Electronic Colloquium on Computational Complexity, Report No. 118 (2021)

Efficient multivariate low-degree tests via interactive oracle proofs
of proximity for polynomial codes

Daniel Augot*!? Sarah Bordage!?! Jade Nardit!?

August 11, 2021

! Inria
2 LIX, CNRS UMR 7161, Ecole polytechnique, Institut polytechnique de Paris

Abstract

We consider the proximity testing problem for error-correcting codes which consist in evalu-
ations of multivariate polynomials either of bounded individual degree or bounded total degree.
Namely, given an oracle function f : L™ — F,, where L < F,, a verifier distinguishes whether
f is the evaluation of a low-degree polynomial or is far (in relative Hamming distance) from
being one, by making only a few queries to f. This topic has been studied in the context of lo-
cally testable codes, interactive proofs, probabilistically checkable proofs, and interactive oracle
proofs. We present the first interactive oracle proofs of proximity (IOPP) for tensor products
of Reed-Solomon codes (evaluation of polynomials with bounds on individual degrees) and for
Reed-Muller codes (evaluation of polynomials with a bound on the total degree).

Such low-degree polynomials play a central role in constructions of probabilistic proof systems
and succinct non-interactive arguments of knowledge with zero-knowledge. For these applica-
tions, highly-efficient multivariate low-degree tests are desired, but prior probabilistic proofs of
proximity required super-linear proving time. In contrast, for multivariate codes of length N,
our constructions admit a prover running in time linear in N and a verifier which is logarithmic
in N.

For fixed constant number of variables m, the efficiency parameters of our IOPPs for multi-
variate codes compare well, all things equal, with those of the IOPP for Reed-Solomon codes of
[Ben-Sasson et al., ICALP 2018| from which they are directly inspired.

Keywords: Algebraic coding theory; Reed-Solomon codes; Product codes; Reed-Muller codes;
Low degree testing; Interactive proof systems.

“Daniel. Augot@inria.fr
Tsarah.bordage@lix.polytechnique.fr
tjade.nardiQinria.fr

ISSN 1433-8092

mailto:Daniel.Augot@inria.fr
mailto:sarah.bordage@lix.polytechnique.fr
mailto:jade.nardi@inria.fr

1 Introduction

Let F, be a finite field of size ¢. Any function f : Fj" — F; can be written as a polynomial of
individual degrees at most ¢ — 1, hence a polynomial of total degree < m(q — 1). The problem of
low-degree testing can be formulated as follows. Given a proximity parameter § € (0,1) and oracle
access to a function f : Fj® — F, (as a table of values), check with a few queries whether f is
is a polynomial function of low degree compared to ¢, or d-far in relative Hamming distance from
being low-degree. The main focus of this paper is the problem of low-degree testing applied to a
function f: L™ — F, with L < [F,. Multivariate low-degree tests fall into two flavours, depending
on whether one requires a bound on the total degree or the individual degree. In the former case,
the low-degree test can be considered as a proximity test to a Reed-Muller code. In the latter
case, it corresponds to a proximity test to the m-wise tensor product of a Reed-Solomon code. See
Section @2l for formal definitions of those codes.

Low-degree tests have been the subject of a substantial body of research during the past four
decades. Indeed, design and better analysis of low-degree tests have gone hand in hand with
the construction of efficient probabilistically checkable proofs (PCPs), interactive proofs (IPs) and
locally testable codes (LTCs). One motivation for designing probabilistic proof systems with low
communication complexity, fast generation and sublinear verification is the application to verifiable
computation. In [BBHRIS]|, the authors point out that a subsequent bottleneck of PCP-based
proof systems is that of computing solutions to the low-degree testing problem for multivariate
polynomials. A few years ago, [BCS16L [RRR16] introduced interactive oracle proofs (IOPs), which
generalize both PCPs, IPs and interactive PCPs [KR08] and open a new large design space. On the
contrary of known PCPs constructions, it turns out that the IOP model enable the design of proofs
systems that are efficient enough for practical applications of zero-knowledge proofs and schemes
for delegated computation. Indeed, highly-efficient IOPs lead to efficient succinct transparent non-
interactive arguments [AHIVIT, BCG™17,[BBHR18,[BBHRI19, [KPV19, BCR™19, BCG20] with real-
world deployments [BBHR19, [Sta21]. Interactive oracle proofs of proximity (IOPP) are the natural
generalization of probabilistically checkable proofs of proximity (PCPP) [DR04, BGHT04] to the
IOP model. Several of the aforementioned constructions crucially rely on a prover-efficient IOPP
for Reed-Solomon codes (see Definition |1y which the authors of [BBHRIS| named FRI protocol.
Improved soundness analysis of the FRI protocal appear in subsequent works [BKS18, [BGKS20),
BCIT20]. While multivariate low degree tests have been extensively studied in the PCPP model,
they have not been the subject of any direct construction in the IOPP model.

1.1 Interactive oracle proof of proximity to a code

In this work, we will consider linear codes C' with evaluation domain D of size n = |D| and alphabet
F, (ie.,Cc< FQD). An IOPP (P, V) for a code C' is a pair of probabilistic algorithms, P is designated
as prover and V as verifier.

The IOPP (P, V) has round complexity r(n) if the prover and the verifier interact over at most
r(n) rounds. At each round, the verifier sends a message to the prover, and the prover answers with
an oracle. We denote by (P < V) € {accept, reject} the output of V after interacting with P. The
notation V/(C) means that f is given as an oracle input to V, while P(C, f) means that the prover
has excess to full codeword. Both know the code C.

Definition 1 (IOPP for a code C). We say that a pair of probabilistic algorithms (P, V) is an IOPP
system for a code C' with soundness error s : (0,1] — [0, 1] if the following two conditions hold:

Perfect completeness: If f € C, then Pr[(P(C, f) < V/(C)) = accept] = 1.

Soundness: For any function f € FqD such that 6 = A(f,C) > 0 and any unbounded malicious
prover P*, Pr[(P* < V/(C)) = accept] < s(9).

The IOPP is public-coin if verifier’s messages are generated by public randomness and queries
are performed after the end of the interaction with the prover. Throughout this paper, we will
consider arithmetic complexities, and we assume each arithmetic operation performed in [F, takes
constant time. Relevant measures for an IOPP system are the following. The alphabet of the IOPP
we consider will be a finite field F;. The total number of field elements of all the oracles built by
the prover during the interaction is the proof length I(n) of the IOPP. The query complexity ¢(n)
is the total number of symbols queried by the verifier to both the purported codeword f and the
oracles sent by the prover during the interaction. The prover complexity t,(n) is the time needed
to generate prover messages. The verifier complexity t,(n) is the time spent by the verifier to make
her decision when queries and query-answers are given as inputs.

1.2 Contributions and outline

As mentioned above, the focus of the present paper is to tackle the low-degree testing problem for an
oracle function f : L™ — F, and a degree d < |L|. Specifically, we propose two direct constructions:
the first is an IOPP for the tensor product of Reed-Solomon codes, the second an IOPP for Reed-
Muller codes. The alphabets F, which we consider admit either smooth multiplicative subgroups
or smooth affine subspaces, where smooth means that the size of the set is a power of a small fixed
integer.

Our two IOPPs are generalizations of the FRI protocol [BBHRIS§| to the multivariate case. If
m is a constant, they have strictly linear-time prover and strictly logarithmic-time verifier (with
respect to the blocklength |L|™ of the code). In particular, query complexity is logarithmic in
the degree bound d. Previous low-degree tests required the verifier to query a number of field
elements linear in d. Since our constructions are explicit, all efficiency measures of the two IOPPs
are explicitly presented. These parameters match the IOPP for Reed-Solomon codes of [BBHRIS],
from which they are inspired. Concerning applications to IOP constructions, having a constant
number of variables m can be relevant. Indeed, linear-size IOPs have already been constructed from
m-wise tensor product codes [BCG20| and m were a fixed integer there. For Reed-Muller codes and
unlike previous works, we are able to consider a support L™ where L < [F, can can be much smaller
than F,. We think that allowing smaller support might give more flexibility in the design of proof
systems.

The organization of the paper is the following. Basic definitions and notations are given in
Section In Section we define generic folding operators, which allow to reduce the initial
proximity testing problem to a constant-size problem by a divide-and-conquer procedure. Then, a
generic construction of an IOPP based on such folding operators is presented. The main purpose
of Section [3] is to provide once and for all a unified soundness analysis of IOPP constructions
which are based on properties of folding operators. This soundness analysis can be applied to
the two explicit constructions of IOPPs we give in the present work, and generalizes the analyses
of [BBHRI18, BN20]. Section {4 provides technical lemmas about decomposition of multivariate
polynomials and multivariate interpolation complexities. In Section [5] we study a special case of
worst-case to average-case reduction of distance for linear subspaces, which will be used in our
soundness analyses. In Section [7] and Section [8] we instantiate the generic construction of Section
[3] to provide an IOPP for tensor products of Reed-Solomon codes and an IOPP Reed-Muller codes,
respectively.

1.3 Related work and comparisons

Proximity problem for tensor product of Reed-Solomon codes Low-degree tests for bound-
ed individual degree appear in numerous constructions of probabilistic proof systems [BELI0,
BFLSO1], PS94l [FHS94, IALM ™| [RS97,, [FGL™96, BSO8] and play a central role in constructing short
PCPs [PS94, BS08, Mie09]. The common idea of such tests is to rely on the following characteriza-
tion. A function f : F" — Fy is a m-variate polynomial function of individual degrees at most d if
and only if, for any k-dimensional axis-parallel affine subspace S of Fy*, the restriction of f to S is
a k-variate polynomial of individual degree d.

Ben-Sasson and Sudan [BS0§| constructed a PCPP for the tensor product of RS codes by relying
on their PCPP for Reed-Solomon codes. The PCPP to test a function f : L™ — F is composed by a
PCPP for Reed-Solomon codes (RS-PCPP) for each restrictions of f to an axis-parallel line. There-
fore, the prover needs to compute m |L|m_1 RS-PCPP, which yields prover complexity and proof
length less than m|L|™ log'® |L|. Both verifier complexity and query complexity are polylogarithmic
in |L|. Our IOPP for the tensor of RS codes outperforms on all these parameters.

In the IOP model, there is no IOPP specifically tailored for tensor product of Reed-Solomon
codes. Ron-Zewi and Rothblum [RR20] proposed an IOPP for any language computable in poly(n™)
time and bounded space. In particular, this gives a linear-size IOPP for Reed-Muller codes and
tensor product of Reed-Solomon codes with polynomial prover complexity and sublinear verifier
complexity.

However, there are a couple of IOPP constructions for m-wise tensor product of a generic linear
code C'. Indeed, axis-parallel tests enable local testability of repeated tensor products of any linear
codes [BS06, [Vid15l [CMS17]. Ben-Sasson et al. |[BCGT17| suggested a 1-round IOPP system for
tensor product codes C®™, where C is an arbitrary linear code and m > 3. Through interactive
proof composition, Ben-Sasson et al. combine the robust local tester of [BS06, Vid15l [CMS17] for
tensor product codes with the Mie’s PCP of Proximity for non-deterministic languages [Mie(9]. The
IOPP system constructed there has sublinear proof length and constant query complexity, which
is significantly better than our protocol. However, for fixed m > 3, the verifier in [BCG™17| runs
in time which is polylogarithmic in the length n of the base code C, whereas our verifier decision
complexity is strictly logarithmic in n. Besides, and as opposed as our work, the IOPP system of
IBCG™17| assume the proximity parameter to be smaller than half the minimum distance of the
tensor code. Our construction is arguably much simpler to implement, as we do not rely on an
heavy PCPP for NTIME, like Mie’s one [Mie(9].

Recently, Bootle, Chiesa and Groth [BCG20] showed how to construct a m-rounds IOPP for
tensor codes C®™, where C is an arbitrary linear code of length n and dimension k. Their con-
struction also relies on a folding operation (inspired by the FRI protocol of [BBHR19|) but takes a
different approach than ours due to their need to work with linear-time encodable codes. In par-
ticular, performing the folding operation defined in [BCG20| requires to run an encoding algorithm
for the m-wise tensor code C®™. When considering C' a Reed-Solomon code, best known encod-
ing algorithms run in time at least quasi-linear in n. In contrast, our IOPP does not rely on any
encoding procedure of neither the tensor code, nor the base code.

Proximity problem for Reed-Muller codes A substantial body of research studies low total
degree test |GLR 91, [RS92] [RS96| [RSI7, [AS03, BSVW03|, MRO8] with evaluations over the entire
domain Fg*. For this setting, considering restrictions of f to affine subspaces of fixed dimension
is quite natural. Indeed, if f : Fj" — F, has total degree at most d then all its restrictions to
u-dimensional affine subspaces are u-variate polynomials of degree at most d.

