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On quantum versus classical query complexity
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Abstract
Aaronson and Ambainis (STOC 2015, SICOMP 2018) claimed that the acceptance probability of
every quantum algorithm that makes ¢ queries to an N-bit string can be estimated to within e by
a randomized classical algorithm of query complexity O4((N/e?)'~1/27). We describe a flaw in their
argument but prove that the dependence on N in this upper bound is correct for one-query quantum
algorithms (¢ = 1). Update: Bravyi, Gosset, and Grier had already obtained the improved bound
O(qe_l/qu_l/Qq).

Given a quantum algorithm @ equipped with an oracle, let cq(e) denote the minimum query complexity
of a randomized classical algorithm that estimates the acceptance probability of @ within e with probability
at least 2/3. Aaronson and Ambainis [AA18] asked what is the value of ¢4(N,¢) = maxg cg(€), where Q
ranges over all quantum algorithms that make ¢ queries to an N-bit oracle. They proved that ¢;(N,1/3) =
Q(V/N/log N)! and conjectured that c,(N,1/3) = Q,(N'~1/29). Moreover, Aaronson and Ambainis claimed
an upper bound of ¢,(N,€) = O, ((N/e2)1~1/2q).

In this note we describe a flaw in Aaronson’s and Ambainis’s proof of their upper bound on ¢4 (N, e€).
Nevertheless, we show that the dependence on N is correct in the case ¢ = 1.

Theorem 1. ¢;(N,¢) = O(V/N/é?).

In Cheung’s Master’s thesis [Che21] it is proved more generally that c,(N,e) = O(N*~9/(29%) /2). This
confirms the non-existence of a property that is testable with O(1) quantum but not with o(N) classical
queries, a question that was raised by Buhrman et al. [BFNRO8] which served as one of the motivations for
Aaronson’s and Ambainis’s work.

The lower bound of Aaronson and Ambainis was generalized by Tal [Tal20], who showed that c,(N,1/2—
1/229) = Q,(N?/3-00/0)). Recently, Bansal and Sinha [BS21] and Sherstov, Storozhenko, and Wu [SSW21]
independently improved it to ¢, (N, (1 —1)/2) = Q,((N/log N)'~1/2¢ . 2). Tt remains open whether the
dependence on N is tight for ¢ > 2.

Update: Bravyi, Gosset, and Grier [BGG21, Theorem 5] had already obtained the bound ¢,(N,¢) =
O(ge~'/4N'=1/29)  settling the dependence on N for all q.

1 A revised analysis of the Aaronson-Ambainis estimator

To describe the flaw in [AA18] we specialize to the one-query case ¢ = 1. First, [AA18] shows that the
acceptance probability of a one-query quantum algorithm with oracle z € {—1,1}" can be written as p(z, z)
for some quadratic bilinear polynomial
N
pla,y) =2 Ay =" ajay;
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such that |p(z,y)| <1 for all z,y € {—1,1}". The main ingredient is a randomized algorithm for estimating
the value of p(x,y) to within e with high probability that reads only O(v/N) bits of x and y (in expectation).
The algorithm consists of two steps:

1. Variable-splitting step (Lemma 4.4 in [AA18]): Calculate the following regularity coefficients:

Aoy =Y al Apy = O ay)® Apy =Y (O ay)’
7 7
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If any of Ay oy, Agy, and Apoy exceed § = €2 /N, replace some variable x; by (] + z')/2 or some

variable y; by (y; +y7)/2, where z}, 27, y},y} are new variables. Then repeat variable-splitting.

Otherwise, proceed to the estimation step.

2. Estimation step (Section 4.2 of [AA18]): Sample each input z;,y, independently with probability
q = 1/v/N and output the value of the estimator P = (1/¢?) > sampled i, j Vi TiYj-

The correctness of the algorithm is then argued through the following two claims:

Claim 2 (Corollary 4.5 in [AA18]). There exists a choice of variable splittings for which the variable-splitting
step terminates after at most O(1/8) = O(N/€?) iterations.

Claim 3 (Section 4.3, 4.4 in [AA18]). P is an unbiased estimator of p(x,y) of variance O(§/q*) = O(€?).
By Claim 3 and Chebyshev’s inequality it is concluded that the estimator is accurate with high probability:
Corollary 4. Pr[|P — p(z,y)| = O(e)] > 2/3.

By Claim 2, the number of variables N’ in p after variable splitting is N’ = O(N/e?). The expected
query complexity of the algorithm is then N’q = O(v/N/€?). This falls a little short of the O(v/N /¢) bound
claimed in [AA18]. The reason for this minor gap is that in [AA18] the sampling probability ¢ is mistakenly
set to 1/v/N” instead of 1/v/N (which would result in O(5/¢?) = O(1) instead of O(e?) in Claim 3).

We now demonstrate that even with the more liberal choice of sampling probability ¢ = 1/ VN, Corollary 4
(and therefore Claim 3) is incorrect.

A counterexample to Corollary 4

Fix a sufficiently large absolute constant K. We assume N > K?/4 and ¢ < 1/K. Let by, denote the
column vector consisting of L/2 1s followed by L/2 —1s (assuming L is even). Consider the polynomial

p(z,y) = 2T Ay where z € {—1,1}5°/4N 4 ¢ {—1,1}¥, and A is an (K2/4+ N) x N matrix

A= {KENbKQM ) b]TV]
2N€3/2H

where H denotes the N x N Walsh-Hadamard matrix.

