
How to Find Water in the Ocean
A Survey on Quantified Derandomization

Roei Tell *

August 17, 2021

Abstract

The focus of this survey is the question of quanti�ed derandomization, which was
introduced by Goldreich and Wigderson (2014): Does derandomization of proba-
bilistic algorithms become easier if we only want to derandomize algorithms that
err with extremely small probability? How small does this probability need to be
in order for the problem’s complexity to be affected?

This question opens the door to studying natural relaxed versions of the deran-
domization problem, and allows us to construct algorithms that are more efficient
than in the general case as well as to make gradual progress towards solving the
general case. In the survey I describe the body of knowledge accumulated since the
question’s introduction, focusing on the following directions and results:

1. Hardness vs “quantified” randomness: Assuming sufficiently strong circuit
lower bounds, we can derandomize probabilistic algorithms that err extremely
rarely while incurring essentially no time overhead.

2. For general probabilistic polynomial-time algorithms, improving on the brute-
force algorithm for quantified derandomization implies breakthrough cir-
cuit lower bounds, and this statement holds for any given probability of error.

3. Unconditional algorithms for quantified derandomization of low-depth cir-
cuits and formulas, as well as near-matching reductions of the general deran-
domization problem to quantified derandomization for such models.

4. Arithmetic quantified derandomization, and in particular constructions of
hitting-set generators for polynomials that vanish extremely rarely.

5. Limitations of certain black-box techniques in quantified derandomization,
as well as a tight connection between black-box quantified derandomization
and the classic notion of pseudoentropy.

Most of the results in the survey are from known works, but several results are
either new or are strengthenings of known results. The survey also offers a host of
concrete challenges and open questions surrounding quantified derandomization.

*Massachusetts Institute of Technology, Cambridge, MA. Email: roei.tell@gmail.com

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 120 (2021)

Contents

1 Introduction 1
1.1 The general question . 1
1.2 The role of error-reduction . 3
1.3 Additional motivation . 3
1.4 Organization . 4

2 An overview: What do we know? 4
2.1 Non-uniform quantified derandomization with no overhead 4
2.2 Hardness vs quantified randomness . 5
2.3 Quantified derandomization of specific circuit classes 7
2.4 Natural black-box techniques and their limitations 14
2.5 Arithmetic quantified derandomization . 16
2.6 The connection to pseudoentropy . 18

3 Preliminaries 19

4 Non-uniform derandomization 22

5 Hardness vs quantified randomness 23

6 Quantified derandomization of specific circuit classes 26
6.1 General Boolean circuits . 26
6.2 Constant-depth circuits . 28
6.3 Constant-depth circuits with threshold gates 32
6.4 De Morgan formulas . 34

7 Extractors, restriction procedures, and their limitations 39

8 Polynomials that vanish extremely rarely 43

9 Quantified derandomization and pseudoentropy 46

10 A host of concrete challenges 48

Appendix A Error-reduction by itself is not enough 59

Appendix B Pseudorandom restrictions for low-depth circuits and formulas 59

Appendix C Extractors computable by low-depth circuits and formulas 63

Appendix D Quantified derandomization of logspace and of proof systems 67

1 Introduction

Does derandomization of probabilistic algorithms become easier when the number
of “bad” random inputs is extremely small? (Goldreich and Wigderson [GW14].)

The context for this survey is the question of derandomization: Can we simulate
randomness in a deterministic and efficient way? More accurately, we ask which types
of randomized algorithms can be simulated in a deterministic way, and what is the
precise cost of simulation. The main focus in this study is on simulating randomized
algorithms that solve decision problems, which is the BPP vs P question.1 As we
can expect of one the main questions in complexity theory, progress on it has been
challenging, and we know that essentially any progress on this question is closely
related to progress on other central questions in complexity theory.

The textbook definition of probabilistically solving a decision problem L ⊆ {0, 1}∗,
which underlies the definition of BPP , considers a randomized algorithm to be suc-
cessful if it errs with probability at most 1/3 on every fixed input; that is, the fraction
of random strings that cause the algorithm to err is at most 1/3.

This survey is concerned with the seemingly innocent choice of error bound 1/3.
Going back to the original definition of BPP in [Gil74], the class was defined with an
unspecified error bound that can be any constant smaller than 1/2, such as .49. On the
other hand, when we present this topic to non-expert audiences, we sometimes choose
a miniscule constant such as 10−10 for dramatic effect. Of course, both formulations
are essentially equivalent, since we can apply error reduction to efficiently reduce the
error from 1/2− n−O(1) to 2−poly(n) with only a polynomial runtime overhead.

Therefore, a common sentiment is that the precise choice of error bound doesn’t
really matter, as long as it is noticeably smaller than 1/2. 2 But is this sentiment
accurate even when we take a sub-constant error bound very close to zero, focusing
on algorithms that only err extremely rarely? It turns out that in this setting, the precise
choice of error bound matters a lot. In fact, the problem is so sensitive to this choice
that even tiny changes in the error bound mark the difference between settings in
which efficient derandomization is known, and settings in which showing even mild
derandomization would yield dramatic consequences in complexity theory.

1.1 The general question

Let’s start with a trivial extreme point: If we define a probabilistic algorithm to be
successful only if it never errs – that is, we set the error bound in the definition of
BPP to be zero – then we just defined deterministic computation in a cumbersome way;

1As usual, this focus is taken merely for simplicity, and there is an efficient search-to-decision reduc-
tion in this setting (i.e., search problems that can be efficiently solved by probabilistic algorithms, and for
which solutions can be efficiently verified, reduce to promise-BPP ; see [Gol11, Theorem 3.5]).

2Allowing error that is arbitrarily close to 1/2 is a different story. Such a choice is less natural (since
we are defining a negligible improvement over a random coin toss as “successfully solving a problem”)
and yields the very large complexity class PP (recall that PPP = P#P ⊇ PH, using [Tod91]).

1

needless to say, derandomization becomes trivial in this case. But what if we allow
the randomized algorithm to err on just a single random string, out of the exponentially
many possible choices for random strings? What if we allow it to err on polynomially
many strings? Where is the threshold at which the derandomization problem stops
being trivial, and what happens beyond this threshold?

Several years ago Goldreich and Wigderson [GW14] asked these questions in a
broad and methodical way, leading to a fruitful study of what they called quanti�ed

derandomization: This is the question of derandomizing algorithms that err extremely rarely,
where “extremely rarely” here refers to the number of random strings that cause the
probabilistic algorithm to err. As they mention in their work, an early form of this
question was already considered long ago by Sipser [Sip86], who considered the class
“strong R” of problems solvable with extremely small one-sided error.

Let us define the notion of probabilistically solving a decision problem with error bound

B, where the parameter B will quantify the number of exceptional random strings (i.e.,
random strings that cause the algorithm to err). We will measure B as a function of
the number of random coins (rather than of the input length), since we are interested
in comparing the number of exceptional random strings to the total number of choices
for a random string. For simplicity of presentation, let us assume for the moment
that the number of random coins equals the running time. (We will get rid of this
simplifying assumption later on in Section 2.3.)

Definition 1.1 (probabilistically solving a decision problem with error bound B). For
B : N → N, we say that Π = (Y,N) ⊆ {0, 1}∗ × {0, 1}∗ is in prBPT IMEB[T] if there
exists a randomized algorithm that gets input x ∈ {0, 1}∗, runs in time T = T(|x|), and:

1. If x ∈ Y, the algorithm accepts given all but at most B(T) choices of random strings.

2. If x ∈ N, the algorithm rejects given all but at most B(T) choices of random strings.

I stress again that that B(T) is the absolute number of exceptional random strings
in Definition 1.1, rather than their fraction. Thus, and since we assumed (for now)
that the number of random coins equals the running time T, the error probability
of the algorithm in Definition 1.1 is B(T)/2T. Indeed, the standard definition of
prBPT IME [T] is the special case obtained by using B(T) = 2T/3.

Trying to derandomize only algorithms that err extremely rarely makes the chal-
lenge potentially easier; that is, Definition 1.1 opens the door for a relaxation of the
classical derandomization problem. However, this relaxation entirely hinges on the choice
of function B: For small values of B (e.g., for B(T)) = O(1)) the corresponding de-
randomization problem is easy, since we can just use the brute-force deterministic
simulation that runs the original algorithm using 2B(T) + 1 fixed choices of a random
string; whereas for larger values of B (e.g., for B(T) = Ω(2T)) the derandomization
problem is as challenging as the original and general derandomization problem.

2

1.2 The role of error-reduction

As mentioned above, we can efficiently reduce the error of a probabilistic algorithm. The
naive way to do so is to repeat an algorithm that has error 1/3 for k times and output
the majority decision, which reduces its error to 2−Ω(k). This naive method reduces B
only mildly as a function of the number of random coins, and using more sophisticated
tools we can reduce B to be (say) subexponential in the number of random coins at
a relatively low computational cost (see Section 3.3 for details).3 This means that, in
high-level, general derandomization reduces to quantified derandomization with relatively
small values of B and with a corresponding computational overhead.

The point is that, in contrast to a common mistaken intuition, this does not triv-
ialize the question of quantified derandomization, but rather (to the contrary) high-
lights its importance. Specifically, this suggests a natural approach to solve the general
derandomization problem: First reduce general derandomization to quantified deran-
domization (e.g., by error-reduction), and then solve the corresponding quantified
derandomization problem. Indeed, when taking this approach what we are actually
asking is whether we can reduce general derandomization to a target setting of quantified de-
randomization that we can efficiently solve. This calls for developing efficient algorithms
for quantified derandomization, as well as efficient approaches for error-reduction.4

We will see both types of results in this survey.

1.3 Additional motivation

Derandomizing algorithms that err extremely rarely is, in my view, a natural problem
that is inherently interesting, and therefore it does not need additional external mo-
tivations. (Indeed, recall that the problem was considered as early as 1986 [Sip86].)
For example, one may ask what is the precise time complexity of derandomizing al-
gorithms that err extremely rarely, or which assumptions are sufficient and necessary
in order to do so (as we will see, both questions have recently been studied).

Nevertheless, let me mention two additional motivations for studying quantified
derandomization, where both of them view this question as a stepping-stone towards
solving the general derandomization problem. The first additional motivation is that, as
explained in Section 1.2, a natural approach to solve the general derandomization
problem is to reduce it to quantified derandomization and then solve the latter.

The second additional motivation is more generic: Since quantified derandomiza-
tion is a relaxation of general derandomization, we a-priori hope that studying the
former will shed light on the latter and pave the way for gradual progress towards

3To be more precise, let us measure B as a function of the number of random coins R. Naive error-
reduction only yields B(R) = 2(1−o(1))·R, since repeating an algorithm with r = ω(1) coins for k times
yields an algorithm with R = k · r coins and error probability 2−Ω(k) = 2−Ω(R/r).

4In general, applying standard black-box techniques for error-reduction and then the brute-force al-
gorithm for quantified derandomization can never yield a non-trivial algorithm for general derandom-
ization (see Appendix A). Thus, when using this approach, we need either a better-than-brute-force
algorithm for quantified derandomization, or a non-standard technique for error-reduction.

3

solving it. It turns out that this generic motivation materialized in a fruitful way in the
case of quantified derandomization: The results that we will see are surprising, rely on
new techniques, and point both at specific technical challenges that create bottlenecks
and at connections between quantified derandomization and well-known questions in
complexity theory (e.g., circuit lower bounds and pseudoentropy).

Lastly, as pointed out by Avi Wigderson, the study of quantified derandomization
led to constructions of important pseudorandom objects. For example, Sipser’s [Sip86]
original work was one of the driving forces behind the study of explicit randomness
extractors (see, e.g., [CW89, Acknowledgements]). Analogously, the recent introduc-
tion of quantified derandomization in [GW14] led to constructions of pseudorandom
restriction algorithms for weak circuit classes, and to constructions of extractors that
are computable in weak circuit classes (see, e.g., Appendices B and C, respectively).

1.4 Organization

An overview of the results that are included in this survey is presented in Section 2.
After stating preliminary definitions in Section 3, the subsequent Sections 4, 5, 6, 7, 8,
and 9 expand on each of the subsections of Section 2, respectively, elaborating on the
high-level results with more technical details and explanations. A reader interested in
open problems in quantified derandomization will find numerous ones in Section 10.

Appendix A expands on Footnote (4) above. Appendices B and C describe tech-
nical constructions that underlie some of the results described in Section 2. Finally,
Appendix D surveys two additional settings for quantified derandomization that have
been explored relatively less so far.

2 An overview: What do we know?

This is the main section of this survey, and it presents a high-level overview of the
results that are included in the text. Some results will be stated a bit concisely or
informally, and in the subsequent technical sections I’ll state them formally and with
additional explanations, details, and sometimes with proofs or proof sketches.

2.1 Non-uniform quantified derandomization with no overhead

As in any derandomization problem, a natural starting point is asking what we can
do non-explicitly; that is, by asking for an unconditional non-uniform quantified de-
randomization. Recall that for general derandomization, Adleman’s theorem [Adl78]
asserts that prBPT IME [T] ⊂ prSIZE [n · Õ(T)]; hence, the known non-uniform
general derandomization incurs a multplicative size overhead proportional to the in-
put size n. However, for quantified derandomization this can be improved:

Theorem 2.1 (non-uniform quantified derandomization). For any T(n) ≥ n and any
B(T) = 2(1−ε)·T where ε > 0 is a constant we have that prBPT IMEB[T] ⊂ prSIZE [Õ(T)].

4

Proof. As in Adleman’s proof, given a probabilistic T-time algorithm, we first reduce
its error below 2−n and then non-uniformly hard-wire a fixed choice of a random string
that yields a correct decision on all 2n inputs. The difference here is that the initial
error probability isn’t 1/3 but rather B(T)/2T = 2−ε·T ≤ 2−ε·n, so the error reduction
step will incur less time overhead. Specifically, after only constantly many repetitions
the error decreases below 2−n while incurring only a constant multiplicative runtime
overhead,5 at which point we can hard-wire a fixed random string.

Thus, when derandomizing algorithms that err on at most B(T) = 2(1−Ω(1))·T ran-
dom strings we can avoid the multiplicative derandomization overhead of n that occurs
for general derandomization. This difference is particularly striking in the case of
probabilistic linear-time algorithms, where general derandomization can be done by
circuits of quadratic size, but quantified derandomization with B(T) = 2(1−Ω(1))·T can
be done by circuits of near-linear size. The meaning of this result is that already for
“slightly non-trivial” values of B, the relaxation of considering quantified derandom-
ization might allow for more efficient derandomization algorithms.

2.2 Hardness vs quantified randomness

Can we get uniform quantified derandomization with almost no time overhead under
reasonable assumptions? The high-level answer is yes: The classical “hardness versus
randomness” framework extends to the setting of very fast quantified derandomiza-
tion, allowing to get uniform derandomization with parameters that are close to the
ones in Theorem 2.1 assuming strong circuit lower bounds.

Specifically, the results below deduce quantified derandomization that avoids a
multiplicative overhead of n, at the cost of assuming lower bounds for SVN circuits

rather than for standard circuits as in classical hardness to randomness results. Recall
that SVN circuits are the non-uniform analogue of NP ∩ coNP (see Definition 5.1),
and therefore a lower bound for such circuits is a stronger hardness assumption than a
lower bound for standard circuits. The first result yielding fast quantified derandom-
ization from lower bounds for SVN circuits was proved by Doron et al. [DMO+20]:

Theorem 2.2 (hardness to quantified randomness with a near-quadratic overhead [DMO+20]).
For any ε > 0, assume that there exists L ∈ DT IME [2n] that cannot be computed by SVN
circuits of size 2(1−ε)·n for all sufficiently large n ∈N. Then, for B(T) = 2T1−O(ε)

we have

prBPT IMEB[T] ⊆ prDT IME [T2+O(ε)] .