For example, the “line-versus-point” test of Rubinfeld and Sudan [RS96] consists in checking the

Scheme Prover Verifier Query Length Rounds

[BS08, BCGTI3]" O(mn™log!°n) polylog(n) polylog(n) O(mn™log'®n) 0
[BCGF17)* * o(n™) poly(m + logn) O(1) o(n™) 1
[RR20]* poly(n") (n'™)¢ 0(1) <n™ O(1)
[BCG20]* O(mn™logn) O(nmlogn) O(nm) O(n™) m
Ours? < (2m+4)n™ <42™ +m)logn < 2™logn < < logn

f. PCPP. ;. 1OPP.

*: restricted to m > 3 and ¢ smaller than half the minimum distance of the tensor code.
Figure 1: Partial comparison of protocols solving the problem of proximity testing for tensor product
of RS codes of length n™. Soundness is omitted since it is difficult to provide and compare uniformly.

restriction of the function f to a randomly chosen line in Fi". Analyses [RS96] [ASO3] IALM™| showed
that if the test accepts a function f with probability 4, then f agrees with a degree-d polynomial
on =~ § fraction of points. The verifier queries O(d?) field elements to achieve constant soundness
error. The original low-degree test of [RS96] can be reformulated in terms of a PCPP if we consider
that an auxiliary oracle is given in addition to f. Such oracle proof is supposed to contain the
restrictions of f to every line, represented as the d + 1 coefficients of a univariate polynomial. Then,
the number of queries of the PCPP is only two, but symbols of the oracle proof belong are in a
large alphabet F g. Similarly, restrictions to affine subspaces of higher dimensions have also been
considered, such as the plane-versus-plane test [RS97, [MROS| and cube-versus-cube test [BDN17].
The number of field elements needed to be queried is at least linear in d.

Most results apply to polynomials over fields that are larger than the degree bound d. The
local testability of Reed-Muller codes when the degree is larger than the field size has been studied
in [AKK™03, AKK™05, [JTPRZ04, KR04]. Aformentioned results show that generalized Reed-Muller
codes are locally testable, and query complexity increases as the size of the field decreases.

Note however all the above constructions do not apply to the setting we consider where the
function f has domain L™ where L is strictly contained in F,. Indeed, in such case, the notion of
affine subspace does not exist.

By working in the IOPP model, we are able to construct a low-degree test for total degree with
strictly linear oracle proof length which can be generated in linear time and admit logarithmic query
complexity and verification time. As mentioned above, previous works require the verifier to make
a number of queries which is at least linear in d. Moreover, the size of the oracle proof [RS92] is
polynomial in ¢"". In order to further reduce the proof size, constructions using a smaller subset of
lines have been investigated [GS02, BSVWO03, [MRO08|]. However, such constructions do not achieve
a strictly linear oracle proof length, but only proofs of almost linear size. Needlessly to say that
proof length is a lower bound on prover running time.

2 Definitions and notations

2.1 Notations

Throughout this paper, we denote by F, the finite field of size ¢ and and by F7 the multiplicative
group of F. The multiplicative subgroup generated by an element w € F* will be denoted (w). The
set of functions with domain D and values in [F, is denoted by FqD .

We use the notation [a .. b] for the set of integers {a,a + 1,...,b}. Let m > 1 be an integer.

Vectors are written in bold, and for two tuples € = (z1,...,2y) and v = (uy,...,uy), " refers
to ® = z{*---a;*. We use the notation X = (Xi,...,Xy,), and Fy[X] refers to the ring of
polynomials in the indeterminates Xi,...,X,,. For a multivariate polynomial P € F,[X], we
denote by deg P the total degree of P and deng P the individual degree of P with respect to the
indeterminate X;.

The Hamming weight wg(u) of a vector u € [y is the number of non-zero symbols of u. We
denote by A : Fj x Fy — [0,1] the relative Hamming distance over F, ; namely for u,u’ € Fy,
A(u,u) equals the ratio of coordinates in which they differ. A code is any subset of Fy, and a
linear code is a Fy-linear subspace of Fy. Given u € Fy and a code C < Fy, we define A(u,C) to
be the minimal distance between u and any codeword of C. If A(u,C) > §, we say that u is J-far
from C, otherwise w is §-close to C. We will consider evaluation codes. In this setting, we view
codewords as functions in]F‘(IIj , and for f € C and x € D, f(x) naturally denotes the z-entry of the
codeword f. Henceforth, the term code will always refer to a linear code.

2.2 Tensor product of Reed-Solomon codes

Given two linear codes C7 < Fy' and Cy < Fi?, a matrix M € F"2*™! belongs to the tensor product
code (o ® C; if and only if each row of M belongs to C7 and each column of M belongs to Cs.
For m > 1 and a code C < Fy, we write CO™ for the m-wise tensor product of C, where C®™ is
inductively defined by C! = C and C®™ = C®"~1 ® C for m > 1.

Definition 2 (Reed-Solomon code). Given L < F, and k < |L|, we denote by RS[Fy, L, k]| the
Reed-Solomon (RS) code over alphabet F, defined by

RS [Fq, L, k] :== {f € FY | 3P € Fy[X], deg P < k s.t. Ya e L, f(z) = P(x)}.

The code RS [Fy, L, k] is a linear code of blocklength |L|, dimension k, rate p = ﬁ and relative

minimum distance A = 1 — %

The tensor product of Reed-Solomon codes admits the following aternative definition.
Definition 3 (Tensor product of Reed-Solomon code). Given L < F,, and m,k > 1, such that k <

|L|, we denote by (RS [Fy, L, k])®™ the m-wise tensor product of the code RS [Fy, L, k]. Equivalently,
the (RS [Fy, L, k])®™ can be defined as follows

(RS [Fq, L, k])®™ := {f e FY" | 3P e F [X], degx, P < k,i€[1..m], such that
VzeL, f(x) =P(z)}. (1)

m
The tensor product code (RS[F,, L, k])®™ has length |L|™, dimension k™, rate (%) and

m
relative distance <1 — %)

2.3 Short Reed-Muller codes

Reed-Muller codes consist of evaluation of multivariate polynomials with coefficients in F, of
bounded total degree. The classical definition of (generalized) Reed-Muller codes involves eval-
uations over the whole finite field. We introduce here codes whose support is L™ < F", where
L may be much smaller than F,. This is an easy generalization, and we call these codes short

Reed-Muller codes.

Definition 4 (Short Reed-Muller code). A short Reed-Muller code with support L™ < Fi* is defined
as follows

SRM [Fy, L,m, k] := {f e FY" | 3P e F,[X], deg P < k s.t. Yz € L™, f(zx) = P(x)}.

If k£ < |L]|, the evaluation map from the space of multivariate polynomials of total degree less
than k to the space of functions Fqu is injective, thus the dimension of SRM [Fy, L, m, k] is (mtﬁ_l).
A bound on the minimum distance of SRM [Fy, L, m, k] follows from the Schwartz-Zippel lemma

[Zip79, [Sch80|, which states that any non-zero multivariate polynomial P € [F;[X] of total degree

less than ¢ cannot vanish in more than dT%‘P fraction of L™. The code SRM [F,, L, m, k] has length

|L™|, rate (mtﬁ_l) |L|™™ and relative distance at least 1 — %

Remark 1. The setting where the support L™ < F* with |L| « |Fy| is not commonly encountered
in coding theory. We introduce the non-standard term short Reed-Muller codes to emphasize this
fact. Notice that, strictly speaking, short Reed-Muller codes correspond to punctured codes, and not
shortened codes.

3 Generic interactive oracle proof of proximity based on folding
operators

Given m a positive integer and L < [y, the aim of this section is to give an abstract analysis of a
generic construction of an IOPP for an evaluation code C' < {L™ — F,}. The protocol presented
in Section B.2] can be seen as an abstract formalization of the IOPP for Reed-Solomon codes of
IBBHR1S]|, which has been subsequently generalized to algebraic-geometry codes [BN20]. The
framework proposed here handles codes composed by not only functions of m = 1 variable, but also
multivariate ones.

In this section, we assume that one can define a sequence of codes (C;)o<i<r for some integer
r, where, starting from Cp := C, each code Cj is a subset of functions L* — F, and each L; < I,
satisfy the following. For any i € [0..r — 1], assume there exists a map m; : Fy* — Fg* such that
(L") = L, which is l;-to-1 on L for a positive integer ;. In particular, |L;;1| = % For any
y e L, we will denote Sy, := W;I({y}) the set of the [preimages of y by the function ;.

The generic IOPP relies on the existence of a family of folding operators for each code Cj, as
defined next.

3.1 Folding operators

We benefit from the the relations between the evaluation domains to iteratively reduce the proximity
test to the code C' to a much simpler code C,. To do so, we fix once and for all a positive integer

t and for each ¢ € [0..r — 1], we define a family of linear operators Fold [-, p] : IFQL?L — FQL?}”

parametrized by p € (F;”)t, called folding operators. These operators are designed to “compress”
functions on Lj® into functions on L}, and feature nice properties with respect to the evaluation
codes C; and Cjy1.

m

Definition 5 (Folding operator). A folding operator for the code C; is a map Fold|-,-] : FqLi X
(IFZ“)t — Iﬁ‘g“l satisfying the following properties.

1. (Completeness) For any p € (Fg”)t, Fold[C;,p] < Cit1.

2. (Locality) For any function f : L" — F,, p € (IFZ”)t and y € Li%,, one can compute
Fold[f,p] (y) by making l; queries to the function f.

To ensure soundness of the IOPP based on folding, we will also require that a folding operator
preserves the relative distance. Namely, if a function f : L)* — [F, is far from the code C;, we expect
the folding of the function f to be far from the code C;;1 with high probability over p € (IF;”)t. For
soundness analysis, we express the distance preservation property in terms of weighted agreements
instead of relative Hamming distance.

Definition 6 (Weighted agreement). For any function of weights ¢ : D — [0,1], we define the
¢-agreement of u,v € FQD, denoted pig(u,v), as follows:

1
pg(u,v) =] Z o(x).
D

Moreover, given C < FqD and u €]F(?, we define the ¢-agreement of u with C, denoted pg(u,C), as

()=)
po(u, C) = max g (u, v)

Definition 7 (Distance preservation). Let \; be the minimum relative distance of C;. Let us consider
a function vgm : (0,1) — [0,1] and a function v : (0,1) x [0,1] — [0,1]. We say that a folding
operator Fold|-,-] satisfies distance preservation if, for any functions of weights ¢; : L* — [0,1]
and @i 2 LT — [0,1] such that

Vye Ll o) =T Y dla), &)

m@ri_l(y)

any e € (0,1), any § € (0,7(e, \s)) and any function f : L* — F, of ¢i-agreement py, (f,C;) < 1—96,
we have

Pr ¢ [lu’¢i+1(F0Id[f7p] 7Ci+1) >1-0+ m{;‘] < Vq’m(f:‘).
pe(Fy)

3.2 Generic IOPP to a code C' based on folding

Now we describe a generic way of constructing a public-coin IOPP to test proximity to a code
Cc IFqu using folding operators.

Taking Cyp = C and Ly = L, we consider a sequence of codes (C;) with a family of folding
operators defined as per Section As in the FRI protocol [BBHR1S|, our protocol is divided into
two phases. The interactive phase is referred to as COMMIT phase, while the non-interactive one is
named QUERY phase.

The COMMIT phase is an interaction over r rounds between a prover P and a verifier V. At
each round i, the verifier samples a random element p, € (an)t. The prover answers with an oracle
function fi41 : L* — F,, which is expected to coincide with Fold [f;, p;]. An honest prover P
computes the values taken by the function Fold [f;, p;] on L}}; by leveraging the local property of
the folding operator (Definition [f]).

During the QUERY phase, the task of V is to check that each pair of oracle functions (f;, fi+1)
is consistent. The standard idea is to test whether the equality

fit1(y) = Fold [fi, p;] (y) (3)

holds at a random point y. Thanks to the local property of the folding operator, V only needs
to make [[" queries f; and one to fj;1. As in [BBHRIS|, we call this step of verification a round
consistency test. The verifier begins by sampling uniformly at random y, € L' and once this is
done, all the locations of the round consistency tests below the current query test are determined.
More specifically, for each ¢, V defines y, | := m;(y;) to be the point where Equation is checked.
Through this process, the round consistency tests are correlated to improve soundness. Such a
query test can be seen as a global consistency test, similar to the one run by the FRI protocol. As
a final test, the verifier checks membership of the oracle function f, to the last code C,.

