
Rate One-Third Non-malleable Codes

Divesh Aggarwal∗ Bhavana Kanukurthi † Sai Lakshmi Bhavana Obbattu ‡

Maciej Obremski§ Sruthi Sekar¶

August 20, 2021

Abstract

At ITCS 2010, Dziembowski, Pietrzak and Wichs introduced Non-malleable Codes (NMCs)
which protect against tampering of a codeword of a given message into the codeword of a related
message. A well-studied model of tampering is the 2-split-state model where the codeword
consists of two independently tamperable states. As with standard error-correcting codes, it is
of great importance to build codes with high rates.

Following a long line of work, Aggarwal and Obremski (FOCS 2020) showed the first constant
rate non-malleable code in the 2−split state model; however this constant was a minuscule 10−6!
In this work, we build a Non-malleable Code with rate 1/3. This nearly matches the rate 1/2
lower bound for this model due to Cheraghchi and Guruswami (ITCS 2014). Our construction
is simple, requiring just an inner-product extractor, a seeded extractor, and an affine-evasive
function.

1 Introduction

The security of cryptographic primitives, often times, hold only under idealized assumptions. If we
take the case of encryption or digital signatures (or most other primitives), the definition of security
follows a standard template: the adversary gets to observe input-output behaviour and then needs
to attack the primitive. In most cases, the implicit assumption is that the adversary gets to learn
nothing other than this legitimate input-output behaviour. There are many instances where such
an idealized setting is far from reality. For instance, there is a powerful class of attacks where the
adversary could tamper with the secret keys of the system and observe input-output behaviour
on these tampered keys. Such attacks can completely break the security of the system [BS97,
AARR02, LL10].

Motivated by the need to protect data against such tampering attacks, Dziembowski, Peitrzak
and Wichs, in their pioneering work, introduced “Non-malleable Codes” (NMCs). Non-malleability
is a widely studied notion in cryptography and strives to defend against related tampering. Non-
malleable codes, in specific, are coding schemes where the adversary cannot tamper the codeword
into the codeword of a related message. Informally, NMCs provide the following guarantee: given

∗Department of Computer Science and Center for Quantum Technologies, National University of Singapore, Email:
dcsdiva@nus.edu.sg

†Department of Computer Science and Automation, Indian Institute of Science, Email: bhavana@iisc.ac.in.
Research supported by Microsoft Research Grant.

‡Microsoft Research, India, Email: oslbhavana@gmail.com
§Center for Quantum Technologies, National University of Singapore, Email: obremski.math@gmail.com
¶Department of Mathematics, Indian Institute of Science, Email: sruthi.sekar1@gmail.com. Research supported

in part by TCS Research Grant.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 2 of Report No. 117 (2021)

a codeword C of a message m and a function f chosen from a tampering family F , decoding
f(C) gives something that is either equal to m or completely independent of m. This becomes
extremely relevant when NMCs are used to store the secret key. NMCs assure us that the encoding
of the secret key may be tampered with, but the tampered codeword decodes to a message that
is independent of the original secret key. A consequence of this for the above-mentioned scenario
is that observing input-output behaviour on this tampered key is now rendered useless and the
cryptosystem continues to remain secure.

As observed in [DPW10], it is impossible to build NMCs secure against unrestricted tampering
i.e., when F corresponds to the family of all functions. (To see this, simply consider the function
f(c) = Enc(Dec(c) + 1).) NMCs are therefore built with respect to specific classes of functions.
A well-studied class of tampering functions is the 2-split-state model where the codeword con-
sists of two states L and R, and the adversary tampers with each of these states independently.
This is a very natural model and indeed such NMCs have found many applications in securing
against physical (leakage and tampering) attacks [DPW10, LL12], domain extension of encryption
schemes [CMTV14, CDTV16], non-malleable commitments [GPR16], non-malleable secret shar-
ing [GK18, ADN+19, BS19, SV19] and privacy amplification [CKOS19].

As with standard error correcting codes, the most important parameter for a non-malleable code
is its rate = κ

n where κ denotes the message length and n the codeword length. Cheraghchi and
Guruswami [CG14a] showed that the optimal achievable rate for the 2-split-state family is 1

2 . The
quest for this holy grail has inspired a long line of fascinating research, introduced new pseudo-
random objects and intricate proof techniques. Most recently, Aggarwal and Obremski [AO20]
constructed a constant rate 2-split-state NMC (with negligible error). While asymptotically signif-
icant, they achieve a constant rate of only around 1/1, 500, 000. Thus, there is an embarrassingly
large gap between the best achievable rate (1/2) and what we currently know (1/1, 500, 000)! In
this work, we build 2-split state non-malleable codes with a near-optimal rate 1

3 .

1.1 Our Results

We obtain our construction of a rate-1
3 NMC via rate boosters which compile low rate NMCs into

high rate ones. Using similar, but simpler, techniques we also obtain rate boosters for related
primitives called “non-malleable 2-source extractors” (nm2Ext). We start by explaining our results
on nm2Ext before proceeding to describe our results on NMCs.

Towards the goal of constructing non-malleable codes, Cheraghchi and Guruswami [CG14b]
introduced Non-malleable Extractors as a stronger primitive that immediately yields efficient non-
malleable codes as long as the preimage of the extractor is efficiently samplable. Informally, a
non-malleable two source extractor nm2Ext guarantees that for any independent random sources
X,Y , and any functions f, g with at least one of them having no fixed points, nm2Ext(X,Y) is indis-
tinguishable from uniform even given nm2Ext(f(X), g(Y)).1 It is easy to see that a non-malleable
two-source extractor gives non-malleability for a uniformly random message (average-case security)
while a non-malleable code achieves non-malleability for every message (worst-case security). A
non-malleable two-source extractor can be transformed into a non-malleable code (Enc,Dec) by set-
ting Enc(m) := nm2Ext−1(m), and Dec(x, y) := nm2Ext(x, y). Non-malleable 2−source extractors
have been the focus of intense study, with several recent results focusing on improving their rate.

Rate Boosters for Non-malleable Extractors. In this work, we give a rate booster for unbal-

1We say that the extractor is a strong non-malleable two-source extractor if for any independent random sources
X,Y , and any functions f, g with at least one of them having no fixed points, nm2Ext(X,Y) is indistinguishable from
uniform even given nm2Ext(f(X), g(Y)) and Y .

2

anced non-malleable two-source extractors, with one source being much smaller than the other:

Informal Theorem 1. If nm2Ext : {0, 1}n1 × {0, 1}n2 → {0, 1}d is a strong non-malleable two-

source extractor, with n2 = o(n1), and Ext : {0, 1}n1 × {0, 1}d → {0, 1}
n1
2 is a strong seeded

extractor, then nm2Ext′(x, y) := Ext(x; nm2Ext(x, y)) is a non-malleable extractor with rate 1/2.

NME to NMC: Limitations. We note that the transformation from nm2Ext to NMCs requires
arguing worst-case security from average-case security, which incurs a factor 2|message size| penalty
in the security parameter. Most results on building 2-split-state NMCs have focused on improving
the rate of non-malleable two-source extractors and relied on this lossy transformation to build
NMCs. We argue that this may not help.

Note that the output of a seeded extractor, with seed length d, is at best 2−d/2-close to uniform.
So we cannot use the transformation from non-malleable two-source extractors to non-malleable
codes mentioned above, since our construction is unable to handle the penalty 2|message size| = 2n1/2

in the error. (For the error term to even be just less than 1, d > n1/2 i.e., a setting of parameters
where the transformation above is useless.) We observe that this is not just a shortcoming of our
construction – any construction of a non-malleable two-source extractor with rate greater than
1/5 can likely not be transformed to a non-malleable code via the above average to worst-case
transformation. To see this, we note that the existential construction via the probabilistic method
(which is believed to have optimal parameters) of an ε-non-malleable two-source extractor given
in [CG14b] (Theorem 5.10) requires ε3 ·22n > 22κ, where κ is the message length. This implies that
ε > 2(2κ−2n)/3. To obtain a non-trivial construction of a non-malleable code, we require ε < 2−κ

which gives 2n > 5κ, i.e., the rate of the non-malleable two-source extractor is less than 1/5.

Our Non-malleable Code. With this intuition, we deviate entirely from the approach of build-
ing NMCs via Non-malleable 2-source Extractors. We significantly modify the transformation (in
Informal Theorem 1) and introduce techniques that allow us to circumvent the average to worst
case penalty to obtain a rate booster directly for non-malleable codes.

Informal Theorem 2 (Main Result). There exists an efficient, information-theoretically se-
cure ε-right-augmented2 non-malleable code in the 2-split-state model with rate 1/3. We show two
instantiations of the scheme: the first gives us a strikingly simple construction (as we describe in

Section 1.2) and achieves an error of 2−Ω(κ1/5/polylog(κ)); the second instatiation loses out on the

simplicity but achieves an error of ε = 2
−Ω(κ

log3 κ
)
, where κ is the size of the message.

1.2 Technical Overview

In order to highlight the challenges of building high-rate, 2-split-state NMCs, we start by recalling a
related primitive called Non-malleable Randomness Encoders introduced by Kanukurthi, Obbattu
and Sekar [KOS18]. Similar to a 2-split-state NMC, a 2-split-state NMRE consists of two inde-
pendently tamperable states L and R. Contrary to an NMC, where the encoder encodes arbitrary
messages, an NMRE’s encoder outputs L and R such that they decode to a random string, and

2Right-augmented property guarantees that the right state of the NMC is simulatable independent of the message,
along with the tampered message.

3

herein lies all the difference: while the problem of building high-rate NMCs has eluded researchers
for over a decade, we know how to build NMREs with rate 1

2 . At the same time, we emphasize
that obtaining a high-rate NMC (instead of an NMRE) is critical for many applications (such as
non-malleable commitments.)

!

"

#
$%&'(#)

*+, !, " = /, 0

Left State

Right State

Message = 678 #, /

Decoder:

Figure 1: Construction of the non-malleable randomness encoder by [KOS18].

Informally, the NMRE of [KOS18] (see Figure 1.) picks the source w and seed s to a strong seeded
extractor (Ext) as well as a key kw to a message authentication code (MAC). The code consists of
two states, left: `‖w‖t, and right: r, where `, r are a low-rate non-malleable encoding of s, kw and
σw is a tag evaluated on w with kw as the key. The codeword, if valid, decodes to Ext(w; s). The
high level idea behind security is that if the codeword was tampered and leads to a different s, then
it is independent of S and extractor security applies. This suffices to argue independence of the
tampered message m from m. (In the case where s, kw = s, kw, MAC security comes into play.)

In order to extend this construction to encode an arbitrary message m, one option would be
to reverse sample w and s such that Ext(w; s) = m. Unfortunately, this won’t work because, on
the one hand, we require the seed s to be short (as it is encoded using a poor-rate NMC) and, on
the other hand, given a source w, there will be at most 2|s| possible messages that could have been
encoded. In other words, to obtain any meaningful security, s needs to be as long as the message.
However, if s is long, the above approach will not yield rate gains. These orthogonal constraints
are the main stumbling block which we overcome in this work. To do so, we need to somehow use
Ext(w; s) to “mask” the message m. Clearly, since Ext(w; s) needs to be stored in a state different
from the one storing w, we will consider a target code which has the form (`‖w‖σw), (r‖c), where
c would depend on the message as well as the extractor output Ext(w; s) i.e., w, s, c “shares” m.
While there are many candidates for c, the solution to our puzzle lies in figuring out a c with which
we can prove non-malleability. Here’s the tricky part: when the adversary learns the tampered
message, she learns information that depends on Ext(w; s). Furthermore, her tampering of r, which
influences the tampered seed s and therefore Ext(w; s), also depends on Ext(w; s). In a nutshell,
regardless of what c is, it is clear that leveraging the security of the strong randomness extractor
to argue non-malleability is not straight-forward.

Our first idea to overcome this challenge is to allow c to be such that 2Ext(Ext(w; s), c) = m
where 2Ext is a 2−source extractor. As it turns out, this construction is secure for the following
reason: even if the tampered output leaks some information about Ext(w; s), the two source ex-

4

tractor3 will ensure that the “masking” remains secure. This leads to an NMC with rate 1
9 in the

split-state model.
The main idea behind our final construction is to tackle the information leakage on Ext(w; s)

head-on. In particular, though the tampered message may leak information about Ext(w; s), we
can ensure that this information is useless as far as breaking non-malleability is concerned. In fact,
we do this while further simplifying our construction: We set the second half of the right state to be
(c = Ext(w; s)⊕m)‖σc where σc is a MAC tag of c evaluated on key kc. In retrospect, our encoding
scheme is nearly identical to that due to Kanukurthi, Obbattu and Sekar [KOS17]. While [KOS17]
gave a four state construction, we merge states to obtain a two state construction.
We now offer a more detailed overview of the construction as well as the proof.

r

𝑀𝐴𝐶 (𝑐)

𝑀𝐴𝐶 (𝑤)

Left State

Right State

Message m

Decoder:

Figure 2: Overview of the construction. Blocks `, r come from augmented non-malleable code. The
encoder proceeds in steps: first, we randomly sample s, kw, kc, w (all independently of the message
we are encoding), then we encode s, kw, kc using NMC into `, r. We then set c = Ext(w; s) ⊕m,
and evaluate σc as a MAC tag of c on key kc, and σw as MAC tag of w on key kw.

