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Abstract

Aaronson and Ambainis (STOC 2015, SICOMP 2018) claimed that the acceptance probability of
every quantum algorithm that makes q queries to an N -bit string can be estimated to within ε by
a randomized classical algorithm of query complexity Oq((N/ε2)1−1/2q). We describe a flaw in their
argument but prove that the dependence on N in this upper bound is correct for one-query quantum
algorithms (q = 1). Update: Bravyi, Gosset, and Grier had already obtained the improved bound
O(qε−1/qN1−1/2q).

Given a quantum algorithm Q equipped with an oracle, let cQ(ε) denote the minimum query complexity
of a randomized classical algorithm that estimates the acceptance probability of Q within ε with probability
at least 2/3. Aaronson and Ambainis [AA18] asked what is the value of cq(N, ε) = maxQ cQ(ε), where Q
ranges over all quantum algorithms that make q queries to an N -bit oracle. They proved that c1(N, 1/3) =
Ω(
√
N/ logN)1 and conjectured that cq(N, 1/3) = Ω̃q(N

1−1/2q). Moreover, Aaronson and Ambainis claimed
an upper bound of cq(N, ε) = Oq((N/ε

2)1−1/2q).
In this note we describe a flaw in Aaronson’s and Ambainis’s proof of their upper bound on cq(N, ε).

Nevertheless, we show that the dependence on N is correct in the case q = 1.

Theorem 1. c1(N, ε) = O(
√
N/ε2).

In Cheung’s Master’s thesis [Che21] it is proved more generally that cq(N, ε) = O(N1−9/(2·9q)/ε2). This
confirms the non-existence of a property that is testable with O(1) quantum but not with o(N) classical
queries, a question that was raised by Buhrman et al. [BFNR08] which served as one of the motivations for
Aaronson’s and Ambainis’s work.

The lower bound of Aaronson and Ambainis was generalized by Tal [Tal20], who showed that cq(N, 1/2−
1/22q) = Ω̃q(N

2/3−O(1/q)). Recently, Bansal and Sinha [BS21] and Sherstov, Storozhenko, and Wu [SSW21]
independently improved it to cq(N, (1 − η)/2) = Ωq((N/ logN)1−1/2q · η2). It remains open whether the
dependence on N is tight for q ≥ 2.

Update: Bravyi, Gosset, and Grier [BGG21, Theorem 5] had already obtained the bound cq(N, ε) =
O(qε−1/qN1−1/2q), settling the dependence on N for all q.

1 A revised analysis of the Aaronson-Ambainis estimator

To describe the flaw in [AA18] we specialize to the one-query case q = 1. First, [AA18] shows that the
acceptance probability of a one-query quantum algorithm with oracle x ∈ {−1, 1}N can be written as p(x, x)
for some quadratic bilinear polynomial

p(x, y) = x>Ay =

N∑
i,j=1

aijxiyj
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such that |p(x, y)| ≤ 1 for all x, y ∈ {−1, 1}N . The main ingredient is a randomized algorithm for estimating
the value of p(x, y) to within ε with high probability that reads only O(

√
N) bits of x and y (in expectation).

The algorithm consists of two steps:

1. Variable-splitting step (Lemma 4.4 in [AA18]): Calculate the following regularity coefficients:

Λ{1,2} :=
∑
ij

a2ij Λ{1} :=
∑
i

(
∑
j

aij)
2 Λ{2} :=

∑
j

(
∑
i

aij)
2

If any of Λ{1,2}, Λ{1}, and Λ{2} exceed δ = ε2/N , replace some variable xi by (x′i + x′′i )/2 or some
variable yj by (y′j + y′′j )/2, where x′i, x

′′
i , y
′
j , y
′′
j are new variables. Then repeat variable-splitting.

Otherwise, proceed to the estimation step.

2. Estimation step (Section 4.2 of [AA18]): Sample each input xi, yj independently with probability

q = 1/
√
N and output the value of the estimator P = (1/q2)

∑
sampled i, j aijxiyj .

