thus monochromatic. Clearly, we also
have CC(IT") = CC(II) and monorect(II") = monorect(II). Since II is an arbitrary protocol for A, we
obtain CC(M) < CC(A) and monorect(M) < monorect(A). O

5-2 Size optimal hazard-free formula

We now give the size optimal hazard-free formula for the multiplexer function. As a simple appli-
cation of Theorem [4.6] we begin with finding optimal formulas for MUX;.

5.5 Proposition. The optimal (size and depth) hazard-free De Morgan formula for MUX, (s, zg, x1)
has size b and depth 3.

Proof. Consider the communication matrix of KW} x, shown below,
00u w00  1u0

0lu / zo To s
ull i) o, T1 Il
lul \ s T T

We find the following protocol for KWy x, by inspection:

00u u00 1u0
0lu Ty To S
ull{ 9 x0 x1 |. (5.6)
lul S r1 T

Using Lemma with the above protocol, we obtain the hazard-free formula for MUX; shown in
Figure The optimality of depth follows from the optimality of size. We defer the proof of the
optimality of size to Theorem the general case of MUX,,. O

5.7 Remark. To demystify the construction in Figure[1d we note that it is simply the hazard-free
DNF of MUXq, the formula (s Ax1) V (ms Axg) V (g A x1), with an application of distributivity of
A over V to reduce the size.

Now, using the recursive decomposition of MUX,, we obtain the following upper bound.

12



5.8 Theorem. The multiplexer function MUX,, has hazard-free formulas of size 2-3" —1 and depth
3n for allm > 1.

Proof. We construct the formula inductively. The construction for MUX; is given by Propo-
sition Recall that we can write MUX,,(s1,...,Sn, Zo,...,Tan_1) recursively as the formula
F= MUXl(Sl, F(), Fl), where

Fy = MUX;,—1(82, .+, Sny X0y - -« y Ton—1_1) and F; = MUX,_1(82, ..., Sp,Ton—1,...,Ton_1).

By the induction hypothesis, both Fy and F; have hazard-free formulas of size 2 - 3"~! — 1 and
depth 3(n—1). Using the hazard-free formula for MUXy, given in Figure to implement F' yields
a formula of size 2 - 3™ — 1 and depth 3n for MUX,.

It remains to prove that the constructed formula F' is hazard-free. Using Lemma it suffices
to show that the protocol using F' correctly solves the hazard-free KW-game KWy, . In other
words, the communication matrix of KWy, is partitioned into monochromatic rectangles by the
protocol given by F. From the monochromatic partition of KWy, x, in , the structure of the
communication matrix of KW,y (Proposition and Proposition we obtain the following
monochromatic partition of Mywy, .~ as a block matrix, where M; := Mxwy, for i € {0,1}, and s;
stands for a block matrix of all entries si: '

0 u 1
0/ My My s
u Mg MO M1
1 S1 M 1 M1

where the row (resp., column) labeled v € {0,u, 1} represents the set of prime implicants (resp.,

)

My M
implicates) with s; = «. Using Proposition we can partition the whole < MO M0> at the
0 0

same cost for partitioning a single My. The same is true for M; with the block (M1 Ml). This
gives a monochromatic partition of Mkwy,  ~ with size 3 - (2-3"1 —1)+2=2-3" -1 and depth
3(n —1) 4+ 3 = 3n as claimed. O

We now prove that the above construction for MUX,, is optimal with respect to size. For this
purpose, we study the communication problem associated with the following subcube intersection
function,

subcube-intersect,,: {0,u,1}" x {0,u,1}" — {0, 1},

where subcube-intersect, («, ) = 1 iff the subcubes defined by « and S in {0,1}" intersect, i.e., if
« and S have a common resolution. We note that the subcube intersection function is the same as
the equality function when restricting its domain of definition to Boolean values only. The equality
function is widely used in classical communication complexity for proving lower bounds. We also
note that the subcube intersection function cannot be implemented by any circuit over {0,u,1}
(and hence in particular is not the hazard-free extension of any Boolean function), even for n = 1,
because subcube-intersect; (u,u) = 1, but subcube-intersect; (0,1) = 0 ﬂ Let us see how the subcube
intersection problem helps in capturing the complexity of the hazard-free game KWy x .

"In any circuit implementation, if C'(a) = 1, then for all resolutions a of a we also have C(a) = 1, which is
easily seen by induction. Alternatively, this can be seen by the fact that all gates (and hence the whole circuit) are
monotone with respect to the partial order of stability (u C 0, u £ 1, 0 and 1 incomparable), so switching unstable
inputs to stable inputs can only keep an output u or switch an output from u to a stable value, but not change a
stable output.

13



5.9 Lemma. The subcube-intersect,, communication problem reduces to the communication prob-
lem KWyyx . with no extra cost. That is, a monochromatic partition of the communication matriz
of KWiux,, is also a monochromatic partition for the communication matriz of subcube-intersect,.

