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Abstract

We introduce a new graph parameter called linear upper maximum
induced matching width lu-mim width, denoted for a graph G by lu(G).
We prove that the smallest size of the obdd for ϕ, the monotone 2-cnf
corresponding to G, is sandwiched between 2lu(G) and nO(lu(G)). The
upper bound is based on a combinatorial statement that might be of an
independent interest. We show that the bounds in terms of this parameter
are best possible.

The new parameter is closely related to two existing parameters: linear
maximum induced matching width (lmim width) and linear symmetric
induced matching width (lsim width). We prove that lu-mim width
lies strictly in between these two parameters, being dominated by lsim
width and dominating lmim width. We conclude that neither of the two
existing parameters can be used instead of lu-mim width to characterize
the size of obdds for monotone 2-cnfs and this justifies introduction of
the new parameter.

1 Introduction

Statement of the results. Monotone 2-cnfs are cnfs with two positive
literals per clause. They can be viewed as graphs without isolated vertices. In
particular, for such a graph G, ϕ = ϕ(G) is a cnf consisting of clauses (u ∨ v)
for each {u, v} ∈ E(G). We refer to G as the underlying graph of ϕ.

In this paper we introduce a new graph parameter called (Linear Upper
Maximum Induced Matching Width) (lu-mim width). This parameter is
located ’in-between’ of two existing parameters: Linear Maximum Induced
Matching Width (lmim width) [13] and Linear Symmetric Induced Matching
Width (lsim width) [8]. We prove that lu-mim width captures the size
of Ordered Binary Decision Diagrams (obdds) for monotone 2-cnfs with a
quasipolynomial gap. In particular, we show that 2lu(G) ≤ obdd(ϕ) ≤ nO(lu(G))

where obdd(ϕ) is the smallest number of nodes of an obdd for a monotone 2-cnf
ϕ and lu(G) is the lu-mim width of the underlying graph G of ϕ. The upper
bound is based on a combinatorial statement that may be of an independent
interest. In particular, we exhibit a connection of this statement to the Sauer-
Shelah lemma (e.g. Theorem 10.1 in [7]).
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We show that the bounds are best possible by demonstrating classes of
graphs G1 and G2 such that obdd(ϕ(G1)) ≥ nΩ(lu(G1)) and obdd(ϕ(G2)) ≤
2O(lu(G2)).

Finally, we prove that lu-mim width is located strictly in between lsim
width and lmim width. In particular, we demonstrate classes of graphs G1

and G2 such that

• lsim width of G1 is at most 3 while lu-mim width is at least Ω(n1/3)
and

• lu-mim width of G2 is at most 4 while lmim width of G2 is at least
Ω(n1/2).

We conclude from the above dependencies that lsim width cannot capture the
upper bound of obdds for monotone 2-cnfs while lmim width cannot capture
the lower bound.

Motivation. Monotone cnfs are essentially hypergraphs while monotone
2-cnfs are essentially graphs. Therefore, it is natural to try to characterize the
size of models of the corresponding Boolean functions by graph parameters. It
is particularly neat if such a parameter can ’capture’ the size of a model on a
class of cnfs, that is to tightly characterize both upper and lower bounds. It
is also desirable for the parameter to be well known as, in this case, existing
techniques can be harnessed for determining the value of the parameter for the
given class of graphs.

An example of such a neat capturing is characterization of the size of non-
deterministic read-once branching programs (1-nbps) representing monotone 2-
cnfs ϕ(G) where G has a bounded degree. In this case, considering the degree
constant, the size of the smallest 1-nbp representing ϕ(G) is 2Θ(pw(G)) where
pw(G) is the pathwidth of G: the upper bound has been established in [3],
the lower bound in terms of maximum matching width in [10] and it has been
shown in [11] that the maximum matching width and pathwdith are linearly
related. It is thus natural to ask whether such a capturing is possible for graphs
of unbounded degree.

In this paper we address the above question partially. First, we obtain the
result for obdds, a special case of 1-nbps. Generalization to 1-nbps is left as an
open question. It is important to remark that although, for bounded degrees,
the pathwdith captures the sizes of both models, for the case of unbounded
degree another parameter might be needed for 1-nbps. Second, there is a
quasipolynomial gap between the upper and lower bounds. We believe that
this is still reasonable because the value of the parameter provides a good
indication of the size of the resulting obdd. Besides, we show that for the
considered parameter, no tighter capturing is possible. Third, we introduced a
new parameter rather than using an existing one. However, this parameter is
closely related to existing ones and, as mentioned above, we demonstrate that
the related existing parameters cannot be used for the stated purpose.

An additional motivation of the proposed results is that they contribute
to understanding the combinatorics of mim width, a parameter becoming

2



increasingly popular among graph algorithms researchers (see the related work
part for the relevant references).

Related work. Here we overview related results that have not been mentioned
in the earlier parts of the introduction.

The size of Decomposable Negation Normal Forms (ddnfs) for monotone
2-cnfs of bounded degree is captured by treewidth. In particular an fpt upper
bound for cnfs of bounded (primal) treewidth is proved in Theorem 16 of [2].
A matching lower bound for cnfs of bounded arity and bounded number of
variable occurrences follows from the combination of Theorem 8.3 and Lemma
8.4. [1] 1

A lower bound for obdds for monotone cnfs is established in [1]. For 2-

cnfs, the lower bound is 2Ω(pw(G)/d2) where pw(G) and d are the pathwdith and
the max-degree of G. The lower bound provided in this paper is better because
lu(G) = Ω(pw(G)/d) due to pathwidth and linear maximum matching width
being linearly related [11]. The proof of the nO(lu(G)) upper bound is similar in
spirit to the main combinatorial lemma of [12].

The mim-width [13] has proven useful for design of efficient algorithms for
intractable problems for restricted classes of graphs, see for example the recent
series of papers [5], [6],[4]. Lower bounds of mim-width for several graph classes
have been established in [9].