Our construction uses the following building blocks: a message authentication code, a strong seeded
extractor, and a low-rate non-malleable code which we shall use to encode the keys of the message
authentication code and the seed for the seeded extractor. The overview of the construction can
be found in the Figure 2. We will use the notation from the above-mentioned figure. Also, for a
variable X, X will denote its tampering. We proceed with a slightly simplified sketch of the proof.

Proof Overview In order to prove non-malleability we need to demonstrate the existence of a
simulator whose outputs is indistinguishable from the output of the tampering experiment. The
simulator doesn’t use the message; however, it outputs a special symbol to indicate that the tam-
pered message is unchanged. The simulator’s output is run through a special wrapper function
(typically called ”Copy” function) that, in this case, outputs the original message.

Our proof proceeds by partitioning our codeword space. Our simulator will pick a codeword at
random, checks which partition it lies in to determine its output. We describe the partitions below:

3A two source extractor takes two entropic sources and outputs perfect randomness.

5

• P1 = {(`, w, σw, r, c, σc) : (w, σw, c, σc) = (w, σw, c, σc) ∧ NMDec(`, r) = NMDec(`, r)}. This
partition captures the scenario when, even after tampering, the inner codeword (`, r) decodes
to the same message, and W,σw, C, σc remain unchanged. In this case, the final codeword
must decode to the same message.

• P2 = {(`, w, σw, r, c, σc) : (w, σw, c, σc) 6= (w, σw, c, σc)∧NMDec(`, r) = NMDec(`, r)}. P2 cap-
tures the scenario when, the decoding of the inner code remains unchanged after tampering,
while one of the pairs (W,σw) or (C, σc) are changed. We will show that if this event occurs
then, using the security of MACs, the tampering is detected with overwhelming probability.

• P3 = {(`, w, σw, r, c, σc) : NMDec(`, r) 6= NMDec(`, r)}. P3 captures the scenario that the
inner code is non-trivially tampered and does not decode to Dec(L,R). In this case, we will
show that the tampered codeword is independent of the original message m.

The simulator generates the codeword ((L,W, σw), (R, C̃, σ̃c)) of a random message. If this
simulated codeword is in P1, it outputs same∗. Recall that the wrapper function will then output
the original message. If the simulated codeword is in P2, the simulator outputs ⊥, else the simulator

outputs Dec
(

(L,W, σw), (R, C̃, σ̃c)
)

. (Note that our code is right-augmented i.e., it satisfies a

stronger notion of security where the right state of the codeword can be revealed without breaking
non-malleability.)

To prove non-malleability, we need to show that this behaviour of the simulator is indistin-
guishable from that of the tampering experiment. To do this, we first show that the probability of
a codeword being in any given partition is independent of the message4. Next, we show that the
output of the tampering experiment is, in each case, indistinguishable from the simulator’s output.

For the case where the codeword is in partition P1, it is clear that the simulator output is
identical to that of the tampering experiment. We therefore focus on the other two cases.

1.2.1 Case 1: Codeword is in P2 i.e., NMDec(L,R) = NMDec(L,R).

Intuitively, we would like to argue that the tag keys Kw,Kc will remain securely hidden from the
adversary, and if he decides to tamper with W or C he will not be able to fake tags σw, σc. Thus
either the whole codeword remains untampered (in which case, we are in P1) or the new codeword
will not be valid.

The standard approach would be to argue that if Pr(NMDec(L,R) = NMDec(L,R)) is not too
small then

Pr(tampered codeword is valid ∧ (W,C) 6= (W,C) | Dec(L,R) = Dec(L,R))

is negligible. However we have to be delicate here. For example if adversary wants to tamper
with W he has access to L and knows that NMDec(L,R) = NMDec(L,R). This reveals some
information about R and thus adversary potentially might get hold of some partial information
about the encoded data (and Kw,Kc in particular). This is why it is actually easier to directly
argue that

Pr(tampered codeword is valid ∧ (W,C) 6= (W,C) ∧ Dec(L,R) = Dec(L,R)) (1)

is negligible. Notice that the codeword will not be valid in only one of three cases: if NMDec(L,R) =
⊥ or if one of the MACs on W or C does not verify correctly. Since NMDec(L,R) = NMDec(L,R)

4This proof relies on the secret sharing property of the non-malleable code as well as the security of the strong
randomness extractor.

6

we know that the only options left are the failures to verify MACs. Moreover we know that
(Kw,Kc) = (Kw,Kc), thus Inequality 1 can be rewritten:

Pr(VrfyKw(W,σw) = VrfyKc(C, σc) = 1 ∧ (W,C) 6= (W,C) ∧ NMDec(L,R) = NMDec(L,R)) (2)

is negligible. Now we can upper-bound the term in the Inequality 2 by the following

Pr(VrfyKw(W,σw) = VrfyKc(C, σc) = 1 ∧ (W,C) 6= (W,C)).

Which by the union bound can be upper-bounded with

Pr(VrfyKw(W,σw) = 1 ∧W 6= W) + Pr(VrfyKc(C, σc) = 1 ∧ C 6= C).

Finally we can argue that each of elements of the sum is negligible. Notice that when tampering
with W adversary has access to L but that can not reveal any information about Kw since every
non-malleable code is a secret sharing scheme. The rest follows from the security of MACs.

1.2.2 Case 2: Codeword is in P3 i.e., NMDec(L,R) 6= NMDec(L,R).

In this case, we will follow the adventures of the seed S; the MACs and keys do not play any role
here. In fact, for the purposes of this proof sketch we will ignore the MAC keys and tags. We will
also assume that this case (i.e., codeword ∈ P3) occurs with substantial probability (else we don’t
have to worry about it). In such a case, we will argue that the final message is independent of the
original message.

To provide a proof sketch for this case, we consider the following modified construction: Let
(`, r)← NMEnc(s), where (NMEnc,NMDec) is the low-rate non-malleable code. Pick a random W ,
the source for a strong extractor. Then the left state of the final non-malleable code is `‖w. The
right state is r‖(c = Ext(w; s)). In other words, we’ve simply removed the MAC keys and tags.
While this is obviously not a secure non-malleable code, we use this construction for the sake of
ease of exposition.

By the properties of the augmented NMC5 we know that there is a simulator NMSim that
outputs Ssim, Lsim. Given that we are in the case where NMDec(L,R) 6= NMDec(L,R), Ssim is
independent of S. As discussed earlier, this knowledge alone doesn’t suffice for us. The tampering
of R (which influences S) depends on C which in turn uses the extractor output. In order to
output the tampered message, we need to be able to compute Ext(W ;S). We handle this by using
a Markov style argument, as we shall see shortly.

Non-malleability of the underlying NMC: To use the non-malleability of the inner code,
(NMEnc,NMDec), consider the tampering functions f∗, g∗ on (L,R) that sample W, C̃ uniformly
and then compute f∗(L) = f1(L,W) and g∗(R) = g1(R, C̃). Let S = NMDec(f∗(L), g∗(R)). By
the augmented non-malleability of (NMEnc,NMDec), there exists a simulator NMSim such that

S,L, S,W, C̃ ≈ Copy(µ,NMSim), S,W, C̃ , (3)

where the output of NMSim depends on W, C̃ and the functions f1, g1. Recall (from definition 7)
that NMSim is parsed as the joint distribution (NMSim1, L

Sim). We further denote NMSim1 by
SSim, when NMSim1 is conditioned to not output same∗ or ⊥. We denote by E1 the event that

5Augmented NMC is a natural extension of NMC (and equivalent of strong extraction property). We require that
NMDec(L,R) is equal or independent of NMDec(L,R) and revealing L or R doesn’t ruin this independence.

7

(L,W, σw, R, C̃, σ̃c) ∈ P3 and E2 the event that S 6= S. Note that E1 is the same as E2. We denote
by E3 the event that NMSim1 /∈ {(same∗, S)}. We first show that Pr[E3] is high.

From here, using properties of statistical distance, and expanding out the definition of copy, we
show that:

(S,L, S,W, C̃)|E2 ≈ (SSim, LSim, S,W, C̃)|E3 (4)

We next show that the (average) conditional entropy of W given SSim, LSim,Ext(W ;S) is high;
here LSim and W are tamperings of LSim,W and can be computed as their deterministic function.
In particular, we have that

H̃∞

(
W |SSim, LSim,Ext(W ;SSim)

)
is high.

Further since S is independent of SSim, we use the strong extractor property of Ext, to show
the following:

Ext(W ;S) ≈ U |S,LSim, C̃, LSim,Ext(W ;SSim), SSim (5)

In order to proceed with the proof, we will prove a statement similar to the one above; except
that instead of the tampered seed being simulated, we will let it be the tampered seed (in the
underlying non-malleable code). (Eventually we would need to replace C̃ by C := Ext(W ;S)⊕m.)
For the remainder of the proof, let L,W,R, C̃ be distributed as L,W, σw, R, C̃, σ̃c|E1 . Also, let
S,L,R,W be the corresponding tampered random variables. After tampering conditioned on the
event that (L,W, σw, R, C̃, σ̃c) ∈ P3. We shorthand the distribution in the LHS and RHS of every
equation I by IA and IB, respectively.

Ext(W ;S), S, L, C̃, L,Ext(W ;S) ≈ Ext(W ;S), Ssim, L, C̃, L,Ext(W ;Ssim) (6)

U , S, L, C̃, L,Ext(W ;S) ≈ U , Ssim, L, C̃, L,Ext(W ;Ssim) (7)

Applying triangle inequality on Inequalities (5), (6), (7), we get that

Ext(W ;S) ≈ U |S,L, C̃, L,Ext(W ;S), S (8)

Note that in the equation above, there is no dependence on m on either side as C̃ is independent of
m. Ultimately, we would like to say that the output of the tampering experiment is indistinguishable
from the simulated output. We accomplish this in three steps:

1. Adding R. In equation 8, the only information correlated to W and R is S. Since Ext(W ;S) ≈
U even given S, we can safely add R to Equation 8.

Ext(W ;S) ≈ U |S,L, C̃, L,Ext(W ;S), S,R, g1(R, C̃, σ̃c) .

From here, we would ideally like to drop C̃ and somehow bring back the dependence on m via C.
For now, we drop C̃

Ext(W ;S) ≈ U |S,L, L,Ext(W ;S), S,R,R . (9)

The way we’ll bring C is to condition C̃ on being a ”cipher of m”. For that we first need to
prove that C̃ is independent of W given appropriate auxiliary information.

8

2. Capturing C̃’s correlation with W . In this step, we will prove that C̃ is independent of W
given S,L, L,Ext(W ;S), S,R,R. We first observe that C̃ is independent of W given (L,R, S). Now
we would like to add the other random variables in the auxiliary information. We use the a Lemma
due to Dziembowski and Pietrzak which states that independence in the presence of additional
auxiliary information is indeed possible, provided it satisfies a few properties:

• The auxiliary information may be computed in multiple steps.

• Computation in all of the steps can use (L,R, S) and the part of the auxiliary information
generated in previous steps.

• Computation in a given step can either depend on C̃ or W but not both.

By computing auxiliary information in the order L followed by R followed by Ext(W ;S), we can
easily prove that C̃ is independent of W given S,L, L,Ext(W ;S), S,R,R.

3. Conditioning C̃ appropriately Since W is independent of C̃ given appropriate auxial-
liary information, in Equation 9, we can condition C̃ to either be m ⊕ Ext(W,S) or m ⊕ U .
(Note that the latter is identical to C.) By doing so, Equation 9 will lead to the following
C, S, L, L,Ext(W ;S), S,R,R ≈ U , S, L, L,Ext(W ;S), S,R,R, where R,S are appropriately com-
puted.
The desired result follows by observing that the tampered codeword is a function of

L,R,Ext(W ;S), C,R .

Putting it Together. So far, we’ve described the simulator and sketched the proof for showing
that the simulated output is indistinguishable from the tampered output in each of the cases. To
complete the proof, we need to combine all three cases and, in particular, the probability that the
codewords (tampered vs simulated) lie in each of the partitions needs to be analysed.