The near-quadratic time overhead in Theorem 2.2 can be separated into two differ-
ent overheads: A near-quadratic “preprocessing” overhead, which can be computed
once per input length n and yields information that will be used to derandomize all

5Denoting p = 2−ε·n, when we repeat the algorithm k = Oε(1) times, the probability that it errs at
least k/3 times is at most ∑k

i=k/3 (
k
i)pi(1− p)k−i < k · 2k · pk/3 < 2−n.

5

T-time algorithms on inputs of length n, and a smaller near-linear overhead that is paid
later on when derandomizing each particular algorithm (see Section 5 for details).

Chen and the current author [CT21b] showed that a stronger hypothesis yields a
stronger conclusion: Assuming that the entire truth-table of the hard problem above
can be printed “in a batch” in time 2(1+ε)·n (rather than paying time 2n for each of the
2n inputs), we deduce quantified derandomization with a near-linear overhead:

Theorem 2.3 (hardness to quantified randomness with a near-linear overhead [CT21b]).
For any ε > 0, assume that there exists L ⊆ {0, 1}∗ such that for every n ∈ N the truth-
table of L can be printed in time 2(1+ε)·n, but L cannot be computed by SVN circuits of size
2(1−ε/4)·n. Then, for B(T) = 2T1−ε

we have that

prBPT IMEB[T] ⊆ prDT IME [T1+O(ε)] .

The time overhead in Theorem 2.3 almost matches the non-uniform derandomiza-
tion in Theorem 2.1 (a more refined and parameterized bound appears in Theorem 5.3).
However, the derandomizations both in Theorem 2.2 and in Theorem 2.3 hold only for
B(T) = 2T1−ε

rather than for B(T) = 2(1−ε)·T as in Theorem 2.1.

Black-box quantified derandomization necessitates lower bounds for E . The quan-
tified derandomization algorithms underlying Theorems 2.2 and 2.3 are proved via the
standard black-box approach of constructing PRGs.6 The following result asserts that
such black-box algorithms necessitate circuit lower bounds for E . Let me state a nice
special case of this assertion, deferring the general statement to the technical section:

Theorem 2.4 (black-box quantified derandomization implies circuit lower bounds).
For any ε > 0 and s = s(n), assume that there exists a hitting-set generator for n-bit circuits
of size s(n) that reject at most B(n) = 2(1−ε)·n exceptional inputs, whose seed length is
`(n) ≤ (1− ε) · n and that is computable in time 2O(`). Then, E 6⊂ SIZE [s].

The seed length in Theorem 2.4 is just shy of the trivial one, since there is a trivial
HSG with seed length log(B(n)) + 1.7 In contrast, the PRGs underlying Theorems 2.2
and 2.3 have a much shorter seed, of length ≈ ε · log(n). The meaning is that, on
the one hand, essentially any non-trivial black-box quantified derandomization neces-
sitates showing that E is hard for standard circuits; but on the other hand, we only
know how to get black-box quantified derandomization that has almost no time overhead
under the assumption that E is hard for SVN circuits. (see Open Problem 1).

6These PRGs only fool extremely biased distinguishers, and are thus suitable for quantified deran-
domization rather than for general derandomization; see Section 3.2 for definitions and details.

7The general form of Theorem 2.4 holds whenever the seed length of the PRG is at most log(B(n)),
and trades off the seed length for the computational complexity of the hard function (see Theorem 5.4).
In contrast to the analogous result for general HSGs, we do not know how to trade off the seed length
for the size of the circuits for which we deduce lower bounds (see Remark 5.5).

6

2.3 Quantified derandomization of specific circuit classes

What can we do unconditionally, without relying on hardness assumptions? For gen-
eral probabilistic algorithms, we currently do not have any quantified derandomiza-
tion algorithm that outperforms the naive brute-force algorithm (i.e., the algorithm the
enumerates over 2B(T) + 1 fixed choices for a random string). In fact, essentially any
improvement over the brute-force algorithm for general circuits would yield break-
through circuit lower bounds, such as NEXP 6⊂ P/poly; see Theorem 2.6 below.

However, for restricted classes of probabilistic algorithms we have a variety of non-
trivial algorithms for quantified derandomization, which significantly outperform the
brute-force algorithm. Moreover, we also know that improving the known algorithms
would yield new lower bounds for corresponding classes of circuits. To go into more
detail, I first define a complete problem for prBPT IMEB, then I state the result that
improving the brute-force algorithm for general circuits implies circuit lower bounds,
and then I’ll describe the known results for several restricted classes of algorithms.

2.3.1 A complete problem for quantified derandomization

Recall the standard complete problem for prBPP , which is called the Circuit Accep-

tance Probability Problem (CAPP): In CAPP we are given as input a Boolean circuit that
has n input bits and a single output bit, and we need to decide whether the circuit
accepts all but at most 2n/3 of its input strings or rejects all but at most 2n/3 of its
input strings. The complete problem for prBPT IMEB generalizes CAPP using the
parameter B that quantifies the number of exceptional inputs.

Definition 2.5 (quantified derandomization). The Quanti�ed Derandomization problem

with error bound B (QDB, in short) is the following promise problem:

1. The set of “yes” instances Y ⊆ {0, 1}∗ consists of descriptions of n-bit circuits that
accept all but B(n) of their input strings.

2. The set of “no” instances N ⊆ {0, 1}∗ consists of descriptions of n-bit circuits that reject
all but B(n) of their input strings.

When the given circuit is also promised to belong to a certain restricted class of circuits
denoted by C, we denote the problem by QDB[C].

Indeed, CAPP is the special case of QDB with B(n) = 2n/3, and for any B it holds
that QDB is complete for prBPT IMEB. In fact, at this point we can also remove the
simplifying assumption that the number of random coins equals the running time:
Consider derandomizing algorithms that get n-bit inputs, run in time T = T(n) ≥ n,
use R = R(n) random coins, and have at most B(R) exceptional inputs; this problem
reduces to solving QDB for R-bit circuits of size Õ(T) (see Theorem 3.2).8

8Similarly to the convention when defining CAPP, in Definition 2.5 we denote the number of input
bits to the circuit by n. This is a non-obvious choice, since the total input length to QDB is not n but
rather the description length of the circuit, which may be larger than n.

7

2.3.2 Beating the brute-force algorithm for general circuits implies circuit lower
bounds

Let us begin with the setting of solving QDB for general circuits (i.e., circuits with gates
of fan-in two over the De Morgan basis, with no restriction on depth or on fan-out). For
context, recall that no better-than-brute-force algorithms for CAPP of general circuits
are known, and that the celebrated result of Williams [Wil13] asserts that solving CAPP
for n-bit circuits of polynomial size, even just in “slightly non-trivial” time 2n/nω(1),
already implies that NEXP 6⊂ P/poly.

Williams’ result can be interpreted as saying that for B = B(n) = 2n/3, solving
QDB faster than the brute force algorithm that enumerates over 2B + 1 = Θ(2n) inputs
implies that NEXP 6⊂ P/poly. Specifically, the algorithm is required to run in time
2n/nω(1) = B · (log B)−ω(1). The following result asserts that the result of [Wil13] gener-
alizes to all possible values of B(n); that is, if there exists some B = B(n) such that we can
solve QDB in time B · (log B)−ω(1), then NEXP 6⊂ P/poly.

Theorem 2.6 (beating brute-force quantified derandomization implies circuit lower
bounds; informal, see Theorem 6.1). Suppose that for some B(n) < 2n there exists a
deterministic algorithm that solves QDB for n-bit circuits of size poly(n) in time B(n) ·
(log(B(n)))−ω(1). Then, NEXP 6⊂ P/poly.

The meaning of Theorem 2.6 is that essentially any improvement over the brute-
force algorithm for QDB of general circuits, for any value of B = B(n), would imply
breakthrough circuit lower bounds.9 Indeed, in this result the better-than-brute-force
algorithm does not necessarily need to be a black-box algorithm as in Theorem 2.4, but
the implied lower bound is not as strong as in Theorem 2.4 (i.e., the lower bound is for
NEXP rather than for E). In addition, taking a broader perspective than quantified
derandomization per-se, Theorem 2.6 can be viewed as shedding additional light on
the challenge in circuit-analysis that was pointed out in [Wil13].

As in other results using the algorithmic method for circuit lower bounds, the hy-
pothesis of Theorem 2.6 can be relaxed, and only require a non-deterministic algorithm
that accepts circuits that accept all the inputs, and rejects circuits that reject all but at
most B(n) of their inputs (see Theorem 6.1). On the other hand, using Murray and
Williams’ [MW18] extension of [Wil13], a stronger hypothesis in Theorem 2.6 yields a
stronger lower bound: If the algorithm solves QDB for circuits of polynomial size with
B(n) = poly(n) exceptional inputs in time B(n)1−ε (e.g., the given circuit is of size n2,
the number of exceptional inputs is n100, and the required running time is n.99), then
NP does not have circuits of size nk, for every k ∈N (see Theorem 6.2).

9One caveat is that the brute-force algorithm for QDB of polynomial-sized circuits runs in time
poly(n) · B(n), whereas the hypothesized running time in Theorem 2.6 is B(n)/` rather than poly(n) ·
B(n)/`, where ` = log(B(n))ω(1). For large values of B(n) ≥ 2nΩ(1)

as in [Wil13] the difference is imma-
terial, since ` = nω(1); but for B(n) = 2no(1)

this leaves a small gap between the brute-force algorithm and
an algorithm that would imply breakthrough circuit lower bounds.

8

2.3.3 Remarkably tight results for low-depth circuits and formulas

We now turn our attention to restricted classes of probabilistic algorithms. One of
the most striking phenomena in the study of quantified derandomization has been
extraordinarily tight threshold results for such restricted classes. Loosely speaking, we
consider algorithms whose decision procedure on any fixed input as a function of the
random coins can be decided by “weak” circuits (e.g., by constant-depth circuits, or by
polynomial-sized formulas). Intuitively, denoting the latter class of circuits by C, we
will refer to two settings of parameters:

• Tractable values of C and B: There exists, unconditionally, an efficient algorithm
that solves the corresponding quantified derandomization problem.

• Threshold values of C and B: If there exists an efficient algorithm that solves
the corresponding quantified derandomization problem, then we can solve the
general derandomization problem for a related class in a better-than-brute-force
way, and deduce breakthrough results (e.g., new circuit lower bounds).

The notion of “efficient algorithm” above typically refers to polynomial time, but
we will also allow (say) small quasipolynomial time. The crucial point is that the
notion of efficiency in threshold values will not be stricter than the notion of efficiency
in tractable values. Jumping ahead, the main takeaway from the results below is:

Main takeaway: For several well-studied circuit classes, the gap between
tractable values and threshold values is tiny, typically consisting only of low-
order terms in specific parameters. A possible explanation for this recur-
rent phenomenon is suggested in Section 2.4.

The main difference between the case of general circuits from Section 2.3.2 and
the case of restricted circuit classes presented next is that we have many non-trivial
algorithms for QDB of restricted classes. That is, for general circuits any better-than-
brute-force algorithm would imply breakthrough circuit lower bounds, whereas for
restricted classes we have algorithms that (significantly) outperform the better-than-
brute-force algorithm, and yet essentially any improvement in the parameters of these
currently known algorithms would imply breakthrough circuit lower bounds.

Bird’s eye. The results below focus on three of the most well-studied “weak” classes
in circuit complexity: The class AC0, the class T C0, and the class of De Morgan for-
mulas (definitions appear below). The high-level picture for each of these classes is
similar: Lower bounds for circuits of bounded size against P have been known for
decades, and proving lower bounds for larger circuits (even against ENP) is a major
open problem; known algorithms for CAPP of circuits from the class have parameters
that imply lower bounds for circuits of the same size as in the known (long-standing)
lower bounds; and constructing better algorithms for CAPP of circuits from this class
would imply lower bounds for larger circuits, yielding the sought breakthrough.

9

Circuit Class Tractable Value Threshold Value

AC0
d

#gates nO(1) nO(1)

[GW14; CL16; Tel19]
B(n) 2n/ logd−2(n) 2n/ logd−14(n)

LTFd

#wires n1+60−d
n1+1.61−d

[Tel18; CT19]
B(n) 2n1−1.61−d

2n1−1.61−d

PTFd,O(1)

#wires n1+2−20d

(same as LTFd) [KL18]
B(n) 2n.99

FORMULAS
#leaves n2−2ε−o(1) n2−ε+Ω(1)

[CJW20]
B(n) 2nε

2nε

Figure 1: Tractable values vs threshold values for quantified derandomization of AC0
d,

LTFd, PTFd,O(1), and FORMULAS (respectively denoting depth-d circuits, depth-d LTF
circuits, depth-d PTF circuits of constant degree, and probabilistic De Morgan formu-
las). The running times of the algorithms are omitted for simplicity; they are either
polynomial or quasipolynomial, and the required running times for threshold values
are larger than the running times of the algorithms yielding the tractable values.

I’ll now state the technical results for each of these classes, which are also concisely
presented in Figure 1. For each class, I’ll state both an unconditional algorithm for QDB
(demonstrating tractable values), and a result asserting that a slightly better algorithm
for QDB would yield an algorithm for CAPP that outperforms known algorithms and
implies new lower bounds for the class (demonstrating threshold values). In some
cases, the deduced lower bounds are not just a mild improvement over the known
ones, but are actually dramatically better than the known ones. More detailed results
as well as background and context on each of the classes appear in Section 6.

The class AC0 of constant-depth circuits. The class AC0 consists of circuit families
of constant depth with gates of unbounded fan-in over the De Morgan basis. The
following result from [Tel19] asserts that QDB for polynomial-sized depth-d circuits
can be solved by a polynomial-time computable .01-PRG with seed length Õ(log3(n)),

10

where B(n) = 2n/polylog(n) and the seed length does not depend on the constant d.10

That is, for such B(n) the seed length is a fixed polylogarithm, regardless of the (constant)
depth; in particular, this seed is much shorter than the seed of the known PRG for
CAPP of such circuits, whose length is Õ(logd+1(n)) (see Section 6.2).

Complementing this upper bound, the result also asserts that CAPP for depth-d0
circuits efficiently reduces to QDB for depth-d circuits (for d� d0), where again we have
that B(n) = 2n/polylog(n). (The proof of the foregoing statement relies on a technical
construction of Cheng and Li [CL16].) Thus, the only gap between the two results is
in the constant polylogarithmic power in the exponent of B(n) = 2n/polylog(n).

Theorem 2.7 (tight threshold results for quantified derandomization ofAC0; see [CL16;
Tel19]). Let d ≥ 2 be a constant integer. Then:

1. For any k ∈N there exists a .01-PRG with seed length Õ(log3(n)) that solves QDB for
depth-d circuits of size nk, where B(n) = 2Ω(n/ logd−2(n)).

2. For any d0 < d− 11 it holds that CAPP for depth-d0 circuits of linear size on n0 input
bits reduces, in deterministic polynomial time, to QDB for depth-d circuits of polynomial
size on n = O(n3600

0) input bits, where B(n) = 2n/ logd−d0−11(n).

To see the tiny gap between the two parts of Theorem 2.7, let us instantiate the
threshold result with concrete parameters that would suffice to yield breakthrough
results. Already for B(n) = 2n/ logd−14(n), an algorithm for QDB with running time as
in Item (1) of Theorem 2.7 would yield a breakthrough algorithm for CAPP of AC0. In
addition, for the slightly larger B(n) = 2n/ logd−18(n), such an algorithm would imply
breakthrough lower bounds for AC0: A problem in ENP that cannot be decided by
AC0 circuits of depth 5 and size 2Ω(n2/7). See Section 6.2 for further details.