Structure of the paper. Section 2 introduces the necessary background.
Section 3 introduces the lu-mim width parameter. Section 4 proves upper and
lower bounds on the obdd size. Section 5 proves that, in terms of the parameter,
the bounds are essentially tight. Section 6 justifies the introduction of a new
parameter by showing that neither lmim-width nor lsim can be used for the
purpose of capturing the obdd size for monotone 2-cnfs. Finally, Section 7
outlines directions of further research.

2 Preliminaries

A literal is a Boolean variable or its negation. We consider only proper sets
S of literals where a variable cannot occur along with its negation. The set
of variables occurring in S is denoted by V ar(S). A variable x ∈ V ar(S) can
occur in S either positively, if x ∈ S or negatively, if ¬x ∈ S. We can also call
S an assignment (to V ar(S) if the clarification is needed).

We view a Conjunctive Normal Form (cnf) as a set of clauses and each
clause is just a proper set of literals. An assignment C satisfies a clause C if
S ∩ C 6= ∅. An assignment satisfies a cnf ϕ if S ∩ C 6= ∅ for each C ∈ ϕ. For
an assignment S, the cnf ϕ|S is obtained from ϕ by removal of all the clauses
satisfied by S and removal the occurrences of V ar(S) from each remaining
clause. We denote by V ar(ϕ) the set of all variables occurring in the clauses of
ϕ. Customarily, |V ar(ϕ)| is denoted by n.

For a cnf ϕ, U ⊆ V ar(ϕ), let A(U) = Aϕ(U) be the set of all assignments

1I would like to thank Florent Capelli for pointing me out to this result.
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S to U that can be extended to a satisfying assignment of ϕ. We denote by
BF(U) = BFϕ(U) the set of all Boolean functions represented by ϕ|A for A ∈
A(U).

Example 1. Let ϕ = (x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x3 ∨ x4) ∧ (x2 ∨ x4). Let U =
{x1, x2}. Then A(U) = {{x1, x2}, {x1,¬x2}, {¬x1, x2}. Note that {¬x1,¬x2}
is not included in A(U) because the assignment falsifies the clause (x1 ∨ x2)
and hence cannot be extended to a satisfying assignment of ϕ. Then BF(U) is
the set of functions on x3, x4 represented by the following set of cnfs {(x3 ∨
x4), (x3), (x4)}.

An Ordered Binary Decision Diagram (obdd) is a popular model for representation
of Boolean functions. For the purpose of this paper, we do not need a formal
definition of obbds because the only fact about obdds we use is Proposition 1
but we provide a definition for the sake of completeness.

Definition 1. An obdd Z is a directed acyclic graph (dag) with one source
and two sinks. Each non-sink vertex has exactly two outgoing neighbours. The
vertices and edges of Z are labelled in the way specified below.

Each non sink vertex is labelled with a variable, one of the sinks is labelled
with true, the other is labelled with false. Let u be a non-sink node of Z labelled
with a variable x. Then one outgoing edge of u is labelled with the positive literal
of x, that is x, the other is labelled with the negative literal of x, that is ¬x.

The labelling of non-sink nodes also needs to observe two principles: being
read-once and being ordered. The read-once property means that in any directed
path P of Z the labels of all the non-sink nodes of P are distinct (no variable
occurs twice). Being ordered means that there is a permutation π(Z) of the
variables labelling the nodes of Z so that for any path P from a non-sink node
u to a non-sink node v the label of u precedes in π(Z) the label of v.

For a directed path P of Z, we denote by A(P ) the set of literals labelling
the edges of P . Let x1, . . . , xn be the variables labelling the nodes of Z. The
function fZ represented by Z is defined as follows. Let S be a set of literals with
V ar(S) = {x1, . . . , xn}. Then fZ is true on S if and only if Z has a path P
from the source to the true sink such that A(P ) ⊆ S.

We refer the reader to [14] for an extensive study of obdds. For the results
of this paper, we only need bounds on obdd(ϕ), the smallest obdd size for a
cnf ϕ as in the next statement that follows from Theorem 3.1.4 of [14].

Proposition 1. 1. Suppose that for each permutation π of V ar(ϕ) there is
a prefix π′ of π such that |BF(π′)| ≥ m. 2 Then obdd(ϕ) ≥ m.

2. Assume that there is a permutation π of V ar(ϕ) such that for every prefix
π′ of π, |BF(π′)| ≤ m. Then obdd(ϕ) = O(n ∗m).

2Here and in several other places we slightly abuse the notation by using a sequence as a
set. The correct use will always be clear from the context.
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In case of obdds representing monotone 2-cnfs upper and lower bounds can
be stated in graph theoretical terms as described below. We follow a standard
graph-theoretical notation. In particular G[U ] denotes the subgraph induced
by U ⊆ V (G). N(U) is the set of all neighbours of vertices of U excluding U ,
the considered graph may be added as a subscript if not clear from the context.
The cnf {(u ∨ v)|{u, v} ∈ V (G)} is denoted by ϕ(G).

Definition 2. Let U ⊆ V (G). We denote by ISET(U) the family of all the
independent subsets of U . Let V = V (G) \ U . We define TRACES(U) =
{N(S)∩V |S ∈ ISET(U)}. The subscript G can be used for TRACES(U) and
ISET(U) if the graph in question is not clear from the context.

Example 2. Let G be a graph with vertices x1, x2, x3, x4 and edges {x1, x2}, {x1, x3}, {x2, x4},
{x3, x4}. (This is the graph corresponding to the cnf considered in Example
1.) Let U = {x1, x2}. Then ISET(U) = {∅, {x1}, {x2}}, TRACES(U) =
{∅, {x3}, {x4}}.

Combination of Examples 1 and 2 demonstrates that TRACESG(U) and
Bϕ(U) are of the same size where ϕ = ϕ(G). The following lemma shows that
this is not a coincidence.

Lemma 1. Let ϕ = ϕ(G). Then |BF(U)| = |TRACES(U)|.

