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Abstract

In this work, we initiate the study of the Minimum Circuit Size Problem (MCSP) in the
quantum setting. MCSP is a problem to compute the circuit complexity of Boolean functions.
It is a fascinating problem in complexity theory — its hardness is mysterious, and a better un-
derstanding of its hardness can have surprising implications to many fields in computer science.

We first define and investigate the basic complexity-theoretic properties of minimum quan-
tum circuit size problems for three natural objects: Boolean functions, unitaries, and quantum
states. We show that these problems are not trivially in NP but in QCMA (or have QCMA pro-
tocols). Next, we explore the relations between the three quantum MCSPs and their variants.
We discover that some reductions that are not known for classical MCSP exist for quantum
MCSPs for unitaries and states, e.g., search-to-decision reductions and self-reductions. Finally,
we systematically generalize results known for classical MCSP to the quantum setting (including
quantum cryptography, quantum learning theory, quantum circuit lower bounds, and quantum
fine-grained complexity) and also find new connections to tomography and quantum gravity.
Due to the fundamental differences between classical and quantum circuits, most of our results
require extra care and reveal properties and phenomena unique to the quantum setting. Our
findings could be of interest for future studies, and we post several open problems for further
exploration along this direction.
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1 Introduction

The Minimum Circuit Size Problem (MCSP) is one of the central computational problems in com-
plexity theory. Given the truth table of a Boolean function f : {0, 1}n → {0, 1} and a size parameter
s (in unary) as inputs, MCSP asks whether there exists a circuit of size at most s for f . While MCSP
has been studied as early as the 1950s in the Russian cybernetics program [Tra84], its complexity
remains mysterious: we do not know whether it is in P or NP-hard. Meanwhile, besides being a
natural computational problem, in recent years, researchers have discovered many surprising con-
nections of MCSP to other areas such as cryptography [RR97], learning theory [CIKK16], circuit
complexity [KC00], average-case complexity [Hir18], and others.

Quantum computing is of growing interest, with applications to cryptography [Sho94], machine
learning [BWP+17], and complexity theory [JNV+20], etc. Inspired by the great success of MCSP
in classical computation and the flourishing of quantum computers, we propose a new research
program of studying quantum computation through the lens of MCSP. We envision MCSP as a
central problem that connects different quantum computation applications and provides deeper
insights into the complexity-theoretic foundation of quantum circuits.

1.1 The classical MCSP and its connections to other problems

It is immediate that MCSP ∈ NP because the input size is 2n so one can verify if a circuit (given as
the certificate/proof) computes the input truth table in time 2O(n). However, there is no consensus
on the complexity status of this problem – MCSP could be in P, NP-complete, or NP-intermediate.
Several works [MW17, KC00] showed negative evidence for proving the NP-hardness of MCSP using
standard reduction techniques. We also do not know whether there is an algorithm better than
brute force search (see Perebor conjecture forMCSP [Tra84]) or whether there is a search-to-decision
reduction or a self-reduction1 for MCSP2. On the other hand, several variants of MCSP are NP-hard
under either deterministic reductions [Mas79, HOS18] or randomized reductions [Ila19, ILO20].

Researchers have discovered many surprising connections of MCSP to other fields in Theoretical
Computer Science including cryptography, learning theory, and circuit lower bounds. To name
a few, Razborov and Rudich [RR97] related natural properties against P/poly with circuit lower
bounds and pseudorandomness. Kabanets and Cai [KC00] showed that MCSP ∈ P implies new
circuit lower bounds, and that MCSP ∈ BPP implies that any one-way function can be inverted.
Allender and Das [AD14] related the complexity class SZK (Statistical Zero Knowledge) to MCSP.
Carmosino et al. [CIKK16] showed that MCSP ∈ BPP gives efficient PAC-learning algorithms. Im-
pagliazzo et al. [IKV18] showed that the existence of indistinguishable obfuscation implies that SAT
reduces to MCSP under a randomized reduction. Hirahara [Hir18] showed that if an approximation
version of MCSP is NP-hard, then the average-case and worst-case hardness of NP are equivalent.
Arunachalam et al. [AGG+20] proved that MCSP ∈ BQP implies new circuit lower bounds. All
these results indicate that the MCSP serves as a “hub” that connects many fundamental problems
in different fields. Therefore, a deeper understanding of this problem could lead to significant
progress in Theoretical Computer Science.

1.2 Main results and technical overview

In this work, we consider three different natural objects that a quantum circuit can compute:
Boolean functions, unitaries, and quantum states. We start with giving the informal definitions

1Roughly, a problem is self-reducible if one can solve the problem with size n by algorithms for smaller size.
2It is worth noting that every NP-complete problem has search-to-decision reductions and self-reductions.
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of the minimum circuit size problem for each of them. See Section 3 and Section 5 for the formal
definitions.

Definition 1.1 (MQCSP, informal). Given the truth table of a Boolean function f and a size
parameter s in unary, decide if there exists a quantum circuit C which has size at most s and uses
at most s ancilla qubits such that C computes f with high probability.

Definition 1.2 (UMCSP, informal). Given the full description of a 2n-dimensional unitary matrix
U and a size parameter s in unary, decide if there exists a quantum circuit C which has size at
most s and uses at most s ancilla qubits such that C and U are close3.

Definition 1.3 (SMCSP, informal). Let |ψ〉 be an n-qubit state. Given size parameters s and n
in unary and access to arbitrarily many copies of |ψ〉 (or the classical description of |ψ〉), decide if
there exists a quantum circuit C which has size at most s using at most s ancilla qubits such that
C|0n〉 and |ψ〉 are close in terms of fidelity.

In the rest of this subsection, we first discuss several challenges and difficulties we encountered
in the study of MCSP when moving from the classical setting to the quantum setting. Next, we
give an overview of all the results and techniques. In particular, we focus on both interpreting the
new connections we establish as well as the technical subtleties when quantizing the previous works
in the classical setting. For a quick summary of the results, please take a look at Table 1.

1.2.1 Challenges and difficulties when moving to the quantum setting

In the following, we summarize several fundamental properties of quantum circuits, unitaries, and
quantum states that induce problems and difficulties that would not appear in the classical setting.

Quantum computation is generally random and erroneous. It is natural to consider quan-
tum circuits that approximate (rather than exactly computing) the desired unitary. One immediate
consequence is that we have to define the quantum MCSPs as promise problems (with respect to
the error)4, which is more challenging to deal with. Moreover, since unitaries and quantum states
are specified by complex numbers, we also need to properly tackle the precision issue. These quan-
tum properties make generalizing classical results to the quantum setting non-trivial. For instance,
some classical analyses (see [AGG+20] for an example) rely on the fact that the classical circuits
are deterministic after the random string is made public, while any intermediate computation of a
quantum circuit is inherently not deterministic.

Quantum circuits are reversible. This follows from the fact that every quantum gate is re-
versible. While this seems to be a restriction for quantum circuits, we observe that this enables
search-to-decision reductions for UMCSP and SMCSP. Note that the existence of such reduction is
a longstanding open question for classical MCSP. This suggests that quantum MCSPs can provide
a new angle to leverage the reversibility of quantum circuits.

The introduction of ancilla qubits. As quantum circuits are reversible, every intermediate
computation has to happen on the input qubits. Thus, it is very common to introduce ancilla
qubits which are extra qubits initialized to all zero and can be regarded as additional registers for
intermediate computation. Ancilla qubits introduce complications in quantum MCSPs. First, the
quantum circuit complexity of an object could be very different when the allowed number of ancilla

3We say C and U are close if |(〈ψ| ⊗ I)U†C(|ψ〉|0〉)| is large for all |ψ〉.
4The definitions above are not promise problems for simplicity. Check Section 3 and 5 for formal definitions.
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qubits is different. Second, the classical simulation time of a quantum circuit scales exponentially in
the number of input qubits plus the number of ancilla qubits. Namely, when the number of ancilla
qubits is super-linear, classical simulations would require super-polynomial time5. An immediate
consequence is that, unlike classical MCSP, MQCSP is not trivially in NP when allowing a super-
linear number of ancilla qubits. In addition, the output of quantum circuits on ancilla qubits can be
arbitrary quantum states in general. This property makes certain reductions for quantum MCSPs
fail when considering many ancilla qubits.

Various universal quantum gate sets. The choice of the gate set affects the circuit complexity
of the given Boolean functions (and unitaries and states). There are various universal quantum
gate sets, and transforming from one to the other results in additional polylogarithmic overhead
to the circuit complexity by the Solovay-Kitaev Theorem. We note that when considering certain
hardness results, the choice of the gate set might matter. Take the approximate self-reduction
for SMCSP (in Theorem 1.12) as an example, we start from constructing such reductions for a
particular gate set. We then generalize the result to an arbitrary gate set via the Solovay-Kitaev
Theorem; however, it introduces additional overhead to the approximation ratio. Another example
is proving NP-hardness for multi-output MQCSP, where we show that the problem is NP-hard
when considering particular gate sets, and it is still open whether the problem is NP-hard for all
universal gate sets.

1.2.2 The Hardness of MQCSP and cryptography

We start with stating the hardness results of MQCSP and its implications in cryptography.

Theorem 1.4 (Informal).

1. MQCSP is in QCMA ⊆ QMA.

2. If MQCSP can be solved in quantum polynomial time, then quantum-secure one-way function
(qOWF) does not exist.

3. If one can solve MQCSP efficiently, then all problems in SZK have efficient algorithms.

4. Suppose that quantum-secure indistinguishability obfuscator (iO) for polynomial-size circuits
exists. Then, MQCSP ∈ BQP implies NP ⊆ coRQP6.

5. Multiple-output MQCSP (under a gate set with some natural properties) is NP-hard under
randomized reductions.

We have discussed why MQCSP is not trivially in NP earlier. So, it is natural to wonder what
can be a tighter upper bound for MQCSP. Instead of considering classical verifier, we allow the
verifier to check the given witness circuit quantumly and thus are able to prove that MQCSP is
in QCMA (which is a quantum analogue of MA allowing efficient quantum verifiers but classical
witness).

For item 2 – 5, we study whether some hard problems reduce to MQCSP. Classically, many
results use the fact that an MCSP oracle can break certain pseudorandom generators to show
reductions from hard problems to MCSP. A distinguisher can break a pseudorandom generator
by viewing that the string is a truth table of some Boolean function and using the MCSP oracle

5The running time is measured with respect to the size of the truth table or the size of the unitary/quantum state.
6
coRQP is a complexity class of quantumly solvable problems with perfect soundness and bounded-error complete-

ness.
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to decide if the function has small circuit complexity7. We generalize this idea to the quantum
setting by observing that if the Boolean function has small classical circuit complexity, then its
quantum circuit complexity is also small. It is worth noting that the second result implies efficient
algorithms for some lattice problems if MQCSP is in BQP.

For item 5, we generalize the recent breakthrough of Ilango et al. [ILO20] on the NP-hardness of
MCSP. We note that the formal theorem statement depends on the gate set choices of MQCSP. To
prove this theorem, we follow the proof ideas in [ILO20] and overcome some additional obstacles
that appear in the quantum world. The new obstacle comes from (i) the quantum gate set is
different from the one in the classical case; (ii) in the quantum world, we need to deal with error
terms. We carefully handle these issues and extend the proof to the quantum setting.

1.2.3 MQCSP and learning theory

A central learning theory setting is (approximately) reconstructing a circuit for an unknown func-
tion given a limited number of samples. Learning Boolean functions in the classical setting was
extensively studied (see, for example, a survey by Hellerstein and Servedio [HS07]); however, rela-
tively few explorations have been made under the quantum setting. There are two natural quantum
extensions: (i) learning a quantum circuit and (ii) adding quantumness in the learning algorithm.
We study both scenarios and provide generic connections between MQCSP and the two settings

PAC learning for quantum circuits. Probabilistic approximately correct (PAC) learning [Val84]
is a standard theoretical framework in learning theory. There are several variants, but for simplic-
ity, we focus on the query model where a classical learning algorithm can query an unknown n-bit
Boolean function f on inputs x1, . . . , xm ∈ {0, 1}n and aim to output a circuit approximating f with
high probability. To have efficient PAC learning algorithms for polynomial-size quantum circuits,
we show that it is necessary and sufficient to have efficient algorithms for MQCSP or its variants.

Theorem 1.5 (Informal). The existence of an efficient PAC learning algorithm for BQP/poly is
equivalent to the existence of an efficient randomized algorithm for MQCSP.

Quantum learning. In the past two decades, there has been increased interest in quantum
learning (see a survey by Arunachalam and de Wolf [AdW17]) due to the success of machine
learning and quantum computing. While there have been interesting quantum speed-ups for specific
learning problems such as Principal Component Analysis [LMR14] and quantum recommendation
system [KP17], it is unclear whether the quantumness can provide a generic speed-up in learning
theory. A recent result of Arunachalam et al. [AGG+20] suggested that this might be difficult by
showing that the existence of efficient quantum learning algorithms for a circuit class would imply
a breakthrough circuit lower bound. We further generalize their result by showing the equivalence
of efficient quantum PAC learning and the non-trivial upper bound for MQCSP.

Theorem 1.6 (Informal). The existence of efficient quantum learning algorithms for PAC learning
a circuit class C is equivalent to the existence of efficient quantum algorithms for C-MQCSP8.

The proof idea is to quantize the “learning from a natural property” paradigm of [CIKK16].
Briefly speaking, the converse direction “algorithms for MQCSP imply learning algorithms” follows
from the idea that one can use the Boolean function (the object to be learned) to construct a PRG

7If the truth table is truly random, it corresponds to a random function and must have large circuit complexity
with high probability.

8
C-MQCSP is MQCSP with respect to circuit class C.
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with the property that breaking the PRG implies a reconstructing algorithm for f . Then, since an
algorithm for MQCSP can break PRG, we obtain an algorithm for f . Another direction follows from
the observation that we can still apply the learning algorithm given the truth table of the function.
Specifically, for Theorem 1.5, it turns out that the converse direction is straightforward because
P/poly ⊂ BQP/poly while the forward direction requires the number of ancilla bits to be O(n) due
to the overhead from a classical simulation for quantum circuits. For Theorem 1.6, the difficulty
lies in the fact that a quantum circuit is inherently random and one cannot arbitrarily compose
quantum circuits as their wishes. To circumvent these issues, we invoke the techniques in [AGG+20]
which built up composable tools for reconstructing a circuit from a quantum distinguisher. See
Theorem 4.14, Theorem 4.12, and Section 4.2 for more details.

1.2.4 MQCSP and quantum circuit lower bounds

The classical MCSP is tightly connected to circuit lower bounds. We generalize the results of
Oliveira and Santhanam [OS16], Arunachalam et al. [AGG+20], and Kabanets and Cai [KC00] to
MQCSP.

Theorem 1.7 (Informal). Suppose that MQCSP ∈ BQP. Then

1. BQE 6⊂ BQC[nk] for any constant k ∈ N9; and

2. BQPQCMA 6⊂ BQC[nk] for any constant k ∈ N.

For item 1, we useMQCSP to construct a BQP-natural property against quantum circuit classes.
Then, with a quantum-secure pseudorandom generator, we can use a “win-win argument” to show
that BQE 6⊂ BQC[nk] for any k > 0. The proof mainly follows from [AGG+20, OS16]. However,
we extend their proofs to the quantum natural properties against quantum circuit classes. One
technical contribution is a diagonalization lemma for quantum circuits.

For item 2, we follow the idea in [KC00] to show that the maximum quantum circuit complexity
problem10 can be solved in exponential time with a QCMA oracle. The main difference from the
classical case is that we require a QCMA oracle instead of an NP one, which follows from the fact
that we assume MQCSP is in BQP11. Then, the statement follows from the standard padding
argument.

Another aspect of quantum circuit complexity is hardness amplification. Kabanets and Cai
[KC00] showed that MCSP can be used as an amplifier to generate many hard Boolean functions.
In this part, we show that with an MQCSP oracle, given one quantum extremely hard Boolean
function, there is an efficient quantum algorithm that outputs many quantum-hard functions.

Theorem 1.8 (Hardness amplification by MQCSP, informal). Assume MQCSP ∈ BQP. There
exists a BQP algorithm that, given the truth table of a Boolean function with quantum circuit
complexity 2Ω(n), outputs 2Ω(n) Boolean functions with m = Ω(n) variables such that each function
has quantum circuit complexity greater than 2m/(c + 1)m for c some constant.

The proof of Theorem 1.8 closely follows the proof in [KC00]. The key ingredient is a quantum
Impagliazzo-Wigderson generator, which “quantizes” the construction in [IW97]. The quantum

9BQC[nk] is the complexity class for problems that can be solved by O(nk)-size quantum circuits with bounded
fan-in, and BQE in the set of problems that can be solved in 2O(n) time by quantum computers. Previously, Aaronson
[Aar06] showed that P

PP 6⊂ BQC[nk] unconditionally. However, the relations between P
PP, BQE, and BQP

QCMA are
still unclear.

10The problem is, given 1n, ask for a Boolean function f : {0, 1}n → {0, 1} that has the maximum complexity.
11Along this line, the result still holds if we consider MCSP ∈ BQP and maximum classical circuit complexity.
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Impagliazzo-Wigderson generator can transform the given quantum extremely hard function to
a quantum pseudorandom generator that fools quantum circuits of size 2O(n). Since we assume
MQCSP ∈ BQP, it means that we can construct a small quantum distinguishing circuit to accept
the truth tables of hard functions. And we can show that our quantum Impagliazzo-Wigderson gen-
erator can fool the distinguishing circuit. Hence, most of the outputs of the quantum pseudorandom
generator will have high quantum circuit complexity.

To quantize the Impagliazzo-Wigderson generator, we construct a quantum-secure direct-product
generator, and also use the quantum Goldreich-Levin Theorem and quantum-secure Nisan-Wigderson
generator developed in [AGG+20].

Hardness magnification is an interesting phenomenon in classical circuit complexity defined by
[OS18]. It shows that a weak worst-case lower bound can be “magnified” into a strong worst-case
lower bound for another problem. (See a recent talk by Oliveira [Oli19].) In this part, we show
that MQCSP also has a quantum hardness magnification.

Theorem 1.9 (Hardness magnification for MQCSP, informal). If a gap version of MQCSP does
not have nearly-linear size quantum circuit, then QCMA cannot be computed by polynomial size
quantum circuits.

We note that this is a nontrivial theorem because even if we assume QCMA ⊆ BQC[poly(n)],
we can only show MQCSP ∈ BQC[poly(2n)], i.e., MQCSP has a polynomial-size quantum circuit
by the fact that MQCSP ∈ QCMA. But the theorem implies that some gap-version of MQCSP has
nearly-linear size circuit!

We prove the above theorem via a quantum antichecker lemma, whose classical version was
given by [OPS19, CHO+20]. And we observe that the two key ingredients: a delicate design of a
Boolean circuit and a counting argument can be quantized.

1.2.5 MQCSP and quantum fine-grained complexity

Fine-grained complexity theory aims to study the exact lower/upper bounds of some problems.
For example, most theorists believe 3-SAT is not in P, but we do not know if it can be solved
in 2o(n) time. Exponential Time Hypothesis (ETH) is a commonly used conjecture in this area
which rules out this possibility (see a survey by Williams [Wil18]). Very recently, [Ila20b] showed
the fine-grained hardness of MCSP for partial function based on ETH. In the quantum setting,
[ACL+20, BPS21] proposed quantum fine-grained reductions and quantum strong exponential time
hypothesis (QSETH) to study the quantum hardness of problems in BQP. In this part, we follow
the works of [Ila20b, ACL+20] and prove the quantum hardness of MQCSP for partial functions
based on the quantum ETH conjecture,which conjectures that there does not exist a 2o(n)-time
quantum algorithm for solving 3-SAT12.

Theorem 1.10 (Fine-grained hardness of MQCSP⋆, informal). Quantum ETH implies No(log logN)-
quantum hardness of MQCSP for partial functions.

To prove the above theorem, we basically follow the reduction path in [Ila20b], which gave a
reduction from a fine-grained problem studied by [LMS11] to MQCSP for partial functions. But we
need to bypass two subtleties:

• The proof of [Ila20b] relies on the structure of the classical read-once formula, but there is no
direct correspondence with quantum;

12Existing quantum SAT solvers are not much faster than Grover’s search; they need 2Ω(n)-time even for 3-SAT.
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• [LMS11] only proved the classical hardness of the bipartite permutation independent set
problem, but we need quantum hardness result.

For the first issue, we prove an unconditional quantum circuit lower bound for that function
in the reduction. More specifically, we first show that if a small quantum circuit can compute
the partial function γ in the reduction, then that circuit is a quantum read-once formula (defined
by [Yao93]); and vice versa. And then, we apply a “dequantization” result by [CKP13] to show
that the quantum read-once formula can be converted to a classical read-once formula with the
same size. Then, by the structure of the “dequantized” read-once formula, we finally conclude that
deciding MQCSP for γ is equivalent to solving the bipartite permutation independent set problem.

For the second issue, we use the quantum fine-grained reduction framework and give a reduc-
tion from 3-SAT to the bipartite permutation independent set problem. Therefore, the quantum
hardness of MQCSP for partial function follows from the quantum hardness of deciding 3-SAT
conjectured by the quantum ETH.

1.2.6 Quantum circuit complexity for states and unitaries

In this section, we study UMCSP and SMCSP. For SMCSP in Definition 1.3, we consider two types of
inputs: quantum states and the classical description of the state. We consider the inputs as quantum
states since we generally cannot have the classical description of the quantum state in the real world,
and many related problems (such as shadow tomography [Aar18], quantum gravity [BFV20], and
quantum pseudorandom state [JLS18]) have multiple copies of states as inputs. Although this
input format makes SMCSP harder, we are able to show that SMCSP has a QCMA protocol13.
Furthermore, the search-to-decision reduction and the self-reduction in Theorem 1.12 hold for both
versions of SMCSP. We first show hardness upper bounds for UMCSP and SMCSP.

Theorem 1.11 (Informal). (1) UMCSP ∈ QCMA. (2) SMCSP can be verified by QCMA protocols.

To prove Theorem 1.11, we use the swap test to test whether the witness circuit C outputs the
correct states. This suffices to show that SMCSP has a QCMA protocol. To show that UMCSP is
in QCMA, checking if the circuit C and U agree on all inputs by using swap test is infeasible since
there are infinitely many quantum states in the 2n-dimensional Hilbert space. If one only checked
all the computational basis states (i.e., {|x〉 : x ∈ {0, 1}n}), it is possible that the circuit C and the
given unitary U are not close on inputs in the form of superposition states. This can come from
the following two sources. (a) C can introduce different phases on different computational basis
states; (b) using ancilla qubits to implement U results in entanglement between the output qubits
and ancilla qubits, which may fail the swap test.

To deal with these difficulties, we introduce an additional step in the test called “coherency
test”. This step tests the circuit output on all the initial states in the form of |a〉 + |b〉, where
|a〉, |b〉 are different computational basis states. We can prove that it forces the behavior of C to
be coherent on all the computational basis states, and forces the phases to be roughly the same.

Reductions for UMCSP and SMCSP that are unknown to the classical MCSP. In addition
to the upper bounds, we also show interesting reductions for UMCSP and SMCSP.

Theorem 1.12 (Informal).

• Search-to-decision reductions: There exist search-to-decision reductions for UMCSP and
SMCSP when no ancilla qubits are allowed.

13Note that since SMCSP has quantum inputs, the problem is not in QCMA under the standard definition.
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• Self-reduction: SMCSP is approximately self-reducible.

• A gap version of MQCSP reduces to UMCSP.

Classically, it is unknown whether MCSP is self-reducible or has search-to-decision reductions.
Ilango [Ila20a] proved that some variants of MCSP have search-to-decision reductions. Recently,
Ren and Santhanam [RS21] showed that a relativization barrier applies to the deterministic search-
to-decision reduction and self-reduction of MCSP. We prove the existence of search-to-decision
reductions by using the property that “quantum circuits are reversible”. In particular, we guess
the i-th gate, uncompute the gate from the state or the unitary, and use the decision oracles to
check whether the complexity of the new state or the new unitary reduces. By repeating this
process for all gates, we can find the desired circuits. This approach suffices for the case where the
quantum circuits use no ancilla qubits. On the other hand, when the quantum circuits use ancilla
qubits and are not forced to turn ancilla qubits back to the all-zero state, this approach does not
work. Consider UMCSP. The quantum circuit may implement a unitary U⊗V . To find the circuit,
the approach above needs to start from U ⊗ V and do the uncomputation iteratively. However, V
is unknown. SMCSP has the similar issues.

For the self-reducibility of SMCSP, we show that one can approximate the circuit complexity of
an n-qubit state by computing the circuit complexities of (n− 1)-qubit states. Roughly, we find a
“win-win decomposition” of an n-qubit state such that its circuit complexity is either close to the
circuit complexity of an (n− 1)-qubit state or can be approximated by two (n− 1)-qubit states.

Finally, we show a reduction related to MQCSP and UMCSP. The proof is by encoding a
Boolean function into a particular unitary and showing that the circuit complexity of that unitary
gives both upper and lower bounds for the circuit complexity of the Boolean function.

Implications of Hardness of SMCSP and UMCSP For UMCSP, one application is related to a
question Aaronson asked in [Aar16]: does there exist an efficient quantum process that generates a
family of unitaries that are indistinguishable from random unitaries given the full description of the
unitary? If there is an efficient algorithm for UMCSP, then there is no efficient quantum process
that generates unitaries indistinguishable from random unitaries given the full unitary.

Moreover, several implications of MCSP carry to UMCSP by Theorem 1.12. This follows from
the fact that the gap version of MQCSP suffices to break certain pseudorandom generators.

For SMCSP, we focus on the version where the inputs are copies of quantum states and present
its relationships to quantum cryptography, tomography, and quantum gravity.

Theorem 1.13 (Informal).

1. If SMCSP has quantum polynomial-time algorithms, then there are no pseudorandom states,
and thus no quantum-secure one-way functions.

2. Assuming additional conjectures from physics and complexity theory, the existence of an effi-
cient algorithm for SMCSP implies the existence of an efficient algorithm for estimating the
wormhole’s volume

3. If SMCSP can be solved efficiently, then one can solve the succinct state tomography problem14

in quantum polynomial time.