We claim that [p(z,y)| < 1 on all {—1,1} inputs: For 2 = (z0,21) where 2o € {—1,1}%"/4, the contribu-
tion of the top K?/4 rows is 7520 bg2/s-byy < Ke/4 < 1/4. The contribution of the bottom N rows is
at most €/2 (as the Hadamard matrix has spectral norm v/N), thus [p(z, )| < 1 for all relevant inputs.

We can calculate Agy oy = (¢/KN)? - (K?/4) - N + (¢/AN?) - N? < ¢2/2N < ¢?/(K?/4+ N). As for
Ay and Aggy, the top K 2/4 rows do not affect their value at all as the corresponding entries cancel out, so
both of them are determined by H and can be checked to evaluate to €2/2N < ¢2/(K?/4 + N). Thus the
algorithm does not find it necessary to perform variable splitting.

Now consider what happens when the input is # = (bg=2,4,1x) and y = by. The value of the polynomial

on this input is
Ke €
1yHy= — + -
N{1Y 1 2

€

€
p(z,y) = ﬁb;@m ‘byz/ by by + SN3/2



However, the estimator P misses the first K2 /4 rows with probability 1 — O(K?2/y/N). Conditioned on this,
the value of its estimate would have been to within a constant factor as if it was run on the polynomial
(e/N3/?)2T Hy with input = = 1,y = by, which should produce an estimate of magnitude O(¢) with high
probability. For K sufficiently large, the estimated and true value of p(x,y) are likely to be more than O(e)
apart.

In fact, it can be checked that the variance of the estimator P on the given example is Q(e? VN ), which
is larger than the O(e?) bound from Claim 3.

2 Proof of Theorem 1

To prove Theorem 1, we dispense of the variable splitting step and show that there exists a possibly non-
uniform choice of probabilities that makes the estimation step work. The choice of sampling probabilities
is derived from the factorial (dual) form of Grothendieck’s inequality [Pis12, Page 239] (see also [AAI*16,
Lemma A.6]). Let [|Allg = max, ye(_113~ 27 Ay denote the cut norm of A and ||A| = max),|,—1 || Az
denote its spectral norm.

Proposition 5 (Factorial Grothendieck’s Inequality). There exists an absolute constant K¢ (Grothendieck’s
real constant) such that for every A € R™ ™, there exists o, 8 € RZ such that ||a||2 = [|B]l2 = 1 such that

for A= [a;;] satisfying a;; = a;ai;5;, HEH < K¢ - |A|o.

The estimator P(e) outputs the empirical average of O(1/e?) samples of the following estimator P:
Independently sample variable x; with probability «;, variable y; with probability 5;, and output

_ Aij N
P= Z] w 2y XY,

where X; and Y are indicator random variables for the events that x; and y; were sampled, respectively,
so that Pr[X; = 1] = a; and Pr[Y; = 1] = 3;. Then P, and therefore also P(e), is an unbiased estimator of
p(z,y):
EP] = Zaijxiyj = p(x,y).
ij

The expected number of queries made by P is
E[ZXi+Z§/}:|:Zai+ZBj§\/N Ziafﬁ-\/ﬁw/Zjﬁ?:m/N?
i j ‘

so P(¢) makes at most O(v/N/e?) queries as desired. We now prove
Proposition 6. Assuming || Al =1, Var[P] < 3KZ.

From here, Var[P(e)] < 1/3€% and so by Chebyshev’s inequality P(e) is within € of E[P(¢)] = p(z,y) with
probability at least 2/3, proving Theorem 1.

Proof of Proposition 6. Let 1 # 4’ and j # j'. Then

Var(X;Y;
Cov(X,Y;, X,Y;
Cov(X,Y;, X:Y;
Cov(X;Y;, XY

a;3;(1 —a;85) < i3y,

a; BB (1 — a;) < ;BB
a0 B5(1 — B5) < e B,
0

)
)
)
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By the sum-of-variances formula,

2
i QijCij QijCi'j
Var[P] = Z QéQ Var(X;Y;) + > azjﬁjéjlyjyj/COV(Xin,Xin/)—|— > L amy Cov(Xy Y, X Y)
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Let A = Z” aas M) =3, o (2, aijy;)?, and Ag(z) = 32, é(zz a;jz;)?. We show that each of them
at most K2 for all z,y € {—1,1}.

A= Zazazj?Bj

Z a2ay;’ Z Bla;” [by Cauchy-Schwarz]
4,J
= \/Z 0‘22”61”3\/2 B2||aill3 [a; is the i-th row of /T]
<Al (a2 < [ Al
< K% [by Proposition 5]

Al(y) Z Za]aljﬁjy])
= Z az Z al]ﬁjy]

= Zai B-y)il? [(B-y); = Bjy;]
< |l4) [ < Tand |18 yll> = [1B]2 = 1]
< K3. [by Proposition 5]
By symmetry we also get that As(z) < K2 for all z € {—1,1}", so Var[P] < 3K2. O

Cheung’s Master’s thesis [Che21] shows that the estimation algorithm can be implemented in time poly-
nomial in N and 1/e.
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