Proof. It is not hard to see that A(U) = {A(S)|S ∈ ISET(U)} where
A(S) is an assignment on U where all the elements of S occur negatively and
the rest occur positively. Furthermore, it is not hard to see that ϕ|A(S) is a cnf
of the form {(u)|u ∈ N(S) ∩ V } ∪ {(u, v)|{u, v} ∈ E(G[V \N(S)])}. It follows
that for S1, S2 ∈ ISET(U) and N(S1) ∩ V = N(S2) ∩ V , ϕA(S1) = ϕA(S2).
Conversely, we need to show that if N(S1) ∩ V and N(S2) ∩ V are distinct
then so are the functions of ϕ|A(S1) and ϕ|A(S2). Assume w..l.o.g. the existence
of v ∈ (N(S1) ∩ V ) \ (N(S2) ∩ V ) This means that v occurs positively in all
satisfying assignments of ϕA(S1) but can occur negatively in ϕA(S2): just assign
positively the rest of the variables. �

Finally, we need one more definition.

Definition 3. Let U, V ⊆ V (G). A (U, V )-matching is a matching of G
consisting of edges with one end in U and the other in V . Let M be such a
matching. We denote by U(M) the set of ends of the edges of M that belong
to U . Let S be an independent subset of U . We say that S enables an induced
(U, V ) matching if there is an induced (U, V )-matching M with U(M) = S.

3 Linear upper induced matching width

In this section we introduce the parameter of Linear Upper Maximum Induced
Matching Width (lu-mim width). In order to present the parameter in the right
context we compare it with two existing parameters: Linear Maximum Induced
Matching Width (lmim width) and Linear Symmetric Induced Matching Width
(lsim width).
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The definition of all three parameters follows the same pattern. First, we
fix a permutation π = (v1, . . . , vn), denote each {v1, . . . , vi} by Vi and define
the width of the prefix (v1, . . . , vi) as the largest size of an induced (Vi, V (G) \
Vi)-matching of some subgraph of G. The difference between the above three
parameters is in the choice of the subgraph. The rest of the definition is identical
for all the three parameters and also pretty standard: the width of π is the
largest width among all the prefixes of π and the width of G is the smallest
width among all the permutations.

To define the width of a permutation prefix for lu-mim width, we need the
notion of an upper subgraph introduced in the definition below.

Definition 4. Let U ⊆ V (G) and V = V (G) \ U . The upper subgraph GU of
G w.r.t. U is a spanning subgraph of G with E(GU ) = E(G) \ E(G[V ]).

In words, GU is obtained from G by removal of all the edges whose both
ends are outside of U . See Figure 1 for an illustration of this notion.

S

G GS

Figure 1: An example of an upper subgraph

Definition 5. [ lu-mim width] Let π = (v1, . . . , vn) be a permutation of
V (G) and denote {v1, . . . , vi} by Vi. Let ri be the size of the largest induced
(Vi, V (G) \ Vi)-matching of GVi . Let r(π) = maxni=1ri. The Linear Upper
Induced Matching Width ( lu-mim width) of G denoted by lu(G) is the smallest
r(π) over all the permutations π of V (G). We call a permutation π such that
r(π) = lu(G) a witnessing permutation for lu(G).

Example 3. In the graph G of Figure 1, consider the permutation π first
traversing all the top vertices from the left to the right and then all the bottom
vertices from the left to the right. Let Vi be the set of all the top vertices (denoted
by S in the picture). It is not hard to see that the largest induced (Vi, V (G)\Vi)-
matching of GVi is of size 1. The widths of the rest of the prefixes are also at
most 1, So, r(π) = 1. Since the graph is connected, any permutation will have
width at least one. So, we conclude that lu(G) = 1.

The parameter lu-mim width can be considered as lying between existing
parameters lmim width and lsim-width. In particular, to compute the width
of a prefix Vi for lu-mim width, the edges having both ends in Vi are discarded
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along with the edges having both of their ends out of Vi. In Example 3, with
Vi = S, only the edges between the top and the bottom vertices remain, so
the largest size of an induced (Vi, V (G) \ Vi)- matching of the resulting graph
becomes 2. For lsim width, no edges are discarded at all, so the width of Vi is
the largest induced (Vi, V (G) \ Vi)-matching for the whole G.

It is clear that for any graph G, its lsim width is smaller than or equal to
its lu-mim width which, in turn, is smaller than or equal to its lmim width.
For the latter two we can, in fact, demonstrate a class of graphs where lu-
mim width is bounded while lmim width unbounded but we leave the exact
relationship between the former two as an open question. We postpone to
Section 6 a more detailed discussion of relationship between the parameters as
well as justifying the need of the new parameter for bounding the size of obdds.
The reason of this arrangement is that we need first to prove the main results
of the paper so that we can refer to them for the purpose of the justification.

4 OBDD bounds in terms of LU-MIM width

In this section we establish upper and lower bounds on the size of obdds
representing monotone two cnfs. The upper bound is the more interesting
of these two because it is based on the following combinatorial statement.

Theorem 1. Let U ⊆ V (G) such that V = V (G) \ U is independent. Then
|TRACES(U)| ≤ nr+1 where r is the size of the largest induced (U, V )-matching.

Before we provide a proof of Theorem 1, let us remark that if U is independent
(that is G is a bipartite graph with U and V being its parts) then the statement
follows from Sauer-Shelah lemma. This is just because, in this case, the size of
the largest induced matching ofG is exactly the VC-dimension of TRACES(U).
Indeed, letW = {w1, . . . , wq} be a set of the largest size shattered by TRACES(U).
Then we can identify subsets U1, . . . , Uq such that N(Ui) ∩ W = {wi} for
1 ≤ i ≤ q. In particular, in each Ui we can identify a vertex ui such that
ui is adjacent to wi but not adjacent to any other vertex of W . Consequently,
the edges {u1, w1}, . . . , {uq, wq}} constitute an induced matching. Conversely,
let {u1, w1}, . . . , {uq, wq} be an induced matching. Then the set {w1, . . . , wq}
is shattered by neighborhoods of all possible subsets of {u1, . . . uq}. Hence the
VC dimension of TRACES(U) is at least q.