Remark 2. Depending on the evaluation codes considered, it may be convenient to adapt the final
round as follows. During the last round of the COMMIT phase, instead of sending a codeword
fr € Cy, an honest P may “unencodes” f,, meaning he retrieves a word w, from the messages space
of C, whose encoding leads to f. € C,. Since C, is an evaluation code, the message space of Cy 1is
a space of functions M with the evaluation domain of C,.. Prover P sends k, message symbols to
represent w,, where k, refers to the dimension of Cy.. In that case, the verifier no longer needs to run
a membership test to the code C, during the QUERY phase. Instead, V computes f,(y,) = w.(y,) by
herself, and checks that this value is equal to Fold [fr_l,p,,_l] (y,). This variant of the protocol is
the one presented in the FRI protocol [BBHRI1S8| for Reed-Solomon codes (there, w, is a polynomial
function of bounded degree). It also appears in the AG-IOPP on Kummer curves proposed in [BN2(/.

Let us consider a function vg, : (0,1) — [0,1], and a function v : (0,1) x [0,1] — [0, 1] which
is strictly increasing with respect to the second variable.

Theorem 1. Let (C;)o<i<r be a sequence of codes such that there exists a family of folding operators
for each code C; satisfying Definitions @ and @ The r-rounds IOPP system (P,V) for the code
C = Cy described in Figure[] is public-coin and fulfills the following properties:

Perfect completeness: If f € C and if the oracles fi,... fr are computed by an honest prover P,
then V outputs accept with probability 1.

Soundness: Assume f : L™ — F, is d-far from C. For any € € (0,1) and any unbounded prover
P*, the verifier V outputs accept after a repetitions of the QUERY phase with probability at
most

TVgm(€) + (1 —min(d, v(g, N)) + rme)?,

where X denotes the smallest relative minimum distance of the codes C;, i € [0 .. r].

Proof. (Perfect completeness) Assume that fy € Cp. An honest prover who follows the prescription
of the COMMIT phase will make the round consistency tests pass with probability 1 for all rounds
i. By completeness of the folding operator for every round i, we have f,. € C,. Therefore, the final
test also passes. Thus, the verifier always accepts.

(Soundness) Our analysis relies on techniques of proofs from [BGKS20]. A similar analysis
appears in [BN20]. We perform our analysis for & = 1 repetition of the query test. We observe
that the soundness error for o > 1 directly follows from this case. Let (f;)1<i<r be the output of
the COMMIT phase and (y,)1<i<r be the query points selected for the QUERY phase. The verifier
accepts if both

1 forallie[0..r—1], fis1(yi41) = Fold [fi, p;] (yi11),
2. freC,.

Observe that if f,. ¢ C,., the verifier rejects with probability 1, therefore we continue the analysis
assuming f, € C,.

Input common to Prover and Verifier:
e m a number of variables,
e 7 a number of rounds,
e (Ci)o<i<r a sequence of codes.

COMMIT Phase

(interactive)

Prover’s input:
o f=fo:Lj — T,
Protocol:
1. For each round 7 from O tor — 1 :

m)t;

(a) Verifier V picks uniformly at random an element p; € (Fy

(b) Verifier V sends p; to Prover P;

(c) An honest Prover P computes Fold [f;, p;] : LI | — I,

Prover’s output:
. b7 Lm
e a sequence of oracle functions fo e F;', ..., fr e Fy" .

QUERY Phase
(run by V only)

Verifier’s input:
® py,...p,_; the challenges sent during steps [Lb|of the COMMIT phase,

e oracle access to the Prover’s output functions fy € Fgrln, oo fr € ng“n,
e a repetition parameter a.

Output: acccept or reject.

Protocol:
1. Repeat o times the following query test:

(a) Sample y, € Lg* uniformly at random;
(b) Fori=0tor—1:
i. Define y; 1 € L, as y,; 1 = mi(y;);
ii. Query f; on Sy, of size l; to compute Fold [fi, p;] (y;11);
iil. Query fit1(Yi41);
iv. If fit1(y;41) # Fold [fi, p;] (yi41), outputs reject (Round consistency check) ;

2. Outputs acccept if and only if f, € C, (Final test).

Figure 2: IOPP (P, V) for a code C based on folding operators

10

Coloring the graph induced by prover’s oracles Set G the (r + 1)-layered graph with vertex
set Ly' u LY L --- 1 L. The edges of G consist in the couples (y;,y;,1) € Li" x Lj%, such that
mi(y;) = Y;.1. For any edge of G, the vertex y,, is called the parent of y,;. Vertices sharing the
same parent are said to be siblings. For any vertex within the last layer y, € L], we denote by
G|y, the subgraph of G corresponding to the complete tree with root y,.. Therefore the trees G,
are disjoint.

A query test starts by selecting a leaf y, € L', which belongs to a unique tree G| _for a certain
y, € L. The verifier queries one set of siblings at each layer i € [0 .. 7 — 1] of G|, whose union
forms a subset of vertices of G that we call the path from y, to y,. Note that a path to y, does not
include y,..

We now color the vertices of G (except those in the last layer) according to their success in

passing the round consistency test. For i € [0..r — 1], a vertex y; € L" is colored green if

fira(mi(y;)) = Fold [fi, p;] (mi(y;))

and colored red otherwise. Notice siblings have the same color. The verifier outputs accept if and
only if every vertex along the queried path from y, to y, is green.

Tracking agreement between f; and the folding of f;_; Define v : L§* — [0, 1] such that
o(x) = 1 if and only if € L{" is green. For all i € [1,r — 1], define function

such that ¢;(x) is equal to the fraction of leaves @y € Ly for which the path from x(to @ contains
only green vertices.
By construction, the probability errg,e,, that the verifier accepts during the QUERY phase is
given by
1
ErMquery = W Z /I;Z)T‘(:B)
r xelm
Forie [0..7 —1], let us set uy, = g, (fi, Ci), where the 1p-agreement p,; is defined in Definition
[l Since f, € C;, observe that
erMguery = fbf, - (4)
For i € [0..r — 1], we define E;y; < L}, to be the set of coordinates where f;y; differs from
Fold[fi,p;], i.e. Eirq:={ye€ L, |Vo e Sy, x is red}.
Let us fix i € [0 .. 7 — 1]. We aim to show that

fipyq (FOld [fi, ;] Civ1) = popyy (fir1, Cigr).

Let v € Cjy1 such that gy, (fiz1,v) = g, (fi+1, Cip1) (breaking ties arbitrarily). Since for any
y € Eit1, ¥it1(y) = 0, we can write

_ ,Li S i (w)

i+1 yELﬁﬂEHl
Fold[f;,p;](y)=v(y)

Heaps o (FOId [fu pz’]) U)

and
1

:uwi+1(fi+1av) = TTm Z ¢i+1(y)'
‘Li'H‘ yeLllt \Eit1
fit1(y)=v(y)

11

But Fold [f;, p;] and f;41 coincide on the set L7} \E; 1, hence

/WHH(FOId [fiapi] ,U) = M¢i+1(fi+1) U)-

Moreover, we have fy, . (Fold [fi,p;],Ciz1) = py,,, (Fold[f;, p;],v) by definition of the ;-
agreement. Thus,

/j“ww—l(FOId [fhpz] z+1) M¢i+1(fi+1’ Ci-i—l)' (5)
Let € € (0,1) and 0; < min(1 — py,,v(e, A;)). Observe that

O if y € Eit1,
V@) =1 LS ia) iye L\ B,
i xeSy
Thus, the functions v; satisfy :
Yy e Lty i (y 2 il
wESy

Since the folding operators satisfy distance preservation (Deﬁnition, we have for alli e [0 .. r — 1]

Pr [M¢1+1(F0|d [fi,pi], Cit1) > 1—06; + mg] < Vg m(€),
pe(F)t

which yields

e (11,1 (Fold [fi,p;], Ci1) > max (g, 1 = y(e, X)) + me] < vgm(e).

Let A = min;();). As the function (e, -) is strictly increasing, we have

) elggﬁn) [, (Fold [fi, p;], Cie1) > max (ug,, 1 — (e, X)) + me] < vgm(e).
g q

Recalling , we deduce that

Pr [:ufi+1 > max (Mfia 1- 7(&)‘)) + mg] < Vq,m(f)-
pe(FF)!

Thus, the event that for all i € [0..r — 1], py,,, < max (puy,1 — (e, \)) + me occurs with proba-
bility at least 1 — vy m(e). If this event occurs, then pf, < max (pg,,1 —y(e,\)) +rme. Therefore

Pr [pf, <max (uf, 1 —v(e,N) +rme] =1 —1vgm(e).
Doy Pp—1 €E(FT)?

Recall that pp, <1 — A(fo,Co) <1 —0 and errquery = fif,. Set erfcommit = rVg,m(€). We deduce
that with probability at least 1 — erfeommit over the randomness of the verifier during the COMMIT
phase, the verifier accepts with probability at most

erfquery = pf, < max(us, 1 —y(e,N)) + rme
< 1—min(d,v(g, \)) + rme.

O

Remark 3. An analogous proof yield the same completeness and soundness when applied to the
variant of the protocol described in Remark[3

12

4 Preliminaries about multivariate polynomials

4.1 Low-degree extensions

To benefit from the algebraic structure of an evaluation code C' <]F(? , it is classical to recover a
polynomial which coincides with f on D for any f € C. We choose such a polynomial to have low
degree with respect to the size of the domain D, when D is a cartesian product.

Proposition 1 (Low-degree extension ([BELS91))). Let Hi,...,H,, < Fy and let f: Hy x --- x
H,, — F, be a function. Then there exists a unique polynomial f in m variables over Fy such that :

1. f has degree degy, f< |H;| in its i-th variable,
2. f agrees with f on Hy X -+ x Hpy,.

The polynomial f is referred to as the low-degree extension of the function f (with respect to [y
and Hy,...,Hp,).

Proof. For H < F, and h € H, denote Ly (X) == erH\{h} H the Lagrange polynomial. The
existence follows from the observation that the polynomial defined by

Z f(h) H Ly, n;(X5)
j=1

heH XX Hp,

has degree less than |Hj| in each variable and agrees with f on Hy x --- x Hp,. An easy induction
on m leads to uniqueness. O

The arithmetic complexity of solving the interpolation problem of computing the coefficients of
the low-degree extension of a function f : Hy x - -- x Hy, — F, appears in [Pan94] for general subsets
Hy,...,Hy < Fy. In our work, we will be specifically interested in the cost of interpolating and
evaluating low-degree extensions of a function defined on a grid of size 2.

Definition 8. A multilinear polynomial is a multivariate polynomial whose degree in each variable
15 at most one.

Lemma 1 (Multilinear interpolation ([Pan94l)). Let Hy,..., H,, < Fq of size 2 and let f : Hy x
-+ x Hy, — Fy be a function. The low-degree extension of f is a multilinear polynomial f € Fy[X].

The number of operations required to interpolate f is at most m2™ arithmetic operations.

Lemma 2 (Efficient multilinear extension). Let Hy,...,Hy, Fy of size 2 and let f : Hy x --- X

H,, — F, be a function. The low-degree extension of f is a multilinear polynomial fe F,[X] and,

m

q s evaluating f at p can be done in less than 4(2™ 4+ m) arithmetic operations.

givenpeF
Proof. For any h = (h1,...,hm) € Hy x -+ x Hy, define Lp(X) = [[jL; Ly, p;(X;). For any
P = (pla e 7pm> €]an, we have
f)= >, f(h)Lu(p). (6)
heHy XX Hp,

As suggested by [VSBW13| regarding multilinear extensions over the boolean hypercube, we
observe that (Lp,(P))hem, x---xH,, can be computed in linear time and linear space using dynamic
programming.

13

Notice that for all k€ [1..m],

k k—1
H Li; n;(pj) = Ly s, (Pr) H Ly, n;(ps)
J=1 j=1
and deg Ly, , = 1. Given a table of values containing 1—[5;11 Ly, p;(pj) for all (ha,... k1) €

Hy x -+ x Hy_q1, one can get the values Hle Ly, n;(pj) for all (hy,...,hg) € Hy x -+ x Hy by
computing the couple of values (Lg, n, (Pk)) hoeH, using 2 additions and 2 divisions, and multiplying
both of them by all the 2~! precomputed values. In sum, this step requires 2% +4 operations. Thus,
computing Lp(p) for all h € Hy x - - - x Hy, takes ZT:I (Zj + 4) < 2-2™ 4 4m arithmetic operations.
Finally, given the table of values of f and (Ln(p))nem, x--xH,,, computing the right-hand side of
(6) takes 2™ multiplications and (2™ — 1) additions. O

4.2 Multivariate polynomial decomposition

One efficient way to build folding operators on codes formed by evaluations of polynomials relies
on some ingenious decompositions, as in [BSO8, BBHRI1S8|. This section gathers all the technical
results about such decompositions and their properties.