Candidate Instatiation While we can turn any augmented non-malleable code (or randomness
encoder) into a good rate non-malleable code, a very simple result can be obtained using [ADL14].
To encode a message m all we will need is an affine evasive function h. It is a function h : Fp →
M∪⊥ such that Pr(h(aU+b) 6= ⊥ | h(U) = m) is negligible for all a, b,m, and U |h(U) = m should
be efficiently samplable, the construction of the said function can be found in [ADL14, Agg15].
The encoding procedure is described in Figure 3.

9

Short and Simple: The Encoding Procedure:

1. Sample s, kw, kc, w uniformly at random.

2. Sample x uniformly random, such that h(x) = s, kw, kc.

3. Sample `, r ∈ Fnp uniformly random, such that 〈`, r〉 = x.

4. Evaluate c = Ext(w; s)⊕m.

5. Calculate MACs σc = Tagkc(c) and σw = Tag′kw(w)

The final output is: on the left: `, w, σw, and on the right: r, c, σc.

Figure 3: Simple non-malleable code with a great rate. Here h is an affine evasive function. The
decoding procedure is analogous: the decoder inverts Steps 3 and 2, obtains keys kw, kc, verifies
MACs from the Step 5 and proceeds to obtain the message via the Step 4. If in Step 2 the function
h outputs ⊥, then the decoder aborts and outputs ⊥.

1.3 Related Work

We now sketch the landscape of this area, and particularly summarize the results on 2-split-state
NMCs in Table 1. In [DPW10], in addition to introducing non-malleable codes, Dziembowski et al.
also introduced a model of tampering called the t-split-state model, where the codeword consists of t
independently tamperable states. They give the first NMC constructions in the n-split-state model
(where n is the codeword length), with rate ≈ 0.19, and the 2-split-state model (using random
oracles). Dziembowski, Kazana and Obremski [DKO13] provided the first construction of 2-split-
state NMCs without any assumptions. Their construction enabled encoding of 1-bit messages and
used two source extractors. The first NMC in the 2-split-state model for k-bit messages was given by
Aggarwal, Dodis and Lovett [ADL14], which used inner product extractors with tools from additive
combinatorics. In [CG14a], Cheraghchi and Guruswami brought focus to the rate = message length

codeword length of
non-malleable codes. In particular, they showed that the optimal achievable rate for the t-split-state
family is 1−1/t. Note that in the split-state tampering model, having as few states is most desirable,
with 2 states being the best achievable. By the above result, the best possible rate for the 2-split-
state model is therefore 1

2 . A long series of works6 [CG14b, CZ14, ADKO15a, CGL16, Li17, Li19,
KOS17, KOS18, GMW18, AO20] has made partial progress towards achieving these parameters.
We now discuss some of these results. The work of Cheraghchi and Guruswami [CG14b] gave the
first optimal rate non-malleable code in the n-split-state model (where n is the codeword length).
More importantly, this work introduced non-malleable two-source extractors and demonstrated that
these special extractors can be used to generically build 2-split-state NMCs. This connection has led
to several fascinating works [CZ14, CGL16, Li17, Li19] striving to improve the rate and number of

6Other works have considered non-malleable codes in models other than the 2-split-state model or under computa-
tional assumptions [AAG+16, FMNV14, AGM+15, JW15, AKO17], [DNO17, DLSZ20, DKS19, CKR16, ADKO15a,
CGM+16, CL17, GMW18, BDSKM18, FHMV17].

10

Work Rate

[DPW10] 1/6 (Existential, Random Oracle Model)

[CG14a] 1/2 (Existential, Lower bound)

[DKO13] Ω(1/n) (Only for 1-bit messages)

[ADL14, Agg15, AB16] Ω(1/n4/5)

[ADKO15a] n−Ω(1)

[CGL16] n−Ω(1)

[Li17] Ω(1/ log(n))

[Li19] Ω(log log(n)/ log(n))

[Li19] Ω(1) (with constant error)

[AO20] ≈ 1/1, 500, 000

Our Result 1/3

Table 1: Prior Work on 2-state NMCs (n is codeword length)

states of non-malleable codes. Most notably, Chattopadhyay and Zuckerman [CZ14] built a 10-state
NMC with constant rate, making this the first constant rate construction with sublinear number
of states. They achieve their result by first building a non-malleable extractor with 10 sources and
then using the connection due to [CG14b]. Aggarwal, Dodis, Kazana and Obremski [ADKO15a]
introduced the concept of non-malleable reductions – which would later be used to build constant
rate NMCs [AO20]. The work of Kanukurthi, Obbattu and Sekar [KOS17] used seeded extractors
to build a compiler that transforms a low rate non-malleable code into one with high rate and,
in particular, obtained a rate 1/3, 4−state non-malleable code. This was subsequently improved
to three states in the works of Kanukurthi, Obbattu and Sekar [KOS18] as well as Gupta, Maji

and Wang [GMW18]. Li [Li19] obtained 2-split-state NMC with rate O(log log log(1/ε)
log log(1/ε)) (where ε is

the error). Particularly, this gave a rate of O(log log(n)/ log(n)), for negligible error ε = 2−Ω(n),
and a constant rate for constant error, making this the first constant rate scheme in the 2−split-
state model. The most recent work of Aggarwal and Obremski [AO20] relied on the concept of
non-malleable reductions and built the first constant rate 2-split-state NMC with negligible error.

1.4 Organization of the Paper

We describe the preliminary building blocks in Section 2. We then describe our rate boosters for
the non-malleable codes in Section 3 and give its application to non-malleable commitments in
Section 4. Finally, we describe our rate boosters for the non-malleable randomness extractors in
Section 5.

11

2 Preliminaries

2.1 Notation

We begin by describing some notations which we use. We use s ∈R S to denote that s is sampled
uniformly from the set S, and x← X to denote that x is sampled from the probability distribution
X. The concatenation of two binary strings x and y is denoted by x‖y. We denote the length of
a binary string x by |x|, and the cardinality of any set S by |S|. For any set S, US denotes the
uniform distribution on S, and we use the shorthand U` to represent U{0,1}` , for any integer ` > 0.

All logarithms are over base 2. The set X\Y def
= {x : x ∈ X,x 6∈ Y }, is the set of elements in X

that are not in Y .
For any event E, and any random variable X1, X1|E denotes the distribution of the ran-

dom variable X1 conditioned on the event E. For any random variables X1, X2 and an event E,
(X2, X1|E,X2) denotes the distribution where we sample X2 according to its marginal distribution,
and then sample X1 conditioned on the choice of X2 and the event E.

2.2 Statistical distance and Entropy

Let X1, X2 be two probability distributions over some set S. Their statistical distance is

∆(X1;X2)
def
= max

T⊆S
{Pr[X1 ∈ T]− Pr[X2 ∈ T]} =

1

2

∑
s∈S

∣∣∣∣Pr
X1

[s]− Pr
X2

[s]

∣∣∣∣
(they are said to be ε-close if ∆(X1;X2) ≤ ε and denoted by X1 ≈ε X2). We shorthand
∆(X1, Y ;X2, Y) by ∆(X1;X2|Y) for any random variables X1, X2, Y . The min-entropy of a random
variable W is H∞(W) = − log(maxw Pr[W = w]). For a joint distribution (W,E), the (average)
conditional min-entropy of W given E is defined in [DORS08] as

H̃∞(W | E) = − log(E
e←E

(max
w

Pr[W = w|E = e]))

(here the expectation is taken over e for which Pr[E = e] is nonzero). For a random variable W
over {0, 1}n, W |E is said to be an (n, t)−source if H̃∞(W |E) ≥ t. We require the following lemma
about conditional min-entropy.

Lemma 1. [DORS08] If B has at most 2λ possible values, then H̃∞(A | B) ≥ H∞(A,B) − λ ≥
H∞(A)− λ, and, more generally, H̃∞(A | B,C) ≥ H̃∞(A,B | C)− λ ≥ H̃∞(A | C)− λ

Lemma 2. For any random variables A,B, if A ≈ε B, then for any (possibly randomized) function
f , f(A) ≈ε f(B)

We require the following lemma from [ADL14], which states that if the pairs of random variables
(X1, X2) and (Y1, Y2) are statistically close, then for any set A, the conditional random variables
X2 conditioned on the event X1 ∈ A, i.e., X2|X1∈A, and Y2 conditioned on the event Y1 ∈ A, i.e.,
Y2|Y1∈A are also close.

Lemma 3. [ADL14, Claim 4] Let X1, X2, Y1, Y2 be random variables such that (X1, X2) ≈ε
(Y1, Y2). Then, for any non-empty set A, we have:

∆(X2|X1∈A;Y2|Y1∈A) ≤ 2ε

Pr[X1 ∈ A]
.

We require the following lemmas.

12

Lemma 4. [AO20] Let S be some random variable distributed over a set S, and let S1, . . . ,Sj be
a partition of S. Let φ : S → T be some function, and let D1, . . . , Dj be some random variables
over the set T . Assume that for all 1 ≤ i ≤ j,

∆ (φ(S)|S∈Si ; Di) ≤ εi.

Then
∆ (φ(S) ; D) ≤

∑
εi Pr[S ∈ Si] ,

for some random variable D ∈ T such that for all d Pr[D = d] =
∑

i Pr[S ∈ Si] · Pr[Di = d].

The following result is from [DP07]. For a proof, see [ADKO15b].

Lemma 5. Let A ∈ A and B ∈ B, and V0 be random variables such that A is independent of B given
any fixing of the random variable V0. Let V1, V2, . . . be random variables defined as functions of A,B
satisfying the following property. For all i ∈ N, if i is even then Vi = φi(V0, V1, . . . , Vi−1, A) and if
i is odd, then Vi = φi(V0, V1, . . . , Vi−1, B) for some function φi. Then for all i, A is independent of
B given any fixing of V0, V1, . . . , Vi.

Further, we require the following simple lemma about the statistical distance between conditional
distributions, given the distance between a pair of joint distributions.

Lemma 6. For any random variables X,Y and Z and uniform random variable U , with X,Y, U
defined over some binary space X , such that Y is independent of X conditioned on Z and also
independent of U conditioned on Z, if (X,Z) ≈ε (U,Z), then it implies that (Y,Z)|(X⊕Y = x) ≈ε
(U,Z)|(U ⊕ Y = x), for any x ∈ X .

Proof. Assume to the contrary that there exists an unbounded adversary, D, who can distinguish
between (Y,Z)|(X ⊕ Y = x) and (U,Z)|(U ⊕ Y = x) for some x ∈ X , with advantage > ε.
Then, we claim that we can build an adversary distinguishing (X,Z) and (U,Z) with the same
advantage. The reduction is simple: given (a, c) from (X,Z) or (U,Z), we sample b← Y |a⊕Y = x.
Given the independence of Y from both X|Z and U |Z, (b, c) is correctly simulated to be either
(Y,Z)|(X ⊕Y = x) (if (a, c) was from (X,Z)) or (U,Z)|(U ⊕Y = x) (if (a, c) was from (U,Z)), for
D. Hence, the lemma is proved.

2.3 Randomness Extractors

Definition 1 (Seeded Extractors). We say that a polynomial time probabilistic function Ext :
{0, 1}n × {0, 1}d → {0, 1}`, using d bits of randomness, is an (n, k, d, `, ε)-strong seeded extractor
if for all random variables W ∈ {0, 1}n, E correlated with W , such that H∞(W |E) ≥ k, and X
independent of W,E and uniform in {0, 1}d, we have (Ext(W ;X), X,E) ≈ε (U`, X,E), where U is
uniform in {0, 1}` and independent of X,E.

We require the following seeded extractor construction from [GUV07].

Lemma 7. [GUV07] For every constant ν > 0, all integers n ≥ k and all ε ≥ 0, there is

an explicit (efficient) (n, k, d, `, ε)−strong seeded extractor with ` = k − O
(

log n+ log
1

ε

)
and

d = O
(

log n+ log
1

ε

)
.

13

2.4 One-Time Message Authentication Codes

Our construction also requires the use of information theoretic one-time message authentication
codes, which give a guarantee that, given a message-tag pair, (m, t), where t is generated using
a tag generation algorithm, using a random authentication key, the probability with which an
(unbounded) adversary can come up with a valid message-tag pair (m′, t′), for m′ 6= m, is negligible.

Definition 2. A family of functions {Tagka : {0, 1}γ → {0, 1}δ,Vrfyka : {0, 1}γ × {0, 1}δ →
{0, 1}}ka∈{0,1}τ is said to be a µ−secure one time message authentication code if

1. For ka ∈R {0, 1}τ , ∀ m ∈ {0, 1}γ, Pr[Vrfyka(m,Tagka(m)) = 1] = 1,

where for any (m, t), Vrfyka(m, t)
def
=

{
1 if Tagka(m) = t

0 otherwise

2. For any m 6= m′, t, t′, Pr
ka

[Tagka(m) = t|Tagka(m′) = t′] ≤ µ, where ka ∈R {0, 1}τ .

