
The Space Complexity of Sampling

Eshan Chattopadhyay∗

Cornell University
eshanc@cornell.edu

Jesse Goodman∗

Cornell University
jpmgoodman@cs.cornell.edu

David Zuckerman†

University of Texas at Austin
diz@cs.utexas.edu

July 22, 2021

Abstract

Recently, there has been exciting progress in understanding the complexity of distributions. Here, the
goal is to quantify the resources required to generate (or sample) a distribution. Proving lower bounds in
this new setting is more challenging than in the classical setting, and has yielded interesting new tech-
niques and surprising applications. In this work, we initiate a study of the complexity of sampling with
limited memory, and prove small-space analogs of several results previously known only for sampling in
AC0.

1. We exhibit an explicit boolean function b : {0, 1}n → {0, 1} that cannot be computed by width
2Ω(n) read-once branching programs (ROBPs), even on average, but such that (Un, b(Un)) can
be exactly sampled by ROBPs of width O(n).

2. We exhibit an explicit boolean function b : {0, 1}n → {0, 1} such that any distribution sampled
by an ROBP of width 2Ω(n) has statistical distance 1

2 − 2−Ω(n) from (Un, b(Un)). We show that
any such b witnesses exponentially small correlation bounds against ROBPs, and we extend these
results to hold for the unknown-order setting.

3. We show that any distribution sampled by an ROBP of width 2Ω(n) has statistical distance 1 −
2−Ω(n) from any distribution that is uniform over a good code. More generally, we obtain sampling
lower bounds for any list decodable code, which are nearly tight. Using a known connection, we
also obtain data structure lower bounds for storing codewords.

Along the way, we prove a direct product theorem and several equivalence theorems. These tools
offer a generic method to construct distributions with strong sampling lower bounds, and translate these
lower bounds into correlation bounds against ROBPs. As an application of our direct product theorem,
we show a strong complexity separation between sampling with AC0 circuits and sampling with ROBPs.

∗Supported by NSF CAREER Award 2045576.
†Supported by NSF Grants CCF-1705028 and CCF-2008076 and a Simons Investigator Award (#409864).

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 106 (2021)

1 Introduction

A central goal in complexity theory is to quantify the resources required to perform certain tasks. Tradi-
tionally, complexity theory has focused on the task of computing: here, one fixes a function f : {0, 1}m →
{0, 1}n and computational model C (e.g., low-depth circuits), and asks for lower bounds on the size of any
F ∈ C that computes f .

Recently, a growing body of work has sought to understand the power of these same computational
models for the task of sampling. Here, instead of fixing a function f , one picks a target distribution Q ∼
{0, 1}n. Then, one asks for lower bounds on the size of any F ∈ C that generates (samples) Q, when
supplied with uniformly random bits.

The complexity of sampling can be traced back to the ’80s [JVV86], and has recently seen an exciting
new wave of interest [ASTS+03, GGN10, Vio12a, Vio12b, LV12, BIL12, DW12, JSWZ13, Aar14, Wat14,
Vio14, BCS16, Wat16, Vio16, Wat20, Vio20, GW20]. Despite this significant progress, results are still only
known for a few computational models like AC0 and communication protocols. In particular, nothing is
known about the complexity of sampling with limited memory, while this remains a fundamental model in
other areas of complexity theory.

In this work, we aim to fill this gap, and initiate a study of the space complexity of sampling. Our model
corresponds to the streaming model of computation, an active area of research. Before we dive into our
model and present our results, we briefly survey sampling in AC0, and motivate some key questions about
sampling with limited memory.

Sampling can be easier than computing A motivating paradigm in the complexity of sampling is the
(perhaps surprising) fact that a fixed computational model C may be more powerful at sampling than com-
puting. In particular, consider fixing a function f : {0, 1}n → {0, 1}m and comparing the tasks of com-
puting f on every input x, with sampling f(Un) [GGN10]. Intuitively, the latter task should seem easier:
any F ∈ C that computes f must also have F (Un) = f(Un). Furthermore, setting f−1 to be a one-way
permutation makes f(x) very hard to compute, but f(Un) very easy to sample [Vio12a].

Amazingly, we also have examples of extremely simple explicit functions that demonstrate this separa-
tion. The canonical example is the function f(x) = (x, parity(x)): the celebrated result of Håstad [Hås87]
shows that f cannot be computed in AC0, yet Babai [Bab87], Boppana and Lagarias [Kil88] give an ex-
tremely simple AC0 circuit that samples (Un, parity(Un)). Thus, obtaining sampling lower bounds is
strictly more challenging (at least in AC0), and their pursuit may unveil exciting new techniques and ap-
plications [Vio12a].

A natural first question, then, is to ask whether this motivation still holds in the limited memory setting:

Question 1. Does there exist an explicit boolean function b : {0, 1}n → {0, 1} such that (x, b(x)) is hard
to compute with limited memory, but (Un, b(Un)) is easy to sample with limited memory?

Sampling lower bounds for input-output pairs Given the above example of a boolean function b :
{0, 1}n → {0, 1} whose input-output pair (x, b(x)) is hard to compute but easy to sample in AC0, perhaps
the most natural first task is to exhibit a distribution of the form (Un, b(Un)) that is hard to sample in AC0.
Recently, Viola proved a very strong result of this form [Vio20], giving an explicit function b : {0, 1}n →
{0, 1} such that for any AC0 circuit F : {0, 1}` → {0, 1}n+1, it holds that |F (U`) − (Un, b(Un))| ≥
1
2 − 2−n

Ω(1)
, where | · | denotes statistical distance.

This motivates us to ask the following question:

1

Question 2. Does there exist an explicit boolean function b : {0, 1}n → {0, 1} such that (Un, b(Un)) is
hard to sample with limited memory?

Sampling lower bounds for codes Finally, it is easy to see sampling lower bounds for distributions of the
form (Un, b(Un)) cannot exceed 1/2 (since (Un, 0) or (Un, 1) will yield an upper bound of 1/2, and both
of these are trivial to sample). Thus, it is natural to wonder whether one can find any explicit distribution
Q ∼ {0, 1}n with much stronger sampling lower bounds, perhaps even approaching 1.

In 2012, Viola and Lovett demonstrated a distribution of exactly this type [LV12], setting Q ∼ {0, 1}n to
be uniform over an asymptotically good error-correcting code, i.e., one having constant relative distance and
rate. They showed that for such a distribution Q, any AC0 circuit F : {0, 1}` → {0, 1}n has |F (U`)−Q| ≥
1−ε for ε = n−Ω(1). In a subsequent work [BIL12], Beck, Impagliazzo, and Lovett improved the statistical
distance to 1−ε for ε = 2−n

Ω(1)
. Using an observation of Viola [Vio12a], both works also obtain interesting

data structure lower bounds for storing codewords.
Given these strong sampling lower bounds against codes for AC0, we would like to know:

Question 3. Are good codes hard to sample with limited memory?

In this work, we provide positive answers to the above three questions, and give a complexity separation
between sampling in AC0 and sampling with limited memory. Before presenting our results, we must discuss
our model for sampling distributions with limited memory.

1.1 Sampling in small space using ROBPs

To model sampling with limited memory, we will use the classic model of read-once branching programs
(ROBPs). The ROBP model corresponds to the streaming model of computation, and thus a better un-
derstanding of the power of ROBPs for sampling tasks may also help provide new insights and tools for
streaming algorithms.

A first attempt to model sampling in limited memory uses the classic definition of an ROBP (Def-
inition 7), and replaces its input with uniform bits. However, such an ROBP computes a function f :
{0, 1}` → {0, 1}, and so the distribution f(U`) it samples will be over {0, 1}. To sample general distribu-
tions Q ∼ {0, 1}n, we need an ROBP that can output multiple bits.

Perhaps the most natural way to extend an ROBP to output multiple bits is to simply allow it to output
a sequence of bits upon reading any input bit. More formally, we can assign each edge in the ROBP an
additional label consisting of a string of output bits. Then, given an input x ∈ {0, 1}`, the ROBP traverses a
path in the usual way, but now outputs all the output labels seen along the way. Indeed, this is exactly a “read-
once” version of multi-output branching programs considered in previous works [BFK+79, BC82, Bea89].

It will also be convenient to make one simplifying assumption: just as the inputs in an ROBP are
“layered”, we will assume that the outputs are also layered. That is, we require that any two edges traversing
between the same two layers are labeled with the same number of output bits. This is a natural way to
guarantee that the ROBP will compute a function of the form F : {0, 1}` → {0, 1}n, since all paths are
guaranteed to output the same number of bits. This completes our definition of multi-output ROBP (see
Definition 8 for a more formal definition).

Just as a standard ROBP models an algorithm that reads from an input stream, multi-output ROBPs also
allow the algorithm to write to an output stream (since it may write an arbitrary number of bits at each time
step, without storing any of them in its memory). As it turns out, we will also prove that sampling using this
model is equivalent (up to a small loss in parameters) to sampling using a different natural model from the

2

field of randomness extractors [KRVZ11]. Furthermore, note that for functions with one bit of output, our
definition is equivalent to the classic single-bit-output ROBP definition. Thus, we will henceforth refer to
multi-output ROBPs simply as ROBPs.

1.2 Summary of our results

We are now ready to formally state our results. At a high level, we prove the following four results for
sampling with ROBPs:

1. Sampling is easier than computing.

2. Sampling lower bounds against input-output pairs.

3. Sampling lower bounds against codes.

4. A direct product theorem, which yields a strong complexity separation between sampling with AC0

and sampling with ROBPs.

Before we begin, we remind the reader that we are interested in the sampling power of ROBPs when they
have unlimited access to randomness, but have a bounded width w (as this parameter corresponds to their
memory). Thus, whenever we specify an ROBP F : {0, 1}` → {0, 1}n below, we emphasize that there is
no restriction on `. We note that ` may even be exponentially large (or bigger still!) for our lower bounds,
but for our upper bounds we can always take ` ≤ poly(n).

1.2.1 Sampling is easier than computing for ROBPs

In our first main theorem, we answer Question 1, and show that ROBPs are more powerful at sampling
than computing. In particular, we give a function b : {0, 1}n → {0, 1} such that ROBPs cannot compute
(x, b(x)) (even with exponential width), but can sample (Un, b(Un)) (using just linear width). In fact, for
the function we give, ROBPs will actually fail to compute the correct answer on≈ 1/4 fraction of the input.

Theorem 1 (Sampling is easier than computing). For any fixed ε > 0, there exist constants C, c > 0 and an
explicit function b : {0, 1}n → {0, 1} such that the following holds. For every ROBP F : {0, 1}n → {0, 1}
of width w ≤ 2cn,

Pr
x

[F (x) 6= b(x)] >
1

4
− ε,

but there exists an ROBP G : {0, 1}` → {0, 1}n+1 of width w ≤ Cn such that

G(U`) = (Un, b(Un)).

Thus, just like with AC0, we see that sampling with ROBPs is strictly easier than computing with ROBPs.
As a result, sampling lower bounds for ROBPs will be more challenging to obtain than classical lower
bounds for ROBPs.

1.2.2 Sampling lower bounds against input-output pairs for ROBPs

Given the above result, it is natural to ask whether we can obtain sampling lower bounds for distributions of
the form (Un, b(Un)). We obtain such bounds in our second main theorem, answering Question 2.

3

Theorem 2 (Sampling lower bounds against input-output pairs). There is a universal constant c > 0 and an
explicit function b : {0, 1}n → {0, 1} such that for any ROBP F : {0, 1}` → {0, 1}n+1 of width w ≤ 2cn,

|F (U`)− (Un, b(Un))| ≥ 1

2
− 2−cn.

We remark that Theorem 2 is tight up to the constant c, since statistical distance ≤ 1
2 can be achieved by

an ROBP of width 1, and statistical distance ≤ 1
2 − 2−n can be achieved by an ROBP of width 2. It turns

out that we can take b as the F2-inner product function IP. Surprisingly, (Un, IP(Un)) can be sampled in
AC0 [IN96], which gives us the following complexity separation.

Corollary 1. There exists an explicit function b : {0, 1}n → {0, 1} such that the distribution (Un, b(Un))
can be sampled by AC0 circuits, but cannot be sampled by ROBPs of width 2Ω(n).

Furthermore, we provide an equivalence theorem which shows that sampling lower bounds against dis-
tributions of the form (Un, b(Un)) immediately yield correlation bounds against b for ROBPs. By instan-
tiating this equivalence theorem with Theorem 2, we obtain as a corollary an alternate proof of the known
result that the F2-inner product function has exponentially small correlation with ROBPs of exponential
width.1

We also show that Theorem 2 holds for ROBPs that may write their output in any order. By extending
our equivalence theorem to hold for the unknown-order setting, we obtain as a corollary an alternate proof
of the known result that good extractors for interleaved sources have exponentially small correlation with
unknown-order ROBPs of exponential width.2 Furthermore, these equivalence theorems provide a new route
towards proving correlation bounds against ROBPs.

1.2.3 Sampling lower bounds against codes for ROBPs

In our third main theorem, we show that codes are very hard to sample in limited memory, even for ROBPs
of exponential width, answering Question 3. Our most general result is the following, which holds for any
list decodable code.

Theorem 3 (Sampling lower bounds against codes). Let Q ∼ {0, 1}n be uniform over a (ρ, L) list decod-
able code of dimension k. Then for any ROBP F : {0, 1}` → {0, 1}n of width w,

|F (U`)−Q| ≥ 1− 8wL · 2−
ρ

1+2ρ
k
.

We now point out a few key parameter settings for this general theorem. Using a standard fact relating
list decodable codes to (n, k, d) codes (Fact 2), our general bound yields the following result for sampling
(n, k, d) codes.

Corollary 2. Let Q ∼ {0, 1}n be uniform over an (n, k, d) code of dimension k. Then for any ROBP
F : {0, 1}` → {0, 1}n of width w,

|F (U`)−Q| ≥ 1− 12w · 2−
kd
4n .

1The known proof of this result follows directly from average-case communication complexity lower bounds against the inner
product function.

2The known proof of this result follows directly from the explicit map f : {0, 1}n → {0, 1} of Raz and Yehudayoff [RY11]
that has exponentially small discrepancy for every partition of [n] into two equally sized sets.

4

We prove that Corollary 2 is almost tight, in the sense that for almost all “valid” parameters n, k, d, there
exists an (n, k, d) code that can be sampled by an ROBP of width 2Õ(kd

n
) (see Theorem 24 and Remark 3).

Furthermore, the above corollary implies that any distribution sampled by an ROBP of exponential width
has statistical distance exponentially close to 1 from a good code, answering Question 3:

Corollary 3. If Q is a good code, then for any ROBP F : {0, 1}` → {0, 1}n of width 2Ω(n),

|F (U`)−Q| ≥ 1− 2−Ω(n).

This is tight up to the constant hidden in the Ω(·), since statistical distance ≤ 1− 2−n is easily achieved
by a width 1 ROBP that is constant over a single codeword.

We now turn to some applications of this result. Using one direction of one of our equivalence theorems
(Theorem 11), we show that ROBPs of exponential width cannot test membership of a good code. In fact,
we prove something stronger, and show the following covariance bounds (see Definition 4 for a definition
of covariance).

Corollary 4. Let b : {0, 1}n → {0, 1} be the indicator function of a good code Q ⊆ {0, 1}n. Then for any
ROBP F : {0, 1}n → {0, 1} of width 2Ω(n), it holds that | cov(F, b)| ≤ 2−Ω(n).

Next, by applying a known connection between sampling lower bounds and data structure lower bounds
[Vio12a], we immediately get tight data structure lower bounds for storing codewords succinctly and re-
trieving them using ROBPs.

Corollary 5. Let Q ⊆ {0, 1}n be a good code of dimension k. Suppose we can store codewords of Q using
k + r bits so that a codeword can be computed by an ROBP F : {0, 1}k+r → {0, 1}n of width 2Ω(n). Then
r ≥ Ω(n).

In particular, the above corollary shows that if one wishes to store codewords that are retrievable by a
width 2Ω(n) ROBP, they must use Ω(n) extra bits of redundancy. This is tight up to constant factors: (1) It
is easy to store codewords that are retrievable by a width 2n ROBP using 0 extra bits of redundancy; and (2)
It is easy to store codewords that are retrievable by a width 1 ROBP using n− k extra bits of redundancy.

1.2.4 A direct product theorem and complexity separation between sampling with AC0 and ROBPs

For our final main result, we prove a direct product theorem. This gives a generic way to construct dis-
tributions with strong sampling lower bounds against ROBPs. Informally, this theorem shows that if a
distribution Q is even a little hard to sample for ROBPs, then the distribution Q⊗t (defined as a sequence of
t independent copies of Q) is extremely hard to sample for ROBPs. More formally, we prove the following.

Theorem 4 (Direct product theorem). Let Q ∼ {0, 1}n be a distribution such that for any ROBP F :
{0, 1}` → {0, 1}n of width w, it holds that |F (U`) − Q| ≥ δ. Then for any t ∈ N and ROBP F ∗ :
{0, 1}`∗ → {0, 1}nt of width w, it holds that

|F ∗(U`∗)−Q⊗t| ≥ 1− e−tδ2/4.

In particular, our direct product theorem gives a way to boost statistical distance lower bounds of the
form δ > 0 (some tiny constant) to lower bounds of the form 1− 2−Ω(t).

As the main application of our direct product theorem, we provide a strong complexity separation be-
tween sampling with ROBPs and sampling with AC0 circuits. In particular, we give a simple family of

5

distributions Q ∼ {0, 1}n that can be sampled in AC0, but such that any distribution generated by a width
2Ω(
√
n) ROBP has statistical distance 1 − 2−Ω(

√
n) from Q. More generally, we achieve the following

tradeoff.

Corollary 6. There is a universal constant c > 0 such that for all sufficiently large n ∈ N, the following
holds. There exists an AC0 circuit Q : {0, 1}` → {0, 1}n such that for every ROBP F : {0, 1}` → {0, 1}n
of width w ≤ 2c·n/ log(1/ε),

|F (U`)−Q(U`)| ≥ 1− ε.

We remark that ε can be set to any function of n, with some interesting settings being ε = 0.01 and
ε = 2−

√
n. Furthermore, while this separation demonstrates a distribution Q samplable with AC0 circuits but

not samplable by ROBPs, it of course does not imply that AC0 circuits are strictly more powerful at sampling
than ROBPs. Indeed, an interesting future direction is to find a family of distributions samplable by ROBPs,
but not samplable by AC0 circuits. One idea is to construct an extractor for AC0 sources (distributions
generated by AC0 circuits), which can be computed by a small width ROBP.

This concludes the overview of our main results.

Organization The rest of this paper will be structured as follows. We start by giving an overview of our
techniques in Section 2. In Section 3, we provide some basic preliminaries that will be used throughout the
paper. Then, in Section 4, we prove a variety of equivalence theorems, which help set up all our proofs, and
which allow us to convert our sampling lower bounds into correlation bounds.

In Section 5, we show that sampling is easier than computing for ROBPs, proving Theorem 1. Next, in
Section 6, we provide our sampling lower bounds against input-output pairs, thereby proving Theorem 2.
We prove our sampling lower bounds against codes (Theorem 3) in Section 7, and in Section 8 we provide
our direct product theorem (Theorem 4). Finally, we wrap up with some future directions in Section 9.

2 Overview of our techniques

In this section, we give a detailed overview of the techniques that go into proving our four main theorems:

1. Sampling is easier than computing: Theorem 1.

2. Sampling lower bounds against input-output pairs: Theorem 2.

3. Sampling lower bounds against codes: Theorem 3.

4. A direct product theorem: Theorem 4.

Before we sketch any of these proofs, we provide a common set up that they will all use.

2.1 Switching worlds

When all is said and done, our goal is to obtain theorems about sampling with ROBPs: that is, we wish to
gain a deeper understanding of distributions of the form F (U`), where F : {0, 1}` → {0, 1}n is a function
computed by an ROBP. However, given the generality of ROBPs, this model of sampling can be a little
cumbersome to work with formally.

In order to circumvent the need to work directly with this model, we will actually prove all of our results
using two intermediate models, which we call complex samplers and simple samplers. These two types

6

of samplers are much easier to work with formally, as their definitions are simpler. Surprisingly, it turns
out that proving results over these intermediate models is also stronger than proving results about sampling
with ROBPs. Indeed, we provide a small collection of equivalence theorems that will allow us to convert
our results about simple and complex samplers into results about sampling and computing with ROBPs.

We go into more detail below.

Complex samplers and their equivalence to sampling with ROBPs We call our first intermediate model
a complex sampler. Such a model was originally introduced by Kamp, Rao, Vadhan, and Zuckerman under
the name of small-space sources [KRVZ11]. It is defined as a certain type of branching program that receives
no input. More formally, a complex sampler of width w and length n is a directed acyclic graph G = (V,E)
with layers V = V0 ∪ V1 ∪ · · · ∪ Vn, each holding w vertices. For every i ∈ [n], each v ∈ Vi−1 can have
an arbitrary number of edges into the next layer. The vertex v assigns a probability distribution pv over
its outgoing edges, and each of them also receive a label of 0 or 1. There is a distinguished start vertex
vstart ∈ V0, and the complex sampler generates a distribution X ∼ {0, 1}n by taking a random walk from
vstart according to the edge probabilities {pv}, outputting all bits seen along the way.

Here, the main equivalence theorem we will prove is that a distribution Q ∼ {0, 1}n is samplable by a
complex sampler of width w if and only if it is samplable by an ROBP of width w (ignoring a small loss in
parameters: see Theorem 6). The more challenging direction of this proof is that complex samplers =⇒
ROBP samplers. Here, the difficulty is with simulating the multiple outgoing edges from each vertex, and
the arbitrary probabilities it may assign over them. However, we show that such a simulation is possible by
combining a lemma of [KRVZ11] (to make the edge probabilities of the complex sampler “granular”) with
a construction of a certain type of ROBP that sorts boolean strings into buckets of various sizes. In other
words, the ROBP computes a type of “multi-thresholding” function.

Given this equivalence theorem: (1) Lower bounds against complex samplers imply lower bounds
against sampling with ROBPs; and (2) The existence of complex samplers for a distribution implies that
such a distribution can be sampled with ROBPs. Thus, it allows us to focus on proving results about com-
plex samplers, instead of about sampling with ROBPs.

Simple samplers and their equivalence to computing with ROBPs We call the second intermediate
model we use a simple sampler. Such a model is identical to the complex sampler, except it has the additional
restriction that each vertex may only have two outgoing edges, labeled 0 and 1, respectively.

Previously, we discussed that complex samplers are equivalent to sampling with ROBPs. It may there-
fore be surprising to learn that, in some sense, simple samplers are equivalent to computing with ROBPs. In
more detail, we prove an equivalence theorem that says the following: for any b : {0, 1}n → {0, 1}, there
exists a simple sampler of width w that generates (Un, b(Un)) if and only if there exists an ROBP of width
w that computes b. The proof is not difficult, and we refer the reader to Section 4.2 for more detail.

The main way we will use this theorem is in the direction of ROBP for b =⇒ simple sampler for
(Un, b(Un)). This will allow us to convert simple sampler lower bounds against (Un, b(Un)) into hardness
of computing for ROBPs. Moreover, we will actually give an average-case version of this direction (Theo-
rem 8), which will allow us to obtain average-case hardness against ROBPs. The proof is again not difficult,
and we refer the reader to Section 4.2.1 for more detail.

Finally, we prove a few more small equivalence theorems that we use to get some bonus results that we
listed in the introduction. But we have already collected everything we need to give a sketch of our main
results, so we omit them from this overview (see Section 4 for our full set of equivalences).

7

At last, we are ready to start sketching our main theorems. With our equivalence theorems in hand, we
will see that we can just focus on proving results about simple and complex samplers.

2.2 Sampling is easier than computing

We now begin the sketch of our first main theorem, Theorem 1. Recall that it roughly says that there is an
explicit b : {0, 1}n → {0, 1} such that (Un, b(Un)) can be sampled by width w = O(n) ROBPs, but b
cannot be computed even by ROBPs of width w = 2Ω(n). In fact, it actually says that such ROBPs fail to
compute b on ≈ 1/4 fraction of possible inputs.

Using the equivalence theorems sketched in Section 2.1, we can convert this theorem into a simple
statement about simple and complex samplers, and prove that instead. The new version of this theorem
(Theorem 13) says that there is an explicit b : {0, 1}n → {0, 1} such that (Un, b(Un) can be sampled by
width w = O(n) complex samplers, but every simple sampler of width w = 2Ω(n) generates a distribution
X with statistical distance ≈ 1/4 from (Un, b(Un)). We sketch its proof below.

A warm-up using the address function Our first candidate function for b is the address function address :
{0, 1}n → {0, 1}, where n = k+log k for some k. This function parses its input y ∈ {0, 1}n as y = (x, α),
where x ∈ {0, 1}k and α ∈ [k]. Then, it outputs xα. It is well-known that this function separates read-
once and read-twice branching programs (see, e.g., [GV20]). We will see that it also separates simple and
complex samplers, but that it will fail to give much more than a worst-case separation.

In more detail, we would like to show that width w = O(n) complex samplers can generate
(Un, address(Un)), but that width w = 2Ω(n) simple samplers cannot. We sketch these one at a time.

First, to see why simple samplers cannot generate this distribution, consider any simple sampler B,
and suppose it has width w = 2k − 1. Observe that in a simple sampler, there is a single unique path
corresponding to any sequence of output bits it might produce. Thus, if we look at layer Vk in this simple
sampler, there must be two different sequences of bits x, y ∈ {0, 1}k that lead to the same vertex in v ∈ Vk.
This is a big problem, because x and y must differ at some coordinate α ∈ [k], but the simple sampler
cannot remember which of these strings it just outputted upon arriving at v. Thus, no matter what bit it
decides to output at the very end, it will either disagree with xα or yα. In other words, the simple sampler
fails to exactly generate (Un, address(Un)), and it has width w = 2k − 1 = 2Ω(n).

Now, to see why complex samplers can generate this distribution using width w = O(n), we
start by observing that (Un, address(Un)) is a convex combination of 2k distributions, each with a very
nice structure. In particular, let X be uniform over {0, 1}k, let A be uniform over [k], and note that
(Un, address(Un)) = (X,A,XA). Thus, for any fixing of A to a, and any fixing of Xa to xa ∈ {0, 1},
the distribution (X,A,XA) simply becomes a sequence of independent bits: some of which are uniform,
and some of which are constant. Call a distribution with this structure “nice.” It is easy to verify that there
are 2k such fixings, and each happens with probability 1

2k .
Thus we see that (Un, address(Un)) is a convex combination of 2k nice distributions. Furthermore, it is

easy to verify that any nice distribution can be sampled by a complex sampler of width w = 1. The final step
now is the following observation: for any collection {Yi}i∈[2k] of distributions that can each be sampled
in width 1 by a complex sampler, any convex combination of distributions from this set can be sampled in
width 2k by a complex sampler.