The class T C0 of constant-depth threshold circuits. The class T C0 consists of constant-
depth circuit families with unbounded fan-in majority gates. We consider its natural
extension called LTF circuits, in which each gate can compute an arbitrary linear thresh-
old function (i.e., a function of the form Φ(x) = sgn(`(x)), where ` is a linear function
over the reals). We measure the size of such circuits by their number of wires.

Constructing a CAPP algorithm for T C0 circuits of polynomial size is one of the
most prominent current open problems in complexity theory (e.g., it was highlighted
as the first open problem in Aaronson’s “P vs NP” survey [Aar16]). In the result

below, we consider the fixed value B(n) = 2n1−1.61−d
, and state two complementary

results. First, we state an unconditional algorithm for QDB of LTF circuits of depth d
with n1+60−d

wires that runs in almost-polynomial time, from [Tel18]; and we comple-
ment this by a result of Chen and the current author [CT19] asserting that CAPP for
T C0 circuits reduces to QDB of T C0 circuits of depth d with n1+1.61−d

wires. Indeed,
ihe only gap between the two is in the precise constant c > 1 in the size bound n1+c−d

.
10By “PRG that solves QDB” we mean that the PRG fools circuits from the class that have at most B(n)

exceptional inputs, and thus enumerating over its seeds yields an algorithm for QDB of this class.

11

Theorem 2.8 (tight threshold results for quantified derandomization of T C0; see [Tel18;

CT19]). Let d ≥ 2 be a constant integer and let B(n) = 2n1−1.61−d
. Then:

1. There exists a deterministic algorithm that solves QDB for depth-d LTF circuits with
n1+60−d

wires in time nO(loglog2(n)).

2. For any d0 ≤ d− 7 it holds that CAPP for depth-d0 LTF circuits of linear size on n0
input bits reduces, in deterministic polynomial time, to QDB for depth-d LTF circuits on
n = nOd(1)

0 input bits with n1+1.61−d
wires.

To see the tightness of Theorem 2.8, note the following implication of the threshold
result: If there exists an algorithm for QDB as in Item (1) of Theorem 2.8 that can handle
circuits with n1+1.61−d

wires (rather than n1+60−d
wires), then NEXP is hard for T C0

circuits of arbitrary polynomial size! In fact, this breakthrough implication would be
obtained even from an algorithm that runs in time 2no(1)

. See Section 6.3 for details.
Kabanets and Lu [KL18] extended the algorithm in Item (1) of Theorem 2.8, by

constructing an algorithm for QDB for the stronger class of low-degree PTF circuits (i.e.,
circuits in which each gate can compute any function of the form Φ(x) = sgn(p(x)),
where p is a low-degree polynomial over the reals). When the PTF degree is constant,
their algorithm runs in quasipolynomial time and can handle circuits of size n1+c−d

(for
a large constant c� 1), and B(n) = 2n1−ε

exceptional inputs, for a constant ε = εc > 0.

Theorem 2.9 (quantified derandomization of PTF circuits; see [KL18]). For any two
constants ∆, d ∈ N there exists a deterministic algorithm that solves QDB for depth-d PTF

circuits of degree ∆ with n1+c−·d wires in time 2log(n)O(∆2)
, where B(n) = 2n0.99

and c = 220.

Compared to Theorem 2.8, the algorithm in Theorem 2.9 can handle circuits with
stronger gates and of similar size (i.e., up to the constant c in the size bound n1+c−d

).
However, the algorithm tolerates fewer exceptional inputs B(n), and has a mildly
larger running time (i.e., quasipolynomial instead of almost-polynomial).

The class FORMULAS. Chen, Jin, and Williams [CJW20] studied quantified deran-
domization of polynomial-sized formulas of fan-in two over the De Morgan basis,
where the size is measured as the number of leaves. To make their results as tight as
possible, they considered the stronger model of probabilistic formulas; thus, we are now
concerned with the problem QDB where the input is a description of a probabilistic
formula (see Section 6.4 for details and precise definitions).

For B(n) = 2nε
, where ε ∈ (0, 1) may be any constant, on the one hand they

constructed an unconditional polynomial-time algorithm for QDB of probabilistic for-
mulas of size n2−2ε−o(1); and on the other hand, they showed that CAPP of polynomial-
sized formulas reduces to QDB of probabilistic formulas of size n2−ε+δ, for an arbitrar-
ily small constant δ > 0. Thus, the gap between the two results is only in the size
bound, which is n2−2ε−o(1) in the upper bound and n2−ε+Ω(1) in the reduction.

12

Theorem 2.10 (tight threshold results for quantified derandomization of De Morgan
formulas; see [CJW20]). Let ε ∈ (0, 1) and let B(n) = 2nε

. Then:

1. There is a polynomial-time computable (4/10)-PRG with seed length O(log(n)) that
solves QDB for probabilistic formulas of size n2−2ε−o(1).

2. For any δ > 1 and k ∈ N it holds that CAPP 1
2 ,0 for formulas on n0 input bits of size

nk
0 reduces, in deterministic polynomial time, to QDB for probabilistic formulas of size

n2−ε+δ on n = (n0)Oε,δ(1) input bits.

The threshold result in Theorem 2.10 has the following implication: If there exists
an algorithm for QDB as in Item (1) that can handle probabilistic formulas of size
n2−ε+δ for some δ > 0 (rather than only n2−2ε−o(1)), then NP is hard for formulas of
size nk, for every fixed k ∈N. This is a very strong lower bound for formulas, the like
of which has been sought since the 1960’s. See Section 6.4 for details.

2.3.4 An outlier: Constant-depth circuits with parity gates

The last class that we consider in this section is AC0[⊕], which consists of constant-
depth circuits with gates of unbounded fan-in over the basis {AND,OR,⊕,¬}. For
simplicity, we assume that the input gates are both variables and their negations, and
that circuits are layered (i.e., all gates of a given distance from the inputs are of the
same type, and feed from gates in the preceding layer).11

Analogously to the results in Section 2.3.3, for this class too we have tractable
values for the parameters and threshold values for the parameters. However, while
these values are close, the currently known gap is not as tiny as in the results in
Section 2.3.3. Specifically, both values refer to B(n) = 2nΩ(1)

; the known tractable
values refer to polynomial-sized circuits of depth three that are of any form other than
⊕ ◦ AND ◦ ⊕, or that are of the latter form but satisfy certain structural constraints;
whereas the threshold value refers to polynomial-sized circuits of depth four.

Theorem 2.11 (quantified derandomization ofAC0[⊕] circuits; see [GW14] and [Tel19]).
Let c ∈N, let ε > 0 be sufficiently small, and let B(n) = 2nε

. Then,

1. There exists δ > 0 and a polynomial-time algorithm that solves QDB forAC0[⊕] circuits
of depth three, provided that the circuit is either: (a) Of size nc and not of the form
⊕ ◦AND ◦ ⊕; or (b) Of the form ⊕ ◦AND ◦ ⊕ and satisfies at least one of the following
conditions: It has O(n) gates; it has at most n2−δ AND-gates and at most n + nδ/2

⊕-gates; it has at most 1
5 · n1−δ AND gates and at most n1+δ ⊕-gates.

2. The problem CAPP 1
2 ,0 for CNF formulas of polynomial size reduces in deterministic

polynomial time to QDB for AC0[⊕] circuits of polynomial size and depth four.
11Note that any such circuit can be naturally thought of as computing a polynomial Fn

2 → F2; indeed,
we can assume that the internal gates are over the arithmetic basis {+,×} ∪ {1 + g : g ∈ {+,×}} and
that the inputs are x1, ..., xn, x1 + 1, ..., xn + 1 ∈ F2.

13

To parse the threshold value in Theorem 2.11, recall that despite many decades of
research, a polynomial-time algorithm for CAPP 1

2 ,0 of polynomial-sized CNF formulas
is still not known, and would be a breakthrough. (See [ST17] for the best currently
known algorithm, which runs in time nÕ(loglog(n))2

.) Further details regarding Theo-
rem 2.11 can be found in [GW14, Section 6] and [Tel19, Section 6].

2.4 Natural black-box techniques and their limitations

Results as in Section 2.3.3, which are both very tight and consistent across many circuit
classes, seem unlikely to be a mere coincidence. I’ll now offer one explanation for this
phenomenon (initially suggested in [Tel17]), which focuses on specific natural black-box
techniques underlying the results above.

Algorithms for QDB using pseudorandom restrictions. The high-level strategy for
all algorithms for QDB in Section 2.3.3 follows an idea of Goldreich and Wigder-
son [GW14]. Given an n-bit circuit C with at most B(n) exceptional inputs, let X ⊆
{0, 1}n be a subset of the domain of size |X| > B(n) such that C is constant on X.
Then, for every x ∈ X it holds that C(x) is the most common output of C (otherwise
C would have |X| > B(n) exceptional inputs). Thus, if we can efficiently find an input
guaranteed to be in such a subset X, we can infer the most common output of C.

For example, in the case of AC0 a natural strategy is to use Håstad’s switching
lemma [Hås87] to find a large subcube on which C is constant. The key challenge, how-
ever, is that the restriction procedure underlying the switching lemma is randomized,
and we want a deterministic algorithm that finds such a subcube. Accordingly, the tech-
nical result underlying the algorithm in Theorem 2.7 is a pseudorandom restriction
procedure for AC0, whose key ingredient is a suitable derandomization of Håstad’s
switching lemma (see Appendix B for details of the technical result).12

In similar fashion, the technical results underlying the algorithms in Theorems 2.8, 2.9
and 2.10 are pseudorandom restriction procedures for threshold circuits and for for-
mulas. These technical results are described in Appendix B.

Reductions of CAPP to QDB using seeded extractors. The high-level strategy for
the reductions of CAPP to QDB is also similar in the different results above: Given a
circuit C from the relevant class C that accepts (or rejects) all but 1/3 of its inputs, we
construct an averaging sampler Samp (equivalently, a seeded extractor; see Section 3.3),
and output the circuit C′(z) = MAJ {C(Samp(z)s)}s, which has a very small number
of exceptional inputs. (This is since Samp samples the event C−1(1) approximately
correctly given all but a very small number of input strings z.)

12Note that for quantified derandomization we need to pseudorandomly choose both the variables to
fix and the values to assign to them. This requirement is stronger than the one in other well-known
applications (e.g., when constructing PRGs using the framework of [AW85]), in which only the set of
fixed variables is chosen pseudorandomly (and values are uniform).

14

The crucial point is that the circuit C′ is more complicated than the circuit C, since
it needs to compute the averaging sampler Samp.13 Accordingly, the reductions in
Theorems 2.7, 2.8 and 2.10 are all based on constructions of averaging samplers (i.e.,
of seeded extractors) that are computable by small low-depth circuits and formulas.
These technical results are described in Appendix C.

The limitation of black-box instantiations of these techniques. In the proofs of the
results in Section 2.3.3, the two foregoing techniques are applied in a black-box man-
ner: The restriction procedure for the given circuit C is a pseudorandom distribution
X that does not depend on C, and instead simplifies every circuit from the class, with
high probability; and the sampler samples any subset of {0, 1}n approximately cor-
rectly, rather than only the subset C−1(1) corresponding to the given circuit C.14

The following result asserts that when the two techniques are applied in this black-
box manner, the reduction of CAPP to QDB yields parameters that the unconditional
algorithm for quantified derandomization provably cannot solve. That is, the combina-
tion can only yield reductions of CAPP to QDBthr for values of Bthr that are necessarily
larger than the values of Btrac that the algorithm for QDBtrac can handle.

Theorem 2.12 (a limitation of two black-box techniques in quantified derandomization;
informal, see Theorem 7.3 and [Tel17]). Let C be a circuit class. Assume that there exists
a reduction of CAPP for C-circuits to QDBthr that only uses seeded extractors computable
in C. Also assume that there exists an algorithm for QDBtrac of C-circuits that only uses a
distribution X over sets X of size |X| > Btrac that simplifies every C ∈ C to a constant, with
high probability. Then, Btrac(n) < Bthr(n).

Thus, Theorem 2.12 suggests a possible explanation for the tightness of the results
in Section 2.3.3: In the study of quantified derandomization we constructed technical
tools (i.e., pseudorandom restriction procedures, and extractors computable by weak
circuits or formulas) that achieve almost the best possible parameters, yielding results
that are essentially as tight as possible when using the black-box techniques above.

The key takeaway from Theorem 2.12, in my opinion, is that it points at a concrete
technical challenge that we need to tackle if we want to solve CAPP using this approach
(i.e., the approach of first reducing the error and then finding an input guaranteed to
belong to a large “simplifying subset”). Specifically, to get a CAPP algorithm using
this approach we need to construct either non-black-box restriction procedures, or non-
black-box samplers. I elaborate on this and mention potential directions in Section 7.3.

13I focus on the complexity of Samp since we can replace the majority function MAJ by an approximate
majority function, which has low computational complexity. Moreover, in the case of derandomization
with one-sided error we can simply replace this function with a single ∨ gate.

14To be more precise, there are differences between the clean abstract formulations of the techniques
(as presented above) and the actual techniques underlying the results in Section 2.3, but these differences
are immaterial for the argument that follows in Theorem 2.12. See Section 7 for further explanations.

15

2.5 Arithmetic quantified derandomization

So far we discussed derandomization problems in which both the computed func-
tions and the computational devices are Boolean. In this section we switch context
to arithmetic derandomization problems, in which the functions and devices work over a
predetermined field, and the complexity is measured by algebraic notions.

Specifically, a well-known arithmetic derandomization problem is that of construct-
ing hitting-set generators (HSGs) for multivariate polynomials. Fixing a finite field F,
we consider a class C of polynomials Fn → F. Our goal is to construct a genera-
tor H : {0, 1}` → Fn such that for every polynomial p ∈ C there exists s for which
p(H(s)) 6= 0; ideally, the seed length ` is small and H is efficiently computable. Two
well-known lines of work focus on polynomials of low degree (see [NN93; LV98;
Bog05; BV10; BHS08; Lov09; Vio09b; CTS13]) and on polynomials with a bounded
number of monomials (see [LVW93; KS01; Lu12; ST18; ST19]).

2.5.1 The quantified problem, and a digest of what we know

A natural quantified version of the problem above is that of constructing hitting-set

generators for polynomials that vanish extremely rarely. Specifically, for a given parameter
ε > 0, we want to construct a HSG for the class of polynomials p : Fn → F whose
fraction of roots satisfies Prx∈Fn [p(x) = 0] ≤ ε. To parse the problem, recall that
over large fields, any polynomial of degree d � |F| vanishes “rarely”, i.e. on at most
ε = d/|F| fraction of its inputs. However, we will care about extremely small values
of ε � d/|F|, and won’t necessarily assume that the field is large (e.g., we also care
about polynomials over F2), making the problem highly non-trivial.

Denote the field size by q = |F|, the total degree of the polynomial by d, and the
bound on the fraction of roots by ε = q−t for an integer parameter t ∈ N. The reason
for the latter notation is that a random polynomial vanishes with probability q−1,
whereas a classical result of Warning [War35] asserts that any degree-d polynomial
vanishing with probability less than q−d has no roots at all. Thus, our interest is in
ε = q−t for values of t = 1, ..., d, where the value t = 1 will be “hard” (intuitively,
since most polynomials vanish with probability about q−1) and for any value t > d the
problem becomes trivial (as such polynomials have no roots).

Goldreich and Wigderson [GW14] proved the first result in this context, which was
a HSG construction. A subsequent lower bound on the seed length of such HSGs was
proved in [Tel19]. Both of these results were later subsumed by more general results
proved by Doron, Ta-Shma, and the current author [DTST20], which I now describe.
The main takeaway from the known results is the following:

Main takeaway: There exist HSGs for degree-d polynomials that vanish
with extremely small probability ε, with shorter seed than any HSG for
general degree-d polynomials. However, there is currently a significant
gap between the known lower- and upper-bounds on values of ε for which
an improvement over HSGs for general degree-d polynomials is possible.