Proof. Given inputs «, 8 € {0,u, 1}" to the subcube-intersect,, problem, Alice and Bob modify their
input as follows without communication.
e Alice constructs o/ € {u,1}?" such that o/ has ones only at the positions indexed by the
subcube of resolutions of a.
e Bob constructs 3 € {u,0}?" such that 3’ has zeroes only at the positions indexed by the
subcube of resolutions of 5.
Now they can solve the game KWy, —on inputs aa’ and $3’. Observe that if the subcubes o and
8 intersect then answers to KWy x = lie in the set of data variables {z0,...,xon_1}, otherwise they
lie in the set of selector variables {s1,...,s,}. Therefore, from the answers to the KW, x ~game
they can deduce whether the subcubes intersect or not, again without communication. O

Using the rank lower bound technique of [MS82] (See also [KN96 Lemma 1.28] and the discus-
sion following the lemma.), we know that

monorect(subcube-intersect,,) > 2 - rank(Msybcube-intersect,, ) — 1, (5.10)
where Mg bcube-intersect,, 1S interpreted as a matrix over R with Os and 1s as entries. We prove the
following tight bound on the rank of Mg pcube-intersect,,

5.11 Lemma. The communication matriz of subcube-intersect,, is of full rank. That is, the rank
Of Msubcube—intersectn equals 3" fOT alln > 1.
This immediately implies our size lower bound:
5.12 Theorem. Any hazard-free formula for MUX,, requires 2 - 3™ — 1 leaves for alln > 1.
Proof. Using Theorem 4.6} it is sufficient to show that the communication matrix of KWyyx

requires 2 - 3" — 1 monochromatic rectangles, i.e., monorect(KWjyyx, ) > 2 -3" — 1. This is readily

checked:
5%%9]

Lem.
monorect(KWyyx,) >  monorect(subcube-intersect;, )
Lem. 5171
> 2. rank(stubcube—intersectn) -1 = 2-3"—1. t

It now remains to prove Lemma [5.11

Proof of Lemma|5.11. We prove it by induction on n. For the base case, n = 1 and the communi-
cation matrix Mgypcube-intersect; 15 as follows:

0 u 1
0/1 10
ul 11 1
1\0 1 1

Clearly rank(Msubcube-intersect; ) = 3. Now consider the communication matrix of Mg peube-intersect,, -
We claim that it looks as follows:
0 u 1

0 Msubcube-intersectn,1 Msubcube-intersectn,l 0

u Msubcube—intersectn,1 Msubcube—intersectn,1 Msubcube—intersectn,1 5

1 0 Msubcube—intersectn,l Msubcube-intersectn,l
where the row labeled v € {0, u, 1} represents the set of rows labeled with o € {0, u, 1}" such that
a1 = v and similarly for the columns. The validity of the claim follows from inspection that on

14



fixing the first variables we either know the answer or have self-reduced it to a smaller instance.
Therefore, we obtain:

® Msu bcube-intersect,, 1

— =
= = O

1
Msubcube-intersectn = 1
0

where ® is the Kronecker product of matrices. Hence, using the fact that rank is multiplicative
with respect to Kronecker product, we have

rank(]wsubcube—intersectn) = rank(]wsubcube—intersectl) : rank(Msubcube—intersectn_l)'
Now using the induction hypothesis completes the proof. ]

Translating the size lower bound to depth gives the following corollary.
5.13 Corollary. For alln > 1, depth"(MUX,,) > [logy(2-3™ —1)].

5-3 Formulas of improved depth

The lower bound from Corollary on hazard-free formula depth is at least 1 + (log, 3) - n for
large n. However, our construction in Theorem gives an upper bound of 3n. We now give an
improved construction (Theorem with respect to depth while increasing the size by a factor
of %. In contrast, the depth-optimal version of Huffman’s construction (Proposition is larger
than the optimal size hazard-free formula by a multiplicative factor that is exponential in n.

5.14 Theorem. The multiplexer function MUX,, has hazard-free formulas of depth 2n+1 and size
atmost%-3"—%f0r(zlln2 1.

From Theorem [4.6|we know it is sufficient to give a protocol II solving the hazard-free Karchmer-
Wigderson game of MUX,, such that CC(IT) < 2n + 1 and monorect(IT) < 2 -3" — 3. We consider a
monochromatic extension of KWy, x . We extend the communication matrix of KWy, = as follows
to define the extended version e-KWy,x :

prime implicates

prime implicants Myw
(5.15)

In other words, the communication matrix of the extended version e-KWy,x is obtained by adding
a block of rectangle with all Os to either the set of rows of KWy, x ~(as shown above) or the set
of columns. We note that the added block could have any number of rows in the former case
or any number of columns in the latter. Further we will always require that the extended part
be filled with a number that does not appear in KWy, x . Observe that 0 doesn’t appear in the
communication matrix of KWy . However we could have used any other number that doesn’t
appear in KW, x . We will denote all such extensions by e-KWy,yx . The following matrix is an
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example of e-KWiyyx, -
000uuu  OuOOuu O01uOuu uwOOulu uu0000 uluOuO0 10uuOu Tuuu00 11luuu0