14The succinct state tomography problem is that given many copies of a state with the promise that its circuit
complexity is at most certain s, the problem is to find a circuit that computes the state.
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The first result in Theorem 1.13 follows from the observation that we can use SMCSP algorithms
to distinguish whether the given states have large circuit complexities. This results in algorithms for
breaking pseudorandom states, and thus algorithms for inverting quantum-secure one-way functions
by [JLS18]. It is worth noting that a recent work by Kretschmer [Kre21] showed some relativized
results for the problem of breaking pseudorandom states. Since that problem reduces to SMCSP,
his results would provide another angle for understanding the hardness of SMCSP. We show
the second result under the model and assumptions considered in [BFV20]. Roughly speaking,
the volumes of wormholes correspond to circuit complexities of particular quantum states. Thus
efficient algorithms for one implies solving the other one efficiently if the correspondence can be
computed efficiently. The third result mainly uses the search-to-decision reduction in Theorem 1.12
to find the circuit that computes the state.

1.3 Discussion and open questions

We lay out the following three-aspect road map for the quantum MCSP program. For each as-
pect, we present several results and also propose many open directions to explore. We have also
summarized all results in this work in Table 1.

First, we define the Minimum Quantum Circuit Size Problem (MQCSP) and study upper bounds
and lower bounds for its complexity. Furthermore, we explore the connections between MQCSP
and other areas of quantum computing such as quantum cryptography, quantum learning, quantum
circuit lower bounds, and quantum fine-grained complexity.

Then, we further extendMQCSP to study the quantum circuit complexities for quantum objects,
including unitaries and states.15 We want to investigate their hardness and connections to other
areas in TCS. In this work, we show upper bounds and lower bounds for their complexities, search-
to-decision reductions (for UMCSP and SMCSP), a self-reduction (for SMCSP), and reductions
from MQCSP to UMCSP. In addition to connections generalized from classical analogues (such as
cryptography, learning, and circuit lower bounds), we also find connections that might be unique
in the quantum setting, such as tomography and quantum gravity.

For the last part, we want to turn around and ask what could happen when considering quan-
tum algorithms or quantum reductions for MCSP (and also for MQCSP, UMCSP, and SMCSP)?
In the previous two parts, we have already observed that efficient quantum algorithms for these
problems result in surprising implications to other fields. One can further consider other influences
of quantum algorithms to study quantum and classical MCSPs. For example, can SAT reduce to
MCSP under quantum reductions?

Following the three-aspect road map for the quantum MCSP program, there are many open
directions to explore. In particular, we are interested to understand the hardness of these problems,
the relationships between them, and their connections to other fields in computer science.

1.3.1 Open problems: the complexity of quantum circuits

We start with open problems related to the hardness and relationships between quantum MCSPs.
The most basic questions are to understand the complexity of different quantum MCSPs. As we
have already seen, it is unclear if quantum MCSPs are in NP. Besides, we do not know if NP- or
QCMA-hard problems reduce to them.

Open Problem 1. Are UMCSP, MQCSP, and SMCSP in NP? Are these problems NP-hard,
QCMA-hard, or C-hard for some complexity class C that is between QCMA and SZK?

15Aaronson has raised questions about quantum circuit complexity for unitaries or states in [Aar16].
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We note that the case that makes these problems not known to be in NP is when there are more
than linearly many ancilla qubits. Therefore, if one can show that adding superpolynomially many
ancilla qubits does not lead to significant improvement on quantum circuit complexity, then we are
likely to put these problems in NP directly. Along this line, we pose the following open question:

Open Problem 2. For every n, s, t ∈ N with t ≤ s ≤ 2O(n), is BQC(s, t) ⊂ BQC(poly(s, t), O(n))?

For the hardness of UMCSP and SMCSP, One potential approach for proving NP-hardness of
UMCSP is as follows: Prove the NP-hardness of the gap version of certain variants of MQCSP
(such as sparse MQCSP or multiMQCSP), and then reduce it to UMCSP via the last reduction
in Theorem 1.12. The hardness of SMCSP seems to be slightly more mysterious than UMCSP.
One reason for this is that we do not know any relationship between SMCSP and other quantum
MCSPs, and thus the approach of reducing particular variants of quantum MCSP to SMCSP does
not directly work. This leads to another important open question:

Open Problem 3. What are the relationships between UMCSP, MQCSP, and SMCSP?

To answer whether quantum MCSPs are NP-complete, we can also study these problems from
another angle, that is, check if quantum MCSPs have particular reductions that all NP-complete
problems have. In the previous section, we observed that quantum circuits have some properties
leading to search-to-decision reductions for UMCSP and SMCSP without ancilla qubits and an
approximate self-reduction for SMCSP. Therefore, we ask whether we can have search-to-decision
reductions and self-reductions for these quantum MCSPs.

Open Problem 4. Are there search-to-decision reductions and self-reductions for quantum MCSPs?

It is worth noting that our search-to-decision reductions fail when ancilla qubits are allowed.
This mainly follows from the fact that the circuit of the solution can be an non-identity operator on
the ancilla qubits in general. This could possibly be addressed by iterating all possible unitaries or
states on an ǫ-net when the number of ancilla qubits are not large (e.g., at most log log n). However,
we need new ideas when considering more ancilla qubits.

Moreover, it would be interesting to investigate the applications of these reductions. For in-
stance, we have seen that the search-to-decision reductions give algorithms with UMCSP or SMCSP
oracle additional power to obtain the circuits. This power may lead to interesting applications.

Open Problem 5. Is there any application of search-to-decision reductions or self-reductions for
quantum MCSPs?

The hardness of average-case quantum MCSPs (which inputs are given randomly) is another
interesting topic to explore. Hirahara [Hir18] showed that there is a worst-case to average-case
reduction for the (gap version of) classical MCSP. We wonder if we can prove that quantum
MCSPs have worst-case to average-case reductions.

Open Problem 6. Are there worst-case to average-case reductions for quantum MCSPs?

Note that there is negative evidence [BT06] showing that such classical reductions might not
exist for NP-complete problems16. The existence of such reduction could result in important appli-
cations in cryptography, which we will discuss later.

Finally, we can also try to prove the hardness of quantum MCSPs under stronger assumptions
or more powerful reductions.

16However, there is no evidence for the existence of quantum worst-case to average-case reductions for NP-complete
since the analysis in [BT06] fails in the quantum setting. See [CHS20] for related discussion.
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Open Problem 7. Assuming QETH or QSETH, is MQCSP, UMCSP, or SMCSP quantumly hard?

Open Problem 8. Does quantum reduction provide more power to show the hardness of MCSP?
Specifically, is NP ⊆ BQPMCSP or NP ⊆ BQPMQCSP?

1.3.2 Open problems: potential connections to other areas

In this work, in addition to generalizing several known connections for MCSP to quantum MCSPs,
we have also discovered several connections which could be unique for quantum MCSPs. There
are still many classically existing or unknown connections that we can explore. One fascinating
question is whether we can base the security of one-way functions on any of these problems.

Open Problem 9. Can we base the security of cryptographic primitives on MQCSP, UMCSP,
SMCSP, or some variants of these problems?

Note that since quantum MCSPs considered in this work are all worst-case problems, to an-
swer Problem 9, we probably need worst-case to average-case reductions discussed in Problem 6.
Moreover, Liu and Pass [LP20] recently showed that the existence of classical one-way function is
equivalent to the average-case hardness of a type of Kolmogorov complexity on uniform distribution.
However, the average-case hardness of MCSP on uniform distribution is not known to imply one-
wayness even classically, and the quantum version faces a similar obstacle. Very recently, Ilango,
Ren, and Santhanam [IRS21] showed that the average-case hardness of Gap-MCSP on a locally
samplable distribution is equivalent to the existence of one-way function. Liu and Pass [LP21] fur-
ther generalized this result to show equivalence between the existence of one-way functions and the
existence of sparse languages that are hard-on-average (including Kolmogorov complexity, k-SAT,
and t-Clique). It is natural to ask whether their results can be generalized to quantum MCSPs.
In addition to one-way functions, We are interested in connections between quantum MCSPs and
“quantum-only” primitives, e.g., quantum iO, copy protection, quantum process learning, etc.

Along this line, as many quantum problems have quantum inputs, it is natural to consider
quantum MCSPs with quantum inputs. We have shown how SMCSP connects to problems in
quantum cryptography, quantum gravity, and tomography given quantum states as inputs. This
fact gives the possibility that MQCSP, UMCSP, and SMCSP with “succinct” quantum or classical
inputs may have surprising connections to other problems in quantum computing. For instance, one
can consider inputs which are quantum circuits that encode some objects (e.g., unitaries). Then,
the problem is to find another significantly smaller circuit. In [CCCW21], Chakrabarti et al. have
studied this problem and show applications to quantum supremacy.
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Results
Informal Theorem Index
(Formal Theorem Index)

MQCSP
(Def. 3.2)

MQCSP ∈ QCMA Theorem 1.4 (Theorem 3.9)
MQCSP ∈ BQP ⇒ No qOWF Theorem 1.4 (Theorem 4.8)

SZK ≤ MQCSP Theorem 1.4 (Theorem 3.13)
multiMQCSP is NP-hard under a natural gate set Theorem 1.4 (Theorem 3.14)

iO +MQCSP ∈ BQP ⇒ NP ⊆ coRQP Theorem 1.4 (Theorem 4.10)
PAC learning for BQP/poly ⇔ MQCSP ∈ BPP Theorem 1.5 (Theorem 4.12)

BQP learning ⇔ MQCSP ∈ BQP Theorem 1.6 (Theorem 4.14)
MQCSP ∈ BQP⇒ BQE 6⊂ BQC[nk], ∀k ∈ N+ Theorem 1.7 (Theorem 4.19)

MQCSP ∈ BQP⇒ BQPQCMA 6⊂ BQC[nk], ∀k ∈ N+ Theorem 1.7 (Theorem 4.22)
MQCSP ∈ BQP ⇒ Hardness amplification Theorem 1.8 (Theorem 4.20)

Hardness magnification for MQCSP Theorem 1.9 (Theorem 4.22)
QETH⇒ quantum hardness of MQCSP⋆ Theorem 1.10 (Theorem 4.27)

UMCSP
(Def. 5.1)

UMCSP ∈ QCMA Theorem 1.11 (Theorem 5.5)
Search-to-decision reduction for UMCSP Theorem 1.12 (Theorem 5.16)

gap-MQCSP ≤ UMCSP Theorem 1.12 (Theorem 5.23)
UMCSP ∈ BQP

⇒ No pseudorandom unitaries and no qOWF
(Theorem 5.24, Corollary 5.25)

iO + UMCSP ∈ BQP ⇒ NP ⊆ coRQP (Corollary 5.26)
UMCSP ∈ BQP ⇒ Hardness amplification for BQP (Corollary 5.27)

UMCSP ∈ BQP ⇒ BQE 6⊂ BQP[nk], ∀k ∈ N (Corollary 5.28)

SMCSP
(Def. 5.2)

SMCSP can be verified via QCMA Theorem 1.11 (Theorem 5.9)
Search-to-decision reduction for SMCSP Theorem 1.12 (Theorem 5.18)

Self-reduction for SMCSP Theorem 1.12 (Theorem 5.20)
SMCSP ∈ BQP

⇒ No pseudorandom states and no qOWF
Theorem 1.13 (Theorem 5.30)

Assume conjectures from physics
SMCSP ⇒ Estimating wormhole’s volume

Theorem 1.13 (Theorem 5.31)

Succinct state tomography ≤ SMCSP Theorem 1.13 (Theorem 5.33)

Table 1: Summary of our results. A result with color Blue is a direct extension from its classical

analog. A result with color Yellow requires additional techniques. A result with color Red is
unique in the quantum setting.
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2 Preliminaries

We start with a brief overview of quantum computation and complexity theory. We recommend
the standard textbook [NC11] for a more comprehensive treatment.

2.1 Quantum states, unitary transformations, and quantum circuits

To give a brief introduction to the quantum computing, we divide the computation into three parts:
input, process, and output.

Input. In quantum computing, we represent information in quantum states using qubits.

Definition 2.1 (Pure quantum state). A pure quantum state |ψ〉 on n qubits is represented as a
unit vector in C2n , |ψ〉 = (c0, c1, . . . , c2n−1)T , where ci ∈ C for i ∈ {0, . . . , 2n − 1} and ∑

i |ci|2 = 1.

For example, |0〉, |1〉, . . . , |2n − 1〉 represent n-bit classical messages, 0, 1, . . . , 2n − 1. For conve-
nience, we sometimes denote N = 2n. Mathematically, one can think of |i〉 as the column vector
with the (i + 1)-th entry being 1 and 0 elsewhere. The input to quantum computers can be any
quantum state. For classical problems, we can encode the classical input x ∈ {0, 1}n as the quan-
tum state |x〉 ∈ C2n . In general, any pure quantum state |ψ〉 can be represented as

∑
i ci|i〉 for

some c0, . . . , c2n−1 ∈ C with
∑

i |ci|2 = 1. The complex conjugate of |ψ〉 is denoted as a row vector
〈ψ| = (c∗0, · · · , c∗2n−1).17

Quantum process. Quantum process for quantum states is defined as a unitary transformation.

Definition 2.2 (Unitary transformation). A unitary transformation U for an n-qubit quantum
state is an isomorphism in the 2n-dimensional Hilbert space. For convenience, we view U as a
2n × 2n matrix satisfying that U ∈ CN×N with UU † = U †U = I where U † is the Hermitian adjoint
of U .

We can represent an n-qubit quantum process acting on an n-qubit state |ψ〉 as |ψ〉 7→ U |ψ〉 as
a unitary matrix U in C2n×2n . Note that a unitary matrix must preserve the norm of the input
state. Thus any unitary transformation is reversible. To implement a unitary transformation, we
pick a set of local unitary operations that can generate any unitary transformation with arbitrary
precision.

Definition 2.3 (Universal quantum gate set). A quantum gate set G is a set of unitaries such that
for any unitary transformation U , U can be approximated by a finite sequence of gates in G.

For example, {Toffoli,H} is a universal gate set [Shi02]. In this work, we consider gate sets
which only contain unitaries with constant dimensions.

Note that choosing different universal gate sets may cause the circuit complexity of the same
object to be different. However, the Solovay-Kitaev theorem shows that one universal gate set can
approximate another one at a modest cost.

Theorem 2.4 (Solovay-Kitaev Theorem). Let G and G′ be two universal gate sets. Then, any
s-gate circuit C using gates from G can be approximated to precision ǫ by a s poly log s

ǫ -gates circuit
C′ using gates from G′. We say C approximates to C′ with precision ǫ if

‖C − C′‖ ≤ ǫ,
17In general, people consider mixed state for quantum information. However, pure states suffice for our purpose.
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where ‖ · ‖ is L2 norm.

We will formally state Solovay-Kitaev Theorem when defining the problems of quantum circuit
complexity.

We can represent quantum algorithms as quantum circuits by using a sequence of quantum
gates from a universal quantum gate set.

Definition 2.5 (Quantum circuit QC(s, t,G)). Let s, t : N→ N and G be a universal quantum gate
set. A quantum circuit family {Cn : n > 0} is in QC(s, t,G) if the following holds: For all n > 0,

• the input to Cn is an n-qubit quantum state |ψ〉;
• Cn extends the input layer with t(n) ancilla qubits, where these ancilla qubits are initiated to
|0t(n)〉;

• Cn applies s(n) gates from G on the initial state |ψ〉|0t(n)〉.

Here, in addition to the qubits for the input, the circuit can also have ancilla qubits as its
working space. We say that a quantum algorithm is efficient if its corresponding circuit has circuit
size at most polynomial in the input size. In the rest of the paper, we may write QC(s, t,G) as
QC(s) if the number of ancilla qubits is at most O(s).

Output. The outputs of quantum circuits defined in Definition 2.5 are quantum states. To
extract useful information from a quantum state |ψ〉, one can measure the state. Mathematically,
a measurement is simply a sampling process. For example, if we measure |ψ〉 in the computational
basis, i.e., {|0〉〈0|, . . . , |2n − 1〉〈2n − 1|}, we get the output being index i with probability |ci|2. In
general, we can measure a state |ψ〉 on any orthogonal basis B for C2n . Mathematically, this is
equivalent to a change of basis via a unitary transformation.

In summary, a quantum algorithm for some Boolean function is as follows: Given |x〉, apply a
quantum circuit C on state |x, 0t(n)〉, and then measure the state C|x, 0t(n)〉 in the computational
basis. If C computes f , then the measurement outcome will be f(x) with probability good enough
(e.g., ≥ 2/3). Note that a quantum process can have measurements in the middle of the computation
in general. In this case, the process is not reversible any more. However, we can always defer these
measurements until all the unitaries have been applied by adding ancilla qubits. Therefore, for
simplicity, we will only consider processes represented as unitaries followed by a computational-
basis measurement.

Remark 1 (Deferring measurements). LetMi be the computational-basis measurement on the i-th
qubit. Let |ψ〉 be any n-qubit state and U, V be any n-qubit unitaries. Then, the process U ◦Mi ◦V
operating on |ψ〉 is equivalent to Mn+1 ◦ U ◦ CNOTi,n+1 ◦ V , where CNOTi,n+1 has the i-th qubit
as the control qubit and the n+ 1-th qubit as the target qubit.

2.2 Quantum complexity classes

We introduce quantum complexity classes that are related to our study on the quantum MCSP.
The classes we define in below are actually PromiseBQP and PromiseQCMA. To avoid abuse of
notation, we just denote them as BQP and QCMA.

We first give the definition of the quantum analogue of BPP and P.

Definition 2.6 (BQP). A promise problem P = (PY , PN ) is in BQP if there exists a polynomial-
time classical Turing Machine that on input 1n for any n ∈ N outputs the description of a quantum
circuit Cn with poly(n) gates and poly(n) ancilla qubits such that for x ∈ {0, 1}n the following holds:
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1. if x ∈ PY , Pr[M1 ◦ Cn|x, 0t〉 = 1] ≥ 2/3;

2. if x ∈ PN , Pr[M1 ◦ Cn|x, 0t〉 = 1] ≤ 1/3,

where M1 is the computational-basis measurement on the first qubit of the given state.

We also consider the quantum analogue of NP and MA in this work.

Definition 2.7 (QCMA). A promise problem P = (PY , PN ) is in QCMA if there exists a quantum
polynomial-time (QPT) algorithm V such that

1. for x ∈ PY , there exists w ∈ {0, 1}poly(n) such that Pr[V (x,w) = 1] ≥ 2/3;

2. for x ∈ PN , for all w ∈ {0, 1}poly(n), Pr[V (x,w) = 1] ≤ 1/3.

Another quantum analogue of MA and NP is called QMA. The difference between QMA and
QCMA is that QMA allows the certificates to be quantum states. This difference makes QCMA ⊆
QMA18.

We also consider the class RQP, which is the one-sided error version of BQP:

Definition 2.8 (RQP). A promise problem P = (PY , PN ) is in RQP if there exists a QPT algorithm
A such that

1. for x ∈ PY , then Pr[A(x) = 1] ≥ 1
2 ;

2. for x ∈ PN , then Pr[A(x) = 1] = 0.

2.3 Nonuniform quantum circuit complexity classes

With the mathematical background of quantum computing, we can define nonuniform quantum
circuit complexity classes. We define the quantum analogues of MCSP as promise problems. (We
will justify the reason later in Section 3.) Therefore, we also define complexity classes for promise
problems. A promise problem is defined as P = {Pn}, where Pn = (PnY , P

n
N ) satisfying P

n
Y ∩PnN = ∅

and PnY ∪ PnN ⊆ {0, 1}n. We say a promise problem P is in some class C if there exists a language
L ∈ C such that PY ⊆ L and PN ⊆ {0, 1}∗ \ L. In other words, for x ∈ {0, 1}∗ \ P , the answer
could be arbitrary. Note that promise problems are naturally considered in quantum computing;
for example, the local Hamiltonian problem [KSV02] (which is QMA-complete) and Identity check
on basis states [WJB03] (which is QCMA-complete.)

Definition 2.9 (BQC(s, t,G)). Let s, t : N → N and G be a quantum gate set. BQC(s, t,G) is the
set of promise problems P = {Pn : n > 0} for which there exists a circuit family {Cn : n > 0} ∈
QC(s, t,G) such that for n > 0, for any x where |x| = n,

• if x ∈ PnY , then Pr[M1 ◦ Cn|x, 0t〉 = 1] ≥ 2/3;

• if x ∈ PnN , Pr[M1 ◦ Cn|x, 0t〉 = 1] ≤ 1/3.

Here, M1 is the computational-basis measurement on the first qubit.

In the rest of the paper, we will write BQC(s, t,G) as BQC(s) for simplicity if the number of
ancilla qubits is at most O(s).

In addition to BQC, we will also consider quantum complexity classes such as QMCA and BQP.
For the same reason, the classes we consider are actually PromiseBQP and PromiseQCMA. To avoid
abuse of notation, we just denote them as BQP and QCMA. Also, when NP is mentioned, we are
actually considering PromiseNP. The formal definitions of these classes are given in Appendix 2.2.

18One may expect that the quantum certificate gives the malicious prover more power to cheat in the soundness
case. However, it can be shown that the existence of such a cheating prover in QMA would also imply a cheating
prover in QCMA by the convexity of quantum states.
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3 Minimum Quantum Circuit Size Problems

We start off the quantum MCSP program by giving the definitions of various quantum analogs
of the classical MCSP in Section 3.1 and investigating some basic complexity-theoretic results in
Section 3.2 and Section 3.3.

3.1 Problem definitions

While classical computation works on Boolean strings, quantum computation works on unit complex
vectors. Thus, there are multiple natural notions of MCSP that can be defined and studied in the
quantum realm. But first let us formally define the classical MCSP as follows.

Definition 3.1 (Classical MCSP). Let n, s ∈ N19. Let f : {0, 1}n → {0, 1} be a Boolean function.
The problem is, given the truth table tt(f) of f and the size parameter s in unary, decide if there
exists a classical Boolean circuit C of size at most s such that C(x) = f(x) for all x ∈ {0, 1}n.

Note that MCSP ∈ NP because given a truth table tt(f) a circuit C, we can verify whether
C(x) = f(x) for all x ∈ {0, 1}n in poly(|tt(f)|, 1s) time. On the other hand, when s = Ω(n), the
number of circuits of size at most s is 2Θ(s log s), which is 2ω(n) by the counting argument. Besides,
for every Boolean function, there exists a circuit with size at most O(2n/n) [Lup58]; therefore,
we can suppose the s = O(2n/n), which implies that brute-force search takes 2O(2n) time to solve
MCSP in the worst case and it is the best known algorithm for MCSP.

As quantum computation is generally believed to be more powerful than classical computation,
it is likely that the quantum circuit complexities for some Boolean functions are much different from
their classical circuit complexities. Specifically, quantum circuits can create quantum entanglement
between qubits that cannot be simulated classically. Therefore, we define the following problem for
studying the quantum circuit complexity of the given Boolean function.

Definition 3.2 (MQCSPα,β). Fix a universal gate set G. Let n, s, t ∈ N and t ≤ s. Let f :
{0, 1}n → {0, 1} be a Boolean function. Let α, β ∈ (1/2, 1) such that α− β ≥ 1

poly(2n) . MQCSP is a
promise problem defined as follows.

• Inputs: the truth table tt(f) of f , the size parameter s in unary representation, and the
ancilla parameter t.

• Yes instance: there exists a quantum circuit C using at most s gates and operating on at
most n+ t qubits such that for all x ∈ {0, 1}n, ‖(〈f(x)| ⊗ In+t−1)C|x, 0t〉‖2 ≥ α.

• No instance: for every quantum circuit C using at most s gates and operating on at most
n+ t qubits, there exists x ∈ {0, 1}n such that ‖(〈f(x)| ⊗ In+t−1)C|x, 0t〉‖2 ≤ β.

With the promise that the input must be either a yes instance or a no instance, the problem is to
decide whether the input is a yes instance or not.

Remark 2. Here, we set the thresholds for the yes and no instances to be α, β such that 1/2 <
β < α < 1 and α − β > 1

poly(2n) . We require α and β to be greater than 1/2 because a quantum

circuit that outputs a uniformly random bit (e.g., measure |+〉 in the computational basis) can
compute f(x) with 1/2 probability for all x. For simplicity, in the rest of the work, we will ignore
the subscription α, β and will specify them when it is necessary.

19For every Boolean function, there is a circuit with size at most O(2n/n). Therefore, one can suppose s is at most
O(2n/n). Besides, one can also consider s is given in unary, such that the problem is still well-defined in the sense
that it is trivially in NP.
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For MQCSP, which gate set G is used is another important parameter to be considered. One
may ask if circuit complexity can significantly change when considering different G. Fortunately,
according to the Solovay-Kitaev Theorem in Theorem 2.4, we can conclude that any s-gate circuit
using gates from G can be ǫ-approximated by an (s · polylog s

ǫ )-gate circuit from another universal
gate set. Hence, the circuit complexity only modestly changes when considering different gate sets.

Claim 3.3. Fix two universal gate sets G and G′. Suppose that there exists a s-gate circuit C that
uses gates from G such that for all x, ‖(〈f(x)|⊗In+t−1)C|x, 0t〉‖ ≥ 1−δ. Then, there exists another
circuit C′ that uses s · polylog s

ǫ gates in G′ such that ‖(〈f(x)| ⊗ In+t−1)C|x, 0t〉‖ ≥ 1− δ − ǫ2/2.

Proof. The proof simply follows from the Solovay-Kitaev Theorem in Theorem 2.4. The only
subtlety is that the distance measure in Theorem 2.4 is L2 norm distance. However, for any two
states |ψ〉 and |φ〉, we have |〈ψ|φ〉| ≥ 1 − 1

2‖|ψ〉 − |φ〉‖2. Thus, we can obtain the lower bound for
‖(〈f(x)| ⊗ In+t−1)C|x, 0t〉‖ by using the L2 norm between C and C′.

In this work, we mainly focus on arbitrary gate sets containing one- and two-gates and |G| =
O(1). However, for some applications, we may require a particular gate set such as {Toffoli,H}.
We will specify G when it is necessary. We assume t ≤ s without loss of generality since we mainly
consider the gate set G to have one- and two-qubit gates. Specifically, if there are more than s
ancilla qubits, there must be ancilla qubits that are not used by any gate.

We define the problem as a promise problem for two reasons: first, applying measurements on
quantum states generally gives probabilistic outputs. Similar to many probabilistic algorithms, we
say a quantum algorithm solves a problem if it outputs the answer with high probability in general.
Check the definition of BQP for an example. Along this line, we expect a quantum circuit C to
implement the given Boolean function f with high probability, i.e., for each input x, the circuit
outputs f(x) with high probability. The second reason is about verifying the circuit. Consider the
case where C only fails on one x with success probability 2/3 − ǫ, where ǫ is some extremely small
number. In this case, it is hard to verify the circuit efficiently. Therefore, we require a gap for
efficient verification and say that C does not implement f if it can only output f(x) with probability
with small probability for some x.

