
Does QRAT simulate IR-calc? QRAT simulation

algorithm for ∀Exp+Res cannot be lifted to IR-calc

Sravanthi Chedea, Anil Shuklaa

aDepartment of Computer Science and Engineering, IIT Ropar, India.
{sravanthi.20csz0001,anilshukla}@iitrpr.ac.in

Abstract

We show that the QRAT simulation algorithm of ∀Exp+Res from [B. Kiesl
and M. Seidl, 2019] cannot be lifted to IR-calc.

Keywords: Quantified Boolean Formulas (QBF), proof complexity,
simulation

1. Introduction

Quantified Boolean formulas (QBFs) extend propositional formulas by
adding quantification ∃ (there exists) and ∀ (for all) to the variables. Several
QBF proof systems like Q-Res [1], LD-Q-Res [2], ∀Exp+Res [3], IR-calc [4]
have been developed. However, these proof systems are unable to simulate
the preprocessing steps used by several QBF-solvers. To overcome this a
new proof system Quantified Resolution Asymmetric Tautologies (QRAT) [5]
has been developed and also shown that it is capable of simulating all the
existing preprocessing steps used by the current QBF-solvers [5].

Recently it has been shown that QRAT can even simulate ∀Exp+Res [6]
and LD-Q-Res [7]. We know that IR-calc and LD-Q-Res are incomparable [8]
and since QRAT can simulates LD-Q-Res, it implies that IR-calc cannot sim-
ulate QRAT. But, it is still open whether QRAT can simulate IR-calc?

Since IR-calc is an extension of ∀Exp+Res, it is very natural to use the
QRAT simulation algorithm of ∀Exp+Res for the IR-calc. In this note we
show that this is not possible. That is, we cannot lift the QRAT simulation
algorithm of ∀Exp+Res for IR-calc in general. For proving the same we con-
sider an important family of false QBFs φn from [3], which is known to be
easy for IR-calc and hard for ∀Exp+Res and we show that IR-calc proof of φn

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 104 (2021)

cannot be simulated by the proposed modified algorithm (Section 4) which
is the only approach to lift the existing simulation algorithm.

2. Definitions

In this note we assume that QBFs are in closed prenex form i.e., we
consider the form Q1X1...QkXk.ψ, where Xi are pairwise disjoint sets of
variables; Qi ∈ {∃, ∀} and Qi 6= Qi+1. The propositional part ψ of a QBF is
called the matrix which should be in CNF (Conjunctive Normal Form) and
the rest is the prefix Q. A clause is a disjunction of literals and a CNF is a
conjunction of clauses. We denote the empty clause by ⊥. If a variable x is
in the set Xi, we say that x is at level i and write lv(x) = i. Note that only
variables are in prefix, so given a literal l if x=var(l),then quantifier of l is
same as that of x. Given a literal ` with quantifier Qi and a literal k with
quantifier Qj, we write `≤Qk if i ≤ j (we say that ` occurs left of k).

Informally, a proof system is a function f which maps proofs to theorems
(or contradictions). A proof system f simulates another proof system g (i.e.,
f ≤p g) if every g-proof of a theorem (or contradiction) can be efficiently
translated into an f -proof of the same theorem. Proof systems f and g are
said to be incomparable, if none of them can simulate the other.

One of the main approach to QBF-solving is through expansion of quan-
tifiers. Several expansion-based QBF proof systems have been developed,
for example, ∀Exp+Res [3]. This calculus downloads the axioms by dropping
all universal literals in a clause and annotating the existential literals by an
assignment to all universal variables which occur to left of that variable. It
also allows the following resolution step: (C1∨xτ) (C2∨xτ))

(C1∨C2)
, where C1 and C2

are clauses, xτ is a literal, and (C1 ∨ C2) is the resolvent.
The IR-calc proof system [4] has been developed as an extension of the

∀Exp+Res. Here, in the axiom steps, the existential variables are only anno-
tated with ∀ variables which are on its left and belong to the same clause. The
following instantiation step is also introduced: inst(σ,C) = {xτ [σ] | xτ ∈ C}
where, σ is a partial assignment to the universal variables and for every
∀ variable ` to the left of x, τ [σ] returns τ(`) if ` ∈ dom(τ) else σ(`) if
` ∈ dom(σ). The resolution step remains the same.
QRAT Proof System [5]: We need the following definitions:

Definition 1 ([5]). Clause C is an Asymmetric Tautology (AT) w.r.t. to
CNF ψ iff ψ `1 C. (Alternatively can be checked if ⊥ ∈ unit-propagation(ψ∪
C)). Unit propagation(`1) simplies a CNF by repeating the following: If

2

there is a unit clause (`) then remove all clauses that contain the literal `
and remove the literal ` from all clauses.