001uuu i) i) S92 To i) S92 S1 S1 81,89
Oulluu o o, T1 T o o, T1 T S1 S1 S1
Oluluu S9 T x S9 T T 51, 89 S1 S1
u0lulu o o S9 To, T o, T2 S9 T2 T2 S9
uullll o o, T1 T To,Ty X0,T1,T2, T3 T1,T3 T T, X3 T3
ululul S92 I T S92 T1,T3 1,3 S92 T3 T3
10uulu S1 S1 S1, 592 To D) S9 T2 o S9
luuull S1 S1 S1 T2 T2, T3 T3 To T2, T3 T3
11uuul S1, 52 S1 S1 S9 T3 T3 S9 T3 T3
0 0 0 0 0 0 0 0 0

Clearly the following proposition holds.

5.16 Proposition. A protocol I1 for e-KWy,x  gives a protocol I for KWy~ such that CC(IT") <
CC(IT) and monorect(IT") < monorect(II).

Proof. Follows from the definition (5.15)) of e-KWy,yx . O

Therefore, to prove the depth bound in Theorem we will give a protocol for e-KWy,yy
with communication cost at most 2n + 1.

5.17 Lemma. There is a protocol solving e-KWyyx  such that its communication cost is at most
2n + 1.

Proof. From Proposition we know that the communication matrix of KWy, x looks as follows

0 u 1
0 M() MO S1
ul Mg MoyUM, M; |,
1 S1 M1 M1
where we define the formulas Fy = MUX,_1(s2,...,8n,20,-..,Ton-1_1) and F; =
MUXp—1(82, ..., Sn, Tan-1,...,Ton_1) and matrices M; := Mywy, for i € {0,1}. Therefore, the
matrix of extended version e-KWy, x looks as follows l

0 u 1
0 My My S1
ul Mg MyUM; M
11 s M,y My
0 0 0
We now give a protocol to partition this matrix into monochromatic rectangles. This will be done
inductively.
Base case: n = 1. The matrix of e-KWy,;,x, can be monochromatically partitioned as follows

00u w00  1u0

0lu / xg To S
ull] =g xg,21 | 71
lul| s T T

0 0 0
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This is obtained from the protocol where Alice sends the first bit indicating whether her input lies
in the top or bottom part of red line. Then Bob sends a bit indicating whether his input lies in the
left part or the right part of the blue line(s). Finally Alice sends one last bit to indicate whether
her input lies in the top or bottom part of the orange line(s). Clearly the communication cost is 3.

Induction step: n > 2. Now Alice and Bob send one bit of communication each to reduce
e-KWyyx,, to the following partition

0 u 1
0 MO M() S1
ul My MouUM, | M
1\51 M1 Ml}
0 0 0
S1
My

Observe that the top-right block ( > is the matrix of an e-KWy,yx . The bottom-right block

<J\g1 ]\041> can be solved, using Proposition at the cost of solving <Ag1> which is a block of
e-KWj{ Similarly, the top-left block Mo Mo can be solved, using Proposition [5.4
MUXn_l’ y’ p MO MO U ]\41 b g p .

at the cost of solving Mo which is a block of KWy, x . Therefore, by Proposition it has less

complexity (size and depth) than e-KWy,x . Finally, note that the bottom-left block (501> just

needs one bit of communication to monochromatically partition it. Therefore, we have
CCle-KWiux.) < 2+ max {CC(e-vaKAUXM), 1}
<2+ CC(e-KWnux,, )
<2n+1,

where the second inequality follows because n > 2 and the third follows from the induction hy-
pothesis. 0

As an illustration of the induction step in the proof above, we present a detailed example of
e-KWiux, with a decomposition into one block of e-KWyyx, (red), two blocks of e-KWjy %, (green)
that can be solved at the cost of solving a single e-KWy,,x, using Proposition four blocks of
MUX; (blue) that can be solved at the cost of solving a single MUX; using Proposition and
one (yellow) block of two identities that can be solved with depth 1. Therefore, the total depth is
at most 5.

000uuu  OuOOuu 0luQuu uOOuQu uu0000 uluOu0 10uuOu 1uuu00 1luuuO

001uuu o o S9 g o S9 S1 S1 S1, S92
Oulluu o To, T1 T o o, T T S1 S1 S1
O0luluu S9 T T S9 T T S1, 82 S1 S1
uOlulu o To S9 o, T 0, T2 S9 T T S9
uullll To To, T1 T T, T2  XQ,T1,T2, T3 T1,T3 T2 T2, T3 xs3
ululul S9 Z T S9 T1, T3 T1,T3 S9 T3 T3
10uulu S1 S1 S1, 82 T2 T2 S9 T2 T2 S9
luuull S1 S1 S1 To T, T3 T3 To T2, T3 T3
11uuul 81,89 S1 S1 S92 I3 I3 S92 X3 I3
0 0 0 0 0 0 0 0 0
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We are now ready to prove Theorem [5.14]

Proof of Theorem [5.1] As mentioned in the beginning we will give a protocol to partition the
communication matrix of KWy, x ~into monochromatic rectangles such that the communication
cost of this protocol is at most 2n + 1 and the number of monochromatic rectangles is at most
%-3"—%foralln21.