16

2.5.2 Constructions of HSGs

Over F = F2, there exist HSGs for degree-d polynomials that vanish with extremely
small probability ε whose seed length is smaller than the seed length of any possible
HSG for general degree-d polynomials. Specifically, recall that there is a non-uniform
HSG for general degree-d polynomials with seed length Θ(d · log(n/d)), and that no
HSG can have a shorter seed, regardless of its complexity. The following result asserts
the existence of two HSGs for polynomials that vanish rarely – a non-uniform HSG and
a polynomial-time-computable HSG – both of which have seed length o(d · log(n/d))
when the fraction of roots is at most ε ≈ 2−d+o(d):

Theorem 2.13 (HSGs for F2-polynomials that vanish rarely; see [DTST20]). Let n ∈
N be sufficiently large and let d > t + 4 be integers. Then, there exist HSGs for degree-d
polynomials Fn

2 → F2 that vanish with probability at most ε = 2−t of the two following types:

1. The HSG is non-uniform and has seed length is O (d− t) · log
(n

d−t

)
.

2. The HSG is polynomial-time computable and has seed length Õ(2d−t) · log
(n

d−t

)
.

The non-uniform HSG in Theorem 2.13 has seed length significantly smaller than
d · log(n/d) when ε ≤ 2−d+dΩ(1)

(i.e., for t = d − dΩ(1)); and the polynomial-time
computable HSG achieves such short seed when ε ≤ 2−d+(1−Ω(1))·log(d) (i.e., for t =
d− (1−Ω(1)) · log(d)). Thus, intuitively, both of these results hold only for extremely
small values of ε ≈ 2−d+o(d). Moreover, both results hold only over F2, and we don’t
currently have analogous constructions over larger fields.

2.5.3 Impossibility results

Complementing the constructions above, for fields of any size q ∈ {2, ..., poly(n)}, we
have a lower bound on the seed length of any HSG for polynomials that have at most
ε = q−t roots, regardless of its complexity. Loosely speaking, while the (non-uniform)
HSG in Theorem 2.13 has seed length (d− t) · log(n), the lower bound below rules out
a much shorter seed, of length o(d/t) · log(n):

Theorem 2.14 (a lower bound on HSGs for polynomials that vanish rarely; see [DTST20]).
Let n, d, t ∈ N such that d ≤ n.49 and t ≤ γ · d, where γ > 0 is a universal constant, and
let F be a field of size 2 ≤ q ≤ n100. 15 Then, any HSG for degree-d polynomials Fn

q → Fq
requires a seed of length Ω((d/t) · log(n)).

Intuitively, the meaning of Theorem 2.14 is that the seed length of HSGs for poly-
nomials that vanish rarely may only be smaller than that of HSGs for general polyno-
mials for values of ε ≤ q−dΩ(1)

. 16 Indeed, there is a significant gap between the latter
value and the smaller values of ε at which we already know from Theorem 2.13 that
savings can occur, which are of the form ε ≤ q−d+dΩ(1)

, where q = 2.
15The constant power 100 may be replaced with any constant power; see Theorem 8.6.
16Needless to say, this lower bound does not rule out the possibility that it might nevertheless be easier

to construct efficient HSGs in the case of polynomials that vanish rarely.

17

2.5.4 Two comments

I find it remarkable that we don’t even know what is the optimal seed length of a
non-uniform HSG for polynomials that vanish rarely. (For general polynomials, the
standard answer of Θ(d · log(n/d)) is easy to prove; see e.g., [DTST20, Preliminaries].)
The upper bound in Theorem 2.13 is obtained by a standard probabilistic argument,
but it relies on a non-trivial tight bound on the number of such polynomials proved by
Kaufman, Lovett, and Porat [KLP12]. The lower bound in Theorem 2.14 is proved by
a non-standard argument that relies on complicated technical tools (e.g., the disperser
construction of Shaltiel and Umans [SU05]).

The second comment is that the question of the optimal seed length of HSGs for
polynomials that vanish rarely turns out to be closely related to a clean algebraic problem.
Specifically, define the degree-d closure of a set S ⊆ Fn to be the variety induced by the
set of degree-d polynomials that vanish on S. 17 It is natural to ask whether or not
there exist small sets with a large degree-d closure, and it turns out that such sets are
essentially the hitting-sets for polynomials that vanish rarely (i.e., the two notions are
closely related). See Theorem 8.8 for an explanation and precise details.

2.6 The connection to pseudoentropy

Lastly, it turns out that there is a very close relationship between quantified deran-
domization and pseudoentropy. In high-level, as first noted by Doron et al. [DMO+20]
(relying on a technical result of Barak, Shaltiel and Wigderson [BSW03]), PRGs for
quantified derandomization are essentially equivalent to pseudoentropy generators.

Recall that, informally, a distribution w over {0, 1}n is pseudoentropic if it looks to
every efficient distinguisher as though it has high entropy; this is a relaxation of pseu-
dorandomness, since the latter is the special case with full entropy n (i.e., the uniform
distribution). We are interested in a very weak notion of pseudoentropy, called metric

pseudoentropy: A distribution has metric ε-pseudoentropy k if every efficient distin-
guisher C views w as ε-close to a distribution hC with min-entropy at least k, where
hC may depend on the distinguisher C (see Definition 9.1).

The following result asserts that a distribution has metric pseudoentropy k if and
only if the distribution fools distinguishers with Θ(2k) exceptional inputs. In particu-
lar, this means that an efficient algorithm is a metric pseudoentropy generator (PEG)
if and only if the algorithm solves QDB, where the pseudoentropy is k ≈ log(B(n)).

Theorem 2.15 (metric pseudoentropy vs quantified derandomization; see Theorem 9.2).
A distribution w over {0, 1}n has metric ε-pseudoentropy k for size-S circuits if and only if
it is Θ(ε)-pseudorandom for size-S circuits with at most B(n) = Θ(2k) exceptional inputs.

I suspect that implications of the connection in Theorem 2.15 can be explored fur-
ther than they have been so far. One interesting implication, which was shown by
Chen and the current author [CT21b], is the following.

17That is, the degree-d closure is the set of all points x ∈ Fn that satisfy the following: For every
degree-d polynomial p that vanishes on S it holds that p(x) = 0.

18

A well-known paradigm for constructing PRGs for general derandomization, which
dates back to [HIL+99] and has been used in [BSW03; STV01; FSU+13; DMO+20], is to
construct a PRG that composes a PEG with a seeded extractor. Specifically, denoting
the PEG by G0, the PRG is G(s0, s1) = Ext(G0(s0), s1). Implementing this idea has been
challenging, since the original proofs that G is a PRG require the PEG to satisfy strong
notions of pseudoentropy (i.e., stronger than metric pseudoentropy).

Doron et al. [DMO+20] proved that it suffices for G0 to be a metric PEG, but for an
inherently stronger class of distinguishers (see [DMO+20, Theorem 1.8]). Relying on
Theorem 2.15 we can prove something stronger: It suffices for G0 to be a metric PEG
for the distinguisher class that we want to fool, up to a polynomial size overhead.

Theorem 2.16 (“extract from a pseudoentropic string” as a special case of “error-reduc-
tion and quantified derandomization”; see Theorem 9.3). Let Ext : {0, 1}n̄×{0, 1}O(log(n̄)) →
{0, 1}n be an extractor with error 10−3 for min-entropy k ≤ n− 10 that is computable in time
poly(n), and let G0 : {0, 1}` → {0, 1}n̄ be a metric 10−3-pseudoentropy generator with pseu-
doentropy k + 10 for circuits of size nc (where c > 1 is a sufficiently large constant). Then,
G(s0, s1) = Ext(G0(s0), s1) is a .01-PRG for linear-sized circuits.

The reader may wonder where lies the connection of Theorem 2.16 to quantified
derandomization. The connection is in the proof : Instead of thinking of G as “ex-
tracting from a pseudoentropic string” (as in previous proofs, which were technically
involved), we think of G as reducing the general derandomization problem to quan-
tified derandomization and then solving the latter. Specifically, we think of Ext as
performing error-reduction in a non-standard way, and of G0 as solving the result-
ing quantified derandomization problem (relying on Theorem 2.15). This alternative
perspective yields a short, elementary, and general proof (see Theorem 9.3).

3 Preliminaries

The machine model throughout this survey will be the multitape Turing machine. We
say that T : N → N is a time function if T is time-computable and satisfies T(n) ≥ n;
whenever referring to time bounds we’ll always implicitly assume that the bound is a
time function. We denote random variables and distributions by boldface, and denote
the uniform distribution over {0, 1}n by un.

3.1 Complete problems

Recall the following standard definition of CAPP, which uses two parameters and also
allows capturing derandomization of algorithms with one-sided error:

Definition 3.1 (CAPP). The Circuit Acceptance Probability Problem with parameters (α, β)
(CAPPα,β, in short) is the following promise problem (Y,N):

1. The set of Y instances consists of circuits C such that Prx[C(x) = 1] ≥ α.

19

2. The set of N instances consists of circuits C such that Prx[C(x) = 1] ≤ β

A standard result is that CAPP is complete for prBPP under deterministic polynomial-
time reductions (see, e.g., [Vad12, Corollary 2.31] or [Gol08, Exercise 6.14]). The follow-
ing generalization, which was mentioned in Section 2.3, implies that for any function
B, the problem QDB defined in Definition 2.5 is complete for BPT IMEB:

Theorem 3.2 (QDB is complete for BPT IMEB). For two time functions T, R : N → N,
let Π = (Y,N) be a promise problem that can be solved by a probabilistic algorithm that runs
in time T, uses R random coins, and errs on any input given at most B(R) random strings.
Then, Π on inputs of length n reduces in deterministic time Õ(T(n)) to QDB for circuits on
R(n) input bits of size Õ(T(n)).

Proof. Fix a probabilistic multitape machine M that solves Π on n-bit inputs in time
T = T(n), with R = R(n) random coins, and with at most B(R) exceptional inputs.
Given x ∈ {0, 1}n, we construct a circuit Cx : {0, 1}R → {0, 1} that computes the
decision of M at the fixed input x as a function of the random coins. This R-bit circuit
is of size Õ(T), and either accepts all but at most B = B(R) of its input strings (in case
x ∈ Y) or rejects all but at most B of its input strings (in case x ∈ N).

Recall that prBPT IMEB was defined in Definition 1.1 under the simplifying as-
sumption that the number of random coins R equals the running time T. Thus, as
a corollary of Theorem 3.2, if QDB for n-bit circuits of size Õ(n) can be solved in
deterministic time T̄, then prBPT IMEB[T] ⊆ prDT IME [T̄(Õ(T(n)))].

3.2 PRGs for quantified derandomization

Many of the known algorithms for QDB solve the problem in a black-box fashion, using
PRGs. To properly define PRGs for QDB we define a class of B-biased distinguishers,
which are n-bit circuits that have at most B(n) exceptional inputs. Then, PRGs that
solve QDB are simply PRGs that fool the class of B-biased distinguishers.

Definition 3.3 (B-biased circuits). For a function B : N→N, we say that a Boolean circuit
C with n input gates is B-biased if there exists σ ∈ {0, 1} such that C outputs σ given all
but at most B(n) input strings. Unless explicitly stated otherwise, we assume that B-biased
distinguishers are circuits of linear size.

Definition 3.4 (PRG). We say that a distribution w over {0, 1}n is ε-pseudorandom for
a class Cn of functions {0, 1}n → {0, 1} if for every C ∈ Cn it holds that |Pr[C(un) =
1]− Pr[C(w) = 1]| ≤ ε. We say that an algorithm G is a pseudorandom generator (PRG)

with seed length `(n) for a class C = {Cn}n∈N if, when G takes input 1n and a random seed
of length `(n), its output distribution is ε-pseudorandom for Cn.

Note that for any B(n) = o(2n), an ε-PRG G for a class of B-biased distinguishers
satisfies the following: For every B-biased distinguisher C, if the acceptance probability
of C is high then Prs[C(G(s)) = 1] ≥ 1− ε− o(1), and if the acceptance probability of
C is low then Prs[C(G(s)) = 1] ≤ ε− o(1).

20

3.3 Extractors and samplers

Recall that standard definition of seeded randomness extractors, which we’ll simply
refer to as extractors in this survey.

Definition 3.5 (min-entropy). The min-entropy of a distribution x, denoted H∞(x), is the
largest integer k such that for every outcome x it holds that Pr[x = x] ≤ 2−k.

Definition 3.6 (extractors). A function Ext : {0, 1}n̄ × {0, 1}` → {0, 1}n is an extractor for

min-entropy k with error ε > 0 (or a (k, ε)-extractor, in short) if for every distribution x over
{0, 1}n̄ with min-entropy H∞(x) ≥ k, the statistical distance between Ext(x, u`) and un is at
most ε.

It is well-known that extractors are essentially equivalent to averaging samplers,
which we’ll refer to as samplers. Let us recall the definition of the latter and state this
equivalence. The definition presented next is slightly non-standard, since instead of
bounding the error probability of the sampler we will bound the number of random
strings that are bad for the sampler.

Definition 3.7 (averaging samplers). A function Samp : {0, 1}n̄ → ({0, 1}n)2` is an aver-
aging sampler with B bad inputs and error ε > 0 (or a (B, ε)-sampler, in short) if for every
T ⊆ {0, 1}n, for all but at most B strings z ∈ {0, 1}n̄ it holds that Prs∈[2`][Samp(z)s ∈ T] ∈
|T|/2n ± ε.

Theorem 3.8 (extractors are equivalent to samplers; see, e.g., [Vad12, Corollary 6.24]).
Consider two functions Ext : {0, 1}n̄ × {0, 1}` → {0, 1}n and Samp : {0, 1}n̄ → ({0, 1}n)2`

such that for every z ∈ {0, 1}n̄ and s ∈ {0, 1}` it holds that Ext(z, s) = Samp(z)s. Then,

1. If Ext is a (k, ε)-extractor then Samp is a (2k, ε)-sampler.

2. If Samp is an (2k, ε)-sampler then Ext is a (k + log(1/ε), 2ε)-extractor.

Given Theorem 3.8, the standard technique for error-reduction of probabilistic al-
gorithm relies on extractors. Specifically, for a probabilistic algorithm A taking input
x and randomness r that errs with probability at most 1/3, and a (k, .01)-extractor Ext,
we define A′(x, r′) = Maj {A(x,Ext(r′, s))}s. Relying on Item (1) of Theorem 3.8, for
any fixed input x we have that A′(x, r′) outputs the correct decision for all but at most
2k exceptional random choices of r′.

Example 3.9. Using one of the state-of-the-art constructions of a polynomial-time com-
putable extractor (e.g., from [LRV+03; GUV09; DKS+13]), for any constant ε > 0 we
can reduce the number of exceptional random strings to B(T) = 2Tε

with only a poly-
nomial overhead in the time complexity and in the number of random coins. More
generally, for any constant ε > 0 and any “nice” function B, we can convert a proba-
bilistic algorithm with m random coins that errs with probability 1/3 into an algorithm

21

that solves the same problem with n = B−1(2m/(1−ε)) random coins and at most B(n)
exceptional random strings, incurring a multiplicative time overhead of poly(n).18

However, when considering classes of weak algorithms (e.g., uniform constant-
depth circuits), in many cases these classes provably cannot compute extractors with
parameters as above (see, e.g., Section 2.4, or [Vio05; GVW15]). Thus, for such classes
this method can only yield relatively large target values of B.

4 Non-uniform derandomization

As in all derandomization problems, the non-uniform (i.e., non-explicit) results are a
good starting point, since they suggest what we might ideally hope to achieve in a
uniform algorithmic way.