To see why the above is true, start by drawing a new complex sampler Bi for each Yi. Then, draw a
new node v∗, and connect it to the start node of each Bi. Have v∗ assign a probability distribution over its

8

outgoing edges, which corresponds to the convex combination desired. This new sampler indeed has width
at most 2k, and a random walk starting at v∗ will indeed sample the desired distribution. But technically, our
definition required each edge leaving v∗ to be labeled with an output bit. But this is easy to fix: for each Bi,
let vistart be its start vertex. Suppose the edge from v∗ to vistart is labeled with probability pi. Then simply (1)
remove the edge between v∗, vistart, and (2) copy the edges leaving vistart onto v∗, multiplying their assigned
probabilities by pi.

Thus, we get a complex sampler of width 2k = O(n) that exactly samples (Un, address(Un)).

Obtaining average-case bounds through list-decodable codes So far, we’ve shown that width O(n)
complex samplers can generate (Un, address(Un)), but width 2Ω(n) simple samplers cannot. What we
would really like is to show that such simple samplers cannot even come close to generating this distribution.

Going back to the impossibility proof for the simple sampler, recall that we argued that two different
outputs x, y ∈ {0, 1}k will lead to the same state in layer Vk. The simple sampler thus “forgot” what it
output before that point, and since the strings x, y differ at some coordinate α ∈ [k], the simple sampler is
guaranteed to make a mistake at least some of the time when outputting its last bit.

But if we want to show that the output B of the simple sampler is far from (Un, address(Un)), this
isn’t good enough: it could be the case that x, y differ at just one coordinate α, which shouldn’t be getting
selected as output with probability� 1/k. Thus, arguing that |B− (Un, address(Un))| ≥ Ω(1) using this
method does not seem promising.

The natural idea is to force x, y to differ at� 1 coordinate, and perhaps even Ω(k) coordinates. Towards
this end, we define a more elaborate version of the address function, address∗ : {0, 1}n → {0, 1}, as follows
(where n is just a little bigger than k + log k). First, it parses its input y ∈ {0, 1}n as y = (x, α) for
x ∈ {0, 1}k and α ∈ [k̂], where k̂ is a little bigger than k. Then, it encodes x ∈ {0, 1}k into a codeword
x̂ ∈ {0, 1}k̂ using a good (ρ, L) list decodable code.3 Finally, it outputs x̂α.

The idea now is as follows. Consider any vertex v in layer Vk of the simple sampler. Let x ∈ {0, 1}k be
the simple sampler’s “favorite” sequence of output bits leading to v, in the sense that it outputs (x, α, x̂α)
with higher probability than (x, α,¬x̂α) for the most number of indices α. Then by definition of list decod-
ability, all but L of the other output strings y leading to v must have ŷ differ from x̂ at many coordinates (ρk̂).
Then either one of two things could happen: (1) the simple sampler actually incorrectly outputs (x, α,¬x̂α)
quite often for many α, meaning that it does the same for every other string leading to v (since x is the fa-
vorite); or (2) the simple sampler correctly outputs (x, α, x̂α) for many α, including those where x̂, ŷ differ
(meaning that it incorrectly outputs (y, α,¬ŷα) at such coordinates).

In the end, for all but wL of the strings x ∈ {0, 1}k, there are many indices α ∈ [k̂] for which the simple
sampler is likely to incorrectly output ¬x̂α as its final bit. This ultimately yields sampling lower bounds of
roughly ≈ 1

2 · ρ for exponential width simple samplers (Lemma 6), and plugging in a great list decodable
code yields ≈ 1

4 , as desired.

Thus, we have shown that any simple sampler B has roughly |B − (Un, address
∗(Un))| ≥ 1/4. But

now we need to make sure that any complex sampler can still exactly sample (Un, address
∗(Un)). As with

the original address function, we start by letting X be uniform over {0, 1}k, letting A be uniform over
[k̂], and noting that (Un, address

∗(Un)) = (X,A, X̂A). Similar to before, we’d like to show that this is
a convex combination of a few “nice” distributions. Towards this end, we fix A to a ∈ [k̂], and fix X̂a to
x̂a ∈ {0, 1}. This yields a convex combination of ≤ 2k̂ distributions.

3Recall that a set Q ⊆ {0, 1}k̂ is a (ρ, L) list decodable code if every point x ∈ {0, 1}k̂ has at most L elements from Q within
distance ρk̂ from it.

9

But notice now that the random variable X under this conditioning is no longer guaranteed to have the
same nice form as with the simpler address function, since we didn’t fix one of its coordinates, but instead
fixed one of the coordinates of X̂. However, if we originally picked a linear list decodable code in our
construction of address∗, then X will be uniform over an affine space of codimension ≤ 1, which we show
is not hard to sample in width 2.

Finally, using the same convex combination argument from our sketch of the original address function,
we get that there is a complex sampler of width w = 2 · 2k̂ = O(n) for (Un, address

∗(Un)).

In conclusion, we get that for the function b : {0, 1}n → {0, 1} defined as address∗, it holds
that (Un, b(Un)) can be sampled by width w = O(n) complex samplers, but every simple sampler of
width w = 2Ω(n) generates a distribution that is ≈ 1/4-far from (Un, b(Un)), as desired.

2.3 Sampling lower bounds against input-output pairs

We now begin our sketch of our second main theorem, Theorem 2. Recall that it roughly says that there is
an explicit function b : {0, 1}n → {0, 1} such that any distribution sampled by a width 2Ω(n) ROBP has
statistical distance 1

2 − 2−Ω(n) from (Un, b(Un)).
Using the equivalence theorems sketched in Section 2.1, we can convert this theorem into a simple

statement about complex samplers, and prove that instead. The new version of this theorem (Theorem 16)
says that there is an explicit function b : {0, 1}n → {0, 1} such that any distribution generated by a width
2Ω(n) complex sampler has statistical distance 1

2 − 2−Ω(n) from (Un, b(Un)). We sketch its proof below.
As in [DW12, Vio14, Vio20], we can take b to be a certain type of extractor. For a family X of distri-

butions over {0, 1}n, an extractor Ext : {0, 1}n → {0, 1} for X with error ε offers the guarantee that for
any X ∈ X and c ∈ {0, 1}, it holds that Pr[Ext(X) = c] = 1

2 ± ε. In order to work, an extractor typically
requires the distributions in X to have some amount of (min-)entropy.

The general approach will be as follows: let X ∼ {0, 1}n+1 be a distribution generated by a complex
sampler. We wish to show that as long as its width is not too large, then |X− (Un, b(Un))| ≥ 1

2 − 2−Ω(n).
Recall that by definition of statistical distance, it suffices to find a test S ⊆ {0, 1}n+1 such that Pr[X ∈
S]− Pr[(Un, b(Un)) ∈ S] ≥ 1

2 − 2−Ω(n). It is straightforward to verify that if X is a convex combination
of distributions {Y(j)}j , then it suffices to show Pr[Y(j) ∈ S] − Pr[(Un, b(Un)) ∈ S] ≥ 1

2 − 2−Ω(n) for
all j.

Thus the goal will be to simultaneously break X into a convex combination of “nice” distributions,
while building a set S, that together offer the following guarantees: (1) each participant Y(j) in the convex
combination hits S with probability ≈ 1/2; and (2) the distribution (Un, b(Un)) hits S with probability
≈ 0.

A straw man approach via small-space extractors What we call a complex sampler X ∼ {0, 1}n+1

was originally introduced in [KRVZ11] as a small-space source. Thus, a natural approach is try to take b as
an extractor for small-space sources. As we will see, such a black box approach will fail.

Recall that we want to simultaneously design a test S and break X into a convex combination of dis-
tributions {Y(j)}. We start with the convex combination just containing X itself, and focus on building S,
which is currently empty. As we want each Y(j) to hit S with probability ≈ 1/2, and (Un, b(Un)) ≈ 0, it
can only help to add both of the following sets to S

T0 := {(x, 0) : x ∈ {0, 1}n, b(x) = 1},
T1 := {(x, 1) : x ∈ {0, 1}n, b(x) = 0},

10

since (Un, b(Un)) will never hit either of these sets. Thus we currently have Pr[(Un, b(Un)) ∈ S] = 0, as
desired. But is it true that Pr[Y(j) ∈ S] ≈ 1/2 for every j?

This is a little difficult to analyze with the current state of the convex combination, since it just contains
the single distribution X, which is a complex sampler. So the next step is to decompose X into a convex
combination of more distributions, which will hopefully have nicer structure. The first natural thing to do
is consider the convex combination {Y(j)} induced by fixing (conditioning on) the last bit of X to each
possible value 0, 1.

Consider now each participant Y(j) in the convex combination we have constructed. Notice the last bit
is fixed to 0 or 1, and assume that Y(j) can be generated by a complex sampler.4 Without loss of generality,
assume its last bit is 0, and let Y(j)

≤n denote its first n bits. Notice that the probability that Y(j) hits S is the

same as the probability that Y(j) hits T0, which is the same as the probability that b(Y(j)
≤n) = 1.

If b is an extractor for small-space sources, and Y
(j)
≤n has a decent amount of entropy, then we know that

Pr[b(Y
(j)
≤n) = 1] = 1

2 ± ε ≈ 1/2 by the extractor property, and we are done. The problem, of course, is
that we have no guarantee that Y(j) has any entropy. Indeed, it could have been the case that our complex
sampler X started out with no entropy at all. At the same time, even if Y(j) has very little entropy, it could
be the case that Y(j) is “close” to having high (min-)entropy: say, if it outputs 0 with probability 1/2 and
outputs the uniform distribution over its support with probability 1/2. Thus, in this case, we cannot simply
treat Y(j) as a constant and hope to get a good bound on statistical distance.

To fix this issue, a natural approach might be to continue building our test S, and decomposing X into a
convex combination of even more distributions, as follows. Define for each j a set Bad(j), which includes all
elements hit by Y(j) with too high a probability. Then, add each set Bad(j) to S. It may now be the case the
Pr[(Un, b(Un)) ∈ S] grows a little in this case (away from 0, where we wanted to keep it), but this won’t be
a big issue, since each set Bad(j) can be made to be quite small, and the number of such sets is currently just
2 (the number of elements in our current convex combination). So we will still get Pr[(Un, b(Un))] ≈ 0,
as desired.

Now, to try to obtain Pr[Y(j) ∈ S] ≈ 1/2, we consider each Y(j) currently in our convex combination,
and condition on whether or not it hits Bad(j). Let Y(j)

1 denote conditioning Y(j) on hitting this bad set,
and let Y(j)

0 denote conditioning Y(j) on not hitting this bad set. We have now written X as a convex
combination over {Y(j)

a } where a ranges over {0, 1}.
Let us now see if Pr[Y

(j)
a ∈ S] ≈ 1/2 for each element in this convex combination. If a = 1, then

the answer is certainly yes. In fact, the probability is 1, since it is supported on Bad(j), which is contained
in S. On the other hand, if a = 0, then Y

(j)
a will have high min-entropy, since we threw away all the high

probability elements with our conditioning.5 Now that Y(j)
a has high min-entropy, one might be tempted to

finally apply the small-space extractor to finish off the proof.
But we have now arrived at the major flaw of this straw man argument: Y(j)

a is no longer guaranteed to
be (samplable by) a complex sampler of the same width! Moreover, given the conditioning we performed
to obtain Y

(j)
a from Y(j), it seems quite challenging (if possible at all) to modify the complex sampler that

generates Y(j) into one that generates Y(j)
a .

Thus, we reach a road block with this technique, and must turn elsewhere.
4This is not obvious, but it is a minor fixable issue, which will be dwarfed by a major issue that is about to appear with this

straw man argument.
5This technically assumes Bad(j) didn’t cover an enormous part of the support of Y(j), but it is not too hard to handle this case

separately.

11

Boosting entropy by reducing to independent blocks Let us recap what went wrong above. We had an
extractor b for a certain family X of distributions, but we were feeding it distributions from this family that
did not have enough (min-)entropy. Thus, we tried to perform some conditioning to boost the min-entropy.
And while our conditioning succeeded at this task, we were unable to prove that the distribution remained
in X after the conditioning, thereby preventing the extractor from working.

Thus, the idea here will be to reduce complex samplers (small-space sources) to a family of distributions
that are immune to the conditioning we must perform in order to boost the entropy. In particular, we will
take b : {0, 1}n → {0, 1} to be a two-source extractor of the form Ext : {0, 1}n/2 × {0, 1}n/2 → {0, 1} (in
particular, we take the inner product extractor, which has error ε = 2−Ω(n)).

Given this idea, let’s start from the beginning (but go at a faster pace). Recall we want to design a
test S and break X into a convex combination of distributions {Y(j)} such that Pr[Y(j) ∈ S] ≈ 1/2 and
Pr[(Un, b(Un))] ≈ 0. Before breaking down X, let’s set S to again contain the sets T0, T1, as defined in
the previous section (but with b now denoting the two source extractor).

Now, consider the random walk W in the complex sampler that generates X. Note that if we fix the
vertex it hits in the central layer, we get that X can be written as a convex combination of distributions
{Y(j)}j , where each Y(j) is of the form (A(j),B(j), c(j)) ∼ {0, 1}n/2 × {0, 1}n/2 × {0, 1}. Furthermore,
by a standard observation [KM04, KM05], it will hold that A(j) is independent from B(j), c(j).

Now, increase the number of participants in the convex combination {Y(j)} by fixing each c(j) to a
value in {0, 1}. Each Y(j) is now of the form (A(j),B(j), c(j)) for some fixed c(j) ∈ {0, 1} and A(j),B(j)

independent. So far our set S just contains T0 and T1, so we currently have Pr[(Un, b(Un)) ∈ S] = 0,
as desired. But is each Pr[Y(j) ∈ S] = Pr[(A(j),B(j), c(j))] ≈ 1/2? As with our earlier argument,
we assume c(j) = 0 without loss of generality, and we see that this is the same thing as asking whether
Pr[b(A(j),B(j))] ≈ 1/2. Since A(j),B(j) are independent and b is a two source extractor, this is true as
long as they both have high enough entropy.

As before, this is not guaranteed, and we must define some bad sets which will help us do one last step
of conditioning. We let Bad(j)

A be all elements that A(j) with relatively high probability, and let Bad(j)
B

be all elements that B(j) hits with relatively high probability. We perform one final conditioning, fixing
over whether A(j) hits Bad(j)

A , and fixing over whether B(j) hits Bad(j)
B . We can now write X as a convex

combination over distributions of the form

{(A(j)
z ,B

(j)
z′ , c

(j))}j,z,z′ ,

where z, z′ ∈ {0, 1} indicate whether the corresponding variable hit its bad set. Finally, add every
(x(j), y(j), c(j)) with either x(j) ∈ Bad

(j)
A or y(j) ∈ Bad

(j)
B to the test set S.

Now, the first thing we need is that Pr[(Un, b(Un)) ∈ S] ≈ 0. This won’t be an issue, since each bad
set can be made to be quite small, and the number of such sets is the number of current participants in the
convex combination, which is O(w) (from our first fixing of W).

Next, we need to show that each Pr[(A
(j)
z ,B

(j)
z′ , c

(j)) ∈ S] is roughly 1/2. If either z or z′ is 1,
someone hit its bad set and so this probability will always be 1. If both indicators are 0, no one hit their bad
set, meaning that both A

(j)
z and B

(j)
z′ will have high entropy. Furthermore, it is straightforward to verify that

given such a conditioning (i.e., where z, z′ are both 0), both of these random variables remain independent!
Because they each have high entropy and are independent, b will successfully extract from them, which

tells us Pr[(A
(j)
z ,B

(j)
z′ , c

(j)) ∈ S] ≈ 1/2 from our discussion before. This completes the proof that |Pr[X ∈
S]− Pr[(Un, b(Un))]| ≥ 1

2 − 2−Ω(n).

12

2.4 Sampling lower bounds against codes

We now begin our sketch of our second main theorem, Theorem 3. Recall that it roughly says that for
any distribution Q ∼ {0, 1}n that is uniform over a (ρ, L) list decodable code with good parameters, any
distribution sampled by an ROBP (whose width is not too large) will have statistical distance close to 1 from
Q.

Using the equivalence theorems sketched in Section 2.1, we can convert this into a statement about
complex samplers, and prove that instead. The new version of this theorem (Theorem 22) says that for
any distribution Q ∼ {0, 1}n that is uniform over a (ρ, L) list decodable code with good parameters, any
distribution sampled by a complex sampler (whose width is not too large) will have statistical distance close
to 1 from Q.

The proof uses two main ingredients. First, it uses a known lemma [KRVZ11] which says that any
(distribution generated by a) complex sampler X ∼ {0, 1}n can be written as a convex combination of a
few product distributions. More formally: if the sampler has width w, then for any r, ` with r` = n, it can
be written as a convex combination of wr distributions of the form Y = (Y1, . . . ,Yr) ∼ ({0, 1}`)r, where
each Yi is independent.

The second ingredient, which we will prove, is that product distributions, i.e., those of the form Y =
(Y1, . . . ,Yr) ∼ ({0, 1}`)r with each Yi independent, are statistically far from (distributions that are uni-
form over) good list decodable codes.

At this point, it would be nice to conclude that the original complex sampler X must also be far from
a good list decodable code Q. In particular, we would like to argue that X is a convex combination of
product distributions {Y(j)}, and each of these product distributions is far from Q, so X must be far from
Q. Unfortunately, the bounds we are trying to lift are in the wrong direction: it is true that if each Y(j) is
close to Q, then X is close to Q, but it is not necessarily true that if each Y(j) is far from Q, then X is far
from Q. Indeed, it could be the case that each Y(j) is constant over a (different) codeword, which would
make each Y(j) extremely far from Q, but still allow the overall convex combination over {Y(j)} to exactly
sample Q.

Given the above counterexample, a new idea might be to try to argue that as long as there aren’t too
many distributions Y(j) participating in the convex combination, then if each Y(j) is far from Q, then X
is relatively far from Q. It turns out this is true, but the corresponding lower bounds on |X − Q| that it
yields are still not as strong as we would like. To get the strongest possible bounds, we need a slightly more
nuanced way to combine our two key ingredients.

Below, we sketch a proof for our second ingredient, and show to combine it with the first ingredient to
yield our desired lower bound on |X−Q|.

Anti-concentration of product distributions in Hamming balls We now argue that product distributions
are far from sampling good list decodable codes. Let Q ∼ {0, 1}n be a (ρ, L) list decodable code, and let
Y = (Y1, . . . ,Yr) ∼ ({0, 1}`)r be such that each Yi is independent and r` = n. Furthermore, we will
need the product distribution to have a reasonable number of components r, or else it could clearly sample
the code perfectly (if r = 1). Towards this end, we enforce the mild requirement r ≥ 1/ρ, and thus ` ≤ ρn.
For a good list decodable code, we can think of ρ = Ω(1), and thus we just require r ≥ O(1).

Now, the key intuition about product distributions is that for any point x in the space {0, 1}n to which
Y does not assign too much probability, the following must hold: if we draw a Hamming ball B(x) around
x whose radius is not too small, then the vast majority of probability weight assigned to B(x) by Y does not
land on x. In symbols, Pr[Y ∈ B(x)]� Pr[Y = x].

13

Let us formalize this intuition a little more. Fix any x ∈ {0, 1}n, and let p := Pr[Y = x]. Consider now
the ball B`(x) around x of radius `. Now, parse x as x = (x1, . . . , xr) ∈ ({0, 1}`)r. Since Y is a product
distribution consisting of r components, there must be at least some i ∈ [r] such that Pr[Yi = xi] ≤ p1/r.
Consider now the set T of all strings of the form (x1, . . . , xi−1, z, xi+1, . . . , xr) ∈ ({0, 1}`)r, where
each xj is fixed as before, but z can be taken as any element in {0, 1}`. Then Y assigns probabil-
ity at least Pr[Y = x]/p1/r to the set T , and of course T is in the ball B`(x). Thus, we get that
Pr[Y ∈ B(x)] ≥ Pr[Y = x]/p1/r, and therefore Pr[Y ∈ B(x)]� Pr[Y = x], as long as p is not too big.

Now, how can we use this to show |Y − Q| is large? Well, by definition of statistical distance,
it suffices to pick a set S ⊆ {0, 1}n and show that Pr[Q ∈ S]− Pr[Y ∈ S] is large. Our choice for S will
be all codewords from Q, with some “bad” codewords Bad removed. Then to lower bound Pr[Q ∈ S], we
just need to show that Q lands in Bad with not too high probability: in particular, we can just require that
Bad is not too big. And to upper bound Pr[Y ∈ S], we just need to show that the probability that Y lands
on a “not-bad” codeword is small.

So what should we choose as the set Bad? You guessed it: a small set of codewords assigned the highest
probability by Y (say, all codewords assigned probability ≥ p for some threshold probability p). As long as
this set isn’t too big, we will have Pr[Q ∈ S] be very close to 1. And as long as we removed the codewords
assigned very high probability by Y, we will have that Pr[Y ∈ S] is very close to 0. We argue the latter,
below.

To upper bound the probability that Y lands in S, we consider the sum
∑

q∈S Pr[Y = q]. By our anti-
concentration observation above, this sum is at most p1/r ·

∑
q∈S Pr[Y ∈ B`(q)]. Intuitively, we will now

want to make sure that (i) r is not too big, because otherwise p1/r will be too big; and (ii) ` is not too big,
because otherwise many of the balls {B`(q)} in the sum will have big overlaps, causing probabilities to be
multi-counted and the overall sum to be large.

It turns out that the best tradeoff occurs at setting r = 1/ρ and ` = ρn. This is because a good list
decodable code will have ρ = Ω(1), which yields p1/r = pΩ(1), which will be quite small as long as we
originally set our threshold probability p to be low enough. Similarly, by definition of list decodability, we
will have that any point x in the space {0, 1}n will appear in at most L balls {B`(q)}q∈S . This implies∑

q∈S Pr[Y ∈ B`(q)] ≤ L, since the probability Y assigns to any point x ∈ {0, 1}n is counted at most L
times. For a good list decodable code, L is quite small, and we finally have that Pr[Y ∈ S] will be very
close to 0.

Thus, as long as our original product distribution Y ∼ ({0, 1}`)r had r ≈ 1/ρ and ` ≈ ρn, we have
a set S ⊆ {0, 1}n that makes Pr[Q ∈ S] − Pr[Y ∈ S] very close to 1, implying the statistical distance
|Y −Q| is very close to 1.

From complex samplers to product distributions Now, the question is: how do we use the fact that
product distributions are far from good list decodable codes in order to argue that complex samplers are far
from list decodable codes? Well, let X ∼ {0, 1}n be the complex sampler, and Q ∼ {0, 1}n be the list
decodable code. We need to show that |X−Q| is large. So we write X as a convex combination of at most
wr product distributions {Y(j)}j , each of the form Y(j) = (Y

(j)
1 , . . . ,Y

(j)
r) ∼ ({0, 1}`)r.

For any tester S ⊆ {0, 1}n, the statistical distance |X−Q| is lower bounded by Pr[Q ∈ S]−Pr[X ∈ S].
Furthermore, it is easy to verify that this, in turn, is lower bounded by the worst Pr[Q ∈ S]−Pr[Y(j) ∈ S]
(meaning the one that gives the smallest value). So what S should we pick?

From above, we know that as long as we set r = 1/ρ and ` = ρn, then each Y(j) has a test S(j) which
makes Pr[Y(j) ∈ S(j)] very close to 0. Furthermore S(j) is of the form Q− Bad(j), where Q is the support

14

of the code and Bad(j) is some small bad set. Thus, since we want a single test S ⊆ {0, 1}n guaranteed to
make Pr[Q ∈ S] − Pr[Y(j) ∈ S] small for every j, we can simply take the test to be S = Q − ∪jBad(j).
Indeed, this guarantees that each Pr[Y(j) ∈ S] will be very close to 0, and as long as there are not too many
elements in the convex combination, our total collection of bad elements won’t be too big, and Pr[Q ∈ S]
will stay very close to 1. Thus we get that |X−Q| is close to 1, as desired.

2.5 A direct product theorem

We now begin our sketch of our fourth (and final) main theorem, Theorem 4. Recall that it roughly says that
if a distribution Q ∼ {0, 1}n has statistical distance ≥ δ from distributions sampled by ROBPs of width w,
then Q⊗t ∼ {0, 1}nt has statistical distance ≥ 1− 2−Ω(tδ2) from distributions sampled by ROBPs of width
roughly the same width. Here, recall that Q⊗t refers to a sequence of t independent copies of Q.

Using the equivalence theorems sketched in Section 2.1, we can convert this into a statement about
complex samplers, and prove that instead. The new version of this theorem (Theorem 27) says that if a
distribution Q ∼ {0, 1}n has statistical distance ≥ δ from distributions generated by complex samplers of
width w, then Q⊗t has statistical distance≥ 1−2−Ω(tδ2) from distributions generated by complex samplers
of roughly the same width. We sketch its proof below.

A sequence of random variables that all contribute their fair share Let X ∼ {0, 1}nt be a distribution
generated by a complex sampler of width w, and parse it as X = (X1, . . . ,Xt), where each Xi ∼ {0, 1}n
need not be independent. Recall that Q⊗t ∼ {0, 1}nt is of the form Q⊗t = (Q1, . . . ,Qt), where each
Qi ∼ {0, 1}n is an independent copy of Q. We would like to argue

|(X1, . . . ,Xt)− (Q1, . . . ,Qt)| ≥ 1− 2−Ω(tδ2), (1)

given that any for any complex sampler X′ ∼ {0, 1}n of width w it holds that |X′ −Q| ≥ δ.
The first observation is that any of the Xi ∼ {0, 1}n can be generated by a complex sampler of width w.

Indeed, even though it represents a sequence of bits generated in the middle of the complex sampler X, it is
easy to create a new complex sampler B of the same width that only generates Xi, simply by: (1) copying
the complex sampler that creates X; (2) throwing out all layers that do not produce bits corresponding to
Xi; (3) adding a new start vertex vstart; (4) connecting that start vertex the first layer remaining in B, using
the appropriate probabilities; and (5) merging the first two layers of B, to deal with the fact that the edges
leaving vstart currently have no output labels (this is identical to the merge step described in the sampler
constructions in Section 2.2).

Thus, we are guaranteed that for each Xi ∼ {0, 1}n and Qi ∼ {0, 1}n, it holds that |Xi −Qi| ≥ δ by
the theorem hypothesis. The question now is: is this enough to guarantee that the statistical distance blows
up in Equation (1)?

Well, if each Xi were independent, it is not too hard to show that the answer is yes. However, this is of
course not guaranteed to be the case, since the Xi’s are consecutive slices of the same complex sampler X.
Indeed, without further examination, it could potentially be the case that for any x ∈ {0, 1}n and i ∈ [n],
the distributions (X−i | Xi = x) and (Q⊗−i) are identical.6 In this case, we cannot hope to lower bound
Equation (1) by anything more than δ.

In some sense, the above adversarial example represents a situation where each Xi is not contributing its
“fair share” to the statistical distance in Equation (1). In order to force each Xi to be a contributing member,

6For a random variable X = (X1, . . . ,Xt), the notation X−i denotes X with Xi removed.