Our protocol is the same as the one given in the proof of Lemma [5.17| with the small twist that
we can save 1 monochromatic rectangle each time we encounter a KWy, x =~ matrix instead of a
e-KWjyyx, matrix. More formally: size"(KWjyx, ) = size"(e-KWyx ) — 1, because the additional
entries in the matrix for e-KWjyx _ are not present in the matrix for KWyyx . Therefore the
upper bound on depth follows readily and is not affected by this change.

To bound the size we consider the following recurrence for the number of monochromatic rect-
angles that we get in our partition of the communication matrix of e-KWyyx -

Tn)=(Tn-1)—-1)+Tn—-1)+2+T(n—1).
We first argue that T'(n) indeed counts the number of monochromatic rectangles in the partition
of e-KWjyyx, We recall the partition given by the induction step in Lemma

0 u 1
0 /My My S1
ul My MyU M, | M,

1 \ S1 M1 Ml) '
0 I 0 0
The first summand (7'(n—1)—1) on the right in the recurrence is the contribution from the top-left
part of the above matrix. There is a saving of 1 because we are only interested in counting the
rectangles that cover the KW x —entries. This saving of 1 is possible, because the additional
entries in the matrix for e-KWy,yy | are not present in the matrix for KWy,yy ..

The second summand T'(n — 1) on the right in the recurrence is the contribution from the
top-right part of the above matrix. There are no savings here.

The third summand 2 on the right in the recurrence is the contribution from the bottom-left
part of the above matrix. There are no savings here.

Finally, the fourth summand 7'(n — 1) on the right in the recurrence is the contribution from
the bottom-right part of the above matrix. There are no savings here. Thus, solving the recurrence
T(n) = 23" — 1. (from the base case in Lemma . We save an additional 1 monochromatic
rectangle at the very end, because are interested in KWy, x —and not e-KWy, x ~gives an upper
bound of g -3" — % on the size. O

6 Alternation Depth Two and Two-round Protocols

In this section, we determine the hazard-free depth complexity of formulas of alternation depth 2
computing MUX,,. We assume without loss of generality that the output gate is an V gate since
the prime implicants and prime implicates of MUX,, are symmetric. We exploit the correspondence
between hazard-free formulas of alternation depth 2 and two-round communication protocols of
the form: Alice sends some string, Bob replies with some string, and they settle on an answer (See
Lemmas and .

We begin by proving a property of hazard-free formulas of alternation depth 2 that has been
observed in [Huf57]. We present a proof for completeness.
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6.1 Proposition. Let n > 1. In any two-round communication protocol for MUX,,, for different
prime implicants, Alice must send different strings to Bob in the first round. Equivalently, in any
hazard-free formula of alternation depth 2 computing MUX,,, for any prime implicant «, there is at
least one A gate g in the formula such that the subformula at g is exactly the N\ of literals in the
prime implicant o.

Proof. Let a, B € {0,u,1}" be two distinct prime implicants of MUX,, (See Proposition . Then
Bob must receive different strings from Alice for these two inputs to Alice, which can be seen as
follows. Suppose Bob receives the same string from Alice for prime implicants « and 8. Without
loss of generality (i.e., we can swap a and ) a # u™ and there exists a position i such that
{0,u,1} > B; # a; € {0,1}. Let o/ be the prime implicate obtained from «a by flipping the *}
bit. Clearly, the only answer to the input (o, @’) is ¢ and 7 is a wrong answer for the input (3, a/).
Therefore, Alice must send different strings to Bob for o and .

Now, we prove the equivalent statement for formulas. Consider an arbitrary hazard-free for-
mula F' for MUX,, of alternation depth 2. For any prime implicant o of MUX,,, since F' is hazard-free,
we have F'(a) = 1. This is possible only if there is a topmost A gate g in F' such that g(«a) = 1.
Since the formula has alternation depth 2, the subformula at g is simply an A of literals. Since it
evaluates to 1 on «, this set of literals has to be a subset of the literals in «. It cannot be a proper
subset because of minimality of prime implicants. O

We now observe a slightly weaker (than Theorem depth lower bound using known results.
We define the size of a prime implicant « as [{i | a; # u}|.