Other variants. In many applications, the gap-version of MCSP is much easier and more flexible
to work with. Below we define the gap-version of MQCSP and the multi-output MQCSP.

Definition 3.4 (MQCSPa,b[s, s
′, t]). Let n, s, s′, t ∈ N such that t ≤ s < s′ ≤ 2O(n). Let a − b ≥

1/ poly(2n, 1|s|). Let f : {0, 1}n → {0, 1} be a Boolean function. MQCSP[s, s′] is a promise problem
defined as follows.

• Input: the truth table tt(f) of f , the size parameter s in unary, and the ancilla parameter t.

• Yes instance: there exists a quantum circuit C using at most s gates and operating on at most
n+ t qubits such that for all x ∈ {0, 1}n,

‖(〈f(x)| ⊗ In+t−1)C|x, 0t〉‖2 ≥
2

3
.

• No instance: for every quantum circuit C using at most s′ gates and operating on at most
n+ t qubits, there exists x ∈ {0, 1}n such that

‖(〈f(x)| ⊗ In+t−1)C|x, 0t〉‖2 ≤
1

2
.
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With the promise that the input must be either a yes instance or a no instance, the problem is to
decide whether the input is a yes instance or not.

When it is clear from the context, we may use MQCSP⋆ to denote MQCSPa,b[s, s
′, t].

Definition 3.5 (G-multiMQCSPα,β(s, t)). Let m, s, t be functions of n such that t ≤ s ≤ 2o(n) and
m ≤ n+ t. Let α, β ∈ [2−m, 1] such that α−β > 1

poly(2n) . Let f : {0, 1}n → {0, 1}m be a multioutput

function. G −multiMQCSPα,β(s, t) is a promise problem that

1. Input: the truth table tt(f) of f .

2. Yes instance: there exists a quantum circuit C using at most s gates from G and operating on
at most n+ t qubits such that for all x ∈ {0, 1}n,

‖(〈f(x)| ⊗ In+t−m)C|x, 0t〉‖2 ≥ α,

3. No instance: for any quantum circuit C using at most s gates from G and operating on at
most n+ t qubits, there exists x ∈ {0, 1}n such that

‖(〈f(x)| ⊗ In+t−m)C|x, 0t〉‖2 ≤ β.

With the promise that the input must be either a yes instance or a no instance, the problem is to
decide whether the input is a yes instance or not.

Natural property. It is worth noting that we can view an efficient quantum algorithm for
MQCSP as quantum natural property against quantum circuit classes. Natural properties against
circuit classes were first defined by Razborov and Rudich [RR97], and recently, Arunachalam et
al. [AGG+20] further considered quantum natural properties against circuit classes.

Definition 3.6 (Natural Property [RR97]). Let C be a uniform complexity class and C ′ be a circuit
class. We say that a property Γ = {Γn : n ∈ N} is C-natural against C ′ if the following holds.

1. Constructivity: for all L ∈ Γ, L ∈ C.

2. Largeness: There exists n0 ∈ N, for n ≥ n0, |Γn|/|Fn| ≥ 1
2 , where Fn is the set of all

Boolean functions with input length n.

3. Usefulness: There exists n0 ∈ N, for n ≥ n0, Γn ∩ C ′n = ∅, where C ′n is the set of circuits
in C ′ on n (qu)bits.

Note that an MQCSP oracle can be used to construct natural properties against quantum
circuit classes BQC[s] for any s. Therefore, if we suppose that MQCSP is in BQP, then we can have
properties that are BQP-natural against quantum circuit classes. For simplicity, we call properties
that are BQP-natural as quantum natural properties. Arunachalam et al. [AGG+20] first considered
quantum natural properties against circuit classes, and proved circuit lower bounds for quantum
complexity classes. Our work can also be viewed as a study of quantum natural properties against
quantum circuit classes. The formal definition of BQP-natural property is in below:

Definition 3.7 (BQP-Natural Property [AGG+20]). We say that a combinatorial property Γ is
C-natural against polynomial-size quantum circuits (BQC[poly]) if the following holds.

1. Constructivity: for any string L ∈ Γ, L can be accepted by a BQP algorithm.

2. Largeness: There exists n0 ∈ N, for n ≥ n0, |Γn|
|Fn| ≥

1
2 .
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3. Usefulness: There exists n0 ∈ N, for n ≥ n0, any string accepted by BQC[poly] is not in Γn.

Then, our observation on the connection between MQCSP and quantum natural property is
formally stated as follows:

Observation 1. If MQCSP ∈ BQP, then there exists a BQP-natural property against quantum
circuits QC[nk] for any k ∈ N+.

3.2 Upper bounds for MQCSP

It turns out that, unlike the classical MCSP, MQCSP is not trivially in NP. The best upper bound
we are able to get for MQCSP is QCMA, the quantum analogue of NP (or MA). Before showing
that MQCSP is in QCMA, we first discuss why it is not trivially in NP like the classical MCSP. One
obvious reason is that MQCSP is a promise problem. Therefore, we consider PromiseNP, which
definition is the same as NP except that PromiseNP relax the definition of NP to contain promise
problems that have NP certificates. For the ease of presentation, we will use NP for both NP and
PromiseNP. Then, when the number of ancilla qubits is linear, one can verify the given circuit by
simply writing down the corresponding unitary.

Theorem 3.8. MQCSP is in NP when only a linear number of ancilla qubits are allowed.

However, when the number of ancilla qubits is superlinear, e.g., n2, the quantum circuit C
operates on 2O(n2) qubits, and thus the corresponding unitary UC has dimension 2O(n2) which is
superpolynomial in 2n. In this case, the verifier cannot compute UC classically in time poly(2n).
Therefore, the trivial approach does not work.

Note that although the trivial approach fails to show that MQCSP is in NP, it does not rule
out the possibility that MQCSP can be efficiently verified via other approaches. In the following
theorem, we show that a quantum verifier can efficiently verify the given quantum circuit, and thus
MQCSP is in QCMA.

Theorem 3.9. MQCSP ∈ QCMA.

We leave the proof to Appendix A for completeness.

3.3 Hardness of quantum MCSP

It is a major open problem in complexity theory to understand the hardness of classical MCSP.
Here, we show that the state-of-the-art hardness results on MCSP (and its variants) can be extended
to MQCSP. We remark that this is actually not straightforward to see because the classical MCSP
is incomparable with MQCSP.

First, we show that the SZK-hardness result of MCSP by Allender and Das [AD14] can be
extended to MQCSP. Here, SZK stands for the complexity class Statistical Zero Knowledge that
lies between P and NP. We first define SZK and the statistical distance as follows.

Definition 3.10 (Statistical Distance SD(X,Y )). Let X and Y be two probability distributions,
the statistical distance between X and Y can be defined as follows:

max
S⊆{0,1}m′

|Pr[X ∈ S]− Pr[Y ∈ S]|

Definition 3.11 (SZK). A promise problem P = (PY , PN ) is in SZK if there exists a PPT verifier
V and an interactive proof system (P, V ) satisfying the following properties:

21



1. Completeness: For x ∈ PY , there exists P such that Pr[〈P, V 〉(x) = 1] ≥ 2
3 .

2. Soundness: For x ∈ PN , for all P , Pr[〈P, V 〉(x) = 1] ≤ 1
3 .

3. Statistical zero-knowledge: There exists a PPT simulator S, for all PPT verifier V ∗, for
all x ∈ PY ,

SD(S(V ∗)(x), 〈P, V ∗〉(x)) ≤ negl(n).

We introduce an SZK-complete problem by Ben-Or and Gutfreund [BOG08].

Definition 3.12 (Polarized Image Intersection Density (PIID), [BOG08]). Given two circuits
C0, C1 : {0, 1}m → {0, 1}m

′
of size nk with the promise that either

1. maxS⊆{0,1}m′ |Prx[C0(x) ∈ S]− Prx[C1(x) ∈ S]| ≤ 1
2n , or

2. Prx∈{0,1}m′ [∃y ∈ Im(C0) such that C1(x) = y] ≤ 1
2n ,

where n = poly(m) and Im(C) := {C(x) : x ∈ {0, 1}m}. The problem is to decide which case is
true.

Theorem 3.13. SZK ⊆ BPPMQCSP

To prove Theorem 3.13, we first observe that the existence of small classical circuit implies the
existence small quantum circuits and an MQCSP oracle can invert one-way functions (which we
will prove in Section 4.1.1). Then, we can show that PIID is in BPPMQCSP following the framework
of [AD14]. We leave the proof to Appendix A for completeness.

Next, we quantize the recent breakthrough of Ilango et al. [ILO20] on the NP-hardness of
classical MCSP. There are two main differences between the classical and quantum settings: (i) the
circuit model is different and hence makes the combinatorics different, and (ii) the quantum setting
allows the output to have some errors. We partially overcome these two difficulties and prove the
following theorem.

Theorem 3.14. Suppose CNOT ◦ (I⊗ X),Toffoli ∈ G. Every multi-bit gate in G behaves classically
on classical inputs and has at most 1 target wire and at most 2 control wire. (That is, except 1
wire, the outputs of the other wires, at most 2, are the same as their corresponding classical inputs.
For example, CNOT gate.) Then G-multiMQCSP is NP-hard under randomized reduction.

CNOT◦ (I⊗X) is the following operation on two input wires, denoted as control wire and target
wire: first do a X on the target wire, and do a CNOT from the control wire to the target wire. We
consider it as a single gate, as the analog of the classical NOT gate.

Here the choice of gate set matter: we need the quantum gate set to contain the analog of the
usual classical gate set. CNOT ◦ (I ⊗ X) is the analog of classical single-bit NOT operation, and
Toffoli is the analog of classical AND operation. Here the correspondence has two properties: (1)
if the target wire is in the zero state and the control wire is classical, the output of the target wire
will be the corresponding classical logical computation result; (2) if the input of the control wire
is classical, the output of the control wire will remain the same. Since in the quantum world data
copy is not for free, the second property is important for deriving our result.

The proof follows the outline of the proof in [ILO20]. We note there are two differences during
the proof in the quantum case compared to the classical case:
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• The circuit model is different. In the classical world the gates are single-output and we assume
free-copy. And the basic gate set contains AND, OR, NOT gates. In quantum world, data
copy is not for free and we need to use the Toffoli gate to implement the AND/OR gates.

Remark 3. One idea might be to use the Solovay-Kitaev theorem to switch the gate set and
make the theorem general. But this does not work here in an immediate way. Our proof does
not imply the problem is also NP-hard to approximate multiplicatively. On the other hand,
the classical result [ILO20] is not known to be general on different gate set either.

• In the definition of multi-output minimum quantum circuit size problem, we allow the output
to have some errors, which is not considered in the classical world.

Proof of Theorem 3.14. We consider the same construction as [ILO20]. Let’s restate it here for
completeness.

1. Choose a large enough constant r so that 20-approximating r-bounded set cover problem is
NP-hard. Consider an instance (1n,S) of this problem.

2. m is the least power of 2 that is greater than n3. Sample the truth table T representing a
function on {0, 1}logm → {0, 1} uniformly at random. Construct g := •S∈SEval-DNFT〈Sm〉

where:

– To define DNFf that encode the truth table f , we first repeat the construction in [ILO20]
for completeness:

DNFf := ((x1 = y11) ∧ · · · ∧ (xn = y1n)) ∨ · · · ∨ ((x1 = yt1) ∧ · · · ∧ (xn = ytn))

where y1, · · · yt are YES inputs of f in lexicographical order, x1, · · · xn index the bits of
the input string x, yj1, · · · yjn index the bits of yj , and (xi = yti) denotes (xi ⊕ (1⊕ yji )).
We use the same construction with one difference: here ∨ is further decomposed to ¬
and ∧.

– T〈S〉 is the truth table that is equal to T for input in S and 0 everywhere else.

– Sm := ∪i∈SPm,ni where Pm,ni := {j ∈ [m] : j ≡ i mod n}. This step closes the gap
between [m] (the MCSP size) and [n] (the set cover size).

– “•” is used on two functions that have the same input domain, and it concatenates the
outputs of these functions to get a new function.

– To define Eval-C, we first consider x1 • x2 • · · · xn • g1 • g2 • · · · gs where g1, · · · gs are the
output of each gate in circuit C. Then we remove the gate output that are the same on
all the inputs.

3. As in [ILO20], define k as the number of distinct components of g that are not directly a
function identical to an input. Note that this can be efficiently computed.

Take α = 1, β = 0.99, t = 10s (s is the output number of our construction).

Define CCα,β(t, tt(f)) as the subroutine that uses binary search to find the minimum s such
that G −multiMQCSPα,β(s, t)(tt(f)) = true.20 Use the multiMQCSP oracle and compute

∆ := CCα,β(t, tt(T • g))− k
as the approximation of the set cover instance (1n,S).

20Since multiMQCSP is a promise problem this routine does not necesarrily find the minimum s but should return
a value that there exists a circuit of this size that approximate the function everywhere with correct probability β.
This is sufficient for later proof.
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To analyze this reduction, we need to prove the followings steps:

1. CCα,β(t, tt(g)) = k

2. ∆ ≤ 3 · cover([n],S) + 1 where cover([n],S) is the size of the minimum set cover solution for
S.

3. ∆ ≥ cover([n],S)/6 − 6 with probability 1− 2−Ω(m).

Then we get an approximation to the set cover problem.
Let us prove the three statements step-by-step.

Step 1: The ≤ part is proved by the function construction itself. We implement ¬ with the
CNOT ◦ (I⊗X) gate (and write the output on an empty ancilla system) and implement ∧ with the
Toffoli gate.

The ≥ part is slightly different since in quantum case the gate model is different. In classical
world all the gates are single-output, while in quantum world there are multi-output gates. However,
for the multi-output gates like CNOT and Toffoli, there is only one target wire, and the other wires
are control wire. Thus for each output component, we can always find the nearest gate that does
not use it as a control wire (if there is such a gate along the way, ignore it). In this way each different
output component corresponds to a different gate in the circuit, which completes the proof.

Step 2: As [ILO20], when cover([n],S) = ℓ, without loss of generality assume S1, · · ·Sℓ are a
set cover. Then T = T〈Sm

1 〉 ∨ · · · ∨ T〈Sm
ℓ 〉. This can be computed using 3ℓ + 1 extra gates on the

minimum circuit of Eval-g. (Note that in the quantum world we need slightly more gates than the
classical world. And we need to evaluate the OR gate by NOT-AND-NOT gates to get T .)

Step 3: Denote ℓ = ⌊cover([n],S)/6⌋. The goal is to show that the probability that ∆ ≤ ℓ is
small by showing that T satisfying ∆ ≤ ℓ must have a short description. Suppose T is a truth table
such that the condition ∆ > ℓ does not hold. We need to find a circuit of gate number ≤ 2ℓ where:

• The inputs are: the bits of x; and the output of g.

• It encodes the output of T .

We use the similar idea to [ILO20] but we need to address the two problems discussed before this
proof.

As what we did in Step 1, we can associate each output component (gi(x), for example) to a
unique gate in the circuit. As [ILO20], we remove these gates from the circuit. There might be
some gates between this gate and the output gi(x) that use the wire as control wires. For these
gates, simply use gi(x) as the control value.

As in [ILO20] we have CCα,β(t, tt(T • g)) ≤ ℓ + k. And since for each gi at least one gate is
removed, the remaining circuit is a circuit D that takes log(m) + k inputs and has at most ℓ gates
such that

D(x, g1(x), · · · gk(x)) encodes T (x)
Then since each gate has fan-in at most 3 the circuit uses at most 3ℓ components of g. Then after
a possible relabling of g1 · · · gk we can assume D takes log(m) + 3ℓ inputs such that

D(x, g1(x), · · · g3ℓ(x)) encodes T (x)
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The new circuit does not necessarily behave the same as the original circuit, but they do behave
the same (up to a global phase) on the subspace that all the outputs are computed correctly. By
the definition of multiMQCSP and the choices of parameters this is true with norm ≥ 0.99. Thus
we can view the shrinked circuit as an encoding of T by focusing on the most-possible outputs of
this circuit. Then by the same argument as [ILO20] such a shrinked circuit has a description of
(1 − Ω(1))m bits, which implies such T has at most 2(1−Ω(1))m choices thus a random T falls into
this case with exponentially small probability.

However, we don’t know whether this problem is NP-complete, since it’s not known to be in
NP. With a proof similar to that of Theorem 3.9, we only know multiMQCSP ∈ QCMA. Namely,
there remains a gap between our understandings of the upper bound and hardness of multiMQCSP.
We pose it as an open problem to settle the complexity of multiMQCSP.

4 Connections Between MQCSP and Other Problems

4.1 Cryptography and MQCSP

Classically, we have already known connections betweenMCSP and one-way functions [KC00, RR97]
and indistinguishable obfuscation [IKV18]. In this section, we show the quantum analogies of these
results.

4.1.1 Quantum cryptographic primitives

We first introduce relevant primitives in cryptography.

Definition 4.1 (Pseudorandom Generator (PRG)). Let G : {0, 1}∗ → {0, 1}∗ be a polynomial-time
computable function. Let ℓ : N → N be a polynomial-time computable function such that ℓ(n) > n
for all n. G is a pseudorandom generator of stretch ℓ(n) if it satisfies:

1. |G(x)| = ℓ(|x|) for all x ∈ {0, 1}∗, and

2. for all Probabilistic polynomial-time (PPT) algorithm A, there exists a negligible function
ǫ : N→ [0, 1] such that for all n ∈ N

∣∣∣∣ Pr
x∼{0,1}n

[A(G(x)) = 1]− Pr
y∼{0,1}ℓ(n)

[A(y) = 1]

∣∣∣∣ ≤ ǫ(n).

We say that a PRG is local if every output bit of the PRG can be computed in time poly(n). In
the following, we define PRG secure against any quantum polynomial-time adversary.

Definition 4.2 (Quantum-Secure Pseudorandom Generator (qPRG)). Let G : {0, 1}∗ → {0, 1}∗ be
a polynomial-time computable function21. Let ℓ : N→ N be a polynomial-time computable function
such that ℓ(n) > n for all n. G is a pseudorandom generator secure against quantum adversaries
of stretch ℓ(n) if it satisfies:

1. |G(x)| = ℓ(|x|) for all x ∈ {0, 1}∗, and
21It is worth noting that G can be any function that is efficiently computable in either quantum or classical

polynomial time.
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2. for all quantum polynomial-time (QPT) algorithm A, there exists a negligible function ǫ :
N→ [0, 1] such that for all n ∈ N

∣∣∣∣ Pr
x∼{0,1}n

[A(G(x)) = 1]− Pr
y∼{0,1}ℓ(n)

[A(y) = 1]

∣∣∣∣ ≤ ǫ(n).

In this work, we consider two ways of constructing quantum-secure PRGs based on different
cryptographic primitives. One is based on the quantum-secure one-way functions and the other
one is based on the hard function.

Definition 4.3 (Quantum-Secure One-Way function (qOWF)). A function f : {0, 1}∗ → {0, 1}∗
is a quantum-secure one-way function, if the following conditions hold: For every n ∈ N, for any
x ∈ {0, 1}n picked uniformly at random,

1. There exists a poly(n)-time deterministic algorithm for computing f .

2. For any poly(n)-time quantum algorithm A′, Prx[A′(f(x)) ∈ f−1(f(x))] = negl(n).

Definition 4.4 (GGM Construction [GGM86]). Let G : {0, 1}n → {0, 1}2n be a (q)PRG. For
every z ∈ {0, 1}m, the GGM construction of a pseudorandom function family {hz : {0, 1}n →
{0, 1}n}z∈{0,1}m is defined as follows:

fz(x) = Gzm ◦Gzm−1 ◦ · · · ◦Gz1(x),

where we denote by G0(x) the first n bits of G, and by G1(x) the last n qubits.

Lemma 4.5 ([HILL99]). If OWFs exist, then for every c ∈ N, there exists a secure PRG with stretch
ℓ(n) = nc.

Since the security proof of Lemma 4.5 is black-box, the analysis carries over to the quantum
setting directly if the one-way function is secure against quantum adversaries. Therefore, we can
obtain Lemma 4.6.

Lemma 4.6 (Folklore). If qOWFs exist, then for every c ∈ N, there exist qPRGs with stretch
ℓ(n) = nc.

Lemma 4.7. Suppose that there exists a qPRG G : {0, 1}n → {0, 1}2n. Then, for m = O(log n),
there exists a local qPRG Ĝ : {0, 1}n → {0, 1}2m .

Proof. We first give the construction of Ĝ. Follow the GGM construction in Definition 4.4, we let

h′x(z) = Gzm ◦Gzm−1 ◦ · · · ◦Gz1(x)

where z ∈ {0, 1}m, x ∈ {0, 1}n. We let hx(z) be the first output bit of h′x(z) and define the qPRG
as

Ĝ(x) = hx(0) | hx(1) | · · · | hx(2m − 1).

It is obvious that each bit of Ĝ(x) can be computed in time m times the runtime of G.
We then prove that Ĝ(x) is indistinguishable from a truly random string by the standard hybrid

approach. For i ∈ [m], we define

H i(z) = (Gzm ◦Gzm−1 ◦ · · · ◦Gzi(yz,i))1,
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where yz,i is drawn independently and uniformly randomly from {0, 1}n. Note that H1(z) = hz(x)
and Hm(z) is a random bit. Let

Ĝi = H i(0) | H i(1) | · · · | H i(2m − 1) ∀i ∈ [m].

Suppose that there exists a QPT algorithm A such that
∣∣∣∣ Pr
x∼{0,1}n

[A(Ĝ(x)) = 1]− Pr
u∼{0,1}2m

(A(u))
∣∣∣∣ ≥ 1/ poly(n).

Then, by the triangular inequality,

m−1∑

i=1

∣∣∣Pr[A(Ĝi) = 1]− Pr[A(Ĝi+1) = 1]
∣∣∣ ≥ 1/ poly(n)

which implies that there exists i∗ such that |Pr[A(Ĝi∗) = 1] − Pr[A(Ĝi∗+1) = 1]| ≥ 1/ poly(n).
Since distinguishing Ĝi

∗
and Ĝi

∗+1 implies that one can distinguish G(x) from a random string, G
is not a qPRG. This completes the proof.

4.1.2 Implications for quantum-secure one-way functions (qOWF)

Here, we show a quantum analogous result for [KC00, RR97] by considering the implication of the
existence of efficient quantum algorithms for either classical or quantum MCSP.

Theorem 4.8. If MQCSP ∈ BQP, then there is no quantum-secure one-way function (qOWF).

Proof. Let f : {0, 1}∗ → {0, 1}∗ be any function. By Lemma 4.6, we construct Gf : {0, 1}n →
{0, 1}na

that is a qPRG if f is a qOWF. We denote the runtime for Gf as O(nb) for some constant
b.

Given Gf , we construct a qPRG Ĝ : {0, 1}n → {0, 1}2m where m = O(log n) by Lemma 4.7.

Then, we view the outputs of Ĝ(x) as a truth table of some Boolean function gx : {0, 1}m → {0, 1}.
Note that according to the construction in Lemma 4.7, the time for evaluating gx on z ∈ {0, 1}m
is O(m · nb) = Õ(nb). On the other hand, for a random Boolean function from {0, 1}m to {0, 1},
we know from Claim F.1 that its circuit complexity is greater than 2m

(c+1)m with high probability.
Therefore, by setting m = d log n for some constant d ≫ b, the circuit complexity of the random
function is Õ(nd)≫ Õ(nb) with high probability.

Algorithm 1 A quantum algorithm for breaking qPRG

Input: Given tt(h) for h : {0, 1}m → {0, 1} constructed from Ĝ in Lemma 4.7.
1: Runs the quantum algorithm for MQCSP with s = 2m

(c+1)m
2: return “Yes” if the algorithm in previous step outputs yes.
3: return “No”, otherwise

Since we assume MQCSP ∈ BQP, we obtain a quantum polynomial-time algorithm A for distin-
guishing {gx}x∈{0,1}n and the random function family Fm as in Algorithm 1. The circuit complexity

for gx is at most Õ(nb) and the for a random function h is greater than 2m

(c+1)m = Õ(nd) for d≫ b.
thus, we obtain

∣∣∣∣ Pr
x∼{0,1}n

[A(tt(gx)) = 1]− Pr
h∼Fm

[A(tt(h)) = 1]

∣∣∣∣ ≥ 1/ poly(n).

This implies that we can use A to break G in quantum polynomial time by Lemma 4.7. Finally,
by Lemma 4.6, we obtain a quantum polynomial-time algorithm Ainv for inverting any f .
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4.1.3 Implication for quantum-secure iO
In this section, we use Theorem 4.8 and quantum-secure iO to show that if MQCSP can be solved
by a BQP algorithm, then NP ⊂ coRQP, which is the class of one-sided error quantum polynomial-
time algorithms such that a “Yes” instance will always be accepted while a “NO” instance will be
rejected with high probability.

We define the quantum-secure iO as follows:

Definition 4.9 (Quantum-secure indistinguishability obfuscation, iO). A probabilistic polynomial-
time machine iO is an indistinguishability obfuscator for a circuit class {Cλ}λ∈N if the following
conditions are satisfied for all λ ∈ N:

• Functionality: For any C ∈ Cλ, for all inputs x, iO(C)(x) = C(x).

• Indistinguishability: For any C1, C2 ∈ Cλ such that |C1| = |C2| and C1(x) = C2(x) for all
inputs x, any quantum polynomial-time distinguisher A cannot distinguish the distributions
iO(C1) and iO(C2) with noticeable probability, i.e.,

∣∣Pr[A(iO(C1)) = 1] − Pr[A(iO(C2)) =
1]
∣∣ ≤ negl(λ).

Remark 4. We note that there are some (candidate) constructions of post-quantum iO, based
on different assumptions. For example, [BDGM20] constructed iO based on the circular security
of LWE-based encryption schemes, which is conjectured to be quantum-secure. [WW20] showed
a construction of iO based on the indistinguishability of two distributions which is also arguably
quantum-secure.

Theorem 4.8 implies the following result for quantum-secure iO:

Theorem 4.10. Suppose that quantum-secure iO for polynomial-size circuits exists. Then, MQCSP ∈
BQP implies NP ⊆ coRQP.