For simplicity, we consider Tag to be a deterministic function.
The following lemma guarantees that there exists efficient one-time message authentication codes
where the key and tag can be much shorter than the message to be authenticated.

Lemma 8. [JKS93] For any γ, ε > 0 there is an efficient ε−secure one time MAC with δ ≤
(log(γ) + log(

1

ε
)), τ ≤ 2δ, where τ, γ, δ are key, message, tag length respectively.

We refer the reader to [DKK+12] for a construction satisfying these parameters.

2.5 Non-malleable Codes

Non-malleable codes (NMCs) were introduced in [DPW10]. We now state the equivalent definition
of non-malleable codes given in [CG14b].

Definition 3. A (possibly randomised) function pair (Enc :M→ C,Dec : C → M∪ {⊥}) is said
to be a coding scheme from M to C if ∀m ∈M, Pr[Dec(Enc(m)) = m] = 1(the probability is over

the randomness of Enc,Dec). The rate of the coding scheme is given by log |M|
log |C| .

Definition 4. A coding scheme (Enc,Dec) from M to C, is said to be ε- non-malleable with
respect to a tampering function family F ⊆ {f : C → C} if ∀ f ∈ F , there exists a distribution
NMSim (specific to f) over M∪ {same∗,⊥} such that ∀ m ∈M

Tampermf ≈ε Copy(m,NMSim)

where Tampermf denotes the distribution Dec(f(Enc(m))) and Copy(m,NMSim) is defined as

m̃← Simf

Copy(m,NMSim) =

{
m if m̃ = same∗

m̃ otherwise

NMSim should be efficiently samplable given oracle access to f(.).

14

Split-state Tampering Family. Specifically, we consider NMCs with respect to the two split-
state tampering family defined below, for message space {0, 1}α and codeword space {0, 1}β ×
{0, 1}β, comprising two states:

Fsplit
def
= {(f, g) : f, g : {0, 1}β → {0, 1}β}

Our construction requires NMCs with respect to the split-state tampering family satisfying an ad-
ditional property called “augmented security”, which was introduced in [AAG+16], and guarantees
that in addition to the tampered message, one of the states, say L, of the codeword is also simu-
latable independent of the message. We formally define NMCs against the split-state model, with
augmented security below.

Definition 5 (Augmented Non-malleable Codes). A coding scheme (Enc,Dec) from {0, 1}α to
{0, 1}β × {0, 1}β is called an ε-augmented non-malleable code with respect to Fsplit, if the follow-
ing holds. For any (possibly randomized) (f, g) ∈ Fsplit, let Tampermf,g denote the distribution
Dec(f(L), g(R)), for (L,R) ← Enc(m). There exists a simulator that, given oracle access to
(f, g)(.), outputs NMSim = (NMSim1,NMSim2) over ({0, 1}α ∪ {same∗,⊥}) × {0, 1}β such that,
for all m ∈ {0, 1}α

Tampermf,g, L ≈ε Copy(m,NMSim); ,

where (NMSim1,NMSim2) = (m̃, Lsim)← NMSim, and Copy(m,NMSim) is defined as

Copy(m,NMSim)
def≡

{
(m,Lsim) if m̃ = same∗

(m̃, Lsim) otherwise

We call the above code as left-augmented (NMSim outputs the left state), and say that the code is
right-augmented when the simulator outputs the right state instead.

We also require the following secret sharing property of non-malleable codes in the 2-split-state
model Fsplit. It states that any 2-split-state non-malleable code is a 2-out-of-2 secret sharing scheme.

Lemma 9. [ADKO15a] Let Enc : {0, 1}α → {0, 1}β×{0, 1}β and Dec : {0, 1}β×{0, 1}β → {0, 1}α∪
{⊥} be an ε-non-malleable code in the 2-split-state model for some ε < 1/2. For any pair of messages
m0,m1 ∈ {0, 1}α, Rm0 ≈2ε R

m1, where (Lm0 , Rm0)← Enc(m0) and (Lm1 , Rm1)← Enc(m1).

We instantiate our NMC with two constructions, one due to [ADL14, Agg15, AB16] and another
due to [Li19], which are both stated below in Theorems 1 and 2, respectively. While the former
instantiation gives us a very simple non-malleable code, as explained in the introduction, the latter
instantiation gives us a better error for the same rate.

Theorem 1. [ADL14, Agg15, AB16] There exists and efficient construction of an ε-non-malleable
code in the split state model with message space {0, 1}κ and codeword space Fqp × Fqp, for a prime
p ≤ 2O(κ), q = O(κ4) and ε = 2−Ω(κ).

Theorem 2. [Li19, Theorem 1.15] There are constants 0 < c1, c2 < 1 such that for any β ∈ N
and 2

− c2β
log β ≤ ε ≤ c1, there exists an explicit non-malleable code in the 2-split-state model with block

length 2β, rate Ω(log log log(1/ε)
log log(1/ε)) and error ε.

The NMC in Theorem 1 is shown to be augmented secure in [AAG+16]. Further, the NMC in
Theorem 2 relies on building a two source non-malleable extractor and then using the [CG14b]
compiler to get a 2-split-state NMC. Hence, we can show that the NMC in Theorem 2 is in fact an
augmented NMC using the following two observations: 1) the two source non-malleable extractor
constructed in [Li19] is in fact, a strong two source non-malleable extractor (which allows leaking
one complete source); 2) as proved in [KOS18, Proposition 2], the [CG14b] compiler gives an
augmented NMC, when a strong two-source non-malleable extractor is used.

15

3 A Rate Booster for Non-malleable Codes

In this section, we prove the following result.

Theorem 3. Let (NMEnc : {0, 1}κ → {0, 1}n × {0, 1}n, NMDec : {0, 1}n × {0, 1}n → {0, 1}κ) be
an ε-augmented non-malleable code in the split-state model. Then, for any κ∗ ∈ ω(n), there exists
an efficient O(

√
ε+ 2−Ω(κ/ log κ))-augmented non-malleable code (specifically, right-augmented, i.e.,

the simulator outputs the right state along with the tampered message) from κ∗-bit messages to at
most (3 + o(1))κ∗-bit codewords.

In Section 3.1, we will give our construction, and its security is proved in Section 3.2. Using
(NMEnc,NMDec) from Theorem 1, we get the following instantiation, which is conceptually very
simple, as shown in Figure 3 in the introduction.

Corollary 1. For any integer κ∗ > 0, ε∗ ∈ 2−Ω((κ∗)1/5/ polylog(κ∗)), there is an efficient ε∗-right-
augmented non-malleable code from κ∗-bit messages to (3 + o(1))κ∗-bit codewords in the split-state
model.

Further, using (NMEnc,NMDec) from Theorem 2, and setting κ∗ = n log n we can get the following
instantiation, with a better error at the expense of being more complicated.

Corollary 2. For any integer κ∗ > 0, ε∗ ∈ 2−Ω(κ∗/ log3 κ∗), there is an efficient ε∗-right-augmented
non-malleable code from κ∗-bit messages to (3 + o(1))κ∗-bit codewords in the split-state model.

3.1 Our construction

Building Blocks Let N = 2κ∗+ 8n. Our construction, shown in Figure 4 requires the following
building blocks.

• Let Ext be the (N ,k,d, κ∗,ε2)-strong seeded extractor from Lemma 7 with k = κ∗ + 4n, and
ε2 = 2−Ω(κ/ log κ).

• Let (Tag,Vrfy) be the one time ε3-message authentication codes from Lemma 8 with key
length τ = Θ(κ), messages of size at most N , tag length t = Θ(κ), and ε3 = 2−Ω(κ).

We now describe our construction below. The encoder chooses a source w and a seed s corre-
sponding to a seeded extractor Ext and then computes c := m⊕ Ext(w; s), where ⊕ is the bitwise
XOR. Further, it authenticates the source w and the ciphertext c to get the tags σw and σc re-
spectively, generates the non-malleable encoding (using the underlying NMC) of the seed and the
authentication keys to get (`, r) and finally outputs (`, w, σw) as one state and (r, c, σc) as the other.

Enc(m):

• s ∈R {0, 1}d, kw, kc ∈R {0, 1}τ , w ∈R {0, 1}N

• c = m⊕ Ext(w; s).

• σw = Tagkw(w) and σc = Tagkc(c)

• (`, r)← NMEnc(µ) where µ = (s, kw, kc)

• Output (`, w, σw), (r, c, σc)

Dec((`, w, σw), (r, c, σc)):

• (s, kw, kc) = NMDec(`, r).

• If Vrfykw(w, σw) = 1 and Vrfykc(c, σc) = 1,
Output m = Ext(w; s)⊕ c.

Else, Output ⊥.

Figure 4: Our NMC Construction

16

3.2 Security Proof

The correctness of the construction is immediate by definition. We now prove the desired non-
malleability.

Fix any m ∈ {0, 1}κ∗ , tampering functions (f, g) ∈ Fsplit. Throughout this proof, we use the
notation X to denote any part X of the message/codeword after tampering. Let f = (f1, f2, f3)
and g = (g1, g2, g3), where

f1 : {0, 1}n+N+t → {0, 1}n, f2 : {0, 1}n+N+t → {0, 1}N , f3 : {0, 1}n+N+t → {0, 1}t ,

and

g1 : {0, 1}n+κ∗+t → {0, 1}n, g2 : {0, 1}n+κ∗+t → {0, 1}κ∗ , g3 : {0, 1}n+κ∗+t → {0, 1}t .

LetW,S,Kw,Kc, C, σw, σc, L,R be the distributions of w, s, kw, kc, c, σw, σc, `, r
7 sampled/computed

in Enc(m). Now, apply the tampering to get (L,W, σw) = f(L,W, σw), (R,C, σc) = g(R,C, σc),
decode to get µ = NMDec(L,R) and M = Dec((L,W, σw), (R,C, σc)). Further, note that the
distribution M is the distribution Tampermf,g itself.

Our proof proceeds by partitioning the sample space of the codeword, {0, 1}n × {0, 1}N ×
{0, 1}t×{0, 1}n×{0, 1}κ∗×{0, 1}t and proving non-malleability in each of the partitions. Consider
the following three partitions.

P1 = {(`, w, σw, r, c, σc) : (f2(`, w, σw), f3(`, w, σw), g2(r, c, σc), g3(`, c, σc)) = (w, σw, c, σc),

NMDec(f1(`, w, σw), g1(r, c, σc)) = NMDec(`, r)} ,

P2 = {(`, w, σw, r, c, σc) : (f2(`, w, σw), f3(`, w, σw), g2(r, c, σc), g3(`, c, σc)) 6= (w, σw, c, σc),

NMDec(f1(`, w, σw), g1(r, c, σc)) = NMDec(`, r)} ,

and
P3 := {(`, w, σw, r, c, σc) : NMDec(f1(`, w, σw), g1(r, c, σc)) 6= NMDec(`, r)} ,

The event that the codeword is in partition P1 corresponds to the event when, even after tamper-
ing, the decoding of the inner codeword (L,R) remains unchanged, and also W,σw, C, σc remain
unchanged, and hence the final tampered codeword must decode to the original message. The
event that the codeword is in partition P2 corresponds to the event that the decoding of the inner
code remains unchanged after tampering, while one of the pairs (W,σw) or (C, σc) are changed.
We will show that if this event occurs then, using the security of MACs, the tampering is detected
with overwhelming probability. The event that the codeword is in partition P3 corresponds to the
event that the inner code is non-trivially tampered and does not decode to Dec(L,R). In this case,
we will show that the tampered codeword (and hence its decoding) is independent of the original
message m.

We begin by showing that the event that the codeword (L,W, σw, R, C, σc) ∈ Pi for some
i ∈ {1, 2, 3} is independent of the message m even given R,C, σc.

Let C̃ be uniform in {0, 1}κ∗ and independent of S,Kw,Kc,W, σw, and hence also of L,R.
Let σ̃c = TagKc(C̃). Let b1, b2, b̃2 be boolean random variables defined as follows. The ran-
dom variable b1 indicates whether W,σw changes after tampering, i.e., b1 = 1 if and only if

7We slightly abuse notation and let σw and σc denote both the distribution of the authentication tags σw and σc
as well as samples from those distributions.