Lemma 3. Let R be an integral domain, and let ¢ € R[X] be a monic polynomial of degree l. For
every f € R[X] there exists a unique sequence of polynomials (fu(X))0<u<[MJ such that
SUS[T

deg f/1

[]
FX) = > fuX)g(X)"
u=0

Furthermore, deg f, <1, for ue [0 .. |deg f/l]].

Proof. As in [BS08, Proposition 6.3], we consider the Euclidean division of f(X) by (Y —¢(X)) in
the polynomial ring R[Y|[X], i.e. with respect to the X variable. Polynomial division by a monic
polynomial over an integral domain shares the same properties as polynomial division over a field.
There exists a unique pair of polynomials A, B € R[X][Y] such that

f(X) = (Y —q(X))AX,Y) + B(X,Y)

such that degy B < deggq. Writing B(X,Y) = > fu(X)Y", with deg f, < deggq, and evaluating
the above identity at Y = ¢(X) gives f(X) = >, fu(X)q(X)" as required, with appropriate degree
bounds. The uniqueness of the decomposition follows from the one of the remainder B in the
Euclidean division, as any other decomposition)., _ f(X)g(X)" with the same degree bounds
would induce another remainder), _, fi,(X)Y" # B. O

Lemma 4. Let R be an integral domain, and let ¢ € R[X] be a monic polynomial of degree l. For
every f € R[X] there exists a unique sequence (fu),cy of polynomials in R[X such that

FX) = Y X X)g(X0)" e g(Xom) ", (7)

u=(ut,...,um)€U

where U = [0.. |degy, f/l]] x -+ x [0..|degy,, f/l|] and degx, fu(X) < forie [1..m] and
uelU.

14

Proof. The proof is done by induction on the number m of indeterminates, the case m = 1 being
established in Lemma [3] Suppose the result holds for m — 1 indeterminates and consider f(X) as a
polynomial in R[X;][X2,...,X,,]. Since R[X1] is an integral domain, we can apply the induction
hypothesis, and there exists a unique sequence (fy (X1, X2,...,Xm)) e € R[X1][Xo2,..., Xn]
such that

f(XlaX27"'7Xm> = Z fu2,...,um(Xl;X2a'--aXm)q(XQ)uQ Q(Xm)um

(uz,...,um)€U’
where U’ = [0 .. |degy, f/I|] x --- x [0..|degy, f/l|] and, for each i€ [2..m]:
degXi fU27~-~,Um (Xl, XQ, ceey Xm> <.

Writing
fug,...,um = 2 gu%“,,um ()(1))(;‘2 “ e X#],m

0<ug,...,um<l

and applying Lemma (3| to each polynomial gy, ..., € R[X1], we obtain a unique sequence

(gu17u27-~'7u’m (Xl))ogulgl(degxl f/lJ

of polynomials in R[X7] such that

[(degxl f/lJ
Gua,...;um (Xl) = Z Gui,uz,...;um (XI)Q(Xl)m
u1=0
and deg gu, us,...un, (X1) < . This gives
| (deg, f/1]
fuz,...,um = Z Z Gui,ug,...,um (XI)X;LQ e X}:{”Q(Xl)ula
0<ug,...,um <l u1=0
which leads to the expected decomposition after collecting terms. O

Proposition 2 (Multivariate decomposition). Let R be an integral domain, and let g € R[X] be a
monic polynomial of degree l. For every f € R[X] there exists a unique sequence (9e)eepo. i—11 of
polynomials in R[X] such that

= > X% (¢(X1), ..., q(Xm)), (8)

ec[0. .1-1]™

and

m . degx . f
e forallee[0..1—1] andje[l..m],denggegl 5 J’

o forallee[0..1—1]", degge < lMJ

Proof. We use the notation of Lemma {4, For each u € U, writing each polynomial f,, as f,,(X) =
Zee[o. 1y ay,eX ¢, Equation @ becomes

FX) =) D aueXq(X1)" - q(Xm)"m,

uelU e€|0..1-1]™

= DX aueq(X1)" - q(Xm)" .

ec0..1-1]" ueU

15

For each e € [0..1—1]™, define ge(X) = > ,cy Gu,e X . We thus get the decomposition of Equa-
tion . The bounds for individual degrees of each ge comes from the definition of U. Moreover,
we have deg f = maxe {deg(X®ge(q(X1),...,9(Xm)))}, thus deg f = wy(e) + [deg ge.

The uniqueness of the sequence of polynomials (ge)e follows from the one of the sequence of
polynomials (fu),, - O]

5 Distance preservation for random multilinear combinations

In this section, we study a special case worst-case to average-case reduction of distance for linear
subspaces. Several works looked at this question [RVW13|, [AHIV17, BKSI8, BGKS20] for general
linear subspaces, but we are interested in the following specific context. For u = (ue)ee{O,l}m c FqD,
and p € F*, we consider the set

Sy = Z Pue | pe Y
ec{0,1}™

of multilinear combinations of elements of u. Given a linear code C' < FqD , we estimate the average-
distance to C of an element u’ € S, compared to the maximum distance to C' of a member u, from
u.

5.1 Hamming distance version

Proposition 3. Let m be a positive integer. Let C < IFC? be a linear code of relative distance
A =A(C). Lete,0 >0 such that e < 1/3 and

§<1—(1—X+e)5 (9)
Let u = (ue)eeqo 1y such that
2m
Pr |A Z Pue,C | <0 | = —-. (10)
pefy ec{0,1}™ &q

Then there exist T < D and a family v = (ve)eefo,1) € C?" such that
o |T|=(1-6—me)|D|,
o for each e € {0,1}", ueip = vep-

Proof. We proceed by induction on the number of variables m. The case m = 1 is dealt with in
[BGKS20, Lemma 3.2]. Let us assume that the proposition is true for m — 1 and prove that it
also holds for m. For p € F', we write p = (P, pi), with p € Fgl_l and p,, € F,. Similarly, for
ec{0,1}™, we write e = (&, ep,), with & € {0,1}™ " and e, € {0,1}. Equation gives

s 2(m —1 2
Pr Pr A Z pe (U(ém + pmu(é’l)) ,Cl<o| = % =5
pm€lq | peFm—1 ecfo.m €°q €7q

16

For any z € F;, we write ug » = u(g) + 2u(s,1)- Let A be the set

5 2(m —1
A=< zeFy; ~Pr_1 A Z Pue.,C | <9 ;#
ey ee{0,1}m ! =q

By assumption, |A| = 2/e2. Moreover the inductive hypothesis implies that for each z € A, there
exist T, < D and vg . € C such that

7. = (1 =6~ (m—1)e)|D| and gz, = ve,oq, forall &€ {0, 1yt

We are now in a position where we can mimic the proof of [BGKS20].
Let us prove there exists a large subset A’ © A such that for all e € {0, l}m_1 and for all z € A,
ve,» depends linearly on z, i.e. there exists some v(g), V(e 1) € C such that ve . = v(g0) + 2v(e,1)-
For zg, z1, 22, picked uniformly and independently in A and y picked uniformly from D, we have

{|TZO NnT., mTZ2|} _
D]

E

20,21,22 B [1yETZO NTey Tz]

Y,20,21,22
E|E[1,er]’]
y Lz

ﬁ[lyeTz]?’
> (1-96)°
>

1-90+e.

\%

From this, one obtains:
Pr [T,y nTyy nTo| = (1=96)|D|] = e.

20,%21,22

The probability of zg, z1, zo being all distinct is at least 1 — %, which is greater than 1 — § since
|A| = E% > 8. Thus, we get

Pr [zp,21, 22 are all distinct and |T,, N 1%, N Ts,| = (1 —9)|D|] = /2.

20,21,%2

Consequently, there are distinct z; and 25 such that

lgor |To NTey nTop| = (1 —6)|DJ] = ¢/2.

Fix zg € Fy such that |T,) nT,, nTs,| = (1 —0)|D| and set S = T, n T, nT,,. For each
ée {0,1}™!, the vectors
(2:07 ué,zo) ’ (zla ué,zl)) (227 ué,z2)

are collinear. Then their restrictions to S, (zi, Ug 2 S) , which coincide with (zi, V2| S) by definition
of S, are also collinear. Since S is an information set of C', we can linearly map the vectors Ve zi|s to

elements vg ,, of the code C, which preserves collinearity. Therefore, the vectors v ., (2 = 20, 21, 22)
all belong to a same line

{U(é,O) + 2Vg,1); 2 € Fq} c FqD where V(&,0), V(e,1) € C.

Set A’ = {z€ A|ve. = v@0) + 2V@1) f- Then we have [4'| > §|A] > 1. Now consider the set
T ={zeDIVec {0,1)™", (@) = ve0)(@) and u (@) = ve (@)}

17

For any x € D\T, there exists at most one z € [F; such that, for all e e {0, 1}m71,
U(e,0)(T) + 2ue1)(T) = ve) () + 2vE 1 (7).
For any z € A, for any é € {0,1}"™ ", we have

_ T

1
DI

> Ap(ue,z, ve,z)-
We thus also have

T
-5 % B, 1Al ve,)]

.
o \' T4

> (1-1p) 09

1

21— 17— —c¢

DI
Using || = (1 — § — (m — 1)e) | D|, and rearranging, we get |T'| = (1 — 0 — me) |D|. O

5.2 Weighted agreement version
For soundness analysis, we need a variant of Proposition [3] stated in terms of weighted agreement.

This technical result will be used to prove distance preservation properties in Section [f]and Section[§]

Proposition 4. Let m be a positive integer. Let C' < FqD be a linear code of distance A = A(C).
Let £,0 > 0 such that € < 1/3 and

§<1—(1—X+e)5
For any weight function ¢ : D — [0,1] and any u = (ue)e€{071}m satisfying

Pr | pg Z PUe, C | >1-6| > —, (11)
peky ec{0,1}™

there exist T'< D and a family v = (ve)eefo,1}™ € C?" such that
o > rox)=(1—-0—me)|D]|,
o for each e € {0,1}", Ueip = ver-

Before proving Proposition [4] we first state a variant of [BGKS20, Lemma 3.2]. The proof of
Lemma [5 is relatively straigthforward, based on the original proof of [BGKS20, Lemma 3.2]. We
provide it in Appendix [A] for completeness.

Lemma 5 ([BGKS20)). Let C < F2 be a linear code of distance A = A(C). Let €,6 > 0 such that
e <1/3 and
§<1—(1—=X+e)3
For any weight function ¢ : D — [0,1] and any functions ug,u1 € IF(? satisfying
2
P 1-46]> - 12
ze%q [/M)('LL() + zu1, C) > 5] 82(]’ ()

there exist T < D and vy, v, € C, such that

18

o> rox)=(1-0—¢)|D|,
e for each i€ {0,1}, wyp = vip.

Proof of Proposition[f. As for Proposition [3] we proceed by induction on m. The case m = 1 is
treated by Lemma [5] Let us assume that the statement is true for m — 1.

Observe that if the function ¢ : D — [0, 1] is constant equal to 1, then g (u,v) = 1 — A(u,v).
Therefore, for any weight function ¢ : D — [0,1] and any u,v € IFq, po(u,v) < 1 — A(u,v).
Consequently, py(u,C) <1 —A(u,C).

Thus we get from :

pely | ug Z PU,C |>1-6r S ipelf|A Z Péue, C | <6
ec{01}™ ec{0.1}™

t 2m g™ 1. Then, the proof follows the proof of Proposition |3 until

The latter set has size at leas
we get a set A’ < A of size at least 1/e and v(q,0), V(a,1) € C such that for all a € {0,1}™" L for all
z€ A Ve = V(a0) + 2V(a,)

Let T be the set
T = {x e D| forall a e {0,1}™ ", U(a,0)(Z) = V(a0)(7) and g 1)(7) = v(al)(a:)} .

For all @ € {0,1}™ ! for all z € 4/, A(t(q0) + 2U(a,1) V(a,0) + 2V(a,1)) < + (m — 1)e. Still noting
Ua,z = Uq,p + 2Uq,1 a0d Vg, = Vg0 + 2Va,1, We get igy(Ua,z,Va,z) > 1 =09 — (m — 1)e. We have:

l1-6—(m—-1e< A ‘Z/M)Uaz’?)az)
zeA’

|A/H Z Z g (@)= va,z(fﬁ))

zeA’aceD
zeA

zeD

For x € D\T), there is at most one element z € F, such that uq g)(2) + 2u(q,1)(T) = V(q,0)(T) +
2V(g,1)(z). Thus, we get

1
zeT xeD\T
1
<— > o) +e
E 2
Rearranging, we have >, ., ¢(x) > (1 — 9 —me)|D|. O

6 Sequence of evaluation domains defined by two-to-one maps

In this section, we provide a common notation for two different settings, depending on the algebraic
nature of the evaluation domain L. The first one will be prime fields which admit a 2-smooth
multiplicative subgroup. The second one will be fields of characteristic two. These two settings also
appear in [BSO8, BBHR18] in the context of proximity testing to Reed-Solomon codes.