Recall that Adleman’s [Adl78] theorem asserts that BPP ⊂ P/poly. In fact, using
his argument we can get the finer bound prBPT IME [T] ⊂ prSIZE [n · Õ(T)], for
every time function T(n).19 It is a great (and quite recent) open question whether
or not the multiplicative overhead of n is actually necessary for general worst-case
derandomization. Under a reasonable hardness assumption the overhead is indeed
necessary, but this assumption is not very well understood at this point. (The assump-
tion is the non-uniform variant of #NSETH; see [CT21b] for details.)

Nevertheless, for quantified derandomization we can unconditionally do better. As
stated in Theorem 2.1, even for a relatively large number of exceptional inputs B(T) =
2(1−Ω(1))·T we can avoid the multiplicative overhead of n, and non-uniformly deran-
domize prBPT IMEB with almost no overhead at all. In fact, as stated in the follow-
ing result, we can do so in a black-box manner, by constructing a (non-uniform) PRG
for B-biased circuits with a very short seed:

Theorem 4.1 (non-uniform PRGs for quantified derandomization). Let ε > 0 be an
arbitrarily small constant, let B(n) = 2(1−ε)·n, and let s = s(n). Then, there is a non-uniform
.01-PRG with seed length log(s(n)/n) + loglog(s(n)) + O(1) (and size exponential in its
seed length) for the class of n-bit circuits of size s(n) that are B-biased.

Proof. Choose at random a set W ⊆ {0, 1}n of size |W| = Θ(s′/n), where s′ = O(s ·
log(s)). For every n-bit B-biased circuit C of size s, the probability that C evaluates to

18Other tradeoffs can also be obtained. For example, we can mitigate the blow-up in the number n of
variables at the cost of obtaining larger circuits, using the lossless extractors with super-logarithmic seed
of [GUV09, Theorem 5.14]. Moreover, when reducing the error of algorithms that have one-sided error,
we can mitigate the blow-up in n while still paying only a multiplicative time overhead of poly(n), using
the lossless disperser with logarithmic seed [TSUZ07, Theorem 1.4].

19To do so, we reduce the error of a given probabilistic algorithm below 2−n using O(n) repetitions,
and then hard-wire a fixed choice of an O(T · n)-bit random string that leads the algorithm to a correct
decision on all 2n inputs. The polylogarithmic overhead on T arises from technical issues of translations
between uniform and non-uniform models (i.e., converting a Turing machine to a circuit).

22

its minority output on at least .01 · |W| of the strings in W is at most

|W|

∑
i=.01·|W|

(
|W|

i

)
· (B/2n)i · (1− B/2n)|W|−i < |W| · 2|W| · 2−Ωε(|W|·n) < 2−s′(n) ,

where the last inequality relies on our choice of |W|. By a union-bound over 2s′(n)

circuits of size s, there exists a choice of W such that every B-biased size-s circuit
evaluates to its majority output on at least .99 · |W| of the strings in W.

Thus, Theorems 2.1 and 4.1 suggest that even for a relatively large number of ex-
ceptional inputs B(T) ≈ 2.99·T, we can hope to get black-box quantified derandomiza-
tion with almost no time overhead. Interestingly, the only setting in which quantified
derandomization with such a large number of exceptional inputs is known is that of
logspace algorithms, which is described in Appendix D.

5 Hardness vs quantified randomness

As explained in Section 2.2, assuming sufficiently strong lower bounds for non-uniform
circuits we can make the derandomization results in Section 4 explicit. The following
two results refer to algorithms that err on at most B(n) = 2n1−ε

strings, for a very small
ε > 0, and show that under reasonable hardness hypotheses such algorithms can be
derandomized with overhead that is just slightly larger than the one in Theorem 2.1.

The required hardness hypotheses in the results are that there exists a function in E
that is hard for SVN circuits (the acronym stands for “Single-Value Non-deterministic
circuits”), which are the non-uniform analogue of NP ∩ coNP defined as follows:

Definition 5.1 (SVN circuits). We say that a promise problem Π = (Y,N) ⊆ {0, 1}∗ ×
{0, 1}∗ is solved by SVN circuits of size s = s(n) if there exists a circuit family {Cn}n∈N

such that each Cn has n input gates, at most s(n) non-deterministic input gates, and at
most s(n) internal gates, and the following holds:

1. For any x ∈ Y there exists an assignment w ∈ {0, 1}s(|x|) to the non-deterministic
input gates such that C|x|(x, w) = 1; and for all assignments w′ ∈ {0, 1}s(|x|) to the
non-deterministic input gates it holds that C|x|(x, w′) ∈ {1,⊥}.

2. For any x ∈ N there exists an assignment w ∈ {0, 1}s(|x|) to the non-deterministic
input gates such that C|x|(x, w) = 0; and for all assignments w′ ∈ {0, 1}s(|x|) to the
non-deterministic input gates it holds that C|x|(x, w′) ∈ {0,⊥}.

5.1 Lower bounds for SVN circuits imply very fast quantified derandom-
ization

The first result, which was proved by Doron et al. [DMO+20], asserts that if there is a
function in DT IME [2(1+ε)·n] that is hard for SVN circuits of size 2(1−ε)·n, then we

23

can derandomize T-time algorithms that err on at most 2T1−O(ε)
random strings in time

T2+ε. Moreover, they show that for any input length n, one can compute in advance,
in time T2+ε(n), a single pseudorandom set that later on allows to derandomize each
particular algorithms with at most 2T1−O(ε)(n) exceptional random strings on n-bit in-
puts in time T1+ε(n); that is, the derandomization time T2+ε can be partitioned to a
preprocessing time of T2+ε, which is paid only once per input length for all algorithms,
and then a derandomization time of T1+ε for any particular algorithm.

Theorem 5.2 (hardness to quantified randomness with a near-quadratic overhead;
see [DMO+20]). For ε > 0, assume that there exists L ∈ DT IME [2(1+ε)·n] that can-
not be computed by SVN circuits of size 2(1−ε)·n for all sufficiently large n ∈N. Then, there
exists a .01-PRG with seed length O(ε) · log(n) for B-biased circuits, where B(n) = 2n1−O(ε)

,
such that the entire output-set of the PRG can be printed in time n2+O(ε).

The O-notation in Theorem 5.2 hides universal constants, and in their result the
concluded PRG actually has a smaller error, of magnitude n−Ω(1). (Reducing the error
from 1/8 to n−Ω(1) does not improve the resulting algorithm for QDB.)

Next, the following result from Chen and the current author [CT21b] shows a
faster derandomization under a stronger hypothesis. Namely, if the entire truth-table
of the hard function can be computed “in a batch” in time 2(1+ε)·n (rather than just
assuming that each entry is computable in such time as in Theorem 5.2), then the
derandomization time is only T1+ε rather than T2+ε. (The following result statement
also parameterizes B(n) and the hardness assumption separately.)

Theorem 5.3 (hardness to quantified randomness with a near-linear overhead; see [CT21b]).
For ε, δ > 0, assume that there exists L ∈ DT IME [2n] such that for every n ∈N the truth-
table of L can be printed in time 2(1+ε)·n, but L cannot be computed by SVN circuits of size
2(1−δ/4)·n. Then, there exists a .01-PRG with seed length δ · log(n) for B-biased circuits, where
B(n) = 2n1−δ

, such that the entire output-set of the PRG can be printed in time n(1+δ)·(1+ε).

Similarly to Theorem 5.2, in Theorem 5.3 too the O-notation hides a universal
constant and the error in the original result is actually n−Ω(1).

5.2 The common proof idea

The proofs of Theorems 5.2 and 5.3 can be seen as efficient implementations of a
proof strategy that was introduced by Sipser [Sip86], and that predates the well-known
reconstruction argument of Nisan [Nis91] and Nisan and Wigderson [NW94].

In high-level, the derandomization algorithm computes the truth-table f of the
hard function; encodes this truth-table by an appropriate error-correcting code, to
obtain a codeword f̄ ; and outputs disjoint consecutive substrings of f̄ as the pseu-
dorandom set of strings. Specifically, to derandomize a probabilistic algorithm on an
n-bit input, we compute the truth-table of the hard function on all inputs of length
` ≈ (1 + ε) · log(n), so that the truth-table is of length | f | ≈ n1+ε, and encode it to f̄
of length ≈ n1+O(ε); this yields a pseudorandom set of nO(ε) strings of length n.

24

To prove that this set is indeed pseudorandom, we assume that there exists a B-
biased distinguisher D and construct a corresponding SVN circuit C of size | f |1−Ω(1)

that computes the hard function, which contradicts the hardness of f . To see how this
is done, recall that the pseudorandom set is just consecutive substrings of f̄ . The key
observation is that since the set S ⊆ {0, 1}n of exceptional inputs of D is relatively
small, i.e. of size only B(n) ≈ 2n1−δ

, and a .01-fraction of the substrings of f̄ lie
in S, there exist short descriptions for a .01 of the substrings in f̄ . Specifically, we
can describe each substring by its index in S, which yields a description of length
(.01 · nO(ε)) · log(B(n)) = | f |1−Ω(1).

The observation above only yields an information-theoretic description of .01 of the
entires of f̄ , but with some work we can also turn it into a relatively efficient procedure;
that is, we can construct an SVN circuit of size | f |1−Ω(1) computing a function that
agrees with the function whose truth-table is f̄ on .01 of the inputs. Given such a
circuit, a local list-decoding procedure for the code yields an SVN circuit of size
| f |1−Ω(1) that computes the hard function f on all inputs. See [CT21b] for the full
argument, which can be used to prove both results above.

5.3 Non-trivial PRGs for biased distinguishers imply circuit lower bounds

For general derandomization, the classical hardness vs randomness framework asserts
that PRGs are essentially equivalent to circuit lower bounds for E (see, e.g., [Nis91;
NW94; IW99; SU05; Uma03] and others).20 Indeed, both Theorems 5.2 and 5.3 as-
sert the existence of a PRG with seed length ≈ ε · log(n) for biased distinguishers.
We do not know if such a PRG is equivalent to lower bounds for SVN circuits as
in the hypotheses of these results, but we do know that any non-trivial PRG for bi-
ased distinguishers necessitates lower bounds for standard circuits in E . In fact, this
relies on essentially the same argument as in the standard proof that PRGs for general
derandomization require circuit lower bounds in E .

To formally state this result, we consider a class C of Boolean circuits, and we
denote by Cn all the C-circuits with n input gates. (Note that we use the strict syntactic
notion of the number of input gates, and in particular we do not allow circuits with
less than n input gates to compute functions over n bits.) For a function B(n), we
denote by C≤B

n the subclass of Cn consisting of all circuits in Cn that reject at most B(n)
of their inputs, and we denote C≤B = ∪n∈NC≤B

n . Then, we have that:

Theorem 5.4 (black-box quantified derandomization implies circuit lower bounds). Let
C = {Cn}n∈N be a circuit class. For `(n) < n and B(n) ≥ 2`(n), assume that there exists a
2O(`(n))-time computable hitting-set generator with seed length ` for C≤B

n . Then, there exists
L ∈ DT IME [2O(`(n))] that cannot be decided by Cn.

Proof. On n-bit inputs, the hard problem Ln is the indicator function of {0, 1}n \
20For a very recent hardness vs randomness result that avoids PRGs and circuit lower bounds, and

instead relates non-black-box algorithms for general derandomization to a new type of uniform lower
bounds (i.e., lower bounds for uniform machines on almost all inputs), see [CT21a].

25

{
H(s) : s ∈ {0, 1}`(n)

}
, where H is the hitting-set generator; that is, x ∈ L iff there

does not exist s ∈ {0, 1}`(n) such that x = H(s). Note that any C ∈ Cn that decides Ln
rejects at most 2`(n) ≤ B(n) inputs, and thus C ∈ C≤B

n . However, this means that H is
a HSG for C, and thus C(H(s)) = 1 for some s ∈ {0, 1}`(n), a contradiction.

Remark 5.5. One important subtlety in Theorem 5.4 makes the result weaker than
the analogous result for general derandomization. In Theorem 5.4, a shorter seed
yields a hard problem in a smaller complexity class (since the hard problem is in
DT IME [2`(n)]). When starting from a PRG for general derandomization (i.e., for
distinguishers that aren’t necessarily biased) and using an argument analogous to
the proof of Theorem 5.4, we can also use a shorter seed in order to get a lower
bound for larger circuits. Unfortunately, when starting from a PRG for quantified
derandomization (i.e., for biased distinguishers) we do not know how to trade off a
shorter seed for a lower bound for larger circuit.21

6 Quantified derandomization of specific circuit classes

In this section I elaborate on Section 2.3. First, Section 6.1 includes proof of Theo-
rem 2.6, which asserts that any better-than-brute-force algorithm for quantified de-
randomization of general circuits implies breakthrough circuit lower bounds. Then,
Sections 6.2, 6.3 and 6.4 elaborate on the results regarding AC0 circuits, T C0 circuits,
and probabilistic formulas, respectively.

6.1 General Boolean circuits

We are interested in Boolean circuits of fan-in two over the De Morgan basis with no
structural restrictions (e.g., no restrictions on the depth or on the fan-out of internal
gates). The algorithmic method for circuit lower bounds, which was pioneered by Ryan
Williams and extensively developed in the last decade (see, e.g., [Wil13; Wil11; SW13;
BSV14; MW18; CW19; Che19; CR20; CLW20], following early results such as [IKW02;
KI04]), asserts that a better-than-brute-force algorithm for CAPP implies superpoly-
nomial lower bounds. Specifically, as shown in [Wil13], if for all k ∈ N there exists

21To see why, recall that the standard approach to obtain lower bounds for larger circuits is to define a
hard problem over 2`(n) input bits rather than over n input bits, and argue that this problem is hard for
circuits of size n that is large as a function of the input length (i.e., the hard problem requires deciding
whether the input is a prefix of H(s) for some s ∈ {0, 1}`). To do so we consider distinguishers with
n input gates that are sensitive only to the first 2`(n) input gates, identify this class with circuits over
2`(n) input gates of size n, and argue that neither of the two classes can avoid the output-set of the HSG.
The gap between the two classes can be bridged using padding: If there is a distinguisher with 2`(n)
input gates, we can add dummy input gates and obtain a distinguisher with n input gates. However,
for quantified derandomization this gap seems meaningful, and we cannot bridge it using the padding
argument (since adding dummy input gates significantly increases the number of exceptional inputs).

26

an algorithm for CAPP of n-bit circuits of size nk that runs in time 2n/nω(1), then
NEXP 6⊂ P/poly, which would be a major breakthrough in complexity theory.22

As mentioned in Section 1.2, CAPP efficiently reduces to QDB, and therefore algo-
rithms for QDB yield corresponding algorithms for CAPP. Combined with the algo-
rithmic method above, it follows that sufficiently fast algorithms for QDB imply circuit
lower bounds for NEXP . Actually, as shown in the following result, for any value
of B = B(n), essentially any improvement over the brute-force algorithm for QDB implies
that NEXP 6⊂ P/poly. As pointed out by Ryan Williams, this generalizes the result
in [Wil13], which is the special case with B(n) = 2n/3.

Theorem 6.1 (beating the brute-force quantified derandomization implies circuit lower
bounds). Suppose that for some B(n) < 2n and all k ∈N there exists a non-deterministic ma-
chine M that gets as input an n-bit circuit C of size nk, runs in time B(n) · (log(B(n)))−ω(1),
accepts if C accepts all its inputs, and rejects if C rejects all but at most B(n) of its inputs.
Then NEXP 6⊂ P/poly.