Given two clauses (C ∨ `), (D ∨ `) of a QBF Q.ψ, the outer resolvent
OR(Q,C,D,`) is the clause consisting of all literals in C together with those
literals of D that occur to the left of `, i.e C ∪ {k | k ∈ D, k ≤Q `}. A clause
C∨` is QRAT-clause w.r.t a QBF Q.ψ if for every D∨` ∈ ψ the OR(Q,C,D,`)
is implied by unit propagation. We say that ` is the QRAT-literal.

If a clause C contains an existential QRAT literal, it has been shown in
[5] that C can be removed or added without effecting the satisfiability. Also,
if a clause C contains a universal QRAT literal ` then dropping ` from C is
also a satisfiability preserving step. Note that a clause which is AT is also
a QRAT-clause on any literal. Additionally, QRAT allows elimination of any
clause at any point in the proof. The only remaining rule of QRAT system
is the Extended Universal Reduction (EUR) rule. We need the following:

Definition 2 ([6]). Given a QBF φ=Q.ψ, a universal literal u and an exis-
tential literal en to the right of u, we say that φ contains a resolution path
from u to en if there exists a sequence C1, ..., Cn of clauses in ψ such that
u ∈ C1, en ∈ Cn along with a sequence e1, ..., en−1 of existential literals which
occur to the right of u, where ei ∈ Ci, ei ∈ Ci+1 and var(ei) 6= var(ei+1).

The reflexive-resolution-path dependency scheme (Drrs) defines that
an existential literal e depends on a universal literal u iff one of the following
conditions holds: (1) There exist resolution paths from u to e and from u to
e. (2) There exist resolution paths from u to e and from u to e.

The EUR rule of QRAT allows to remove a universal literal u from a
clause (C ∨ u) ∈ ψ where all ` ∈ C are independent of u according to Drrs.

3. A brief recap of the QRAT simulation of ∀Exp+Res from [6]

The algorithm from [6] starts with a QBF Q.ψ and a ∀Exp+Res proof π
of Q.ψ. Then constructs a QRAT proof Π of Q.ψ as follows:
Step 1 (Introduction of definitions): For each annotated variable xτ in
π, introduce the definition clauses (xτ ∨ x) and (xτ ∨ x) in this order and
place xτ in the same quantifier block as x. Denote the resulting accumulated
formula by Q

′
.ψ1. Observe that this step is valid: the definition clause (xτ∨x)

is a QRAT since xτ is new. Then, the definition (xτ ∨ x) is a QRAT since the
only outer-resolvent upon xτ is the tautology (x ∨ x).
Step 2 (Introduction of annotated clauses): For each clause Cτ ∈ π

3

that was obtained from clause C ∈ ψ by axiom rule, add a clause Cτ ∨
u1 ∨ ... ∨ uk (where u1, ..., uk are universal literals in C). Denote resulting
accumulated formula by Q

′
.ψ2. Observe that this new clause is AT w.r.t ψ1.

Step 3 (Elimination of Input Clauses and Definitions): Q
′
.ψ3 =ψ2-ψ1.

Step 4 (Removal of all universal literals): Apply EUR rule in annotated
clauses for dropping all ∀ variables from right to left in the prefix Q

′
. This

completes the axiom steps. This step is valid because of the following Lemma.

Lemma 3 ([6]). If Q
′
.ψ3 contains a resolution path from u to e, then e must

be an annotated literal of the form lτ where the assignment τ falsifies u.

This lemma being true implies that Drrs can never be found between u
and e as the path sees the literals u,e and e but never includes u.This being
true for any such e implies u can be safely dropped by EUR rule.
Step 5 (Resolution proof): Simulate the remaining resolution steps.

3.1. Problems with direct usage of above Algorithm for IR-calc proofs

In order to simulate an IR-calc proof, one also need to simulate the instan-
tiation steps. We observe that if we do not delete all the definition clauses
in Step 3, we can simulate the instantiation steps as well. Note that we may
need to introduce more definition clauses for fresh variables when introduced.