6.2 Proposition. For n > 1, we have size§(MUX,,) = 4™ + 2n3"~! and depthy(MUX,,) > 2n + 1.

Proof. Consider an arbitrary hazard-free formula F' of alternation depth 2 computing MUX,,. By
Proposition[6.1], for each prime implicant o of MUX,,, there is at least one subformula that computes
«. Therefore, the size of F' must be at least the sum of the sizes of all prime implicants. We now
compute the sum of the sizes of all prime implicants of MUX,,. The size of any prime implicant
where the selector bits have exactly ¢ us is n — i 4 2¢. This is because the other n — i selector bits
must have Boolean values, and the subcube indexed by these selector bits contains 2° points, which
must all have value 1 in the data bits. There are (7:) ways to choose i positions for the selector
bits with unstable values. For each such choice, there are 2"~* ways to set the remaining selector
bits. Therefore, the sum of the sizes of all prime implicants in MUX,, is Y7 (7)2" (2" + n—1i) =
4" 4+ 2n3"~ 1, giving us the required size lower bound (This is also an upper bound using [Huf57]).
We readily conclude depth§(f) > [logy(4™ 4+ 2n3""1)] = 2n + 1. O

We now show that the existence of low-depth hazard-free formulas of alternation depth 2 is
linked to the existence of certain short prefix codes.

6.3 Lemma. Letn > 1. Ford > 0, there is a hazard-free formula of alternation depth 2 and depth
d for MUX,, if and only if there is a prefiz code for the set of all prime implicants of MUX,, such
that for any i where 0 < i < n, each prime implicant with exactly i us in the selector bits is encoded
using at most d — [logy (2! +n — )] bits.

Proof. Let i be the number of us in the selector bits of the prime implicant given to Alice. First, we
determine a tight bound on the number of bits that Bob must transfer based on i (after Alice has
transferred her prime implicant to Bob). Once Bob has received the prime implicant from Alice,
the final answer could be any of the selector bits with Boolean values (n — i possibilities) or any
of the data bits in the subcube indexed by Alice’s selector bits (2¢ possibilities). Since there are
2t +n — i distinct answers possible, Bob must use at least [logy(2! +n — )] bits in his reply. This
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bound is tight. Once Bob receives the prime implicant from Alice, he can reply with the answer
using at most [logy(2° +n — )] bits. Therefore, a two-round protocol of depth d exists if and only
if there is a prefix code for the prime implicants that uses at most d — [logy(2! +n — i)] bits to
encode prime implicants with 4 us in the selector bits. O

We now prove that the optimal depth for hazard-free formulas with alternation depth 2 is 2n+2.
This is the only depth lower bound in this paper that does not follow directly from a size lower
bound. We will need the well-known Kraft’s inequality giving a necessary and sufficient condition
for the existence of a prefix code.

6.4 Theorem ([CT91], Theorem 5.2.1]). For any binary prefiz code, the codeword lengths £y, . .. Ly,
must satisfy the inequality

m
Z 2t < 1.
=1

Conversely, given a set of codeword lengths that staisfy this inequality, there exists a prefix code
with these codeword lengths.

6.5 Theorem. For n > 2, we have depthy(MUX;,) = 2n + 2.

Proof. From Lemma we know that it suffices to find the minimal d for which there exists a
prefix code for the set of all prime implicants of MUX,, such that for any ¢, 0 < ¢ < n, each prime
implicant with exactly i us in the selector bits is encoded using at most d — [logy(2! + n — i)]
bits. We know that there are (7) 2"~% many prime implicants with exactly i us. Now using Kraft’s
inequality (Theorem we have that the lengths of the encoding for each prime implicant must
satisfy the following inequality

Z <”> gn—i . 9=(d=[logy (2" +n—i)1) < 7
: {2

Rearranging we obtain
n

Z <”> gn—i _ 9[logy(2'+n—i)] < od.
i=o \"

For a fixed n, define the function W(i) := [logy(2' + n — i)] — i, where 0 < i < n. Note
that for all « € {0,1,...,n}, U(i) > 0 and further ¥(7) is an integer. Now consider (i) :=
logy(2¢ +n — i) — 4. Clearly from the definitions we have W(i) = [+(i)] for all i € {0,1,...,n}.
From elementary calculus it follows that (i) is a continuous function that is decreasing in the
interval [0,n|. Furthermore observe that at i = 0, ¥(0) = logy(n + 1) and ¥(0) = [logy(n + 1)],
and at t =n—1, ¥(n—1) = [¢(n — 1)] = 1. Therefore when n > 2, ¥(0) > 2, and thus by the
continuity of ¢ there exists a ¢t € {1,...n —1} such that for alli € {¢,...,n—1}, ¥(i) = 1. Choose
the minimal such ¢. In the following we will work with this minimal ¢.

Now breaking the summation at t — 1 we get

t—1

Z( )2” A +1+Z< >2" i W)t +<">2n<2d.
n <

i=0

Dividing by 2"*! on both sides we obtain

g( >2\1/( +Z< )2@ -1y (D; < gdn1, 66)

Up to this point we only reformulated the property of the existence of a prefix code with the
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desired properties. We now prove the theorem by first considering the lower bound and then the
upper bound.