If U is not an independent set, the first part of the above reasoning does
not work. Indeed, the vertices u1, . . . , uq extracted from U1, . . . , Uq do not
necessarily form an independent set and hence the resulting matching is not
necessarily induced. We were unable to upgrade the above argument to prove
Theorem 1 and hence we provide a self-contained proof.

Proof. (of Theorem 1.)

Claim 1. Let S ⊆ U be an independent subset of U . Let u ∈ S. Suppose that
S \ {u} enables an induced (U, V )-matching while S does not. Then there is
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a subset S′ ⊂ S enabling an induced (U, V )-matching such that N(S′) ∩ V =
N(S) ∩ V .

Proof. By induction on |S|. For |S| = 1 the statement holds in a vacuous way.
For each u′ ∈ S let T (u′) = (N(u′) ∩ V ) \ (N(S \ {u′}) ∩ V ) be called the
individual trace of u′. Suppose all the individual traces are non-empty. For all
u′ fix an arbitrary v′ ∈ T (u′). Then {{u′, v′}|u′ ∈ S} is an induced matching
(recall that V is independent) contradicting our assumption. It follows that
there is u′ ∈ S such that T (u′) = ∅. But then N(S)∩ V ⊆ N(S \ {u′})∩ V and
hence N(S) ∩ V = N(S \ {u′}) ∩ V . If S′ enables an induced (U, V )-matching,
we are done. Otherwise, apply the induction assumption to S′. �

Claim 2. Let S ⊆ U be an independent subset of U . Then there is S′ ⊆ S
enabling an induced (U, V )-matching such that N(S) ∩ V = N(S′) ∩ V .

Proof. Let q be the size of the largest subset of S enabling an induced (U, V )-
matching. We proceed by induction on |S| − q. If it is zero then put S′ = S.
Otherwise, let S0 be a subset of S of size q enabling an induced (U, V ) matching
and let u ∈ S \ S0. By Claim 1, there is S1 ⊂ S0 ∪ {u} enabling an induced
(U, V ) matching such that N(S1) ∩ V = N(S0 ∪ {u}) ∩ V .

Let S2 = S \ (S0 ∪ {u}). Then

N(S1 ∪ S2) ∩ V = (N(S1) ∩ V ) ∪ (N(S2) ∩ V ) =

(N(S0 ∪ {u}) ∩ V ) ∪ (N(S2) ∩ V ) = N(S0 ∪ {u} ∪ S2) ∩ V = N(S) ∩ V (1)

Further on, S1 ∪ S2 has a subset of size at least |S1| enabling an induced
(U, V )-matching. But |S2 ∪S1| − |S1| = |S2| = |S| − q− 1. Apply the induction
assumption to S1 ∪S2 to find a subset S3 ⊆ S1 ∪S2 enabling an induced (U, V )
matching such that N(S3) ∩ V = N(S1 ∪ S2) ∩ V . Since S1 ∪ S2 ⊆ S, S3 ⊆ S
and N(S3) ∩ V = N(S) ∩ V by (1), we put S′ = S3. �

By assumption an independent subset of U enabling an induced (U, V )
matching is of size at most r. It follows from Claim 2 that TRACES(U) =
{N(S) ∩ V |S ∈ ISET(U), |S| ≤ r}. Clearly the size of the right-hand set is
upper bounded by the number of subsets of U of size at most r which is clearly
upper bounded as claimed in the theorem. �

Theorem 2. [obdd bounds] For ϕ = ϕ(G), 2lu(G) ≤ obdd(ϕ) ≤ nO(lu(G)).

Proof. Let π = (v1, . . . , vn) be a permutation of V (G) witnessing lu(G). Let
Vi and ri be as in Definition 5. By combination of Lemma 1 and Theorem
1, |BF(Vi)| ≤ nri+1 ≤ nlu(G)+1. The upper bound follows from the second
statement of Proposition 1.

For the lower bound we assume now that π = (v1, . . . , vn) is an arbitrary
permutation with the meaning of Vi and ri retained. Furthermore, we assume
that (v1, . . . , vi) is selected so that ri ≥ lu(G) (such a prefix exists by definition
of lu-mim width). We are going to show that |TRACES(Vi)| ≥ 2ri . The lower
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bound will then follow from combination of Lemma 1 and the first statement of
Proposition 1.

Let U∗ = {u1, . . . , uri} be a subset of Vi enabling an induced (Vi, V (G)\Vi)-
matching of GVi of size ri and let M = {{u1, v1}, . . . , {uri , vri}} be the edges
of this matching. Let U1, U2 be two distinct subsets of U∗. We claim that
N(U1)∩ (V (G) \ Vi) 6= N(U2)∩ (V (G) \ Vi). Indeed, assume w.l.o.g. that there
is uj ∈ U1 \U2. Then vj ∈ N(U1)∩ (V (G) \Vi) while vj /∈ N(U2)∩ (V (G) \Vi).
Thus 2ri subsets of U∗ have pairwise distinct neighborhoods in V witnessing
that |TRACES(Vi)| ≥ 2ri . �

5 No tighter bounds

We are now going to prove that the bounds in the statement of Theorem 2
are asymptotically best possible. This will imply that the quasypolynmial gap
between the upper and lower bounds cannot be narrowed down. For the lower
bound the proof will be straightforward. For the upper bound we will need a
’gadgeted’ construction developed below.

Definition 6. Let U = (u1, . . . , uq), V = (v1, . . . , vq). The graph SKEW (U, V )
over vertices {u1, . . . , uq, v1, . . . , vq} has the set of edges {{ui, vj}i ≤ j}.

Let U1, . . . , Up be mutually disjoint sequences of q elements. We define a
graph G over U1 ∪ · · · ∪ Up (here we interpret Ui as sets) as follows. For each
1 ≤ i ≤ p − 1, G[Ui ∪ Ui+1] is SKEW (Ui, Ui+1). We call G a p, q-path of
skewed graphs. We call U1, . . . , Up the sequence of layers of G and give them
numbers 1, . . . , p in the order listed.