15

we would like a different guarantee than just |Xi −Qi| ≥ δ. One natural way to encode the idea that each
Xi is contributing its fair share is to require that for every i ∈ [n] and x ∈ ({0, 1}n)i−1,

|(Xi | X1, . . . ,Xi−1 = x)− (Qi | Q1, . . . ,Qi−1 = x)| ≥ δ. (2)

This leaves us with two questions: (i) Given a guarantee like Equation (2), can we actually prove Equa-
tion (1)? (ii) Is the guarantee given in Equation (1) even true? If we can answer both questions in the
affirmative, then we are done.

It turns out that (i) is true, but it is a little cumbersome to do so using statistical distance. To avoid this,
we use simple and well known facts to convert the statement into one about squared Hellinger distance,
which can further be phrased in terms of the Bhattacharyya coefficient. Phrasing (i) in this way allows for a
simple inductive proof, which we can then convert back to a result about statistical distance.

It also turns out that (ii) is true. To see why, note that (Qi | Q1, . . . ,Qi−1 = x) is just the same
distribution as Q ∼ {0, 1}n, since each Qi is an independent copy of Q. Furthermore, it is straightforward
to show that the distribution (Xi | X1, . . . ,Xi−1 = x) can be generated by a width w complex sampler,
using a similar idea to the one we presented for why Xi has this property. Thus the hypothesis of the direct
product theorem implies Equation (2), and we are done.

Finally, we show that we can use our direct product theorem to get a strong complexity separa-
tion between sampling with AC0 circuits and sampling with ROBPs. To do so, we recall our result from
Section 2.3 that for any distribution X ∼ {0, 1}n samplable by an ROBP of width 2Ω(n), it holds that
|X − (Un, IP(Un))| ≈ 1/2 for the inner product function IP. Thus we can now set Q = (Un, IP(Un)).
The distribution Q⊗t becomes no harder to sample for AC0 (since it can just sample each copy in parallel),
whereas our direct product theorem shows that |X−Q⊗t| becomes exponentially close to 1.

3 Preliminaries

Before we start our formal proofs, we introduce some basic notation, definitions, and facts.

General notation For any natural number n ∈ N, we let [n] denote the set {1, 2, . . . , n}. Given a string
x ∈ {0, 1}n and index i ∈ [n], we let xi denote the ith coordinate of x. Furthermore, for any 1 ≤ i ≤ j ≤ n,
we let xi→j := (xi, . . . , xj) ∈ {0, 1}j−i+1, we let x≤i := x1→i, and we let x<i := x1→i−1. Given a
permutation π : [n]→ [n], we define xπ := (xπ(1), . . . , xπ(n)).

Basic probability definitions and notation All of the notation above also applies to random variables.
For example, given a random variable X ∼ {0, 1}n, we let Xi ∼ {0, 1} denote its ith coordinate, and
we let Xπ := (Xπ(1), . . . ,Xπ(n)). We let Un denote the uniform random variable over {0, 1}n. When Un

appears in the same expression twice, it denotes the same random variable - that is, they are not independent.
However, if Un,Um appear in the same expression with n 6= m, these random variables are assumed to be
independent.

Throughout, we slightly abuse notation and let X ∼ {0, 1}n denote both a random variable and its
underlying distribution. However, it should always be clear from context which interpretation is intended.
The min-entropy of a random variable X ∼ {0, 1}n, denoted H∞(X), is defined as the largest k such
that Pr[X = x] ≤ 2−k for all x ∈ support(X). As is standard, we measure the distance between two
distributions using statistical distance:

16

Definition 1. The statistical distance between two discrete random variables X,Y over V is defined as

|X−Y| := max
S⊆V
|Pr[X ∈ S]− Pr[Y ∈ S]| = 1

2

∑
x∈V
|Pr[X = x]− Pr[Y = x]|.

We say that X,Y are ε-close if the statistical distance between them is at most ε. The following so-called
data processing inequality is very useful for bounding statistical distance:

Fact 1. For any discrete random variables X,Y over V and any function f : V →W ,

|f(X)− f(Y)| ≤ |X−Y|.

We say that X is a convex combination of distributions Y1, . . . ,Yk if X =
∑

i piYi, for some probabil-
ities {pi} that sum to 1. That is, X samples from Yi with probability pi. Finally, we say that a distribution
X is α-granular if Pr[X = x] is an integer multiple of α for every x ∈ support(X).

Bias, correlation, and covariance Our equivalence theorems will allow us to convert sampling lower
bounds into worst-case and average-case lower bounds for computation. For this, we will need the following.

Definition 2. The bias of a Boolean function f : {0, 1}n → {0, 1} is defined as

bias(f) := Ex[(−1)f(x)].

Definition 3. The correlation between two Boolean functions f, g : {0, 1}n → {0, 1} is defined as

corr(f, g) := Ex[(−1)f(x)(−1)g(x)] = Pr
x

[f(x) = g(x)]− Pr
x

[f(x) 6= g(x)].

Definition 4. The covariance between two Boolean functions f, g : {0, 1}n → {0, 1} is defined as

cov(f, g) := corr(f, g)− bias(f) bias(g).

Basic coding theory definitions and facts We provide here some basic coding theory definitions. For all
i ∈ [n], we let ei ∈ {0, 1}n denote the ith elementary basis vector: that is, the vector with 1 at coordinate i
and 0 everywhere else. Given two points x, y ∈ {0, 1}n, the Hamming distance ∆(x, y) between x, y is the
number of coordinates where they differ. Next, given a point x ∈ {0, 1}n, the Hamming ball Br(x) centered
at x with radius r is the collection of points in {0, 1}n that are Hamming distance at most r from x. Each
such ball has volume

(
n
≤r
)

:=
∑r

i=0

(
n
i

)
. An error correcting code is defined as follows:

Definition 5. An (n, k, d) code Q ⊆ {0, 1}n is a collection of 2k points such that the minimum Hamming
distance between any two points is d. We call k its dimension, and d its distance. We say that Q is a linear
[n, k, d] code if it is also a subspace of Fn2 .

Given a linear [n, k, d] code Q ⊆ Fn2 , the dual code or orthogonal complement of Q is the set Q⊥ :=
{y ∈ Fn2 : 〈x, y〉 = 0, ∀x ∈ Q}, where 〈·, ·〉 denotes the inner product over F2. Note that Q⊥ ⊆ Fn2
is a subspace of dimension n − k. The following well-known existential result is known as the Gilbert-
Varshamov bound (for linear codes). It can be proven via a greedy construction.

Theorem 5 ([Gil52, Var57]). There exists a linear [n, k, d] code for all n, k, d satisfying 2k ≤ 2n/
(

n
≤d−1

)
.

17

Next, a list decodable code relaxes the distance requirement of an (n, k, d) code:

Definition 6. A subset Q ⊆ {0, 1}n is a (ρ, L) list decodable code if every Hamming ball in {0, 1}n of
radius at most ρn contains at most L points from Q.

A straightforward application of the triangle inequality shows that every (n, k, d) code has the following
list decoding properties:

Fact 2. If Q ⊆ {0, 1}n is an (n, k, d) code, then Q is (ρ, L) list decodable for L = 1 and any ρ < d
2n .

Next, we will discuss our models for computing in small space.

3.1 Models for computing in small space

Read-once branching programs (ROBPs) are a popular model for computation in small space. We provide
their standard definition, below.

Definition 7 (ROBP). An ROBP B of width w and length n is a directed acyclic graph G = (V,E) consist-
ing of n+ 1 disjoint layers V = V0 ∪ V1 ∪ · · · ∪ Vn, each holding w vertices. For every i ∈ [n], each vertex
v ∈ Vi−1 has exactly two outgoing edges into Vi, one of which is labeled 0, and the other labeled 1. There
is a designated start vertex vstart ∈ V0, and a designated accept vertex vaccept ∈ Vn.

The branching program B computes a function fB : {0, 1}n → {0, 1} as follows: on input x ∈ {0, 1}n,
the program starts at vstart and traverses the unique path P (x) whose edges are labeled with input bits
x1, x2, . . . , xn. The program outputs 1 if P (x) terminates on vaccept, and 0 otherwise.

As discussed, ROBPs are a useful model for computing boolean functions f : {0, 1}n → {0, 1}. But
if we wish to use ROBPs to sample distributions over {0, 1}m, we need to extend the definition of ROBPs
to model the computation of functions f : {0, 1}n → {0, 1}m with multi-bit outputs. We use the following
definition, which can be thought of as a read-once version of standard multi-output branching programs, as
defined in, e.g., [BFK+79, BC82, Bea89].

Definition 8 (Multi-output ROBP). A multi-output ROBP B of width w and (input) length n is a directed
acyclic graph G = (V,E) consisting of n + 1 disjoint layers V = V0 ∪ V1 ∪ · · · ∪ Vn, each holding w
vertices. For every i ∈ [n], each vertex v ∈ Vi−1 has exactly two outgoing edges into Vi, one of which is
labeled with the input bit 0, and the other labeled with the input bit 1. Each edge e is also labeled with
output bits Γ(e) ∈ {0, 1}∗, and we assume that all edges e between the same two layers Vi−1, Vi have the
same output length |Γ(e)| = γi ≥ 0. The output length of B is m =

∑
i γi. Finally, there is a designated

start vertex vstart ∈ V0.
The branching program B computes a function fB : {0, 1}n → {0, 1}m as follows: on input x ∈

{0, 1}n, the program starts at vstart and traverses the unique path P (x) whose edges are labeled with input
bits x1, x2, . . . , xn. The program outputs the concatenation of all output bits seen along this path, so that
fB(x) = (Γ(e))e∈P (x).

It is straightforward to verify that Definition 8 is a strict generalization of Definition 7:

Fact 3. For any function f : {0, 1}n → {0, 1}, there exists a width w ROBP (as per Definition 7) that
computes f if and only if there exists a width w ROBP (as per Definition 8) that computes f .

Because of this, we will omit the qualifier “multi-output” when referring to ROBPs, since the intended
definition will either be clear from context (when computing functions with multi-bit outputs), or it will
not matter (when computing functions with single-bit outputs). For brevity, we will also sometimes call a
function f : {0, 1}n → {0, 1}m an ROBP, when we really mean that f is the function computed by an
ROBP.

18

3.2 Models for sampling in small space

We now introduce our models for sampling in small space. We start with main motivating model of simply
feeding uniform bits into an ROBP:

Definition 9 (ROBP sampler). An ROBP sampler B of width w and input length ` and output length n is
just an ROBP with the same parameters (as per Definition 8). The distribution X ∼ {0, 1}n sampled by the
ROBP B is X = fB(U`), where fB is the function computed by B.

The next type of sampler we consider was defined by by Kamp, Rao, Vadhan, and Zuckerman under the
name of small space sources [KRVZ11].

Definition 10 (Complex sampler). A complex sampler B of widthw and output length n is a directed acyclic
graph G = (V,E) consisting of n+ 1 disjoint layers V = V0 ∪ V1 ∪ · · · ∪ Vn, each holding w vertices. For
every i ∈ [n], each vertex v ∈ Vi−1 has an arbitrary number of outgoing edges into Vi, some of which are
labeled 0, and the rest labeled 1. There is a designated start vertex vstart ∈ V0, and each vertex v ∈ V has
a probability distribution pv over its outgoing edges. The distribution X ∼ {0, 1}n sampled by B is the one
generated by taking a random walk over B, which starts at vstart, transitions according to {pv}, and outputs
the edge labels seen along the way.

The last type of sampler we consider is identical to the complex sampler, except that each vertex in the
branching program is restricted to have out-degree exactly two.

Definition 11 (Simple sampler). A simple sampler B of width w and output length n is a directed acyclic
graph G = (V,E) consisting of n+ 1 disjoint layers V = V0 ∪ V1 ∪ · · · ∪ Vn, each holding w vertices. For
every i ∈ [n], each vertex v ∈ Vi−1 has exactly two outgoing edges into Vi, one of which is labeled 0, and
the other labeled 1. There is a designated start vertex vstart ∈ V0, and each vertex v ∈ V has a probability
distribution pv over its outgoing edges. The distribution X ∼ {0, 1}n sampled by B is the one generated
by taking a random walk over B, which starts at vstart, transitions according to {pv}, and outputs the edge
labels seen along the way.

Since its definition is more restrictive, we of course have the following:

Remark 1. Any simple sampler is also a complex sampler.

For brevity, we will sometimes call a distribution X ∼ {0, 1}n an (ROBP, complex, simple) sampler,
when we really mean that X is the distribution sampled by an (ROBP, complex, simple) sampler. The
following type of simple and complex samplers will be important when we convert simple and complex
samplers into ROBP samplers.

Definition 12. A complex sampler or simple sampler is called α-granular if each edge probability is an
integer multiple of α.

We now record some basic facts about simple and complex samplers.

Fact 4. Any distribution X ∼ {0, 1}n can be sampled by a simple sampler of width w = |support(X)|.

Proof. We construct the simple sampler B, consisting of graph G = (V,E), as follows. Let V = V0 ∪ V1 ∪
· · · ∪ Vn, where V0 consists of the single start vertex vstart and Vi := support(X1→i) ⊆ {0, 1}i for each
i ∈ [n]. Then for each u ∈ Vi−1 and (u, b) ∈ Vi, draw an edge from u to (u, b), label it with bit b, and give
it probability Pr[X1→i = (u, b) | X1→i−1 = u].

19

The following is immediate by combining Fact 4 and Remark 1, but we give a different proof which
allows for more flexibility when designing granular complex samplers.

Fact 5. Any distribution X ∼ {0, 1}n can be sampled by a complex sampler of width w = |support(X)|.

Proof. We construct the simple sampler B, consisting of graph G = (V,E), as follows. Let V = V0 ∪
V1 ∪ · · · ∪ Vn, where V0 consists of the single start vertex vstart, and each Vi, i ∈ [n] is a fresh copy of
support(X) ⊆ {0, 1}n. For each v ∈ V1, draw an edge from vstart to v, label it with the bit v1, and give it
probability Pr[X = v]. Then, for every i ∈ [n − 1] and v ∈ Vi, draw an edge from v to its copy in Vi+1,
label it vi+1, and give it probability 1.

Finally, the following fact is straightforward to show, by wiring two samplers in a series configuration
and “merging” their boundaries.

Fact 6. Let X ∼ {0, 1}n,Y ∼ {0, 1}k be independent distributions, where each can be sampled by a
simple (resp., complex) sampler of width w. Then the distribution (X,Y) can be sampled by a simple
(resp., complex) sampler of width w. Moreover, if the samplers for X and Y were α-granular, then so is the
sampler for (X,Y).

3.3 Extensions to the unknown-order setting

As we have seen, our main computational model is the read-once branching program (Definition 8), and our
main sampling models are the ROBP sampler (Definition 9), complex sampler (Definition 10), and simple
sampler (Definition 11). Thus, our results are primarily focused on these models. However, it turns out that
most of our results can easily be extended to stronger, unknown-order versions of these models. These are
defined in the natural way, and we review them below.

Unknown-order computation The unknown-order ROBP, introduced by Forbes and Kelley [FK18], is
simply an ROBP that can read its input in any order. More formally, it can be defined as a tuple (B, π),
where B is an ROBP (as per Definition 7) that computes a function f : {0, 1}n → {0, 1}, and π : [n]→ [n]
is a permutation. The unknown-order ROBP then computes a function g : {0, 1}n → {0, 1} defined as
g(x) := f(xπ).

We can extend the above definition to multi-output unknown-order ROBPs by allowing the ROBP to
also write its output in any order. More formally, such an object can be defined as a tuple (B, π, ρ), where
B is an ROBP (as per Definition 8), and π : [n] → [n], ρ : [m] → [m] are permutations. The multi-output
unknown-order ROBP then computes a function g : {0, 1}n → {0, 1}m defined as g(x) := (f(xπ))ρ.
Notice that multi-output unknown-order ROBPs strictly generalize unknown-order ROBPs defined above,
and thus we henceforth omit the qualifier “multi-output.”

Unknown-order sampling The most natural way to generalize our sampling models to the unknown-
order setting is to allow our samplers to write their output in any order. For ROBP samplers, this is already
taken care of in the definition of unknown-order ROBPs. Namely, an unknown-order ROBP sampler is an
unknown-order ROBP (B, π, ρ) as defined above, and the distribution it generates is (f(Uπ

n))ρ. Notice,
however, that the permutation π does not affect the output distribution, whereas the permutation ρ certainly
can.

We can allow complex samplers to write their output in any order using a similar formalization. That
is, we define an unknown-order complex sampler to be a tuple (B, π), where B is a complex sampler (as

20

per Definition 10) that generates a distribution X ∼ {0, 1}n, and π : [n] → [n] is a permutation. The
unknown-order complex sampler then generates the distribution Xπ.

Finally, we can define unknown-order simple samplers in an analogous way. That is, we define an
unknown-order simple sampler to be a tuple (B, π), where B is a simple sampler (as per Definition 11) that
generates a distribution X ∼ {0, 1}n, and π : [n] → [n] is a permutation. The unknown-order simple
sampler then generates the distribution Xπ. Just like Remark 1, we have the following.

Remark 2. Any unknown-order simple sampler is also an unknown-order complex sampler.

Throughout, when we refer to the width of an unknown-order ROBP or sampler, we are referring to the
width of the standard ROBP or sampler than underlies it. Just like with the known-order case, for brevity we
sometimes refer to unknown-order ROBPs (or samplers) as the functions (or distributions) they compute.

4 Equivalence theorems

In this section, we will provide and prove a small collection of equivalence theorems. These will allow us to
convert our main theorem statements into ones about simple and complex samplers and prove those instead.
Furthermore, they will also allow us to obtain correlation bounds from our sampling lower bounds.

4.1 An equivalence theorem between complex samplers and sampling with ROBPs

First, we will prove that for any distribution X ∼ {0, 1}n, it holds that X can be sampled by a complex
sampler if and only if X can be sampled by an ROBP (up to a small loss in parameters). More precisely, we
prove the following.

Theorem 6. For any distribution X ∼ {0, 1}n:

• If there is an ROBP of width w and input length ` that samples X, then there exists a complex sampler
of width 2w that samples X.

• If there exists a complex sampler of width w that samples X, then for any ε > 0, there exists an ROBP
of width 7w and input length ` = 8nw log(nw/ε) that samples a distribution that is ε-close to X.

In many settings, the second bullet of the above theorem will be applied to a complex sampler that is
α-granular (Definition 12), for some α = 2−t and t ∈ N. In this case, we can strengthen this result to get an
ROBP of width 7w and input length ` = 4nwt that exactly samples X. Furthermore, we will also provide
an alternate version of the second bullet that saves on input length at the cost of a greater blow-up in width.

For organizational convenience, we isolate the first item in Theorem 6 as the following lemma.

Lemma 1. For any distribution X ∼ {0, 1}n, if there exists an ROBP of width w and input length ` that
samples X, then there exists a complex sampler of width 2w that samples X.

To prove this result, we will need to show that complex samplers can efficiently simulate ROBP sam-
plers. In other words, we will need to transform an ROBP sampler into a complex sampler that generates
the same distribution. This will require some basic local modifications to the ROBP sampler, but will not
require any complex machinery.

The second bullet in Theorem 6 will be more challenging to prove. Here, we will need to show that
ROBP samplers can efficiently simulate complex samplers; or rather, that any complex sampler can be

21

transformed into an ROBP sampler that generates the same distribution. This transformation will proceed
in two stages.

The first stage addresses the following issue: a complex sampler can generate distributions that assign
certain elements arbitrarily precise probabilities (since its edges may be assigned probabilities that are ar-
bitrary reals), whereas the distribution generated by an ROBP sampler has some fundamental limit to its
precision (the probability assigned to any element will be an integer multiple of 2−`, where ` is the input
length of the ROBP). Thus, the distributions generated by ROBP samplers are inherently “granular,” so if
we would like to transform a complex sampler into an ROBP sampler, we would first like to transform the
complex sampler into a granular complex sampler (as per Definition 12), without introducing too much
error.

Kamp, Rao, Vadhan, and Zuckerman proved a lemma of exactly this type (in the language of small space
sources), which we use as the first stage of our transformation.

Lemma 2 ([KRVZ11, Lemma 8.4]). Let X ∼ {0, 1}n be a complex sampler of width w. For any α = 1/A
with A ∈ N, there exists an α-granular complex sampler X∗ ∼ {0, 1}n of width w that is (αnw)-close to
X.

After we use the above lemma to make our complex sampler into a granular complex sampler, the next
step will be to transform this granular complex sampler directly into an ROBP sampler. We will prove the
following, which is the second stage of the transformation needed to prove the second bullet of Theorem 6.

Lemma 3. For any distribution X ∼ {0, 1}n, if there exists a (2−t)-granular complex sampler of width w
that samples X, then there exists an ROBP of width 7w and input length ` = 4nwt that samples X.

Indeed, Lemma 3 is the result mentioned earlier, which strengthens the second bullet of Theorem 6 when
the complex sampler is granular. Given Lemmas 1 to 3, we can easily prove Theorem 6 as follows.

Proof of Theorem 6. The first bullet is clearly true by Lemma 1. For the second bullet: let X ∼ {0, 1}n be
any distribution that can be generated by a complex sampler of width w, and let ε > 0 be any positive real
number. Now, set α = 2−t and t = dlog(nw/ε)e. By Lemma 2, there is a 2−t-granular complex sampler
X∗ ∼ {0, 1}n of width w that is (2−tnw ≤ ε)-close to X. By Lemma 3, there is an ROBP of width 7w
and input length ` = 4nwt = 4nwdlog(nw/ε)e ≤ 8nw log(nw/ε) that exactly samples X∗. The result
follows.

Thus, if we can show Lemmas 1 and 3, then we are done. We prove these lemmas in the next two
subsections. We start with Lemma 3, since its proof is more interesting than Lemma 1.

4.1.1 Proof of Lemma 3

In order to prove this lemma, we will warm-up by proving the following easier lemma. It will be indepen-
dently useful, and its proof contains all the intuitions needed to ultimately show Lemma 3.

Lemma 4. For any distribution X ∼ {0, 1}n, if there exists a (2−t)-granular complex sampler of width w
that samples X, then there exists an ROBP of width 4w2 and input length ` = nt that samples X.

This lemma is similar to Lemma 3, except that the ROBP has larger width but uses less randomness.
Since the main parameter we care about when sampling using ROBPs is width, Lemma 3 is usually more
useful than Lemma 4. Still, we will see that in some applications, squaring the width is considered a trivial
loss in parameters, in which case it is preferable to use as little randomness as possible, thereby favoring

22

Lemma 4 over Lemma 3. For this reason, we also record the general version of Lemma 4, which can be
obtained by combining it with Lemma 2 (set α := 2−t and t := dlog(nw/ε)e.)

Corollary 7. For any distribution X ∼ {0, 1}n, if there exists a complex sampler of width w that samples
X, then for any ε > 0, there exists an ROBP of width 4w2 and input length ` = 2n log(nw/ε) that samples
a distribution that is ε-close to X.

We remark that Corollary 7 is an alternate version of the second bullet in Theorem 6 that uses more
width but less randomness.

The plan now is to prove Lemma 4, and then show how we can extend the intuitions developed in
this proof to prove Lemma 3. In order to prove Lemma 4, we will transform a complex sampler into an
ROBP sampler in a vertex-by-vertex fashion. In particular, we will replace each vertex v in the complex
sampler with a small ROBP sampler gadget. The goal of the gadget will roughly be to simulate the edge
probabilities coming out of v. The exact gadget that we will use will look something like an (efficient)
ROBP that computes a “multi-threshold” function.

To make things more formal, we introduce a slightly new type of ROBP that can be viewed as an
intermediate model between single-output ROBPs (Definition 7) and multi-output ROBPs (Definition 8). We
will call it a Σ-ROBP, and it will compute a function of the form f : {0, 1}n → Σ for an arbitrary alphabet
Σ. A Σ-ROBP B has the exact same definition as Definition 7, except instead of having a designated accept
vertex vaccept ∈ Vn, each vertex v ∈ Vn is labeled with an element of Σ. The program B then computes
a function fB : {0, 1}n → Σ in the natural way: on input x ∈ {0, 1}n, the program starts at vstart and
traverses the unique path P (x) whose edges are labeled with input bits x1, x2, . . . , xn, and outputs the label
(in Σ) of the final vertex on this path.

We now introduce the formalisms necessary for defining the “multi-threshold” function. Given distinct
strings x, y ∈ {0, 1}n, recall the definition of the lexicographic order: in this order, it is said that x < y
if xi < yi at the smallest index i ∈ [n] where xi 6= yi. Given this ordering, we define (open and closed)
intervals in the natural way: for example, for x, y ∈ {0, 1}n, we let (x, y] := {s ∈ {0, 1}n : x < s ≤ y}.
It will also be convenient to let ~0 ∈ {0, 1}n denote the all zeroes bitstring, ~1 ∈ {0, 1}n denote the all ones
bitstring, and ~−1 denote an imaginary bitstring that is strictly less than all x ∈ {0, 1}n. This lets us write
(~−1, x] = [~0, x] for any x ∈ {0, 1}n.

We are now ready to define the multi-threshold function: for any bitstring “thresholds” ~−1 = τ0 <
τ1 < · · · < τt = ~1, we define the t-threshold function f : {0, 1}n → [t] over these thresholds to output
the label of the “bucket” into which the input falls. Formally, f(x) is defined as the unique i ∈ [t] such that
x ∈ (τi−1, τi]. At last, we are ready to state the key ingredient that goes into proving Lemma 4, Lemma 3,
and Theorem 6. That is, we construct a (near-optimal) Σ-ROBP for computing t-threshold functions.

Lemma 5 (Key ingredient for Theorem 6). For any t-threshold function f : {0, 1}n → [t], there exists a Σ-
ROBP of width 2t that computes f . Furthermore, this is almost tight: there exist many t-threshold functions
that cannot be computed in width < 2t− 1.

The tightness of this result will imply that some constant blow-up in width is necessary when simulating
complex samplers with ROBP samplers via this gadget. It is natural to ask whether this gadget can be
replaced by a different gadget (computing a different function) that only requires width t. We answer this
question in the positive in Section 8, where the different gadget is used to keep our direct product theorem
strong. While the different gadget will have very low width, it will only be able to help us approximately
sample distributions; it will therefore be useful for the direct product theorem, but less useful for the exact
sampling required by Lemmas 3 and 4.

23

We will prove Lemma 5 at the very end of this section. But first, we show how it can be used to prove
Lemmas 3 and 4.

Proof of Lemma 4. We must show that if there is a 2−t-granular complex sampler B of widthw that samples
X ∼ {0, 1}n, then there exists an ROBP of width 4w2 and input length ` = nt that samples X.

The first step is just developing a single gadget. LetA be a 2−t-granular complex sampler of widthw for
just one bit Y ∼ {0, 1}. Let its underlying graph beG = (V,E) with layers V = V0∪V1. Label the vertices
in the last layer V1 = {v1, . . . , vw}. For each i ∈ [w] and b ∈ {0, 1}, let pi,b denote the probability that the
complex sampler transitions from its start state to vi and outputs b. Assume without loss of generality that
each pi,b > 0 (it is straightforward, but notationally inconvenient, to handle when this is not the case). We
would like to construct an ROBP sampler A′ of width 4w (and length t) that exactly simulates this.