The correctness of the algorithm is then argued through the following two claims:

Claim 2 (Corollary 4.5 in [AA18]). There exists a choice of variable splittings for which the variable-splitting
step terminates after at most O(1/δ) = O(N/ε2) iterations.

Claim 3 (Section 4.3, 4.4 in [AA18]). P is an unbiased estimator of p(x, y) of variance O(δ/q2) = O(ε2).

By Claim 3 and Chebyshev’s inequality it is concluded that the estimator is accurate with high probability:

Corollary 4. Pr[|P− p(x, y)| = O(ε)] ≥ 2/3.

By Claim 2, the number of variables N ′ in p after variable splitting is N ′ = O(N/ε2). The expected
query complexity of the algorithm is then N ′q = O(

√
N/ε2). This falls a little short of the O(

√
N/ε) bound

claimed in [AA18]. The reason for this minor gap is that in [AA18] the sampling probability q is mistakenly
set to 1/

√
N ′ instead of 1/

√
N (which would result in O(δ/q2) = O(1) instead of O(ε2) in Claim 3).

We now demonstrate that even with the more liberal choice of sampling probability q = 1/
√
N , Corollary 4

(and therefore Claim 3) is incorrect.

A counterexample to Corollary 4

Fix a sufficiently large absolute constant K. We assume N > K2/4 and ε ≤ 1/K. Let bL denote the
column vector consisting of L/2 1s followed by L/2 −1s (assuming L is even). Consider the polynomial

p(x, y) = x>Ay where x ∈ {−1, 1}K2/4+N , y ∈ {−1, 1}N , and A is an (K2/4 +N)×N matrix

A =

[
ε

KN bK2/4 · b>N
ε

2N3/2H

]
where H denotes the N ×N Walsh-Hadamard matrix.

We claim that |p(x, y)| ≤ 1 on all {−1, 1} inputs: For x = (x0, x1) where x0 ∈ {−1, 1}K2/4, the contribu-
tion of the top K2/4 rows is ε

KN x0
>bK2/4 · b>Ny ≤ Kε/4 ≤ 1/4. The contribution of the bottom N rows is

at most ε/2 (as the Hadamard matrix has spectral norm
√
N), thus |p(x, y)| ≤ 1 for all relevant inputs.

We can calculate Λ{1,2} = (ε/KN)2 · (K2/4) · N + (ε2/4N3) · N2 ≤ ε2/2N < ε2/(K2/4 + N). As for
Λ{1} and Λ{2}, the top K2/4 rows do not affect their value at all as the corresponding entries cancel out, so
both of them are determined by H and can be checked to evaluate to ε2/2N < ε2/(K2/4 + N). Thus the
algorithm does not find it necessary to perform variable splitting.

Now consider what happens when the input is x = (bK2/4,1N ) and y = bN . The value of the polynomial
on this input is

p(x, y) =
ε

KN
b>K2/4 · bK2/4 · b>N · bN +

ε

2N3/2
1>NHy =

Kε

4
± ε

2
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However, the estimator P misses the first K2/4 rows with probability 1−O(K2/
√
N). Conditioned on this,

the value of its estimate would have been to within a constant factor as if it was run on the polynomial
(ε/N3/2)xTHy with input x = 1N , y = bN , which should produce an estimate of magnitude O(ε) with high
probability. For K sufficiently large, the estimated and true value of p(x, y) are likely to be more than O(ε)
apart.

In fact, it can be checked that the variance of the estimator P on the given example is Ω(ε2
√
N), which

is larger than the O(ε2) bound from Claim 3.

2 Proof of Theorem 1

To prove Theorem 1, we dispense of the variable splitting step and show that there exists a possibly non-
uniform choice of probabilities that makes the estimation step work. The choice of sampling probabilities
is derived from the factorial (dual) form of Grothendieck’s inequality [Pis12, Page 239] (see also [AAI+16,
Lemma A.6]). Let ‖A‖� = maxx,y∈{−1,1}N x

TAy denote the cut norm of A and ‖A‖ = max‖x‖2=1‖Ax‖2
denote its spectral norm.