Lemma 4. Instantiation step can always be simulated when retaining all the
definition clauses in the QBF.

Proof. Suppose we have a clause Ci = (x1
τ1 ∨ x2

τ2 ∨ eiτ) and the IR-calc
proof applies an instantiation step on Ci, i.e, inst(σ,Ci). Let the step return
Ci

′
= (x1

τ1 ∨ x2
τ2[σ] ∨ eiτ [σ]) and say annotations of x1 have not changed but

those of x2 have changed and resulted in a new variable (x2
τ2[σ]) not present

in the QBF currently and that we wanted to resolve on ei so it’s annotations
have changed but the new variable is already existing in the QBF.

x2
τ2[σ] being a new variable, we add its definitions (x2 ∨ x2

τ2[σ]) ∧ (x2 ∨
x2

τ2[σ]) and because x2
τ2 ,ei

τ ,ei
τ [σ] are already existing we would have (x2 ∨

x2
τ2), (ei∨ eiτ), (ei∨ eiτ [σ]) clauses already present in the QBF. Observe that

a series of resolving steps on these clauses derives the clause Ci
′
. Therefore,

it is an AT and hence a QRAT-clause and can be added.

However, if we retain all the definition clauses, then Lemma 3 may not
always hold, implying that we cannot simulate the axiom download steps.
Also we cannot add definition clauses of existing variables after axiom step
as they are no longer QRAT clauses. The only way to lift the algorithm
for IR-calc is to retain all the important definition clauses and delete the

4

unimportant ones. We say that a definition clause is important if we need
the same for the simulation of an instantiation step later in the IR-calc proof.

This motivates us to design a two pass algorithm. In the first pass, the
algorithm marks all the important definition clauses and deletes the unim-
portant ones. The algorithm then checks whether Lemma 3 holds with all
the important clauses present. If no, the algorithm stops. Otherwise, in the
second pass the algorithm continues with the successful simulation of the
IR-calc proof. Next, we present the algorithm in detail.

4. Modified QRAT simulation algorithm for IR-calc

The Modified algorithm starts with a QBF Q.ψ and an IR-calc proof π of
Q.ψ, an constructs a QRAT proof Π of Q.ψ as follows:
Step 1 (Introduction of definition clauses): In the first pass, we add
definition clauses of all annotated variables in the Axiom clauses as defined
in the above algorithm. Denote the resulting accumulated formula by Q

′
.ψ1.

Also give labels to all definition clauses, say D1, ..., D2k.
Step 2 (Introduction of annotated clauses): Exactly as defined in the
Step 2 of above algorithm. Denote the resulting formula by Q

′
.ψ2.

Step 3 (Elimination of input clauses): We only drop the input clauses
from ψ in this step. Denote the resulting accumulated formula by Q

′
.ψ3.

Step 4 (Find all important definition clauses): Assume that the axiom
downloads have been performed and go ahead in the IR-calc proof π scanning
for instantiation steps. Let Ci = (x1

τ1 ∨ x2
τ2 ∨ x3

τ3) be any derived clause
in π and Ci+1 = inst(σ,Ci) be an instantiation step. Say Ci+1 = (x1

τ1[σ] ∨
x2

τ2[σ] ∨ x3
τ3), where x

τ1[σ]
1 is the literal with modified annotations which

already exists in the QBF, x
τ2[σ]
2 is a new variable not yet present in the QBF

and xτ33 is the literal whose annotations did not change after the instantiation
step (zero or more of each type of variables are allowed in the clause Ci).

For each existing changed literal (i.e x1) we note the clause needed for
this change in the annotations of x1 i.e (x1

τ1 ∨x1
τ1[σ]). Re-write these clauses

in terms of definition clauses i.e (x1 ∨ x1
τ1) ∧ (x1 ∨ x1

τ1[σ]). We mark these
definition clauses as important. Then, for each new changed literal (i.e x2),
we mark the definition clause (x2 ∨ x2

τ2) as important. Note that the other
clause needed in this case will be added at the time of actual simulation.
Step 5 (Drop all unimportant definition clauses added in Step 1).
Step 6 (Find resolution paths): At this point we know that all instan-
tiation steps of π can be simulated. The algorithm now checks whether the

5

EUR steps are still applicable to complete the simulation of the axiom steps.
We check the same as follows: for every universal variable (u) going from
right to left order in the prefix Q