Since A is 2−t-granular, we know that each pi,b = Pi,b · 2−t for some nonnegative integer Pi,b. Fur-
thermore, since we must have

∑
i,b pi,b = 1 it must hold that

∑
i,b Pi,b = 2t. Recalling our discussion of

thresholding functions before Lemma 5, it is straightforward to define thresholds in {0, 1}t

~−1 = τ∅ < τ1,0 < τ2,0 < · · · < τw,0 < τ1,1 < τ2,1 < · · · < τw,1 = ~1

so that for any threshold τi,b, if we consider the threshold τ ′ immediately preceding it, then the set (τ ′, τi,b] ⊆
{0, 1}t has exactly Pi,b elements.

Now, let f : {0, 1}t → [2w] be the multi-threshold function over the above thresholds. Identify [2w]
with the set [w] × {0, 1}. By definition of our thresholds, note that for any i ∈ [w], b ∈ {0, 1}, if we
uniformly draw x ∼ {0, 1}t, then the output f(x) = (i, b) with probability Pi,b · 2−t = pi,b. By Lemma 5,
there is an ROBP C of width 4w (and length t) that exactly computes this function. We label the nodes in
the last layer of this ROBP with the set {ui,b}i∈[w],b∈{0,1}. We can assume without loss of generality that,
upon feeding random bits into this ROBP, the computation path reaches ui,b with probability pi,b.

Finally, we can construct A′ from C, as follows. Add a final layer consisting of w nodes, which we will
call {qi}i∈[w]. Now, for every i ∈ [w], b ∈ {0, 1}, draw two edges from ui,b to qi, with input labels 0, 1
respectively, but both with the same output label b. This completes the construction of our ROBP gadget
A′. It is straightforward to verify that for any i ∈ [w], b ∈ {0, 1}, it holds that if we feed random bits into
A′, then we arrive at qi and output b with probability pi,b. Notice that A′ has length t+ 1. In fact, since the
transitions into the last layer are trivial, it is easy to redirect edges from the third-to-last layer to bypass the
second-to-last layer and give A′ length t.

The second step is to use the above gadget to transform our 2−t-granular complex sampler B into an
ROBP B′. Let G = (V,E) be the underlying graph of the complex sampler, with layers V = V0 ∪ V1 ∪
· · · ∪ Vn. For each i ∈ [n] and v ∈ Vi−1, replace its outgoing edges with a new gadget described above.
For any u ∈ Vi and b ∈ {0, 1}, note that the probability of traversing from v to u and outputting b remains
the same, by the gadget construction. Thus we have constructed an ROBP B that exactly samples the same
distribution, as desired. Since we construct a fresh gadget (which has width 4w) for each vertex in each
layer, B′ will have width w · 4w = 4w2. And since each gadget has length t, and we are concatenating n
gadgets in a series configuration, B will have length ` = nt.

Using the ideas in the above proof, we finally turn towards proving Lemma 3.

Proof of Lemma 3. We must show that if there is a 2−t-granular complex sampler B of widthw that samples
X ∼ {0, 1}n, then there is an ROBP of width 7w and input length ` = 4nwt that samples X.

24

By the proof of Lemma 4, we know that for any 2−t-granular complex sampler A of width w that
samples just 1 bit Y ∼ {0, 1}, there is an ROBP sampler A′ of width 4w and length t that exactly samples
Y. We call A′ a gadget.

The next step is to use the above gadget to transform the granular complex sampler B that samples
X ∼ {0, 1}n into an ROBP B′ that generates the same distribution. LetG = (V,E) be the underlying graph
of the complex sampler, with layers V = V0 ∪ V1 ∪ · · · ∪ Vn. In the proof to Lemma 4, we transformed
B into B′ by looking at each boundary Vi−1, Vi, and replacing each vertex v ∈ Vi−1 and its outgoing edges
(and neighbors) with a gadget A′. However, the gadgets corresponding to each v ∈ Vi−1 were stacked on
top of each other in a parallel configuration, meaning that the width of B was forced to grow by a factor of
w. To prevent this from happening, our goal will be to arrange the gadgets corresponding to each v ∈ Vi−1

in a series configuration.
In more detail, we will transform B into B′ via a layer-by-layer process as follows. For each i ∈ [n],

consider the boundary between layers Vi−1 and Vi. We will replace the edges that cross this boundary with
a large ROBP Z∗ that consists of three medium-sized ROBPs S,W, T stacked atop one another. We call
S the “source” or “pre-processing” ROBP, we call W the “working” or “processing” ROBP, and we call
T the “sink” or “post-processing” ROBP. Intuitively, the source ROBP will take inputs coming from each
v ∈ Vi−1 and keep them in a “holding pattern.” Then, the source ROBP will send these inputs into the
working ROBP, which is used to simulate the appropriate probabilities coming out of the edges of each
v ∈ Vi−1 in the complex sampler. In particular,W will consist of several gadgets of the form A′ arranged
in a series configuration. Finally, the working ROBP will send its inputs to the sink ROBP, which will keep
its inputs in a holding pattern before finally passing them off to the proper vertices in Vi.

We will now formalize the above intuition. The plan is to start by formally describing each of the
medium-sized ROBPs S,W, T .7 Then, we will describe how to interface these ROBPs together in order to
create the large ROBP Z∗. Then, we will describe how to interface Z∗ with the layers Vi−1, Vi (i.e., replace
the edges crossing between Vi−1, Vi with Z∗) and argue that this transformation preserves the desired edge
probabilities. For convenience, we will label the vertices in Vi−1 as u1, . . . , uw and the vertices in Vi as
v1, . . . , vw.

Construction of the source ROBP S: the directed acyclic graph GS = (S,ES) underlying this
ROBP will consist of 1 + tw layers S = S0 ∪ S1 ∪ · · · ∪ Stw, each holding w vertices. Label the vertices in
Si as s(i)

1 , . . . , s
(i)
w . Then, for every i ∈ [tw] and j ∈ [w], draw two edges from s

(i−1)
j to s(i)

j , one of which is
given the input label 0 and the other is given the input label 1. This completes the construction of S. Notice
that S should appear as w parallel lines (of length 1 + tw) drawn atop one another.

Construction of the sink ROBP T : the directed acyclic graph GT = (T,ET) underlying this ROBP will
consist of 1 + tw layers T = T1 ∪ T2 ∪ · · · ∪ Ttw+1, each holding 2w vertices. Label the vertices in Ti as
{t(i)j,b}j∈[w],b∈{0,1}. Then, for every i ∈ [tw], j ∈ [w], b ∈ {0, 1}, draw two edges from t

(i)
j,b to t(i+1)

j,b , one of
which is given the input label 0 and the other is given the input label 1. This completes the construction of
T . Notice that T should appear as 2w parallel lines (of length 1 + tw) drawn atop one another.

Construction of the working ROBP W: the directed acyclic graph GW = (W,EW) underlying this
ROBP will consist of tw layers W = W1 ∪ W2 ∪ · · · ∪ Wtw, each holding 4w vertices. We break the
construction ofW into the construction of w smaller ROBPs A1, . . . ,Aw. Each Ai will have width 4w and
length t, and they will be arranged in a series configuration (i.e., consecutively) in order to createW .

Each Ai will be constructed as follows. First, let us return to thinking about the complex sampler, and
for every j ∈ [w], b ∈ {0, 1}, let pi,j,b be the probability assigned to the edge (ui, vj) with label b by the

7These “ROBPs” will actually just be layered DAGs with edge labels, and won’t perfectly match the formal definition of ROBP.

25

complex sampler. Using the proof of Lemma 4, we construct an ROBP Ai that has width 4w and length t
(with the last layer having just 2w vertices) such that the following holds: if the vertices in the last layer ofAi
are called {aj,b}j∈[w],b∈{0,1}, then vertex aj,b is hit with probability pi,j,b when a random string x ∈ {0, 1}t
is fed as input into Ai.

This completes the construction of W . Notice that W should appear as w gadgets (each of width 4w
and length t) A1, . . . ,Aw arranged in a series configuration. That is, the start vertex of gadget Ai will
belong to layer W(i−1)t+1 and the final layer of Ai will belong to layer Wit.

Combining ROBPs S,W, T into the final ROBP Z∗: the final ROBP Z∗ will be combined by
stacking the ROBPs S,W, T one atop another (i.e., arranging them in a parallel configuration). In more
detail, the directed acyclic graph GZ = (Z,EZ) underlying this ROBP will consist of tw + 2 layers
Z = Z0 ∪ Z1 ∪ · · · ∪ Ztw+1. We will have Z0 = S0, Z1 = S1 ∪W1 ∪ T1, Z2 = S2 ∪W2 ∪ T2, . . . , Ztw =
Stw ∪Wtw ∪ Ttw, Ztw+1 = Ttw+1. Thus, Z∗ has width w + 4w + 2w = 7w and length tw + 2.

Next, we add and rearrange a few edges. These modifications will focus on connecting the gadgets Ai
in the working ROBPW to the source ROBP S and sink ROBP T . In particular, for each i ∈ [w], consider
the gadget Ai. Define β′ < β′′ ∈ [tw] such that Zβ′ holds the start vertex of Ai and Zβ′′ holds the last
layer of Ai. Then, consider the ith vertex in layer Sβ′−1 of the source ROBP S . Recall it is called s(β′−1)

i .
Furthermore, recall that it had two edges going into the next layer of the source ROBP S . Delete these
edges, and replace them with two edges from s

(β′−1)
i into the start vertex of Ai, and give them input labels

0 and 1, respectively. This completes the connection of the source ROBP S to the working ROBPW .
Next, recall that the vertices in the final layer of Ai are labeled {aj,b}j∈[w],b∈{0,1}, and are located in

layer Zβ′′ . Currently, they have no edges leaving them. Now, for each j ∈ [w], b ∈ {0, 1}, draw two
edges from aj,b to t(β

′′+1)
j,b ∈ Zβ′′+1, and give them input labels 0 and 1, respectively. This completes the

connection of the working ROBPW to the sink ROBP T .
We have therefore completed the connection of source ROBP S to working ROBPW , and the connection

from working ROBPW to sink ROBP T . Thus we have fully completed the construction of ROBP Z∗. The
most important property of Z∗ is as follows: for any i ∈ [w], if we start at vertex s(0)

i and feed a random
string x ∈ {0, 1}tw+1 as input into the ROBP Z∗, then for any j ∈ [w], b ∈ {0, 1}, we arrive at vertex
t
(tw+1)
j,b with probability pi,j,b. This is straightforward to verify via the above construction and the guaranteed

properties of each gadget Ai.
All that remains now is to interface the ROBP Z∗ with the layers Vi−1, Vi.

Inserting ROBP Z∗ between layers Vi−1, Vi: this is the final and easiest step of our construction.
Recall that the vertices in Vi−1 are labeled as u1, . . . , uw and the vertices in Vi are labeled as v1, . . . , vw.
For each i ∈ [w], we do the following: first, delete the edges leaving ui in the complex sampler.
Then, draw two edges from ui to s(0)

i , and give them input labels 0 and 1, respectively. Then, for each
j ∈ [w], b ∈ {0, 1}, draw two edges from t

(tw+1)
j,b to vj , and give them input labels 0 and 1, respectively, and

give them both output label b. This completes the interfacing of ROBP Z∗ with layers Vi−1, Vi.
It is now straightforward to verify that for any u ∈ Vi−1 and v ∈ Vi and b ∈ {0, 1}, the probability of

transitioning from u to v and outputting b is the same in the original complex sampler as it is in the new
ROBP sampler. Thus if we replace the boundary between every pair of layers Vi−1, Vi with an appropriate
ROBP Z∗ as constructed above, we obtain an ROBP B′ that samples the exact same distribution as the
original complex sampler, as desired. Furthermore, each Z∗ used in this construction has width 7w and
length tw + 2. Since the overall ROBP B′ will contain a Z∗ between each consecutive layers Vi−1, Vi for

26

i ∈ [n], the overall ROBP B′ will have length ` = n · (tw + 2) + n ≤ 4ntw and width 7w, as desired.

At last, all that remains is to prove our result on computing multi-threshold functions in low width,
Lemma 5. We do so below.

Proof of Lemma 5. Let f : {0, 1}n → [t] be a t-threshold function over the thresholds

~−1 = τ0 < τ1 < · · · < τ t = ~1,

where each τα ∈ {0, 1}t (in particular, the superscripts are labels, not powers). We wish to show that there
is an ROBP B of width 2t that computes f . To specify B, we must specify its underlying graph G = (V,E),
which will have t layers V = V0 ∪ V1 ∪ · · · ∪ Vt. We first specify the construction, and then explain why it
works.

For each layer i ∈ [t], we label the nodes Vi = {v1
i , v

2
i , . . . , v

t
i , ṽ

1
i , ṽ

2
i , . . . , ṽ

t
i}. The nodes of the form

ṽαi can be thought of as “short-circuit” nodes. In particular, for every short circuit node ṽαi , the both edges
leaving it (with input labels 0, 1 respectively) will simply connect to ṽαi+1. The edges leaving the nodes of
the form vαi will be a little more complex. For each b ∈ {0, 1}, we draw an edge leaving vαi into the next
layer, and give the edge the input label b, based on the following logic:

• If b < ταi+1, connect the edge to ṽαi+1.

• If b = ταi+1, connect the edge to vαi+1.

• If b > ταi+1, let β > α be the smallest integer such that (τα1 , . . . , τ
α
i , b) ≤ (τβ1 , . . . , τ

β
i , τ

β
i+1), and:

– If the above (rightmost) inequality is strict, connect the edge to ṽβi+1.

– Otherwise, connect the edge to vβi+1.

Now, we just need to specify the edges leaving vstart ∈ V0. For each b ∈ {0, 1}, we draw an edge from vstart
into V1 with the label b using the same logic as the third bullet above. In particular, let β be the smallest
integer such that b ≤ τβ1 , and: if this inequality is strict, connect the edge to ṽ(β)

1 ; otherwise, connect the
edge to vβ1 . Finally, we give each vαn and ṽαn the output label α.

To see why this ROBP computes the threshold function f , consider its computation path as it reads the
input x = (x1, . . . , xt) ∈ {0, 1}t. Note that as it reads each input bit xi, it follows the branching instructions
described by our itemized list (think of xi as b). We make a few observations:

1. Suppose that the branching program reaches node vαi after reading x1, . . . , xi. Then it must hold that
(x1, . . . , xi) = (τα1 , . . . , τ

α
i) and x > τα−1. This follows easily by induction on i.

2. Suppose the branching program reaches short circuit node ṽαi after reading x1, . . . , xi. Then it must
hold that τα−1 < x < τα. This is straightforward to show using the above observation.

Thus by combining the above observations, if a string x leads to vαn or ṽαn , it must hold that τα−1 < x ≤ τα.
Now, consider any x = (x1, . . . , xn) that the ROBP will read. By the definition of our thresholds, there

must be some α such that τα−1 < x ≤ τα. Of course, x must lead to some final state in the branching
program. In order to not contradict the above, this state must be either vαn or ṽαn , both of which have the
output label α. So the ROBP will output α, and therefore compute the multi-threshold function f , as
desired. This completes the proof that any t-threshold function f can be computed by a Σ-ROBP of width 2t.

27

We now show that many t-threshold functions f : {0, 1}n → [t] cannot be computed in width
< 2t− 1. In particular, pick any thresholds

~−1 = τ0 < τ1 < τ2 < · · · < τt = ~1

in {0, 1}n such that both of the following hold:

• For every i ∈ [t− 1] the last bit of τi is 0.

• For every i ∈ [t] the interval (τi−1, τi] contains at least 3 strings.

We will show that for any such thresholds τ0, τ1, . . . , τt, the corresponding t-threshold function
f : {0, 1}n → [t] cannot be computed in width < 2t− 1.

To see why, consider any Σ-ROBP B of width < 2t − 1. Let g : {0, 1}n → [t] denote the function it
computes. We will show that g 6= f . First, notice that the lower bound on the size of each (τi−1, τi] implies
that for every i ∈ [t] there exists some τi−1 < αi < τi such that the last bit of αi is 0. Next, note that since
B has width < 2t− 1, there must exist two distinct strings x < y in the sequence

α1 < τ1 < α2 < τ2 < · · · < τt−1 < αt

that lead to the same state in the second-to-last layer of B. Now, define x0 to be x with its last bit replaced
by 0, and x1 to be x with its last bit replaced by 1. Similarly, define y0 to be y with its last bit replaced by
0, and y1 to be y with its last bit replaced by 1. Since the ROBP is agnostic to which of x, y it read once it
reaches the second to last layer, we know g(x0) = g(y0) and g(x1) = g(y1).

Suppose now that there is no i ∈ [t] such that x0, y0 both belong to the interval (τi−1, τi]. Then by
definition of thresholding functions, we clearly have f(x0) 6= f(y0), and thus g 6= f . Thus assume that
there is some i ∈ [t] such that x0, y0 both belong to (τi−1, τi]. Note that this is only possible if x = αi and
y = τi for some i ∈ [t− 1]. But then τi−1 < x1 ≤ τi and y1 > τi, meaning that there is no j ∈ [t] such that
x1, y1 both belong to the interval (τj−1, τj]. In other words, f(x1) 6= f(y1), and thus g 6= f , as desired.

4.1.2 Proof of Lemma 1

We have now arrived at the final missing piece for Theorem 6. To prove Lemma 1, we must show that
complex samplers can simulate ROBP samplers using roughly the same width.

Proof of Lemma 1. We must show that if there is an ROBP B of width w and length ` that samples
X ∼ {0, 1}n, then there is a complex sampler B′ of width 2w that samples X.

The first step is transforming B into an ROBP where each edge is labeled by 0 or 1 output bits.
Towards this end, let G = (V,E) be the underlying graph of B, with layer V = V0 ∪ V1 ∪ · · · ∪ V`. Fix any
i ∈ [n], and consider the edges between layers Vi−1 and Vi. They are each labeled by γi output bits. If γi is
already 0 or 1, we do not change anything about layers Vi−1 and Vi. So henceforth assume γi > 1.

The idea is to simply add γi+1 new layers L0
i , L

1
i , . . . , L

γi
i in between Vi−1 and Vi. For each vertex

v ∈ Vi−1, we do the following: suppose that v originally had an edge to u ∈ Vi with input label 0 and
output label s ∈ {0, 1}γi . Now, delete that edge and simulate it as follows: add a new vertex vj to each new
layer Lji . Draw an edge from v to v0, and give it input label 0 and no output label. Then, draw two new
edges from v0 to v1, with input labels 0, 1, and output label s1. Then, draw two new edges from v1 to v2,

28

with input labels 0, 1, and output label s2. Continue this process until we have drawn edges up to vertex vγi .
Finally, draw two new edges from vγi to u with input labels 0, 1 and an empty output label.

Now suppose that v originally had an edge to w ∈ Vi with input label 1 and output label t ∈ {0, 1}γi .
Do the exact same process as before, except give the first new edge that is drawn the input label 1 (instead
of 0). Finally, recall that we needed to do this for every v ∈ Vi−1. After this is done, repeat the process
for any Vi−1, Vi with γi > 1. Now, it is straightforward to verify that for any v ∈ Vi−1, u ∈ Vi, if we plug
random bits into our new branching program and arrive at v, then the probability of then transitioning from
v to u and outputting any given string s of bits will be the same as it was before. Thus the new ROBP
samples the same distribution X as before, has width 2w, and every edge is labeled with at most 1 output bit.

The second step is to transform this new ROBP into a complex sampler for X. Let B now de-
note the new ROBP we have sampling X, which has each edge labeled with at most 1 output bit. Let its
underlying graph G = (V,E) have layers V = V0 ∪ V1 ∪ · · · ∪ V`, where we are now guaranteed ` ≥ n.
Define a collection of indices 0 = a0 < a1 < · · · < an as follows: let aj be the smallest integer greater
than aj−1 such that Vaj has incoming edges labeled with 1 output bit. To translate our ROBP sampler into
a complex sampler for X, we will do a transformation for each pair of layers Vaj−1 , Vaj .

Fix some v ∈ Vaj−1 , u ∈ Vaj . Notice that all paths between v, u are labeled with exactly 1 output bit.
For every b ∈ {0, 1}, compute the following probability, pv,u,b: plug random bits into the ROBP, condition
on reaching v, then let pv,u,b be the probability of traversing from v to u and outputting b. Given this
probability, draw a complex sampler edge from v to u, and give it label b and probability pv,u,b. Now do the
same for every v ∈ Vaj−1 , u ∈ Vaj . Then, repeat this process for all j ∈ [n].

At the end of the above process, delete all edges that are not complex sampler edges, and delete all
vertices that are not in Va1 , Va2 , . . . , Van . Thus we obtain a complex sampler of width 2w. Furthermore, for
any v ∈ Vaj−1 , u ∈ Vaj , it is straightforward to verify that the probability of transitioning from v to u and
outputting any single bit b (conditioned on reaching v in the first place) is the same in the original ROBP
and the new complex sampler. Thus we have a complex sampler B′ of width 2w that samples X.

4.2 An equivalence theorem between simple samplers and ROBPs for input-output pairs

In this section, we will show that a simple sampler can generate the distribution (Un, b(Un)) if and only if
an ROBP can compute the function b. More formally, we have the following theorem.

Theorem 7. For any function b : {0, 1}n → {0, 1}, there exists a simple sampler of width w that samples
(Un, b(Un)) if and only if there exists an ROBP of width w that computes b.

Proof. We start by proving that a simple sampler implies an ROBP. Let B be the simple sampler of width
w that can sample (Un, b(Un), with underlying graph G = (V,E) and layers V = V0 ∪ V1 ∪ · · · ∪ Vn+1.
We now define an ROBP B′ that computes b as follows. Define its underlying graph G′ = (V ′, E′) to have
layers V ′0 ∪ V ′1 ∪ · · · ∪ V ′n, where each V ′i is an exact copy of Vi. Furthermore, for each e ∈ E that goes
between layers Vi−1, Vi for some i ∈ [n], and which is not assigned probability 0, copy this edge (with its
label) into E′. Finally, for all v′ ∈ V ′n whose corresponding vertex in v ∈ Vn has an outgoing edge labeled
1, label the vertex v′ as an accepting state.8

Now, notice that for every x ∈ {0, 1}n with b(x) = 1, the simple sampler B must output (x, 1) with
nonzero probability, and so x must lead to an accepting state in B′. And for every x ∈ {0, 1}n with

8Technically, the definition of ROBP requires a single vertex in Vn to be labeled vaccept, but we can easily adjust for this by
selecting one of the accepting states to be designated vaccept, and redirecting all edges that go into an accepting state to go into
vaccept, instead.

29

b(x) = 0, it must hold that x does not lead to an accepting state in B′, because otherwise this would imply
that B samples (x, 1) = (x,¬b(x)) with nonzero probability (meaning that it does not sample (Un, b(Un))
exactly). Thus B′ computes b, and has width w.

We now prove the reverse direction. Let B be an ROBP of width w that computes b, with underlying
graph G = (V,E) and layers V = V0 ∪ V1 ∪ · · · ∪ Vn. We define a simple sampler B′ that samples
(Un, b(Un)) as follows. Define its underlying graphG′ = (V ′, E′) to have layers V ′0∪V ′1∪· · ·∪V ′n∪V ′n+1,
where each V ′i , for i ∈ [n], is an exact copy of Vi. Furthermore, copy the entire edge set of E into E′

(including its labels).
Let V ′n+1 consist of a single vertex, which we call v∗. For each v′ ∈ V ′n, check if the corresponding

vertex v ∈ Vn is labeled vaccept: if so, draw an edge from v′ ∈ V ′n to v∗ ∈ V ′n+1 and label it 1; otherwise,
draw the same edge but label it 0. Finally, for each vertex v′ ∈ V ′, let pv′ be the uniform probability
distribution over its outgoing edges.

It is straightforward to verify that for any fixed x ∈ {0, 1}n, the first n bits produced by the simple
sampler B′ are exactly x with probability 2−n, and if this is true then the final bit produced by B′ is b(x)
with probability 1. Thus B′ exactly samples (Un, b(Un) and has width w.

4.2.1 An extension to correlation bounds

Theorem 7 provides a way to convert worst-case lower bounds against sampling (Un, b(Un)) into worst-
case lower bounds against computing b. In this section, we strengthen this direction and provide a way to
convert average-case sampling lower bounds into average-case computing lower bounds.

Theorem 8. Fix any function b : {0, 1}n → {0, 1}, and suppose that for any simple sampler X ∼ {0, 1}n+1

of width w, it holds that |X − (Un, b(Un))| > 1−ε
2 . Then for any ROBP f : {0, 1}n → {0, 1} of width w,

it holds that | corr(f, b)| < ε.

Proof. We show the contrapositive: that if there exists an ROBP B of width w computing a function f :
{0, 1}n → {0, 1} with | corr(f, b)| ≥ ε, then there is a simple sampler B′ of width w sampling a distribution
X ∼ {0, 1}n such that |X − (Un, b(Un))| ≤ 1−ε

2 . We start by assuming, without loss of generality, that
corr(f, b) ≥ ε. To see why, simply note that corr(f, b) = − corr(1 − f, b) and that if f is computable
by a width w ROBP then so is 1 − f (by swapping the accept and reject states). Thus if we started with
corr(f, b) ≤ −ε, we could instead consider the ROBP computing f ′ := 1− f which has corr(f ′, b) ≥ ε.

So we now assume B is a width w ROBP computing a function f with corr(f, b) ≥ ε. By Definition 3,
corr(f, b) = Pr[f = b] − Pr[f 6= b] = 2 Pr[f = b] − 1 ≥ ε, which implies that Prx∼Un [f(x) = b(x)] ≥
1+ε

2 . We will use this in a moment.
Now, let B′ be a simple sampler that is constructed from the ROBP B in the exact same way as in the

proof to Theorem 7. It is easy to verify that the first n bits produced by B′ are equal to any given x ∈ {0, 1}n
with probability 2−n, and if this is true then the final bit produced by B′ is f(x) with probability 1. Thus if

30

X ∼ {0, 1}n+1 is the distribution produced by B′, we have

|X− (Un, b(Un))| = 1

2

∑
x∈{0,1}n,y∈{0,1}

|Pr[X = (x, y)]− Pr[(Un, b(Un)) = (x, y)]|

=
1

2

∑
x

(|Pr[X = (x, b(x))]− Pr[(Un, b(Un)) = (x, b(x))]|+

|Pr[X = (x,¬b(x))]− Pr[(Un, b(Un)) = (x,¬b(x))]|)

=
1

2

 ∑
x:f(x)=b(x)

(|2−n − 2−n|+ |0− 0|) +
∑

x:f(x)6=b(x)

(|0− 2−n|+ |2−n − 0|)


=

1

2

∑
x:f(x)6=b(x)

2 · 2−n

= Pr[f(x) 6= b(x)] = 1− Pr[f(x) = b(x)]

≤ 1− 1 + ε

2
=

1− ε
2

.

Thus B′ achieves the claimed sampling bound, and has width w.

4.2.2 An extension to unknown-order ROBPs

Finally, we prove an unknown-order version of Theorem 8, and provide a way to obtain lower bounds
against unknown-order ROBPs from lower bounds against unknown-order samplers (see Section 3.3 for
definitions).