17

(f2(L,W, σw), f3(L,W, σw)) = (W,σw). Similarly, the random variable b2 (respectively, b̃2) indi-
cates whether C, σc (respectively, C̃, σ̃c) changes after tampering, i.e., b2 = 1 (respectively, b̃2 = 1)
if and only if (g2(R,C, σc), g3(R,C, σc)) = (C, σc) (respectively, (g2(R, C̃, σ̃c), g3(R, C̃, σ̃c)) =
(C̃, σ̃c)). Notice that for any i, whether the event that (L,W, σw, R, C, σc) ∈ Pi (respectively,
(L,W, σw, R, C̃, σ̃c) ∈ Pi) occurs is determined by the random variables L,R, f1(L,W, σw), g1(R,C, σc),
b1, and b2 (respectively, L,R, f1(L,W, σw), g1(R, C̃, σ̃c), b1, and b̃2).

Lemma 10.
∆
(
C, σc; C̃, σ̃c | L,R, f1(L,W, σw), b1

)
≤ 4ε+ 2−Ω(κ/ log κ) .

Proof. By Lemma 9, we have that one of the shares of a split-state non-malleable code is 2ε-
independent of the message. In other words, there is a random variable L∗ independent of S,Kw,Kc

such that
L, S,Kw,Kc ≈2ε L

∗, S,Kw,Kc ,

Introducing fresh random variable W that is sampled independent of L, S,Kw,Kc, and observing
that σw is a deterministic function of Kw and W , we have that

L, S,Kw,Kc,W, σw ≈2ε L
∗, S,Kw,Kc,W, σw . (10)

Let b∗1 be a boolean random variable that is 1 if and only if (f2(L∗,W, σw), f3(L∗,W, σw)) = (W,σw).
By Lemma 1, the average min-entropy of W given b∗1, f1(L∗,W, σw) is at least N − n− 1, which is
at least k. Thus, by Lemma 7, we have that

∆(Ext(W ;S) ; U | b∗1, f1(L∗,W, σw), L∗,Kw,Kc, S) ≤ ε2 , (11)

where U is uniform in {0, 1}κ∗ and independent of all other random variables.
Applying Lemma 2 to Equation 10 twice, we get

∆(b∗1, f1(L∗,W, σw), L∗ ; b1, f1(L,W, σw), L | Ext(W ;S),Kw,Kc, S) ≤ 2ε , (12)

and
∆(b∗1, f1(L∗,W, σw), L∗ ; b1, f1(L,W, σw), L | U,Kw,Kc, S) ≤ 2ε . (13)

By triangle inequality on inequalities 11, 12, 13, we get that

∆(Ext(W ;S) ; U | b1, f1(L,W, σw), L,Kw,Kc, S) ≤ ε2 + 4ε .

Notice that the distribution R is independent of W and is only correlated to (L,Kw,Kc, S) (as
(L,R) ≡ NMEnc(Kw,Kc, S)). Hence by applying Lemma 2, we can include R to get that

∆(Ext(W ;S) ; U | b1, f1(L,W, σw), L,R,Kw,Kc, S) ≤ ε2 + 4ε .

Finally, observing that given (b1, f1(L,W, σw), L,R,Kw,Kc, S), the random variable Ext(W ;S)⊕m
is distributed as C, and U ⊕m is distributed as C̃, we get the desired result by another application
of Lemma 2.

The following lemma bounds the probability that the codeword is in P2 and doesn’t decode to ⊥.

Lemma 11.
Pr[Tampermf,g 6= ⊥ ∧ (L,W, σw, R, C, σc) ∈ P2] ≤ 4ε+ 2−Ω(κ) .

18

Proof. Since the codeword is in P2, we have that Dec(L,R) = Dec(L,R), and hence Kw,Kc remain
unchanged after tampering. Moreover, one of the pairs (W,σw) or (C, σc) has been tampered with.
Assume without loss of generality that (W,σw) has been changed after tampering. By the security
of MAC, this tampering will be detected by our decoding algorithm as long as the tampering is
independent of Kw. We argue using the secret sharing property of non-malleable codes that this is
indeed the case since L is almost independent of Kw.

By Lemma 9, we have that one of the shares of a split-state non-malleable code is 2ε-independent
of the message. In other words, there is a random variable L∗ independent of S,Kw,Kc such that

L, S,Kw,Kc ≈2ε L
∗, S,Kw,Kc ,

Introducing fresh random variable W that is sampled independent of L, S,Kw,Kc, and observing
that σw is a deterministic function of Kw and W , we have that

L, S,Kw,Kc,W, σw ≈2ε L
∗, S,Kw,Kc,W, σw .

Also, by definition of one-time message authentication codes, we have that

Pr[VrfyKw(f2(L∗,W, σw), f3(L∗,W, σw)) = 1 ∧ (f2(L∗,W, σw), f3(L∗,W, σw)) 6= (W,σw)] = 2−Ω(κ) .

By triangle inequality, we get

Pr[VrfyKw(f2(L,W, σw), f3(L,W, σw)) = 1 ∧ (f2(L,W, σw), f3(L,W, σw)) 6= (W,σw)] ≤ 2−Ω(κ)+2ε .

Similarly, there exists R∗ independent of S,Kw,Kc such that

R,S,Kw,Kc ≈2ε R
∗, S,Kw,Kc ,

and observing that C is independent of R,Kw,Kc given S, we have that

R,S,Kw,Kc, C, σc ≈2ε R
∗, S,Kw,Kc, C, σc .

This implies, via an argument similar as above, that

Pr[VrfyKc(g2(R,C, σc), f3(R,C, σc)) ∧ (g2(R,C, σc), g3(R,C, σc) 6= (C, σc)] ≤ 2−Ω(κ) + 2ε .

The desired result then follows from a simple union bound by observing that if Tampermf,g 6= ⊥,
and the codeword is in P2, i.e., Kw,Kc remain unchanged after tampering, while W,σw, C, σc are
changed after tampering, then we must have that

• VrfyKw(f2(L,W, σw), f3(L,W, σw)) = 1

• VrfyKc(g2(R,C, σc), f3(R,C, σc)) = 1,

• At least one of (f2(L,W, σw), f3(L,W, σw)) 6= (W,σw) or (g2(R,C, σc), g3(R,C, σc)) 6= (C, σc).

Lemma 12. For any fixed kw, kc, and any α > 2ε+ 2−d, if Pr[(L,W, σw, R, C̃, σ̃c) ∈ P3] ≥ α, then
the statistical distance between

Tampermf,g, R, C, σc|(L,W,σw,R,C,σc)∈P3

and
Dec(f(L,W, σw), g(R, C̃, σ̃c)), R, C̃, σ̃c|(L,W,σw,R,C̃,σ̃c)∈P3

is at most 2−Ω(κ/ log κ) + 4ε
α .

19

Proof. In this lemma, we wish to argue that the decoding of the tampered codeword is independent
of the message m. We begin by using that since the codeword is in P3, the output of the tampered
codeword for the inner code NMEnc(S, kw, kc) is independent of S which is the seed of the strong
extractor.

We will use the non-malleability of the inner code, (NMEnc,NMDec). Consider the tampering
functions f∗, g∗ on (L,R) that sampleW, C̃ uniformly and then compute f∗(L) = f1(L,W,Tagkw(W))

and g∗(R) = g1(R, C̃,Tagkc(C̃)). Let S,Kw,Kc = NMDec(f∗(L), g∗(R)).8 By the ε-augmented
non-malleability of (NMEnc,NMDec), there exists a simulator NMSim such that

S,Kw,Kc, L, S,W, C̃ ≈ε Copy(µ,NMSim), S,W, C̃ , (14)

where the output of NMSim depends on W, C̃ and the functions f1, g1. Recall (from definition
7) that NMSim is parsed as the joint distribution (NMSim1, L

Sim). We further parse NMSim1 as
(SSim,KSim

w ,KSim
c), when NMSim1 is conditioned to not output same∗ or ⊥. If NMSim1 = ⊥,

set (SSim,KSim
w ,KSim

c) = (⊥,⊥,⊥). The event that (L,W, σw, R, C̃, σ̃c) ∈ P3 is the same as
(S,Kw,Kc) 6= (S, kw, kc). By inequality (14) and the hypothesis of the lemma, we have that
Pr[NMSim1 /∈ {same∗, (S, kw, kc)}] ≥ α− ε.
By Lemma 3, we have that

(S,Kw,Kc, L, S,W, C̃)|(S,Kw,Kc) 6=(S,kw,kc) ≈ 2ε
α
Copy(µ,NMSim), S,W, C̃|NMSim1 /∈{same∗,(S,kw,kc)}

(S,Kw,Kc, L, S,W, C̃)|(S,Kw,Kc) 6=(S,kw,kc) ≈ 2ε
α

(SSim,KSim
w ,KSim

c , LSim, S,W, C̃)|NMSim1 /∈{same∗,(S,kw,kc)}
(15)

We have that for any w,

Pr[W = w|NMSim1 /∈ {same∗, (S, kw, kc)}] ≤
Pr[W = w]

Pr[NMSim1 /∈ {same∗, (S, kw, kc)}]
≤ 2−N

α− ε
≤ 2d−N ,

where we use that α > 2ε+ 2−d. Thus H∞(W |NMSim1 /∈ {same∗, (S, kw, kc)}) ≥ N − d.
For the remainder of the proof, we assume NMSim1 /∈ {same∗, (S, kw, kc)} (or, when appropriate,
(L,W, σw, R, C̃, σ̃c) ∈ P3) but don’t state them explicitly.
Let VrfySim` := VrfyKSim

w
(f2(LSim,W, σw), f3(LSim,W, σw)), where σw = Tagkw(W). By Lemma 1, we

have that

H̃∞

(
W |SSim,KSim

w ,KSim
c ,VrfySim` , f1(LSim,W, σw),Ext(f2(LSim,W, σw);SSim)

)
is at least N − d− κ∗ − κ− n− 1 ≥ κ∗ + 4n. Thus, by the strong extractor property of Ext,

Ext(W ;S) ≈ε2 U |S,LSim, C̃, f1(LSim,W, σw),Ext(f2(LSim,W, σw);SSim), SSim,KSim
w ,KSim

c ,VrfySim`
(16)

In order to show that the tampered codeword is independent of the message, we first need a
statement similar to the inequality 16, but where the simulated output is replaced by the decod-
ing of the tampering of (L,W, σw, R, C̃, σ̃c). We will obtain this using (15) twice and applying
the triangle inequality. For the remainder of the proof, let L,W, σw, R, C̃, σ̃c be distributed as
L,W, σw, R, C̃, σ̃c|(L,W,σw,R,C̃,σ̃c)∈P3

. Also, let Kw,Kc, S, L,R,W be the corresponding random

8For the purpose of this proof alone, we slightly abuse notation and let S,Kw,Kc denote the tampered seed and

the MAC keys when the codeword ((L,W,Tagkw (W)), (R, C̃,Tagkc(C̃))) is tampered using functions f, g.

20

variables after tampering conditioned on the event that (L,W, σw, R, C̃, σ̃c) ∈ P3. We short-
hand the distribution in the LHS and RHS of 16 by A and B, respectively. Also, we define
Vrfy` := VrfyKw(f2(L,W, σw), f3(L,W, σw)). Applying Lemma 2 on inequality 15, we get that

A ≈ 2ε
α
Ext(W ;S), S, L, C̃, L,Ext(W ;S), S,Kw,Kc,Vrfy` , (17)

and
B ≈ 2ε

α
U, S, L, C̃, L,Ext(W ;S), S,Kw,Kc,Vrfy` . (18)

By triangle inequality applied on the inequalities (17),(18), and (16), we have that

Ext(W ;S) ≈ε2+ 4ε
α
U |S,L, C̃, L,Ext(W ;S), S,Kw,Kc,Vrfy` .

Notice that given (S,L, C̃, S,Kw,Kc, L), the random variable R is independent of W , and hence
we obtain that

Ext(W ;S) ≈ε2+ 4ε
α
U |S,L, C̃, L,Ext(W ;S), S,Kw,Kc,Vrfy`, R, g1(R, C̃, σ̃c) .

Using Lemma 2, we can drop C̃ on both sides to get

Ext(W ;S) ≈ε2+ 4ε
α
U |S,L, L,Ext(W ;S), S,Kw,Kc,Vrfy`, R,R (19)

where R
def
= g1(R, C̃, σ̃c).

We now observe that W is independent of C̃ given S,L, L,Ext(W ;S), S,Kw,Kc,Vrfy`, R,R. To see
this, we will use Lemma 5 with V0 = L,R, S, kw, kc, and then V1 = L, V2 = R, V3 = Ext(W ;S),Vrfy`,
and observing that S,Kw,Kc is a deterministic function of L andR. Thus, Ext(W ;S) is independent

of C̃ given S,L, L,Ext(W ;S), S,Kw,Kc,Vrfy`, R,R.