Proof. Let fC(r) := iO(C, r), where r is the random string. Then, by Theorem 4.8, we know that
there exists a quantum polynomial-time algorithm Ainv with access to an MQCSP oracle and a
non-negligible function p such that for any circuit C,

Pr
r

[
fC(AMQCSP

inv (C, iO(C, r))) = fC(r)
]
≥ p(|r|). (1)

Then, we can use Ainv to solve the Circuit-SAT problem. The algorithm is as follows:

Algorithm 2 A quantum algorithm for Circuit-SAT

Input: The description of a circuit C : {0, 1}n → {0, 1}.
1: s← |C|.
2: Compute ⊥s. ⊲ A canonical unsatisfiable circuit
3: Ĉ ← iO(C, r).
4: r′ ← AMQCSP

inv (⊥s, Ĉ).

5: return “No” if Ĉ = iO(⊥s, r′).

We assume that for any s ≥ 0, we can compute a canonical unsatisfiable circuit of size s in
poly(s) time.

If C ∈ UNSAT, then C ≡ ⊥s. If C = ⊥s, by Eq. (1), AMQCSP
inv finds r with probability at least

p(|r|). Otherwise, by the indistinguishability of iO and MQCSP ∈ BQP, AMQCSP
inv is a quantum
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polynomial-time algorithm and hence cannot distinguish C ∈ UNSAT \ {⊥s} and ⊥s with more
than negl(|r|) probability. Therefore, Algorithm 2 will reject C with probability O(p(|r|)).

If C ∈ SAT, then C 6≡ ⊥s. By the functionality of iO, for any r, r′, iO(C, r) 6= iO(⊥s, r′).
Hence, Algorithm 2 will always accept C.

Hence, by repeatedly running Algorithm 2 many times, we get that NP ⊂ coRQP, the one-sided
error analog of BQP

Remark 5. It is worth noting that in the classical setting, the existence of iO implies that NP
and MCSP are equivalent under randomized reductions; the other direction directly follows from the
fact that MCSP ∈ NP. However, since it is unclear if MQCSP ∈ NP, we can only conclude that
NP ⊆ RQPMQCSP assuming the existence of quantum-secure iO.

4.2 Learning theory

In this section, we discuss connections between MQCSP and learning theory. We consider two
standard settings: probably approximately correct (PAC) learning and quantum learning. We
postpone the details to Appendix B.

PAC learning. Let C be a circuit class. We are interested in how to efficiently learn a function
in C. PAC learning is a theoretical framework to evaluate how well a learning algorithm is. Here
we focus on a special setting of PAC learning where the algorithm is able to query any input to
the unknown function. In the following, we denote C-MCSP as the classical MCSP problem with
respect to the circuit class C.

Definition 4.11 (PAC learning over the uniform distribution with membership queries). Let C
be a circuit class and let ǫ, δ > 0. We say an algorithm (ǫ, δ)-PAC-learns C over the uniform
distribution with membership queries if the following hold. For every n ∈ N and n-variate f ∈ C,
given membership query access to f , the algorithm outputs a circuits C such that with probability
at least 1− δ over its internal randomness, we have Prx∈{0,1}n [f(x) 6= C(x)] < ǫ. The running time
of the learning algorithm is measured as a function of n, 1/ǫ, 1/δ and, size(f).

The seminal paper of Carmosino et al. [CIKK16] showed that efficient PAC learning for a
(classical) circuit class C is equivalent to the corresponding MCSP being easy. Here, we quantize
this connection and show in the following theorem that efficient PAC-learning for BQP/poly is
equivalent to efficient algorithm for MQCSP. Here, BQP/poly is defined as

⋃
s≤poly(n) BQC(s).

For technical reason, we need to work on a gap version of MQCSP in one direction of the
equivalence. Let τ : N → (0, 1/2), MQCSP[s, s′, t, τ ] is defined as the gap problem where the
No instances in Definition 3.4 becomes “for every quantum circuit C using at most s′ gates and
operating on at most n+ t qubits, there are at least τ fraction of x ∈ {0, 1}n such that ‖(〈f(x)| ⊗
In+t−1)C|x, 0t〉‖2 ≤ 1

2”.

Theorem 4.12 (Equivalence of efficient PAC learning for BQP/poly and efficient randomized
algorithm for MQCSP).

• If MQCSP ∈ BPP, then there is a randomized algorithm that (1/ poly(n), δ)-PAC learns
f ∈ BQP/poly under the uniform distribution with membership queries for every δ > 0.
Specifically, the algorithm runs in quasi-polynomial time.

• If there is a randomized algorithm that (1/ poly(n), δ)-PAC learns f ∈ BQP/poly under the
uniform distribution with membership queries for some δ > 0 in 2O(n) time, then we have
MQCSP[poly(n), ω(poly(n)), poly(n), τ ] ∈ BQP and MQCSP[poly(n), ω(poly(n)), O(n), τ ] ∈
BPP for every τ > 0.
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Similarly, the positive resolution of Open Problem 2 would strengthen the conclusion of the
second item in Theorem 4.12 to MQCSP[poly(n), ω(poly(n)), poly(n), τ ] ∈ BPP.

Quantum learning. As it could be the case that MQCSP might have non-trivial quantum algo-
rithm, it is also of interest to study the connection to quantum learning [AGG+20].

Definition 4.13 (Quantum learning). Let C be a circuit class of boolean functions and let ǫ, δ > 0.
We say a quantum algorithm (ǫ, δ)-learns C if the following hold. For every n ∈ N and n-variate
f ∈ C, given quantum oracle access to f , the algorithm outputs a polynomial-size quantum circuit
U such that with probability at least 1− δ, we have Ex∈{0,1}n [|(〈f(x)| ⊗ I)U |x, 0m〉|2] > 1− ǫ. The
running time of the learning algorithm is measured as a function of n, 1/ǫ, 1/δ and, size(f).

It turns out that efficient quantum learning for a circuit class C (could be either a classical
circuit class or a quantum circuit class) is equivalent to efficient quantum algorithm for C-MCSP.
Similarly, C-MCSP[s, s′, τ ] is defined as the gap problem with the No instances being the truth
tables where every circuit C of size s′ errs on τ fraction of the inputs.

Theorem 4.14 (Equivalence of efficient quantum learning and efficient quantum algorithm for
C-MCSP). Let C be a circuit class.

• If C-MCSP ∈ BQP, then there exists a quantum algorithm that (1/ poly(n), δ)-learns C for
every δ > 0. Specifically, the algorithm runs in polynomial time.

• If there exists a quantum algorithm that (ǫ, δ)-learns C in time 2O(n) for some constants
ǫ, δ ∈ (0, 1/2), then we have C-MCSP[poly(n), ω(poly(n)), τ ] ∈ BQP for every τ > 0.

4.3 Circuit lower bounds

The classical MCSP is tightly connected to circuit lower bounds. Many results show that a fast
algorithm for MCSP will lead to breakthrough in circuit lower bounds, which on the other hand
indicates that MCSP might be very difficult to solve. In this section, we “quantize” four results
relating MQCSP and quantum circuit lower bounds.

Quantum circuit lower bound via quantum natural proof By Observation 1, we know that
MQCSP gives a BQP-quantum natural property. Then, we follow a recent work by Arunachalam
et al. [AGG+20] and prove the following theorem:

Theorem 4.15. If MQCSP ∈ BQP, then BQE 6⊂ BQC[nk] for any constant k ∈ N+, where BQE =
BQTIME[2O(n)].

Remark 6. A key difference between Theorem 4.15 and [AGG+20] is that their circuit lower
bound for BQE is against classical circuits, while ours is against quantum circuits by proving a
diagonalization lemma for quantum circuits.

An ingredient of our proof is a conditional pesudorandom generator against uniform quantum
computation. We first recall the definition of PRG against uniform quantum circuits given by
[AGG+20].

Definition 4.16 (Pesudorandom generator against uniform quantum circuit, [AGG+20]). A family
of functions {Gn}n≥1 is an infinitely often (ℓ,m, s, ǫ)-generator against uniform quantum circuits
if the following properties holds:

30



1. Stretch: Gn : {0, 1}ℓ(n) → {0, 1}m(n).

2. Uniformity and efficiency: There is a deterministic algorithm A that when given 1n and
x ∈ {0, 1}ℓ(n) runs in time O(2ℓ(n)) and outputs Gn(x).

3. Pseudorandomness: For every deterministic algorithm A such that when given 1m(n) runs
in time s(m) and outputs a quantum circuit Cm of size at most s(m) computing a m-input
Boolean function, for infinitely many n ≥ 1,

∣∣∣∣ Pr
x∼{0,1}ℓ(n),Cm

[Cm(Gn(x)) = 1]− Pr
y∼{0,1}m(n) ,Cm

[Cm(y) = 1]

∣∣∣∣ ≤ ǫ(m).

[AGG+20] constructed the following infinitely often PRG based on the assumption PSPACE *
BQSUBEXP.

Theorem 4.17 (Conditional PRG against uniform quantum computations, [AGG+20]). Suppose
that PSPACE * BQSUBEXP. Then, for some choice of constants α ≥ 1 and λ ∈ (0, 1/5), there is

an infinitely often (ℓ,m, s, ε)-generator G = {Gn}n≥1, where ℓ(n) ≤ nα, m(n) = ⌊2nλ⌋, s(m) =

2n
2λ ≥ poly(m) (for any polynomial), and ε(m) = 1/m.

Now, we are ready to prove the lower bound for BQE based on the conditional PRG and a
diagonalization theorem for quantum circuits.

Proof of Theorem 4.15. We use a win-win argument to prove the circuit lower bound.

Case 1: Suppose PSPACE ⊆ BQSUBEXP, i.e., for every γ ∈ (0, 1], PSPACE ⊆ BQTIME[2n
γ
].

Then, for a fixed k ∈ N, by a diagonalization lemma for quantum circuits (Claim F.3), we know
that there exists a language L ∈ PSPACE such that L /∈ BQC[nk]. However, by the assumption,
L ∈ BQE, which implies that BQE 6⊂ BQC[nk].

Case 2: PSPACE 6⊆ BQSUBEXP, that is, there exists a language L ∈ PSPACE and γ > 0 such
that L /∈ BQTIME[2n

γ
]. By Theorem 4.17, for some α ≥ 1, λ ∈ (0, 1/5), there exists an infinitely

often (ℓ,m, s, ǫ)-PRG G = {Gn}n≥1, where ℓ(n) = nα, m(n) = ⌊2nλ⌋, s(m) = ⌊2n2λ⌋, ǫ(m) = 1/m.
For each w ∈ {0, 1}nα

, we consider Gn(w) as the truth table of Boolean function fnc(Gn(w)) :
{0, 1}d → {0, 1}, where d := log(m(n)) is the input length of the function. We will show that
fnc(Gn(w)) is a hard function for BQC[dO(1)] for most w ∈ {0, 1}ℓ(n).

Suppose that this is not true, i.e., there exists a k > 0 such that for almost every n > 0,
fnc(Gn(w)) ∈ BQC[d(n)k] for a constant fraction of seeds w ∈ {0, 1}ℓ(n). Then, consider a quantum

circuit CMQCSP
m which takes a m-bit string s and accepts it if and only if MQCSP(s, 1d

k
) = 1, where

s is the truth table and dk is the size parameter. Since we assume MQCSP ∈ BQP, the quantum
circuit CMQCSP

m can be generated by a deterministic algorithm in time poly(m) ≤ s(m)22. This
implies that

Pr
w∼{0,1}ℓ(n),CMQCSP

m

[
CMQCSP
m (Gn(w)) = 1

]
≥ δ

22For all problems in BQP, there exists a classical Turing machine that can efficiently uniformly generate the
quantum circuits.
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for some constant δ ∈ (0, 1). On the other hand, by the pseudorandomness property of Gn (part 3
in Definition 4.16), for infinitely many n, we have

∣∣∣∣∣ Pr
w∼{0,1}ℓ(n),CMQCSP

m

[
CMQCSP
m (Gn(w)) = 1

]
− Pr
y∼{0,1}m(n) ,CMQCSP

m

[
CMQCSP
m (y) = 1

]∣∣∣∣∣ ≤
1

m
. (2)

However, only o(1)-fraction of random functions have polynomial-size quantum circuits, i.e.,

Pr
y∼{0,1}m(n) ,CMQCSP

m

[
CMQCSP
m (y) = 1

]
≤ o(1),

which means Eq. (2) cannot hold. Therefore, for infinitely many n, and almost all w, the function
fnc(Gn(w)) /∈ BQC[nk] for every k ∈ N+.

Therefore, we can construct a hard language LG as follows:

• For any n > 0 and every x ∈ {0, 1}n, check if x can be written as (w, y), where |w| = ℓ(t) and
|y| = ⌈logm(t)⌉ for some t ∈ N.

• If not, then LG(x) := 0.

• Otherwise, LG(x) := fnc(Gt(w))(y).

We first show that LG ∈ BQE. By the running time property of Gn (part 2 in Definition 4.16),
Gn(w) can be computed in deterministic time O(2ℓ(t)) ≤ O(2n). Hence, LG ∈ E ⊂ BQE.

Then, we show that LG /∈ BQC[nk] for every k ∈ N+. Fix k > 0. Suppose there exists a
quantum circuit family {Cn}n≥1 that computes LG and Cn has size nk for every n ≥ 1. However,
we already proved that there exists an infinite-size subset {S ⊂ N} such that for n ∈ S, there exists
many “hard seed” wn such that

fnc(Gt(wn)) /∈ BQC[t2αk]. (3)

Then, for any n ∈ S and any wn that makes Eq. (3) hold, define a new quantum circuit family
{C ⇂wn}n≥1 such that C ⇂wn (y) := C(wn, y), i.e., C ⇂wn computes the hard function fnc(Gt(wn)).
Hence, C ⇂wn must have size larger than t2αk. Since n = ℓ(t) + logm(t) = tα + tλ ≤ t2α, and the
size of Cn should be least the size of its restriction C ⇂wn , we conclude that Cn has size larger than
nk for these infinitely many n ∈ S. Therefore, the BQE language LG /∈ BQC[nk], which implies
BQE 6⊂ BQC[nk].

Combining Case 1 and 2 completes the proof of the theorem.

Circuit lower bound for BQPQCMA Our second result shows that if MQCSP ∈ BQP, then
BQPQCMA cannot be computed by polynomial-size quantum circuits. Our result follows the seminal
work of Kabanets and Cai [KC00], which showed a circuit lower bound for PNP based on MCSP is
easy. More specifically, we consider the following “hard problem”:

Definition 4.18 (Maximum quantum circuit complexity problem). The input of this problem is
1n for n ∈ N+. The output is the truth table of a function f : {0, 1}n → {0, 1} such that for any
f ′ : {0, 1}n → {0, 1}, the quantum circuit complexity qCC(f) ≥ qCC(f ′).

We first prove that BPEQCMA can solve the maximum quantum circuit complexity problem,
which implies that BPEQCMA contains the hardest Boolean function. Then, by the standard padding
argument, we can show quantum circuit lower bound for BQPQCMA.
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Theorem 4.19. If MQCSP ∈ BQP, then BPEQCMA contains a function with maximum quantum
circuit complexity. Furthermore, BQPQCMA 6⊂ BQC[nk] for any constant k > 0.

We note that there are two subtle differences between Theorem 4.19 and [KC00]’s result:

• We need a QCMA oracle while [KC00] used an NP oracle. This is because we assume that
MQCSP ∈ BQP. In order to decide the maximum quantum circuit complexity, we can non-
deterministically guess a truth table and use the BQP algorithm to verify its quantum circuit
complexity. This process can be achieved by an QCMA oracle.

• Another difference is that we consider the BPE class while [KC00] considered the E class. This
is because our QCMA oracle can only output correct answers with high probability. Thus,
the whole algorithm will be a randomized algorithm.

The formal proof is deferred to Section C.1.

Hardness amplification using MQCSP [KC00] showed that the classical MCSP can be used for
hardness amplification, i.e., given one very hard Boolean function, there exists an efficient algorithm
to find many hard functions via an MCSP oracle. We show that it also holds for quantum circuits:

Theorem 4.20. Assume MQCSP ∈ BQP. Then, there exists a BQP algorithm that, given the truth
table of an n-variable Boolean function of quantum circuit complexity 2Ω(n), outputs 2Ω(n) Boolean
functions on m = Ω(n) variables each, such that all of the output functions have quantum circuit
complexity greater than 2m

(c+1)m for any c > 0.

In order to prove Theorem 4.20, we first construct a “quantum version” of the Impagliazzo-
Wigderson generator [IW97]. We note that the construction in the following lemma is stronger
than the Definition 4.16, based on the truth table of a very hard function.

Lemma 4.21 (Quantum Impagliazzo-Wigderson generator). For every ǫ > 0, there exist c, d ∈ N
such that the truth table of a Boolean function f : {0, 1}cn → {0, 1} of quantum circuit complexity
2ǫcn can be transformed in time O(2n) into a pseudorandom generator G : {0, 1}dn → {0, 1}2n
running in time O(2n) that can fool quantum circuits of size 2O(n), i.e., for any p > 0, any quantum
circuit C of size at most 2pn,

∣∣∣∣ Pr
x∼{0,1}dn,C

[C(G(x)) = 1]− Pr
y∼{0,1}2n ,C

[C(y) = 1]

∣∣∣∣ ≤ 2−n.

Proof of Theorem 4.20. Let c > 0 and s(n) = 2n

(c+1)n . Assuming that MQCSP ∈ BQP, we get

a polynomial-size quantum circuit family {Dn} that only accept n-variable Boolean functions of
quantum circuit complexity greater than s(n). By Claim F.1, the acceptance probability is close
to one.

However, the size of Dn is bounded by a fixed polynomial in the input size, by Lemma 4.21, the
quantum Impagliazzo-Wigderson generator G will fool Dn. That is, almost all 2n-bit strings output
by G will have quantum circuit complexity greater than s(n). We can then use the MQCSP circuit
to decide the quantum circuit complexity of these strings and only output hard functions.

The proof of Lemma 4.21 relies on a quantum-secure direct product generator and several
hardness amplification steps. It is deferred to Section C.3.
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Hardness magnification for MQCSP. Hardness magnification refers to a transformation of a
weak circuit lower bound (e.g., linear size lower bound) to a stronger circuit lower bound (e.g.,
polynomial size lower bound). Note that a magnification theorem for a circuit class is highly
dependent on the structure of the circuits. Specifically, it is not immediately clear that every
circuit class is magnifiable. Here, we show that there exists hardness magnification for quantum
circuits when it comes to MQCSP.

Theorem 4.22. If MQCSP
[
2n

1/2
/2n, 2n

1/2
]
is hard for BQC

[
2n+O(n1/2)

]
, then QCMA 6⊆ BQC[poly(n)].

The proof of Theorem 4.22 is via antichecker lemma, which was first given by [OPS19, CHO+20]
for proving hardness magnification for MCSP.

Lemma 4.23 (Antichecker lemma for quantum circuits). Assume QCMA ⊆ BQC[poly]. Then for

any λ ∈ (0, 1) there are circuits {C2n}∞n=1 of size 2n+O(nλ) which given the truth table tt(f) ∈
{0, 1}2n , outputs 2O(nλ) n-bit strings y1, . . . , y2O(nλ) together with bits f(y1), . . . , f(y2O(nλ)) forming

a set of anticheckers for f , i.e. if f is hard for quantum circuits of size 2n
λ
then every quantum

circuit of size 2n
λ
/2n fails to compute f on one of the inputs y1, . . . , y2O(nλ) .

With Lemma 4.23, we can prove Theorem 4.22 by using a small quantum circuit to verify the
given circuits only on the anticheckers.

Proof of Theorem 4.22. SupposeQCMA ⊆ BQC[poly]. Let tt(f) be the input ofMQCSP[2n
1/2
/2n, 2n

1/2
].

By Lemma 4.23, we can find a set of anticheckers y1, . . . , y2O(n1/2) by a quantum circuit of size

2n+O(n1/2). Then, we use a QCMA algorithm to decide if there exists a quantum circuit of size
2n

λ
/2n that computes f correctly on {(y1, f(y1)), . . . , (y2O(nλ) , f(y2O(nλ)))}. By the assumption, it

can be done by a 2O(nλ) size quantum circuit. Then, there are two cases:

• If the QCMA algorithm returns “Yes”, it means that y1, . . . , y2O(n1/2) are not anticheckers. By

Lemma 4.23, f is not hard for 2n
1/2

size quantum circuit.

• If the QCMA algorithm returns “No”, then no 2n
1/2
/2n size quantum circuit can compute f

on y1, . . . , y2O(n1/2) . So, f is hard for 2n
1/2
/2n size quantum circuit.

Hence, MQCSP[2n
1/2
/2n, 2n

1/2
] ∈ BQC[2n+O(n1/2)].

The proof of Lemma 4.23 is deferred to Section C.2.

4.4 Fine-grained complexity

It is a long-standing open problem to show the hardness of MCSP based on some fine-grained
complexity hypotheses, like the Exponential-Time Hypothesis (ETH), which was conjectured by
Impagliazzo, Paturi, and Zane [IPZ01] and becomes a widely used assumption in fine-grained
complexity area.

Definition 4.24 (Exponential Time Hypothesis (ETH)). There exists δ > 0 such that 3-SAT with
n variables cannot be solved in time 2δn.

Very recently, a breakthrough result by Ilango [Ila20b] proved the ETH-hardness of MCSP for
partial Boolean functions. On the other hand, Quantum fine-grained complexity was studied very
recently by [ACL+20, BPS21, AL20, GS20]. Motivated by the fact that currently there is no
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quantum algorithm for 3-SAT that is significantly faster than Grover’s search, we conjecture that
3-SAT with n variables cannot be solved in 2o(n) quantum time (QETH). And based on QETH, we
want show that MQCSP for partial Boolean function is also hard.

We first formally define QETH and MQCSP for partial functions (MQCSP⋆).

Definition 4.25 (Quantum Exponential Time Hypothesis (QETH)). There exists δ′ > 0 such that
3-SAT with n variables cannot be solved in time 2δ

′n in quantum.

Definition 4.26 (MQCSP for partial functions (MQCSP⋆)). The input is the truth table {0, 1, ⋆}2n
of a partial function f : {0, 1}n → {0, 1, ⋆} and an integer parameter s. The goal is to decide
whether there exists a quantum circuit C of size at most s (using single-qubit and 2-qubit gates)
that computes f . That is, for all x ∈ {0, 1}n such that f(x) 6= ⋆, we have

Pr[C(x) = f(x)] ≥ 2

3
.

Our main result of this section is as follows:

Theorem 4.27 (QETH-hardness ofMQCSP⋆). MQCSP⋆ cannot be solved in No(log logN)-time quan-
tumly on truth tables of length N assuming QETH.

Our reduction reveals the connections between MQCSP⋆, quantum read-once formula and clas-
sical read-once formula. The proof is given in Section D.

Classical reduction for MCSP⋆. We first give a brief overview of the classical reduction for
MCSP⋆ in [Ila20b]. They reduced MCSP⋆ to a fine-grained problem: 2n×2n Bipartite Permutation
Independent Set problem, which is defined as follows:

Definition 4.28 (Bipartite Permutation Independent Set problem). A 2n× 2n bipartite permuta-
tion independent set problem is defined on a directed graph G with vertex set [n]× [n] and edge set
E. The goal is to decide whether there exists a permutation π ∈ S2n such that

• π([n]) = [n],

• π({n + i : i ∈ [n]}) = {n + i : i ∈ [n]},

• if ((j, k), (j′, k′)) ∈ E, then either π(j) 6= k or π(n+ j′) 6= π(n + k′).

Lokshtanov, Marx, and Saurabh [LMS11] proved that this problem is 2o(n logn)-hard under ETH,
which implies the ETH-hardness of MCSP⋆.

The reduction from 2n × 2n bipartite permutation independent set problem to MCSP⋆ is via
the following partial function γ. Consider an instance G = ([n] × [n], E) of 2n × 2n bipartite
permutation independent set problem. The reduction outputs the truth table of a partial Boolean
function γ : {0, 1}2n × {0, 1}2n × {0, 1}2n → {0, 1, ⋆} such that

γ(x, y, z) :=





∨
i∈[2n](yi ∧ zi) if x = 02n,

∨
i∈[2n] zi if x = 12n,

∨
i∈[2n](xi ∨ yi) if z = 12n,

0 if z = 02n,
∨
i∈[n] xi if z = 1n0n and y = 02n,

∨
i∈{n+1,··· ,2n} xi if z = 0n1n and y = 02n,

1 if ∃((j, k), (j′ , k′)) ∈ E s.t. (x, y, z) = (ekek′ , 0
2n, ejej′),

⋆ otherwise.

(4)
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In particular, the small circuit size of γ implies that G is a “Yes” instance of the bipartite permu-
tation independent set problem:

Lemma 4.29 ([Ila20b]). Each of the following are equivalent:

1. MCSP⋆(γ, 6n − 1) = 1;

2. γ can be computed by a read-once formula;

3. there exists a π ∈ S2n such that
∨
i∈[2n]((xπ(i) ∨ yi) ∧ zi) computes γ;

4. there exists a π ∈ S2n that satisfies the instance of bipartite permutation independent set
problem given by G.

Quantum reduction for MQCSP⋆ We follow the proof in [Ila20b] but adapt it to quantum
circuits. More specifically, we want to show that for the partial function γ defined by Eq. (4),
MQCSP⋆(γ, 6n − 1) = 1 is equivalent to the case that γ can be computed by a read-once formula.

The reverse direction is easy:

Claim 4.30. If γ can be computed by a read-once formula, then MQCSP⋆(γ, 6n − 1) = 1.

Proof. It is easy to see that a read-once formula on 6n input variables has at most 6n− 1 Boolean
gates. Hence, it implies that MCSP⋆(γ, 6n−1) = 1. Then, we have MQCSP⋆(γ, 6n−1) = 1 because
we can use a quantum circuit with all 2-qubit gates to simulate a Boolean circuit without increasing
the circuit size.

For the forward direction, we consider an intermediate model: read-once quantum formula. The
quantum formula was defined by Yao [Yao93] as follows:

Definition 4.31. A quantum formula is a single-output quantum circuit such that every gate has
at most one output that is used as an input to a subsequent one.

If a quantum formula only uses every input qubit at most once, then we say it is a read-once
quantum formula.

We first prove the forward direction for the quantum read-once formula:

Claim 4.32. If MQCSP⋆(γ, 6n− 1) = 1, then γ can be computed by a read-once quantum formula.
Here, we assume that the quantum circuits only use single-qubit and 2-qubit gates.