Now by the minimality of ¢t and the integrality of ¥, for 0 < ¢ < ¢ — 1, ¥(i) > 2, and for
i€ {t,...,n— 1}, ¥(i) = 1. Thus, plugging these values in the left hand side of the above
inequality we see that the left hand side is strictly greater than 2". Hence, we have

2n < 24l
Therefore, we get that d > 2n + 1, when n > 2.
We further observe that ¢ is at most [logy n], because for all i € {[logyn],...,n — 1}, we have

V(i) = 1. We now claim that using ¢ < [log, n] and d = 2n + 2, the inequality is satisfied.
Plugging the value of d and using the fact that ¥(i) —1 =0 for ¢ € {¢,...,n — 1} we can rewrite

inequality as follows
t—1
3 (oS () 0)re &
1=0

Now using 374" (") = 27+1, we obtain

§(>”“+Z<><®¥§XT‘

Moving the second summand to the right hand side we have

t—1 n+1 n—1
1 n —|— 1 n
V(-1 4 < .
Z <z) 2= Z ?
=0 =0 =t
Rewriting again we get

t—1 t—1 n+1 n—1
Y\ ow(i)—1 n\ 1 n+1 n+1 n
2 - < _ )
Z(z) +(n)2_2( 1 +Z 1 Z 1
=0 =t =t
Further rewriting leads to

(e (0RO (1) ()

0 7
Now using the Pascal’s rule, ("JT ) — (") = (1”1 , to simplify the second summand on the right
hand side we have

t—1 t—1 n—1
N\ ow(i)—1 ny\ 1 n+1 n n+1 n+1
2 - < .
Z(z) +<n>2—z< R D1 PRl G Rl S
1=0 =0 1=t
Rewriting and simplifying we obtain,
o 1 2/ + 1 j n
oW (i)-1 - < 1+1.
> (D)o (D)5 P)rnHls
=0 =0 —1
Rewriting the right hand side again gives us
= N1 2t " /n
Z oW (i)-1 1< Z Z 1
, (Z) )2 = i )T i) "
1=0 1=0 1=t—1

Moving the second summand on the left hand side to the right and 1mphfy1ng we have
t—1

(g ()2 ()5

(2

"'*M
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Now we first observe that the right hand side is strictly greater than 2". Using ¢ < [logy n] we now
show that the left hand side is at most 21082n+2log2n Thyg showing that the inequality is satisfied.
Using the fact that U(i) —1 < ¥(0) — 1 < [logy(n + 1)] — 1 < logy n and simplifying the left hand
side, we obtain the following upper bound on it

t—1
n
=0
Now using Zfzo (M) < of(k/n)m for /n < 1/2 and H being the Shannon entropy function, we can
further bound it by
n - 25,

Now since ¢ — 1 < log, n, we obtain the following upper bound on it
2log2 n+log3 ntlogy n

where we used H(logyn/n) -n < login + logyn. For n € {1,...,38} we verified eq. (6.7) with a
computer calculation, see Section The fact that n > log% n + 2logy n for all n > 39 completes
the proof. 0

Appendix

7 Proofs for the hazard-free Karchmer-Wigderson game

In this section we prove Theorem We split the proof into two lemmas.

7.1 Lemma. Let f: {0,1}" — {0,1} be a Boolean function and F be a hazard-free De Morgan
formula computing it. Then,

CC(KWY) < depth(F), and size”(KW}) < size(F).
7.2 Lemma. Let f: {0,1}" — {0,1} be a Boolean function and II be a protocol for the hazard-free
KW-game KW%. Then,

depthU(f) < CC(II), and size"(f) < size" (II).
The proofs of Lemmas[7.1]and [7.2] are natural generalizations of their corresponding counterparts

in the original setting of the KW-game. However, for the sake of completeness and to highlight the
differences, we present the proofs below.

Proof of Lemma . (Formula to Protocol.) Let F' be a hazard-free De Morgan formula computing
the function f. It suffices to show a protocol II solving KW} such that CC(II) < depth(F’) and
sizeP (IT) < size(F). Let o € f~1(1) be Alice’s input and 3 € f~1(0) be Bob’s input.

In the protocol II both players keep track of a subformula G of F' such that G(a) = 1 and
G(B) = 0. We being at the root of F, i.e., G = F. By the hazard-free property of F, we have
G(a) = F(a) = f(a) =1 and G(B) = F(B) = f(B) = 0. Now depending on the type of gate at the
root of G, we decide which player sends the message.

If G = Gy V Gy, then it is Alice’s turn. Observe that, since G(a) = 1, there exists i € {0,1}
such that G;(«) = 1. Again by a similar reasoning, we also have Go(3) = G1(8) = 0. Thus, Alice
can send a single bit to Bob indicating a child which evaluates to 1. Then they both move to the
corresponding subformula.

If G = Gy A Gy, then it is Bob’s turn. Again by a similar reasoning, G(«) = 1 and G(8) = 0,
we deduce that Go(a) = Gi(a) = 1 and there exists ¢ € {0,1} such that G;(8) = 0. Thus, Bob
can send a single bit to Alice indicating a child which evaluates to 0 and they both move to the
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corresponding subformula.