Proposition 5 (Factorial Grothendieck’s Inequality). There exists an absolute constant KG (Grothendieck’s
real constant) such that for every A ∈ Rn×n, there exists α, β ∈ Rn≥0 such that ‖α‖2 = ‖β‖2 = 1 such that

for Ã = [ãij ] satisfying aij = αiãijβj, ‖Ã‖ ≤ KG · ‖A‖�.

The estimator P(ε) outputs the empirical average of O(1/ε2) samples of the following estimator P:
Independently sample variable xi with probability αi, variable yj with probability βj , and output

P =
∑
ij

aij
αiβj

xiyjXiYj ,

where Xi and Yj are indicator random variables for the events that xi and yj were sampled, respectively,
so that Pr[Xi = 1] = αi and Pr[Yj = 1] = βj . Then P, and therefore also P(ε), is an unbiased estimator of
p(x, y):

E[P] =
∑
ij

aijxiyj = p(x, y).

The expected number of queries made by P is

E
[∑

Xi +
∑

Yj

]
=
∑
i

αi +
∑
j

βj ≤
√
N

√∑
i
α2
i +
√
N

√∑
j
β2
j = 2

√
N,

so P(ε) makes at most O(
√
N/ε2) queries as desired. We now prove

Proposition 6. Assuming ‖A‖� = 1, Var[P] ≤ 3K2
G.

From here, Var[P(ε)] ≤ 1/3ε2 and so by Chebyshev’s inequality P(ε) is within ε of E[P(ε)] = p(x, y) with
probability at least 2/3, proving Theorem 1.

Proof of Proposition 6. Let i 6= i′ and j 6= j′. Then

Var(XiYj) = αiβj(1− αiβj) ≤ αiβj ,
Cov(XiYj′ ,XiYj) = αiβjβj′(1− αi) ≤ αiβjβj′ ,
Cov(XiYj ,Xi′Yj) = αiαi′βj(1− βj) ≤ αiαi′βj ,
Cov(XiYj ,Xi′Yj′) = 0.
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By the sum-of-variances formula,

Var[P] =
∑
i,j

a2ij
α2
iβ

2
j

Var(XiYj) +
∑
i,j 6=j′

aijcij′

α2
iβjβj′

yjyj′ Cov(XiYj ,XiYj′) +
∑
i6=i′,j

aijci′j
αiαi′β2

j

xixi′ Cov(Xi′Yj ,XiYj)

≤
∑
i,j

a2ij
αiβj

+
∑
i

1

αi
(
∑
j

aijyj)
2 +

∑
j

1

βj
(
∑
i

aijxi)
2.

Let Λ =
∑
ij

a2ij
αiβj

, Λ1(y) =
∑
i

1
αi

(
∑
j aijyj)

2, and Λ2(x) =
∑
j

1
βj

(
∑
i aijxi)

2. We show that each of them

at most K2
G for all x, y ∈ {−1, 1}N .

Λ =
∑
i,j

αiãij
2
βj

≤
√∑

i,j

α2
i ãij

2
√∑

i,j

β2
i ãij

2
[by Cauchy-Schwarz]

=

√∑
i

α2
i ‖ãi‖22

√∑
i

β2
i ‖ãi‖22 [ãi is the i-th row of Ã]

≤ ‖Ã‖2 [‖ãi‖2 ≤ ‖Ã‖]
≤ K2

G [by Proposition 5]

Λ1(y) =
∑
i

1

αi
(
∑
j

αj ãijβjyj)
2

=
∑
i

αi(
∑
j

ãijβjyj)
2

=
∑
i

αi|(Ã(β · y))i|2 [(β · y)j = βjyj ]

≤ ‖Ã‖2 [αi ≤ 1 and ‖β · y‖2 = ‖β‖2 = 1]

≤ K2
G. [by Proposition 5]

By symmetry we also get that Λ2(x) ≤ K2
G for all x ∈ {−1, 1}N , so Var[P ] ≤ 3K2

G.

Cheung’s Master’s thesis [Che21] shows that the estimation algorithm can be implemented in time poly-
nomial in N and 1/ε.
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