Theorem 9. Fix any function b : {0, 1}n → {0, 1}, and suppose that for any unknown-order simple sampler
X ∼ {0, 1}n+1 of width w, it holds that |X − (Un, b(Un))| > 1−ε

2 . Then for any unknown-order ROBP
f : {0, 1}n → {0, 1} of width w, it holds that | corr(f, b)| < ε.

Proof. We prove the contrapositive. Let f : {0, 1}n → {0, 1} be an unknown-order ROBP of width w such
that | corr(f, b)| ≥ ε. By definition of unknown-order ROBP, there exists an ROBP f ′ : {0, 1}n → {0, 1}
of width w and a permutation π : [n]→ [n] such that f(x) = f ′(xπ). Now, let π−1 denote the inverse of π,
let b′ : {0, 1}n → {0, 1} be defined as b′(x) := b(xπ

−1
), and observe that

corr(f, b) = Ex[(−1)f
′(xπ)(−1)b(x)] = Ex[(−1)f

′(x)(−1)b(x
π−1

)] = corr(f ′, b′).

Thus since | corr(f, b)| ≥ ε, we also know that | corr(f ′, b′)| ≥ ε. Thus we have an ROBP f ′ : {0, 1}n →
{0, 1} of width w such that corr(f ′, b′) ≥ ε, so by Theorem 8 we know there exists a simple sampler
Y ∼ {0, 1}n+1 of width w such that

|Y − (Un, b
′(Un))| ≤ 1− ε

2
.

Observe that (Un, b
′(Un)) = (Un, b(U

π−1

n)) = (Uπ
n, b(Un)), and thus

|Y − (Uπ
n, b(Un))| ≤ 1− ε

2
.

31

Consider now a permutation π∗ : [n+ 1]→ [n+ 1] such that π∗(n+ 1) = n+ 1 and π∗ restricted to [n] is
exactly π−1. By the data-processing inequality (Fact 1), we have

|Yπ∗ − (Un, b(Un))| = |Yπ∗ − (Uπ
n, b(Un))π

∗ | ≤ |Y − (Uπ
n, b(Un))| ≤ 1− ε

2
.

Since Y ∼ {0, 1}n+1 is a simple sampler of width w, we have found an unknown-order simple sampler
X := Yπ∗ of width w such that |X− (Un, b(Un))| ≤ 1−ε

2 , as desired.

4.3 An equivalence theorem between simple samplers and ROBPs for flat distributions

In this section, we will show another equivalence between simple samplers and ROBPs for computation.
This time, we will consider distributions Q ∼ {0, 1}n that are uniform over some subset S ⊆ {0, 1}n. We
let 1S : {0, 1}n → {0, 1} denote the indicator function for S, and prove the following theorem.

Theorem 10. For any distribution Q ∼ {0, 1}n that is uniform over some subset S ⊆ {0, 1}n:

• If there exists a simple sampler of width w that samples Q, then there exists an ROBP of width w + 1
that computes 1S : {0, 1}n → {0, 1}.

• If there exists an ROBP of width w that computes 1S : {0, 1}n → {0, 1}, then there exists a simple
sampler of width w that samples Q.

Proof. We start by proving that a simple sampler implies an ROBP. Let B be the simple sampler of width
w that can sample Q, with underlying graph G = (V,E) and layers V = V0 ∪ V1 ∪ · · · ∪ Vn. We now
define an ROBP B′ that computes 1S as follows. Define its underlying graph G′ = (V ′, E′) to have layers
V ′0 ∪ V ′1 ∪ · · · ∪ V ′n, where each V ′i is an exact copy of Vi. Furthermore, copy each edge e ∈ E, which is not
assigned probability 0, into E′ (with its label).

Now, for each i ∈ [n], we add an additional vertex to V ′i , which we call ṽi. And for every i ∈ [n − 1],
draw two edges from ṽi to ṽi+1: one labeled with 0 and the other labeled 1. Intuitively, this new row of
vertices might be considered as the “reject gutter.” Next, for each i ∈ [n] and v′ ∈ V ′i−1, if v′ has no outgoing
edge labeled 0, draw an edge from v′ to ṽi and label it 0. And if v′ has no outgoing edge labeled 1, draw an
edge from v′ to ṽi and label it 1. Finally, for all v′ ∈ V ′n except ṽn, label v′ as an accepting state.

Now, notice that for every x ∈ {0, 1}n such that 1S(x) = 1, it holds by definition that x ∈ support(Q),
which means that the simple sampler B of course outputs x with nonzero probability. Thus, x must lead
to an accepting state in B′. And for every x ∈ {0, 1}n such that 1S(x) = 0, it holds by definition that
x /∈ support(Q), which means that the simple sampler B of course outputs x with zero probability. This
means that the unique path in B labeled with x must have some edge assigned zero probability, which
means that x must enter the “reject gutter” at some point in B′, and ultimately arrive at ṽn, the only reject
state in Vn. Thus B′ computes 1S , and has width w + 1.

We now prove the reverse direction. Let B be an ROBP of width w that computes 1S , with un-
derlying graph G = (V,E) and layers V = V0 ∪ V1 ∪ · · · ∪ Vn. We define a simple sampler B′ that samples
Q as follows. First, set its underlying graph to be identical to G = (V,E).

Now, for each v′ ∈ V ′, let P (v′) count the number of paths from v′ to an accept state. In particular,
P (v′) = 0 for vertices in the last layer that are not accept states. Then, we assign edge transition probabilities
as follows. For any u′ ∈ V ′ with P (u′) = 0, assign any arbitrary distribution over its outgoing edges (it
won’t matter). For all other edges (u′, v′), assign it probability P (v′)/P (u′). Note that this is indeed a

32

valid probability distribution: suppose u′ has outgoing edges to v′ and w′: then it will always be true that
P (u′) = P (v′)+P (w′), and thus the probabilities we assigned over its outgoing edges, namely P (v′)/P (u′)
and P (w′)/P (u′), must add up to 1.

Suppose now that x is not accepted by B. Then the last vertex v′ on its computation path in B will not
be an accept state. Thus P (v′) = 0, which means that the probability on the last edge before hitting v′ is 0,
and thus the overall probability assigned to this path in B′ is 0.

Suppose now that x is accepted by B, and that its computation path uses edges e1 = (v0, v1), e2 =
(v1, v2), . . . , en = (v1, vn). Then of course P (vi) > 0 for each vertex on this path, and the overall proba-
bility of the path is

P (v1)

P (v0)
· P (v2)

P (v1)
· · · P (vn)

P (vn−1)
=
P (vn)

P (v0)
.

But P (vn) is just 1, and v0 must be the start vertex of the program, so P (v0) must be exactly the number
of strings accepted by B. Thus our simple sampler B′ samples each accepting string of B with the same
probability 1/P (v0). In other words, the distribution it outputs is uniform over 1−1

S (1) = S, meaning that it
exactly samples Q.

4.3.1 An extension to covariance bounds

Theorem 10 shows how to convert worst-case lower bounds against sampling a flat distribution Q ∼ {0, 1}n
into worst-case lower bounds against computing the indicator function 1S of its support. Here, we strengthen
this direction and show how to convert average-case sampling lower bounds into covariance bounds. Note
that we must use the more general notion of covariance (instead of correlation, as in Theorem 8) since it is
possible to get strong sampling lower bounds against Q even if 1S is very biased.

Theorem 11. Let Q ∼ {0, 1}n be any distribution that is uniform over some subset S ⊆ {0, 1}n, and
suppose that for any simple sampler X ∼ {0, 1}n of width w, it holds that |X−Q| > 1− ε

4 . Then for any
ROBP f : {0, 1}n → {0, 1} of width w, it holds that | cov(f, 1S)| < ε.

Proof. We show the contrapositive: that if there exists an ROBP B of width w computing f : {0, 1}n →
{0, 1} such that | cov(f, 1S)| ≥ ε, then there is a simple sampler B′ of width w sampling a distribution X ∼
{0, 1}n such that |X−Q| ≤ 1− ε/4. We start by assuming, without loss of generality, that cov(f, 1S) ≥ ε.
We can do this because cov(f, 1S) = − cov(1− f, 1S), and because 1− f must also be computable by an
ROBP of width w (by swapping the accept and reject states).

So now we assumeB is a widthw ROBP computing a function f with cov(f, 1S) ≥ ε. LetB′ be a simple
sampler that is constructed from the ROBP B in the exact same way as in the proof to Theorem 10. We know
it outputs a distribution X ∼ {0, 1}n that is uniform over f−1(1). We want to show that |X−Q| ≤ 1−ε/4.

It will now be notationally convenient to define the following quantities, taking uniform x ∼ {0, 1}n:

a := Pr[f(x) = 1]

b := Pr[1S(x) = 1]

c := Pr[f(x) = 1 and 1S(x) = 1].

Without loss of generality, we may assume both a, b > 0. Now, by definition of covariance, we have
cov(f, 1S) = corr(f, 1S) − bias(f) bias(1S), and using the definitions of correlation and bias, it is a
straightforward calculation to obtain

cov(f, 1S) = 4c− 4ab.

33

Now, notice that for any x ∈ support(X), it holds that Pr[X = x] = 2−n/a. Similarly, for any q ∈
support(Q), it holds that Pr[Q = q] = 2−n/b. So using the (half L1-norm) definition of statistical distance,
it is straightforward to compute:

2 · |X−Q| = 1

a
· Pr
x

[f(x) = 1, 1S(x) = 0] +
1

b
· Pr
x

[f(x) = 0, 1S(x) = 1]

+ |1
a
− 1

b
| · Pr[f(x) = 1, 1S(x) = 1]

= (1/a)(a− c) + (1/b)(b− c) + |1/a− 1/b| · c.

Without loss of generality assume 1/a ≥ 1/b, and notice this quantity is 2− 2c/b. Thus we have:

|X−Q| = 1− c/b,
cov(f, 1S) = 4(c− ab).

Notice we have c/b ≥ c ≥ c− ab. Thus c/b ≥ cov(f, 1S)/4, and thus

|X−Q| = 1− c/b ≤ 1− cov(f, 1S)/4 ≤ 1− ε/4,

as desired.

4.3.2 An extension to unknown-order ROBPs

Finally, we prove an unknown-order version of Theorem 11, and provide a way to obtain lower bounds
against unknown-order ROBPs from lower bounds against unknown-order samplers (see Section 3.3 for
definitions).

Theorem 12. Let Q ∼ {0, 1}n be any distribution that is uniform over some subset S ⊆ {0, 1}n, and
suppose that for any unknown-order simple sampler X ∼ {0, 1}n of width w, it holds that |X−Q| > 1− ε

4 .
Then for any unknown-order ROBP f : {0, 1}n → {0, 1} of width w, it holds that | cov(f, 1S)| < ε.

Proof. We prove the contrapositive. Let f : {0, 1}n → {0, 1} be an unknown-order ROBP of width w such
that | cov(f, 1S)| ≥ ε. By definition of unknown-order ROBP, there exists an ROBP f ′ : {0, 1}n → {0, 1}
of width w and a permutation π : [n]→ [n] such that f(x) = f ′(xπ). Now, let π−1 denote the inverse of π,
and let 1′S : {0, 1}n → {0, 1} be defined as 1′S(x) := 1S(xπ

−1
).

As we saw in the proof to Theorem 9, corr(f, 1S) = corr(f ′, 1′S). Furthermore, observe that permuting
a function’s input does not change its bias (Definition 2). Thus we have:

cov(f, 1S) = corr(f, 1S)− bias(f) bias(1S) = corr(f ′, 1′S)− bias(f ′) bias(1′S) = cov(f ′, 1′S).

Thus since | cov(f, 1S)| ≥ ε, we also know that | cov(f ′, 1′S)| ≥ ε. Now, define T := {x : xπ
−1 ∈ S}, and

notice that 1′S = 1T . Thus we have an ROBP f ′ : {0, 1}n → {0, 1} of width w such that | cov(f ′, 1T)| ≥ ε.
Then if we define Q̃ being uniform over T , we know via Theorem 11 that there exists a simple sampler
Y ∼ {0, 1}n+1 of width w such that

|Y − Q̃| ≤ 1− ε

4
.

Observe that Q̃π−1
= Q, and thus by the data-processing inequality (Fact 1) we have

|Yπ−1 −Q| = |Yπ−1 − Q̃π−1 | ≤ |Y − Q̃| ≤ 1− ε

4
.

Since Y ∼ {0, 1}n is a simple sampler of width w, we have found an unknown-order simple sampler
X := Yπ−1

of width w such that |X−Q| ≤ 1− ε
4 , as desired.

34

5 A complexity separation

In this section, we prove our main result separating the complexity of sampling with simple samplers from
the complexity of sampling with complex samplers. In particular, we prove the following.

Theorem 13. For any fixed ε > 0, there exist constants C, c > 0 such that the following holds. There exists
an explicit function b : {0, 1}n → {0, 1} such that for any simple sampler X ∼ {0, 1}n+1 of width w ≤ 2cn,

|X− (Un, b(Un))| > 1

4
− ε,

but there is a complex sampler X∗ ∼ {0, 1}n+1 of width w∗ ≤ Cn that exactly samples (Un, b(Un)).

We start by defining the function that will be used for b.

Definition 13. Let f : {0, 1}k → {0, 1}k̂ be any function such that k̂ is a power of 2. We let n := k+ log k̂,
and define the address function over f as the function addressf : {0, 1}n → {0, 1} such that

addressf (x, α) := f(x)α,

where the input to the function is parsed as x ∈ {0, 1}k, α ∈ [k̂].

To prove Theorem 13, the plan will be to use this address function, instantiated with an encoder f for a
great explicit (linear) list decodable code. Towards this end, we show that simple samplers have a hard time
sampling such functions.

Lemma 6. Let Enc : {0, 1}k → {0, 1}k̂ be the encoding function of a (ρ, L) list decodable code, where k̂ is
a power of 2. We write n := k + log k̂, and let b : {0, 1}n → {0, 1} be the address function over Enc from
Definition 13. Then for any simple sampler X ∼ {0, 1}n+1 of width w,

|X− (Un, b(Un))| > 1

2
· ρ · (1− wL · 2−k).

Proof. We recall that b computes the function b(x, α) = Enc(x)α, and start by defining a bad set of inputs
on which X is more likely to fail at “computing” b than succeed at at “computing” b. More formally, for
every x ∈ {0, 1}k we define the set

Bad Indices(x) := {α ∈ [k̂] : Pr[X = (x, α,¬b(x, α))] ≥ Pr[X = (x, α, b(x, α))]},

and for some threshold t to be set later, we define

Bad Messages := {x ∈ {0, 1}k : |Bad Indices(x)| > t}.

The plan now is to (i) lower bound |X− (Un, b(Un))| using the size of Bad Messages, and then (ii) lower
bound the size of Bad Messages using the list decodability of Enc and the bounded width of our simple

35

sampler X. We proceed with (i), setting Y := (Un, b(Un)) for notational convenience.

2 · |X−Y| =
∑

x∈{0,1}k,α∈[k̂],c∈{0,1}

|Pr[X = (x, α, c)]− Pr[Y = (x, α, c)]|

≥
∑

x∈Bad Messages
α∈Bad Indices(x)

c∈{0,1}

|Pr[X = (x, α, c)]− Pr[Y = (x, α, c)]|

=
∑

x∈Bad Messages
α∈Bad Indices(x)

(
|Pr[X = (x, α, b(x, α))]− Pr[Y = (x, α, b(x, α))]|

+ |Pr[X = (x, α,¬b(x, α))]− Pr[Y = (x, α,¬b(x, α))]|
)

=
∑
x,α

(
|Pr[X = (x, α, b(x, α))]− Pr[Y = (x, α, b(x, α))]|+ Pr[X = (x, α,¬b(x, α))]

)
≥
∑
x,α

(
|Pr[X = (x, α, b(x, α))]− Pr[Y = (x, α, b(x, α))]|+ Pr[X = (x, α, b(x, α))]

)
≥
∑
x,α

Pr[Y = (x, α, b(x, α))],

where the second to last inequality follows by definition of Bad Indices(x), and the last inequality follows
from the fact that |x− y|+ x ≥ y for any x, y ∈ R. Continuing, we have∑

x∈Bad Messages
α∈Bad Indices(x)

Pr[Y = (x, α, b(x, α))] =
∑

x∈Bad Messages
α∈Bad Indices(x)

1

2k
· 1

k̂

> |Bad Messages| · t · 1

2k
· 1

k̂
,

since each bad message has > t bad indices, by definition. Thus, recalling that Y := (Un, b(Un))), we
have

|X− (Un, b(Un))| > 1

2
· |Bad Messages| · t · 1

2k
· 1

k̂
. (3)

Our goal now is to get a lower bound on |Bad Messages|, using the list decodability of Enc and the bounded
width w of our simple sampler X ∼ {0, 1}n+1. Towards this end, let G = (V,E) be the underlying graph
of our simple sampler, with layers V = V0 ∪ V1 ∪ · · · ∪ Vn+1. Consider layer Vk, and focus on some vertex
v ∈ Vk in this layer. Consider taking a random walk from v to Vn+1 in the simple sampler according to its
edge probabilities, outputting the edge labels seen. Let W ∈ {0, 1}log k̂+1 denote these edge labels.

Now, for each α ∈ [k̂], let y∗α ∈ {0, 1} denote the bit more likely to be seen at the end of this random
walk, if this random walk first outputs α (recall that [k̂] is identified with {0, 1}log k̂). More formally, we
define

y∗α :=

{
0 if Pr[W = (α, 0)] ≥ Pr[W = (α, 1)],

1 if Pr[W = (α, 1)] > Pr[W = (α, 0)].

36

Now, define y∗ := (y∗1, y
∗
2, . . . , y

∗
k̂
) ∈ {0, 1}k̂. Intuitively, y∗ is the codeword that is “most consistent” with

the remainder of the random walk from v to Vn+1; that is, it is the codeword y∗ ∈ {0, 1}k̂ for which the
simple sampler does the best job at sampling (α, y∗α) on the remainder of the walk from v to Vn+1. We will
now use the list decodability of our code to argue that most messages x ∈ {0, 1}k will encode to a codeword
y = Enc(x) ∈ {0, 1}k̂ that looks quite different from y∗, meaning that the simple sampler will do a bad job
at sampling (α, yα) on the walk from v to Vn+1.

More formally, recall that we are still focusing on some vertex v ∈ Vk. Now, for each x ∈ {0, 1}k, let
P (x) denote the unique path in our simple sampler, from vstart to Vk, which has output labels corresponding
to x. Furthermore, define Sv := {x ∈ {0, 1}k : P (x) hits v}. Next, let

S∗v := {x ∈ Sv : ∆(Enc(x), y∗) ≤ t}.

We now observe that if x ∈ Sv − S∗v , then x ∈ Bad Messages. To see why, note that for each x ∈ Sv − S∗v ,
it must hold that y := Enc(x) differs from y∗ at > t indices. Let A ⊆ [k̂] denote these indices. Then, for
each α ∈ A, it must hold that

Pr[X = (x, α, b(x, α)] = Pr[X = (x, α, yα)] ≤ Pr[X = (x, α,¬yα)] = Pr[X = (x, α,¬b(x, α))],

because otherwise the random walk from v to Vn+1 is strictly more likely to output (α, yα) than (α,¬yα),
which means that it is strictly more likely to output (α,¬y∗α) than (α, y∗α) (since α ∈ A), which contra-
dicts the definition of y∗α. Thus each α ∈ A is also in Bad Indices(x), and since |A| > t, we know that
|Bad Indices(x)| > t, and thus x ∈ Bad Messages.

So we now know that Sv − S∗v ⊆ Bad Messages for each v ∈ Vk, and thus

|Bad Messages| ≥ |
⋃
v∈Vk

(Sv − S∗v)| ≥ |
⋃
v∈Vk

Sv| − |
⋃
v∈Vk

S∗v | ≥ 2k − w ·max
v∈Vk
|S∗v |, (4)

where the last inequality follows because each x ∈ {0, 1}k falls into some Sv, and because |Vk| ≤ w by the
width of our simple sampler.

We are finally ready to set t, and we set it to t = ρk̂. Notice that since Enc : {0, 1}k → {0, 1}k̂ is the
encoding function of a (ρ, L) list decodable code, we must have for every v ∈ Vk that |S∗v | ≤ L. Thus,
combining this observation with Equation (4) and Equation (3), we have

|X− (Un, b(Un))| > 1

2
· |Bad Messages| · t · 1

2k
· 1

k̂

≥ 1

2
· (2k − w ·max

v∈Vk
|S∗v |) · t ·

1

2k
· 1

k̂

≥ 1

2
· (2k − wL) · ρk̂ · 1

2k
· 1

k̂

=
1

2
· ρ · (1− wL · 2−k),

as desired.

The next step is to show that complex samplers have an easy time sampling our enhanced addres func-
tion. The first step in this direction is the following fact, which is straightforward to verify.

Fact 7. For any affine function f : Fn2 → F2, there exists an ROBP of width w = 2 that computes f .

37

Indeed, using just 1 bit of memory (width 2), the ROBP can keep track of a running sum (modulo 2) of
the relevant bits. We now prove that complex samplers have an easy time sampling our address function,
when it is instantiated with a linear function f .

Lemma 7. Let f : {0, 1}k → {0, 1}k̂ be any F2-linear function, where k̂ is a power of 2. We write
n := k + log k̂, and let b : {0, 1}n → {0, 1} be the address function over f from Definition 13. Then there
is a complex sampler X ∼ {0, 1}n+1 of width w = 4k̂ that exactly samples (Un, b(Un)).

Proof. The overall plan is to write the distribution (Un, b(Un)) as a convex combination of a few nicer
distributions. We will show that each of the nicer distributions can easily be sampled by a small width
complex sampler, and that we can combine these complex samplers to create one complex sampler X that
exactly samples (Un, b(Un)).

Recall that b : {0, 1}n → {0, 1} is of the form b(x, α) = f(x)α, and note that f is of the form f(x) =
(f1(x), . . . , fk̂(x)), where each fi : {0, 1}k → {0, 1} is a linear function. Thus each element of the support
of (Un, b(Un)) is of the form (x, α, fα(x)), where x ∈ {0, 1}k and α ∈ [k̂] and fα : {0, 1}k → {0, 1} is a
linear function. So let B be uniform over {0, 1}k, let A be uniform over [k̂], and write

(Un, b(Un)) = (B,A, fA(B)).

Now for every α ∈ [k̂], c ∈ {0, 1}, let pα,c := Pr[A = α, fα(B) = c]. Also, let Uα,c ∼ {0, 1}k be the
uniform distribution over the set of strings x ∈ {0, 1}k where fα(x) = c. Furthermore, let Yα,c be the
random variable (Uα,c, α, c). Notice that we can now write the convex combination

(Un, b(Un)) =
∑

α∈[k̂],c∈{0,1}

pα,c ·Yα,c.

We now show that for each Yα,c, a complex sampler of width 2 can sample it. Note that it suffices to show a
complex sampler of width 2 can sample Uα,c, since it is easy to have a complex sampler output a sequence
of constant bits at the end. Recall that Uα,c is uniform over f−1

α (c), where fα is an affine function. Thus by
combining Fact 7 with Theorem 10, we see that Uα,c can be sampled in width 2, and thus so can Yα,c.

Now, in order to sample the convex combination written above, we do the following. For each Yα,c, let
Bα,c be a complex sampler of width 2 that samples it. We define a complex sampler B∗ of width 2k̂ · 2 = 4k̂
that samples the convex combination, and thus (Un, b(Un)), as follows. Draw edges from the start vertex
v∗ of B∗ to the start vertex of each Bα,c, and give it probability pα,c.

It is easy to see that a random walk over B∗ samples the desired convex combination in width 4k̂, but
technically a complex sampler must have an output bit on each edge. This is easy to fix: consider any Bα,c,
and let vα,c denote its start vertex. Instead of having an edge from v∗ to vα,c, we can do the following: take
each edge (vα,c, u) leaving vα,c, and replace it with an edge (v∗, u) with the same output label, but multiply
its probability by pα,c. It is not hard to see that this new version of B∗ samples the same distribution as the
old version (which is (Un, b(Un)), and indeed it is a bona fide complex sampler of width 4k̂, as desired.

We are now ready to combine Lemma 6 and Lemma 7 to prove Theorem 13. To do so, we will use the
following list-decodable codes of Guruswami and Rudra.

Theorem 14 ([GR08], Theorem 5.2). For any constant ε > 0 there exists constant C, δ > 0 and an explicit
F2-linear (ρ, L)-list decodable code Enc : {0, 1}k → {0, 1}k̂ with dimension k ≥ δk̂, decoding radius
ρ = 1

2 − ε, and list size L = k̂C .

38

Finally, we prove Theorem 13 by combining Lemmas 6 and 7 and Theorem 14.

Proof of Theorem 13. Let ε′ > 0 be a parameter to be set later, and let Enc : {0, 1}k → {0, 1}k̂ be the
list-decodable code from Theorem 14, which has decoding radius 1

2 − ε
′ and dimension k ≥ δk̂. We let

n := k + log k̂, and define b : {0, 1}n → {0, 1} to be the function addressEnc, as defined by Definition 13.
By Lemma 6, we know that for any simple sampler X ∼ {0, 1}n+1 of width w,

|X− (Un, b(Un))| > 1

2
· ρ · (1− wL · 2−k) =

1

2
·
(

1

2
− ε′

)
· (1− w · (1/δ)C · 2−k)

It is straightforward to verify that this can be lower bounded by 1
4 − ε for width w = 2cn, sufficiently small

c, ε′ > 0, and sufficiently large n. On the other hand, by Lemma 7, we know that there is a complex sampler
X∗ ∼ {0, 1}n+1 of width w = 4k̂ ≤ (1/δ) · k = O(n) that exactly samples (Un, b(Un)).

5.1 Corresponding result for ROBPs

In this section, we briefly show how to combine our equivalence theorems with the above results in order to
obtain our first main result: sampling with limited memory is easier than computing with limited memory.

Theorem 15 (Theorem 1, restated). For any fixed ε > 0, there exist constants C, c > 0 and an explicit
function b : {0, 1}n → {0, 1} such that the following holds. For every ROBP F : {0, 1}n → {0, 1} of width
w ≤ 2cn,

Pr
x

[F (x) 6= b(x)] >
1

4
− ε,

but there exists an ROBP G : {0, 1}` → {0, 1}n+1 of width w ≤ Cn and input length ` ≤ Cn3 such that

G(U`) = (Un, b(Un)).

Proof. Let b : {0, 1}n → {0, 1} be the function we used in the proof to Theorem 13. We know that any
simple sampler X ∼ {0, 1}n+1 of width w ≤ 2cn has |X− (Un, b(Un))|. Combining this with Theorem 8
and the definition of correlation (Definition 3) yields the first part of the theorem. To obtain the second
part of the result, simply note that the complex sampler X∗ we designed for (Un, b(Un)) is 2−n-granular
(Definition 12), and thus we can simply apply Lemma 3.

6 Sampling lower bounds against input-output pairs

In this section, we prove our main result about sampling input-output pairs. In particular, we prove the
following.