If G is a leaf of F' and is labeled with literal x; or —z; for some ¢ € [n], then the protocol returns
the coordinate i as answer.

Clearly, the number of bits exchanged on any input equals the depth of the leaf reached and the
number of leaves in the protocol II equals the number of leaves in F. That is, CC(II) = depth(F)
and sizeP (IT) = size(F). The correctness of the protocol follows from observing that when G is
a literal and G(«) = 1 and G(B) = 0 then the variable corresponding to the literal has different
(Boolean) values in the certificates a and S. O

We now give the translation from protocols to formulas.

Proof of Lemma . (Protocol to Formula.) Let IT be a protocol solving KW¥. It suffices to show

a hazard-free formula F' computing f such that depth(F) < CC(II) and size(F) < sizeP (II).

Let T be the protocol tree of II. We will convert the tree T' into a hazard-free formula F' for f.
Every internal node in the tree is associated with a player whose turn it is to send the message. To
obtain F' we first replace every internal node in T" as follows:

e If it is associated with Alice, then replace it with V,

e If it is associated with Bob, then replace it with A.

Now consider a leaf ¢ € T and suppose that the output at this leaf is some coordinate i € [n].
Let Ay x By be the set of inputs that reaches this leaf £. This is a monochromatic combinatorial
rectangle. By definition of KW;J(', exactly one of the following cases holds:

(i) for all &« € Ay, a; = 1 and for all g € By, §; =0, or

(i) for all & € Ay, a; =0 and for all 8 € By, f; = 1.
In the first case we label the leaf ¢ in F' with the literal x;, while in the second we label it with —x;.
Clearly the constructed formula F has depth and size equal to CC(II) and size (IT), respectively.
So it remains to argue the correctness of the transformation. That is, we need to verify that F' is
indeed a hazard-free formula for f. It suffices to show the following:

for every node v € F, the subformula G rooted at v satisfies G(a) = 1 for all « € A
and G(B) = 0 for all § € B, where A x B is the set of the inputs that reach the node
corresponding to v in the protocol tree T

The correctness now follows by applying this claim to the root of F' (note that for the root we
have A = f~!(1) and B = f~!(0)). We prove the claim by induction on the depth of nodes in the
formula.
Base case: depth = 0. The claim holds for the leaf nodes by our construction (i.e., by our choices
of their labels).
Induction step: Suppose the claim holds for the children vy and v; of a certain node v € F.
We will now show that it also holds for v. Let G, Gy, G be the subformulas rooted at v, vg, v1,
respectively. We assume, w.l.o.g., that G = Gy V G;. (The other case being symmetric.) Let
v’ v, v} € T be the corresponding nodes to v,vp,v; € F. Let A x B be the inputs reaching v’ in
T. Since G = Gy V Gy, it is Alice’s turn to send the message. Therefore, Alice’s message partitions
A into Ag and A; such that Ap x B is the inputs reaching vj, and A; x B is the inputs reaching vj.
Thus, by induction hypothesis, we have

e for all a € Ag, Go(a) =1 and for all 8 € B, Go(8) =0,

o for all @ € A1, Gi(a) =1 and for all § € B, G1(B) =0.
This in turn implies that for all @ € A, G(a) = Go(a) V G1(a) = 1 and for all g € B, G(fB)
Go(B) vV G1(B) = 0.

Ol
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8 Limited hazard-freeness

Avoiding all hazards can be very expensive (see [IKLT19, [Juk21]) and sometimes is not needed, be-
cause we might have additional information about the input, for example when composing circuits.
Under the (physically realistic in that setting) assumption that the input contains at most one u,
the counter in [FKLP17] outputs the number of 1s in the input, encoded in binary Gray code with a
single u, such that both resolutions of the output correspond to numbers whose difference is 1. Note
that in the usual binary bit representation one has to flip 4 bits to go from 7 = 01115 to 8 = 10002,
hence any hazard-free counter would output uuuu on input 1111111u, so the Gray code is used.
When composing circuits, this additional information about the position of the u can be useful,
which is shown for the task of sorting Gray code numbers in [LMI16, BLMI17, BLMIS, [BLM20].
Another interesting class of hazards that should be avoided are the inputs where the number of us
is bounded from above. This is the setting of k-bit hazard-freeness from [IKL"19).
Theorem [4.6] as stated is not directly applicable in these settings, as it only characterizes hazard-
free formulas, i.e., formulas that are hazard-free with respect to all inputs. However, we can also
treat formulas that avoid only certain hazards.
8.1 Proposition. Given sets A and B with f~1(1) C A C f~1(1) and f~1(0) € B C f~1(0).
The hazard-free KW -game where Alice gets input from A and Bob gets input from B characterizes
formulas that is hazard-free on inputs in AW B.