Definition 7. Let P be a path. The 1-subdivision of P is the graph obtained by
introducing exactly one subdivision to each edge of P .

Definition 8. Let G1, . . . , Gr be p, q-paths of skewed graphs with respective
sequences (U1

1 . . . , U
1
p ), . . . , (Ur1 , . . . , U

r
p ) of layers. Connect the vertices of each

U1
i + · · ·+ Uri into a path P in the order specified and 1-subdivide the resulting

path. Let G be the resulting graph. We call G a p, q, r-grid of skewed graphs
(we may omit the parameters if they are not relevant in the context).

The vertices V (G1) ∪ · · · ∪ V (Gr) are referred to as the main vertices and
the vertices introduced by the 1-subdivision are the auxiliary vertices. The
subdivided paths are referred to as the layers of G with the i-th layer being
the one containing U1

i , . . . , U
r
i as the main vertices. Let us enumerate the main

vertices of each layer i as in the sequence U1
i + . . . ,+Uri starting from 1. The

number each vertex receives is the coordinate of this vertex.

Figure 2 demonstrates a grid of skewed graphs. The top-left graph is SKEW (U, V )
where U is the sequence of three vertices on the top enumerated from the left
to the right and V is the respective sequence of the bottom vertices. The
graph on the top-right is a 3, 3-path of skewed graphs. The graph has three
layers enumerated from the top to the bottom. The vertices of the second layer
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Figure 2: A grid of skewed graphs

are surrounded by the oval. The graph at the bottom-left is the 3, 3, 2-grid of
skewed graphs. For the sake of a better visualization, the auxiliary vertices are
not shown and the layers are denoted by thick lines, the meaning of a thick line
is specified on the bottom right of the picture. The grid has three layers and the
coordinates of the main vertices range from 1 to 6 as specified in the picture.

Definition 9. Let G be an p, q, r-grid of skewed graphs. Let U be a set of
vertices one of each coordinate and none belonging to the last layer. For each
vertex u1 ∈ U let u2 be the vertex of the same coordinate lying at the next
layer. Let V be the set of all vertices u2. Let H be the subgraph of G induced
by U ∪ V . We call H a horizontal subgraph of G. We call U, V the top and
bottom forming sets of H. Let M e the matching consisting of all the edges
{u1, u2} as above. We call M the core matching of H. U ∪ V is partitioned
into r main intervals 1, . . . , r where vertices of the i-th main interval are those
having coordinates (i− 1) ∗ q + 1, . . . i ∗ q.

Lemma 2. With the notation as in Definition 9, both |TRACESH(U)| ≥
(q + 1)r and |TRACESH(V )| ≥ (q + 1)r

Proof. We prove only the first statement, the second is symmetric.
Let H1, . . . ,Hr be the subgraphs of H induced by the respective main

intervals 1, . . . , r. For each Hi denote V (Hi) ∩ U and V (Hi) ∩ V by Ui and
Vi, respectively.

It is not hard to see that H is the disjoint union of H1, . . . ,Hr, hence
|TRACESH(U)| =

∏r
i=1 |TRACESHi

(Ui)|. It is thus sufficient to prove
that for each i, |TRACESHi

(Ui)| ≥ q + 1. W.l.o.g. we only prove that
|TRACESH1(U1)| ≥ q + 1.

For U ′ ⊆ U1, let first(U ′) be the vertex u′ ∈ U ′ located at the layer having
the largest number (among the vertices of U ′), and, among those vertices of U ′

located at the layer, having the smallest coordinate. Let u1 = first(U1) and
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for 2 ≤ i ≤ q, ui = first(U1 \ {u1, . . . , ui−1}). Let v1, . . . , vq be the other ends
of the edges of M (the core matching of H) incident to u1, . . . , uq, respectively.
Observe that H has no edge {ui, vj} such that i > j. Indeed, otherwise, either
the layer of uj is smaller than the layer of ui or the coordinate of uj is larger
than the coordinate of ui, both cases contradict the choice of vertices u1, . . . , uq.

Consider the sets W1, . . .Wq+1 such that Wq+1 = ∅ and Wj = {uj} for 1 ≤
j ≤ q. It follows that for each 1 ≤ j ≤ q, vj ∈ N(Wj)∩V1 and wj /∈ N(Wk)∩V1

for k > j. It follows that the sets N(W1)∩V1, . . . , N(Wq+1)∩V1 are all distinct
thus confirming that |TRACESH1

(U1)| ≥ q + 1. �

Lemma 3. Let G be a p, q, r-grid of skewed graphs where p > 1, q > 1, r ≥ 1,
and p = 2 ∗ rdlog qe. Let n = V (G). Then for ϕ = ϕ(G), obdd(ϕ) ≥ nr/2 for a
fixed r and a sufficiently large n.

Proof. We prove the qr lower bound instead of nr/2. Indeed nr/2 ≤ (2 ∗ q ∗ p ∗
r)r/2 = qr/2 ∗ (4r2dlog qe)r/2 ≤ qr for a fixed r and a sufficiently large q. We
consider an arbitrary permutation π and show existence of a prefix π′ such that
|TRACES(π′)| ≥ qr. The lemma will then follow from the combination of the
first statement of Proposition 1 and Lemma 1.

Let π′ be the shortest prefix of π containing all the vertices of some layer
x. Assume existence of a layer y none of which vertices are contained in
π′. Assume that y > x. For each coordinate i, specify main vertices ui, vi
both having coordinate i with the layer of vi being the next after the layer
of ui and such that ui ∈ π′ while vi /∈ π′. To see that such vertices exist,
start from the main vertex with coordinate i at layer x and iteratively move
down. Since the respective vertex of coordinate i at y is not in π′, the required
vertices ui, vi will eventually be found. The set {u1, . . . , uqr, v1, . . . , vqr} induce
a horizontal subgraph H of G with U = {u1, . . . , uqr} being the top set. Then
|TRACES(π′)| ≥ |TRACESH(U)| ≥ (q+ 1)r, the last inequality follows from
Lemma 2.