An even better result than Theorem 6.1 would deduce the conclusion from a run-
ning time of Õ(nk) · B · (log B)−ω(1) rather than B · (log B)−ω(1) (since the naive brute-
force algorithm runs in time Õ(nk) · B). For B(n) ≥ 2nΩ(1)

the difference between
the two is immaterial (because in this case log(B(n))−ω(1) = n−ω(1)), whereas for
B(n) = 2no(1)

the proof below shows that the conclusion follows even if the algorithm
only handles circuits of a fixed polynomial size nk (where k ∈ N is a universal con-
stant), and so the gap between the two formulations is a fixed universal polynomial.

Proof of Theorem 6.1. We will rely on the result of Williams [Wil13], which asserts
that if for all k0 ∈ N there exists a non-deterministic machine solving CAPP1, 1

2
for

m-bit circuits of size mk0 in time 2m/mω(1) then NEXP 6⊂ P/poly.
We are given a circuit C0 : {0, 1}m → {0, 1} of size mk0 that either accepts all

its inputs, or rejects all but at most 2m/2 of its inputs. We will use the disperser
Disp : {0, 1}n × {0, 1}` → {0, 1}m from [TSUZ07, Theorem 1.4] for error-reduction, in-
stantiated with input length n such that m = log(B(n)) (i.e., n = B−1(2m)), error
ε = .01, min-entropy k = log(B(n)), and seed length O(log(n)). Then, the circuit
C : {0, 1}n → {0, 1} defined by C(z) =

∧
s∈{0,1}` C0(Disp(z, s)) satisfies the following:

1. The circuit size is 2` · TDisp(n) ·mk0 ≤ nc ·mk0 , where TDisp is the polynomial time
complexity of Disp and c ∈N is a universal constant.

2. If C0 accepts all its inputs then C accepts all of its inputs, and if C0 rejects all but
at most 2m/2 of its inputs then C rejects all but at most B(n) of its inputs.

Using the hypothesized non-deterministic machine for QDB we can distinguish
between the two latter cases in time B(n) · (log(B(n)))−ω(1) = 2m/mω(1).

22This result also scales down to weaker circuit classes, but for now we are concerned only with general
circuits. Also, this result still holds if the algorithm is non-deterministic and only solves CAPP1, 1

2
.

27

Recent results regarding the algorithmic method, in particular that of Murray and
Williams [MW18], allow to trade off a stronger hypothesis – namely, a mildly faster
algorithm for CAPP – for a stronger concluded circuit lower bound. This tradeoff
extends to the setting of algorithms for QDB. The following result asserts that in the
setting of a polynomial number B(n) = poly(n) of exceptional inputs, an algorithm
for QDB running in time B1−ε (rather than B · (log B)−ω(1) as in Theorem 6.1) yields
stronger circuit lower bounds.

Theorem 6.2 (beating the brute-force quantified derandomization implies circuit lower
bounds). There exists a universal constant c ∈N such that the following holds. Suppose that
for some B(n) = poly(n) there exists ε > 0 and a non-deterministic machine M that gets as
input an n-bit circuit C of size nc, runs in time B(n)1−ε, accepts if C accepts all its inputs,
and rejects if C rejects all but at most B(n) of its inputs. Then, for all k ∈ N it holds that
NP 6⊂ SIZE [nk].

Proof. The proof is similar to the proof of Theorem 6.1, except that we use the result of
Murray and Williams [MW18] instead of that of [Wil13]: They proved that if for some
δ ∈ (0, 1) there exists a non-deterministic machine solving CAPP1, 1

2
for m-bit circuits

of size 2δ·m in time 2(1−δ)·m, then for all k ∈N it holds that NP 6⊂ SIZE [nk].
Let B(n) = na and let δ = δ(ε, a) be sufficiently small. We are given a cir-

cuit C0 : {0, 1}m → {0, 1} of size 2δ·m, and we reduce its error using the disperser
of [TSUZ07] with the same parameters as in the proof of Theorem 6.1. The resulting
circuit C is of size 2` · nk1 · 2δ·m, which is bounded by nc for a universal c > k1 (since
m = log(B(n)) = a · log(n) and δ = δ(ε, a) > 0 is sufficiently small). The hypothe-
sized algorithm for QDB of C runs in time B(n)1−ε = 2(1−ε)·m < 2(1−δ)·m, where the
inequality relies on δ > 0 being sufficiently small.

In contrast to the analogous results for CAPP, we do not know how to smoothly
scale Theorems 6.1 and 6.2 to weaker circuit classes (for comparison see, e.g., [SW13;
BSV14; CW19]). The reason is that the first step of reducing CAPP to QDB does
not work as well in weak circuit classes, as such classes are (provably) incapable
of computing optimal extractors and dispersers (see, e.g., the results in Section 7,
or [Vio05; GVW15]). Nevertheless, in high-level, the results for “threshold values”
of weak circuits (as described in Section 2.3) still rely on the same proof approach
as in Theorems 6.1 and 6.2, while replacing the error-reduction step with a weaker
error-reduction step, which yields weaker results than in the case of general circuits.

6.2 Constant-depth circuits

In this section we consider AC0 circuits, which are circuit families of constant depth
and unbounded fan-in over the De Morgan basis. The best known lower bound for
AC0 by Håstad [Hås87; Hås14] asserts that parity requires depth-d circuits of size
2Ω(n1/(d−1)). This lower bound remained unimproved for 35 years, and we know that
even relatively mild improvements of the exponent in this lower bound (e.g., showing

28

a lower bound of 2n3.01/(d−1)
) would be a major breakthrough in complexity theory (see,

e.g., [Tel20] for a discussion of the latter statement).
The best currently known PRG for AC0 has seed length Õ(log(s)d · log(n)) for

constant error, where s is the circuit size; this PRG was first constructed by Trevisan
and Xue [TX13], and its analysis was improved by Tal [Tal17b] and again, very recently,
by Kelley [Kel21] (who obtained the seed length stated above). An improvement in the
exponent d of the log(s) term (e.g., to log(s)0.99·d) would finally yield lower bounds for
AC0 circuits that are larger than in Håstad’s long-standing lower bound (see [TX13,
“Barriers to Further Progress”] for an explanation).

6.2.1 Tractable values

In Goldreich and Wigderson’s [GW14] original paper, they proved that there exists a
polynomial-time computable .01-PRG with seed length O(log(n)) for B-biased depth-d
circuits, where B(n) = 2nε

and ε > 0 can be arbitrarily small.

Theorem 6.3 (quantified derandomization of AC0 with subexponential B; see [GW14,
Theorem 1.3 in the Full Version]). For any d ∈ N and k ∈ N and ε > 0, there exists a
polynomial-time computable .01-PRG with seed length O(log(n)) for B-biased depth-d circuits
of size nk, where B(n) = 2nε

. 23

Their result was later extended in [Tel19] to support a larger number B(n) of ex-
ceptional inputs, at the expense of a longer seed. The extreme “high-end” point of this
tradeoff supports B(n) = 2n/polylog(n) with seed length Õ(log3(n)). The main advan-
tage in the latter result is that the seed length does not depend on the depth d; as mentioned
above, a PRG with such seed length for AC0 circuits that are not necessarily biased
would be a major breakthrough. (In fact, as we’ll see below, even a PRG with such
seed length for B-biased circuits where B is larger would yield a breakthrough.)

Theorem 6.4 (quantified derandomization of AC0; see [Tel19, Theorem 5.16]). For any
d ∈ N and k ∈ N and t(n) ≤ 2k · log(n), there exists a polynomial-time computable .01-
PRG with seed length Õ(t(n)2 · log(n)) for B-biased depth-d circuits of size nk, where B(n) =
2n1−1/Ω(t)/td−2

.

Corollary 6.5 (quantified derandomization ofAC0, a special case). For any two constants
d ≥ 2 and k ∈N there exists a .01-PRG with seed length Õ(log3(n)) for the class of B-biased
distinguishers of depth d and size nk, where B(n) = 2Ω(n/ logd−2(n)).

Theorem 6.4 is not explicitly stated in [Tel19, Theorem 5.16], which only states
a construction of a HSG with an identical seed length. However, the construction
in [Tel19] essentially already gives a PRG, and I now explain the few needed changes.

23The original result states the existence of a (1/3)-PRG, but the stronger statement follows immedi-
ately from their proof (see [GW14, Theorem 3.2 in the Full Version]).

29

Proof sketch for Theorem 6.4. The generator in [Tel19] works in two steps. In the first
step the generator outputs a restriction ρ such that for any circuit C over n input bits
of depth d and size nk, with probability 1− 2−10 the restriction keeps log(B(n)) + 2
variables alive and C�ρ can be (1/2)-approximated by a depth-2 formula C′ of size
poly(n). In the second step the generator uses a PRG for depth-2 circuits to approxi-
mate the acceptance probability of C′.

The goal in the original proof was to find one satisfying assignment for C that
accepts almost all of its inputs, and therefore the original proof was satisfied with
the statements that C′ is (1/2)-close to C�ρ and that |ρ−1(?)| ≥ log(B(n)) + 2. (The
original proof also argued that C′ is lower-sandwiching, but we will not need this
claim.) For our purposes we need the following two stronger statements:

1. Replace the approximation factor of 1/2 by an approximation factor of 2−10.

2. Replace the number of living variables log(B(n)) + 2 by log(B(n)) + 10 (such
that the size of the corresponding subcube is at least 210 · B(n)).

The first statement above follows by modifying the constant 2 in the denominator
of the parameter β in the original proof to the constant 210; this change doesn’t affect
the proof in any meaningful way (to see that the statement above follows, note that
this modifies the claimed approximation factor in Claim 5.18 from 1/2d to 2−10 · d).
The second statement follows immediately from the original proof.24

Given these two statements, denoting ε = 2−10, with probability at least 1− ε we
have that C�ρ has acceptance probability either at most ε or at least 1− ε, and therefore
the acceptance probability of C′ is either at most 2ε or at least 1− 2ε. Continuing just
like in the original proof, we use an ε-PRG for C′, which is a (4ε)-PRG for C (where
the constant 4 accounts for the error ε in choosing a restriction and for the error of 3ε
in the approximation of the acceptance probability of C by the PRG for C′).

6.2.2 Threshold values

The threshold result for AC0 circuits refers to B(n) that is only slightly larger than
B(n) = 2n/ logd−2(n) in Corollary 6.5. Specifically, it refers to B(n) = 2n/ logd−d0 for
d0 > 11 (instead of d0 = 2). I’ll first state the general form of this result, which reduces
CAPP for depth-d0 circuits to QDB for depth-d circuits (where d > d0), and then state
two interesting special cases. The result is from [Tel19], with the main technical tool
constructed by Cheng and Li [CL16].

Theorem 6.6 (threshold result for quantified derandomization of AC0; see [Tel19, The-
orem 1.1], following [CL16]). For any d0 ≥ 2 and d ≥ d0 + 11 it holds that CAPP for depth-
d0 circuits of linear size on n0 input bits reduces, in deterministic polynomial time, to QDB for
depth-d circuits on n = O(n3600

0) input bits of size nOd(1), where B(n) = 2n/ logd−d0−11(n).

24To see this, note that we did not specify the constant hidden inside the Ω-notation in the expression
B(n) = 2n1−1/Ω(t)/td−2

. Thus, the difference between log(B(n)) + 2 and log(B(n)) + 10 (or c · log(B(n)) for
any universal constant c > 1) is immaterial.

30

Theorem 6.6 is slightly stronger than the result stated in [Tel19], both in terms of
parameters and since it reduces CAPP to QDB (rather than reducing general deran-
domization with one-sided error to quantified derandomization). Let me thus sketch
the proof, which is still very similar to the original one.

Proof sketch for Theorem 6.6. Given a linear-sized circuit C : {0, 1}n0 → {0, 1} of
depth d0 as input for CAPP, we print a circuit C′ : {0, 1}n → {0, 1} as input for QDB,
where C′(z) = ApxMaj {C(Ext(z, s))}s and ApxMaj is an approximate majority func-
tion.25 The main thing to verify is the complexity of C, given appropriate constructions
for Ext and for ApxMaj.

The extractor used originally in [Tel19] was from [CL16, Theorem 1.3], and in
this proof we use another extractor construction from the same work [CL16, Theorem
4.11], which has a smaller depth overhead. Specifically, for a = d− d0 − 10 ≥ 1, the
latter extractor has depth a + 7, size nOa(1), input length n = O(n3600

0), seed length
Oa(log(n)), and supports min-entropy Θ(n/ loga(n)). Also, we use Viola’s [Vio09a]
uniform construction of an ApxMaj function computable by depth-3 circuits of size nk′ ,
for some universal constant k′ ∈N. Thus, for some k = k(a) ≤ k(d), the final depth of
C′ is a + 7 + d0 + 3 = d, and its size is nk + nk · |C|+ (nk)k′ = nOd(1).

In the following two corollaries of Theorem 6.6 we assume that there is an algo-
rithm for quantified derandomization of AC0 whose running time is identical to that
of the algorithm in Theorem 6.5, but that can handle larger values of B(n). The first
corollary refers to a B(n) for which such an algorithm would yield a better CAPP
algorithm for AC0 (i.e., than the best currently known CAPP algorithm); the second
corollary refers to a (slightly larger) B(n) for which such an algorithm would yield
new circuit lower bounds for AC0, for circuits that are larger than in [Hås87].

Corollary 6.7 (threshold result for quantified derandomization of AC0; a special case).
Assume that for some d ≥ 14 and a sufficiently large k = kd ∈ N it holds that QDB for
depth-d circuits of size nk can be solved in time 2Õ(log3(n)), where B(n) = 2n/ logd−14(n). Then,
CAPP for depth-3 circuits of linear size can be solved in time 2Õ(log3(n)).

Corollary 6.8 (threshold result for quantified derandomization of AC0; a special case).
Assume that for some d ≥ 18 and a sufficiently large k = kd ∈ N it holds that QDB for
depth-d circuits of size nk can be solved in time 2Õ(log3(n)), where B(n) = 2n/ logd−18(n). Then,
there is a problem in ENP that cannot be decided by AC0 circuits of depth 5 and size 2Ω(n2/7).

Proof. For d0 = 7, let C be a depth-d0 circuit over n0 input bits and of size n1 = 2n2/d0
0 .

We pad its number of inputs to n1, to obtain a linear-sized depth-d0 circuit C′. Then
we apply the reduction in Theorem 6.6 to obtain a depth-d circuit C′′ on n = O(n3600

1)

25That is, it can be any function that outputs 1 when the relative Hamming weight of its input is at
least 2/3 and outputs s0 when the relative Hamming weight of its input is at most 1/3.

31

input bits and of size nkd with B(n) = 2n/ logd−d0−11(n) exceptional inputs, where kd is a
constant that depends on d. By our assumption, we can solve QDB on C′′ in time

2Õ(log3(n)) = 2Õ(n6/d0
0) = 2o(n0) ,

and hence we can solve CAPP for C in time 2o(n0). Using the results of Ben-Sasson
and Viola [BSV14, Theorem 1.4] following [Wil14], it follows that there is a problem
in ENP that does not have AC0 circuits on n0 input bits of depth d0 − 2 = 5 and size

2n2/d0
0 /nO(1)

0 > 2c0·n
2/d0
0 = 2c0·n2/7

0 , for some constant c0 < 1.

Remark 6.9. I suspect that it might be possible to improve the parameters in Corol-
lary 6.8 using techniques similar to the ones introduced by Chen and Williams [CW19].
In particular, the current proof seems wasteful, in the sense that the overhead between
the class of circuits to which we apply a CAPP algorithm and the class of circuits for
which we deduce lower bounds (i.e., two layers of depth) seems too large.26

6.3 Constant-depth circuits with threshold gates

In this section we consider LTF circuits, which are circuit families of constant depth
and unbounded fan-in gates that can compute any linear threshold function (i.e., any
function of the form Φ(x1, ..., xn) = sgn(∑i∈[n] wi · xi− θ), where w1, ..., wn, θ ∈ R). This
class contains T C0, which is the special case in which all gates compute the majority
function.27 We measure the size of the circuit as its number of wires.