Proof. It is easy to verify that γ depends on all of the 6n input variables. Hence, by a light-cone
argument, the topology of the quantum circuit that computes γ using 6n − 1 2-qubit gates must
be a full binary tree with 6n leaves. Hence, that circuit is a read-once quantum formula.

Cosentino, Kothari, and Paetznick [CKP13] proved that any read-once quantum formula can
be “dequantized” to the classical read-once quantum formula:

Theorem 4.33 ([CKP13]). If a language is accepted by a bounded-error read-once quantum formula
over single-qubit and 2-qubit gates, then it is also accepted by an exact read-once classical formula
with the same size, using NOT and all 2-bit Boolean gates.

Hence, we can apply Theorem 4.33 to dequantize Claim 4.32:
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Claim 4.34. If MQCSP⋆(γ, 6n − 1) = 1, then γ can be computed by a classical read-once formula
with 6n− 1 2-bit gates. In particular, all the NOT gates can be pushed to the leaf level and the high
level gates are {AND,OR,XOR}.

Proof. By Theorem 4.33, there is a read-once classical formula that computes γ using 6n− 1 2-bit
logical gates. We can enumerate all of the 2-bit Boolean function and check that they can be
expressed by one of AND,OR,XOR gate with some NOT gates on the input wire. Then, by De
Morgan’s laws, we can push the NOT gate to the bottom level. Note that these transformations
will preserve the read-once property.

The next claim shows that NOT and XOR gates do not help computing γ:

Claim 4.35. The classical read-once formula computing γ only uses AND and OR gates.

Proof. The proof is similar to the proof of Claim 13 in [Ila20b].
We first note that the XOR gate is not monotone. Then, by setting x = 02n, we have

γ(02n, y, z) =
∨
i∈[2n](yi ∧ zi), which is a monotone function in y and z. Hence, the XOR gates

in the formula cannot depend on the all the y and z variables. Similarly, by setting z = 12n, we
have γ(x, y, 12n) =

∨
i∈[2n](xi ∨ yi), which is monotone in x and y. It implies that the XOR gates

cannot depend on all the x variables. Hence, the formula will not use the XOR gate.
For the NOT gate, since the function is monotone in the positive input variables after some

restrictions, and the formula is read-once, the NOT gate will also not be used.

By Claim 4.30, 4.34 and 4.35, we get that MQCSP⋆(γ, 6n− 1) = 1 is equivalent to the case that
γ can be computed by a read-once formula using AND and OR gates. This statement corresponds
to showing that (1) ⇔ (2) in Lemma 4.29 for MCSP⋆. Then, by (2) ⇔ (4) in Lemma 4.29, we
prove the following reduction for MQCSP⋆:

Lemma 4.36. MQCSP⋆(γ, 6n − 1) = 1 is equivalent to the existence of π ∈ S2n that satisfies the
instance of bipartite permutation independent set problem given by G.

The remaining thing is to prove the quantum hardness of the 2n × 2n Bipartite Permutation
Independent Set problem. We follow the quantum fine-grained reduction framework by [ACL+20]
and show the following QETH-hardness result. The proof is given in Section D.

Lemma 4.37. Assuming QETH, there is no 2o(n logn)-time quantum algorithm that solves 2n× 2n
Bipartite Permutation Independent Set problem.

Now, we can prove the QETH-hardness of MQCSP⋆:

Proof of Theorem 4.27. By Lemma 4.36, MQCSP⋆ can be reduced to 2n×2n Bipartite Permutation
Independent Set problem and the hardness follows from Lemma 4.37.

5 MCSP for Quantum Objects

In this section, we generalize the problem to considering circuit complexities of quantum objects,
including unitaries and quantum states. In particular, we study their hardness, related reductions,
and their implications to other subjects in quantum computer science. We start by defining the
two problems.

Definition 5.1 (UMCSPα,β). Let n, s, t ∈ N and t ≤ s. Let α, β ∈ (0, 1]. Let U ∈ C2n×2n be a
unitary. UMCSP is a promise problem defined as follows.
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• Inputs: the unitary matrix U , the size parameter s in unary representation, and the ancilla
parameter t.

• Yes instance: there exists a quantum circuit C using at most s gates and operating on at
most n+ t qubits such that for all |ψ〉 ∈ C2n ,

‖(〈ψ| ⊗ It)(U † ⊗ It)C|ψ, 0t〉‖2 ≥ α, (5)

• No instance: for every quantum circuit C using at most s gates and operating on at most
n+ t qubits, there exists some |ψ〉 ∈ C2n such that

‖(〈ψ| ⊗ It)(U † ⊗ It)C|ψ, 0t〉‖2 ≤ β. (6)

With the promise that the input must be either a yes instance or a no instance, the problem is to
decide whether the input is a yes instance or not.

Remark 7. Since the input to UMCSP is a unitary matrix U and each entry is a complex number,
we cannot fully describe U and hence need to specify a precision parameter. Moreover, the precision
issue is subtle in the search-to-decision reduction. For a gate set G, we denote ℓG ∈ N as the
maximum number of bits used to encode an entry of a gate. Note that if a circuit uses s gates from
G, then each entry in the resulting unitary can be written down with at most s · ℓG bits. Thus, by
the triangle inequality for the distance between unitaries, it suffices to use s · ℓG bits to encode each
entry of the input unitary. Also, note that when α−β < 2−s·ℓG , UMCSPα,β becomes a non-promise
problem since effectively the gap between Yes and No instances does not matter. In the definition
of UMCSP, we hide the introduction of precision parameter for simplicity. Note that from the
above reasoning and the fact that the input unitary is 2n × 2n, it would not affect the complexity of
the problem even one chooses the bit complexity to be 2O(n), which is more than enough for most
interesting situations.

Definition 5.2 (SMCSPα,β). Let n, s, t ∈ N, where t ≤ s. Let α, β ∈ (0, 1]. Let |φ〉 ∈ C2n be a
quantum state. SMCSP is a promise problem defined as follows.

• Inputs: size parameters s and n in unary, access to arbitrary many copies of |ψ〉, and the
ancilla parameter t.

• Yes instance: there exists a quantum circuit C using at most s gates and operating on at
most n+ t qubits such that

‖(〈φ| ⊗ In+t−1)C|0n+t〉‖2 ≥ α,

• No instance: for every quantum circuit C using at most s gates and operating on at most
n+ t qubits,

‖(〈φ| ⊗ In+t−1)C|0n+t〉‖2 ≤ β.

With the promise that the input must be either a yes instance or a no instance, the problem is to
decide whether the input is a yes instance or not.

Remark 8. Similarly, the precision of the input parameters α, β of SMCSP has to depend on the
bit complexity of the gate set. See Remark 7 for more discussion.

Remark 9. For the thresholds α, β, it is worth noting that a quantum circuit that outputs a mixed
state can always have nonzero inner product with an arbitrary state. Therefore, we cannot set β to
be arbitrarily small; otherwise, there will not be any U or |φ〉 satisfying the no instance.
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For SMCSP, we focus on the version where the inputs are multiple quantum states. The input
format is quite different from UMCSP and MQCSP; instead of having the full classical description,
SMCSP is given access to many copies of the quantum state. Hence, we say an algorithm for SMCSP
is efficient if it runs in time poly(n, t, s), i.e., an efficient algorithm can use at most poly(n, t, s) copies
of |ψ〉. We choose this input format because that in the quantum setting, we generally cannot
have the classical description of the quantum state. For instance, in shadow tomography[Aar18],
quantum gravity[BFV20], and quantum pseudorandom states[JLS18], the problem is given many
copies of a quantum state, identify some properties of the state. Furthermore, although this problem
seems to be much harder than having the full description or a succinct description (e.g, a circuit
that generates the state) of the state, we will see that this problem has a QCMA protocol. 23

Remark 10. On the other hand, the hardness results including the problem is in QCMA (The-
orem 5.9), the search-to-decision reduction (Theorem 5.18), and the approximate self-reduction
(Theorem 5.20) all hold for the version where the input is a classical description for the state.

Before proving the main theorems in this section, we introduce some notations and the swap
test. Swap test [BCWdW01] is a quantum subroutine for testing whether two pure quantum states
are close to each other.

Notation 1. We write a ≈ǫ b for a, b ∈ R to mean ‖a− b‖ ≤ ǫ.

Notation 2. We write |ϕ〉 ≈ǫ |φ〉 to mean ‖|ϕ〉 − |φ〉‖ ≤ ǫ.

Lemma 5.3 (Correctness of Swap Test). For any two states |φ〉, |ψ〉, consider the following state

(H⊗ I)(c-SWAP)(H⊗ I)|0〉|φ〉|ψ〉

Measuring the first qubit gives outcome 1 with probability 1
2 − 1

2 |〈φ|ψ〉|2.

Claim 5.4. Let |φ〉, |ψ〉 ∈ C2n be two quantum states such that |φ〉 ≈ǫ |φ〉. Then, for any |ψ′〉
which is a state on at most n qubits,

‖(〈ψ′| ⊗ I)|φ〉‖ − ǫ ≤ ‖(〈ψ′| ⊗ I)|ψ〉‖ ≤ ‖(〈ψ′| ⊗ I)|φ〉‖+ ǫ.

Proof. Without loss of generality, we can write |ψ〉 = |φ〉 + |ǫ〉, where ‖|ǫ〉‖ ≤ ǫ. Then, ‖(〈ψ′| ⊗
I)|ψ〉‖ = ‖(〈ψ′| ⊗ I)|φ〉+ (〈ψ′| ⊗ I)|ǫ〉‖. By using triangular inequality, we obtain the following two
inequalities:

‖(〈ψ′| ⊗ I)|ψ〉‖ ≤ ‖(〈ψ′| ⊗ I)|φ〉‖ + ‖(〈ψ′| ⊗ I)|ǫ〉‖, and

‖(〈ψ′| ⊗ I)|ψ〉‖ ≥ ‖(〈ψ′| ⊗ I)|φ〉‖ − ‖(〈ψ′| ⊗ I)|ǫ〉‖.

Since ‖|ǫ〉‖ ≤ ǫ, ‖(〈ψ′| ⊗ I)|ǫ〉‖ ≤ ǫ. This completes the proof.

Theorem 5.5. UMCSPα,β where β ≤ 1 − poly(1/2n) and α > 1 − 2−2n−20(1 − β)4 (for example,
α = 1− exp(−2n), β = 1− poly(1/2n)) is in QCMA.

To design the verifier (that verifies a quantum circuit C really implements U as we want), what
we will do is the following checking:

23Since SMCSP takes quantum inputs, the problem is not in QCMA under the standard definition. However,
problems with quantum inputs in quantum computing is natural, so, it is also reasonable to study the complexity
classes that allow quantum inputs.

39



1. Standard basis check: check whether Eq. (5) is satisfied on standard basis states.

2. Coherency check: Check Eq. (5) on superposition states in the form of |a〉+ |b〉. This step has
two goals: (1) checking whether the operation does behave similar to a unitary (instead of,
for example, a collapsing measurement). (2) the unitary does not introduce different phases
on different basis states.

Proof. Our checking algorithm follows the two steps above. The certificate is the circuit that
implements the unitary such that Eq. (5) is satisfied. The following algorithm verifies it (assuming
the promise):

1. (Standard basis check) For each i ∈ [2n], evaluate (U † ⊗ It)C(|i〉 ⊗ |0t〉) for poly1(2
n) times.

Store the output state (which requires only polynomial memory); denote the j-th sample on
input i as |ϕji 〉. Measure each of the states and check whether the output for |ϕji 〉 is i. If not,
mark it as a negative sample.

If for any i, the ratio of negative samples is ≥ 2−2n−18(1− β)4, reject.

2. (Coherency check) Do the following for each i, j ∈ [2n], i 6= j for poly2(2
n) times:

Apply (U † ⊗ It)C on 1√
2
(|i〉 + |j〉) ⊗ |0t〉. Project the output system on 1√

2
(|i〉 + |j〉). If the

projection does not succeed, consider it as a negative sample.

If for any of i, the ratio of negative samples is ≥ 2−2n−18(1− β)4, reject.

We will show, when poly1, poly2 are all chosen to be some sufficiently big polynomials, this test can
be used as the QCMA-verifier we need.

First, if a circuit satisfies Eq. (5), we can prove the verifier succeeds with probability 1 −
2−O(poly(2n)).

1. First, in the standard basis check, by Eq. (5), the expected ratio of negative sample is at
most 1− α ≤ 1

4 · threshold (threshold := 2−2n−18(1 − β)4). By the Chernoff bound we have,
∀a ∈ [2n],

Pr[negative ratio ≥ threshold]

= Pr[negative samples ≥ threshold · poly1(2n)]
≤ 2−O(E[negative samples]) (Chernoff bound)

≤ 2−O(poly1(2
n)·2−2n−20(1−β)4) (threshold · poly1(2n) ≥ 4 · E[negative samples])

which is 2−O(poly(2n)) when poly1 is taken to be big enough. (Since 1− β = poly(1/2n))

Summing this failure probability for all a ∈ [2n] altogether we know with probability is at
most

2n · 2−O(poly(2n)) = 2−O(poly(2n)),

which means it could not pass the first step.

2. For the coherency check we can apply Eq. (5) directly again and know for each a, b, the
expected error ratio is ≤ 1 − α ≤ 1

4 · threshold. (Similarly threshold := 2−2n−18(1 − β)4).
Thus by the Chernoff bound and similar arguments

∀a, b ∈ [2n], Pr[error ratio ≥ threshold] ≤ 2−O(poly2(2
n)·2−2n−20(1−β)4)
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which is 2−O(poly(2n)) when poly2 is taken to be big enough. (Since 1− β = poly(1/2n))

Thus summing this failure probability for all a, b ∈ [2n] we know this step fails with probability
at most

2n · 2n · 2−O(poly(2n)) = 2−O(poly(2n)).

Thus we get the completeness.
Then we prove a circuit that satisfies Eq. (6) will be rejected with probability 1− 2−O(poly(2n)).

To prove that, we need to understand how the coherency check help us control the form of the
states. We will prove the following lemmas step by step.

First, we show the success of coherency check implies the ancilla states have to be close to each
other:

Lemma 5.6. Suppose for some a, b ∈ [2n], a 6= b, the following equations hold:

‖(〈a| ⊗ It)(U † ⊗ It)C(|a〉 ⊗ |0t〉)‖2 ≥ 1− δ,
‖(〈b| ⊗ It)(U † ⊗ It)C(|b〉 ⊗ |0t〉)‖2 ≥ 1− δ,
∥∥∥∥
(〈a|+ 〈b|√

2
⊗ It

)
(U † ⊗ I)C

( |a〉+ |b〉√
2
⊗ |0t〉

)∥∥∥∥
2

≥ 1− δ. (7)

Define the ancilla states |χa〉, |χb〉 via

(U † ⊗ It)C(|a〉 ⊗ |0t〉) ≈√δ |a〉 ⊗ |χa〉 (8)

(U † ⊗ It)C(|b〉 ⊗ |0t〉) ≈√δ |b〉 ⊗ |χb〉 (9)

where the right hand sides are the states from projecting (U † ⊗ It)C(|a〉 ⊗ |0t〉), and projecting
(U † ⊗ It)C(|b〉 ⊗ |0t〉) on to |a〉, |b〉 respectively.

Then we have
|χa〉 ≈4δ1/4 |χb〉 (10)

Proof. We can evaluate the left hand side of Eq. (7) and get

∥∥∥∥
1√
2
((〈a| + 〈b|)⊗ It)((U † ⊗ I)C)

1√
2
((|a〉 + |b〉)⊗ |0t〉)

∥∥∥∥

≈√2δ
1

2
‖((〈a| + 〈b|) ⊗ It)(|a〉 ⊗ |χa〉+ |b〉 ⊗ |χb〉)‖ (By Eqs. (8),(9))

=
1

2
‖|χa〉+ |χb〉‖

=

√
1− 1

4
‖|χa〉 − |χb〉‖2

Substitute Eq. (7), we know

√
1− 1

4
‖|χa〉 − |χb〉‖2 ≥

√
1− δ −

√
2δ,

‖|χa〉 − |χb〉‖ ≤ 2

√
2
√

2δ(1 − δ) − δ ≤ 4δ1/4.

The lemma is then proved.
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Furthermore, we can show, when Eq. (10) holds for all pairs (a, b), the operation (U † ⊗ I)C is
indeed close to identity:

Lemma 5.7. Suppose for all a, b ∈ [2n], a 6= b, Eqs. (8),(9),(10) holds. Then for all |ψ〉 ∈ C2n ,

‖(〈ψ| ⊗ It)(U † ⊗ It)C|ψ, 0t〉‖2 ≥ 1− 10 · 2n/2δ1/4

Proof. Decompose |ψ〉 = ∑
i∈[2n] ci|ei〉. Take |aux〉 = |χ0〉. Then

(U † ⊗ It)C(|ψ〉 ⊗ |0t〉) =
∑

i∈[2n]
ci(U

† ⊗ It)C(|ei〉 ⊗ |0t〉)

≈∑
i ci
√
δ

∑

i∈[2n]
ci|ei〉 ⊗ |χi〉 (By Eqs. (8),(9))

≈∑
i 4ciδ

1/4

∑

i∈[2n]
ci|ei〉 ⊗ |aux〉 (By Eq. (10))

= |ψ〉 ⊗ |aux〉,

which implies

‖(〈ψ| ⊗ It)(U † ⊗ It)C|ψ, 0t〉‖2 ≥ (1− 5δ1/4
∑

i

ci)
2

≥ (1− 5 · 2n/2δ1/4)2

≥ 1− 10 · 2n/2δ1/4.

And the proof is completed.

Then we prove a circuit that satisfies Eq. (6) will be rejected with probability 1− 2−O(poly(2n)).

1. After the standard basis check, C has to satisfy the following property, otherwise the verifier
will reject with probability 1− 2−O(poly(2n)):

∀a ∈ [2n], ‖(〈a| ⊗ It)(U † ⊗ It)C(|a〉 ⊗ |0t〉)‖2 ≥ 1− 2−2n(
1

11
(1− β))4 (11)

That’s because otherwise the standard basis test for some a ∈ [2n] will have an expected
negative ratio ≥ 2−2n( 1

11 (1− β))4 ≥ 4 · threshold (recall threshold := 2−2n−18(1− β)4).
A more detailed calculation is as follows.

Pr[negative ratio < threshold] = Pr[negative samples < threshold · poly1(2n)]
≤ exp(−O(E[negative samples]))

≤ exp
(
−O(poly1(2

n) · 2−2n((1− β)/11)4)
)
,

where the second step follows from the Chernoff bound, and the last step follows from

threshold · poly1(2n) <
1

4
E[negative samples].

Thus

Pr[negative ratio ≥ threshold] ≥ 1− 2−O(poly1(2
n)·2−2n((1−β)/11)4)
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2. After the coherency check, C has to satisfy the following property, otherwise the verifier will
reject with probability 1− 2−O(poly(2n)): for all a, b ∈ [2n], a 6= b,

‖ 1√
2
((〈a| + 〈b|)⊗ It)(U † ⊗ I)C(

1√
2
(|a〉+ |b〉)⊗ |0t〉)‖2 ≥ 1− 2−2n(

1

11
(1− β))4 (12)

The calculation is similar as the first step.

3. And from Eqs. (11) and (12), Lemma 5.7 implies that for all |ψ〉 ∈ C2n ,

‖(〈ψ| ⊗ It)(U † ⊗ It)C|ψ, 0t〉‖2 ≥ 1− 10 · 2n/2(2−2n( 1
11

(1− β))4)1/4 > β.

However, by the promise this is not possible to be in the no instance.

This completes the proof.

Claim 5.8. UMCSPα,β is in NP when only linear ancilla qubits are allowed and 1−α < 2−2n−20(1−
β)4 and 1 − β ≥ poly(1/2n) (for example, 1 − α = exp(−2n), 1 − β = poly(1/2n)). However,
UMCSPα,β is not trivially in NP in general.

Proof. The certificate is the circuit implementation C that achieves Eq. (5). Now since the circuit
only operates on a polynomial-dimension system, the unitary transformation of the whole circuit
can be computed and written down using only a polynomial-time classical computer.

The subtlety is to verify whether the unitary computed here satisfies Eq. (5). We can prove
it following the same way as the proof of Theorem 5.5. Here the quantum space is always poly-
nomially bounded and a classical polynomial time verifier can simulate the protocol in the proof
of Theorem 5.5 classically. (One note is the quantum output samples there can be lazy-sampled.)
This completes the proof.

Next, we showed that SMCSP has a QCMA protocol. Note that since SMCSP is given access to
quantum states, it is even not a promise problem under the standard definition. Therefore, we can
only say there is a QCMA protocol for this problem.

Theorem 5.9. SMCSPα,β with gap |α− β| ≥ poly(s) has a QCMA protocol.

Proof. We use the swap test to check whether the given states and the state generated from the
certificate circuit are close. The verifier’s algorithm is as follows:

Algorithm 3 The efficient verifier for SMCSP.

Input: s, t ∈ N, poly(s) copies of |ψ〉, and quantum circuit C.
1: Generate poly(s) |φ〉 = C|0〉.
2: Apply swap test to |ψ〉 and |φ〉.
3: return “Yes” if there are at least a+b

2 trials outputs 0.
4: return “No”, otherwise.

Given s, t ∈ N and poly(s) copies of |ψ〉, we first consider the case where there exists a circuit
C such that ‖(〈ψ| ⊗ It)C|0n+t〉‖2 ≥ α. Let C be the certificate. Then, by applying the swap test

to |ψ〉 and C|0〉, the probability that we get 0 (which means identical) is 1
2 + |〈ψ|C|0〉|2

2 , which is at
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least 1+α
2 in this case. We denote the probability of outputs 0 at the i-th trial as Xi. Then, By the

Chernoff inequality,

Pr

[
ℓ∑

i=1

Xi ≥ (
1

2
+
α+ β

4
)ℓ

]
≤ exp

(
−(α− β)2ℓ

16

)
.

Since |α− β| ≥ 1
poly(s) , the success probability of Algorithm 3 in this case is at least 2/3 by having

ℓ = poly(s) trials. Similarly, we can prove the case when there exists no circuit C such that
‖(〈ψ| ⊗ It)C|0n+t〉‖2 > β. This completes the proof.

Given Theorem 5.9, we can also obtain the following result when given classical descriptions of
quantum states.

Corollary 5.10. SMCSP with classical descriptions of quantum states as inputs is in QCMA.

The subtlety is that the verifier needs to construct the state |ψ〉 given the classical description
of |ψ〉. If the verifier can do this efficiently (in time poly(2n)), then the rest of the analysis follows
the proof for Theorem 5.9. We leave the proof to Appendix E.

For the ease of notation, we will simply denote UMCSPα,β and SMCSPα,β as UMCSP and SMCSP
and will specify α and β when it is necessary in the rest of the section.

5.1 Reductions for UMCSP and SMCSP

In this section, we will show search-to-decision reductions for UMCSP and SMCSP. To prove the
above results, it is easier for us to consider UMCSP and SMCSP as problems for computing the
circuit complexity of given unitaries and states.

We first give formal definitions of approximating functions, unitaries, and states and the corre-
sponding quantum circuit complexities.

Definition 5.11 (Approximating f with precision δ). We say that a quantum circuit C that ap-
proximates a function f : Zn → Zm with precision δ if for all x ∈ Zn, there exists ǫ′ ≤ ǫ such
that

Cf,δ|x〉|0t〉 =
√
1− ǫ′|f(x)〉|ψf(x)〉+

√
ǫ′|φx〉. (13)

Definition 5.12 (Approximating U with precision δ). Let U be as a 2n × 2n unitary. We define
CU,ǫ as the circuit that approximates U with precision δ such that for all |ψ〉 ∈ C2n there exists
δ′ ≤ δ

CU,δ|ψ〉|0t〉 =
√
1− δ′(U |ψ〉) ⊗ |ψ′〉+

√
δ′|φ′〉.

Here, the additional t qubits for CU,δ are ancilla qubits.

Definition 5.13 (Approximating |ψ〉 with precision δ). Let |ψ〉 ∈ C2n be a quantum state. We
define C|ψ〉,ǫ as the circuit that approximates |ψ〉 with precision δ

C|ψ〉,δ|0n+t〉 =
√
1− δ′|ψ〉|ψ′〉+

√
δ′|φ′〉

Here, δ′ ≤ δ and the additional t qubits are ancilla qubits.

44



We use CC(·, ǫ) to denote the quantum circuit complexity of the minimum quantum circuit
that approximates the given Boolean functions, states, or unitaries with precision ǫ.

Remark 11 (Upper bounds on CC(·, ǫ)). For any universal gate set, any unitary U in C2n×2n

can be ǫ-approximated by a circuit with size at most Õ(n222n log 1
ǫ ) [NC11]. The same upper bound

also holds for states. The existence of 2O(n) upper bounds implies that CC(·, ǫ) can be computed
efficiently given efficient algorithms for SMCSP and UMCSP.

5.1.1 Search-to-decision reductions

In the following, we prove search-to-decision reductions for UMCSP and SMCSP. The main intuition
for these reductions is that quantum circuits are reversible, which gives us the ability to do some
“rewinding tricks”. We define the search versions of UMCSP and SMCSP as follows:

Definition 5.14 (SearchUMCSPǫ). Let n, t ∈ N. Let U ∈ C2n×2n be a unitary matrix and ǫ ∈ (0, 1).
Let s be the smallest integer such that there exists a quantum circuit C of size s that uses at most
t ancilla bits and for all |ψ〉 ∈ C2n ,

‖(〈ψ| ⊗ It)(U † ⊗ It)C|ψ, 0t〉‖2 ≥ 1− ǫ.

Given U , t, and ǫ, the problem is to output a circuit C′ of size at most s that uses at most t ancilla
bits and for all |ψ〉 ∈ C2n, ‖(〈ψ| ⊗ It)(U † ⊗ It)C′|ψ, 0t〉‖2 ≥ 1− ǫ− 2−cn for every constant c > 0.

Definition 5.15 (SearchSMCSPǫ,s). Let n, s, t ∈ N and ǫ ∈ (0, 1). Let |ψ〉 ∈ C2n be a quantum
state with the promise that there exists a circuit C of size at most s and t ancilla bits such that

‖(〈ψ| ⊗ In+t−1)C|0n+t〉‖2 ≥ 1− ǫ.