′
, check if there exists a resolution path

that starts from a clause containing u to one containing u or vice-versa. If
found, halt and declare that the given IR-calc proof cannot be simulated by
the algorithm. If no such resolution paths exist, continue to Step 7.
Step 7 (Drop universal literals): Drop all universal literals from all the
annotated clauses introduced in Step 2. This completes simulating the axiom
download steps of IR-calc.
Step 8 (Simulate resolution and instantiation steps): In the second
pass of this algorithm, simulate the resolution and instantiation steps in or-
der as they occur in π. That is, for every resolution step, add the resolvent
clause. Since all the important definition clauses are present, every instanti-
ation steps can be simulated by Lemma 4. The completes the algorithm.
Let us quickly understand the algorithm with an example.

Example 5. Consider the following QBF and an IR-calc proof of the same
in Figure 1a. Apply the modified algorithm on the same.

Ψ0 = ∀u1∃e2∀u3∃e4, e5. (u1 ∨ e2 ∨ u3 ∨ e5) ∧ (u1 ∨ u3 ∨ e4)

∧ (e2 ∨ u3 ∨ e4) ∧ (u1 ∨ e2) ∧ (u1 ∨ e2 ∨ e5)

Step 1 : Add definitions for all the annotated literals in C1, .., C5 (Fig. 1a).
There will be a total of 12 definition clauses added. QBF is now Q

′
.Ψ1

Step 2 : Labels

Ψ2 = Ψ1 ∧ (u1 ∨ e2
u1 ∨ u3 ∨ e5

u1u3) ∧ (u1 ∨ u3 ∨ e4
u1u3) (C

′

1, C
′

2)

∧ (e2 ∨ u3 ∨ e4
u3) ∧ (u1 ∨ e2

u1) ∧ (u1 ∨ e2
u1 ∨ e5

u1) (C
′

3, C
′

4, C
′

5)

Step 3 : Ψ3 = Ψ2 −Ψ0

Step 4 :(from IR-calc proof in Figure 1a)
1: C6 = inst(u1, C3) : Required clauses = (e4

u3 ∨ e4
u1u3) ∧ (e2 ∨ e2

u1)
Imp. Def clauses = (e4∨e4

u3)∧(e4∨e4
u1u3)∧(e2∨e2

u1)
2: C10 = inst(u3, C8) : Required clauses = (e5

u1 ∨ e5
u1u3)

Imp. Def clauses = (e5 ∨ e5
u1) ∧ (e5 ∨ e5

u1u3)
Step 5 : Drop non-important definitions, now formula will be:

Ψ4 = Ψ3−Ψ1+{(e4∨e4
u3)∧(e4∨e4

u1u3)∧(e2∨e2
u1)∧(e5∨e5

u1)∧(e5∨e5
u1u3)}

Step 6 :
Rightmost ∀ variable = u3 : But no opposite literals in any clause pairs.

6

⊥C11

e5
u1u3 C10

e5
u1u3

C9

e5
u1

C8e2
u1

C7

e2
u1 ∨ e4u1u3C6

e4
u1u3

C2

e2 ∨ e4u3C3 e2
u1

C4

e2
u1 ∨ e5u1

C5

e2
u1 ∨ e5u1u3

C1

u1 ∨ u3 ∨ e4
C2

′′

e2 ∨ u3 ∨ e4
C3

′′

u1 ∨ e2
C4

′′

u1 ∨ e2 ∨ e5
C5

′′

u1 ∨ e2 ∨ u3 ∨ e5
C1

′′

u1

u3

(a) IR-calc proof of Ψ0 (Example 5)

⊥
C12

e1

C11

e1
C10

e1 ∨ c1
u1

C9

e1 ∨ c2
u1

C8

e1 ∨ c1
C7

e1 ∨ c2
C6

c2
u1

C1

e1 ∨ c1C2 c1 ∨ c2
C3

e1 ∨ c2 C4

c1
u1

C5

u1 ∨ c2
C1

′′

e1 ∨ c1
C2

′′

c1 ∨ c2
C3

′′

e1 ∨ c2
C4

′′

u1 ∨ c1
C5

′′

u1u1

(b) IR-calc proof of φ1

Figure 1: Example IR-calc proofs. (Dashed arrow correspond to the instantiation steps).