Now, applying Lemma 6 to equation 19, withX = Ext(W,S), Y = C̃, Z = (S,L, L,Ext(W ;S), S,Kw,

Kc,Vrfy`, R,R), and using the above observation that Y = C̃ is independent of Ext(W ;S) given Z

and of U given Z, we get that conditioned on C̃ ⊕ Ext(W ;S) = m on the LHS, and on C̃ ⊕U = m
on the RHS:

C, S, L, L,Ext(W ;S), S,Kw,Kc,Vrfy`, R,R ≈ε2+ 4ε
α
C̃, S, L, L,Ext(W ;S), S,Kw,Kc,Vrfy`, R,R ,

since C̃ conditioned on C̃ ⊕U = m is distributed identically as C̃ given all other random variables
on the RHS in the above inequality.
The desired result follows by observing that the tampered codeword is a function of

L,R,Ext(W ;S), C,R,Vrfy` .

Proof of Theorem 3. The simulator Simf,g does the following. It samplesW,S,Kw,Kc, σw, L,R, C̃, σ̃c.
Let Isim ∈ {1, 2, 3} be a random variable indicating the partition (PIsim) in which the sampled code-
word belongs. If (L,W, σw, R, C̃, σ̃c) ∈ P1, then the simulator outputs (same∗, R, C̃, σ̃c) and sets
Isim = 1, if (L,W,R, C̃) ∈ P2 then the simulator outputs (⊥, R, C̃, σ̃c) and sets Isim = 2, else the

simulator outputs
(
Dec((L,W, σw), (R, C̃, σ̃c)), R, C̃, σ̃c

)
and sets Isim = 3.

21

Now, if ∆
(
(Tampermf,g, R, C, σc)|(L,W,σw,R,C,σc)∈Pi ; Copy(m,Simf,g)|Isim=i

)
≤ γi, by Lemma 4, we

will get:

∆((Tampermf,g, R, C, σc); D
m
f,g) ≤

3∑
i=1

γi Pr[(L,W, σw, R, C, σc) ∈ Pi], (20)

where Dm
f,g is a distribution on ({0, 1}κ∗ ∪ {same∗,⊥}) × {0, 1}n+κ∗+t, such that Pr[Dm

f,g = d] =∑3
i=1 Pr[(L,W, σw, R, C, σc) ∈ Pi] · Pr[Copy(m,Simf,g)|Isim=i = d]. But, by Lemma 10, we get

(C, σc) ≈4ε+2−Ω(κ/ log κ) (C̃, σ̃c)|(L,R,L, b1), where b1 is the bit indicating if (W,σw) = (W,σw) or

not, and the event that (L,W, σw, R, C, σc) ∈ Pi (or correspondingly (L,W, σw, R, C̃, σ̃c) ∈ Pi) can
be determined by the random variables on the LHS and RHS of this inequality. Hence, together with
the fact that Pr[Copy(m,Simf,g) = d] =

∑3
i=1 Pr[(L,W, σw, R, C̃, σ̃c) ∈ Pi]·Pr[Copy(m,Simf,g)|Isim=i =

d], for each d ∈ ({0, 1}κ∗ ∪ {same∗,⊥})× {0, 1}n+κ∗+t, we get:

∆(Dm
f,g ; Copy(m,Simf,g)) ≤ 4ε+ 2−Ω(κ/ log κ) (21)

Combining inequality 20 and 21, by triangle inquality, we get:

∆((Tampermf,g, R, C, σc); Copy(m,Simf,g)) ≤ 4ε+ 2−Ω(κ/ log κ) +
3∑
i=1

γi Pr[(L,W, σw, R, C, σc) ∈ Pi],

(22)
Hence, now we consider each partition and bound the corresponding term in the RHS of the
summation in the inequality 22.
First, since we know that (Tampermf,g, R, C, σc)|(L,W,σw,R,C,σc)∈P1

= (m,R,C, σc) and

Copy(m,Simf,g)|Isim=1 = (m,R, C̃, σ̃c), we use Lemma 10 to get:

∆((Tampermf,g, R, C, σc)|(L,W,σw,R,C,σc)∈P1
; Copy(m,Simf,g)|Isim=1) ≤ ∆((C, σc) ; (C̃, σ̃c)|(L,R,L, b1))

≤ 4ε+ 2−Ω(κ/ log κ) (23)

Hence, γ1 = 4ε+ 2−Ω(κ/ log κ), on the RHS of inequality 22.
Similarly, since we know that by Lemma 11, Pr[(Tampermf,g 6= ⊥ ∧ (L,W, σw, R, C, σc) ∈ P2] ≤
4ε+ 2−Ω(κ), and Copy(m,Simf,g)|Isim=2 = (⊥, R, C̃, σ̃c), we use Lemma 10 to get:

Pr[(L,W, σw, R, C, σc) ∈ P2] ·∆((Tampermf,g, R, C, σc)|(L,W,σw,R,C,σc)∈P2
; Copy(m,Simf,g)|Isim=2)

≤ Pr[(Tampermf,g 6= ⊥ ∧ (L,W, σw, R, C, σc) ∈ P2] + ∆((C, σc) ; (C̃, σ̃c)|(L,R,L, b1))

≤ 8ε+ 2−Ω(κ/ log κ) . (24)

Hence, γ2 · Pr[(L,W, σw, R, C, σc) ∈ P2] ≤ 8ε+ 2−Ω(κ/ log κ), on the RHS of inequality 22.
Now, for the third partition, we set α =

√
ε + 2−d/2(> 2ε + 2−d) in Lemma 12, and get that for

any fixing a, b of Kw,Kc, if Pr[(L,W, σw, R, C̃, σ̃c) ∈ P3|Kw = a,Kc = b] ≥ α =
√
ε+ 2−d/2, then

∆((Tampermf,g, R, C, σc)|(L,W,σw,R,C,σc)∈P3,Kw=a,Kc=b ; Copy(m,Simf,g)|Isim=3,Kw=a,Kc=b)

≤ 2−Ω(κ/ log κ) +
4ε

α

≤ 2−Ω(κ/ log κ) + 4
√
ε

22

Now, since d = Ω(κ/ log κ), and once again using Lemma 10, we get:

Pr[(L,W, σw, R, C, σc) ∈ P3] ·∆((Tampermf,g, R, C, σc)|(L,W,σw,R,C,σc)∈P3
; Copy(m,Simf,g)|Isim=3)

≤ 4ε+ 2−Ω(κ/ log κ) + Pr[Isim = 3] ·
∑
a,b

Pr[Kw = a,Kc = b|Isim = 3]

·∆((Tampermf,g, R, C, σc)|Isim=3,Kw=a,Kc=b ; Copy(m,Simf,g)|Isim=3,Kw=a,Kc=b)

≤ (4ε+ 2−Ω(κ/ log κ)) +
∑
a,b

Pr[Kw = a,Kc = b] · Pr[Isim = 3|Kw = a,Kc = b]

·∆((Tampermf,g, R, C, σc)|Isim=3,Kw=a,Kc=b ; Copy(m,Simf,g)|Isim=3,Kw=a,Kc=b)

≤ (4ε+ 2−Ω(κ/ log κ)) +
∑
a,b

Pr[Kw = a,Kc = b] ·O(
√
ε+ 2−Ω(κ/ log κ))

≤ O(
√
ε+ 2−Ω(κ/ log κ)) (25)

In the above inequality 25, we make an abuse of notation, and use (Tampermf,g, R, C, σc)|Isim=3,Kw=a,Kc=b

to denote the distribution where the partition is first picked using Isim, and then the distribution
(Tampermf,g, R, C, σc) is drawn conditioned on the partition. This distribution is clearly identical to
(Tampermf,g, R, C, σc)|(L,W,σw,R,C,σc)∈P3

, which is what we use above.

Hence, γ3 · Pr[(L,W, σw, R, C, σc) ∈ P3] = O(
√
ε + 2−Ω(κ/ log κ)), on the RHS of inequality 22.

Finally, we can use inequalities 23,24 and 25, in inequality 22 to get:

∆((Tampermf,g, R, C, σc); Copy(m,Simf,g)) ≤ O(
√
ε+ 2−Ω(κ/ log κ))

4 Application to Non-malleable Commitments

In this section, we show an application of our 1/3-rate NMC to get the first non-malleable commit-
ment scheme with computational binding and statistical hiding, achieving a communication cost of
approximately 41 times the length of the message being committed to. We begin by defining non-
malleable commitments, introduced by Dolev, Dwork and Naor [DDN91], that give computational
binding and statistical hiding property.

Definition 6. [GPR16] A non-malleable commitment scheme, 〈C,R〉 is a two-phase, two-party
protocol between a committer C and a receiver R. In the commit phase, C uses secret m and
interacts with R who uses no input. Let z = Com(m; r) denote R’s view after the commit phase.
Let (w,m) = Decom(z,m, r) denote R’s view after the decommit phase, which R either accepts or
rejects. We say that 〈C,R〉 is a computationally binding and ε-statistically hiding non-malleable
commitment scheme if the following properties hold:

1. Correctness: If the parties follow the protocol, then R(z, w,m) = 1, i.e., the receiver accepts.

2. Binding: For any PPT adversarial receiver R∗, that outputs (w′,m′), (w,m), z, with m′ 6= m,
the probability that R(z, w,m) = 1 = R(z, w′,m′) is negligible.

3. Hiding: For all distinct message pairs m,m′, {Com(m; r)}r ≈ε {Com(m′; r′)}r′.

4. Non-malleability: For avoiding trivial man-in-the-middle attack of copying the identity
of the committer, we consider the committer and receiver to additionally have an identity

23

id ∈ {0, 1}λ as common input (λ is the computational security parameter). To define non-
malleability, we consider the real/ideal paradigm. In the real interaction, there is a man-in-
the-middle adversary M interacting with a committer, C, in the left session and a receiver
R, in the right. All the quantities associated with the right interaction are denoted by the
“tilde’d” versions of their left counterparts (e.g., C commits to m in the left interaction while
M commits to m̃ in the right). Let MIMm denote the random variable describing (VIEW, m̃),
consisting of M ’s view in the experiment and the value M commits to in the right interaction,
given that C committed to m on the left. The ideal interaction is the same, except that C
commits to an arbitrary message, say 0, on the left. Let MIM0 denote the corresponding
random variable for 0. M is forced to use an identity ĩd on the right, which is distinct from
id used on the left. MIMm and MIM0 output a special symbol ⊥id when M has used the same
identity on the right as received on the left.
Non-malleability guarantees that for every PPT man-in-the-middle M , and for all messages
m, we have {MIMm(y)}y∈{0,1}∗ ≈c {MIM0(y)}y∈{0,1}∗, where y is the auxiliary input received
by M .

The round complexity of a commitment scheme denotes the number of rounds of interaction between
the committer and receiver. The communication complexity of a commitment scheme denotes the
total size of the transcript of the interaction between the committer and the receiver.

We consider the textbook non-malleable commitment scheme from [GPR16], which uses a 2-
split-state augmented non-malleable code tolerating leakage, as an underlying building block. We
instantiate their scheme with our 1/3-rate augmented non-malleable code to get a non-malleable
commitment scheme with a communication complexity of 41 · |message length|. To be able to use
our NMC, we show that it tolerates leakage as well. We begin by looking at the building blocks
used.

4.1 Building Blocks

The construction from [GPR16] requires two building blocks, which we instantiate using different
schemes than theirs.

• A non-interactive computationally binding and statistically hiding commitment, (Com,Decom),
with message space {0, 1}2β1 , which is a non-interactive two phase protocol as in Definition
6 satisfying correctness, computational binding and statistical hiding.

We can instantiate our scheme with the hashing based statistically hiding commitment
of [HM96], which has commitment size of ≈ 9 · (message length).

• A leakage resilient and augmented non-malleable code, (Enc,Dec), with message space {0, 1}α
and codeword space {0, 1}β1 × {0, 1}β2 , as defined below:

Definition 7 (Augmented Leakage Resilient Non-malleable codes). A coding scheme (Enc,Dec)
from {0, 1}α to {0, 1}β1 × {0, 1}β2 is called an ε-augmented leakage resilient non-malleable
code with respect to Fsplit, tolerating a µ bits of leakage from the left state, if the following
holds. For any leakage function Leak : {0, 1}β1 → {0, 1}µ and any (possibly randomized)
(f, g) ∈ Fsplit, let Tampermf,g denote the distribution Dec(f(L), g(R)), for (L,R) ← Enc(m),
and leakL = Leak(L). There exists a simulator that, given access to leakL = Leak(L) and
Leak(.), outputs a distribution Simf,g,leakL,Leak over ({0, 1}α ∪ {same∗,⊥}) × {0, 1}β2 such
that, for all m ∈ {0, 1}α

Tampermf,g, R, leakL ≈ε Copy(m,Simf,g,leakL,Leak), leakL,

24

where (m̃,Rsim)← Simf,g,leakL,Leak, and Copy(m,Simf,g,leakL,Leak) is defined as

Copy(m,Simf,g,leakL,Leak)
def≡

{
(m,Rsim) if m̃ = same∗

(m̃,Rsim) otherwise

We can directly use [BFO+20, Theorem 3] to show that our augmented (w.r.t. the right state)
NMC from Theorem 3 is also tolerant to µ bits of leakage from the left state, as in Definition
7. This is formally stated in the lemma below, and we give a complete proof of the same in
Appendix A.