19

6.1 Case of a smooth multiplicative group

Let us assume that F, is a prime field and ¢ — 1 is divisible by a power of two, i.e. ¢ = a-2" +1
for some positive integers a and n. We will consider Ly < IF, a cyclic multiplicative group of order
2". For any integer r, we define a sequence of evaluation sets (L;)o<i<r as: Li+1 = qi(L;) where
¢:(X) = X2. Let A; c L; a multiplicative subgroup of L; of size 2, each multiplicative coset of A;
is mapped to a single element of L;+1 by the map = — g;(z).

6.2 Case of an affine subspace in characteristic 2

If F, has characteristic two, we consider Lo < IF, an affine subspace over Fy of dimension n. Let
Aj = Lo be an Fs-affine subspace with dim A; = 1. Define ¢;(X) = [[,c4, (X —a). Then ¢;(X) is
a so-called subspace polynomial, also known as linearized polynomials when A; is a vector space. It
has the form X2+ aX + 3 for o, 3 € F,, and each additive coset of A; is mapped to a single element
of Li11 by the map = — ¢;(x), and dim L;y; = dim L; — dim A; = dim L; — 1. For more on affine
and linearized polynomials, see [LN97, Section 3.4].

6.3 Common properties

In both cases, we have that |Liy1| = 3 |Li| = 57 |Lo|. Moreover, the map m; : LI* — L7t defined
by mi(x) = (qi(z1),...,qi(zm)) is 2™-to-1 on its domain.

A crucial ingredient of the constructions presented in the two next sections will be the following
fact: if f : L" — F, corresponds to the evaluation of a polynomial f € F,[X]| of bounded degree,
then Proposition [2| gives a decomposition of f in terms of functions (ge © Wi)ee{o,l}m where ge :
L%, — g is the evaluation of a polynomial of half degree.

Remark 4. The choice to consider degree-2 maps q; is intended to simplify the exposition. Recall
that Proposition [is stated for q; of arbitrary degree 1. After examining proofs of Sections[7 and [8,
one can see that the generalization to maps of higher degree is also valid.

7 Tensor product of Reed-Solomon codes

7.1 Sequence of codes

Let k be a power of two and set r = logy k. As suggested in Section [0} depending on whether we
work in case or consider L < F, of size |L| > k which is either a cyclic group of order a
power of two, or an affine subspace over Fy. We will use the notations introduced in Section [6] and
will consider Lo = L, Ly, ..., L, as defined there.

Set kg := k. For 0 < i < r, define k; 1 = % In particular, for all 7, we have k; < |L;|. In the
sequel, we denote by (RS]")o<i<r where RS]" the sequence of tensor product of RS codes refers to
the code (RS [Fy, L;, k;])®™, regardless we are in case [6.1] or

Notice that, for all ¢ € [0,r], we have k; < |L;|. Moreover, each code RS]" has same rate
m m
R = (%) . The first code RS{' has relative distance A\ := (1 — %) and the sequence of

relative distances corresponding to (RS}")o<i<, is strictly increasing.

7.2 Folding operators

For each code RS[", 0 < ¢ < r, we define a family of folding operators satisfying the distance
preservation property. They will enable us to iteratively reduce the problem of proximity testing to
a code RS}" to a problem of size 2™ times smaller, namely proximity testing to RS}} ;.

20

Definition 9 (Folding operators). Let i € [0,7 — 1]. Let f : L" — F, be an arbitrary function
and let f be its low- degree extension. Let @e)ee{o 1y be the 2™ m-variate polynomials provided by

Proposition@ applied to f We consider their evaluations on L}, respectively denoted by ge. For
any p € B, we define the folding of f Fold[f,p] as the following function:

L, - F,,
Fold[f,p]:{ oy — Y p°e(y). (13)
ec{0,1}""

First, we show that this defines a folding operator for the code RS}" as per Definition

Lemma 6 (Completeness). For any p € Fy', if f € RS}", then Fold[f,p] € RS[};.

Proof. Proposition [2 shows that, for all e € {0,1}™ and all j € [1,m], degx, ge < l%J, which is

strictly less than k; 1 since k; is even. O

Lemma 7 (Locality). Let f : L* — Fy be an arbitrary function and let p € Fy'. The value of
Fold[f,p] at any y € Lj | can be computed with exactly 2™ queries to f.

Proof. Take y = (y1,...,Ym) € Lj},. For each j € [1..m], define S,; = L; the coset of A; such
that ¢;(Sy,) = y; (i.e. Sy; is the set of roots of the polynomial ¢;(X) —y;). Set Sy =[], Sy, and
consider Py, € Fg[X] the unique low-degree extension of f|g, .

Let us prove that for all p € Fi*, we have Py, (p) = Fold[f, p] (y), which would induce that
the value of Fold [f, p] (y) can be computed by interpolating the set of points {(z, f(x)), © € Sy}
of size 2™.

By Lemma [, one can write
Z fu)qi(X1)" - qi(Xom) "
uelU

with for all w € U and j € [1,m], degx, fu < 2. Since the polynomial f(X) and Py, (X) agree on
Sy, we get that

By definition of the low-degree extension, deg X; Py, < 2 for all j, thus
Pry(X) = D) fulX
uelU

For each uw € U, write each polynomial f,, as fu(X) = >} ec{0,1}™ Qu X €. Proof of ProposMonI
shows that each polynomial ge is equal to)., ; @ueX ™. Therefore, for all y € L7, we have

Pry(X) = > XGe(y)
ec{0,1}™

Finally, for all p € F{" and y € L{"} |, the evaluation of Fold [f, p] at y can be obtained by evaluating

Pryat p O
Let us now show that Definition |§| satisfies distance preservation (Definition) for vy m(e) = 32—";

and v(e,\) =1 — (1—/\+5)%.

21

Proposition 5 (Distance preservation). Let f; : L — F, be an arbitrary function. Let ¢ € (O, %)
and 0 <1—(1—X+ 6)% Let ¢; - L* — [0,1] and ¢ = L, — [0,1] be weight functions such
that

Vy e Ly din(y) < 5 Z iz

TESy

If f: L — Fy has weighted agreement pg,(f,RS;") <1 —46, then

m 2m
p]e?r [u@H(FO/d[f,p] s Rsi+1) >1— 5 + mf] < %

Proof. We proceed by contraposition and we assume

2m
ngrm [146,., (Fold [f,p] ,RS]%) > 1 — 06+ me| > 2

Applying Proposition {4| on Fold [f,p] = Zee{o ™ DP°ge, we get that there exist T' < Lj%, and
(Ve)eefo,1y™> Ve € RS}y, satisfying

b Z ¢i+1(y) |Lz+1
yeT

e for all e € {0,1}", gei7 = VeIT-

For each e € {0,1}"™, let us consider U, € Fy[Y] the polynomial of individual degrees less than k;4q
associated with the codeword ve € RS} ;.
Let R be the polynomial defined by

R(X) =) XBe(qi(X1),- .., (Xm))
ec{0,1}™

and v be the evaluation of R on L]".
Since k;+1 < ki/2, we have deng R<1+2:(kiy1 —1) < ki, hence v € RS}". For all y € T" and

x € Sy, ie. (@) =y, v(x) = Decqo1ym T Ve(m(x)) and

= Z %G (y) = Z x€ge(y 2 xve(y) = v(@). (14)

ec{0,1}™ ec{0,1}"" ee{O 3™

Thus v agrees with f on Sy := | | Sy. Since v € RS}", we have

yeT
fe; (fs RS Lm Z oi(x m 2 Z bi(x Z biv1(y
| | xzeSt | | yeT xeSy H‘l yel

Eventually, we conclude that pg,(f,RS;") = 1 — 6 by definition of 7. This contradicts the
hypothesis on f. O

7.3 IOPP for tensor product of RS codes

Given a sequence of codes (RS]")o<i<r as defined in Section and a family of folding operators for
each code RS}" (see Section , the generic construction described proposed in Section leads
to a public-coin IOPP (Prgm, Vgsm) for the code RSg'.

22

Notice that the last function f;, is supposed to be constant. Therefore, we use the variant of the
protocol described in Remark [2] Specifically, instead of sending f,. during the COMMIT phase, the
prover Prsm sends a single field element 3 € F,. The verifier Vrsm does not run a membership test
to C, but checks the equation 8 = Fold [fr,l,prfl] (y,).

The properties of the resulting IOPP system (Prgm, Vrgm) are displayed in the following theorem.

Theorem 2. Let k,m be positive integers such that k > 1 is a power of two. Let L < F as
described in Section |0 such that k < |L|. Then, the generic construction of Section leads to
public-coin IOPP system (Prsm, Vrsm) for the tensor product code (RS [Fq, L, k])®™ of blocklength
n™ with the following properties.

1. Round complexity is r(n™) < logn.

Query complexity is ¢(n") < a2™logn + 1 for a repetitions of the QUERY phase.

m

Proof length is [(n™) < 5.
Prover complexity is t,(n™) < 4(m + 2)n™.

Verifier decision complexity is t,(n™) < 4a(2"™ + m) logn.

S v e

Perfect completeness: If f € (RS[Fy, L, k])®™ and if the oracles fi,... fr are computed by
an honest prover Prsm, then Vrsm outputs accept with probability 1.

7. Soundness: Assume that f: L™ — F, is 6-far from (RS [Fy, L, k])®™. Denote X the relative
minimum distance of (RS [Fq, L, k])®™ and, for any e € (0, %), set (A, g) == 1—(1—=XA+¢e)¥3.
Then, for any unbounded prover P*, the verifier Vgsm outputs accept after a repetitions of
the QUERY phase with probability at most

2mlogn

2 + (1 — min(d,v(g,\)) + emlogn)*.

Proof. We apply the construction of the public-coin IOPP system presented in Section with
the family of folding operators defined in Section [7.2] Completeness and soundness follow from
Theorem (1} The number of round is r = log k < log |L| by definition. For a single repetition of the
query test, Vrgm queries each oracle f;, i € [0..r — 1], at 2" locations. The verifier retrieves (a
single time, which yields the claimed query complexity.

The total proof length is

r

T m m
SILPI =Y 5 < T

i=1 i=1

We examine prover complexity. Let f : L7" — F; and p € Fy". For each y € L7}, the prover
evaluates the low-degree extension Py (X) of f|g, at p, where Sy = 7 Y({y}). Tt follows from
Lemma [2| that the number of operations to evaluate Fold [f,p] on Lj}, is 4(2™ + m) |LTH|. We

(2
deduce that the cost of honestly generating Prgm’s messages is

r m

N a@™ +m)|Ln,| <4@™ + m)QTZL - <4(m+2n",
i=1
We also deduce from Lemma [2f that the verifier complexity is less than a) }_; 4(2™ + m). O

23

Comparisons with the univariate case Soundness of the FRI protocol [BBHR18] has been ana-
lyzed in [BBHRIS, BKS18, BGKS20, BCI"20|. For a Reed-Solomon code of blocklength N, relative
distance A and alphabet [, of size linear in N, the soundness is given by [BGKS20]. Specifically,
for a single repetition of the QUERY phase, soundness error of the FRI protocol is at most

2log N
e |Fq|

+ (1 — min(6, dg) + elog N),

where 6y = 1 — (1 — A +¢)"/3. Authors of [BGKS20] also showed that this bound on soundness error
of the FRI protocol is tight for RS codes evaluated over the entire field, and when this field has
characteristic two. Subsequently, [BCI™20| improved soundness of the FRI protocol for quadratic-
size fields using formal list-decoding algorithms for RS codes.

We point out that the soundness error of our IOPP for tensor product of RS code is given by
the exact same formula than the one shown in [BGKS20]| for the univariate case, albeit tensor codes
have worse relative distance.

In Figure [3] we present the parameters of the FRI protocol for RS codes and our IOPP for
tensor product of RS codes side by side. We consider codes of blocklength N and dimension K and
a single repetition of the QUERY phase. In order to achieve arbitrary constant soundness error,
both protocols require to repeat the QUERY phase. This process increases query complexity and
verifier running time by a multiplicative factor. However, the FRI protocol has better soundness,
thus requires less repetitions.

Scheme Prover Verifier Query Length Rounds
RS IOPP [BBHRIS| < 6N <42log K 2log K < % log K
Tensor RS IOPP < (2m+4)N <4(Z +1)logKk Z-logK < gz (18K

Figure 3: Comparison between the IOPP for a RS code of [BBHRIS8| and our IOPP for a tensor
product of RS code. We compare codes with the same blocklength N and same dimension K.