Next rightmost ∀ variable = u1 : No paths found in Ψ4.
Step 7 & 8 : Drop all ∀ variables from Ψ4. Now, resolvent and instantiated
clauses of IR-calc can be directly added in order since they are AT w.r.t the
QBF at that point. This completes the simulation.

5. Counter-Example:

We show that the proposed two pass algorithm cannot simulate every
IR-calc proof. Consider the following false family of QBFs φn from [3] and
an IR-calc proof for φ1 in Figure 1b. Apply the modified algorithm on φ1.

φn ≡ ∃e1∀u1∃c1c2 . . . ∃en∀un∃c2n−1c2n.∧
i∈[n]

{(ei ∨ c2i−1) ∧ (ui ∨ c2i−1) ∧ (ei ∨ c2i) ∧ (ui ∨ c2i)} ∧ (
∨
i∈[2n]

ci)

Q.Φ0 = φ1 = ∃e1∀u1∃c1c2. (u1∨ c2)∧ (e1∨ c1)∧ (c1∨ c2)∧ (e1∨ c2)∧ (u1∨ c1)

Step 1 :This QBF will need a total of 4 definition clauses. QBF is now Q
′
.Φ1.

Step 2 : Labels

Φ2 = Φ1 ∧ (u1 ∨ c2
u1) ∧ (e1 ∨ c1) ∧ (c1 ∨ c2) (C

′

1, C
′

2, C
′

3)

∧ (e1 ∨ c2) ∧ (u1 ∨ c1
u1) (C

′

4, C
′

5)

Step 3 : Φ3 = Φ2 − Φ0

Step 4 :(From the IR-calc proof example in Fig. 1b)
1: C8 = inst(u1, C6) : Required clauses = (c2 ∨ c2

u1) = Imp. Def clauses,
2: C9 = inst(u1, C7) : Required clauses = (c1 ∨ c1

u1) = Imp. Def clauses.

7

Step 5 : Φ4 = Φ3 − Φ1 + {(c2 ∨ c2
u1) ∧ (c1 ∨ c1

u1)} (D1, D2)
Step 6 : Rightmost ∀ variable = u1 : C

′
5 has u1 and C

′
1 has u1

Resolution path: C
′
5, D2, C

′
3, D1, C

′
1

We have a path where every clause is important so algorithm fails and halts.
Discussions and conclusions: In this short note, we show that the QRAT
simulation algorithm for ∀Exp+Res cannot be lifted to IR-calc. The only
approach to lift this algorithm is similar to the two pass algorithm defined
in Section 4. We showed that the modified algorithm cannot simulate the
IR-calc proof of the formula φn, which is known to be easy for IR-calc but
hard for ∀Exp+Res. Whether this is always the case is unclear. That is, does
the algorithm always fail to simulate the IR-calc proof of QBFs which are
hard for ∀Exp+Res? In closing, it is still open ‘whether QRAT can simulate
IR-calc?’

References

[1] H. Kleine Büning, M. Karpinski, A. Flögel, Resolution for quantified
Boolean formulas, Information and Computation 117 (1) (1995) 12–18.

[2] V. Balabanov, J.-H. R. Jiang, Unified QBF certification and its applica-
tions, Formal Methods in System Design 41 (1) (2012) 45–65.

[3] M. Janota, J. Marques-Silva, Expansion-based QBF solving versus Q-
resolution, Theoretical Computer Science 577 (2015) 25–42.

[4] O. Beyersdorff, L. Chew, M. Janota, On unification of QBF resolution-
based calculi, in: Mathematical Foundations of Computer Science
(MFCS), 2014, pp. 81–93.

[5] M. J. H. Heule, M. Seidl, A. Biere, Solution validation and extraction for
QBF preprocessing, J. Autom. Reason. 58 (1) (2017) 97–125.

[6] B. Kiesl, M. Seidl, QRAT polynomially simulates ∀-Exp+Res, in: Theory
and Applications of Satisfiability Testing - SAT 2019, 2019, pp. 193–202.

[7] B. Kiesl, M. J. H. Heule, M. Seidl, A little blocked literal goes a long
way, in: Theory and Applications of Satisfiability Testing - SAT 2017,
Vol. 10491, Springer, 2017, pp. 281–297.

[8] O. Beyersdorff, L. Chew, M. Janota, Proof complexity of resolution-based
QBF calculi, in: STACS 2015, Vol. 30 of LIPIcs, 2015, pp. 76–89.

8

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