If y < x, the reasoning is symmetric and we use the second statement of
Lemma 2 rather than the first one. It remains to assume that at least one
vertex of each layer of G is contained in π′. Remove from π′ the last vertex and
let π∗ be the resulting prefix. By definition of π′, in each layer of G there is at
least one vertex inside π∗ and at least one vertex outside π∗. Since layers induce
connected subgraphs of G, we can identify edges {ui, vi} of G for 1 ≤ i ≤ p with
ui, vi located at layer i, ui is contained in π∗ while vi is not. We notice that
the edges {ui, vi} with odd indices form an induced matching. Indeed, in G two
vertices are adjacent only if they are in the same layer or in consecutive layers.
Let U be the set of vertices ui with i being odd. Applying the argument as in
the lower bound proof for Theorem 2, we observe that the neighborhoods of the
subsets of U in V (G)\π∗ are pairwise distinct. Taking into account the definition
of p and that |U | = p/2 by construction, we conclude that TRACES(π∗) ≥
2|U | = 2p/2 ≥ qr. �

Lemma 4. With the notation as in Lemma 3, r ≤ lu(G) ≤ r + 2.
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Proof. For the lower bound we argue as in Lemma 3. Recall that for an arbitrary
permutation π we considered two cases. In the first case we observed existence
of a prefix π′ such that there is a horizontal subgraph H of G with all vertices
of the top forming set contained in π′ and all vertices of the bottom forming set
being outside of π′ (or vice versa). For each main interval take one edge of the
core matching whose vertex coordinates belong to this interval. These edges,
taken together constitute an induced matching of G of size r.

If prefix π′ as above does not exist then there is a prefix π∗ such that for
each layer 1 ≤ i ≤ p there is an edge {ui, vi} with ui ∈ π∗ and vi /∈ π∗. As we
have observed the edges with odd indices comprise an induced matching of G
of size at least r log q > r.

For the upper bound, we consider a permutation π where vertices occur layer
by layer: first layer 1, then layer 2 and so on. Within each layer the vertices
occur along the path induced by the layer starting from the main vertex with
coordinate 1.

Consider a prefix π′ of π. Let x be the largest layer number (some of) whose
vertices are contained in π′. By definition of π all the vertices whose layer
numbers are smaller than x belong to π′. It follows that the edges between π′

and V (G) \ π′ belong to one of the following categories.

1. Edges between layer x and layer x+ 1. Suppose that π′ contains vertices
of layer x laying in intervals 1, . . . r′. Then this category of edges can
contribute at most r′ edges to an induced matching of Gπ

′
.

2. Edges between layer x − 1 and layer x. This category of edges can
contribute at most r−r′+1 edges to the induced matching (the extra one
is on the account that not all vertices of interval r′ and layer x may be
present in π′) so there may be an edge of vertices of interval r′ between
layers x− 1 and x contributing to the considered induced matching.

3. Edges with both ends in layer x. Since π′ contains an initial fragment of
the path of layer x, there may be at most one such an edge.

Summing up the above three items, we conclude that the size of induced matching
of Gπ

′
cannot be greater than r + 2.

�

Theorem 3. [best possible bounds] For every fixed r ≥ 1 there are infinite
classes G1 and G2 of graphs of lu-mim width Θ(r) and such that for each
G1 ∈ G1, obdd(ϕ(G1)) ≤ 2O(r) while for each G2 ∈ G2, obdd(ϕ(G2)) ≥ nΩ(r).

Proof. Let G1 be the set of all p× r grids for a sufficiently large p. Each graph
of this class has pathwidth of Θ(r) and hence the obdd size is at most 2O(r)

by [3]. Because of the bounded degree, the pathwdith and the lu-mim width
of graphs in G1 are linearly related. Hence, we conclude that for each G1 ∈ G1,
obdd(ϕ(G1)) = 2O(lu(G)). Let G2 be the class of p, q, r grids for a sufficiently
large q and p = 2 ∗ rdlog qe. The required properties are immediate from the
combination of Lemma 3 and Lemma 4. �
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6 Why is the new parameter needed

In this section we justify the need for the new parameter of lu-mim width. In
particular, we explain why we cannot use two existing closely related parameters:
lmim width and lsim width. For the sake of completeness, let us define the
latter two parameters.

Definition 10. Let π = (v1, . . . , vn) be a permutation of V (G). Denote {v1, . . . , vi}
by Vi. Let xi be the largest size of an induced matching of G[Vi, V (G)\Vi] which
is the graph induced by the edges between Vi and V (G) \Vi. Let yi be the largest
size of an induced (Vi, V (G) \ Vi)-matching of G. Let x(π) be the maximum of
all xi and let y(π) be the maximum of all yi. The Linear Maximum Induced
Matching Width ( lmim width) of G denoted by lmimw(G) is the minimum
x(π) over all permutations π of V (G). The Linear Symmetric Induced Matching
Width ( lsim width) of G denoted by lsimw(G) is the minimum y(π) over all
the permutations π of V (G).

The parameter lmim width cannot be used for our purposes because it
does not capture the lower bound for obdds representing monotone 2-cnfs. In
particular, below we demonstrate an infinite class of graphs having lmim width
of order of the square root of the number of vertices whose corresponding cnfs
can be represented by polynomial size obdds.

CLIQUES

Figure 3: Schematic illustration of graphs Hn

Theorem 4. For each integer r ≥ 2, there is an infinite class of graphs Hr of
n = r2 vertices such that lu(Hr) = 2 (and hence ϕ(Hr) can be represented by
an obdd of size at most nO(1) by Theorem 2 ) while lmimw(Hr) ≥ (r − 1)/2.