The best known lower bound for T C0 by Impagliazzo, Paturi, and Saks [IPS97]
asserts that parity requires depth-d LTF circuits with n1+2.42−d

wires. This lower bound
was extended several years ago to an average-case lower bound for LTF circuits of
depth d with n1+c−d

wires, for some constant c� 2.42 (see [CSS16]); and very recently
a PRG with seed length n1−Ω(1) was constructed for LTF circuits of depth d with
n1+(c′)−d

wires, for some c′ > c (see [HHT+21]).
Proving lower bounds that hold for larger circuits (or improving the PRG to work

for larger circuits), even just for circuits with nc−d
0 wires for some small c0 > 1, is one

of the most prominent current frontiers in circuit complexity (see, e.g., [Aar16; CT19]).

6.3.1 Tractable values

The following algorithm for quantified derandomization of LTF circuits works for

circuits with n1+c−d
wires and B(n) = 2n1−(c′)−d

exceptional inputs, for some constants

26The current proof uses the PCP of [BSV14], which adds two layers and a multiplicative polynomial
size overhead, but does not exploit the fact that one of these two layers has gates of fan-in three. Moreover,
the techniques from [CW19] add only one layer of constant fan-in.

27In some texts T C0 is actually defined using LTF gates rather than majority gates. The two definitions
are equivalent up to an overhead of a single layer and polynomially many gates (see [GHR92; GK98]),
but since we will care about precise size bounds I will distinguish between the two cases.

32

c, c′ > 2. Indeed, up to the particular constant c this is essentially the same subclass
of LTF circuits for which we already have a PRG [HHT+21] (i.e., for which we know
of a non-trivial general derandomization). However, the known PRG has seed length
n1−Ω(1) and therefore enumerating over its seeds yields general derandomization with
running time 2n1−Ω(1)

; in contrast, the quantified derandomization algorithm below
runs in time that is almost polynomial (i.e., in time nO(loglog2(n)).

Theorem 6.10 (quantified derandomization of LTF circuits; see [Tel18, Theorem 5.1]).
Let d ≥ 1, let ε > 0, and let δ = d · 30d−1 · ε. Then, there exists a deterministic algorithm
that solves QDB for depth-d LTF circuits with n1+ε wires in time nO(loglog2(n)), where B(n) =
1
10 · 2n1−δ

.

The following special case of Theorem 6.10 will be convenient for comparison with
the threshold values below.

Corollary 6.11 (quantified derandomization of LTF circuits, a special case). For any
d ≥ 1 there exists a deterministic algorithm that solves QDB for depth-d LTF circuits with

n1+60−d
wires in time nO(loglog2(n)), where B(n) = 2n1−1.61−d

.

Proof. We use Theorem 6.10 with ε = 60−d, and rely on the fact that δ = (d/30) ·
2−(d−1) < 1.61−d for all d, which implies that B(n) = 1

10 · 2n1−δ
> 2n1−1.61−d

.

In addition, a quantified derandomization result for a stronger class of threshold
circuits was proved by Kabanets and Lu [KL18] . Specifically, they considered degree-
∆ PTF circuits, in which each gate can compute a function of the form Φ(x1, ..., xn) =
sgn(p(x1, ..., xn)), where p is a real polynomial of degree at most ∆. (Note that LTF
circuits are the special case where ∆ = 1.) They showed a quantified derandomization
algorithm that runs in time exp(log(n)O(∆)2

) and can handle B(n) = 2n1−7/
√

c
excep-

tional inputs, where c is the constant in the size bound n1+c−d
.

Theorem 6.12 (quantified derandomization of PTF circuits; see [KL18, Theorem 1.3]).
For any three constants c ≥ 122 and ∆, d ∈ N there exists a deterministic algorithm that
solves QDB for depth-d PTF circuits of degree ∆ with n1+c−d

wires, whose running time is

2log(n)O(∆2)
and where B(n) = 2n1−7/

√
c
.

Interestingly, the algorithms in Theorems 6.10 and 6.12 are not PRGs for biased
distinguishers (in contrast to the quantified derandomization algorithms for AC0), but
rather non-black-box algorithms that get as input a description of the circuit, rely on the
information in that description, and decide whether the circuit accepts almost all of its
inputs or rejects almost all of its inputs. See futher discussion of this fact in Section 7.

6.3.2 Threshold values

The first threshold result for T C0 circuits in [Tel18] was later on superseded by the
result below, which was proved by Chen and the current author [CT19]. The result

33

below refers to B(n) of the same form as in Theorem 6.10, but to circuits that are
slightly larger. Specifically, the algorithm in Theorem 6.10 can handle circuits with
n1+c−d

wires, for c > 30, whereas the result below refers to circuits with n1+c−d
wires

for c that is smaller than the golden ratio. Moreover, the threshold result below holds
also for T C0 circuits (i.e., circuits with MAJ gates) rather than only for LTF circuits.

Theorem 6.13 (threshold result for quantified derandomization of T C0; see [CT19,
Theorem 44]). For any d0, k ∈ N and d ≥ d0 + 7 and c < 1+

√
5

2 it holds that CAPP for
depth-d0 LTF circuits on n0 input bits with nk

0 wires reduces, in deterministic polynomial
time, to QDB for depth-d LTF circuits on n = nOk,d(1)

0 input bits with n1+c−d
wires, where

B(n) = 2nc−d
.

For convenience, we state this result with the particular value c = 1.61 < 1+
√

5
2 , and

also state the circuit lower bound implications of a potential algorithm for quantified
derandomization of T C0.

Corollary 6.14 (threshold result for quantified derandomization of T C0; a special case).
Assume that for every d ≥ 9 and every ε > 0 there exists an algorithm for QDB of depth-d

LTF circuits with n1+1.61−d
wires that runs in time 2nε

, where B(n) = 2n1.61−d
. Then, there

exists a problem in NEXP that cannot be decided by polynomial-sized T C0 circuits.

We stress that the allowed running time for the algorithm in Corollary 6.14 is con-
siderably larger than the running time of the known algorithm from Theorem 6.10 (i.e.,
the allowed runtime is 2nε

whereas the known algorithm runs in time npolyloglog(n)).

6.4 De Morgan formulas

We now consider formulas of fan-in two over the De Morgan basis; allowing these
formulas to have arbitrary polynomial size yields the complexity class NC1. The best
known lower bound for formulas, which was proved by Håstad’s [Hås98] (follow-
ing [Sub61; Khr71; And87; IN93; PZ93]) with subsequent log-factors improvements by
Tal [Tal14; Tal17a], asserts that Andreev’s function cannot be computed by formulas of
size n3/polylog(n) = n3−o(1) (see [DM18; GTN19] for related formula lower bounds).28

Moreover, average-case lower bounds for formulas of size n3−o(1) have been proved in
a sequence of recent works (see [San10; KR13; IK17; Tal17a; KRT17; Bog18]).29 In-
deed, proving hardness of explicit functions for De Morgan formulas of larger size
(say, arbitrary polynomial size) is a long-standing challenge, since the 1960’s.

28The best lower bound of [Tal17a] actually holds for a variation of Andreev’s function introduced
in [KR13], which is called the generalized Andreev function.

29To be more accurate, the best average-case lower bounds from [KRT17; Bog18] assert that for any
parameter r ≤ n, formulas of size n3−o(1)/r2 cannot compute a corresponding function in P with success
probability more than 1/2 + 2−r.

34

In terms of CAPP algorithms, a polynomial-time computable 1
poly(n) -PRG with seed

length s1/3 · 2O(log2/3(s)) = s1/3+o(1) was constructed by Impagliazzo, Meka, and Zucker-
man [IMZ12] (note that this PRG can fool formulas of size n3−o(1) with non-trivial seed
length, and hence yields lower bounds for formulas of size n3−o(1)). An ε-PRG that can
support smaller error ε > 0 was very recently constructed by Hatami et al. [HHT+21];
the seed length of the latter PRG is s3−o(1) · polylog(n/ε).

Interestingly, both the tractable values and the threshold values that we state below
refer to formulas of size that is smaller than the formula size in the known lower bounds:
Specifically, they refer to formulas of sub-quadratic size, rather than to formulas of
sub-cubic size. Nevertheless, there is still similarity to the case of T C0 from Section 6.3,
in the sense that the quantified derandomization results refer to circuits/formulas of
approximately the size needed to compute the parity function.

Probabilistic formulas. The results stated below were proved by Chen, Jin, and
Williams [CJW20]. To make the tractable values and the threshold values as close
as possible, they considered the stronger computational model of probabilistic formulas,
which are arbitrary distributions F over formulas.30

For any fixed input x ∈ {0, 1}n, if there exists σ ∈ {0, 1} such that Pr[F(x) = σ] ≥
2/3 then the value of F at x is σ, and we say that F accepts x or rejects x, accordingly;
otherwise, if no such σ exists (e.g., Pr[F(x) = 1] = 1/2), we say that F is undecided at
x. A B-biased probabilistic formula F on n input bits either accepts all but B(n) of its
inputs or rejects all but B(n) of its inputs (in both cases, the probabilistic formula may
be undecided on the B(n) minority inputs). For B(n) = o(2n), an ε-PRG for B-biased
probabilistic formulas is an algorithm G such that∣∣∣Pr[F(G(1n, s)) = 1]− Pr[F(un) = 1]

∣∣∣ ≤ ε ,

where the probabilities in both expressions above are taken both over F and over a
choice of input for F (i.e., over G(1n, s) or un). 31

6.4.1 Tractable values

The following quantified derandomization algorithm from [CJW20] runs in polyno-
mial time and works for formulas of near-quadratic size; more accurately, it allows to
trade off the formula size for the number of exceptional inputs.

30They referred to this model as generalized probabilistic formulas, where the generalization lies in the
fact that the probabilistic formula is allowed to be undecided on some inputs (i.e., it decides a promise
problem rather than a language).

31Indeed, this definition allows F to be undecided on some strings in the output-set of the PRG, as long
as F(G(s)) behaves similarly to F(un). Nevertheless, in cases where the probabilistic formula satisfies the
“BPP promise” (i.e., either accepts or rejects any input), the known PRG construction satisfies a stronger
property. See Remark 6.17 for further details.

35

Theorem 6.15 (quantified derandomization of De Morgan formulas; see [CJW20, The-
orem 1.9]). There exists a universal constant c > 1 such that the following holds. For any
c ≤ s(n) ≤ n/20 there is a (4/10)-PRG for B-biased generalized probabilistic formulas of
size n2−c/loglog(n)/s(n)2, with seed length O(log(n)) and polynomial running time, where
B(n) = 2s(n).

Corollary 6.16 (quantified derandomization of De Morgan formulas; a special case).
For any ε > 0 there is a (4/10)-PRG for B-biased generalized probabilistic formulas of size
n2−2ε−o(1) with seed length O(log(n)) and polynomial running time, where B(n) = 2nε

.

The statement in [CJW20] only asserts the existence of a HSG (for B-biased proba-
bilistic formulas that accept almost all of their inputs), but their proof can be adapted
to yield a PRG for B-biased formulas; I explain how below. The obtained PRG has a
relatively large error of 4/10, but since this error is bounded away from 1/2, when
B(n) = o(2n) we can still use this PRG to distinguish between B-biased formulas that
accept almost all of their inputs and ones that reject almost all of their inputs.

Proof of Theorem 6.15. Now, let F be a n-bit probabilistic formula of size at most
n2−c/2loglog(n)/s(n)2, and assume that accepts all but B(n) of its inputs. (The proof for
the case that F rejects all but B(n) of its inputs is symmetric.) For a sufficiently large
constant k > 1, consider the n-bit probabilistic formula F′ such that

F′(x) = THR.65

(
F(1)(x), F(2)(x), ..., F(k)(x)

)
,

where the F(i)’s are independent RVs each choosing F ∼ F, and THR.65 is the function
that outputs 1 if and only if at least 0.65 of its inputs are 1.

The probabilistic formula F′ exists only in our analysis, and the PRG will not need
to actually construct it. We state a few properties of F′:

1. For any x that F accepts, Pr[F′(x) = 1] ≥ 1− .001.

2. For any x that F′ accepts, Pr[F(x) = 1] ≥ 0.64.

3. The size of F′ is at most n2−c/loglog(n)/s(n)2. (This is since the size of F′ is larger
than the size of F only by a constant multiplicative factor, and we bounded the
size of F by n2−c/2loglog(n)/s(n)2.)

Now, the pseudorandom restriction procedure from [CJW20, Theorem 3.2] samples
a restriction that satisfies the following two properties:32

1. With probability at least 0.999 over ρ ∼ ρ it holds that |ρ−1(?)| ≥ 10s(n).

32The statement in [CJW20] only guarantees that the probability of |ρ−1(?)| ≥ pn/2, where p =
20 · (s(n)/n), is at least 2/3. However, in their proof of Theorem 3.2, the probability that this event does

not happen is bounded by (1−p+o(1))·pn+o(1)·(pn)2

(pn/2−o(1))2 =
(1−p+o(1))·s+o(s2)

(s/2−o(1))2 < .001, where we relied on the fact
that s = s(n) is sufficiently large. Similarly, the proof in [CJW20] bounds E[L(F)] by o(1) and later on
only relies on the looser bound of 1/18.

36

2. For every formula F′ of size n2−c/loglog(n)/s(n)2, with probability at least 1− o(1)
over ρ ∼ ρ it holds that E[L(F′�ρ)] = o(1), where L(F′) is the number of leaves
of a formula F′.

Relying on the two properties of ρ, with probability at least 0.999− o(1) over ρ ∼ ρ
and F′ ∼ F′ it holds that F′�ρ is a constant function, and this constant equals the most
common value of F′ (since the size of the subcube that ρ keeps alive is 210s(n) > B(n)).
In this case, if we complete ρ to an n-bit string x by (say) padding with zeroes, we
have that F′(x) is the most common value of F′. Finally, since EF′∼F′ [Prx∈{0,1}n [F′(x) =
1]] = Prx∈{0,1}n,F∼F[F(x) = 1] ≥ (1− o(1)) · 0.999, the probability over F′ ∼ F′ that the
most common value of F′ is 0 is at most 0.002.

So far we described a procedure that uses O(log(n)) = O(log(n)) random coins
and outputs a string w (i.e., w is the completion of ρ with zeroes) such that

Ew∼w

[
Pr

F′∼F′
[F′(w) = 1]

]
= Pr

F′∼F′,w∼w

[
F′(w) = 1

]
≥ 1− 0.001− o(1)− 0.002 > 0.99 ,

which implies that F′ accepts w with probability at least 1− 1/30. Thus, relying on the
properties of F′, we have that Prw∼w,F∼F[F(w) = 1] ≥ (1− 1/30) · 0.64 ≥ 0.618.

Remark 6.17. The proof above actually shows that with probability at least 29/30 over
a choice of seed s for the PRG G it holds that Pr[F(G(s)) = 1] ≥ 0.64. Thus, if the
probabilistic formula F satisfies the “BPP promise” (i.e., for each input, either accepts
with probability at least 2/3 or rejects with probability at least 2/3), then the value of F
on a random output string of the PRG is (1/30)-close to the value of F on a uniformly
random string.

6.4.2 Threshold values

In [CJW20] they complemented Theorem 6.15 by showing that CAPP 1
2 ,0 for polynomial-

sized formulas (i.e., general derandomization for formulas with one-sided error) re-
duces to QDB for formulas of near-quadratic size (indeed, it even reduces to quantified
derandomization for formulas with one-sided error). To see how tight this result is, re-
call that the algorithm in Corollary 6.16 works for formulas of size n2−2ε−o(1), and note
that the reduction below yields formulas of size n2−ε+δ, where δ > 0 is an arbitrarily
small constant, and in both results ε is the constant such that B(n) = 2nε

.