Theorem 16. There is an explicit function b : {0, 1}n → {0, 1} such that for any complex sampler X ∼
{0, 1}n+1 of width w,

|X− (Un, b(Un))| ≥ 1

2
− 16w · 2−n/8.

In order to prove Theorem 16, the main ingredient we will use is an explicit two-source extractor. A two-
source extractor for min-entropy k with error ε is a (deterministic) function Ext : {0, 1}n×{0, 1}n → {0, 1}
such that for any two independent distributions X,Y ∼ {0, 1}n with min-entropy at least k each, it holds
that |Ext(X,Y) − U1| ≤ ε. First, we show via the following lemma that b can be taken to be any two-
source extractor. Then, we instantiate this lemma with a well-known explicit two-source extractor (the inner
product function) in order to obtain Theorem 16.

39

Lemma 8 (Main lemma for Theorem 16). Let Ext : {0, 1}n × {0, 1}n → {0, 1} be a two-source extractor
for min-entropy k with error ε. Then for any complex sampler X ∼ {0, 1}2n+1 of width w,

|X− (U2n,Ext(U2n))| ≥ 1

2
− ε− 8w · 2−n+k.

Proof. X ∼ {0, 1}2n+1 is of the form (A,B,b) ∼ {0, 1}n×{0, 1}n×{0, 1}, where the components are not
necessarily independent. Let W ∼ [w]2n+1 be the vertices hit on the random walk that generates X, where
Wn ∼ [w] is the vertex hit in layer n of the branching program of the complex sampler. Using a standard
observation [KM04,KM05], it holds that upon fixing Wn to any value i ∈ [w], the random variables A and
(B,b) become independent. That is, we can write X as a convex combination of the form

X =
∑
i∈[w]

pi · (A(i),B(i),b(i)),

where pi is the probability that Wn hits vertex i in layer n of the complex sampler, and where each A(i) is
independent of B(i),b. Consider now fixing each b(i) to some b ∈ {0, 1}. Then we can clearly write

X =
∑

i∈[w],b∈{0,1}

pi,b · (A(i,b),B(i,b), b), (5)

for some probabilities pi,b. Notice also that A(i,b),B(i,b) remain independent. Now, by definition of statisti-
cal distance, it holds that for any test S ⊆ {0, 1}2n+1,

|X− (U2n,Ext(U2n))| ≥ Pr[X ∈ S]− Pr[(U2n,Ext(U2n)) ∈ S].

We now aim to construct a test S by keeping the above mentioned convex combination in mind. Towards
this end, we start by letting t be a parameter that we will fix later. For each i ∈ [w] and b ∈ {0, 1}, we define

Bad
(i,b)
A := {x ∈ {0, 1}n : Pr[A(i,b) = x] > 2−t},

Bad
(i,b)
B := {y ∈ {0, 1}n : Pr[B(i,b) = y] > 2−t},

Bad(i,b) :=
{

(x, y, b) ∈ {0, 1}n × {0, 1}n × {0, 1} : x ∈ Bad
(i,b)
A or y ∈ Bad

(i,b)
B

}
Bad :=

⋃
i∈[w],b∈{0,1}

Bad(i,b)

Furthermore, we define the set

T := {(x, y, b) ∈ {0, 1}n × {0, 1}n × {0, 1} : Ext(x, y) 6= b}.

At last, we are ready to define our test set S ⊆ {0, 1}2n+1 as:

S := T ∪ Bad.

The goal now is to lower bound Pr[X ∈ S], and upper bound Pr[(U2n,Ext(U2n)) ∈ S]. We start
with the latter, as it is easier. Notice that it is impossible for (U2n,Ext(U2n)) to land in T , so we just have
to worry about it landing in Bad. Notice also that each bad set of the form Bad

(i,b)
A or Bad(i,b)

B has < 2t

elements, or else it contradicts the definition of probability distribution. Thus for every i, b we have

|Bad(i,b)| ≤ |Bad(i,b)
A × {0, 1}n|+ |{0, 1}n × Bad

(i,b)
B | < 2t · 2n + 2n · 2t = 2t+n+1,

40

which yields
|Bad| < 2w · 2t+n+1 = 4w · 2t+n.

Now notice that (U2n,Ext(U2n)) assigns each element in its support a probability of 2−2n, so we have

Pr[(U2n,Ext(U2n)) ∈ S] = Pr[(U2n,Ext(U2n)) ∈ Bad] ≤ 2−2n · |Bad| < 4w · 2−n+t. (6)

We now move towards lower bounding Pr[X ∈ S]. By Equation (5), it suffices to lower bound
Pr[(A(i,b),B(i,b), b) ∈ S] for every i, b. Now, let

p := Pr[A(i,b) /∈ Bad
(i,b)
A and B(i,b) /∈ Bad

(i,b)
B]

and note that we can rewrite Pr[(A(i,b),B(i,b), b) ∈ S] as

p · Pr[(A(i,b),B(i,b), b) ∈ S | A(i,b) /∈ Bad
(i,b)
A and B(i,b) /∈ Bad

(i,b)
B]

+(1− p) · Pr[(A(i,b),B(i,b), b) ∈ S | A(i,b) ∈ Bad
(i,b)
A or B(i,b) ∈ Bad

(i,b)
B]

Notice that the probability attached to (1 − p) will always be 1, by our construction of S. On the other
hand, in the term attached to p, we can replace S with T since (A(i,b),B(i,b), b) will never hit Bad in this
conditioning. And the probability that (A(i,b),B(i,b), b) ∈ T is, by definition of T , the probability that
Ext(A(i,b),B(i,b)) 6= b. Thus we can rewrite the above expression as

p · Pr[Ext(A(i,b),B(i,b)) 6= b | A(i,b) /∈ Bad
(i,b)
A and B(i,b) /∈ Bad

(i,b)
B] + (1− p).

Notice now that since A(i,b),B(i,b) were originally independent, the conditionings above keep them inde-
pendent. In particular, we can define independent random variables Ã(i,b) := (A(i,b) | A(i,b) /∈ Bad

(i,b)
A)

and B̃(i,b) := (B(i,b) | B(i,b) /∈ Bad
(i,b)
B) and the above expression becomes

p · Pr[Ext(Ã(i,b), B̃(i,b)) 6= b] + (1− p). (7)

We would now like to get a lower bound on the entropy of each input to the extractor. Towards this end, we
start by defining the probabilities

qA := Pr[A(i,b) /∈ Bad
(i,b)
A],

qB := Pr[B(i,b) /∈ Bad
(i,b)
B],

and we observe that p = qA · qB ≤ min{qA, qB}. We now have two possible cases. In the first case, either
qA or qB is at most 1/2. In this case, p ≤ 1/2 and 1− p ≥ 1/2, which implies that Equation (7) is ≥ 1/2.

In the second possible case, both qA and qB are > 1/2. In this case, it is straightforward to verify the
following min entropy lower bounds:

H∞(Ã(i,b)) = log

 1

max
x/∈Bad(i,b)

A

Pr[Ã(i,b) = x]

 = log

 qA

max
x/∈Bad(i,b)

A

Pr[A(i,b) = x]


> log

(
1
2

2−t

)
= t− 1,

41

where the last inequality follows from the definition of bad sets. Of course, using the same reasoning,

H∞(B̃(i,b)) > t− 1.

We are finally ready to pick t. We set it to t := k + 1, so that both of the above min-entropies become > k.
Now, since Ext is a two-source extractor for min-entropy k with error ε, and since we are calling it on two
independent sources of min-entropy k, we the extractor property tells us

p · Pr[Ext(Ã(i,b), B̃(i,b)) 6= b] + (1− p) ≥ p · (1

2
− ε) + (1− p)

= 1− p · (1

2
+ ε) ≥ 1− (

1

2
+ ε)

=
1

2
− ε.

Thus, we finally see that in the case where both qA and qB are > 1/2, then Equation (7) is ≥ 1/2− ε (given
that we set t := k + 1). Thus in all cases, Equation (7) is ≥ 1/2− ε. And tracing back to the expression it
originally represented, we get

Pr[(A(i,b),B(i,b), b) ∈ S] ≥ 1

2
− ε.

And we know that this holds for all i, b, since we made no assumption on their values. As discussed earlier,
this therefore implies

Pr[X ∈ S] ≥ 1

2
− ε, (8)

as long as we set t = k + 1. Wrapping everything up, we combine Equation (6) and Equation (8) to get

|X− (U2n,Ext(U2n))| ≥ Pr[X ∈ S]− Pr[(U2n,Ext(U2n)) ∈ S]

>
1

2
− ε− 4w · 2−n+t

=
1

2
− ε− 4w · 2−n+k+1

=
1

2
− ε− 8w · 2−n+k,

as desired.

We now turn back to proving Theorem 16. We will instantiate Lemma 8 with the following two source
extractor.

Theorem 17 ([Vaz85, CG88]). Let IP : Fn2 × Fn2 → F2 denote the inner product over F2. Then IP is a
two-source extractor for min-entropy k with error ε = 2−(2k−n−1)/2.

We are now ready to prove Theorem 16.

Proof of Theorem 16. First, assume without loss of generality that n ≥ 2 (if n = 1 the statement is trivial
to show). Write n = 2` + a for some positive ` and nonnegative a. We take b to be the function IP∗ :
{0, 1}n → {0, 1}, which will just be the inner product function extended to handle odd length n. It is
defined as follows. On input x ∈ {0, 1}n, let z denote the last ` bits of x and let y denote the ` bits before
that. Then IP∗ will output IP(y, z) (from Theorem 17).

42

Suppose now that a = 0, namely that n = 2`. Then IP∗(x) = IP(x), and so plugging Theorem 17 into
Lemma 8 we get

|X− (Un, b(Un))| ≥ 1

2
− 2−(2k−`−1)/2 − 8w · 2−`+k.

Plugging in k = 3`/4 yields

|X− (Un, b(Un))| ≥ 1

2
− 10w · 2−`/4 =

1

2
− 10w · 2−n/8.

Suppose now that a = 1, namely that n = 2` + 1. Let Y = (Un, b(Un)). Let X−1 denote all but the
first bit of X, and let Y−1 denote all but the first bit of Y. It is easy to verify that |X −Y| ≥ |X′ −Y′|.
Furthermore, it is straightforward to verify that X′ can be sampled by a complex sampler of the same width
w, and that Y′ = (U2`, IP(U2`)). Thus following the same steps as before we get:

|X− (Un, b(Un))| ≥ |X′ −Y′| ≥ 1

2
− 10w · 2−`/4

=
1

2
− 10w · 2−(n−1)/8

≥ 1

2
− 16w · 2−n/8,

where we did not focus on optimizing the constant (and chose to make it a power of 2). Thus for odd and
even n we get the claimed bound.

6.1 An extension to unknown-order samplers

We now show that, without too much trouble, our lower bounds against input-output pairs (Theorem 16) can
be extended to the unknown-order setting. In particular, we prove the following:

Theorem 18. There exist universal constants C, δ > 0 such that for any prime p ∈ N and n := Cp,
there exists an explicit function b : {0, 1}n → {0, 1} such that for any unknown-order complex sampler
X ∼ {0, 1}n+1 of width w,

|X− (Un, b(Un))| ≥ 1

2
− 32w · 2−δn.

In order to prove Theorem 18, the main ingredient we will use is an explicit extractor for interleaved
sources. This can be thought of as an “unknown-order” two-source extractor. More formally, an extractor
for two interleaved sources, for min-entropy k with error ε, is a (deterministic) function Ext : {0, 1}n ×
{0, 1}n → {0, 1} with the following property: for any two independent X,Y ∼ {0, 1}n, each with min-
entropy at least k, and any permutation π : [2n] → [2n], it holds that |Ext((X,Y)π) −U1| ≤ ε. Just like
in the known-order setting, we start with the following lemma, which shows that we can take b to be any
extractor of the appropriate type. Then, we instantiate the lemma with an explicit extractor from Raz and
Yehudayoff in order to obtain Theorem 18.

Lemma 9 (Main lemma for Theorem 18). Let Ext : {0, 1}n × {0, 1}n → {0, 1} be an extractor for
two interleaved sources, for min-entropy k with error ε. Then for any unknown-order complex sampler
X ∼ {0, 1}2n+1 of width w,

|X− (U2n,Ext(U2n))| ≥ 1

2
− ε− 16w · 2−n+k.

43

In order to prove this lemma, we will use Lemma 8 as a black box. Towards this end, we will use the
following fact about (known-order) complex samplers, which is straightforward to verify.

Fact 8. For any complex sampler X ∼ {0, 1}n of width w, and any i ∈ [n], there exists a complex sampler
X′ of width 2w that samples the distribution (X1, . . . ,Xi−1,Xi+1,Xn,Xi).

Indeed, note that such an X′ can be constructed from X by suppressing its ith bit of output, writing this
bit to its memory instead (using an extra bit), and then writing this bit of memory to the output at the very
end. With this fact in hand, we now prove Lemma 9.

Proof of Lemma 9. Let X ∼ {0, 1}2n+1 be an unknown-order complex sampler of width w. By definition,
there exists a complex sampler Y ∼ {0, 1}2n+1 of width w and a permutation π : [2n+ 1]→ [2n+ 1] such
that X = Yπ. Thus by the data-processing inequality (Fact 1) we have

|X− (U2n,Ext(U2n))| = |Yπ − (U2n,Ext(U2n))| ≥ |Y − (U2n,Ext(U2n))π
−1 |.

Now, we say that a permutation ρ : [2n+1]→ [2n+1] is a deletion permutation if there is some i ∈ [2n+1]
such that for all z ∈ {0, 1}2n+1 we have zπ = (z1, . . . , zi−1, zi+1, . . . , z2n+1, zi). It is straightforward
to verify that there exists a deletion permutation ρ : [2n + 1] → [2n + 1] and some other permutation
σ : [2n]→ [2n] such that

((U2n,Ext(U2n))π
−1

)ρ = (Uσ
2n,Ext(U2n)).

Combining this with another application of the data-processing inequality (Fact 1), we have

|Y − (U2n,Ext(U2n))π
−1 | ≥ |Yρ − ((U2n,Ext(U2n))π

−1
)ρ| = |Yρ − (Uσ

2n,Ext(U2n))|.

Recall that Y is a complex sampler of width w, and ρ is a deletion permutation. Thus by Fact 8 there exists
a complex sampler Y′ of width 2w such that Y′ = Yρ, and in particular such that

|Yρ − (Uσ
2n,Ext(U2n))| = |Y′ − (Uσ

2n,Ext(U2n))|.

Next, it is straightforward to verify that (Uσ
2n,Ext(U2n)) = (U2n,Ext(U

σ−1

2n)). Now, define the function
Ext′ : {0, 1}n × {0, 1}n → {0, 1} as Ext′(x, y) := Ext((x, y)σ

−1
). Clearly we have (U2n,Ext(U

σ−1

2n)) =
(U2n,Ext

′(U2n)). Furthermore, since Ext is an extractor for two interleaved sources for min-entropy k
with error ε, it is immediate that Ext′ is a two-source extractor for min-entropy k and error ε. Combining
everything, we have

|X− (U2n,Ext(U2n))| ≥ |Y′ − (Uσ
2n,Ext(U2n))| = |Y′ − (U2n,Ext

′(U2n))|,

where Y′ is a complex sampler of width 2w and Ext′ is a two-source extractor for min-entropy k and error
ε. By Lemma 8, this statistical distance is at least 1

2 − 16w · 2−n+k, which completes the proof.

We now turn back to proving Theorem 18. We will instantiate Lemma 9 with the following extractor of
Raz and Yehudayoff for two interleaved sources.

Theorem 19 ([RY11]). There exist universal constantsC, δ > 0 such that for all prime p ∈ N and n := Cp,
there exists an explicit extractor Ext : {0, 1}n × {0, 1}n → {0, 1} for two interleaved sources, for min-
entropy k ≥ (1− δ)n with error ε = 2−δn.

We are now ready to prove Theorem 18.

44

Proof of Theorem 18. Let C ′, δ′ > 0 be the universal constants in Theorem 19, let C = 2C ′, and let δ > 0
be a constant to be defined later. Now, let b : {0, 1}n/2 × {0, 1}n/2 → {0, 1} be the explicit extractor for
two interleaved sources given by Theorem 19 for min-entropy k ≥ (1− δ′)n/2 with error ε = 2−δ

′n/2. By
Lemma 9 we have

|X− (Un, b(Un))| ≥ 1

2
− ε− 16w · 2−n/2+k =

1

2
− 2−δ

′n/2 − 16w · 2−n/2+(1−δ′)n/2

≥ 1

2
− 32w · 2−δ′n/2 =

1

2
− 32w · 2−δn

for δ := δ′/2 > 0, as desired.

6.2 Corresponding results for ROBPs

In this section, we briefly show how to combine our equivalence theorems with the above results in order to
obtain our second main result: sampling lower bounds against input-output pairs for ROBPs.

Theorem 20 (Theorem 2, restated). There is a universal constant c > 0 and an explicit function b :
{0, 1}n → {0, 1} such that for any ROBP F : {0, 1}` → {0, 1}n+1 of width w ≤ 2cn,

|F (U`)− (Un, b(Un))| ≥ 1

2
− 2−cn.

Proof. Combine Theorem 16 with the first bullet of Theorem 6.

Furthermore, we also obtain the stronger unknown-order version of the above theorem:

Theorem 21. There is a universal constant c > 0 and an explicit function b : {0, 1}n → {0, 1} such that
for any unknown-order ROBP F : {0, 1}` → {0, 1}n+1 of width w ≤ 2cn,

|F (U`)− (Un, b(Un))| ≥ 1

2
− 2−cn.

Proof. Combine Theorem 18 with the first bullet of Theorem 6 and the definition of unknown-order ROBPs
and samplers (Section 3.3).

Furthermore, recall that our function b : {0, 1}n → {0, 1} can be taken as the inner product function.
Since (Un, b(Un)) is known to be samplable by AC0 circuits [IN96], Theorem 20 gives the following
complexity separation.

Corollary 8. There exists an explicit function b : {0, 1}n → {0, 1} such that |F (U`) − (Un, b(Un))| ≥
1
2−2−Ω(n) for any ROBP F : {0, 1}` → {0, 1}n+1 of width 2Ω(n), but such that (Un, b(Un)) can be exactly
sampled by AC0 circuits.

Furthermore, by combining Theorem 16 with Theorem 8, we obtain the following corollary.

Corollary 9. There exists an explicit function b : {0, 1}n → {0, 1} such that for any ROBP F : {0, 1}n →
{0, 1} of width 2Ω(n), it holds that | corr(F, b)| ≤ 2−Ω(n).

Finally, by combining Theorem 18 with Theorem 9, we obtain the following.

Corollary 10. There exists an explicit function b : {0, 1}n → {0, 1} such that for any unknown-order ROBP
F : {0, 1}n → {0, 1} of width 2Ω(n), it holds that | corr(F, b)| ≤ 2−Ω(n).

More generally, note that we can use Lemma 8 and Lemma 9 to obtain correlation bounds against two-
source extractors and extractors for two interleaved sources.

45

7 Sampling lower bounds against list-decodable codes

In this section, we will prove our main sampling lower bound against list decodable codes. In particular, we
prove the following.

Theorem 22. Let Q ∼ {0, 1}n be uniform over a (ρ, L) list decodable code of dimension k. Then for any
complex sampler X ∼ {0, 1}n of width w,

|X−Q| ≥ 1− 4wL · 2−
ρ

1+2ρ
k
.

Note that by combining this theorem with Theorem 6, we immediately get Theorem 3. Furthermore, by
combining it with Theorem 11, we immediately get Corollary 4.

Proof of Theorem 22. We start by writing our complex sampler as a convex combination of random vari-
ables with nice structure. Let W = (W1, . . . ,Wn) be the vertices hit on the random walk that generates
X (excluding the start vertex of the branching program). Let r, ` be positive integers that will be set later
to ensure r` = n. Define W∗ = (W`,W2`, . . . ,Wr`), and recall the following standard observation (first
made in [KM04, KM05, KRVZ11]): for any W ∈ support(W∗), the random variable (X | W∗ = W) is
of the form X(W) := (X

(W)
1 ,X

(W)
2 , . . . ,X

(W)
r), where each X

(W)
i ∼ {0, 1}` is independent. Thus the

complex sampler X is a convex combination of the form

X =
∑

W∈support(W∗)

pW ·X(W),

where each pW := Pr[W∗ = W].
The goal now is to use the above decomposition to help us get a good lower bound on |X − Q| =

maxS |Pr[X ∈ S]− Pr[Q ∈ S]|. Towards this end, we note that for any S,

|X−Q| ≥ Pr[Q ∈ S]− Pr[X ∈ S] = Pr[Q ∈ S]−
∑
W

pW · Pr[X(W) ∈ S]

≥ Pr[Q ∈ S]−max
W

Pr[X(W) ∈ S].

Thus, we would like to pick a test S that maximizes the quantity Pr[Q ∈ S] while minimizing the
quantity maxW Pr[X(W) ∈ S]. A natural candidate for S is the entire codebook Q = support(Q), minus
some small set of “bad codewords” Bad, which are assigned too high of a probability by some X(W). As
such, we let t > 0 be a parameter to be set later, and we define S = Q− Bad where

Bad :=
⋃
W

Bad(W),

Bad(W) := {q ∈ Q : Pr[X(W) = q] > 2−t}.

Plugging in this definition of S, we get

|X−Q| ≥ Pr[Q ∈ Q− Bad]−max
W

Pr[X(W) ∈ Q− Bad]

≥ 1− Pr[Q ∈ Bad]−max
W

Pr[X(W) ∈ Q− Bad(W)].

46

Thus, we would like to upper bound both quantities that are subtracted. To upper bound the first quantity,
simply note that

Pr[Q ∈ Bad] = 2−k · |Bad| ≤ 2−k
∑

W∈support(W∗)

|Bad(W)| < 2−k+t+r log(w)

via the trivial upper bounds |support(W∗)| ≤ wr and |Bad(W)| < 2t for each W .
To upper bound the second quantity maxW Pr[X(W) ∈ Q−Bad(W)], we start by making notation more

convenient: let W ∗ be the maximizer of the above quantity, and define Y := X(W ∗) and Bad∗ := Bad(W ∗).
Of course we have maxW Pr[X(W) ∈ Q−Bad(W)] = Pr[Y ∈ Q−Bad∗], and we focus on upper bounding
the latter.

Recall that Y is of the form Y = (Y1, . . . ,Yr) where each Yi ∼ {0, 1}` is independent, and Bad∗ :=
{q ∈ Q : Pr[Y = q] > 2−t} contains all codewords hit by Y with large probability. Thus each q ∈
Q−Bad∗ must have Pr[Y = q] ≤ 2−t. So, if we parse each q as (q1, q2, . . . , qr) ∈ ({0, 1}`)r, we have that
Pr[Y = q] = Pr[Y1 = q1] · Pr[Y2 = q2] · · ·Pr[Yr = qr] by the independence of these random variables,
and so there must be some π(q) ∈ [r] such that Pr[Yπ(q) = qπ(q)] ≤ 2−t/r.

Now, for a string x = (x1, x2, . . . , xr) ∈ ({0, 1}`)r, we let x−i := (x1, . . . , xi−1, xi+1, . . . , xr) denote
x with its ith chunk removed, and proceed as follows:

Pr[Y ∈ Q− Bad∗] =
∑

q∈Q−Bad∗
Pr[Y = q]

=
∑

q∈Q−Bad∗
Pr[Yπ(q) = qπ(q)] · Pr[Y−π(q) = q−π(q)]

≤ 2−t/r
∑

q∈Q−Bad∗
Pr[Y−π(q) = q−π(q)]

≤ 2−t/r
∑

q∈Q−Bad∗
Pr[Y ∈ Ball(q, `)]

= 2−t/r
∑

v∈{0,1}n
Pr[Y = v] ·#{q ∈ Q− Bad∗ : v ∈ Ball(q, `)}

≤ 2−t/r
∑

v∈{0,1}n
Pr[Y = v] ·#{q ∈ Q : ∆(v, q) ≤ `}

≤ 2−t/r
∑

v∈{0,1}n
Pr[Y = v] · |Ball(v, `) ∩Q|

≤ 2−t/r ·max
v
|Ball(v, `) ∩Q|

≤ 2−t/r · L if ` ≤ ρn,

where the last line follows since Q is a (ρ, L)-list decodable code (see Definition 6). Thus, provided that we
have selected r, ` ∈ N such that r` = n and ` ≤ ρn, we can combine all of the above to get

|X−Q| ≥ 1− Pr[Q ∈ Bad]−max
W

Pr[X(W) ∈ Q− Bad(W)]

= 1− Pr[Q ∈ Bad]− Pr[Y ∈ Q− Bad∗]

> 1− 2−k+t+r logw − 2−t/r+logL.

47

Before picking r, `, we set9 t = r
r+1 · (k− r logw+ logL) as the value that equalizes the two exponents

to − 1
r+1 · (k − r logw + logL) + logL ≤ − k

r+1 + log(wL) to obtain

|X−Q| > 1− 2−t/r+logL+1 ≥ 1− 2−
k
r+1

+log(wL)+1.

Thus all that remains is to pick r, ` ∈ N such that r` = n. If 1/ρ and ρn are integers, we simply set r = 1/ρ
and ` = ρn to obtain

|X−Q| > 1− 2−
k
r+1

+log(wL)+1 = 1− 2wL · 2−
ρ

1+ρ
k
.

If 1/ρ and ρn are not integers, there is an easy way to slightly modify the proof so that everything works
out (with a minor loss in parameters): first, recall that we originally defined W∗ = (W`,W2`, . . . ,Wr`)

so that each (X |W∗ = W) is of the form X(W) := (X
(W)
1 , . . . ,X

(W)
r), where each X

(W)
i is independent

and over ` bits. Observe that the argument actually does not require that each X
(W)
i has the same length;

instead, it simply requires that each X
(W)
i has length at most ρn. Thus, we could have actually started with

any W∗ of the form
W∗ = (Wα1 ,Wα2 , . . . ,Wαr),

where 0 < α1 < α2 < · · · < αr = n, and each gap αj−αj−1 is bounded above by ρn. And the exact same
argument as above yields

|X−Q| > 1− 2−
k
r+1

+log(wL)+1. (9)

Thus, we now have more flexibility in dealing with the case where 1/ρ and ρn are not integers: we can
simply pick an integer r and define 0 < α1 < α2 < · · · < αr = n such that each gap is at most ρn. In more
detail, we can force the first r − 1 gaps to be exactly bρnc, while the last gap is at most bρnc, by picking
r :=

⌈
n
bρnc

⌉
and setting αj := bρnc · j for all j ∈ [r − 1].