7.4 Remarks on partial folding

In this subsection, we make some remarks (without proofs) about the possibilty of folding with
respect to a single indeterminate, instead of folding along all the indeterminates at once. We call
this partial folding. For simplicity, we limit ourselves to the case m = 2, and to the polynomial
q(X) = X?2. Then, instead of folding at once and reducing the length of the code by 4, it is
possible to fold first along the X; indeterminate, reducing the length by 2, then to fold along the
X5 coordinates, reducing again the length by 2. One can also intertwine partial foldings with respect
to the X7 indeterminate and partial foldings with respect to the X5 indeterminate, in any order. It
is also possible to fold only with respect to the X7 coordinate, and keep the X5 coordinate intact.
Statements below are true when exchanging the roles of X; and X».

For Ly, Ly < F,, given a function f : L; x Ly — Fy, and f(X;, X2) its associated low-degree
extention, we can decompose it as

(X1, Xa) = Go(X2, Xa) + X101 (X7, X2).

For a € IF, the notation Foldx, [f,a] : ¢(L1) x Ly — F, will refer to the function whose low-degree
extension is the polynomial
9o(X1, X2) + ag1 (X1, Xo).

24

Similarly, after writing f(Xl,Xg) = iALO(Xl,XQQ) + XglAzl(Xl,X%)7 given b € F,, we can define
Foldx, [f,b] : L1 x q(L2) — FF, whose low-degree extension is ho(X1, X2) + bhi (X1, X2). We have
the following local property.

Proposition 6. Let f : Ly x Ly — F and a € F. For any (x,y) € q(L1) x La, it is possible to
compute the value Foldyx, [f,a] (x,y) with only 2 queries to f.

A simple calculation shows that for f: L x Ly — F,, and p = (a,b) € F?, we have
Fold [f7 p] = FOIdX2 [FOIXm [f7 a] 7b] . (15>

Thus, doing two partial foldings outputs the same word as a single two-variables folding. The
number of queries for computing a local value this way is also 4.

Proposition 7. Let RSy be the Reed-Solomon code of support L1 and dimension ki and RSy the
Reed-Solomon codes of support Lo and dimension ke. Let RS| the Reed-Solomon of support q(L1)
and dimension k1/2. If f € RS; ® RSy then Foldx, [f,a] € RS} ® RSs.

We state a variant of Proposition [5]in the setting of a partial folding. For simplicity, we state
the result in terms of the Hamming distance.

Proposition 8. Let f : L1 x Ly — Fy be an arbitrary function. Lete € (07 %) and d < 1—(1—)\+5)%,
Let RSy be the Reed-Solomon code of support L1 and dimension k1 and RSy the Reed-Solomon codes

of support Lo and dimension ky. Let RS| the Reed-Solomon of support q(L1) and dimension ki /2.
If A(f,RS1 ® RS2) > 4, then

P [A(Foldy, [f.a] RS} ®RSy) <5 —<] < 522(,
From the above observations, we could design another IOPP for the tensor product of two
Reed-Solomon codes. For instance, we could replace a round with a two-variables folding by two
rounds with a single-variable folding each. The above considerations give correcteness and locality.
Concerning soundness, Proposition [8] applied two times leads to the same probabilities 4/(s2q) for
distance preservation, which is exactly the same as in Proposition [5] for m = 2. So the soundness
will not degrade. However, some disadvantages appear. First, the number of rounds will double,
and second, instead of having a new oracle at each round of size |L; x La| /4, we get an oracle of
size |L1| x |Lg| /2 followed by an oracle of size (|L1| x |Lza|) /4, which is three times more.

7.5 Generalization to distinct individual degrees

The IOPP for m-wise tensor product of RS codes can easily be extended to a tensor product of m
distinct Reed-Solomon codes

RS [Fq, LM, k(l)] ® RS [Fch(z)’ k@)] ®---®RS [Fq7 L) k(m)]

with different degree bounds (k(j))1< <m and supports (L(j))ogjgm'

We briefly explain how to procee(i without giving details. It suffices to notice that the natural
generalization of folding operators of Definition [9 for distinct degrees satisfies Definition [5] and
Definition @ Assuming each code RS [Fq, LU, k(j)] has same rate p and every k) is a power of
two, one can apply the folding operations over a number of rounds rg = log (minj k(j)). After rg
rounds, we have reduced the initial problem to the one of testing proximity to a tensor product code
of RS codes where one of the RS code has dimension one. If necessary, some rounds of interactions
can be added to end up with a constant function f, by using partial folding over the remaining
indeterminates, as described in Section [7.4]

25

8 Short Reed-Muller codes

8.1 Sequence of codes

Similarly to Section we will consider two families of short Reed-Muller codes, depending on
whether case|6.1] or case holds. Let k be a power of two, k < |L| and set r = logy k. We consider
Ly=L,Ly,...,L, as constructed in Section [f]

Set ko := k. For 0 < i < r, define k;;1 == % In particular, for all 7, we have k; < |L;|. Let us
denote by SRM; the short Reed-Muller code SRM [Fy, L;, m, k;].

Starting from the code SRMy = SRM [F, L, m, k|, this defines a sequence of Reed-Muller codes

(SRM;)o<i<r. For each i, the relative distance A; of SRM; is at least 1— er_'l , hence min; \; > 1—2&—%‘.

8.2 Folding operators

Let (SRM;)o<i<r be a sequence of short Reed-Muller codes defined as described in Section
(regardless we are in case or [6.2). For each i € [0..r —1], we define a family of folding
operators which will enables us to iteratively reduce the problem of proximity testing to a code
SRM; to a problem of size 2" times smaller, namely proximity testing to SRM; ;.

Note that the sequences of evaluation domains (L]"); and degree bounds (k;); are defined exactly
the same way as in the tensor product case. However, if we design folding operators for Reed-
Muller codes by following the same construction than in Definition [0} then the distance preservation
property does not hold anymore. For this reason, some balancing functions are involved in the
definition of folding operators for Reed-Muller codes.

Definition 10 (Balancing functions). Let i € [0 .. — 1]. For any e € {0,1}"", we call a balancing
function any map he : L, — Fy which corresponds to the evaluation of a m-variate multilinear

monic monomial /f;e of total degree exactly [wHT(e)J We call (h‘e)ee{(],l}m a balancing tuple for the

code SRM; 4.

Definition 11 (Folding operator). Leti € [0,7—1]. Let (he)eeqo13m be a balancing tuple for SRM;
and let f : L" — Fy be an arbitrary function. Given (ge)ecfo,1y™ the 2™ m-variate polynomials of
the decomposition of Proposition@ denote ge the evaluation on LT, of ge. For any (p,p’) € (F;”)z,
we define the folding of f as the function Fold[f,(p,p)] : L]}, — F, such that

Fold|f,(p,p')] (¥) = >, P°9e(v) + D P'°he(y)ge(v). (16)
ec{0,1}"" ee{egi)}m

Lemmas [§ and [0] show that this defines a folding operator for SRM; as per Definition

Lemma 8 (Completeness). Let (p,p’) € (IF’q“)a and f : LT — F, € SRM;, then Fold|f,(p,p’)] :
L% — Fy belongs to SRM; 1.

Proof. Proof relies on Proposition 2| If f € SRM;, then the polynomial f (X)) associated to f has

k&*%’wl—[(e)J Since k; is

total degree at most k; — 1. Therefore, for any e € {0,1}", degge < [
even, we have both degge < k;11 and deg (ﬁe§e> < [wHT(e)J + [’W%U’H(E)J < k;jy1. This means
Fold [f, (p,p’)] : L}, — F4 corresponds to the evaluation of a polynomial in F,[X] of total degree
less than k;y1. O

26

Lemma 9 (Locality). Let f : L — F, be an arbitrary function and let (p,p’) € (Fm)z. Given
ye L%, the value Fold[f,(p,p)] (y) can be computed with exactly 2™ queries to f.

Proof. The proof follows from the one of Lemma [7} For any y € L}, the vector (ge(¥))ecfo,1}™
corresponds to the vector of coefficients of the low-degree extension of the function f|g, . O

Let us now show that the folding operator of Definition |11| satisfies distance preservation (Defi-
nition .

Proposition 9 (Distance preservation). Denote \jt1 the minimum relative distance of SRM;41.
Let f : L" — F, be an arbitrary function. Let € € (0, %) and

1
0 < min <1 — (1= Ais1 +)3, 5(/\1'-&-1 + mé)) :

Let ¢; : L — [0,1] and ¢iy1 : LTt — [0,1] be weight functions such that

Vy e Ly din(y) < 5 Z il

xeSy

if f: L — Fy has weighted agreement g, (f,SRM;) > 1 -4, then

Pr [,LL@.+1 (Fold [f, (p, p’)] ,SRM,-H) >1—-6+ ms] < —.
p,p'EF
Proof. Let f : L" — F, be such that pug,(f,SRM;) > 1 — 4, and (,/g\e)ee{ql}m the 2™ m-variate
polynomials appearing in the decomposition of f in Proposition . For any p € Fi", denote up the
function up = Yec(g1ym PCge, and for any e € {0,1}™\ {0}, define ue = hege. One can rewrite
Fold [, (p,p’)] as follows:
Fold [f, (p,P))] =up+ Y, P ue.

ec{0,1}™
e#0

We proceed by contraposition, assuming that

16m
p,pl?erlﬁ'gl |:IU,¢Z.+1 (FOld [f, (p, p/)] ,SRMH_I) >1—-0+ ma] = %,
or, in other words,
8m 8m
ngI;T |:pl]2]§zn [M¢i+1 (FOld [f, (p,p/)] ,SRMH_l) >1-6+ m&‘] = 5qu| = %

Let

8
A = {p € an | p/];)]%:zn [/"Ld)i-%—l (FOId [f? (p,p/)] 7SRMi+1) > 1 _ 5 + ma] > 6;2} '

Proposition {4 implies that, for any p € A, there exist Tp, = L}t | and (wp,e)e€{071}m with wp e €
SRM; 1 such that

Z¢z+1 1—5—|—m) |LT:

yeTp

27

® Wpo|r, = Up|1,
e for each e € {0,1}"\ {0}, Wp.e|r, = Ue|T,-

Thus, for all pe A,

1 5
Hiia Z P YGe; SRMi11 | > ‘LT Z Giv1(y) =1—6+ my.

ec{0,1}" i+1l yeTp
Since |A| > i—?qm_l, we have
€ 83m
Pr . €ge, SRM; >1—-6+m=- | = .
peF K, iq Z D ge i+1 5 62(]

ec{0,1}"

Again, by Proposition 4} we obtain 7' < L}, and (ve)eefo,1y With ve € SRM; 41 such that

o X diri(y) = (1-0)|LT,

yeT

)

e for each e € {0,1}"", ve 7 = ge -

Fix pe A. For any e € {0,1}", e # 0, we have

wp,e‘Tme = Ue|TpnT = (hege)‘Tme = (heve) ‘Tme'
Besides, the intersection of T}, and T satisfies
Ty A T| = [Tyl + 7| = [T, U T|
> Z bit1(y) + 2 $ir1(y) — | LT

yeTp yeT
&
><1—2&+m§)@ﬁ1,
> (1= Nig1) |[L7%4] -

Since A;11 is the minimum relative distance of SRM;; 1, we deduce that wpe = heve for every
ec{0,1}"\{0}.

For any e € {0,1}", consider polynomials Ve, Wep € Fy[X] of total degrees at most ki1,
such that for all @ € L}, Ve(x) = ve(x) and Wep(x) = wep(x). Hence, for all x € L7,
Wep(x) = ﬁe(x)ﬁe(x), which means that

We,p — Vehe = 0 mod (Zi41(X1), ..., Zix1(Xm)) , (17)

where Z;1(X) = [[4ep,,, (X — a) has degree [L;11]. Since ki1 < |Li41], we have that for any j,

deg X, Ve < |Lit1| — 2. Moreover, degy. he < 1, thus the above equality is true without the modulo:

Dep — Vehe = 0. (18)

Therefore, deg e < kit1 — [wHT(e)J For all e € {0,1}"™, we have

~ wgle
degXeve(qi(Xl) .. .,qi(Xm)) < wH(e) + 2 (k'z‘-H —1- H2()> < ki,

28

hence the polynomial R € F,[X] defined by
R(X) = >, XDe(qi(X1). .., q:(Xm))
ec{0,1}""

has total degree deg R < k;. Thus the evaluation of R on L!" is a codeword v € SRM;. For any
y €T and x € Sy, we have

=Z:L'ege vae) = v(x).

ec{0,1}"™ ec{0,1}""
Hence, v agrees with the function f on the set St := uyeT Sy. Since v € SRM;, we have
FL@(faSRM ‘ m| Z ¢1 ’ m‘ Z Z sz m Z ¢1+1
xeSt yeT xeSy ’ H‘l yeT
Eventually, we conclude that 4, (f,SRM;) > 1 — 6 by definition of 7T'. O

8.3 IOPP for short Reed-Muller codes

Given a sequence of codes (SRM;)o<i<, as defined in Section and a family of folding operators
for each code SRM; (see Section [8.2), the generic construction described proposed in Section
leads to a public-coin IOPP (Prm, Vrm) for the code SRMy. As in Section [7} the last function f,
is supposed to be constant. Therefore, we use the variant of the protocol described in Remark [2|
Specifically, instead of sending f, during the COMMIT phase, the prover Prym sends a single field
element 3 € F,. The verifier Vgm does not run a membership test to C, but checks the equation
B =Fold [f,—1,p, 1] (y,). The properties of the resulting IOPP system (Prm, Prm) are displayed
in the following theorem.