Given (n, s, t) in unary, ǫ, and access to arbitrary many copies of |ψ〉, the problem is to find a
circuit C′ of size at most s and t ancilla bits such that ‖(〈ψ| ⊗ In+t−1)C′|0n+t〉‖2 ≥ 1− ǫ− 2−cn for
every constant c > 0.

Remark 12. In Definition 5.15, we have included the upper bound 1s (the unary representation) as
part of the inputs. This mainly follows from the fact that we are considering problems with copies
of quantum states. One may expect that we can find s by using binary search with an efficient
algorithm for SMCSP. However, efficient algorithms for SMCSP with s = 2n can run in time
poly(2n), and efficient algorithms for SearchSMCSP without 1s as part of the inputs need to run in
time poly(n). Hence, this prevents us from finding s efficiently (in time poly(n)) with an efficient
algorithm for SMCSP (in time poly(s)). On the other hand, if we consider the case where SMCSP
and SearchSMCSP have the classical description of the state (instead of copies of the quantum state)
as part of the inputs, then there is no need to have 1s in the inputs of SearchSMCSP since we can
find s via binary search with efficient algorithms for SMCSP.

In the following, we show search-to-decision reductions for UMCSP and SMCSP when t = 0
(i.e., no ancilla qubits)24.

Theorem 5.16. There exists a search-to-decision reduction for UMCSP for t = 0 (i.e., no ancilla
qubits). In particular, if there is a time T (n) algorithm for UMCSPα,β where α > 1 − 2−c1n and
α − β ≥ 2−c2n for every constants c1, c2 > 0, then there is a time poly(T (n), 2n) algorithm for
SearchUMCSPǫ where ǫ ≥ 2−c3n for every constant c3 > 0 and t = 0.

24In general, search-to-decision reductions for SMCSP and UMCSP mean that SearchSMCSP reduces to SMCSP

and SearchUMCSP reduces to UMCSP for any n, s, t ∈ N.
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Remark 13. Here we require the gap α− β in the decision UMCSP oracle to be at least poly(2−n)
because our QCMA upper bound for UMCSP (see Theorem 5.5) only works in this regime.

Proof. Let us first state the reduction in the form of an algorithm with oracle queries to UMCSP
as follows.

Algorithm 4 Search-to-decision reduction for UMCSP.

Input: ǫ ∈ (0, 1), U ∈ C2n×2n , and a constant c3 > 0.
1: Let U0 = U , ∆ = 2−2c3n, ǫ0 = ǫ , and ǫi = ǫ0 + i ·∆ for all i ∈ N.
2: Use the oracle UMCSP1−ǫ0,1−ǫ0−∆ to binary-search s, the minimum circuit size of U .
3: Set i = 1.
4: while i < s do
5: for all gates hi in G on all n qubits do
6: if UMCSP1−ǫi,1−ǫi−∆(Ui−1h

†
i , s − i) = Yes then

7: Set gi = hi.
8: Let Ui = g†iUi−1.
9: Set i = i+ 1.

10: Break.
11: return g1, . . . , gs.

We inductively prove the following claim.

Claim 5.17. For every 0 < i < s, at the i-th iteration in line 5, we know that there exists a circuit
C of size at most s− i+ 1 such that min|ψ〉 |〈ψ|U †i−1C|ψ〉|2 ≥ 1− ǫi.

Proof. For the base case we consider i = 1 and note that after line 2 in Algorithm 4, we know that
there exists a circuit C of size at most s such that min|ψ〉 |〈ψ|U †0C|ψ〉|2 ≥ 1 − ǫ−∆ = 1 − ǫ1. This
proves the base case.

Now, suppose the induction statement holds for some i, we first claim that the algorithm must
go into the if-loop in line 6. Note that by induction hypothesis there exists a circuit C of size at
most s− i+ 1 such that min|ψ〉 |〈ψ|U †i−1C|ψ〉|2 ≥ 1− ǫi. Let gi be the last gate in C, we know that

min|ψ〉 |〈ψ|(U †i−1gi)(g
†
i C)|ψ〉‖2 ≥ 1 − ǫi and g†i C is a circuit of size at most s − i + 1 − 1 = s − i.

This shows that the algorithm will go into the if-loop in line 6 in the i-th iteration. Next, after the
algorithm goes into line 6 in the i-th iteration, by the correctness of UMCSP1−ǫi,1−ǫi−∆, we know

that there is a circuit C′ (= Cg†i ) of size at most s− i such that min|ψ〉 |〈ψ|U †i C′|ψ〉|2 ≥ 1− ǫi−∆ =
1− ǫi+1. This completes the induction step and hence proves Claim 5.17.

Finally, with the same argument in the proof of Claim 5.17, we know that

min
|ψ〉
|〈ψ|U †g1 · · · gs|ψ〉|2 ≥ 1− ǫs = 1− ǫ− s · 2−2c3n ≥ 1− ǫ− 2−c3n

as desired. Also, notice that the algorithm only queries the UMCSP oracle at most 2n times and
hence the running time is poly(T (n), 2n) where T (n) is the running time of the UMCSP oracle.

Theorem 5.18. There exists a search-to-decision reduction for SMCSP for t = 0. In particular,
if there is a time T (n) algorithm for SMCSPα,β where α > 1− 2−c1n and α− β ≥ 2−c2n for every
constants c1, c2 > 0, then there is a time poly(T (n), s) quantum algorithm for SearchSMCSPǫ,s
where ǫ ≥ 2−c3n for every constant c3 > 0 and t = 0.
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Proof. The proof is similar to the proof for Theorem 5.16. We describe the reduction as follows:

Algorithm 5 Search-to-decision reduction for SMCSP.

Input: s ∈ N, ǫ ∈ (0, 1), access to copies of |ψ〉, and a constant c3 > 0.
1: Let |ψ0〉 = |ψ〉, ∆ = 2−2c3n, ǫ0 = ǫ, and ǫi = ǫ0 + i ·∆ for all i ∈ N.
2: Use the oracle SMCSP1−ǫ0,1−ǫ−∆ to binary-search s∗ ≤ s, the minimum circuit size of |ψ〉.
3: Set i = 1
4: while i < s∗ do
5: for all gates hi in G on all n+ t qubits do
6: if SMCSP1−ǫi,1−ǫi−∆(|ψi〉, s∗ − i) = Yes then
7: Set gi = hi.
8: Let |ψi〉 = g†i |ψi−1〉.
9: Set i = i+ 1.

10: Break.
11: return g1, . . . , gs∗ .

The analysis is similar to the proof of Theorem 5.16. Notice that given access to the quantum
state |ψ〉, we can uncompute the gates using a quantum computer. Therefore, the search-to-decision
reduction still holds.

Regarding SMCSP and SearchSMCSP which have the classical description of |ψ〉 as part of
the inputs (instead of copies |ψ〉), we can also obtain the search-to-decision reduction following the
same framework. The only difference is that the algorithm uncomputes the gates from the states by
matrix-vector multiplication instead of applying the inverse of the gates on the states. The runtime
of the matrix-vector multiplication is poly(2n). Note that, as we have mentioned in Remark 12,
SearchSMCSP in this case does not need to have the upper bound s in the inputs.

Corollary 5.19. There exists a search-to-decision reduction for SMCSP, where the search and the
decision problems are given the classical descriptions of the states in inputs.

It is worth noting that Algorithm 5 and Algorithm 4 do not directly work when considering
quantum circuits that are allowed to use ancilla qubits (i.e., t > 0). This follows from the fact
that, based on definitions of UMCSP and SMCSP, a quantum circuit C that implements the target
unitary or state can apply an arbitrary operator on the ancilla qubits, i.e., C†(U ⊗ I) 6= I. In this
case, we do not know the unitary of C or the state of C|0〉, and thus we cannot run Algorithm 5
and Algorithm 4.

5.1.2 Self-reduction for SMCSP

In this section, we show that SMCSP is approximately self-reducible. In other words, one can
approximate the circuit complexity of an n-qubit state by computing the circuit complexity of an
(n− 1)-qubit state.

Theorem 5.20. Let Aδ be an efficient algorithm for computing CC(|φ〉, δ) for any (n − 1)-qubit
state |φ〉. Let |ψ〉 be any n-qubit state. Given (n, s) in unary, ǫ ∈ (0, 1), and access to copies of
|ψ〉, CC(|ψ〉, ǫ) can be approximated efficiently using Aδ.

Recall that CC(·, ǫ) denotes the quantum circuit complexity of the minimum quantum circuit
that approximates the given states with precision ǫ.
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Proof. We first fix the gate set to be CNOT and all single-qubit rotations and prove the theorem
under this particular gate set. Then, we generalize the theorem to all gate sets by the Solovay-
Kitaev Theorem in Theorem 2.4.

Let |ψ〉 ∈ C2n be an arbitrary n-qubit quantum state. Without loss of generality, we can
represent |ψ〉 as

c0|0〉|ψ0〉+ c1|1〉|ψ1〉,
where c0, c1 ∈ C and |c0|2 + |c1|2 = 1. |1〉 and |0〉 are single-qubit states, and |ψ0〉 and |ψ1〉 are
states on n− 1 qubits and are not orthogonal in general. Our goal is show upper and lower bounds
for CC(|ψ〉, ǫ) from CC(|ψ0〉, δ) and CC(|ψ1〉, δ).

To prove the upper and the lower bounds, we first estimate |c0|2 and |c1|2 to precision ǫ/4
by using quantum amplitude estimation. We denote the estimated values as |c′0|2 and |c′1|2 and
consider the following two cases.

1. |c′0|2 or |c′1|2 < ǫ/2; and

2. |c′0|2, |c′1|2 ≥ ǫ/2.

Upper bound In case that |c′0|2 (or |c′1|2) is less than ǫ
2 , |c1|2 (or |c0|2) must be greater than

1− 3ǫ
4 , which implies that the square of the inner product of |ψ〉 and |1〉|ψ1〉 (or |0〉|ψ0〉 ) is at least

1− 3ǫ
4 . Therefore,

CC(|ψ〉, ǫ) ≤ CC(|ψ1〉, ǫ/4) or CC(|ψ0〉, ǫ/4).
In case that both |c′0|2 and |c′1|2 are at least ǫ

2 , Let C0 = C|ψ0〉,ǫ and C1 = C|ψ1〉,ǫ. Then, there
exists C∗ that approximates |ψ〉 with precision ǫ as follows:

|0n〉 R⊗In−1−−−−−→ c0|0〉|0n−1〉+ c1|1〉|0n−1〉
control−C1−−−−−−−→ c0|0〉|0n−1〉+ c1|1〉C1|0n−1〉
X⊗In−1−−−−−→ c0|1〉|0n−1〉+ c1|0〉C1|0n−1〉
control−C0−−−−−−−→ c0|1〉C0|0n−1〉+ c1|0〉C1|0n−1〉
X⊗In−1−−−−−→ c0|0〉C0|0n−1〉+ c1|1〉C1|0n−1〉

Here R is a single-qubit rotation gate that rotates |0〉 to c0|0〉+c1|1〉. Since our gate set includes
all single-qubit rotations, the cost of R is just 1. For control−C0 and control−C1, we can think of
it as every gate in Ci is controlled by an additional qubit, i.e., R becomes control − R and CNOT
becomes Toffoli gate. By the composition methods in [NC11], we can implement these control gates
with only constant multiplicative overhead. Hence, |C∗| ≤ k · (|C0|+ |C1|) + 3 for some constant k,
and we can conclude that

CC(|ψ〉, ǫ) ≤ k · (CC(|ψ0〉, ǫ) + CC(|ψ1〉, ǫ)) + 3.

Lower bound Let C be the minimum quantum circuit that approximates |ψ〉 with precision ǫ.
When |c′0|2 and |c′1|2 are both at least ǫ/2, |c0|2 and |c1|2 are at least ǫ/4 where |c′0|2 is the

estimated value of |c0|2. Intuitively, we can obtain |ψ0〉 or |ψ1〉 by parallelly applying C on O(1ǫ )-
many |0n〉 states and measuring the first qubits of all the outputs states in the computational basis.
By deferring all these measurements toward the end of the computation, we obtain

CC(|ψi〉, ǫ′) ≤ k∗(CC(|ψ〉, ǫ) + h)

48



for i = 0, 1, h = O(1), and k∗ = O(1/ǫ). Here ǫ ≤ ǫ′ ≤ (1 − ǫ
4)
k∗ + ǫ. The additional constant cost

h is from the overhead of deferring measurements.
When |c′0|2 or |c′0|2 is at least 1 − ǫ/2, the circuit for |ψ〉 is already a good approximation for

|ψ1〉 following the same reason for proving the upper bound in the same case. This implies that

CC(|ψi〉, 4ǫ) ≤ CC(|ψ〉, ǫ).

The reduction The algorithm is as follows:

1. Estimating |c0| and |c1| with precision ǫ/4.

2. Approximate CC(|ψ〉, ǫ) according to |c′0| and |c′1|.

• When |c′0|2 or |c′1|2 ≤ ǫ
2 , compute CC(|ψi〉, ǫ/4) and CC(|ψi〉, 4ǫ) for i = 0, 1. Then,

CC(|ψi〉, 4ǫ) ≤ CC(|ψ〉, ǫ) ≤ CC(|ψi〉, ǫ/4).

• When |c′0|2, |c′1|2 ≥ ǫ/2, compute CC(|ψi〉, ǫ′) and CC(|ψi〉, ǫ) for i = 0, 1. Then,

1

k∗
·max
i=0,1

(CC(|ψi〉, ǫ′))− h ≤ CC(|ψ〉, ǫ) ≤ k · (CC(|ψ0〉, ǫ) + CC(|ψ1〉, ǫ)) + 3

For the running time of the reduction, we can estimate |c0|2 and |c1|2 with precision ǫ/4 in
time poly(1/ǫ) using quantum amplitude estimation. In case that |c′0|2 (or |c′1|2) is less than ǫ

2 , we
only need to compute CC(|ψ1〉, ǫ/4) by having many enough copies of |ψ1〉, which can be efficiently
obtained by measuring |ψ〉. In case that both |c′0|2 and |c′1|2 are at least ǫ

2 , |c0| and |c1| must be
at least ǫ

4 . Then, we can still obtain sufficiently many copies of |ψ0〉 and |ψ1〉 in time poly(1ǫ ) to
compute CC(ψ0, ǫ) and CC(ψ1, ǫ).

Finally, we generalize the results above to arbitrary universal gate set by applying the Solovay-
Kitaev Theorem. This gives upper bounds multiplicative overhead polylog CC(|ψi〉,δ)

ǫ and lower

bounds multiplicative overhead polylog−1 CC(|ψi〉,δ)
ǫ , where the choices of i and δ depend on the

cases.

Remark 14. Theorem 5.20 also holds when the problem is given the classical description of the
quantum state. When considering the version with classical descriptions of states, the reduction
becomes even simpler since c0 and c1 can be easily computed from the input.

5.1.3 Reducing MQCSP to UMCSP

In the following, we present a reduction from MQCSP to UMCSP. We first introduce a unitary that
trivially encode a given Boolean function.

Definition 5.21 (Trivial unitary encoding of Boolean functions (Uf )). Let f : Zn → Zm. We
define Uf as a 2n+m × 2n+m unitary such that for all x ∈ Zn

Uf |x〉|0〉 = |x〉|f(x)〉

Obviously, given the truth table of a function f : {0, 1}n → {0, 1}m, one can compute Uf
in time poly(2n). Then, one might expect that the circuit complexity of f is equal to of Uf (in
Definition 5.21). However, this is not the case in general since there are many unitaries that can
compute f without the form of Uf . In the following lemma, we show that one can give both upper
and lower bounds for CC(f) by the quantities CC(Uf , ǫ) and CC(Uf , 2ǫ)
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Lemma 5.22.

CC(Uf , 2ǫ)

2
−m ≤ CC(f, ǫ) ≤ CC(Uf , ǫ)

Proof. It is easy to see that given tt(f), one can compute Uf in time 2O(n+m) which is polynomial
in |T (f)| = 2n+m.

We first consider the case where CC(f) and CC(Uf ) can be computed with probability 1. We
can prove the first inequality as follows:

|x〉|0〉 Cf−→e−iθx |f(x)〉|ψx〉 (14)
copy−−−→e−iθx |f(x)〉|f(x)〉|ψx〉
C†f−→|f(x)〉|x〉|0〉,

where e−iθ are the global coefficient that Cf might have for each θx. C
†
f (copy)Cf perfectly computes

Uf on all x ∈ {0, 1}n without any global coefficient. This implies that for all |ψ〉 ∈ C2n , C†f (copy)Cf
computes Uf |ψ〉 perfectly. The cost for applying this circuit is 2CC(f) + m. Therefore, we can
conclude that CC(Uf ) ≤ 2CC(f)+m. The second inequality is true since a circuit for implementing
Uf is also a circuit for f by definition. Note that the global phase in Eq. (14) can be absorbed into

the second register; however, we write it down here to help explain why C†f (copy)Cf implements
Uf not just only on the computational basis, but on all the states.

In the following, we consider the case where we allow Uf and f to be computed with probability
at least some thresholds.

|x〉|0〉 Cf,ǫ−−→
√
1− ǫ|f(x)〉|ψf(x)〉+

√
ǫ(

∑

y 6=f(x)
cy|y〉|φ′x,y〉)

Copy−−−→
√
1− ǫ|f(x)〉|f(x)〉|ψf(x)〉+

√
ǫ(

∑

y 6=f(x)
cy|y〉|y〉|φ′x,y〉)

= |f(x)〉(
√
1− ǫ|f(x)〉|ψf(x)〉+

√
ǫ(

∑

y 6=f(x)
cy|y〉|φ′x,y〉))

+
√
ǫ(

∑

y 6=f(x)
cy|y〉|y〉|φ′x,y〉 −

∑

y 6=f(x)
cy|f(x)〉|y〉|φ′x,y〉)

C†f,ǫ−−→ |f(x)〉|x〉|0〉 + |ψ′x〉. (15)

Since 〈f(x), x, 0|ψ′x〉 = −ǫ and 〈ψ′x|ψ′x〉 = 2ǫ, we have that

|ψ′x〉 = −ǫ|f(x), x, 0〉 +
√

2ǫ− ǫ2|ψ′′x〉.

Therefore, we can rewrite Eq. (15) as

(1− ǫ)|f(x), x, 0〉 +
√

2ǫ− ǫ2|ψ′′x〉,

which implies that the circuit C†f,ǫ(Copy)Cf,ǫ can compute Uf with probability (1 − ǫ)2 < 1 − 2ǫ,
i.e., CC(Uf , 2ǫ) ≤ 2CC(f, ǫ) +m. CC(f, ǫ) ≤ CC(Uf , ǫ) is also trivial by the definition.
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We describe an algorithm to approximate CC(f) given an oracle to UMCSP.

Algorithm 6 A reduction from MQCSP to UMCSP

Input: Given tt(f) for f : {0, 1}n → {0, 1}m
1: Construct Uf .
2: Use UMCSP oracle to compute s = CC(Uf ).
3: return ( s2 −m, s).

Theorem 5.23. MQCSP[s/2− 1, s] ≤ UMCSP.

Proof. By Lemma 5.22, CC(f, ǫ) is between
CC(Uf ,2ǫ)

2 − 1 and CC(Uf , ǫ) when f is a Boolean
function. To compute CC(Uf , ǫ), we can use the oracle for UMCSP1−ǫ,β, where β ≤ 1 − ǫ − 1

poly
.

For CC(Uf , 2ǫ), we use the oracle for UMCSP1−2ǫ,β′ , where β′ ≤ 1− 2ǫ− 1
poly

. This completes the
proof.

Remark 15. One may expect that we can use Algorithm 6 and NP-hardness result about multiMCSP
to prove NP-hardness of UMCSP. However, since the reduction for the multioutput MCSP gener-
ates functions with exponential-size output string, it make the first inequality in Lemma 5.22 fail.
Therefore, whether UMCSP is NP-hard or not is still open.

5.2 Applications of SMCSP and UMCSP

In this part, we give applications of UMCSP and SMCSP to other fields in computer science and
physics. For SMCSP, we focus on the version with multiple quantum states as inputs.

5.2.1 Applications of UMCSP

A question Aaronson raised in [Aar16] is whether there exists an efficient quantum process that
generates a family of unitaries that are indistinguishable from random unitaries given the full
description of the unitary. Obviously, if we can solve UMCSP efficiently, we can distinguish truly
random unitaries from unitaries generated from efficient quantum process.

Theorem 5.24. If UMCSP has efficient (quantum) algorithms, then there is no efficient quantum
process that generates a family of unitaries indistinguishable from random unitaries given the full
description of the unitary.

Besides, some results about MQCSP in Section 4 also hold for UMCSP by Theorem 5.23 and
Algorithm 6. In the following, we list some results that trivially holds.

Corollary 5.25. If UMCSP ∈ BQP, then there is no qOWF.

Corollary 5.26. If there exists a quantum-secure iO, then UMCSP ∈ BQP implies NP ⊆ coRQP.

Corollary 5.27. Assume UMCSP ∈ BQP. Then, there exists a BQP algorithm that, given the
truth-table of an n-variable Boolean function of quantum circuit complexity 2Ω(n), output 2Ω(n)

Boolean functions on m = Ω(n) variables each, such that all of the output functions have quantum
circuit complexity greater than 2m

(c+2)m for any c > 0.

Corollary 5.25, Corollary 5.26 and Corollary 5.27 hold since we use the MQCSP oracle as a
distinguisher to distinguish functions whose sizes have a large gap, i.e., functions with quantum
circuit complexity poly(n) from functions with quantum circuit complexity 2Ω(n). As the UMCSP
oracle can solve MQCSP[ s2 − 1, s], the existence of efficient algorithms for UMCSP also implies the
same results.
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Corollary 5.28. If UMCSP ∈ BQP, then BQE 6⊂ BQC[nk] for all constant k ∈ N.

Corollary 5.28 holds because for the gap version of MQCSP with a constant gap, it gives a
promise BQP-natural property, which is defined in [AGG+20]. Suppose we have an efficient quan-
tum algorithm for solving MQCSP[2ǫn/2−1, 2ǫn] for small constant ǫ, then it will reject any function
with quantum circuit complexity less than 2ǫn/2 and will accept another large subset of functions
with quantum circuit complexity larger than 2ǫn. Then, we can use the technique in [AGG+20]
to construct the hard language L from the quantum PRG (Theorem 4.17) and promise quantum
natural property. The remaining proof of Theorem 4.15 will work after this adaptation.

5.2.2 Pseudorandom states

An efficient algorithm for SMCSP gives an efficient distinguisher for separating states with large
circuit complexity from states with small circuit complexity given many copies of the state. Obvi-
ously, this gives us a way to distinguish random states from states that are generated from some
efficient process.

Definition 5.29 (Pseudorandom states (PRS) ([JLS18])). Let κ be the security parameter. Let
K be the key space and H be the state space both parameterized by κ. A family of quantum states
{|ψk〉}k∈K ⊂ H is pseudorandom if the following properties hold.

1. Efficiency: There is a quantum polynomial-time algorithm G that given k ∈ K, can generate
|ψk〉.

2. Indistinguishability: For all quantum polynomial-time algorithm A and any m = poly(κ)

|Pr
k
[A(|ψk〉) = 1]− Pr

|ψ〉←µ
[A(|ψ〉) = 1]| ≤ negl(κ),

where µ is the Haar measure on H.

Theorem 5.30. If SMCSP ∈ BQP, then there is no PRS and qOWF.

Proof. Let |ψ〉 be the state and A be the algorithm to distinguish whether |ψ〉 is a truely random
state or from a particular efficient algorithm. In the definition of PRS, A knows the algorithm
for constructing the PRS (but it does not know the key.) Therefore, A also knows the circuit
complexity s for generating the PRS |ψ〉. Suppose |ψ〉 is an n-qubit PRS generated by a quantum
circuit with size s, by solving SMCSP with size parameter s and poly(s) copies of |ψ〉, the adversary
can distinguish |ψ〉 from a Haar random state with high probability since a Haar random state has
complexity exponential in n.

Finally, by [JLS18], there exist PRS assuming the existence of qOWF. Since we can break any
PRS scheme by solving SMCSP, we can also invert any qOWF by solving SMCSP.

5.2.3 Estimating the wormhole volume

Integrating general relativity and quantum mechanics into a comprehensive theorem for quantum
gravity is one of the most challenging physics problems. The AdS/CFT correspondence plays
an important role in this line of research. The AdS/CFT correspondence conjectures the duality
between the Anti-de Sitter space (i.e., the bulk) and a conformal field theory (i.e., the boundary).
In particular, it conjectures the dictionary maps from wormholes and operators in the bulk to
quantum states and operators on the boundary. One fascinating puzzle in Ads/CFT correspondence
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is about the volume of the wormhole. The volume of the wormhole grows steadily with time;
what is the quantity of the corresponding quantum state on the boundary that has this feature?
Susskind proposed the Complexity=Volume Conjecture [Sus16]. It states that the wormhole volume
equals the quantum circuit complexity of the corresponding quantum state times some constant
c. In the following, we give a brief description of the Complexity=Volume Conjecture and related
backgrounds. One can see [Sus16, BFV20] for detailed discussions.

AdS/CFT Correspondence AdS/CFT correspondence conjectures a dual map Φ between
wormholes (AdS side) and quantum systems (CFT side). The setting we consider here is worm-
holes with two-sided blackholes. Under this setting, the CFT side is divided into left and right
systems denoted by Hamiltonians HL and HR, where the left and right CFT systems are on n
qubits (compatible with the entropy of the wormhole 2n). We denote the whole system (with both
left and right systems) as H = HL +HR. An early model of AdS/CFT goes under the ER=EPR
slogan: the wormhole (Einstein-Rosen Bridge) is dual to maximally entangled (EPR) pair. The
corresponding state is usually called the thermal field double (TFD) state |TFD〉 [MS13]

|TFD〉 = 1√
2n

∑

i

e−Ei/β|i〉L|i〉R, (16)

where |i〉L and |i〉R are energy eigenstates of HL and HR.
The quantum state after time-t evolution is

|TFD(t)〉 = e−iHt|TFD〉.

Recall the dual map Φ between a wormhole (AdS side) and a quantum system (CFT side), one can
represent the wormhole after time t as Φ(e−iHt|TFD〉) (and view Φ(|TFD〉) as the wormhole at
time 0).