Before we plug the value of r into Equation (9), it is useful to get a clean lower bound on 1
r+1 :

1

r + 1
=

1

d n
bρnce+ 1

≥ 1
n
bρnc + 2

≥ 1
n

ρn−1 + 2
=

ρn− 1

n+ 2(ρn− 1)
=

ρn

n+ 2(ρn− 1)
− 1

n+ 2(ρn− 1)

≥ ρn

n+ 2ρn
− 1

n
=

ρ

1 + 2ρ
− 1

n
≥ ρ

1 + 2ρ
− 1

k
,

where the last inequality follows since k ≤ n, because a code’s dimension cannot exceed the dimension in
which it lives. At last, we can plug our lower bound for 1/(r + 1) into Equation (9) to obtain

|X−Q| > 1− 2−
k
r+1

+log(wL)+1 ≥ 1− 2
−k·(ρ

1+2ρ
− 1
k

)+log(wL)+1
= 1− 4wL · 2−

ρ
1+2ρ

k
,

which completes the proof.
9Technically we originally asked for t > 0, but we may assume this without loss of generality, since if this setting of t is

nonpositive, then the claimed result will become |X−Q| ≥ 0, which is trivially true.

48

7.1 Nearly-tight sampling lower bounds against (n, k, d) codes

In the previous section, we gave very general sampling lower bounds against list-decodable codes via The-
orem 22. By combining this result with the list-decodability of (n, k, d) codes (Fact 2), we immediately
obtain the following sampling lower bounds against (n, k, d) codes, which are nearly tight.

Theorem 23. Let Q ∼ {0, 1}n be uniform over an (n, k, d) code. Then for any complex sampler X ∼
{0, 1}n of width w,

|X−Q| ≥ 1− 8w · 2−
kd
4n .

In particular, we get that for any distribution Q ∼ {0, 1}n that is uniform over a good code, every
complex sampler X ∼ {0, 1}n of width 2Ω(n) has |X −Q| ≥ 1 − 2−Ω(n). Furthermore, we can show that
Theorem 23 is almost tight, in the following sense: for almost all “valid” n, k, d, there exists an (n, k, d)

code Q ∼ {0, 1}n that can be exactly sampled by a complex sampler of width w = 2Õ(kd
n

). More formally,
we show the following.

Theorem 24. There is a universal constant C > 0 such that the following holds. For all n, k, d ∈ N such
that there exists a linear [n, k, d] code, there exists a distribution Q ∼ {0, 1}n uniform over a linear [n, k, d]

code that can be exactly generated by a complex sampler X ∼ {0, 1}n of width w ≤ C · 2C·
kd
n
·logn.

Proof. We split the casework into k ≤ 0.9n and k > 0.9n.
Case: k ≤ 0.9n: In this case, we will show that there is a linear [n, k, d] code Q ⊆ {0, 1}n such that

the uniform distribution Q over Q can be sampled in width w ≤ C · 2Ckd/n for a sufficiently large constant
C. To construct Q, the general idea will be to take an [n′, k′, d′] code Q′ over a smaller space {0, 1}n′ and
repeat it n/n′ times.

In more detail, let C be a sufficiently large constant to be chosen later, and set n′ = Cd. We will aim
to repeat our smaller code t := bn/n′c times. We may assume t ≥ 20: Otherwise, 20n′/n = 20Cd/n > 1
and we can sample the linear [n, k, d] code (guaranteed to exist by the hypothesis) by a simple sampler of
width w = 2k < 2k·20Cd/n (by Fact 4), and we are done. So we can henceforth assume t ≥ 20.

Note that there must be some integers n1, . . . , nt such that each ni ≥ n′ and
∑

i ni = n. Suppose now
that there exist a collection of codes {Qi}i∈[t] such that all of the following hold:

• Each Qi is a linear [ni, ki, di] code.

• Each ki = dk/te.

• Each di = d.

Then
∑

i ki ≥ k, and we may of course find a collection of linear codes {Q′i}i∈[t] with the same properties as
{Qi}i∈[t], except that the property ki = dk/te is traded for the properties ki ≤ dk/te and

∑
i ki = k (simply

by reducing the dimension of each code by an appropriate amount). Notice that Q′1×Q′2× · · · ×Q′t is then
a linear [n, k, d] code. Furthermore, by combining Fact 4 and Fact 6, this code can be exactly generated by
a simple sampler X ∼ {0, 1}n of width w ≤ 2d

k
t
e ≤ 2 · 22C· kd

n .
Thus all that remains for this case is to show the existence of a collection of codes {Qi}i∈[t] with the

above mentioned properties. For this, it suffices to show the existence of a linear [n′, k′, d′] code, where

n′ = Cd,

k′ =

⌈
k

t

⌉
=

⌈
k

b nCdc

⌉
,

d′ = d.

49

By the Gilbert-Varshamov bound (Theorem 5), such a code exists as long as 2k
′ ≤ 2n

′
/
(

n′

≤d′−1

)
. Plugging

in the above values for n′, k′, d′, a straightforward calculation (using the case condition that k/n ≤ 0.9)
shows that such a code must exist whenever C ≥ 250. Thus we can always find a linear [n, k, d] code
Q ⊆ {0, 1}n such that the uniform distribution Q over Q can be sampled in width w ≤ 2 · 25000·kd/n.

Case: k > 0.9n: In this case, we will show that there exists a linear [n, k, d] code Q ⊆ {0, 1}n

such that the uniform distribution Q over Q can be sampled in width w ≤ 2C·
kd
n

logn for a sufficiently large
constant C. To construct Q, the general idea will be to start with a code Q′ of dimension k′ � k, show that
membership in Q′ can be checked by a small width ROBP (by keeping track of parity checks), and then
convert this into a simple sampler via Theorem 10. Then, it will not be too difficult to reduce the dimension
of Q′ to match the target dimension k, while barely affecting the width of the sampler.

In more detail, let k′ := n − d4d log ne. We consider the subcases k ≥ k′ and k < k′. We first
consider the easier subcase k ≥ k′. By the theorem hypothesis, we know that there is a linear [n, k, d] code
Q ⊆ {0, 1}n. Let Q⊥ denote its dual, and recall that Q⊥ must therefore have dimension n − k. In other
words, we can find a basis v(1), . . . , v(n−k) of Q⊥. Now, define a function f : Fn2 → F2 such that f(x) = 1
if and only if 〈x, v(i)〉 = 0 over F2, for all i ∈ [n− k]. That is, f accepts exactly the strings in (Q⊥)⊥ = Q.

We can now design a low width ROBP that computes f . To do so, the ROBP keeps as its state a string
s ∈ Fn−k2 , which is originally initialized to the all zeroes vector. Upon reading a bit xi ∈ {0, 1}, the
ROBP considers a vector u(i) ∈ Fn−k2 which consists of the ith bit of each of v(1), . . . , v(n−k) concatenated
together. Then, the ROBP transitions to state s + xi · u(i). In its final layer, the ROBP treats the all zeroes
state as the accept state, and every other state as a reject state.

It is straightforward to verify that the above ROBP has width 2n−k, and that the state s ∈ Fn−k2 it
reaches in the final layer is exactly (〈x, v(1)〉, . . . , 〈x, y(n−k)〉). Since the ROBP accepts if and only if this
is the all zeroes vector, we see that the ROBP exactly computes f . And since f−1(1) = Q, we can apply
Theorem 10 to get a simple sampler of width w = 2n−k that samples the uniform distribution Q over Q.
Since we have k ≥ k′ = n− d4d log ne, we know n− k ≤ d4d log ne ≤ 5d log n < 2 · kn · 5d log n, where
the last inequality follows from the case condition k/n > 0.9. Thus our simple sampler for our [n, k, d]

code Q has width w < 210· kd
n

logn, as desired.

We now consider the subcase k < k′. Let t := k′ − k ≥ 1. By the Gilbert-Varshamov bound
(Theorem 5), there must exist a linear [n, k′, d] code Q′ ⊆ Fn2 . As we have seen above, Q′ is easy to sample.
But we would like to sample an [n, k, d] code using approximately the same width. To do so, we will find a
subcode of Q′ that is easy to sample.

Since Q′ is a linear [n, k′, d] code, it must have some vector q of Hamming weight d. Without loss of
generality, we may assume the first d coordinates of q are 1, and the last n− d coordinates are 0. Consider
now the orthogonal complement Sq of {0, q}. Note that Sq has dimension n − 1. Furthermore, consider
defining so-called “augmented elementary basis vectors” {ê(i)}i∈[n],i 6=d as follows: for each i < d, let
ê(i) := e(i) + e(i+1), and for each i > d, let ê(i) := e(i), where each e(i) ∈ Fn2 denotes a standard elementary
basis vector. Then {ê(i)} is a basis for Sq.

Now let v(1), . . . , v(n−k′) be an arbitrary basis for the orthogonal complement (Q′)⊥. By straight-
forward linear algebra, there must be at least k′ − 1 vectors in {ê(i)}i that are mutually independent
with v(1), . . . , v(n−k′). Without loss of generality, assume they are ê(1), . . . , ê(k′−1). Notice now that
t ≤ k′ − 1 (since we may assume k ≥ 1), and consider the subspace Q̃ spanned by basis vectors
v(1), . . . , v(n−k′), ê(1), . . . , ê(t). Observe that Q̃ has dimension n− k′ + t = n− k.

Finally, let Q∗ := Q̃⊥. Notice that Q∗ has dimension n − (n − k) = k and that Q∗ is a subspace

50

of ((Q′)⊥)⊥ = Q′. Thus Q∗ has minimum distance ≥ d. In fact, by our basis selection for Q̃, it is
straightforward to verify that the Hamming-weight d vector q defined earlier is also in Q∗ (since q has inner
product 0 with all the basis vectors of Q̃). Thus, Q∗ has minimum distance exactly d and it is therefore a
linear [n, k, d] code. Thus all that remains is to show that the uniform distribution over Q∗ can be sampled
by a low width simple sampler.

As in the first case of this proof, let f : Fn2 → F2 be defined such that f(x) = 1 if and only if 〈x, v〉 = 0
for all v ∈ {v(1), . . . , v(n−k′), ê(1), . . . , ê(t)}. In other words, f tests membership in Q∗. Thus, if there is
an ROBP of width w that computes f , then there is a simple sampler of width w that samples the uniform
distribution Q over Q∗, by Theorem 10.

We now design a low width ROBP that computes f as follows. The state space of the ROBP will be
Fn−k

′

2 × {0, 1} × {0, 1}, and it will start at state s = (~0, 0, 0). Informally, the first part of the state will
keep track of the parity checks v(1), . . . , v(n−k′), while the remaining two parts will keep track of the parity
checks ê(1), . . . , ê(t) through a more compressed representation (which is enabled by the fact that these basis
vectors each have Hamming weight at most 2).

More formally, suppose the ROBP is reading the string x ∈ {0, 1}n, and at time i − 1 it arrive at state
(z, b, c) ∈ Fn−k

′

2 × {0, 1} × {0, 1}. Upon reading the next bit xi, the ROBP will transition to the state
(z′, b′, c′), defined as follows. First, let u(i) ∈ Fn−k

′

2 be the string that consists of the ith bit of each of
v(1), . . . , v(n−k′). Then, define z′ := z + xi · u(i).

Next, define b′ := xi.
Finally, we define c′ as follows. If c = 1 then keep c′ as 1 (this indicates one of the parity checks

ê(1), . . . , ê(t) has already been violated). If i = 1 then keep c′ as 0. If 1 < i ≤ d then set c = 1 if and only
if b 6= xi (since this means 〈x, ê(i−1)〉 = 1). And if d < i ≤ n, set c = xi (since 〈x, ê(i)〉 = xi).

In the last layer of the ROBP, let all zeroes string (~0, 0, 0) be the accept state, and every other string
in Fn−k

′

2 × {0, 1} × {0, 1} be a reject state. It is straightforward to verify that the accept state is hit if
and only if x has inner product 0 with each of v(1), . . . , v(n−k′), ê(1), . . . , ê(t). Furthermore, this ROBP has
width w = |Fn−k′2 × {0, 1} × {0, 1}| = 2n−k

′+2 = 2d4d logne+2 < 22 k
n
·4d logn+3, where the last inequality

follows from the case condition k/n > 0.9. Thus by Theorem 10, there is a simple sampler of width
w < 8 · 28· kd

n
logn that samples the uniform distribution Q over the linear [n, k, d] code Q∗, as desired.

7.2 An extension to unknown-order samplers

We now show that our general sampling lower bounds against list-decodable codes (Theorem 22) can be
easily extended to the unknown-order setting. In particular, we prove the following:

Theorem 25. Let Q ∼ {0, 1}n be uniform over a (ρ, L) list decodable code of dimension k. Then for any
unknown-order complex sampler X ∼ {0, 1}n of width w,

|X−Q| ≥ 1− 4wL · 2−
ρ

1+2ρ
k
.

Proof. By definition of unknown-order complex sampler, there exists a complex sampler Y ∼ {0, 1}n and
a permutation π : [n]→ [n] such that X = Yπ. Thus by the data-processing inequality (Fact 1) we have

|X−Q| = |Yπ −Q| ≥ |Y −Qπ−1 |.

It is easy to verify that permuting the coordinates of a code does not change its list-decodability. Thus Qπ−1

is uniform over a (ρ, L) list decodable code of dimension k. And since Y is a complex sampler, the result
follows immediately from Theorem 22.

51

7.3 Corresponding results for ROBPs

In this section, we briefly show how to combine our equivalence theorems with the above results in order to
obtain our third main result: sampling lower bounds against codes for ROBPs.

Theorem 26 (Theorem 3, restated). Let Q ∼ {0, 1}n be uniform over a (ρ, L) list decodable code of
dimension k. Then for any ROBP F : {0, 1}` → {0, 1}n of width w,

|F (U`)−Q| ≥ 1− 8wL · 2−
ρ

1+2ρ
k
.

Proof. Combine Theorem 22 with the first bullet of Theorem 6.

Furthermore, we have seen that it is trivial to extend this to also hold for unknown-order ROBPs. Next,
by Fact 2, we obtain the following specialization of Theorem 26:

Corollary 11. Let Q ∼ {0, 1}n be uniform over an (n, k, d) code of dimension k. Then for any ROBP
F : {0, 1}` → {0, 1}n of width w,

|F (U`)−Q| ≥ 1− 12w · 2−
kd
4n .

In particular, for any good code Q ∼ {0, 1}n and ROBP F : {0, 1}` → {0, 1}n of width 2Ω(n), it holds
that |F (U`)−Q| ≥ 1− 2−Ω(n). Furthermore, recall that our sampling lower bounds for complex samplers
against (n, k, d) codes are almost tight (Theorem 24). In fact, the tightness is actually witnessed by a simple
sampler that is 2−n-granular. Thus, combining Theorem 24 with Lemma 4, we obtain the following.

Remark 3. Corollary 11 is almost tight: for all n, k, d ∈ N such that there exists a linear [n, k, d] code,
there exists a distribution Q ∼ {0, 1}n uniform over a linear [n, k, d] and an ROBP F : {0, 1}` → {0, 1}n

of width w ≤ 2O(kd
n

logn) and length ` = n2 such that F (U`) = Q.

We now consider some applications of these sampling lower bounds. Using one direction of one of our
equivalence theorems (Theorem 11), we show that ROBPs of exponential width cannot test membership
of a good code. In fact, we prove something stronger, and show the following covariance bounds (see
Definition 4 for a definition of covariance).

Corollary 12. Let b : {0, 1}n → {0, 1} be the indicator function of a good code Q ⊆ {0, 1}n. Then for any
ROBP F : {0, 1}n → {0, 1} of width 2Ω(n), it holds that | cov(F, b)| ≤ 2−Ω(n).

In fact, note that we can get the exact same covariance bounds for unknown-order ROBPs by combining
our unknown-order sampling lower bounds with Theorem 12. Next, we show how our sampling lower
bounds against codes yield data structure lower bounds against storing codewords succinctly and retrieving
them using ROBPs.

7.4 An application to data structure lower bounds

Just like in the previous works on sampling lower bounds against codes [LV12, BIL12], we can use an
observation of Viola [Vio12a] to get data structure lower bounds against storing codewords. In particular,
we obtain the following:

52

Corollary 13 (Data structure lower bounds). Let Q ⊆ {0, 1}n be a (ρ, L) list decodable code of dimension
k. Suppose that we can store the codewords of Q using only k + r bits so that a codeword can be computed
by an ROBP F : {0, 1}k+r → {0, 1}n of width w. Then

r ≥ ρ

1 + 2ρ
· k − log(wL)− 3.

We repeat the proof of Viola [Vio12a] (see also [LV12]), using ROBPs instead of circuits.

Proof of Corollary 13. Suppose the codewords of Q can be stored in {0, 1}k+r bits of memory so that they
can be retrieved by some ROBP F : {0, 1}k+r → {0, 1}n of width w. Let Q be uniform over Q, and let
Uk+r be uniform over {0, 1}k+r, and observe that

|F (Uk+r)−Q| ≤ 1− 2−r

by a simple calculation using the definition of statistical distance. But by Theorem 26, we know that

1− 8wL · 2−
ρ

1+2ρ
k ≤ |F (Uk+r)−Q|.

Combining the bounds yields the result.

For (n, k, d) codes, the above result specializes to the following.

Corollary 14. Let Q ⊆ {0, 1}n be an (n, k, d) code. Suppose that we can store codewords using only k+ r

bits so that a codeword can be computed by an ROBP F : {0, 1}k+r → {0, 1}n of width 2Ω(dk
n

). Then

r ≥ Ω

(
dk

n

)
.

Thus for good codes, one must use r = Ω(n) bits of redundancy, even given an ROBP of width 2Ω(n).

8 A direct product theorem

In this section, we present our direct product theorems. In particular, we prove the following.

Theorem 27. Let Q ∼ {0, 1}n be a distribution such that for any complex sampler X ∼ {0, 1}n of width
w, it holds that |X−Q| ≥ δ. Then for any complex sampler X∗ ∼ {0, 1}nt of width w,

|X∗ −Q⊗t| ≥ 1− e−tδ2/2.

In our proof of this theorem, we will also show that the above direct product theorem holds for simple
samplers. In Section 8.1, we will show how to combine Theorem 27 with our equivalence theorems in order
to obtain the corresponding result for sampling with ROBPs. In particular, we will prove Theorem 4 and
show how it can be used to obtain our complexity separation between sampling with ROBPs and sampling
with AC0 circuits.

Now, before we prove Theorem 27, we introduce the main lemma that we will use in its proof.

53

Lemma 10 (Main lemma for Theorem 27). Let X ∼ V n and Y ∼ V n each be a sequence of n random
variables over V , where elements in the sequence need not be independent. Suppose that for any i ∈ [n]
and v ∈ V i−1,

|(Xi | X<i = v)− (Yi | Y<i = v)| ≥ δ.
Then

|X−Y| ≥ 1− e−nδ2/2.

It turns out that this lemma will be a little cumbersome to prove using statistical distance. Thus, we will
convert the statement into one about more amenable notions of distance. The first such measure we consider
is the squared Hellinger distance.

Definition 14 (Hellinger distance). Let X,Y be random variables over some discrete V . The squared
Hellinger distance between X,Y is

H2(X,Y) =
1

2

∑
v∈V

(√
Pr[X = v]−

√
Y = v

)2

We would now like to express Lemma 10 using this more well-behaved measure of distance. For this,
we will need the following fact, which is well-known and straightforward to show using Cauchy-Schwarz.
It gives us estimates on statistical distance in terms of squared Hellinger distance.

Fact 9. For any discrete random variables X,Y ∼ V ,

H2(X,Y) ≤ |X−Y| ≤
√

2H(X,Y).

We now have the tools necessary to convert Lemma 10 into a statement about squared Hellinger distance.
However, it turns out that there is another related measure of distance/similarity that will make Lemma 10
even easier to prove. It is known as the Bhattacharyya coefficient:

Definition 15 (Bhattacharyya coefficient). Let X,Y be random variables over some discrete V . The Bhat-
tacharyya coefficient between X and Y is defined as

BC(X,Y) :=
∑
v∈V

√
Pr[X = v] · Pr[Y = v].

It is easy to verify via Definitions 14 and 15 that 1−BC(X,Y) = H2(X,Y). We can then combine this
observation with Fact 9 to obtain the following estimates on statistical distance in terms of the Bhattacharyya
coefficient.

Fact 10. For any discrete random variables X,Y ∼ V ,

1− BC(X,Y) ≤ |X−Y| ≤
√

2
√

1− BC(X,Y).

The goal now is to prove a version of Lemma 10 that uses the Bhattacharyya coefficient. We will then
combine this result with Fact 10 to finally prove Lemma 10, which we then use to prove Theorem 27.

Lemma 11. Let X ∼ V n and Y ∼ V n each be a sequence of n random variables over V , where elements
in the sequence need not be independent. Suppose that for any i ∈ [n] and v ∈ V i−1,

BC((Xi | X<i = v), (Yi | Y<i = v)) ≤ δ.

Then
BC(X,Y) ≤ δn.

54

Proof. We prove the slightly stronger statement that for any i ∈ [n], it holds that BC(X≤i,Y≤i) ≤ δi. We
prove the result by induction on i. The base case i = 1 is immediate from the hypothesis. For the case i ≥ 2
we have

BC(X≤i,Y≤i) =
∑
v∈V i

√
Pr[X≤i = v] Pr[Y≤i = v]

=
∑

v∈V i−1

∑
b∈V

√
Pr[X<i = v] Pr[Xi = b | X<i = v] Pr[Y<i = v] Pr[Yi = b | Y<i = v]

=
∑

v∈V i−1

√
Pr[X<i = v] Pr[Y<i = v]

∑
b∈V

√
Pr[Xi = b | X<i = v] Pr[Yi = b | Y<i = v]

=
∑

v∈V i−1

√
Pr[X<i = v] Pr[Y<i = v] · BC((Xi | X<i = v), (Yi | Y<i = v))

≤ δ ·
∑

v∈V i−1

√
Pr[X<i = v] Pr[Y<i = v]

= δ · BC(X<i,Y<i)

≤ δ · δi−1

= δi,

where the inequalities use the lemma hypothesis and the induction hypothesis.

We now combine the above lemma with our estimates from Fact 10 to prove Lemma 10.

Proof of Lemma 10. By combining the lemma hypothesis with Fact 10, we know that for any i ∈ [n] and
v ∈ V i−1,

BC((Xi | X<i = v), (Yi | Y<i = v)) ≤ 1− |(Xi | X<i = v)− (Yi | Y<i = v)|2

2
≤ 1− δ2/2.

Thus by Lemma 11 we have
BC(X,Y) ≤ (1− δ2/2)n ≤ e−nδ2/2,

where we use the standard inequality 1 + x ≤ ex for all real x. Using Fact 10 once more we get

|X−Y| ≥ 1− BC(X,Y) ≥ 1− e−nδ2/2,

as desired.

At last, we are almost ready to apply Lemma 10 to prove our main theorem of the section. But just
before we do so, we need the following two facts, which are both straightforward to verify.

Fact 11. Let X ∼ {0, 1}n be a complex sampler of width w. Then for any 1 ≤ i ≤ j ≤ n and any
x ∈ {0, 1}i−1, the distribution

(Xi→j | X<i = x)

is also a complex sampler of width w.

55

Fact 12. Let X ∼ {0, 1}n be a simple sampler of width w. Then for any 1 ≤ i ≤ j ≤ n and any
x ∈ {0, 1}i−1, the distribution

(Xi→j | X<i = x)

is also a simple sampler of width w.

Finally, we are ready to prove Theorem 27, and thereby obtain our direct product theorems for simple
and complex samplers.

Proof of Theorem 27. Parse X∗ as (X1, . . . ,Xt) ∼ ({0, 1}n)t, and parse Q⊗t as (Q1, . . . ,Qt) ∼
({0, 1}n)t. By definition, each Qi is an independent copy of Q. And by Fact 11 or Fact 12 (depending on
whether we want to prove the result for complex or simple samplers), we know that for any fixing of X<i,
the random variable Xi is a sampler of the same type, and it has width at most w. Thus for any i ∈ [t] and
v ∈ ({0, 1}n)i−1, we have

|(Xi | X<i = v)− (Qi | Q<i = v)| ≥ δ

by the hypothesis |X−Q| ≥ δ. Applying Lemma 10 completes the proof.

8.1 Corresponding results for ROBPs

In this section, we will show how to apply the tools from above to obtain our main direct product theorem,
for sampling with ROBPs (Theorem 4). Then, we will show how it can be used to obtain a strong separation
between sampling with ROBPs and sampling with AC0 circuits (Corollary 6). We begin with the direct
product theorem.

Theorem 28 (Theorem 4, restated). Let Q ∼ {0, 1}n be a distribution such that for any ` ∈ N and any
ROBP F : {0, 1}` → {0, 1}n of width w, it holds that |F (U`) −Q| ≥ δ. Then for any t, `∗ ∈ N and any
ROBP F ∗ : {0, 1}`∗ → {0, 1}nt of width w, it holds that

|F ∗(U`∗)−Q⊗t| ≥ 1− e−tδ2/4.

In order to prove this result, we would like to use our equivalence theorems and the direct product
theorem for complex samplers (from the previous section). Such a proof would look roughly as follows:
first, if every ROBP F : {0, 1}` → {0, 1}n of width w has |F (U`) − Q| ≥ δ, then by the second bullet
of Theorem 6, every complex sampler X ∼ {0, 1}n of width w/7 has roughly |X − Q| ≥ δ. Then, by
Theorem 27, we know that every complex sampler X∗ ∼ {0, 1}nt of width w/7 has roughly |X∗−Q⊗t| ≥
1 − e−tδ2/4. Finally, by the first bullet of Theorem 6, every ROBP F : {0, 1}`∗ → {0, 1}nt of width w/14
must have |F ∗(U`∗)−Q⊗t| ≥ 1− e−tδ2/4.

The above argument will give us statistical distance lower bounds of the form that we would like, but
we lose a factor of 14 in the width. We would like to avoid this, and keep the direct product theorem strong,
in the sense that the width need not decrease at all. Towards this end, we will prove a version of Fact 11 for
sampling using ROBPs. In particular, we prove the following.

Claim 1. Let F ∗ : {0, 1}`∗ → {0, 1}n be an ROBP of width w, and define X := F ∗(U`∗). For any
1 ≤ i ≤ j ≤ n and any x ∈ {0, 1}i−1, and any ε > 0, the following holds. There exists an ROBP
F : {0, 1}` → {0, 1}j−i+1 of width w and length ` = `∗ + 3w log(w/ε) such that

|F (U`)− (Xi→j | X<i = x)| ≤ ε.

56

A natural approach towards proving Claim 1 is to build the ROBP F : {0, 1}` → {0, 1}j−i+1 by
taking the appropriate slice of the ROBP F ∗ and simulating the conditioning X<i = x using a multi-
threshold function, as in Section 4.1. However, our ROBP from that section for computing this multi-
threshold function required width 2w, and we showed that this is tight. To simulate this conditioning using
width just w, we need a new idea. Before presenting this new idea and proving Claim 1, let us see how it
can be used to prove Theorem 28.