Lemma 13. If (Enc,Dec) is a 2-split-state ε-augmented non-malleable code, then it is also
a 2-split-state 2µε-augmented leakage resilient non-malleable code, tolerating µ bits of leakage
from the left state, as in Definition 7.

4.2 Construction

We now describe the construction of non-malleable commitments from [GPR16], using the building
blocks from Section 4.1. For multiplication and addition operations in the construction below, we
assume a natural correspondence between the binary β1-bit strings and the field GF (2β1).

• Setup: Let id ∈ {0, 1}λ be C’s identity, also given as input to R. λ is the computational
security parameter.

• Inputs: C has input message m ∈ {0, 1}α to be committed to. id is a common input of
both C and R.

• Commit Phase:

1. C → R: Let (L,R)← Enc(m‖id). Pick random r ← {0, 1}β1 and send Com(L‖r) to R.

2. R → C: Send random a← {0, 1}β1\{0|β1|}.
3. C → R : Send b = ra+ L and R.

• Decommit Phase: C opens the commitment in Step 1. Let L′‖r′ be the decommited
value.

• Receiver’s Output: If L′ and r′ do not satisfy r′a + L′ = b, then output ⊥inc. Else,
compute m′‖id′ = Dec(L′, R), and output ⊥id if id′ = id. Else output m′.

Figure 5: Non-malleable Commitment Scheme 〈C,R〉

In [GPR16], the additional property needed from the underlying NMC is called conditional
augmented property [GPR16, Definition 10], which guarantees that if the left state L is first picked
at random from the space of left state of valid codewords (whose decode is 6= ⊥) and then the right
state is picked, conditioned on the message and the left state, the augmented non-malleability (with
right augmentedness) is still guaranteed. We observe here that the proof of [GPR16, Claim 2],
showing that a non-malleable code is conditional augmented, only requires leakage resilience from
the left state of the NMC. Hence, we can re-state the main theorem of [GPR16, Theorem 1], with
instantiations from Section 4.1, as follows.

25

Theorem 4. [GPR16] If (Com,Decom) is a non-interactive computationally binding and statis-
tically hiding commitment scheme, and (Enc,Dec) is a leakage resilient augmented non-malleable
code, then the protocol 〈C,R〉 in Figure 5 is a non-malleable commitment scheme against synchro-
nizing adversary with computational binding and statistical hiding.

Further, using the hashing based non-interactive commitment scheme [HM96] and our rate 1/3-
augmented and leakage resilient non-malleable code, the communication cost of the above scheme
is 41α, where α is the message length.

Proof. We refer the reader to [GPR16] for a complete proof of the theorem above. The only
difference is that, since we use a computational binding and statistical hiding commitment scheme
to instantiate, we also get computational binding (which directly follows from the binding property
of the underlying commitment scheme), and statistical hiding (which directly follows from the hiding
property of the underlying commitment scheme and secret sharing property of the non-malleable
code) for the non-malleable commitment scheme.

Communication Cost. Since the commitment size of (Com,Decom) is 9 times the length of
the message being committed, |L| = 2α and |R| = α, we get the total size of the transcript
= |Com(L‖r)|+ |a|+ |b|+ |R| ≈ 9(|L|+ |r|) + 5α = 41α.

5 A Rate Booster for Two-source Non-malleable Extractors

We begin by defining a strong two-source non-malleable extractor, introduced in [CG14b].

Definition 8. A function nm2Ext : {0, 1}n1×{0, 1}n2 → {0, 1}m is a strong (n1, n2, k1, k2, ε)-strong
two-source non-malleable extractor if for each (n1, k1)-source X and (n2, k2)-source Y , the following
holds. Let f : {0, 1}n1 → {0, 1}n1 and g : {0, 1}n2 → {0, 1}n2 be functions with no fixed points, i.e.,
for each x ∈ {0, 1}n1, y ∈ {0, 1}n2, f(x) 6= x and g(y) 6= y. Then,

nm2Ext(X,Y), X, nm2Ext(f(X), g(Y)) ≈ε Um, X, nm2Ext(f(X), g(Y))

We drop the adjective strong when the distribution X is excluded from the statistical distance above.
The rate is defined to be the ratio m/(n1 + n2).

We consider an (n1, n2, k1, k2, d, ε1)-strong two-source unbalanced non-malleable extractor, nm2Ext,
with n2 = o(n1), and an (n1, k1, d, l, ε2)-strong seeded extractor and define the following function
nm2Ext∗ : {0, 1}n1 × {0, 1}n2 → {0, 1}l:

nm2Ext∗(x, y)
def
= Ext(x; nm2Ext(x, y)), ∀ x ∈ {0, 1}n1 , y ∈ {0, 1}n2

We show that the above function is a two-source non-malleable extractor achieving rate 1/2, with
appropriate instantiation of Ext.

Theorem 5. If nm2Ext is an (n1, n2, k1, k2, d, ε1)-strong two-source unbalanced non-malleable ex-
tractor, with n2 = o(n1) and Ext is an (n1, k1, d, l, ε2)-strong seeded extractor,then nm2Ext∗ is an
(n1, n2, k1, k2, l, ε1 + ε2)-two-source non-malleable extractor. Further, if we instantiate Ext with the
seeded extractor in Lemma 7, with k1, l < n1/2, then the rate of nm2Ext∗ is 1/2.

Proof. Consider an (n1, k1)-source X, an (n2, k2)-source Y and tampering functions f and g (with
no fixed points). By the nm2Ext security, we get:

X, nm2Ext(X,Y), nm2Ext(f(X), g(Y)) ≈ε1 X,Ud, nm2Ext(f(X), g(Y))

26

By applying the function Ext on the first two distributions on either side and using Lemma 2, we
get:

Ext(X; nm2Ext(X,Y)), nm2Ext(f(X), g(Y)) ≈ε1 Ext(X;Ud), nm2Ext(f(X), g(Y))

By security of Ext, since H̃∞(X|nm2Ext(f(X), g(Y))) ≥ k1, we get:

Ext(X;Ud), nm2Ext(f(X), g(Y)) ≈ε2 Ul, nm2Ext(f(X), g(Y))

Hence, by triangle inequality, this gives:

Ext(X; nm2Ext(X,Y)), nm2Ext(f(X), g(Y)) ≈ε1+ε2 Ul, nm2Ext(f(X), g(Y))

which proves that nm2Ext∗ is a two-source non-malleable extractor.
Rate. Setting Ext to be the extractor from Lemma 7, with k1, l < n/2 gives nm2Ext∗ a rate of at
most (n1/2)/(n1 + n2) = 1/2.

Acknowledgement

The second author thanks Venkatesan Guruswami for insightful discussions.

References

[AAG+16] Divesh Aggarwal, Shashank Agrawal, Divya Gupta, Hemanta K. Maji, Omkant
Pandey, and Manoj Prabhakaran. Optimal computational split-state non-malleable
codes. In Theory of Cryptography - 13th International Conference, TCC 2016-A, Tel
Aviv, Israel, January 10-13, 2016, Proceedings, Part II, pages 393–417, 2016.

[AARR02] Dakshi Agrawal, Bruce Archambeault, Josyula R. Rao, and Pankaj Rohatgi. The EM
side-channel(s). In Burton S. Kaliski Jr., Çetin Kaya Koç, and Christof Paar, edi-
tors, Cryptographic Hardware and Embedded Systems - CHES 2002, 4th International
Workshop, Redwood Shores, CA, USA, August 13-15, 2002, Revised Papers, volume
2523 of Lecture Notes in Computer Science, pages 29–45. Springer, 2002.

[AB16] Divesh Aggarwal and Jop Briët. Revisiting the sanders-bogolyubov-ruzsa theorem in
fpn and its application to non-malleable codes. In IEEE International Symposium on
Information Theory, ISIT 2016, Barcelona, Spain, July 10-15, 2016, pages 1322–1326.
IEEE, 2016.

[ADKO15a] Divesh Aggarwal, Yevgeniy Dodis, Tomasz Kazana, and Maciej Obremski. Non-
malleable reductions and applications. In Proceedings of the Forty-Seventh Annual
ACM on Symposium on Theory of Computing, STOC 2015, Portland, OR, USA,
June 14-17, 2015, pages 459–468, 2015.

[ADKO15b] Divesh Aggarwal, Stefan Dziembowski, Tomasz Kazana, and Maciej Obremski.
Leakage-resilient non-malleable codes. In Theory of Cryptography Conference, pages
398–426. Springer, 2015.

[ADL14] Divesh Aggarwal, Yevgeniy Dodis, and Shachar Lovett. Non-malleable codes from
additive combinatorics. In Symposium on Theory of Computing, STOC 2014, New
York, NY, USA, May 31 - June 03, 2014, pages 774–783, 2014.

27

[ADN+19] Divesh Aggarwal, Ivan Damg̊ard, Jesper Buus Nielsen, Maciej Obremski, Erick Pur-
wanto, João Ribeiro, and Mark Simkin. Stronger leakage-resilient and non-malleable
secret sharing schemes for general access structures. In Advances in Cryptology -
CRYPTO 2019 - 39th Annual International Cryptology Conference, Santa Barbara,
CA, USA, August 18-22, 2019, Proceedings, Part II, pages 510–539, 2019.

[Agg15] Divesh Aggarwal. Affine-evasive sets modulo a prime. Inf. Process. Lett., 115(2):382–
385, 2015.

[AGM+15] Shashank Agrawal, Divya Gupta, Hemanta K. Maji, Omkant Pandey, and Manoj
Prabhakaran. A rate-optimizing compiler for non-malleable codes against bit-wise
tampering and permutations. In Theory of Cryptography - 12th Theory of Cryptogra-
phy Conference, TCC 2015, Warsaw, Poland, March 23-25, 2015, Proceedings, Part
I, pages 375–397, 2015.

[AKO17] Divesh Aggarwal, Tomasz Kazana, and Maciej Obremski. Inception makes non-
malleable codes stronger. In Yael Kalai and Leonid Reyzin, editors, Theory of Cryp-
tography - 15th International Conference, TCC 2017, Baltimore, MD, USA, November
12-15, 2017, Proceedings, Part II, volume 10678 of Lecture Notes in Computer Sci-
ence, pages 319–343. Springer, 2017.

[AO20] Divesh Aggarwal and Maciej Obremski. A constant rate non-malleable code in the
split-state model. In 61st IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2020, Durham, NC, USA, November 16-19, 2020, pages 1285–1294.
IEEE, 2020.

[BDSKM18] Marshall Ball, Dana Dachman-Soled, Mukul Kulkarni, and Tal Malkin. Non-malleable
codes from average-case hardness: Ac 0, decision trees, and streaming space-bounded
tampering. In Jesper Buus Nielsen and Vincent Rijmen, editors, Advances in Cryptol-
ogy – EUROCRYPT 2018, pages 618–650, Cham, 2018. Springer International Pub-
lishing.

[BFO+20] Gianluca Brian, Antonio Faonio, Maciej Obremski, Mark Simkin, and Daniele Venturi.
Non-malleable secret sharing against bounded joint-tampering attacks in the plain
model. In Daniele Micciancio and Thomas Ristenpart, editors, Advances in Cryptology
- CRYPTO 2020 - 40th Annual International Cryptology Conference, CRYPTO 2020,
Santa Barbara, CA, USA, August 17-21, 2020, Proceedings, Part III, volume 12172
of Lecture Notes in Computer Science, pages 127–155. Springer, 2020.

[BS97] Eli Biham and Adi Shamir. Differential fault analysis of secret key cryptosystems. In
Burton S. Kaliski, Jr., editor, Advances in Cryptology—CRYPTO ’97, volume 1294
of LNCS, pages 513–525. Springer-Verlag, 1997.

[BS19] Saikrishna Badrinarayanan and Akshayaram Srinivasan. Revisiting non-malleable
secret sharing. In Advances in Cryptology - EUROCRYPT 2019 - 38th Annual In-
ternational Conference on the Theory and Applications of Cryptographic Techniques,
Darmstadt, Germany, May 19-23, 2019, Proceedings, Part I, pages 593–622, 2019.