Proof. V (Hr) consists of disjoint union of sets V1, . . . , Vr of r vertices each.
Each Vi is a clique in Hr. Denote the vertices of each Vi by vi,1, . . . , vi,r. The
graph Hr has paths v1,i, . . . , vr,i for each 1 ≤ i ≤ r. E(Hr) contains no other
edges besides those specified above. Figure 3 schematically illustrates the graphs
Hr.
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To demonstrate that lu(Hr) is small, consider the permutation of V (Hr) by
the alphabetic ordering of their indices, that is, v1,1, . . . , v1,r, . . . , vr,1, . . . , vr,r.
Let V ′ be the set of vertices of a prefix of this permutation. Let 1 ≤ q ≤ r be
such that Vq ∩ V ′ 6= ∅ while for each q < i ≤ r, Vi ∩ V ′ = ∅. It follows that for
each 1 ≤ i < q, Vi ⊆ V ′. Hence, by construction, any edge connecting V ′ to
V (Hr)\V ′ has an end either in Vq or in Vq−1. Thus for any three edges between
V ′ and V (Hr)\V ′ either two of them have an end in Vq or two of them have an
end in Vq−1. In both cases these ends are connected by an edge with both ends

lying in V ′ and hence such edges cannot constitute an induced matching of HV ′

r .
We conclude that the largest possible size of the such an induced matching is
2. It follows from Theorem 2 that ϕ(Hr) can be represented by an obdd of size
upper bounded by nO(1).

Let us know establish an Ω(r) = Ω(n1/2) lower bound on lmimw(Hr).
For vertices vi,j of Hr let us call their first coordinates rows and their second
coordinates columns. Let π be an arbitrary permutation of V (Hr). Let π0 be the
longest prefix of π that does not contain vertices with all the row coordinates and
does not contain vertices with all the column coordinates. Since this is already
not the case for the immediate successor of π0, it is either that π0 contains
vertices with r − 1 row coordinates or vertices with r − 1 column coordinates.
Assume the former. Then there is a set I of r − 1 rows i such that π0 contains
some vi,j . By assumption, for each i ∈ I, there is some q such that vi,q /∈ π0.
Since each Vi is connected we can identify, for each i ∈ I an edge {vi,j1 , vi,j2}
such that one end of this edge is in π0 while the other end is outside. At least
half of such edges have the same parity of the row. Let M be a such a subset of
edges. By definition of Hr vertices with the same row parity are not adjacent
hence this matching is induced in Hr and of size at least (r−1)/2 by definition.

It remains to assume that there is a set I of r− 1 columns j such that there
is a vertex vi,j ∈ π0. By assumption, at least one vertex of v1,j , . . . , vr,j does
not belong to π0. As v1,j , . . . , vr,j induce a path, there is an edge {vi,j , vi+1,j}
such that one end belong to π0 while the other end is outside. Let E′ be a set of
such edges one per column of I. For an edge {vi,j , vi+1,j} of E′ we call its end
that belongs to π0 the inner end and the other one the outer end. We call the
edge even if the row of the inner end is even and odd otherwise. Clearly at least
(r − 1)/2 edges of E′ have the same parity. Assume without loss of generality
that these are even edges. It remains to demonstrate that there are no distinct
columns j1 and j2. such that the inner end of the edge of E′ of column j1 is
adjacent to the outer end of the edge corresponding to j2. Since the columns
are different the adjacency may be only because the adjacent ends belong to the
same clique Vi. But this means that the row of the inner end of j2 is odd, a
contradiction.

�
Regarding lsim width, the situation is opposite: lsim width cannot represent

the obdd upper bound. In particular, we present below a class of graphs whose
lsim width is at most 3 while the lu-mim width is lower bounded the number
of vertices to the power of 1/3. Hence, the size of the corresponding obdds is

14



exponential in the number of vertices (in a positive power). We conclude that
lsim width cannot be used for representation of the obdd upper bound for
monotone 2-cnfs.

Definition 11. For each integer r ≥ 2, we define the graph Xr of n = 2r3

vertices as follows. Let L1, . . . , L2r be mutually disjoint sets of r2 vertices in
each and call the sets layers. V (Xr) = L1 ∪ · · · ∪ L2r.

For the purpose of introducing edges, each Li is arbitrarily partitioned into
sets Li,1, . . . , Li,r of r vertices in each. These sets are called sublayers of layer
i. The vertices of each Li,j are arbitrarily enumerated.

The edges of Xr are the following.

1. For each 1 ≤ i ≤ 2r − 1, for each 1 ≤ j ≤ r and for each 1 ≤ k ≤ r,
introduce an edge between vertex number k of Li,j and vertex number k of
Li+1,j. We call these edges inter-layer ones.

2. For each odd i for every 1 ≤ j < k ≤ r introduce an edge between each
vertex of Li,j and each vertex of Li,k.

3. For each even i and each 1 ≤ j ≤ r, make Li,j into a clique.

Lemma 5. lsimw(Xr) ≤ 3.

Proof. Consider the following permutation π of Xr. The vertices are traversed
layer by layer, first L1 then L2 then L3 and so on. Within each Li first vertices
of Li,1 are traversed then of Li,2, and so on. Within each Li,j vertices are
traversed by the increasing order of the numbers assigned to them.

Consider an arbitrary prefix V ′ of this permutation. Let q be the largest
number such that Lq ∩ V ′ 6= ∅. It follows that for each 1 ≤ i ≤ q − 1 Li ⊆ V ′.
Consequently, by construction, the edges between V ′ and V (Xr) \ V ′ may be
divided into the following three categories.

1. Edges between Lq and Lq+1. Then any two such edges will have an edge
between their ends. Indeed, any such an edge connects an odd layer with
an even layer. Let us call the end in the odd layer the odd end and the
end in the even layer the even end. Note that both odd ends belong to the
same sublayer if and only if both even ends do. If both even ends belong
to the same sublayer then they are adjacent by construction. Otherwise,
both odd ends belong to different sublayers and, again, are adjacent by
construction.