The statement of Complexity=Volume Conjecture can be stated as follows:

Conjecture 1 (Complexity=Volume Conjecture [Sus16]). Consider a wormhole and its corre-
sponding CFT system H, for some suitable ǫ, c, and 0 ≤ t ≤ O(2n),

CCǫ(|TFD〉, |TFD(t)〉) = c · V olume(Φ(e−iHt|TFD〉)),

where CCǫ(|TFD〉, |TFD(t)〉) is the circuit complexity for constructing |TFD(t)〉 from |TFD〉 with
at most ǫ error.

The SMCSP oracle gives a way to identify the quantum circuit complexity of the given state.
This implies that if the dictionary map between the wormhole and the quantum state is efficient,
one can estimate the wormhole volume in two ways. 1) Apply the dictionary map to transfer the
wormhole to the corresponding state and then apply the SMCSP oracle for the circuit complexity,
which gives the wormhole volume. 2) As it is hard to imagine mapping wormholes to states, one
can view the SMCSP oracle as a POVM and then uses the dictionary map to transfer the POVM
to the corresponding operators in the bulk to measure the volume. This gives the following lemma.

Theorem 5.31. Assuming the Volume=Complexity Conjecture, if the dictionary map can be com-
puted in quantum polynomial time and SMCSP ∈ BQP, then one can estimate the wormhole volume
in quantum polynomial time when the volume is at most polynomially large.
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Here, we require the volume is at most polynomially large. This follows from the fact that we
need a upper bound polynomial in n for doing binary search to find the circuit complexity with an
efficient SMCSP algorithm. If the upper bound is 2O(n), the running time of the SMCSP algorithm
can be poly(2n). Therefore a quantum polynomial-time algorithm for SMCSP in this case would
not imply a quantum polynomial-time algorithm for estimating the wormhole’s volume.

Besides, recall that the wormhole is initially described by |TFD〉. So, we also need to modify
the definition of SMCSP to allow such an initial state.

Bouland et al. in [BFV20] used this correspondence in a reverse way. In particular, they showed
that if the dictionary map and simulating the state in the bulk are efficient (i.e., the quantum
Extended Church-Turing thesis holds for quantum gravity), then one can efficiently distinguish
certain PRS from Haar random state by mapping the state to the wormhole in the bulk and do
the simulation in the bulk to estimate the volume. Following this idea, we can also conclude that
if there is a quantum polynomial time algorithm for estimating the wormhole’s volume, then one
can compute the circuit complexity of the corresponding quantum state efficiently assuming the
the Volume=Complexity Conjecture and that the dictionary map is efficient25.

5.2.4 Succinct state tomography

In the following, we show that solving SMCSP can help to have a succinct answer to state to-
mography for states which are generated from a polynomial-size circuit without any measurement.

Definition 5.32 (Succinct state tomography). Let |ψ〉 be an n-qubit quantum state that is generated
from a quantum circuit C of size s without using measurement and ancilla qubits. Given poly(n)
copies of |ψ〉 and an upper bound s′ where s ≤ s′ ≤ poly(n), the problem is to output a succinct
description (e.g., C) of |ψ〉.

Theorem 5.33. Succinct state tomography in Def. 5.32 reduces to SMCSP.

Proof. Obviously, succinct state tomography reduces to the search version of SMCSP. By the
search-to-decision reduction in Theorem 5.18, we can solve succinct state tomography by solving
SMCSP.
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A Proof for the hardness of MQCSP

Theorem 3.9. MQCSP ∈ QCMA.

Proof. The certificate is still the classical description of a quantum circuit C that has size at most
s and operates on at most n+ t qubits. The verifier first implements C. Then, the verifier repeats
evaluating C|x, 0t〉 and measuring the first qubit ℓ = poly(2n) times. We denote the measurement
outcomes of the ℓ trials as binary random variables X1, . . . ,Xℓ which are all independent. Finally,
the verifier checks if for all x ∈ {0, 1}n, there are at least α+β

2 of the outcomes are consistent with
f(x).

For the yes instance, we have the promise that ‖(〈f(x)| ⊗ In+t−1)C|x, 0t〉‖2 ≥ α for all x ∈
{0, 1}n. Let X =

∑n
i=1Xi. By using the second statement of Chernoff inequality, we have that

Pr[X ≤ (α+β)ℓ
2 ] ≤ exp

(
− (α+β)2ℓ

8α

)
. By setting ℓ = poly(2n), we obtain Pr[X ≤ (α+β)ℓ

2 ] ≤ e− poly(2n).

This implies that Pr[X ≥ (α+β)ℓ
2 for all x ∈ {0, 1}n] ≥ 1 − e− poly(2n). For the no instance, we can

do the similar analysis using Chernoff bound and show that there exists x ∈ {0, 1}n such that

Pr[X ≥ (α+β)ℓ
2 ] is negligible.
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Theorem 3.13. SZK ⊆ BPPMQCSP

Proof of Theorem 3.13. Let (n,C0, C1) be a PIID instance, where C0, C1 : {0, 1}m → {0, 1}m′
of size

nk. For b = 0, 1 and x ∈ {0, 1}m, we let fb(x) = Cb(x). Then, similar to the proof for Theorem 4.8,
the idea is using fb to construct a pseudorandom generator Ĝ and break Ĝ by applying the MQCSP
oracle. Specifically, the algorithm is as follows:

Algorithm 7 A PPT algorithm A for PIID with MQCSP oracle

Input: C0, C1 of size nk and m-qubit input.
1: Pick x uniformly randomly from {0, 1}m.
2: Compute f0(x).
3: Use f0(x) to generate a pseudorandom string Gf0(x)(r) as in Lemma 4.6.

4: Use Gf0(x)(r) to generate the truth table tt(g) = Ĝ(r) as in Lemma 4.7.

5: Apply the inverting algorithm AMQCSP
inv with access to function f1 in Theorem 4.8 to invert f1

for x′. Note that the function used in the inverting algorithm is f1 instead of f0.
6: return “Yes” if C0(x) = C1(x

′); “No” if C0(x) 6= C1(x
′).

In Algorithm 7, we do not explicitly describe the inverting algorithms Ainv. However, based on
Theorem 4.8, such algorithms must exist.

Then, when (C0, C1) is a no instance, i.e., Prx∈{0,1}m [∃y ∈ Im(C0) such that C1(x) = y] ≤ 1
2n ,

the probability that there exists x′ such that C1(x
′) = C0(x) over x is at most 1/2n. In this case,

Algorithm 7 outputs “Yes” with probability at most 1/2n.
When (C0, C1) is a yes instance, C0 and C1 has statistical distance 1/2

n over x ∈ {0, 1}m. Then,
the success probability of the algorithm A in Algorithm 7 is

Pr[A(C0, C1) = “Yes”] = Pr
x
[f1(AMQCSP

inv (f1, f0(x))) = f0(x)]

=
∑

y∈{0,1}m′

Pr
x
[f0(x) = y] Pr

x
[f1(AMQCSP

inv (f1, y)) = y|y]

Note that if we compute f1(x) (instead of f0(x)) at step 2 in Algorithm 7, then the success proba-
bility of A is

Pr
x
[f1(AMQCSP

inv (f1, f1(x))) = f1(x)] =
∑

y∈{0,1}m′

Pr
x
[f1(x) = y] Pr

x
[f1(AMQCSP

inv (f1, y)) = y|f1(x) = y]

≥ 1/ poly(n).

The last inequality follows from Theorem 4.8. The MQCSP oracle can break Ĝ due to the fact that
the construction of Ĝ is a small classical circuit and thus also a small quantum circuit. Therefore,
we can use the MQCSP oracle to distinguish it from a truely random string.

The difference between these two probabilities above is

Pr
x
[f1(AMQCSP

inv (f1, f0(x))) = f0(x)]− Pr
x
[f1(AMQCSP

inv (f1, f1(x))) = f1(x)]

=
∑

y

Pr
x
[f1(AMQCSP

inv (f1, y)) = y|f1(x) = y](Pr
x
[f0(x) = y]− Pr

x
[f1(x) = y])

≤
∑

y

(Pr
x
[f0(x) = y]− Pr

x
[f1(x) = y]) ≤ 1

2n
.
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The last inequality follows from the definition of statistical distance. Therefore, Algorithm 7 suc-
ceeds with probability at least 1/ poly(n) − 2−n for a “Yes” instance. Finally, we can amplify the
success probability for the yes instance to 2/3 by repetition. Thus, PIID ∈ BPPMQCSP.

B Learning Theory

In this section, we provide the details of Section 4.2 on the connection between learning theory and
MQCSP.

B.1 PAC learning

Let us recall the definition of PAC learning.

Definition 4.11 (PAC learning over the uniform distribution with membership queries). Let C
be a circuit class and let ǫ, δ > 0. We say an algorithm (ǫ, δ)-PAC-learns C over the uniform
distribution with membership queries if the following hold. For every n ∈ N and n-variate f ∈ C,
given membership query access to f , the algorithm outputs a circuits C such that with probability
at least 1− δ over its internal randomness, we have Prx∈{0,1}n [f(x) 6= C(x)] < ǫ. The running time
of the learning algorithm is measured as a function of n, 1/ǫ, 1/δ and, size(f).

The following theorem shows that efficient PAC-learning for BQP/poly is equivalent to efficient
algorithms for MQCSP. Here, BQP/poly is defined as

⋃
s≤poly(n) BQC(s)

Theorem 4.12 (Equivalence of efficient PAC learning for BQP/poly and efficient randomized
algorithm for MQCSP).

• If MQCSP ∈ BPP, then there is a randomized algorithm that (1/ poly(n), δ)-PAC learns
f ∈ BQP/poly under the uniform distribution with membership queries for every δ > 0.
Specifically, the algorithm runs in quasi-polynomial time.

• If there is a randomized algorithm that (1/ poly(n), δ)-PAC learns f ∈ BQP/poly under the
uniform distribution with membership queries for some δ > 0 in 2O(n) time, then we have
MQCSP[poly(n), ω(poly(n)), poly(n), τ ] ∈ BQP and MQCSP[poly(n), ω(poly(n)), O(n), τ ] ∈
BPP for every τ > 0.

Proof.

• The key ingredient to show MQCSP ∈ BPP implies efficient PAC learning for BQP/poly is the
“learning from a natural property” framework by [CIKK16]. First, note that BQP/poly is a
circuit class that contains P/poly and hence can implement both the Nisan Wigderson genera-
tor and the Direct Product + Goldreich-Levin amplification. Second, MQCSP ∈ BPP implies
there is a BPP-natural property against BQP/poly. Finally, by Theorem 5.1 of [CIKK16],
there is a randomized algorithm that (1/ poly(n), δ)-PAC learns f ∈ BQP/poly under the
uniform distribution with membership queries for every δ > 0 in quasipolynomial time.

• Let ALG be a randomized algorithm that (1/ poly(n), δ)-PAC learns f ∈ BQP/poly under
the uniform distribution with membership queries for some δ > 0. We design the following
randomized algorithm for MQCSP[poly(n), ω(poly(n)), t(n), τ ] where t(n) is the number of
ancilla bits that will be determined later. For every τ > 0, let ǫ = τ/2.
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Algorithm 8 A quantum algorithm for MQCSP[poly(n), ω(poly(n)), t(n), τ ]

Input: The truth table T of a n-variate Boolean function f .
1: for i = 1, . . . , 10⌈log 1/δ⌉ do
2: Run ALG and supply the membership query with the truth table T . Let Ci be the output

of ALG.
3: Uniformly and independently sample x1, . . . , xℓ ∈ {0, 1}n where ℓ =

⌈
100 log(1/δ)/ǫ2

⌉
.

4: if |{j ∈ [ℓ] : Ci(xj) 6= f(xj)}| < ǫ
10 · ℓ then

5: Break and output “Yes”.

6: Output “No”.

Let us analyze the correctness of the above algorithm. First, if f is an Yes instance, i.e., there
exists a polynomial size quantum circuit C that computes f , then due to the correctness
of ALG, PrCi [|{x ∈ {0, 1}n : Ci(x) 6= f(x)}| < 2n/ poly(n)] > δ for each i. Namely, with
probability at least 9/10, there exists an i ∈ [10⌈log 1/δ⌉] such that |{x ∈ {0, 1}n : Ci(x) 6=
f(x)}| < 2n/ poly(n). For this specific i, by Chernoff bound, with probability at least 9/10
the algorithm will go to line 5 and output “Yes”. That is, the above algorithm accepts an
Yes instance with probability at least 2/3 as desired.

Next, if f is a No instance, i.e., for every polynomial size quantum circuit C, we have |{x ∈
{0, 1}n : C(x) 6= f(x)}| ≥ τ · 2n > ǫ · 2n. For each i ∈ [10⌈log 1/δ⌉], Ci is a polynomial
size circuit and hence by Chernoff bound, the algorithm goes to line 5 with probability at
most 2−Ω(ǫ2ℓ). Due to the choice of ℓ, we know that the algorithm will output “No” with
probability at least 2/3. That is, the above algorithm rejects an No instance with probability
at least 2/3 as desired.

Finally, the running time of the algorithm is poly(Time(ALG), 1/δ, 1/ǫ, n,m) where the depen-
dency on poly(n,m) is for calculating Ci(xj) using the quantumness. Note that this running
time is poly(2n) and hence we conclude that MQCSP[poly(n), ω(poly(n)), t(n)] ∈ BQP.

When the number of ancilla bits is O(n), note that we can calculate Ci(xj) in poly(2n) time
and hence MQCSP[poly(n), ω(poly(n)), t(n)] ∈ BPP

B.2 Quantum learning

As it could be the case that MQCSP might have non-trivial quantum algorithm, it is also of interest
to study the connection to quantum learning.

Definition 4.13 (Quantum learning). Let C be a circuit class of boolean functions and let ǫ, δ > 0.
We say a quantum algorithm (ǫ, δ)-learns C if the following hold. For every n ∈ N and n-variate
f ∈ C, given quantum oracle access to f , the algorithm outputs a polynomial-size quantum circuit
U such that with probability at least 1− δ, we have Ex∈{0,1}n [|(〈f(x)| ⊗ I)U |x, 0m〉|2] > 1− ǫ. The
running time of the learning algorithm is measured as a function of n, 1/ǫ, 1/δ and, size(f).

It turns out that efficient quantum learning for a circuit class C is equivalent to efficient quantum
algorithm for its corresponding MCSP, i.e., C-MCSP.

Theorem 4.14 (Equivalence of efficient quantum learning and efficient quantum algorithm for
C-MCSP). Let C be a circuit class.

62



• If C-MCSP ∈ BQP, then there exists a quantum algorithm that (1/ poly(n), δ)-learns C for
every δ > 0. Specifically, the algorithm runs in polynomial time.

• If there exists a quantum algorithm that (ǫ, δ)-learns C in time 2O(n) for some constants
ǫ, δ ∈ (0, 1/2), then we have C-MCSP[poly(n), ω(poly(n)), τ ] ∈ BQP for every τ > 0.

Proof.

• The key idea is to quantize the “learning from a natural property” framework [CIKK16]. Let
us start with three important lemmas from [AGG+20].

Lemma B.1 (Corollary of Lemma 4.3 and Lemma 4.4 in [AGG+20]). Let L, sD : N→ N be
constructive functions and γ ∈ (0, 1) with 1 ≤ L(n) ≤ 2n for every n ∈ N. There exists an
algorithm ANW on input 1n and 1L outputs code(CNW ) for a quantum circuit CNW in time
S(n) = poly(n,L(n), sD(n)) with the following properties. In the following, we abbreviate
L = L(n) and sD = sD(n).

There exists a constant c > 0 and an oracle function NWO : {0, 1}m → {h : {0, 1}log L →
{0, 1}} where m = cn2 and size(NWO(z)) = poly(n, size(O)) for all z ∈ {0, 1}m. Let g :
{0, 1}n → {0, 1}. Suppose there is a quantum circuit D of size at most sD with

∣∣∣∣ Pr
z∈{0,1}m,D

[D(NW g(z)) = 1]− Pr
y∈{0,1}L

[D(y) = 1]

∣∣∣∣ ≥ γ .

Then CNW on input code(D) and with oracle access to g, outputs code(C) for a quantum
circuit C of size O(L2 · sD). With probability Ω(γ/L2) over the output measurement of CNW ,
we have

Pr
x∈{0,1}n,C

[C(x) = g(x)] ≥ 1

2
+

γ

2L
.

Lemma B.2 (Lemma 4.5 in [AGG+20]). Let k, s : N → N be constructive functions and
γ > 0. There exists an algorithm AGL such that on input 1n and 1k(n) outputs a circuit
CGL of size poly(n, k(n), s(n)) in time poly(n, k(n), s(n)) with the following properties. In the
following, we abbreviate k = k(n) and s = s(n).

Let f : {0, 1}kn → {0, 1}k. Suppose there is a quantum circuit C of size at most s satisfying

E
x∈{0,1}kn

E
r∈{0,1}k

[|(〈f(x) · r| ⊗ I)C|x, r, 0m〉|2] ≥ 1

2
+ γ .

Then CGL on input code(C) outputs code(GO) for a quantum oracle circuit GO of size O(kn)
such that

E
x,GC

[|(〈f(x)| ⊗ I)GC |x, 0k+m+1〉|2] ≥ γ3

2
.

Lemma B.3 (Theorem in 4.28 [AGG+20]). Let k, s : N → N be constructive functions
and ǫ, δ ∈ (0, 1). There exists a constant c ≥ 1 and an algorithm AIJKW such that on
input 1n and 1k(n) outputs a circuit CIJKW of size poly(n, k(n), s(n), log 1/δ, 1/ǫ) in time
poly(n, k(n), s(n), log 1/δ, 1/ǫ) with the following properties. In the following, we abbreviate
k = k(n) and s = s(n).

Let g : {0, 1}n → {0, 1}. Suppose k is an even integer with

k ≥ c · 1
δ

[
log

1

δ
+ log

1

ǫ

]
,
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and suppose G is a quantum circuit of size at most s defined over Sn,k := {S ⊂ {0, 1}n : |S| =
k} with k output bits with

E
B∼Sn,k,G

[G(B) = gk(B)] ≥ ǫ .

Then CIJKW on input code(G) outputs code(C) for a quantum circuit C of size poly(n, k, s, log(1/δ), 1/ǫ)
such that

E
x∼{0,1}n,C

[C(x) = g(x)] ≥ 1− δ .

Now, we are ready to describe our quantum learning algorithm for C.

Algorithm 9 A quantum learning algorithm for C

Input: 1n, quantum oracle access to n-variate f ∈ C, and parameters δ ∈ (0, 1).
1: Let L = poly(n), ǫ = 1/ poly(n), and k =

⌈
c · 1δ (log 1

δ + log 1
ǫ )
⌉
.

2: CNW ← ANW (1kn+k); CGL ← AGL(1
n, 1k); CIJKW ← AIJKW (1n, 1k).

3: Let code(D) be the description of a quantum circuit solving C-MCSP with truth table size L.
4: Use the oracle access to f to build an oracle access to NW g where g : {0, 1}kn×{0, 1}k → {0, 1}

with g(x1, . . . , xk, r1, . . . , rk) = ⊕ki=1(ri · f(xi)) for every x1, . . . , xk ∈ {0, 1}n and r1, . . . , rk ∈
{0, 1}.

5: code(C̃)← CgNW (code(D))
6: code(GO)← CGL(code(C̃)).

7: C ← CIJKW (code(GC̃)).
8: Output C.

Let us analyze the correctness and running time of Algorithm 9 simultaneously. Let f :
{0, 1}n → {0, 1} ∈ C be the function we want to learn. Let g : {0, 1}kn × {0, 1}k → {0, 1} be
g(x1, . . . , xk, r1, . . . , rk) = ⊕ki=1(ri ·f(xi)) for every x1, . . . , xk ∈ {0, 1}n and r1, . . . , rk ∈ {0, 1}.
Observe that if size(f) = poly(n), then size(NW g) = poly(n) = poly(logL).

Next, if C-MCSP ∈ BQP, then there exists a quantum algorithm D running in time poly(L)
with ∣∣∣∣ Pr

z∈{0,1}m,D
[D(NW g(z)) = 1]− Pr

y∈{0,1}L
[D(y) = 1]

∣∣∣∣ ≥
1

3
.

By Lemma B.1, CgNW (code(D)) outputs the description of a quantum circuit C of size O(L2 ·
size(D)) = poly(n) in time poly(L, size(D)) such that with probability Ω(1/L2),

Pr
x1,...,xr∈{0,1}n
r1,...,rk∈{0,1},C

[C(x1, . . . , xk, r1, . . . , rk) = g(x1, . . . , xk, r1, . . . , rk)] ≥
1

2
+

1

6L
.

Next, by Lemma B.2, CGL(code(C)) outputs the description of an oracle quantum circuit GO

of size O(kn · size(C)) = poly(n) in time poly(n, k) such that

E
x1,...,xk,GC

[
|(〈fk(x1, . . . , xk)| ⊗ I)GC |x, 0k+m+1〉|2

]
≥ Ω

(
1

L3

)
=

1

poly(n)
.

Finally, by Lemma B.3, CIKJW (code(G)) outputs the description of a quantum circuit C of
size poly(n, k, size(G), log(1/δ), 1/ǫ) = poly(n, 1/δ, 1/ǫ) = poly(n) in time poly(n) such that

E
x∼{0,1}n,C

[C(x) = g(x)] ≥ 1− δ .

We conclude that there is a polynomial time (1/3, δ)-quantum learning algorithm for C.
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• Let ALG be a (ǫ, δ)-quantum learning algorithm for C for some ǫ, δ ∈ (0, 1/2). We design the
following quantum algorithm for C-MCSP[poly(n), ω(poly(n)), τ ]. For every τ > 0, let ǫ = τ/4
and ǫ′ = τ/2.

Algorithm 10 A quantum algorithm for C-MCSP[poly(n), ω(poly(n)), τ ]

Input: The truth table T of a n-variate Boolean function f .
1: for i = 1, . . . , 10⌈log 1/δ⌉ do
2: Run ALG and supply quantum oracle access to f using the truth table T . Let Ci be the

output of ALG.
3: Uniformly and independently sample x1, . . . , xℓ ∈ {0, 1}n where ℓ =

⌈
100 log(1/δ)/ǫ2

⌉
.

4: if
∑

j∈[ℓ] |(〈f(xj)| ⊗ I)U |x, 0m〉|2 ≥ (1− ǫ+ǫ′

2 ) · ℓ then
5: Break and output “Yes”.

6: Output “No”.

Let us analyze the correctness of the above algorithm. First, if f is an Yes instance, i.e., there
exists a polynomial size quantum circuit C that computes f , then due to the correctness of
ALG, PrCi [Ex∈{0,1}n [|(〈f(x)|⊗ I)U |x, 0m〉|2] > 1− ǫ] > δ for each i. Namely, with probability
at least 9/10, there exists an i ∈ [10⌈log 1/δ⌉] such that Ex∈{0,1}n [|{x ∈ {0, 1}n : |(〈f(x)| ⊗
I)U |x, 0m〉|2}|] ≥ 1− ǫ. For this specific i, by Chernoff bound, with probability at least 9/10
the algorithm will go to line 5 and output “Yes”. That is, the above algorithm accepts an
Yes instance with probability at least 2/3 as desired.

Next, if f is an No instance, i.e., for every polynomial size quantum circuit C, at least τ
fraction of x ∈ {0, 1}n has |(〈f(x)| ⊗ I)U |x, 0m〉|2 ≤ 1/2. Hence, by the choice of ǫ′, we have
Ex∈{0,1}n [|(〈f(x)| ⊗ I)U |x, 0m〉|2] < (1 − ǫ′). For each i ∈ [10⌈log 1/δ⌉], Ci is a polynomial
size circuit and hence by Chernoff bound, the algorithm goes to line 5 with probability at
most 2−Ω(ǫ2m). Due to the choice of m, we know that the algorithm will output “No” with
probability at least 2/3. That is, the above algorithm rejects an No instance with probability
at least 2/3 as desired.

Finally, the running time of the algorithm is poly(Time(ALG), 1/δ, 1/ǫ, n,m) where the de-
pendency on poly(n,m) is for calculating Ci(xj) using the quantumness. Note that this
running time is polynomial in the size of the truth table and hence we conclude that C-
MQCSP[poly(n), ω(poly(n)), τ ] ∈ BQP.

C Proofs in Section 4.3

In this section, we provide some missing proofs in Section 4.3.

C.1 Proof for Theorem 4.19

The goal of this section is to prove Theorem 4.19.

Theorem 4.19. If MQCSP ∈ BQP, then BPEQCMA contains a function with maximum quantum
circuit complexity. Furthermore, BQPQCMA 6⊂ BQC[nk] for any constant k > 0.

Proof. We follow the proof of a classical result in [KC00, Theorem 10].
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We first determine the maximum quantum circuit complexity for all Boolean functions using
an MQCSP oracle. For each s = 2O(n), 2O(n) − 1, · · · , decide if there exists a function fs such that
qCC(fs) ≥ s. The first s we meet such that fs exists is the maximum quantum circuit complexity.
It can be achieved by a QCMA algorithm with input 1s, by the assumption MQCSP ∈ BQP. Hence,
in classical 2O(n) time with query access to a QCMA oracle, we can find the maximum quantum
circuit complexity s⋆ with high probability.

Then, we can construct the truth table by guessing bit-by-bit. We start from the empty truth
table T = ∅. We first try to choose the first bit T1 = 0 and decide if T can be extended to a
truth table with quantum circuit complexity s⋆, which can be done by a QCMA oracle query. If the
answer is “No”, we set T1 = 1. Then, we iterate over all bits of T . It is easy to see that in O(2n)
time we can construct T with high probability.

Therefore, we get a BPEQCMA algorithm for the maximum quantum circuit complexity problem,
which immediately gives a BPEQCMA algorithm for computing such hard functions. By Claim F.1,
this function has quantum circuit complexity at least Ω(2n/n). Hence, by a padding argument for
quantum circuits, we obtain a polynomial lower bound for BQPQCMA.

C.2 Proof of Quantum Antichecker Lemma

The goal of this section is to prove Lemma 4.23.

Lemma 4.23 (Antichecker lemma for quantum circuits). Assume QCMA ⊆ BQC[poly]. Then for

any λ ∈ (0, 1) there are circuits {C2n}∞n=1 of size 2n+O(nλ) which given the truth table tt(f) ∈
{0, 1}2n , outputs 2O(nλ) n-bit strings y1, . . . , y2O(nλ) together with bits f(y1), . . . , f(y2O(nλ)) forming

a set of anticheckers for f , i.e. if f is hard for quantum circuits of size 2n
λ
then every quantum

circuit of size 2n
λ
/2n fails to compute f on one of the inputs y1, . . . , y2O(nλ) .