The proof is a straightforward generalization of the proof of Theorem [4.6]

8.2 Example. Consider the function MUXa(s1, s2, oo, To1, 10, Z11). We proved in Theorem
that any hazard-free formula for MUXy requires 17 leaves. Suppose we only want to avoid hazards
where both selector bits are unstable. Note that every other possible hazard is covered by the eight
prime implicants and eight prime implicates of MUXy labeling the rows and columns of the following
matriz. Therefore, we can obtain an improved upper bound for this task by showing that the following
game has a protocol of size smaller than 17.

000uuu  OuOOuu OluOuu uOOuOu uluOuO0 10uuOu 1uuuO0 1luuuO

001uuu 00 00 59 0o S92 S1 S1 81,89
Oulluu 00 00, 01 To1 00 o1 51 S1 S1
outo| | N - B . s s
uOlulu Too oo S9 o0, 10 S9 10 10 S9
ululul S92 o1 201 S92 T01, 211 S92 T11 I11
10uulu S1 S1 S1, 82 T10 S9 10 10 S9
luuull s1 s1 s1 Z10 Z11 10 10,11 %11
11uuul S1, 82 S1 S1 S9 T11 S9 T11 T11

Indeed, the above colouring yields a protocol of size 16. We can also show that we cannot do better.
Substitute s1 = s9 = (% 8) and Xgy = Lol = T19 = T11 = (8 (1’) This yields the following 16 x 16
(block) matriz. Note that if the original communication matriz had a protocol that yields fewer than
16 combinatorial rectangles, then this block matrix must have rank less than 16 since all substituted

matrices are rank one. However, the block matriz is full-rank, showing that 16 leaves are required.
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000010O0OO01O01O01O0T1O0
01 0100O01O0O0O0O0OO0OO0OO0O
00 000O0OO0OO0OO0OO0OT1TO0OT1O0T1OQ0
01 010101010O0O0O0TO0TO0
10000O01O0OO0OO0OI1TO0O1O0T10
000101O0O0O0O1O0O0OO0OO0OO0®O
000010O0O01O0O0O0OO0OTO0T1O0
01 0100O01O0O0O0O1O0T1TGO0OSFQO©
10000O01O0O0OO0O1O0O0OO0OGO0O
0001010O0O01O0O0O01O0T1
101010001 O0O0O0O0O0T10O0
00000O0OO0O1O0O0O0O1O0T1OQO0TO0
10101O00O0O0OO0O0OO0OO0OGO0OO0OG®O
0000O0O0O0OO0O1O01O01O01O01
101010100O01O0O0O0O0OQO0
00 00O0O0OO0OO0OO0O1O0O0OO0O1TO0T1

9 Hazard-free formula depth reduction

In this section we show that the standard depth reduction process for Boolean circuits and formulas
works in a hazard-free way. Let F' be a hazard-free formula. In the Boolean depth reduction process
we take a gate that has roughly the same distance to the root as it has to its deepest leaf and we
write

F(z) = F/(G(z), z)
where G is the subformula of that gate. Now we observe that
F(z) = F'(G(x),z) = MUX{(G(x), F'(0,z), F'(1,z)) =: F(x) (9.1)
which can be used iteratively to convert a Boolean formula to logarithmic (in the size of F') depth.

If the implementation of MUX; is hazard-free, then this depth-reduction process preserves the
hazard-freeness of a formula, as the next claim shows.

9.2 Claim. Assume that a hazard-free implementation of MUX; is used in 9.1). If F is hazard-
free, then F is also hazard-free.

Proof. Consider the case when F(a) = u. It remains to show that F(a) = u. The hazard-freeness
of the multiplexer implementation implies that there are the following three cases:

e G(a)=0and F'(0,a) = u

e G(a)=1and F'(1,a) =u

e G(a) = u and F'(0,«) and F'(1, ) are not both equal to the same Boolean value (in fact,

they potentially have value u).

In the first two cases, by definition of F’ and G we see that F(a) = F'(G(«a),«) = u. In the third
case we see that F’'(u,«) = u. Using the fact that G(«) = u implies that F(«a) = F/'(G(a),a) =
u. O

By using standard techniques for finding the subformula G (See Lemma 1.3 in [Juk12]), we can
show that the balanced formula has depth 3logg»(m) +O(1) and size O(m?92) where m is the size
of the original formula.
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10 Sagemath Source Code for the Finite Cases
The following sagemath (version 9) code is used to verify Equation (6.7)) up to n = 38.

def blog(k):
return float(log(k,2))

def Psi(i,n):
return int(ceil( blog(2~i+n-i) ))-i

def t(n):
return int(ceil(blog(n)))

def LHS(n):
return sum([binomial(n,i)*2" (Psi(i,n)-1) for i in [0..t(n)-111) +
sum([binomial(n,i) for i in [t(n)..n-1]1 1) + 0.5

def RHS(n):
return 2~ (n+1)

for n in [1..38]:
if RHS(n)>=LHS(n):
print("ok")
else:
print ("problem")
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