2. Edges between Lq−1 and Lq. The same principle applies that any two
edges must have adjacent ends.

3. Edges inside Lq. If q is odd then the ends of any edge e belong to different
sublayers. By construction N(e) ∩ Lq = Lq \ e hence any two edges have
adjacent ends. In case q is even, there are two cases two consider. The
first is when each sublayer of Lq is either a subset of V ′ or a subset of
V (Xr) \ V ′. In this case there are no edges between V ′ and V (Xr) \ V ′
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with both ends in Lq. Otherwise, there is precisely one sublayer of Lq that
is in part in V ′ and in part outside of V ′. But since this sublayer induced
a clique of Xr clearly any two edges of this category wil have adjacent
ends.

If we take arbitrary four edges between V ′ and V (Xr)\V ′ then two of them
will get to the same category (by the pigeonhole principle because there are
three categories) and, as specified above there is an edge between their ends.
Hence the width of the prefix is at most 3.

Lemma 6. lu(Xr) ≥ r.

Proof. Let π be an arbitrary permutation of V (Xr).

Claim 3. Suppose that π has a prefix π′ such that for each odd layer Li, Li∩π′ 6=
∅ and Li \ π′ 6= ∅. Then Xπ′

r has an induced matching of size r.

Proof. As each odd Li induces a connected subgraph we can identity an edge
in Xr[Li] with one end in π′ the other edge out of π′. Let E′ be the set of such
edges of all r odd layers. By construction they form an induced matching.

Claim 4. Assume that π has a prefix π′ such that for each 1 ≤ i ≤ r there is an
interlayer edge whose ends belong to sublayer i with the even end in π′ and the
odd end outside π′. Let E′ be a set of such n edges. Then they form an induced
matching of Xπ′

r .

Proof. Indeed, let {u1, v1} and {u2, v2} be two such edges with u1 and u2 being
the even ends. There is no edge between u1 and u2 as vertices of even layers
belonging to different sublayers are not adjacent by construction. As vertices
outside of π′ form an independent set by definition of Hπ′

n v1 and v2 are not
adjacent. Now u1 and v2 may be adjacent only if they belong to the same
sublayer which is not the case, likewise for u2 and v1.

It remains to assume that the cases as in the above two claims do not hold.
Let π0 be the shortest prefix such that there is an odd layer Li with Li ⊆ π0

(the full layer). Then there is another odd layer Lj such that Lj ∩ π′ = ∅ (the
empty layer). Indeed, otherwise, let π1 be the immediate predecessor of π0. The
only difference of π1 from π0 is that one vertex of Li is outside of π1 simply due
to the minimality of π0. By assumption about π0 each odd layer has a vertex
inside π1. By minimality of π0 each odd layer has a vertex outside π1. This is
exactly the situation as in the Claim 3 in contradiction to our assumption.

Next, to avoid the premises of Claim 4 to apply, we identify 1 ≤ k ≤ r such
that there is no inter-layer edge between π′ and V (G) \ π′ with the both ends
in sublayer k, the end in π′ being the even one. We can assume w.l.o.g. that
k = 1.

For each 1 ≤ x ≤ r there is an interlayer edge whose nodes have number x
in layer 1, one end inside π′ the other end outside π′. Indeed, assume w.l.o.g.
that j > i (recall that i and j are the numbers of the full and empty layers
respectively). Let P be the path formed of interlayer edges of sublayer 1 whose
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ends have number x consisting of vertices at layers i, i+ 1, . . . , j. The vertex at
layer i is in π′, the vertex at layer j is outside π′, hence one of the edges of P
ought to be as desired. Let E′ be the set of r such edges. By our assumption
each edge of E′ has its odd end inside π′ and the even end outside π′. We are
going to show that the edges of E′ form an induced matching of Xπ′

r .
Let {u1, v1} and {u2, v2} be two edges of E′, u1 and u2 being the ends inside

π′, v1 and v2 being the ends outside π′. Now v1 and v2 are not adjacent by
definition of an upper graph. The vertices u1 and u2 are not adjacent because,
by construction two different vertices of the same sublayer of odd layers are
not adjacent. Finally u1 and v2 as well as u2 and v1 are vertices of layers of
different parity lying in the same sublayers but having different numbers. Again,
by construction, such vertices cannot be adjacent.

Theorem 5. There is no function f such that for any graph G, obdd(ϕ(G)) ≤
nf(lsimw(G)).

Proof. Consider the graphs Xr. By Lemma 6, lu(Xr) ≥ r = (n/2)1/3 and hence,

by Theorem 2, obdd(ϕ(Xr) ≥ 2n
Ω(1)

.
Clearly obdd(ϕ(Xr)) cannot be upper-bounded by any polynomial function of

n. On the other hand, by Lemma 5, whatever function f we take, nf(lsimw(Xn))

is upper-bounded by nO(c) where c is the maximum of f(1), f(2), and f(3).

7 Future research

In this section we discuss several interesting open questions related to representation
of monotone 2-cnfs by circuit models more powerful than obdds. A natural
question in this direction is to consider Nondeterministic Read-Once Branching
Programs (1-nbps) instead of obdds, For example, is it true that the size of
1-nbp representing a monotone 2-cnf ϕ = ϕ(G) is lower bounded by 2Ω(lu(G))?

Similarly to mim width and sim width, it is possible to formulate the
’non-linear’ version of lu-mim width in terms of the branch decompositions
rather than permutations. It is interesting to investigate whether the size of
Decomposable Negation Normal Forms (dnnfs) or its restricted classes such
as Deterministic dnnfs representing monotone 2-cnfs can be captured by this
non-linear parameter. We conjecture that the resulting non-linear parameter
’captures’ the size of Structural Deterministic dnnfs but for more general
models the situation is unclear and is likely to depend on the situation with
1-nbps. Our belief relies on a plausible analogy with the bounded degree case
where pathwidth captures the size of 1-nbps while its non-linear counterpart
(that is treewidth) captures the size of dnnfs [1].

Finally, a natural question arising from the results of this paper is to capture
the size of obdds on monotone cnfs of higher arity. One possibility to achieve
this might be through a concise generalization of lu-mim width to hypergraphs.
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