Proof. The proof follows [CHO+20].

Let λ ∈ (0, 1) and f be a Boolean function with n input bits that is hard for 2n
λ
-size quantum

circuits.
For i ≥ 0 and s ∈ [0, 1], define the predicate:

Pf (y1, . . . , yi)[s] = 1 ⇐⇒
≤ s fraction of all quantum circuits of size 2n

λ
/2n compute f correctly on y1, . . . , yi.

We also define the function:

Rf (y1, . . . , yi) := #
{
quantum circuits of size 2n

λ
/2n compute f correctly on y1, . . . , yi

}
.

Then, we construct y1, . . . , y2O(nλ) iteratively. It is easy to see that Pf (·)[1] = 1. Suppose we

already have y1, . . . , yi−1 such that Pf (y1, . . . , yi−1)[(1 − 1/4n)i−1] = 1 holds. We want to find yi
such that Pf (y1, . . . , yi)[(1− 1/4n)i] = 1. We will construct a formula F of size 2O(nλ) such that if
Rf (y1, . . . , yi−1) ≥ 2n2, then

Pf (y1, . . . , yi−1)
[
(1− 1/4n)i−1

]
= 1

⇒ ∃yi F (y1, . . . , yi, f(y1), . . . , f(yi)) = 1

⇒ Pf (y1, . . . , yi)
[
(1 − 1/4n)i

]
= 1.
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We first show how to find yi given this formula F . The idea is to use Valiant-Vazirani Isolation
Lemma. Let r be uniformly chosen from {2, n+1} and let h : {0, 1}n → {0, 1}r be uniformly chosen
from a pairwise independent hash family Hn,r. Consider the following predicate

F r,h(y1, . . . , yi−1, z, f(y1), . . . , f(yi−1), f(z)) :=

F (y1, . . . , yi−1, z, f(y1), . . . , f(yi−1), f(z)) ∧ h(z) = 0r.

The quantum circuit size of F r,h is 2O(nλ).
By the Isolation Lemma, for fixed y1, . . . , yi−1, with probability at least 1/8n, there is a unique

z such that

F r,h(y1, . . . , yi−1, z, f(y1), . . . , f(yi−1), f(z)) = 1.

If we sample 2O(nλ) many tuples of (r, h), then the probability that none of those (r, h) will lead

to unique solution of F r,h is less than 2−2
O(nλ)/8n ≤ 2−2

O(nλ)
by choosing proper constant. On the

other hand, the total number of all possible y1, . . . , yi−1, f(y1), . . . , f(yi−1) is at most 22
O(nλ)

. It

means that there exists a setR of 2O(nλ) tuples of (r, h) such that for any y1, . . . , yi−1, f(y1), . . . , f(yi−1),
there exists an (r, h) ∈ R that makes F r,h have unique solution. Note that R can be hard-wired
into the circuit Cn. Hence, the j-th bit of the antichecker yi can be computed by the following
formula of size 2n+O(nλ):

∨

z∈{0,1}n
zj ∧ F r,h(y1, . . . , yi−1, z, f(y1), . . . , f(yi−1), f(z)). (17)

Then, we need to select an (r, h) from R that gives the unique yi. This task is in QCMA, and by

assumption, QCMA ⊆ BQC[poly]. So, we just need to apply a 2O(nλ)-size quantum circuit. Once
we have yi, f(yi) can be obtained from tt(f) via an Address function, which can be implemented
by a circuit of size 2n+O(logn).

By repeating this process, we can get y1, . . . , y2O(nλ) and f(y1), . . . , f(y2O(nλ)) by a 2n+O(nλ)

circuit. Then, we need to check Rf (y1, . . . , y2O(nλ)) ≥ 2n2. Deciding whether Rf (y1, . . . , yi) ≥ 2n2

is in QCMA ⊆ BQC[poly] with input (y1, . . . , yi, f(y1), . . . , f(yi), 1
2O(nλ)

) since the witness is 2n2

quantum circuits each of size 2n
λ
/2n, which can be represented by a 2O(nλ) binary string. The

witness can be checked by simulating the quantum circuits. Therefore, there exists a 2O(nλ) quantum
circuit for it. When Rf (y1, . . . , yi) ≤ 2n2, the 2n2 circuits of size 2n

λ
/2n can be generated by an

QCMAcoQCMA algorithm. And since QCMA ⊆ BQC[poly], by uncomputing the garbage, we can

show that QCMAcoQCMA ⊆ BQC[poly] and this step can be done by a 2O(nλ) quantum circuit. For
each circuit, by exhaustively searching, we can find an n-bit string that witness the error. The
circuit size of this step is 2n+O(nλ).

In order to construct F , we use a result in [OPS19] (Lemma 23) showing that if Pf (y1, . . . , yi−1)[(1−
1/4n)i−1] = 1 and Rf (y1, . . . , yi−1) ≥ 2n2, then

∃yi Pf (y1, . . . , yi)
[
(1− 1/4n)i−1(1− 1/2n)

]
= 1. (18)

The proof is by a standard counting argument, and by examining the proof, we find that it also
holds for quantum circuits.

By Eq. (18), we know that there exists a yi such that ≤ (1− 1/4n)i−1(1− 1/2n) < (1− 1/4n)i

fraction of circuits of size 2n
λ
/2n that can compute f on y1, . . . , yi. The remaining task is to find a

witness (which is F ) that can certify Pf (y1, . . . , yi)
[
(1− 1/4n)i

]
= 1. We can use an approximate
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counting with linear hash functions to construct F . More specifically, by [Jeř09], the witness is a
set of matrices A1, . . . , A2O(nλ) defining an injective map from the Cartesian power of the set of all

circuits of size 2n
λ
/2n that compute f on y1, . . . , yi to the same Cartesian power of (1 − 1/4n)i

fraction of the set of all circuits of size 2n
λ
/2n. The existence of these matrices can be decided

by an QCMAcoQCMA algorithm, which can also be decided by a 2O(nλ) quantum circuit, by our
assumption.

C.3 Quantum Impagliazzo-Wigderson generator

The goal of this section is to prove Lemma 4.21.

Lemma 4.21 (Quantum Impagliazzo-Wigderson generator). For every ǫ > 0, there exist c, d ∈ N
such that the truth table of a Boolean function f : {0, 1}cn → {0, 1} of quantum circuit complexity
2ǫcn can be transformed in time O(2n) into a pseudorandom generator G : {0, 1}dn → {0, 1}2n
running in time O(2n) that can fool quantum circuits of size 2O(n), i.e., for any p > 0, any quantum
circuit C of size at most 2pn,

∣∣∣∣ Pr
x∼{0,1}dn,C

[C(G(x)) = 1]− Pr
y∼{0,1}2n ,C

[C(y) = 1]

∣∣∣∣ ≤ 2−n.

Before giving the proof, we first recall some necessary definitions and lemmas in the previous
work.

Lemma C.1 (A variant of Lemma 4.29 in [AGG+20]). Let L : {0, 1}∗ → {0, 1} be a language
that is randomly reducible to the language L′. For every n, suppose we have the description of a
quantum circuit U such that

E
x∈{0,1}n

[
‖ΠL′(x)U |x, 0q〉‖2

]
≥ 1− 1

nk
,

for some k ≥ 2b+ a.
There is a O(|U | · poly(n))-size quantum circuit Ũ that satisfies

‖Π̃xŨ |0, x, 0q
∗〉‖2 ≥ 1− 2−2n+1 for every x ∈ {0, 1}n,

where Π̃x = |L(x)〉〈L(x)| ⊗ |x〉〈x| ⊗ |0q∗〉〈0q∗ | and q∗ = poly(n).

Definition C.2 (Expander walks). Let G be a graph with vertex set {0, 1}n and degree 16. Let the
expander walk generator EW : {0, 1}n × [16]k → {0, 1}nk such that EW(v, d) := (v1, . . . , vk), where
v1 = v and vi+1 is the di-th neighbor of vi in G.

Definition C.3 (Nearly disjoint subsets). Let Σ = {S1, . . . , Sk} be a family of subsets of [m] of
size n. We say Σ is γ-disjoint if |Si ∩ Sj| ≤ γn for any i 6= j.

For r ∈ {0, 1}m, S ⊆ [m], let r|S be the restriction of r to S. Then, for a γ-disjoint Σ,
NDΣ : {0, 1}m → {0, 1}nk is defined by NDΣ(r) := r|S1 , . . . , r|Sk

.

Definition C.4 (M -restrictable). We say Gn : {0, 1}m → {0, 1}nk is M -restrictible if there exists
a polynomial-time computable function h : [n]× {0, 1}n × {0, 1}m → {0, 1}m such that

• For any i ∈ [n], x ∼ {0, 1}n, α ∼ {0, 1}m, h(i, x, α) is uniformly distributed.

• For any i, x, α, let G(h(i, x, α)) := x1, . . . , xk. Then, we have xi = x.
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• For any i, j 6= i, for any α, there exists a set S ⊆ {0, 1}n, |S| ≤ M such that for any x,
xj ∈ S.

Definition C.5 ((k′, q, δ)-hitting). We say Gn : {0, 1}m → {0, 1}nk is (k′, q, δ)-hitting if for any
sets H1, . . . ,Hk ⊆ {0, 1}n, |Hi| ≥ δ2n, we have

Pr[|{i : xi ∈ Hi}| < k′] < q.

Proof of Lemma 4.21. We follow the proof in [IW97]. We first assume that there exists a function
f0 : {0, 1}n → {0, 1} such that the quantum circuit complexity of f0 is 2Ω(n). We may assume
that f0 ∈ BQE. Then, encoding the truth table of f0 by a locally list-decodable code, we obtain a
function f1 : {0, 1}O(n) → {0, 1} such that f1 ∈ BQE, and for any quantum circuit B1 of size less
than 2Ω(n),

E
x∼{0,1}O(n),B1

[B1(x) = f1(x)] := E
x∼{0,1}O(n),B1

[‖Πf1(x)B1|x, 0〉‖] ≤ 1− n−O(1).

The properties of f1 can be proved by Lemma C.1.
Then, by Lemma B.3 with k = poly(n), ǫ = O(1), δ = 1

poly(n) , we have a function f2 = f⊗k1 :

{0, 1}kn → {0, 1}k such that for any quantum circuit B2 of size less than 2Ω(n),

E
x∈{0,1}nk ,B2

[B2(x) = f2(x)] ≤ O(1).

We can apply the quantum Goldreich-Levin Theorem (Lemma B.2) to f2 and get a function
f3 : {0, 1}n → {0, 1} (scaling the input size) such that for any quantum circuit B3 of size less than
2Ω(n),

E
x∈{0,1}n,B3

[B3(x) = f2(x)] ≤
2

3
.

The remaining thing is to “quantize” the direct-product generator defined by [IW97] using f3.
More specifically, we say G is a (s, s′, ǫ, δ) quantum direct-product generator ifG : {0, 1}m → {0, 1}nk
such that for every Boolean function g that is δ-hard for any quantum circuit of size s, we have
g⊗ ◦ G is ǫ-hard for any quantum circuit of size s′. The main result of [IW97] is the construction
of (2Ω(n), 2Ω(n), 2−Ω(n), 13 ) direct-product generator. We first briefly describe the construction and
then show that it also works for quantum circuits.

The direct-product generator in [IW97] is constructed from the expander random walks (Defi-
nition C.2) and nearly disjoint subsets (Definition C.3). They defined the direct-product generator
XG(r, r′, v, d) := EW(v, d) ⊕ NDΣ(r′), where Σ ⊆ [m] is selected by r such that |r| = O(n), |r′| =
m = O(n), |v| = n, |d| = O(n). They proved that XG is 2Ω(n)-restrictible and (O(n), 2−Ω(n), 1/3)-
hitting. It’s easy to see that the restrictible and hitting properties are pure combinatorial and
circuit independent, which means that they also hold for quantum circuits. Then, they proved that
these combinatorial properties imply XG is also a direct product generator. This step, however,
need to be reproved for quantum circuits.

Claim C.6. Let s > 0, G(r) : {0, 1}m → {0, 1}nk be a (ρk, q, δ)-hitting, M -restrictible pseudo-
random generator, where q > 2−ρk/3, s > 2Mnk. Then, G is a (s,Ω(sq2n−O(1)), O(q), δ)-quantum
direct product generator.
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Proof. Let ǫ = (4δ/ρ + 1)q. Suppose there is a quantum circuit C such that

E
x∼{0,1}m,C

[
C(x) = g⊗k ◦G(x)

]
≥ ǫ.

Then, we construct a quantum circuit F of size O(|C|+kMn) such that for anyH ⊆ {0, 1}n, |H| ≥
δ2n,

E
y∼H,F

[F(y) = g(y)] ≥ 1

2
+
q

2
.

We use the same construction as [IW97]. Let i ∼ [k], α0 ∼ {0, 1}m. Let x1, . . . , xk be the output
of G(h(i, x, α0)). For each j 6= i, we non-uniformly construct a table of g(xj) for any xj that is a
possible output of G(h(i, x, α0)) for different x. Since G is M -restrictible, each table has at most
M values. Then, on input y ∈ {0, 1}n, the circuit F simulates C on h(i, y, α0) and let c1, . . . , ck
be the output. Then, for y1, . . . , yk := G(h(i, y, α)), F counts the number of indices j 6= i such
that ci 6= g(yi) using the tables. Let t be the number. Then, with probability 2−t, F outputs ci;
otherwise, F outputs a random bit.

For analysis of quantum circuits, as in [AGG+20], we first consider C being an inherently
probabilistic circuit. For any H ⊆ {0, 1}n, let y ∼ H uniformly at random. Then, for any
y1, . . . , yk ∈ ({0, 1}n)k,

Pr
y∼H

[y1, . . . , yk generated by F ] = u

δk
· Pr
r∼{0,1}m

[y1, . . . , yk generated by G(r)]. (19)

where u is the number of yi ∈ H. Since Er,C[C(r) = g⊗k(G(r))] ≥ ǫ, for a random r, the probability
that u ≥ ρk and C(r) = g⊗k(G(r)) is at least ǫ − q, by the hitting property of G. Hence, the
probability that u ≥ ρk and C succeeds for y1, . . . , yk generated by F on a random x ∈ H is
(ǫ− q) · ρ/δ = 4q, since each (y1, . . . , yk) has at least ρ/δ of its probability under G(r) by Eq. (19).
Then, we can compute the expected success probability of F on y ∈ H given u ≥ ρk by Theorem
3.2 in [IW97], which is

E
y∼H

[F(y) = g(y) | u ≥ ρk] ≥ 1

2
+ q.

Since u ≥ ρk has probability at least 1−q, the overall success probability is at least (1+q)/2. Finally,
by Lemma 2.7 in [AGG+20], we can change the inherently probabilistic circuit by a quantum circuit
and the result still holds.

Hence, F has expected probability (1 + q)/2 on 1 − δ fraction of inputs. Then, we can take
O(n/q2) copies and take the majority of them, which gives a circuit of size O((|C|+ kM)n/q2) ≤ s
if |C| = Ω(sq2n−O(1)), and has success probability at least 1− δ. The Claim is then proved.

By Claim C.6, we know that XG : {0, 1}O(n) → {0, 1}n2
is a (2Ω(n), 2Ω(n), 2−Ω(n), 1/3)-quantum

direct product generator.
Finally, feeding the output of XG to the quantum Nisan-Wigderson generator (Lemma B.1) CNW

gives the desired quantum pseudo-random generator, which completes the proof of the lemma.

D Quantum fine-grained hardness based on QETH

In this section, we will show that 2n × 2n bipartite permutation independent set problem is hard
under QETH.
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Lemma 4.37. Assuming QETH, there is no 2o(n logn)-time quantum algorithm that solves 2n× 2n
Bipartite Permutation Independent Set problem.

More specifically, We “quantize” the fine-grained reduction in [LMS11]. The reduction chain is
as follows:

3-SAT ≤FG 3-Coloring ≤FG n× n Clique ≤FG n× n Permutation Clique

≤FG n× n Permutation Independent Set

≤FG 2n× 2n Bipartite Permutation Independent Set

We first define some intermediate fine-grained problems.

Definition D.1 (n × n Clique problem). Given a graph on the vertex set [n]× [n], decide if there
exists i1, . . . , in ∈ [n] such that the subgraph on (1, i1), . . . , (n, in) forms an n-clique.

Definition D.2 (n×n Permutation Clique/Independent Set problem). Given a graph on the vertex
set [n]×[n], decide if there exists a permutation π ∈ Sn such that the subgraph on (1, π(1)), . . . , (n, π(n))
forms an n-clique/independent set.

The following claims shows that the aforementioned reductions work for quantum lower bounds.

Claim D.3. Under QETH, there is no 2o(n)-time quantum algorithm for 3-Coloring, where n is the
number of vertices in the input graph.

Proof. By the NP-complete proof of 3-Coloring, we know that a 3-CNF formula with n variables
and m clauses can be reduced to a 3-Coloring instance in time O(n + m). Hence, a 2o(n)-time
quantum algorithm for 3-Coloring implies a 2o(n)-time quantum algorithm for 3-SAT, which implies
that QETH fails.

Claim D.4. If n×n Clique can be solved in 2o(n logn) time quantumly, then 3-Coloring can be solved
in 2o(n) time quantumly.

Proof. We use the reduction given by [LMS11]. Let G be an instance of 3-Coloring with n vertices.
The reduction can produce a graph H with vertices [k]× [k] such that n ≤ k log3 k− k. Then, G is
3-colorable if and only if H is a “Yes” instance of k × k Clique. The reduction takes poly(k)-time
classically.

Hence, if there exists a quantum algorithm for k × k Clique in time 2o(k log k), then it gives a
quantum algorithm for 3-Coloring that runs in time 2o(n).

Claim D.5. If n×n Permutation Clique/Independent Set can be solved in 2o(n logn) time quantumly,
then n× n Clique can also be solved in 2o(n logn) time quantumly.

Proof. By [LMS11], there is a reduction from n × n Clique to n × n Permutation Clique that takes
2O(n log logn) = 2o(n logn) time classically. Hence, the reduction also works for quantum 2o(n logn)-time
lower bound.

Note that n×n Permutation Clique and n×n Permutation Independent Set are equivalent problem,
since we can reduce them by taking the complement graph.

Claim D.6. If 2n× 2n Bipartite Permutation Independent Set can be solved in 2o(n logn) quantumly,
then n× n Permutation Independent Set can be solved in 2o(n logn) time quantumly.
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Proof. By [LMS11], the classical reduction takes time O(n2). Hence, it also works for quantum
algorithms.

Finally, we can prove the QETH-hardness of 2n × 2n bipartite permutation independent set
problem:

Proof of Lemma 4.37. It follows from Claim D.3, D.4, D.5 and D.6.

E Proofs for Corollary 5.10

Corollary 5.10. SMCSP with classical descriptions of quantum states as inputs is in QCMA.

Lemma E.1. Given v = [v0, . . . , v2n−1] for vi ∈ C for i = 0, . . . , 2n − 1, there exists a quantum
circuit such that the state |v〉 can be computed in time poly(2n) with 〈i|v〉 = vi.

Proof. We show that one can use single-qubit rotations to construct |v〉.
We first prepare |0n+1〉. Then, we do a single-qubit rotation on the first qubit such that

|0n+1〉 →

√√√√
∑2n−1−1

i=0 |vi|2∑2n−1
i=0 |vi|2

|0〉|0n〉+
√∑2n−1

i=2n−1 |vi|2∑2n−1
i=0 |vi|2

|1〉|0n〉.

Then, let the first qubit be the control qubit and apply the controlled rotation to rotate the
second qubit to be

√√√√
∑2n−2−1

i=0 |vi|2∑2n−1−1
i=0 |vi|2

|0〉+

√√√√
∑2n−1−1

i=2n−2 |vi|2
∑2n−1−1

i=0 |vi|2
|1〉, if the first qubit is |0〉,

√√√√
∑2n−1+2n−2−1

i=2n−1 |vi|2∑2n−1
i=2n−1 |vi|2

|0〉+

√√√√
∑2n−1

i=2n−1+2n−2 |vi|2∑2n−1
i=2n−1 |vi|2

|1〉, if the first qubit is |1〉.

By doing these controlled rotations in sequence, we can obtain ||v|〉 where 〈v|i〉 = |vi| for all i.
Let vj = e−iθj |vj | without loss of generality. Then, condition on j, we do the following rotation on
the (n+ 1)-th qubit:

|0〉 → e−iθj |0〉

for all j. This gives |v〉.
Finally, we use at most 2O(n) (control) rotations. By Remark 11, each controlled rotation can

be implemented with at most 2O(n) overhead. Hence, the verifier can construct |v〉 in time poly(2n).

Proof of Corollary 5.10. Following Lemma E.1, we can make poly(n, s, t) copies of the state in
polynomial time. Then, following the proof for Theorem 5.9, the problem is in QCMA.
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F Quantum Circuit Class

In this section, we will show some properties of the quantum circuit QC(s,G). Note that G con-
sidered in this paper are universal gate set with constant fan-in. So, the results here are also for
constant fan-in universal gate sets.

Claim F.1. For n ∈ N, there exists a constant c such that a random Boolean function f : {0, 1}n →
{0, 1} has quantum circuit complexity greater 2n

(c+1)n with probability at least 1− 2
2n

c+1 .

Proof. For any s-gate and (n+ t)-qubit quantum circuit (where n+ t ≤ s), there are at most

(
n+ qs+ t

q

)s
|G|s ≤ 2cs log s

possible circuits for some constant c large enough, where G is the quantum gate set, and q is the
maximum number of qubits for any gate in G can operate on. Let s = 2n

(c+1)n . Then the number of

circuits of size s is at most 2cs log s < 2
c

c+1
·2n .

There are 22
n
Boolean functions from {0, 1}n to {0, 1}. Suppose we pick one function uniformly

randomly, then for every fixed quantum circuit C and input x ∈ {0, 1}n, the probability that
‖(〈f(x)| ⊗ In+t−1)C|x, 0t〉‖ ≥ 1

2 is 1
2 . Therefore, the probability that a fixed quantum circuit can

compute f(x) for all x ∈ {0, 1}n is at most 1
22n

. By using union bound, the probability that there

exists C of size 2n

(c+1)n that can compute f is at most 2
c

c+1 ·2n

22n
= 2

2n

c+1 .

Claim F.2. For s = poly(n) and G a gate set that contains only constant fan-in gates, BQC(s,G)
is in DSPACE(O(s2))/O(s2).

Proof. The proof follows from the idea of showing BQP ⊂ PSPACE. Let L ∈ BQC(s,G) and {Cn} be
the quantum circuit family in QC(s,G) that can solve L. Then, we show that there is a O(s2)-space
TM T with O(s log s)-bit advice that can simulates Cn.

Let Cn be the advice to T . We first calculate the number of bits needed to represent s-gate cir-
cuit. For each gate, we need O(log s) to specify its wires and 2a register to record the corresponding
unitary, where a is the maximum fan-in of gates in G. Note that a unitary U may has entries that
cannot be written down in bounded bits. Therefore, we let the precision to every entry in U be
ǫ = 1

c2s for some constant c large enough, which requires number of bits log 1
ǫ = O(s). The total

number of bits required for each gate is O(s). and thus the number bits for the circuit is O(s2).
Now, suppose Cn = UsUs−1 · · ·U1. For any x ∈ {0, 1}n the probability that Cn accepts is

∑

y∈A
|〈y|UsUs−1 · · ·U1|x〉|2,

where A := {y : y has the first bit as 1}. Then, the TM T computes each branch one-by-one. for
any y ∈ A

〈y|UsUs−1 · · ·U1|x〉 =
∑

z1,...,zs−1∈{0,1}
〈y|Us|zs−1〉〈zs−1|Us−1|zs−2〉〈zs−2| · · · |z1〉〈z1|U1|x〉. (20)

Note that Ui is a constant-dimensional unitary and x and zj ’s are vectors with exactly one non-zero
entry. So, computing 〈zj |Uj |zj−1〉 only requires O(s) (since the entries in U takes O(s) space for
the precision). Then, since we can also compute 〈zj |Uj|zj−1〉 one by one, the space required for
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each branch in Eq. (20) is just O(s). Therefore, the space we need is at most O(s2) (including the
space for the advice).

Note that our calculation in Eq. (20) will have error since our precision to each entry in the
unitary is ǫ = 1

c2s . Let ŨsŨs−1 · · · Ũ1 be what we really compute. Then,

∑

y∈A
|〈y|UsUs−1 · · ·U1|x〉|2 −

∑

y∈A
|〈y|ŨsŨs−1 · · · Ũ1|x〉|2 ≤ O(2s+nǫ).

By setting ǫ = 1
c2s for some constant c large enough, T can solve L with probability at least 2/3

by having an amplified version of Cn at first (e.g., parallel repetition).

Claim F.3 (Diagonalization for quantum circuits). For every k ∈ N+, there exists a language
Lk ∈ PSPACE but Lk /∈ BQC[nk] for sufficiently large n.

Proof. By Claim F.2, we know that BQC[nk] is contained in DSPACE[n2k]/n2k. By a nonuni-
form almost everywhere hierarchy for space complexity (Lemma 11 in [OS16]), we know that
DSPACE[n3k] 6⊂ DSPACE[n2k]/n2k for sufficiently large n. Hence, we can find a language Lk /∈
BQC[nk].

Claim F.4 (BQC size hierarchy). For n > 0, let s(n) = o(2
n

n ). Then, there exists a Boolean function
f in BQC[s(n)]\BQC[s(n)−O(n)], i.e., f can be computed by an s(n)-size quantum circuit but not
computed by any (s(n)−O(n))-size quantum circuit.

Proof. The proof is very similar to the argument for classical circuits. By Claim F.1, we can find
a function g that requires quantum circuit of size 2n/cn for some c > 1. Suppose there are t
inputs x1, . . . , xt such that g(xi) = 1 for i ∈ [t]. Then, we construct a series of functions gi for
i = 0, 1, · · · , t such that gi(x) = 1 if and only if x ∈ {x1, . . . , xi}. It’s easy to see that the following
properties are satisfied:

• g0 ∈ BQC[0] and gt ∈ BQC[2n/cn].

• For 0 ≤ i < t, the difference of the quantum circuits size of gi and gi+1 is at most O(n). It
follows since gi and gi+1 are only different at xi.

Hence, there exists an i > 0 such that the quantum circuit size of gi is at most s(n) but lager than
s(n)−O(n), since s(n) = o(2n/cn).
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