Theorem 3. Let k,m be positive integers. Assume k is a power of two. Let L = F as described in
Section[f] such that k < |L|. There exists a public-coin IOPP system (Prm, Vrm) testing prozimity of
a function f : L™ — F to the short Reed-Muller code SRM [Fy, L, m, k| with the following properties:

1. Round complexity is r(n™) < logn.

2. Query complexity is ¢(n™) < a(2™logn+ 1) for a QUERY phase with repetition parameter
.

m

3. Proof length is [(n™) < (22771)

4. Prover complexity is t,(n™) < (%m + 14) n™
5. Verifier decision complexity is t,(n™) < a2™ (3m + 7) log n.

6. Perfect completeness: If f € SRM [F,, L, m, k] and if the oracles f1,... f, are computed by
an honest prover, then Vrm outputs accept with probability 1.

7. Soundness: Assume that f : L™ — F, is 6-far from SRM[F,, L,m,k]. Denote X =
2%. For any € € (0,2), set (e, A) := min (1 — (1 A+ i+ mz)), Then, for any
unbounded prover P*, the verifier V outputs accept after o repetitions of the QUERY phase
with probability at most

16m
r—

2 + (1 —min(d,v(e, \)) + rme)“.

29

Proof. We apply the construction of the public-coin IOPP system presented in Section [3.2] with
the family of folding operators define in Section 82} Completeness and soundness follow from
Theorem The number of round is r = logk < log|L|. Query complexity and proof length are
the same than in Theorem For soundness, recall that min; A; > 1 — 2‘% where)\; is the relative
distance of SRM;.

Let f: L™ — F, be an arbitrary function and let (p, p’) € (F;”)g. We analyze prover complexity
by first computing the cost of evaluating Fold [f, (p, p’)] on L7} ,. The prover Prm can compute the
vectors (pe)ee{o,l}’" and (p’e)ee{o’l}m in less than 2- 2™ multiplications. Given y € L7}, we look at
the cost of computing Fold [f, (p, p')] (y) (see Equation (16)). Recalling Definition computing
the values he(y) for all e € {0,1}™ takes at most m2™~2 operations. As shown in proof of Lemma
, the vector (ge(y)) corresponds to the coefficients of the multilinear low-degree extension of f|g_ .
By Lemma [1] this interpolation can be performed with m2™ arithmetic operations. Prover then
computes the first sum of Equation using 2™ multiplications and 2™ — 1 additions. Similarly,
the second sum can be computed in less than 3 - 2™ arithmetic operations.

Overall, for any function f : Lj* — F, and p,p’ € F{, the prover can evaluate Fold [f, (p,p’)] :
— [F, in less than

m
Li+1

m 5
2-2m+5-2m<1+z> ‘L?}rl <2m(4m+7> ‘L?}rl

arithmetic operations. We deduce that the cost of honestly generating Prgm’s messages is

r—1
5 5 n™ 5
;]2’” <4m + 7) |Lit | < 2™ <4m + 7) 5] S <2m + 14) n™.

From the discussion about prover complexity, we also get that the number of operations made by
Vrm for a single consistency test is less than 2 - 2™ + 5. 2™ (1 + %) Thus, verifier complexity is
less than ar2™ (%m + 7). 0

Comparisons with the univariate case When we compared the FRI protocol with our IOPP
for the tensor product of RS codes in Section we argued that soundness is affected by the
worse relative distance of tensor codes. In constrast, a short Reed-Muller code SRM [Fy, L, m, k] has
relative distance which is at least the one of a Reed-Solomon code RS [F,, L, k]. However, soundness
of our IOPP for Reed-Muller code is worse than soundness of the FRI protocol for linear-size field
IBGKS20| due to the more complex expression of the folding operators.

In Figure 4] we present the parameters of the FRI protocol for RS codes and our IOPP for
Reed-Muller codes side by side for codes of blocklength N and a single repetition of the QUERY
phase. The use of balancing functions in Definition [11] induces some extra costs compared to the
IOPP for product codes.

Scheme Prover Verifier Query Length Rounds
RS IOPP [BBHRIS| < 6N < 42log N <2logN < N/3 <logN
RM IOPP <@m+T7N 27 (32 + D)logN <X logN < vy < 8N

Figure 4: Comparison between the IOPP for a RS code of [BBHRI§| and our IOPPs for tensor of
RS codes and RM codes. Blocklength of the codes is denoted by IV and m is the number of variables
of the multivariate codes.

30

9 Conclusion

In this paper, tensor product of Reed-Solomon codes and Reed-Muller codes over fields with smooth
additive subgroups or smooth multiplicative subgroups have been shown to admit quite efficient
interactive oracle proofs of proximity (IOPPs). These results can be interpreted as multivariate low
degree tests, i.e. given a function f : L™ — [y, a verifier distinguishes whether f corresponds to
the evaluation of a degree-d polynomial or is far in relative Hamming distance from any evaluations
of low-degree polynomials, either using the notion of individual degrees or total degree. For a
constant dimension m, our constructions have linear oracle proof length and prover complexity,
logarithmic query and verifier complexities. In the case of tensor product of Reed-Solomon codes,
our construction can be generalized to distinct degree bounds and different evaluation domain.

Many constructions of succinct non-interactive arguments (SNARG) rely on univariate polyno-
mials for arithmetization. One of the reason is that there exists an efficient IOPP for Reed-Solomon
codes [BBHR1S]|. Proposing highly-efficient IOPPs for multivariate polynomial codes might open up
a range of different arithmetization techniques for designing explicit constructions of proof systems.

Regarding total degree tests, we think that allowing support L™ with L much smaller than IF,
gives more flexibility in the design of proof systems. However, we had to require d to be less than
|L| to ensure completeness and soundness. A natural question is whether an IOPP for multivariate
polynomial codes with total degree d > |L| can be designed.

We also note that our proximity parameter is not as good as the one from [BCIT20], where
a formal Guruswami-Sudan [GSO0I] decoding algorithm is analyzed for a worst-case to average-
case reduction. Obtaining such a large proximity parameter would involve an analysis of algebraic
decoding algorithms of multivariate codes over the field of rational functions.

Acknowledgments

Sarah Bordage benefits from the support of the Chair “Blockchain & B2B Platforms”, led by [’X -
Ecole polytechnique and the Fondation de I’Ecole polytechnique, sponsored by Capgemini, Nomadi-
cLabs, Cuaisse des dépots.

References

[AHIV17| Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasubramaniam.
Ligero: Lightweight sublinear arguments without a trusted setup. In Bhavani M. Thu-
raisingham, David Evans, Tal Malkin, and Dongyan Xu, editors, Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security, CCS 2017, Dal-
las, TX, USA, October 30 - November 03, 2017, pages 2087-2104. ACM, 2017.

[AKK*03] Noga Alon, Tali Kaufman, Michael Krivelevich, Simon Litsyn, and Dana Ron. Testing
low-degree polynomials over GF(2). In Sanjeev Arora, Klaus Jansen, José D. P. Rolim,
and Amit Sahai, editors, Approzimation, Randomization, and Combinatorial Optimiza-
tion: Algorithms and Techniques, volume 2764 of Lecture Notes in Computer Science,
pages 188-199. Springer, 2003.

[AKK*05] Noga Alon, Tali Kaufman, Michael Krivelevich, Simon Litsyn, and Dana Ron. Testing
reed-muller codes. IEEE Trans. Inf. Theory, 51(11):4032-4039, 2005.

31

[ALM*]

[AS03]

[BBHR18]

[BBHR19)

[BCG*17]

[BCG20]

[BCGT13)

[BCT*20]

[BCR*19]

[BCS16]

Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy.
Proof verification and the hardness of approximation problems. 45(3):501-555. extended
version of FOCS’92.

Sanjeev Arora and Madhu Sudan. Improved low-degree testing and its applications.
Combinatorica, 23(3):365-426, 2003.

Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Fast reed-solomon
interactive oracle proofs of proximity. In 45th International Colloquium on Automata,
Languages, and Programming, ICALP 2018, July 9-13, 2018, Prague, Czech Republic,
pages 14:1-14:17, 2018.

Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable zero knowl-
edge with no trusted setup. In Alexandra Boldyreva and Daniele Micciancio, editors,
Advances in Cryptology - CRYPTO 2019 - 39th Annual International Cryptology Con-
ference, Santa Barbara, CA, USA, August 18-22, 2019, Proceedings, Part III, volume
11694 of Lecture Notes in Computer Science, pages 701-732. Springer, 2019.

Eli Ben-Sasson, Alessandro Chiesa, Ariel Gabizon, Michael Riabzev, and Nicholas
Spooner. Interactive oracle proofs with constant rate and query complexity. In 44th
International Colloquium on Automata, Languages, and Programming, ICALP 2017,
July 10-14, 2017, Warsaw, Poland, pages 40:1-40:15, 2017.

Jonathan Bootle, Alessandro Chiesa, and Jens Groth. Linear-time arguments with sub-
linear verification from tensor codes. In Rafael Pass and Krzysztof Pietrzak, editors,
Theory of Cryptography - 18th International Conference, TCC 2020, Durham, NC, USA,
November 16-19, 2020, Proceedings, Part II, volume 12551 of Lecture Notes in Computer
Science, pages 19-46. Springer, 2020.

Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, and Eran Tromer. On the concrete
efficiency of probabilistically-checkable proofs. In Proceedings of the Forty-Fifth Annual
ACM Symposium on Theory of Computing, STOC 13, page 585-594, New York, NY,
USA, 2013. Association for Computing Machinery.

Eli Ben-Sasson, Dan Carmon, Yuval Ishai, Swastik Kopparty, and Shubhangi Saraf.
Proximity gaps for reed-solomon codes. In 61st IEEE Annual Symposium on Foundations
of Computer Science, FOCS 2020, Durham, NC, USA, November 16-19, 2020, pages
900-909. IEEE, 2020.

Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner, Madars Virza,
and Nicholas P. Ward. Aurora: Transparent succinct arguments for R1CS. In Yuval
Ishai and Vincent Rijmen, editors, Advances in Cryptology - EUROCRYPT 2019 - 38th
Annual International Conference on the Theory and Applications of Cryptographic Tech-
niques, Darmstadt, Germany, May 19-23, 2019, Proceedings, Part I, volume 11476 of
Lecture Notes in Computer Science, pages 103-128. Springer, 2019.

Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. Interactive oracle proofs. In
Theory of Cryptography - 14th International Conference, TCC 2016-B, Beijing, China,
October 81 - November 3, 2016, Proceedings, Part II, pages 31-60, 2016.

32

[BDN17|

[BFL90]

[BFLSO1]

[BGH*04]

[BGKS20]

[BKS18]

[BN20]

[BSO6]

[BSO08]

[BSVW03]

[CMS17]

IDRO4]

Amey Bhangale, Irit Dinur, and Inbal Livni Navon. Cube vs. cube low degree test.
In Christos H. Papadimitriou, editor, 8th Innovations in Theoretical Computer Science
Conference, ITCS 2017, January 9-11, 2017, Berkeley, CA, USA, volume 67 of LIPIcs,
pages 40:1-40:31. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2017.

Laszl6 Babai, Lance Fortnow, and Carsten Lund. Non-deterministic exponential time
has two-prover interactive protocols. In &1st Annual Symposium on Foundations of
Computer Science, St. Louis, Missouri, USA, October 22-24, 1990, Volume I, pages
16-25. IEEE Computer Society, 1990.

Laszlo Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy. Checking compu-
tations in polylogarithmic time. In Proceedings of the 23rd Annual ACM Symposium
on Theory of Computing, May 5-8, 1991, New Orleans, Louisiana, USA, pages 21-31,
1991.

Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil P. Vad-
han. Robust PCPs of proximity, shorter PCPs and applications to coding. In Laszld
Babai, editor, Proceedings of the 36th Annual ACM Symposium on Theory of Computing,
Chicago, IL, USA, June 13-16, 2004, pages 1-10. ACM, 2004.