Proof of Theorem 28. Let X∗ = F ∗(U`∗). Parse X∗ as (X1, . . . ,Xt) ∼ ({0, 1}n)t, and parse Q⊗t as
(Q1, . . . ,Qt) ∼ ({0, 1}n)t. Now, fix any i ∈ [t] and v ∈ ({0, 1}n)i−1. We want to get a lower bound on
|(Xi | X<i = v)− (Qi | Q<i = v)|. Towards this end, set ε := δ · (1− 1/

√
2). By Claim 1, we know that

there exists an ROBP F : {0, 1}` → {0, 1}n of width w and length ` = `∗ + 3w log(
√

2w
(
√

2−1)δ
) such that

|F (U`)− (Xi | X<i = v)| ≤ δ · (1− 1/
√

2)

Furthermore, by the theorem hypothesis, we know that |F (U`) −Qi| ≥ δ. Thus by the triangle inequality
we have |(Xi | X<i = v) −Qi| ≥ δ/

√
2. And since each Qi is an independent copy of Q, we of course

have Qi = (Qi | Q<i = v) and thus

|(Xi | X<i = v)− (Qi | Q<i = v)| ≥ δ/
√

2.

By applying Lemma 10, we immediately get that |X∗ −Q⊗t| ≥ 1 − e−tδ2/4, which completes the proof.
Note that we can actually make the constant 4 arbitrarily close to 2 by picking a small enough ε, since the
length ` = `∗ + 3w log(w/ε) of the ROBP F does not matter.

Our goal now is to prove Claim 1. The new main ingredient we will use is a Σ-ROBP that can achieve
roughly the same sampling task that is achieved by our Σ-ROBP for the multi-thresholding function from
Section 4.1, but using less width. In particular, we prove the following.

Lemma 12 (Key ingredient for Theorem 28). For any distribution X ∼ [w] and ε > 0, there exists a
Σ-ROBP f : {0, 1}` → [w] of width w and length ` = 3w log(w/ε) such that

|f(U`)−X| ≤ ε.

Before we prove Lemma 12, let us see how we can use it to show Claim 1.

Proof of Claim 1. Let F ∗ : {0, 1}`∗ → {0, 1}n be an ROBP of width w, and define X := F ∗(U`∗). Let
G = (V,E) be the graph underlying this ROBP with layers V = V0 ∪ V1 ∪ · · · ∪ V`∗ . Let γ1 denote the
number of output bits labeling each edge into V1, let γ2 denote the number of output bits labeling each edge
into V2, and so on. Note that

∑
i∈[`∗] γi = n.

Now, fix any 1 ≤ i ≤ j ≤ n and x ∈ {0, 1}i−1 and ε > 0. The claim is easy to show if i = 1, so
we henceforth assume i > 1. Recall that the goal is to construct an ROBP F such that |F (U`) − (Xi→j |
X<i = x)| is small. Towards this end, let α ≤ β ∈ [`∗] be such that the ith bit of X is outputted upon
entering layer Vα, and the jth bit of X is outputted upon entering layer Vβ . That is, α is the smallest integer
such that

∑
h∈[α] γh ≥ i and β is the smallest integer such that

∑
h∈[β] γh ≥ j.

We now construct a new branching programG′ = (V ′, E′) that will eventually help us construct F . The
layers of this new branching program are V ′ = V ′α−1 ∪ V ′α ∪ · · · ∪ V ′β , where each V ′i is a copy of Vi from
the original branching program G. The edge set E′ of the new branching program will include all the edges
from E that traverse between these layers (including their input and output labels), and nothing more.

57

We now perform a slight modification to the edges in E′. First, recall that by definition of each γh, we
have

∑
h∈[α−1] γh ≤ i − 1 <

∑
h∈[α] γh. Let r := (i − 1) −

∑
h∈[α−1] γh ≥ 0 denote the number of bits

on the edges into layer V ′α that will eventually by fixed by fixing X<i = x. Now, for each v ∈ V ′α−1, do
the following: consider its outgoing edges e0 and e1 with input labels 0 and 1, respectively. We will now
examine whether each of these edges have the property that the first r bits in their output label match the
last r bits of x. If neither of e0, e1 have this property, do nothing. If both of e0, e1 have this property, do
nothing. If e0 has this property but e1 does not, then delete e1 and replace it with a new copy of e0 (this
copy should connect the same vertices as e0, it should have the same output label as e0, but it should have
the input label 1). If e1 has this property but e0 does not, then delete e0 and replace it with a new copy of e1

(this copy should connect the same vertices as e1, it should have the same output label as e1, but it should
have the input label 0).

Our last modification to the edges of E′ will be as follows. First, let r′ :=
∑

h∈[β] γh − j. We will erase
the first r bits and last r′ bits output by G′. In particular, for every edge entering V ′α, delete the first r bits of
its output label. And for every edge entering V ′β , delete the last r′ bits of its output label.

Now, label the vertices in Vα−1 as v1, . . . , vw, and let v′1, . . . , v
′
w denote the corresponding vertices in

V ′α−1. Consider again the original ROBP G = (V,E). For each s ∈ [w], let ps denote the probability that
a (uniform) random walk from the start vertex of G hits vs, conditioned on the event that the first i − 1
bits output by the random walk exactly match x. Next, consider the new ROBP G′. For each s ∈ [w], let
Ys ∼ {0, 1}j−i+1 denote the distribution generated by taking a (uniform) random walk over G′, starting at
vertex v′s ∈ V ′α−1 and outputting the output labels seen along the way. It is now straightforward to verify∑

s∈[w]

ps ·Ys = (Xi→j | X<i = x).

We would now like to construct a new ROBP that (almost) generates the distribution
∑

s∈[w] ps · Ys.
First, let A ∼ [w] denote the random variable corresponding to the distribution {ps}s∈[w]. By Lemma 12,
there is a Σ-ROBP f : {0, 1}`′ → [w] of width w and length `′ = 3w log(w/ε) such that |f(U`′)−A| ≤ ε.
For each s ∈ [w], let qs := Pr[f(U`′) = s]. Now, let G′′ = (V ′′, E′′) denote its underlying graph, which
has layers V ′′ = V ′′0 ∪ V ′′1 ∪ · · · ∪ V ′′`′ . Label the vertices in V ′′`′ as u1, . . . , uw, so that a random walk on G′′

hits us with probability qs.
We are finally ready to construct the ROBP F : {0, 1}` → {0, 1}j−i+1 advertised in the claim statement.

Its underlying graph GF = (VF , EF) is formed as follows: first, set VF = V ′′0 ∪ · · · ∪V ′′`′ ∪V ′α−1∪ · · · ∪V ′β .
Then, set EF = E′′∪E′. Finally, merge layers V`′′ and V ′α−1 by identifying each us ∈ V`′′ with v′s ∈ V ′α−1.
It is straightforward to verify that F (U`) =

∑
s∈[w] qs ·Ys. Furthermore, notice that F has width w and

length ` = `′ + β − α+ 1 ≤ `′ + `∗ = 3w log(w/ε) + `∗.
Thus, all that remains is to show |

∑
s∈[w] qs ·Ys−

∑
s∈[w] ps ·Ys| ≤ ε. Using the definition of statistical

58

distance, we have

|
∑
s

qsYs −
∑
s

psYs| = max
T⊆{0,1}j−i+1

(Pr[
∑
s

qsYs ∈ T]− Pr[
∑
s

psYs ∈ T])

= max
T

∑
s

Pr[Ys ∈ T] · (qs − ps)

≤ max
T

∑
s : qs−ps≥0

Pr[Ys ∈ T] · (qs − ps)

≤
∑

s : qs−ps≥0

(qs − ps)

= |f(U`′)−A|
≤ ε,

as desired.

At last, all that remains is to prove Lemma 12. We do so, below.

Proof of Lemma 12. We would like to show that for any distribution X ∼ [w] and ε > 0, there exists a
Σ-ROBP f : {0, 1}` → [w] of width w and length ` = 3w log(w/ε) such that |f(U`) −X| ≤ ε. Without
loss of generality, we assume that Pr[X = i] > 0 for each i ∈ [w].

First, suppose that for any distribution Y ∼ {0, 1} and ε′ > 0, there exists an ROBP f ′ : {0, 1}`′ →
{0, 1} of width 2 and length `′ = dlog(1/ε′)e such that |f ′(U`′)−Y| ≤ ε′. We will first show how this can
be used to obtain the desired result, and then we will show how to construct such an ROBP.

Thus let us return to the original distribution X ∼ [w] that we would like to sample with error ε. For
each i ∈ [w − 1], define a random variable Ai ∼ {0, 1} as follows. We set Ai = 0 with probability
Pr[X = i | X ≥ i] and we set Ai = 1 with probability Pr[X > i | X ≥ i]. Observe that

Pr[X = i] =

{
Pr[Ai = 0] ·

∏
j<i Pr[Aj = 1] if i < w,

Pr[Ai−1 = 1] ·
∏
j<i−1 Pr[Aj = 1] if i = w.

(10)

Now, for every i ∈ [w−1], let f ′i : {0, 1}`′ → {0, 1} be an ROBP of width 2 and length `′ = dlog(1/ε′)e
such that |f ′i(U`′) −Ai| ≤ ε′. For convenience, we let Bi := f ′i(U`′) so that |Ai − Bi| ≤ ε′. Now, let
Gi = (V i, Ei) denote the underlying graph of f ′i with layers V i = V i

0 ∪ · · · ∪ V i
`′ . Let starti ∈ V i

0 denote
its start state, let accepti ∈ V i

`′ denote its accept state, and let rejecti ∈ V i
`′ denote its reject state.

The goal now is to combine these ROBPs into one large ROBP that computes f : {0, 1}` → [w]. To do
so, we construct its underlying graph G = (V,E) as follows. First, we concatenate all of the above ROBPs
in a series configuration. That is, we set

V = (V 1
0 ∪ · · · ∪ V 1

`′) ∪ (V 2
0 ∪ · · · ∪ V 2

`′) ∪ · · · ∪ (V w−1
0 ∪ · · · ∪ V w−1

`′). (11)

Next, we add all the edges
⋃
i∈[w−1]E

i to E. Then, for every i ∈ [w − 2], we draw two edges from
accepti to starti+1, and give them input labels 0, 1, respectively. Next, for every i ∈ [w − 2], we do the
following: for every layer W appearing (strictly) to the right of layer V i

`′ in Equation (11), add a node
called bucketiW . Then, draw two edges (labeled 0 and 1) from rejecti to bucketiW , where W is the layer
immediately following V i

`′ . Then, for any consecutive layers W,W ′ that contain nodes bucketiW , bucket
i
W ′ ,

draw two edges (labeled 0 and 1) from bucketiW to bucketiW ′ . Finally, for each i ∈ [w − 2], give the node

59

bucketi
V w−1
`′

the output label i; give the node rejectw−1 the output label w− 1; and give the node acceptw−1

the output label w. This completes the construction of G = (V,E) and f : {0, 1}` → [w].
Notice that the widest layer in G is V w−1

`′ , and it has width 2 + (w − 2) = w. Thus, G has width w
and length ` = `′ + (1 + `′)(w − 2). In fact, notice we can contract the “trivial” edges between layers
V i
`′ , V

i+1
0 for every i ∈ [w− 2], without changing the output distribution, thereby making the overall length

` = `′ · (w − 1) ≤ `′ · w.
Now, set X′ = f(U`) and observe via the above construction that

Pr[X′ = i] =

{
Pr[Bi = 0] ·

∏
j<i Pr[Bj = 1] if i < w,

Pr[Bi−1 = 1] ·
∏
j<i−1 Pr[Bj = 1] if i = w.

(12)

Our goal now is to upper bound |X′ −X| using Equations (10) and (12). Towards this end, suppose we
have a sequence of probabilities p1, . . . , pi and another sequence of probabilities q1, . . . , qi such that each
qj is at most pj + ε′. It is then straightforward to use a hybrid-type argument to verify that q1 · q2 · · · qi ≤
p1 · p2 · · · pi + i · ε′. Thus, recalling that each |Ai −Bi| ≤ ε′, we know by Equations (10) and (12) that for
every i ∈ [w],

Pr[X′ = i]− Pr[X = i] ≤ w · ε′.

Thus, we have

|X′ −X| = max
T⊆[w]

Pr[X′ ∈ T]− Pr[X ∈ T]

= max
T⊆[w]

∑
i∈T

(Pr[X′ = i]− Pr[X = i])

≤ max
T⊆[w]

∑
i∈T

wε′

≤ w2 · ε′.

Finally, we see that if we set ε′ = ε/w2, then we have a Σ-ROBP f : {0, 1}` → [w] of width w and length
` ≤ `′ · w = dlog(1/ε′)e · w = dlog(w2/ε)e · w ≤ 3w log(w/ε) such that |f(U`)−X| ≤ ε, as desired.10

All that remains is to show the claim we assumed at the beginning of this proof. Namely, that
for any distribution Y ∼ {0, 1} and ε′ > 0, there exists an ROBP f ′ : {0, 1}`′ → {0, 1} of width 2 and
length `′ = dlog(1/ε′)e such that |f ′(U`′)−Y| ≤ ε′.

To prove the above, we specify the underlying graph G′ = (V ′, E′) of f ′ as follows. The graph will
consist of layers V ′ = V ′0∪V ′1∪· · ·∪V ′`′ , where each V ′i consists of vertices labeled ui, vi. We label u0 as the
start vertex, u`′ as the reject state (outputs 0), and v`′ as the accept state (outputs 1). Define p := Pr[Y = 0]
and assume without loss of generality that 0 < p < 1. Next, we specify the edges E′ of G′.

Let b ∈ {0, 1}`′ denote a parameter that we will specify later. Using b, we construct the edges entering
each layer V ′i as follows. For every i ∈ [`′], do the following: if bi = 0, draw two parallel edges of the form
(vi−1, vi) and give them input labels 0, 1; then, draw edges (ui−1, ui) with input label 0 and (ui−1, vi) with
input label 1. On the other hand, if bi = 1, then draw two parallel edges of the form (ui−1, ui) and give
them input labels 0, 1; then, draw edges (vi−1, vi) with input label 0 and (vi−1, ui) with input label 1.

10We remark that the w inside the log can be removed through a slightly more technical construction, where the ROBPs f ′i ’s are
selected to take into account the errors made by the earlier f ′i ’s.

60

Consider now a (uniform) random walk over G′, starting at the start vertex u0. For every i ∈ [`′], let qi
denote the probability that this random walk hits vertex ui. Of course, the probability that the random walk
hits vi is then 1−qi. Define q0 = 1, and observe via our construction that the following holds for all i ∈ [`′]:

qi =

{
1
2 · qi−1 if bi = 0,

qi−1 + 1
2 · (1− qi−1) = 1

2 · (qi−1 + 1) if bi = 1,

which can be expressed more concisely as

qi =
1

2
· (qi−1 + bi).

Recalling that q0 = 1, it is then straightforward to show via induction that for any i ∈ [`′],

qi = 2−i +
∑
h∈[i]

bi+1−h · 2−h.

Since u`′ is the reject state, we have

Pr[f ′(U`′) = 0] = q`′ = 2−`
′
+
∑
h∈[`′]

b`′+1−h · 2−h.

But observe that this quantity is simply a decimal written in binary using {b1, b2, . . . , b`′}. In particular,
if we consider any 0 < τ < 1 that can be written as τ = 2−`

′ · K for some K ∈ N, then we can
always find some b ∈ {0, 1}`′ such that the right hand side above evaluates to exactly τ . Now, recall that
p = Pr[Y = 0]. Pick the smallest K ∈ N such that 2−`

′
K ≥ p > 0, and pick b ∈ {0, 1}`′ such that

Pr[f ′(U`′) = 0] = 2−`
′
K. Then we must have

Pr[Y = 0] ≤ Pr[f ′(U`′) = 0] < Pr[Y = 0] + 2−`
′
.

In other words,

|f ′(U`′)−Y| < 2−`
′
. (13)

Finally, recall that the ROBP we constructed for f ′ had width 2, and thus we may set `′ = dlog(1/ε′)e to
upper bound Equation (13) by ε′ and complete the proof.

A separation between sampling with ROBPs and sampling with AC0 circuits Finally, we show how to
apply our direct product theorem to obtain a strong complexity separation between ROBPs and AC0 circuits
for the task of sampling. We prove the following.

Theorem 29 (Corollary 6, restated). There is a universal constant c > 0 such that for all sufficiently large
n ∈ N, the following holds. There exists an AC0 circuit Q : {0, 1}` → {0, 1}n such that for every ROBP
F : {0, 1}` → {0, 1}n of width w ≤ 2c·n/ log(1/ε),

|F (U`)−Q(U`)| ≥ 1− ε.

61

Proof. Let k, t ∈ N be parameters to be set later, such that (2k + 1)t = n. By the proof of Theorem 20, we
know that for the inner product function IP : Fk2 × Fk2 → F2, and any ROBP F : {0, 1}` → {0, 1}n+1 of
width 2ck with c > 0 a sufficiently small constant, it holds that

|F (U`)− (U2k, IP(U2k))| ≥
1

2
− 2−ck.

Now, define Q = (U2k, IP(U2k)) and consider the distribution Q⊗t. By our direct product theorem (Theo-
rem 28), we know that for any ROBP F : {0, 1}` → {0, 1}n+1 of width 2ck, it holds that

|F (U`)−Q⊗t| ≥ 1− 2−c
′t.

However, by [IN96], we know that Q can be sampled by AC0 circuits, and thus so can Q⊗t (simply by
running several of these circuits in parallel). Thus, setting t = O(log(1/ε)) and k = ((n/t) − 1)/2
completes the proof.

Two particularly interesting settings of Theorem 29 are ε = 0.01 and ε = 2−
√
n. In the first setting, we

get a distribution Q samplable by AC0 circuits but such that |F (U`)−Q| ≥ 0.99 for any ROBP F of width
2Ω(n). In the latter setting, we get much stronger bounds of the form |F (U`)−Q| ≥ 1− 2Ω(−

√
n) for any

ROBP F of width 2Ω(
√
n).

9 Future directions

Recently, there have been a number of exciting works that study the complexity of sampling. In this area of
complexity, one seeks to understand the power of classical computational models for the task of sampling
from distributions. In this paper, we initiate a study of the complexity of sampling in limited space. We prove
that ROBPs are more powerful for sampling than computing, yet we demonstrate explicit distributions that
are very difficult to sample using ROBPs. Furthermore, we provide a direct product theorem for this setting,
and use it to demonstrate a strong complexity separation between ROBPs and AC0 circuits for the task of
sampling.

As this area of complexity is very new, many open questions remain. Below, we outline a few such
questions on the complexity of sampling with ROBPs.

A stronger separation between sampling and computing with ROBPs In this paper, we gave an explicit
function b : {0, 1}n → {0, 1} such that (Un, b(Un)) can be sampled by ROBPs of width O(n), but such
that ROBPs of width 2Ω(n) fail to compute b on roughly 1/4 if its inputs. Can one strengthen these average-
case bounds? Namely, can one find a function b : {0, 1}n → {0, 1} such that (Un, b(Un)) can be sampled
by ROBPs of linear width, but such that ROBPs of exponential width fail to compute b on roughly 1/2 of
its inputs?

Sampling lower bounds using limited randomness In this paper, we demonstrated distributions that
cannot be sampled by ROBPs of limited width, given unlimited random bits as input. Can one demonstrate
sampling lower bounds for ROBPs against a richer class of distributions if the ROBP is only provided with
a limited number of random input bits (say, ` = poly(n))?

This question is especially interesting if one considers a more powerful model of multi-output ROBPs
whose output bits need not be layered (as in Definition 8). It can be shown that such ROBPs can come
arbitrarily close to sampling any distribution X ∼ {0, 1}n using just width 3. However, the most natural way

62

to construct such an ROBP requires ` � |support(X)| bits of randomness, which could be exponentially
large in n. Thus, it would be interesting to understand the power of these ROBPs under the restriction
` ≤ poly(n).

A separation between sampling with ROBPs and AC0 circuits, in the other direction In this paper,
we demonstrated a distribution (Un, b(Un)) that cannot be sampled by ROBPs (even on average), but can
be sampled by AC0 [IN96]. Can one find a distribution that cannot be sampled by AC0, but can be sampled
by ROBPs? This is possible if one can construct an extractor for AC0 sources (distributions generated in
AC0), which can be computed by small width ROBPs. In fact, even a disperser Disp : {0, 1}n → {0, 1} for
min-entropy n− 1 would suffice, as this would imply that both Disp−1(1) and Disp−1(0) can be generated
in small space (via our equivalence theorems), yet one of these has min-entropy n − 1 and thus cannot be
generated in AC0 (by definition of a disperser). Since all known extractors for AC0 sources [Vio14] also
work for distributions that can be generated in small space [CG20], new extractors are needed.

10 Acknowledgements

We thank William Hoza for helpful comments.

References

[Aar14] Scott Aaronson. The equivalence of sampling and searching. Theory of Computing Systems,
55(2):281–298, 2014.

[ASTS+03] Andris Ambainis, Leonard J Schulman, Amnon Ta-Shma, Umesh Vazirani, and Avi Wigder-
son. The quantum communication complexity of sampling. SIAM Journal on Computing,
32(6):1570–1585, 2003.

[Bab87] László Babai. Random oracles separate pspace from the polynomial-time hierarchy. Informa-
tion Processing Letters, 26(1):51–53, 1987.

[BC82] Allan Borodin and Stephen Cook. A time-space tradeoff for sorting on a general sequential
model of computation. SIAM Journal on Computing, 11(2):287–297, 1982.

[BCS16] Itai Benjamini, Gil Cohen, and Igor Shinkar. Bi-lipschitz bijection between the boolean cube
and the hamming ball. Israel Journal of Mathematics, 212(2):677–703, 2016.

[Bea89] Paul Beame. A general sequential time-space tradeoff for finding unique elements. In Pro-
ceedings of the twenty-first annual ACM symposium on Theory of computing, pages 197–203,
1989.

[BFK+79] Allan Borodin, Michael J Fischer, David G Kirkpatrick, Nancy A Lynch, and Martin Tompa.
A time-space tradeoff for sorting on non-oblivious machines. In 20th Annual Symposium on
Foundations of Computer Science (sfcs 1979), pages 319–327. IEEE, 1979.

[BIL12] Chris Beck, Russell Impagliazzo, and Shachar Lovett. Large deviation bounds for decision
trees and sampling lower bounds for ac0-circuits. In 2012 IEEE 53rd Annual Symposium on
Foundations of Computer Science, pages 101–110. IEEE, 2012.

63

[CG88] Benny Chor and Oded Goldreich. Unbiased bits from sources of weak randomness and proba-
bilistic communication complexity. SIAM Journal on Computing, 17(2):230–261, 1988.

[CG20] Eshan Chattopadhyay and Jesse Goodman. Explicit designs and extractors. arXiv preprint
arXiv:2007.07772, 2020.

[DW12] Anindya De and Thomas Watson. Extractors and lower bounds for locally samplable sources.
ACM Transactions on Computation Theory (TOCT), 4(1):1–21, 2012.

[FK18] Michael A Forbes and Zander Kelley. Pseudorandom generators for read-once branching pro-
grams, in any order. In 2018 IEEE 59th Annual Symposium on Foundations of Computer
Science (FOCS), pages 946–955. IEEE, 2018.

[GGN10] Oded Goldreich, Shafi Goldwasser, and Asaf Nussboim. On the implementation of huge ran-
dom objects. SIAM Journal on Computing, 39(7):2761–2822, 2010.

[Gil52] Edgar N Gilbert. A comparison of signalling alphabets. The Bell system technical journal,
31(3):504–522, 1952.

[GR08] Venkatesan Guruswami and Atri Rudra. Explicit codes achieving list decoding capacity: Error-
correction with optimal redundancy. IEEE Transactions on information theory, 54(1):135–150,
2008.

[GV20] Rohit Gurjar and Ben Lee Volk. Pseudorandom bits for oblivious branching programs. ACM
Transactions on Computation Theory (TOCT), 12(2):1–12, 2020.

[GW20] Mika Göös and Thomas Watson. A lower bound for sampling disjoint sets. ACM Transactions
on Computation Theory (TOCT), 12(3):1–13, 2020.

[Hås87] Johan Håstad. Computational limitations of small-depth circuits. MIT press, 1987.

[IN96] Russell Impagliazzo and Moni Naor. Efficient cryptographic schemes provably as secure as
subset sum. Journal of cryptology, 9(4):199–216, 1996.

[JSWZ13] Rahul Jain, Yaoyun Shi, Zhaohui Wei, and Shengyu Zhang. Efficient protocols for generating
bipartite classical distributions and quantum states. IEEE Transactions on Information Theory,
59(8):5171–5178, 2013.

[JVV86] Mark R Jerrum, Leslie G Valiant, and Vijay V Vazirani. Random generation of combinatorial
structures from a uniform distribution. Theoretical computer science, 43:169–188, 1986.

[Kil88] Joe Kilian. Founding crytpography on oblivious transfer. In Proceedings of the twentieth
annual ACM symposium on Theory of computing, pages 20–31, 1988.

[KM04] R Koenig and Ueli Maurer. Extracting randomness from generalized symbol-fixing and markov
sources. In International Symposium on Information Theory, 2004. ISIT 2004. Proceedings.,
page 232. IEEE, 2004.

[KM05] Robert Koenig and Ueli Maurer. Generalized strong extractors and deterministic privacy am-
plification. In IMA International Conference on Cryptography and Coding, pages 322–339.
Springer, 2005.

64

[KRVZ11] Jesse Kamp, Anup Rao, Salil Vadhan, and David Zuckerman. Deterministic extractors for
small-space sources. Journal of Computer and System Sciences, 77(1):191–220, 2011.

[LV12] Shachar Lovett and Emanuele Viola. Bounded-depth circuits cannot sample good codes. Com-
put. Complex., 21(2):245–266, 2012.

[RY11] Ran Raz and Amir Yehudayoff. Multilinear formulas, maximal-partition discrepancy and
mixed-sources extractors. Journal of Computer and System Sciences, 77(1):167–190, 2011.

[Var57] Rom Rubenovich Varshamov. Estimate of the number of signals in error correcting codes.
Docklady Akad. Nauk, SSSR, 117:739–741, 1957.

[Vaz85] Umesh V Vazirani. Towards a strong communication complexity theory or generating quasi-
random sequences from two communicating slightly-random sources. In Proceedings of the
seventeenth annual ACM symposium on Theory of computing, pages 366–378, 1985.

[Vio12a] Emanuele Viola. The complexity of distributions. SIAM Journal on Computing, 41(1):191–
218, 2012.

[Vio12b] Emanuele Viola. Extractors for turing-machine sources. In Approximation, Randomization,
and Combinatorial Optimization. Algorithms and Techniques, pages 663–671. Springer, 2012.

[Vio14] Emanuele Viola. Extractors for circuit sources. SIAM Journal on Computing, 43(2):655–672,
2014.

[Vio16] Emanuele Viola. Quadratic maps are hard to sample. ACM Transactions on Computation
Theory (TOCT), 8(4):1–4, 2016.

[Vio20] Emanuele Viola. Sampling lower bounds: boolean average-case and permutations. SIAM
Journal on Computing, 49(1):119–137, 2020.

[Wat14] Thomas Watson. Time hierarchies for sampling distributions. SIAM Journal on Computing,
43(5):1709–1727, 2014.

[Wat16] Thomas Watson. Nonnegative rank vs. binary rank. Chicago Journal of Theoretical Computer
Science, 2016(2), February 2016.

[Wat20] Thomas Watson. Communication complexity with small advantage. computational complexity,
29(1):1–37, 2020.

65

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