[CDTV16] Sandro Coretti, Yevgeniy Dodis, Björn Tackmann, and Daniele Venturi. Non-
malleable encryption: Simpler, shorter, stronger. In Eyal Kushilevitz and Tal Malkin,
editors, Theory of Cryptography, pages 306–335, Berlin, Heidelberg, 2016. Springer
Berlin Heidelberg.

28

[CG14a] Mahdi Cheraghchi and Venkatesan Guruswami. Capacity of non-malleable codes. In
Innovations in Theoretical Computer Science, ITCS’14, Princeton, NJ, USA, January
12-14, 2014, pages 155–168, 2014.

[CG14b] Mahdi Cheraghchi and Venkatesan Guruswami. Non-malleable coding against bit-wise
and split-state tampering. In Theory of Cryptography - 11th Theory of Cryptography
Conference, TCC 2014, San Diego, CA, USA, February 24-26, 2014. Proceedings,
pages 440–464, 2014.

[CGL16] Eshan Chattopadhyay, Vipul Goyal, and Xin Li. Non-malleable extractors and codes,
with their many tampered extensions. In Proceedings of the 48th Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2016, Cambridge, MA, USA,
June 18-21, 2016, pages 285–298, 2016.

[CGM+16] Nishanth Chandran, Vipul Goyal, Pratyay Mukherjee, Omkant Pandey, and Jalaj
Upadhyay. Block-wise non-malleable codes. In ICALP, volume 55 of LIPIcs, pages
31:1–31:14. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016.

[CKOS19] Eshan Chattopadhyay, Bhavana Kanukurthi, Sai Lakshmi Bhavana Obbattu, and
Sruthi Sekar. Privacy amplification from non-malleable codes. In Feng Hao, Sushmita
Ruj, and Sourav Sen Gupta, editors, Progress in Cryptology - INDOCRYPT 2019 -
20th International Conference on Cryptology in India, Hyderabad, India, December
15-18, 2019, Proceedings, volume 11898 of Lecture Notes in Computer Science, pages
318–337. Springer, 2019.

[CKR16] Nishanth Chandran, Bhavana Kanukurthi, and Srinivasan Raghuraman. Information-
theoretic local non-malleable codes and their applications. In Theory of Cryptography
- 13th International Conference, TCC 2016-A, Tel Aviv, Israel, January 10-13, 2016,
Proceedings, Part II, pages 367–392, 2016.

[CL17] Eshan Chattopadhyay and Xin Li. Non-malleable codes and extractors for small-depth
circuits, and affine functions. In STOC, pages 1171–1184. ACM, 2017.

[CMTV14] Sandro Coretti, Ueli Maurer, Björn Tackmann, and Daniele Venturi. From single-bit
to multi-bit public-key encryption via non-malleable codes. IACR Cryptology ePrint
Archive, 2014:324, 2014.

[CZ14] Eshan Chattopadhyay and David Zuckerman. Non-malleable codes against constant
split-state tampering. In 55th IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2014, Philadelphia, PA, USA, October 18-21, 2014, pages 306–315,
2014.

[DDN91] Danny Dolev, Cynthia Dwork, and Moni Naor. Non-malleable cryptography (extended
abstract). In Cris Koutsougeras and Jeffrey Scott Vitter, editors, Proceedings of the
23rd Annual ACM Symposium on Theory of Computing, May 5-8, 1991, New Orleans,
Louisiana, USA, pages 542–552. ACM, 1991.

[DKK+12] Yevgeniy Dodis, Bhavana Kanukurthi, Jonathan Katz, Leonid Reyzin, and Adam
Smith. Robust fuzzy extractors and authenticated key agreement from close secrets.
IEEE Transactions on Information Theory, 2012.

29

[DKO13] Stefan Dziembowski, Tomasz Kazana, and Maciej Obremski. Non-malleable codes
from two-source extractors. In Advances in Cryptology - CRYPTO 2013 - 33rd Annual
Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2013. Proceedings,
Part II, pages 239–257, 2013.

[DKS19] Dana Dachman-Soled, Mukul Kulkarni, and Aria Shahverdi. Tight upper and lower
bounds for leakage-resilient, locally decodable and updatable non-malleable codes.
Inf. Comput., 268, 2019.

[DLSZ20] Dana Dachman-Soled, Feng-Hao Liu, Elaine Shi, and Hong-Sheng Zhou. Locally
decodable and updatable non-malleable codes and their applications. J. Cryptol.,
33(1):319–355, 2020.

[DNO17] Nico Döttling, Jesper Buus Nielsen, and Maciej Obremski. Information theoretic con-
tinuously non-malleable codes in the constant split-state model. Electronic Colloquium
on Computational Complexity (ECCC), 24:78, 2017.

[DORS08] Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin, and Adam Smith. Fuzzy extractors:
How to generate strong keys from biometrics and other noisy data. SIAM Journal on
Computing, 38(1):97–139, 2008. arXiv:cs/0602007.

[DP07] Stefan Dziembowski and Krzysztof Pietrzak. Intrusion-resilient secret sharing. In Pro-
ceedings of the 48th Annual IEEE Symposium on Foundations of Computer Science,
FOCS ’07, pages 227–237, Washington, DC, USA, 2007. IEEE Computer Society.

[DPW10] Stefan Dziembowski, Krzysztof Pietrzak, and Daniel Wichs. Non-malleable codes. In
Innovations in Computer Science - ICS 2010, Tsinghua University, Beijing, China,
January 5-7, 2010. Proceedings, pages 434–452, 2010.

[FHMV17] Sebastian Faust, Kristina Hostáková, Pratyay Mukherjee, and Daniele Venturi. Non-
malleable codes for space-bounded tampering. In CRYPTO (2), volume 10402 of
Lecture Notes in Computer Science, pages 95–126. Springer, 2017.

[FMNV14] Sebastian Faust, Pratyay Mukherjee, Jesper Buus Nielsen, and Daniele Venturi. Con-
tinuous non-malleable codes. In Theory of Cryptography - 11th Theory of Cryptogra-
phy Conference, TCC 2014, San Diego, CA, USA, February 24-26, 2014. Proceedings,
pages 465–488, 2014.

[GK18] Vipul Goyal and Ashutosh Kumar. Non-malleable secret sharing. In Proceedings of
the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018,
Los Angeles, CA, USA, June 25-29, 2018, pages 685–698, 2018.

[GMW18] Divya Gupta, Hemanta K. Maji, and Mingyuan Wang. Non-malleable codes against
lookahead tampering. In Debrup Chakraborty and Tetsu Iwata, editors, Progress in
Cryptology - INDOCRYPT 2018 - 19th International Conference on Cryptology in
India, New Delhi, India, December 9-12, 2018, Proceedings, volume 11356 of Lecture
Notes in Computer Science, pages 307–328. Springer, 2018.

[GPR16] Vipul Goyal, Omkant Pandey, and Silas Richelson. Textbook non-malleable commit-
ments. In Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2016, Cambridge, MA, USA, June 18-21, 2016, pages 1128–1141,
2016.

30

[GUV07] Venkatesan Guruswami, Christopher Umans, and Salil P. Vadhan. Unbalanced ex-
panders and randomness extractors from Parvaresh-Vardy codes. In IEEE Conference
on Computational Complexity, pages 96–108, 2007.

[HM96] Shai Halevi and Silvio Micali. Practical and provably-secure commitment schemes
from collision-free hashing. In Neal Koblitz, editor, Advances in Cryptology - CRYPTO
’96, 16th Annual International Cryptology Conference, Santa Barbara, California,
USA, August 18-22, 1996, Proceedings, volume 1109 of Lecture Notes in Computer
Science, pages 201–215. Springer, 1996.

[JKS93] Thomas Johansson, Gregory Kabatianskii, and Ben J. M. Smeets. On the relation
between a-codes and codes correcting independent errors. In Advances in Cryptology
- EUROCRYPT ’93, Workshop on the Theory and Application of of Cryptographic
Techniques, Lofthus, Norway, May 23-27, 1993, Proceedings, pages 1–11, 1993.

[JW15] Zahra Jafargholi and Daniel Wichs. Tamper detection and continuous non-malleable
codes. In Theory of Cryptography - 12th Theory of Cryptography Conference, TCC
2015, Warsaw, Poland, March 23-25, 2015, Proceedings, Part I, pages 451–480, 2015.

[KOS17] Bhavana Kanukurthi, Sai Lakshmi Bhavana Obbattu, and Sruthi Sekar. Four-state
non-malleable codes with explicit constant rate. In Theory of Cryptography - 15th
International Conference, TCC 2017, Baltimore, MD, USA, November 12-15, 2017,
Proceedings, Part II, pages 344–375, 2017.

[KOS18] Bhavana Kanukurthi, Sai Lakshmi Bhavana Obbattu, and Sruthi Sekar. Non-
malleable randomness encoders and their applications. In Advances in Cryptology
- EUROCRYPT 2018 - 37th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Tel Aviv, Israel, April 29 - May 3, 2018
Proceedings, Part III, pages 589–617, 2018.

[Li17] Xin Li. Improved non-malleable extractors, non-malleable codes and independent
source extractors. In Symposium on Theory of Computing, STOC 2017, Montreal,
Canada, June 19-23, 2017, 2017.

[Li19] Xin Li. Non-malleable extractors and non-malleable codes: Partially optimal con-
structions. In Computational Complexity Conference, CCC 2019, New Brunswick,
June 18-20, 2019, 2019.

[LL10] Feng-Hao Liu and Anna Lysyanskaya. Algorithmic tamper-proof security under prob-
ing attacks. In Juan A. Garay and Roberto De Prisco, editors, Security and Cryptogra-
phy for Networks, 7th International Conference, SCN 2010, Amalfi, Italy, September
13-15, 2010. Proceedings, volume 6280 of Lecture Notes in Computer Science, pages
106–120. Springer, 2010.

[LL12] Feng-Hao Liu and Anna Lysyanskaya. Tamper and leakage resilience in the split-state
model. In Reihaneh Safavi-Naini and Ran Canetti, editors, Advances in Cryptology
- CRYPTO 2012 - 32nd Annual Cryptology Conference, Santa Barbara, CA, USA,
August 19-23, 2012. Proceedings, volume 7417 of Lecture Notes in Computer Science,
pages 517–532. Springer, 2012.

31

[SV19] Akshayaram Srinivasan and Prashant Nalini Vasudevan. Leakage resilient secret shar-
ing and applications. In Alexandra Boldyreva and Daniele Micciancio, editors, Ad-
vances in Cryptology – CRYPTO 2019, pages 480–509, Cham, 2019. Springer Inter-
national Publishing.

A Leakage Resilience of Our NMC: Proof of Lemma 13

We prove the following lemma (which follows from [BFO+20, Theorem 3]), which states that any
augmented non-malleable code against Fsplit also allows a single bit of leakage from one of the
states, as needed for our instantiation.

Lemma 13. If (Enc,Dec) is a 2-split-state ε-augmented non-malleable code, then it is also a 2-
split-state 2µε-augmented leakage resilient non-malleable code tolerating µ bits of leakage from the
left state, as in Definition 7.

Proof. Suppose to the contrary that there exists an unbounded adversary A that breaks the aug-
mented (w.r.t the right state R) non-malleability of (Enc,Dec), given the µ bits of leakage on the
left state L. Hence, there exists a message m and tampering functions (f, g) ∈ Fsplit and leakage
function Leak such that

|Pr[A(Tampermf,g, R, leakL) = 1] = Pr[A(Copy(m,Simf,g,leakL,Leak), leakL) = 1]| > 2µε,

where leakL = Leak(L), and Tampermf,g and Copy(m,Simf,g,leakL,Leak) are as in Definition 7. Then,
consider the following unbounded reduction A′ that breaks the augmented non-malleability of
(Enc,Dec), without the leakage:

• On input leakage query to Leak, the reduction A′ picks a random leak∗ ← {0, 1}µ and sends
it as the response.

• Further, on receiving the tampering functions (f, g), A′ forwards it to the augmented NMC
challenger, hard-wiring Leak and leak∗, where the tampering function acting on L first checks
if Leak(L) = leak∗ and tampers only if it does, else outputs ⊥. On receiving the response
(Rb, m̃b) from the challenger, A′ forwards it to the adversary A, along with leak∗.

• Output the same guessing bit as A.

Clearly, when the random string leak∗ matches the actual leakage bit on L, which happens with
probability 1/2µ, the reduction sends the correctly simulated distributions to A. Hence, the winning
probability of A is exactly translated to the winning probability of A′ with probability 1/2µ. This
gives us

|Pr[A′(Tampermf,g, R) = 1]− Pr[A′(Copy(m,Simf,g(Leak,leak∗))) = 1]| > ε

Hence, the proof of the lemma holds.

32
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