Eli Ben-Sasson, Lior Goldberg, Swastik Kopparty, and Shubhangi Saraf. DEEP-FRI:
sampling outside the box improves soundness. In 11th Innovations in Theoretical Com-
puter Science Conference, ITCS 2020, January 12-14, 2020, Seattle, Washington, USA,
pages 5:1-5:32, 2020.

Eli Ben-Sasson, Swastik Kopparty, and Shubhangi Saraf. Worst-case to average case
reductions for the distance to a code. In 33rd Computational Complexity Conference,
CCC 2018, June 22-24, 2018, San Diego, CA, USA, pages 24:1-24:23, 2018.

Sarah Bordage and Jade Nardi. Interactive oracle proofs of proximity to algebraic ge-
ometry codes. FElectron. Colloquium Comput. Complex., 27:165, 2020.

Eli Ben-Sasson and Madhu Sudan. Robust locally testable codes and products of codes.
Random Struct. Algorithms, 28(4):387-402, 2006.

Eli Ben-Sasson and Madhu Sudan. Short PCPs with polylog query complexity. SIAM
J. Comput., 38(2):551-607, 2008.

Eli Ben-Sasson, Madhu Sudan, Salil Vadhan, and Avi Wigderson. Randomness-efficient
low degree tests and short PCPs via epsilon-biased sets. In Proceedings of the Thirty-
Fifth Annual ACM Symposium on Theory of Computing, STOC ’03, page 612-621, New
York, NY, USA, 2003. Association for Computing Machinery.

Alessandro Chiesa, Peter Manohar, and Igor Shinkar. On axis-parallel tests for tensor
product codes. In Klaus Jansen, José D. P. Rolim, David Williamson, and Santosh S.
Vempala, editors, Approzimation, Randomization, and Combinatorial Optimization. Al-
gorithms and Techniques, APPROX/RANDOM 2017, August 16-18, 2017, Berkeley,
CA, USA, volume 81 of LIPIcs, pages 39:1-39:22. Schloss Dagstuhl - Leibniz-Zentrum
fiir Informatik, 2017.

Irit Dinur and Omer Reingold. Assignment testers: Towards a combinatorial proof of the
pep-theorem. In /5th Symposium on Foundations of Computer Science (FOCS 2004),

33

[FGL*96]

[FHS94|

[GLR*91]

[GSO1]

[GS02

|JPRZ04]

[KPV19)

[KRO4]

[KROS]

[LN97|
[Mie09]

[MROS)|

17-19 October 2004, Rome, Italy, Proceedings, pages 155—164. IEEE Computer Society,
2004.

Uriel Feige, Shafi Goldwasser, Laszl6 Lovész, Shmuel Safra, and Mario Szegedy. In-
teractive proofs and the hardness of approximating cliques. J. ACM, 43(2):268-292,
1996.

Katalin Friedl, Zsolt Hatsagi, and Alexander Shen. Low-degree tests. In Proceedings
of the Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’94, page
57-64, USA, 1994. Society for Industrial and Applied Mathematics.

Peter Gemmell, Richard J. Lipton, Ronitt Rubinfeld, Madhu Sudan, and Avi Wigder-
son. Self-testing/correcting for polynomials and for approximate functions. In Cris
Koutsougeras and Jeffrey Scott Vitter, editors, Proceedings of the 23rd Annual ACM
Symposium on Theory of Computing, May 5-8, 1991, New Orleans, Louisiana, USA,
pages 32-42. ACM, 1991.

Venkatesan Guruswami and Madhu Sudan. On representations of algebraic-geometry
codes. IEEE Trans. Inf. Theory, 47(4):1610-1613, 2001.

Oded Goldreich and Madhu Sudan. Locally testable codes and pcps of almost-linear
length. In 43rd Symposium on Foundations of Computer Science (FOCS 2002), 16-19
November 2002, Vancouver, BC, Canada, Proceedings, pages 13-22. IEEE Computer
Society, 2002.

Charanjit S. Jutla, Anindya C. Patthak, Atri Rudra, and David Zuckerman. Testing low-
degree polynomials over prime fields. In 45th Symposium on Foundations of Computer
Science (FOCS 2004), 17-19 October 2004, Rome, Italy, Proceedings, pages 423-432.
IEEE Computer Society, 2004.

Assimakis Kattis, Konstantin Panarin, and Alexander Vlasov. Redshift: Transpar-
ent snarks from list polynomial commitment iops. Cryptology ePrint Archive, Report
2019/1400, 2019. https://ia.cr/2019/1400.

Tali Kaufman and Dana Ron. Testing polynomials over general fields. In 45th Symposium
on Foundations of Computer Science (FOCS 2004), 17-19 October 2004, Rome, Italy,
Proceedings, pages 413-422. IEEE Computer Society, 2004.

Yael Tauman Kalai and Ran Raz. Interactive PCP. In Luca Aceto, Ivan Damgard,
Leslie Ann Goldberg, Magniis M. Halldorsson, Anna Ingolfsdottir, and Igor Walukiewicz,
editors, Automata, Languages and Programming, 35th International Colloguium, ICALP
2008, Reykjavik, Iceland, July 7-11, 2008, Proceedings, Part II - Track B: Logic, Seman-
tics, and Theory of Programming & Track C: Security and Cryptography Foundations,
volume 5126 of Lecture Notes in Computer Science, pages 536-547. Springer, 2008.

Rudolf Lidl and Harald Niederreiter. Finite Fields. Cambridge University Press, 1997.

Thilo Mie. Short pcpps verifiable in polylogarithmic time with o(1) queries. Annals of
Mathematics and Artificial Intelligence, 56(3-4):313-338, August 2009.

Dana Moshkovitz and Ran Raz. Sub-constant error low degree test of almost-linear size.
SIAM J. Comput., 38(1):140-180, 2008.

34

https://ia.cr/2019/1400

[Pan94]

[PS94]

[RR20]

[RRR16]

[RS92]

[RS96]

[RS97]

[RVW13]

[Sch80)

[Sta21]

[Vid15]

[VSBW13]

Victor Y. Pan. Simple multivariate polynomial multiplication. J. Symb. Comput.,
18(3):183-186, 1994.

Alexander Polishchuk and Daniel A. Spielman. Nearly-linear size holographic proofs. In
Frank Thomson Leighton and Michael T. Goodrich, editors, Proceedings of the Twenty-
Sixth Annual ACM Symposium on Theory of Computing, 23-25 May 1994, Montréal,
Québec, Canada, pages 194-203. ACM, 1994.

Noga Ron-Zewi and Ron D. Rothblum. Local proofs approaching the witness length
[extended abstract]. In 61st IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2020, Durham, NC, USA, November 16-19, 2020, pages 846-857. IEEE,
2020.

Omer Reingold, Guy N. Rothblum, and Ron D. Rothblum. Constant-round interactive
proofs for delegating computation. In Daniel Wichs and Yishay Mansour, editors, Pro-
ceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing, STOC
2016, Cambridge, MA, USA, June 18-21, 2016, pages 49-62. ACM, 2016.

Ronitt Rubinfeld and Madhu Sudan. Self-testing polynomial functions efficiently and
over rational domains. In Greg N. Frederickson, editor, Proceedings of the Third An-
nual ACM/SIGACT-SIAM Symposium on Discrete Algorithms, 27-29 January 1992,
Orlando, Florida, USA, pages 23-32. ACM/SIAM, 1992.

Ronitt Rubinfeld and Madhu Sudan. Robust characterizations of polynomials with
applications to program testing. SIAM J. Comput., 25(2):252-271, 1996.

Ran Raz and Shmuel Safra. A sub-constant error-probability low-degree test, and a sub-
constant error-probability PCP characterization of NP. In Frank Thomson Leighton and
Peter W. Shor, editors, Proceedings of the Twenty-Ninth Annual ACM Symposium on
the Theory of Computing, El Paso, Texas, USA, May 4-6, 1997, pages 475-484. ACM,
1997.

Guy N. Rothblum, Salil P. Vadhan, and Avi Wigderson. Interactive proofs of proximity:
delegating computation in sublinear time. In Dan Boneh, Tim Roughgarden, and Joan
Feigenbaum, editors, Symposium on Theory of Computing Conference, STOC’13, Palo
Alto, CA, USA, June 1-4, 2013, pages 793-802. ACM, 2013.

Jacob T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities.
J. ACM, 27(4):701-717, 1980.

StarkWare. ethstark documentation. Cryptology ePrint Archive, Report 2021/582, 2021.
https://ia.cr/2021/582.

Michael Viderman. A combination of testability and decodability by tensor products.
Random Struct. Algorithms, 46(3):572-598, 2015.

Victor Vu, Srinath T. V. Setty, Andrew J. Blumberg, and Michael Walfish. A hybrid
architecture for interactive verifiable computation. In 2018 IEEE Symposium on Security
and Privacy, SP 2013, Berkeley, CA, USA, May 19-22, 2013, pages 223-237. IEEE
Computer Society, 2013.

35

https://ia.cr/2021/582

[Zip79] Richard Zippel. Probabilistic algorithms for sparse polynomials. In Edward W. Ng,
editor, Symbolic and Algebraic Computation, EUROSAM 79, An International Sympo-
siumon Symbolic and Algebraic Computation, Marseille, France, June 1979, Proceedings,
volume 72 of Lecture Notes in Computer Science, pages 216-226. Springer, 1979.

A Proof of Lemma [5

The beginning of the proof of Lemma is the same as the one of [BGKS20, Lemma 3.2]. We rewrite
the proof entirely since we need to rely notations introduced along the analysis.

Proof of Lemmal[j First, observe that if the function ¢ : D — [0, 1] is constant equal to 1, then
po(u,C) = 1 — A(u,v). Therefore, for any weight function ¢ : D — [0,1] and any u,v € FqD,
po(u,v) < 1 —A(u,v). Consequently, pg(u,C) <1 — A(u,C). Thus, the set

{zeFq| py(uo + zu1,C) > 1 — 6}

is contained in A = {z € Fy | A(up + zu;,C) < ¢} and the hypothesis implies |A| > E% Now, the
proof follows the one of [BGKS20, Lemma 3.2].

For each z € F,, denote u, = up + zu; and let v, € C' be a codeword such that A(u,,C) =
A(uz,vy). Let T, := {x € D | uy(z) = vy(x)} be the agreement set of u, and v,.

For zg, z1, 22, picked uniformly and independently in A and y picked uniformly from D, we have

E [|TZ00TzlmTz2]]: E

20,%21,22 n Y,20,%21,22

(LyeT. AT, AT,]
= E[E[1yer.)]
Yy z
E [1y6Tz]3
y7z
(1-6)°
1-6+e.

\%

=
=

From this, one obtains
Pr [Ty, nT: nT.| = (1—0)|D|] = e.

20,%1,22

The probability of zg, z1, zo being all distinct is at least 1 — %, which is greater than 1 — § since

|A| > . Thus, we get

Pr [z0,21, 22 are all distinct and |T,, N 1%, N Ts,| = (1 —9)|D|] = /2.

20,21,22
Consequently, there are distinct z; and z5 such that

PrTs AT A Tyl = (1-8) D] > /2,

Fix a zp such that [T,y n T, nTs,| = (1 —6)|D|, and let S = T,, n T,, n T,,. We have that
Uzy, Uzp, Uz, all lie on the line [= {ug + zu; : z € Fy} < JFqD. As a consequence, when restricted to
S, we have that Uzg|g) Uz | g5 Uza|§ all lie on the line l|5 = {uo‘s +zugs: 2 € Fq} c Ff.

By definition of S, T}, T,, and T%,, we also have that Vzo|9) Vz1|5) Vza|§ lie on the line /|g. Since S
is an information set of C, we can linearly reencode V20| 9> Vz1|§ Vo into v, v, vz, and we observe

that v,,,v,, and v,, all lie on a same line. Thus, there are vy, vy € IF'qD such that this line is defined

36

by {vo + zv1;z € Fy} <]F(?. There are 5-fraction of the zg € A such that v,, belongs to this line.
Notice that for such zg, v,, = vo + 20v1.

Let A’ < A be the set of the z’s such that v, (the word closest to u,) can be written v, = vg+zv;.
Then, we have |[A’| > £ |A| > L and for all z € A’, pu4(uo + 2u1,vo + 2v1) > 1 — §. Therefore,

]A’||D| Z Z Ly () vz(ﬂ«”))

zeA! xeD
2 ¢ <‘A’| Z luz(;t):vz(z)) .

[L’ED

Let us consider T := {x € D | up(x) = vo(z) and ui(x) = vi(z
most one element z € F, such that ug(z) + zui(x) = vo(x) +

1
L=<y Do+ X e

zeT

< gy 2 o) +

zeT

)}. Given x € D\T, there is at
zv1(z). Thus, we conclude that

ECCC ISSN 1433-8092
37
https://eccc.weizmann.ac.il