Theorem 6.18 (threshold result for quantified derandomization of De Morgan formu-
las; see [CJW20, Theorem 1.10]). For any ε ∈ (0, 1) and δ > 1 and k ∈ N it holds that
CAPP 1

2 ,0 for formulas on n0 input bits of size nk
0 reduces, in deterministic polynomial time, to

QDB for probabilistic formulas of size n2−ε+δ on n = (n0)Oε,δ(1) input bits, where B(n) = 2nε
.

I should clarify what “reduces to QDB for probabilistic formulas” means here, since
probabilistic formulas are arbitrary distributions (over formulas) and might not nec-
essarily have a concise description. One interpretation, which the proof in [CJW20]

37

already explicitly mentions, is that a PRG for the probabilistic formulas (which does
not need to get any description of the probabilistic formula as input) yields an al-
gorithm for CAPP. Another interpretation, which is implicit in [CJW20] and made
explicit in the proof sketch below, is that the reduction produces an efficient algorithm
that samples the target probabilistic formula; thus, this is an explicit reduction, and it
suffices to solve QDB for probabilistic formulas by a “non-black-box” algorithm.

Proof sketch for Theorem 6.18. Given a description of a formula F0 on n0 input bits
of size nk

0 and ε, δ > 0, we use the algorithm in [CJW20, Lemma 4.2] to sample in

polynomial time a probabilistic formula F1 on n1 = n
Oβ

0 (1) input bits of size n2+β
1 ,

where β = εδ/4, such that:

1. If F0 accepts at least 1/2 of its inputs, then F1 accepts all but at most 2nβ
1 of its

inputs (on the remaining inputs F1 may either reject or be undefined).

2. If F0 rejects all of its inputs, then F1 rejects all of its inputs.

Then, the algorithm in the proof of [CJW20, Theorem 1.10] gets a description of
the machine that samples F1, and samples in polynomial time a probabilistic formula
F on n < n2

1 input bits of size n2+δ−ε such that:

1. If F1 accepts all but 2nβ
1 of its inputs, then F accepts all but at most 2nε

of its
inputs (on the remaining inputs F may either reject or be undefined).

2. If F1 rejects all of its inputs, then F rejects all of its inputs.

Thus, the combination of the two algorithms above is an efficient procedure that sam-
ples F, given a description of F0.

As mentioned above, the target of the reduction in the proof of Theorem 6.18 is
a probabilistic formula that either accepts almost all of its inputs, or rejects all of its
inputs. Thus, Theorem 6.18 actually reduces CAPP 1

2 ,0 to the “one-sided error” version
of QDB, which is more relaxed and is thus potentially easier to solve.

Using the results of Murray and Williams [MW18], a polynomial-time algorithm
for QDB of formulas of near-quadratic size, as in Theorem 6.18, would yield break-
through circuit lower bounds. That is:

Corollary 6.19 (threshold result for quantified derandomization of De Morgan formu-
las). Assume that for some ε ∈ (0, 1) and δ > 1 there exists a polynomial-time algorithm
that solves QDB for probabilistic formulas of size n2−ε+δ, where B(n) = 2nε

. Then, for every
k ∈N there exists a problem in NP that cannot be decided by formulas of size nk.

38

7 Extractors, restriction procedures, and their limitations

As explained in Section 2.4, all the results in Section 6 are proved using similar high-
level techniques: Pseudorandom restriction procedures (used for algorithms demon-
strating tractable values) and extractors computable by low-depth circuits (used for
reductions of CAPP to QDB demonstrating threshold values).

In this section I’ll define abstract black-box versions of these techniques and discuss
their limitations, as well as concrete technical challenges that these limitations point at.
The specific constructions of pseudorandom restrictions and of extractors that underlie
the results in Section 6 are described in Appendices B and C.

7.1 Defining the black-box techniques

The first notion will be of a black-box restriction procedure, which does not refer to
the given circuit but is rather a distribution over restrictions that simplifies every circuit
in the class, with high probability.

Definition 7.1 (distribution of simplifier sets). Let Cn be a class of circuits with n input
gates. We say that a distribution Xn over subsets of {0, 1}n is a distribution of simpli�er sets

of size more than B for Cn if the following holds:

1. Every subset in the support of Xn is of size more than B.

2. For every C ∈ Cn it holds that PrX∼Xn [C�X is constant] > 1/2.

Let me stress that the subsets in Definition 7.1 are not necessarily subcubes, but
may be arbitrary subsets of {0, 1}n. This is why I refer to them as “simplifier sets”
rather than as “restrictions”. (As a demonstration of the value in this generalization,
let me note that the algorithm for QDB in Theorem 2.11 finds a large affine subspace on
which the circuit simplifies; see [Tel19, Section 6] for details.)

The second notion refers to samplers (equivalently, to extractors) computable in
restricted circuit classes. The reason that this notion is black-box is that we require the
sampler to sample every possible subset approximately correctly. This is an “overkill”,
since in our proof we will use the sampler to reduce the error of a single circuit C of
bounded size whose description is explicitly given to us, and thus we only need the
sampler to sample the single subset C−1(1) approximately correctly.

Definition 7.2 (C-computable sampler). Let Samp : {0, 1}n → ({0, 1}n0)2` be a (B, ε)-
sampler. For a class Cn of circuits with n input gates, we say that Samp is computable in

Cn if for every fixed s ∈ {0, 1}`, each output bit of the function Samp(s)(z) = Samp(z)s is
computable by a circuit in Cn.

The notion of “computable in C” in Definition 7.2 is relaxed: We only require
that for each fixed output index s of the sampler, each output bit of Samp(·)s will be
computable by a C-circuit (i.e., we can think of the circuit as having s hard-wired).

39

7.2 The application to derandomization and its limitations

Let me repeat the high-level ideas for using the notions in Definitions 7.1 and 7.2
towards derandomization (elaborating on the descriptions in Section 2.4), and then
state the limitation of these notions for this application.

Suppose that we are given a circuit C ∈ C over n0 input bits as input for CAPP,
and we want to first reduce the problem to QDB and then solve QDB. In the first
step, we want a reduction to QDB of an n-bit circuit C′ ∈ Ĉ such that B is small, the
class Ĉ is not much stronger than C, and n is not much larger than n0. To do so
we use a sampler Samp : {0, 1}n → ({0, 1}n0)2` with Bthr bad inputs, and construct
the circuit C′(z) = MAJ {C(Samp(z)s)}s. Indeed, C′ has at most Bthr exceptional
inputs, since for all but Bthr of the inputs z to C′ the sampler Samp will sample the
event C−1(1) correctly, up to a small error of 1/10. Also, if Samp is computable by
relatively simple circuits, then the complexity of C′ is not too large compared to C.
(To further reduce the complexity overhead we can replace the majority function by
an approximate majority function, or even by an ∨ gate if we are only interested in
solving derandomization with one-sided error, i.e. CAPP 1

2 ,0.)

Now we have a circuit C′ ∈ Ĉ and we want to solve the quantified derandomization
problem for C′. Following an idea of Goldreich and Wigderson [GW14], if we can
efficiently sample simplifier sets of size more than Btrac for C′, then we can efficiently
solve QDBtrac for C′. Specifically, if we can sample X ∼ Xn in time T using seed length
s, then we can solve QDBtrac for C′ in time T · 2s · Õ(|C′|). 33 This is since for most
choices of X ∼ Xn it holds that C′�X is constant, and this constant is the majority
output of C′ (because |X| is larger than the number Btrac of exceptional inputs).

At this point enters the limitation of the combination of these two black-box tech-
niques: If a circuit class Ĉ can compute a sampler with Bthr bad inputs, then distri-
butions of simplifier sets for Ĉ are necessarily supported by sets of size Btrac that is
smaller than Bthr. In other words, samplers cannot reduce CAPP to a quantified derandom-
ization problem that can be solved using only simplifier sets. The following result, which
formalizes the foregoing statement, is the formal version of Theorem 2.12.

Theorem 7.3 (a limitation of two black-box techniques in quantified derandomization;
see [Tel17]). Let C : {0, 1}n0 → {0, 1}, and let Samp : {0, 1}n → ({0, 1}n0)2` be a sampler
with Bthr bad inputs such that 2` ≤ 1

5 · 2n0/4. Assume that Samp is computable in a circuit
class Ĉn. Then, for any distribution over simplifier sets of size more than Btrac for Ĉn it holds
that Btrac < Bthr.

The meaning of Theorem 7.3 is that for any class C for which we want to solve
CAPP (i.e., for any class from which the initial circuit C comes), if we reduce CAPP
to QDBthr of Ĉ-circuits using black-box samplers, then simplifier sets for Ĉ of size
more than Btrac satisfy Btrac < Bthr. Also note that Theorem 7.3 holds regardless

33The precise requirement from the algorithm that “samples X ∼ Xn” is that it can efficiently find an
arbitrary input x ∈ X, where X is sampled from Xn.

40

of the seed length or computational complexity of sampling from the distribution of
simplifier sets (i.e., it suffices to assume that such a distribution exists).

Remark 7.4. In Theorem 7.3 the gap between the parameter Bthr to which we can
reduce CAPP and the parameter Btrac that can be handled with simplifier sets is only
guaranteed to be a single bit. However, in most applications the gap seems likely
to be noticeably larger: This is since the circuit class to which we reduce CAPP is
one that is not only capable of computing Samp, but also capable of computing the
more complicated function C′(z) = MAJ {C(Samp(z)s)}s. Intuitively, we expect that
simplifier sets for this more complicated class will be of even smaller size, and thus
we expect the gap between Btrac and Bthr to be typically larger.

Remark 7.5. Theorem 7.3 also holds if we replace the two notions of C-computable
samplers and distributions over simplifier sets with stricter notions, as follows. In
Definition 7.2, instead of only requiring each output bit of the function Samp(s)(z) =
Samp(z, s) to be computable in Cn, we require that the mapping of z to all output strings
{Samp(z, s)}s∈{0,1}` to be computable by a multi-output circuit in Cn; and in Defini-
tion 7.1, we require that for every C ∈ Cn with multiple output bits, Xn simplifies each
output bit of C with (marginal) probability more than 1/2. The technical constructions
underlying the results in Section 6 in fact satisfy these two stricter notions (see Ap-
pendices B and C for details), and I presented Theorem 7.3 using the original relaxed
notions merely for simplicity.

Caveats: The fine print. The limitation in Theorem 7.3 applies to the techniques
underlying all the results in Section 6. To be specific, while the foregoing techniques
do not strictly adhere to the two clean notions defined in Definitions 7.1 and 7.2, they
are nevertheless “close enough” to the clean notions so that the limitation still applies
to them. Let me now explain why this is the case.

The first gap between the clean notions and the actual techniques is that in the
cases of AC0 and of LTF circuits, the restriction procedures do not simplify the given
circuit to a constant, but only simplify it so that it is close to a constant; that is, the
restricted circuit is constant on 1− δ of the inputs in X, for a very small δ > 0. This
is not a significant issue, since in the results above δ > 0 is sufficiently small to allow
essentially the same proof as that of Theorem 7.3 to follow through.34

The second gap is that for LTF circuits, the quantified derandomization algorithm
is actually not a black-box algorithm: Given a circuit C, it finds a large subcube XC ⊆
{0, 1}n such that C�XC

simplifies. This initially appears to be precisely a non-black-box
technique that we are looking for, but unfortunately the underlying technical result

34Specifically, the proof relies on the fact that there exists a subset X such that for at least 1/3 of the
seeds, at least 1/4 of the sampler’s output bits given this seed are constant in X. If we are only guaranteed
that these output bits are (1− δ)-close to a constant, but with a small enough δ, by a union-bound there
is a subset X′ ⊆ X of size |X′| = (1− o(1)) · |X| such that these bits are constant on X′. In this case
the proof follows through with a minor increase in the size of the allowed set X, which does not seem
meaningful given that Theorem 7.3 is probably not fully tight (as mentioned in Remark 7.4).

41

is “black-box enough”. In more detail, Theorem 7.3 holds even if the distribution of
simplifier sets depends on the given circuit, as long as it satisfies the following: When
the circuit has multiple output bits, the distribution simplifies each of the output bits
of the circuit with marginal probability more than 1/2. This is precisely what happens
in the restriction procedure for LTF circuits (see [Tel18] for details).

The third gap is that the reduction in [CJW20] of CAPP to QDB for formulas, they
use dispersers instead of extractors, and apply an additional trick of reducing CAPP
to QDB of probabilistic formulas. Nevertheless, the known distributions of simplifier
sets for formulas have sufficiently strong properties (namely, they assert “shrinkage
with high probability”) so that the limitation still holds for the type of construction as
in [CJW20]; see Appendix C.3 for a detailed explanation.

The last and more meaningful gap between the clean notions and the actual tech-
niques is that for AC0 and LTF circuits, the restriction procedures assert that the circuit
is approximated not by a constant, but by a “very simple” circuit (either a depth-two
formula or a single LTF).35 Such an approach is a-priori a promising one to bypass the
limitation in Theorem 7.3. However, for the specific algorithms underlying the results
above, simplifying to a “very simple” circuit rather than to a constant is an optimiza-
tion that improves relatively minor terms,36 which seem likely to be smaller than the
slackness that exists in Theorem 7.3 (and was mentioned in Remark 7.4).

7.3 Relaxations that do (and do not) suffice to bypass the limitation

Theorem 7.3 means that if we want to solve CAPP by first reducing the error and then
finding a large subset on which the circuit simplifies, then at least one of the two steps
must be executed in a non-black-box fashion. Let me spell out two natural approaches
to do so, one for each of the steps.

A non-black-box restriction procedure. Given a circuit C′ for QDB (we think of C′

as obtained by reducing the error of a circuit C using samplers), one natural way to
bypass the limitation in Theorem 7.3 is to try and sample from a large subset XC′ ⊆
{0, 1}n that depends on C′ such that C′�XC′

is constant. Recall that there is always a huge
subset, of size (1− o(1)) · 2n, on which C′ is constant (i.e., the preimage of the majority
output of C′), and thus the question is purely algorithmic.

The main caveat to look out for is the fact (mentioned above) that the limitation in
Theorem 7.3 continues to hold even if XC′ depends on C′, in case the algorithm oper-
ates in a specific way that is “somewhat black-box”. In particular, the limitation holds
when the algorithm uses a distribution XC′ that depends on C′, and simplifies each of

35The algorithm for QDB then does not just evaluate the original circuit on an arbitrary input from X,
but estimates the acceptance probability of the “very simple” circuit on X using an efficient PRG.

36For AC0 this saves a single unit in the constant polylogarithmic power in the expression B(n) =

2n/polylog(n) (see [Tel19]), whereas for LTF circuit this optimizes the constant c in the size bound n1+c−d
,

yet still leaves it far above the required c = 1.61 in the threshold result (see [Tel18; CT19]).

42

the gates in any layer of C′ with marginal probability more than 1/2. (See [Tel17] for
further details.)

A non-black-box sampler. Another approach is to use error-reduction that is based
on non-black-box samplers. Specifically, recall that a sampler as in Definition 7.2 sam-
ples any subset T ⊆ {0, 1}n0 approximately correctly, regardless of the computational
complexity of deciding T. In our case we will use the sampler to sample just one
subset, namely C−1(1) ⊆ {0, 1}n0 , which is not only decidable by a circuit of bounded
size, but such that we are explicitly given a description of this circuit.

This seems to be a promising approach to bypass the limitation in Theorem 7.3.
That is, in this approach our goal is to construct a “sampler” that, compared to a
general-purpose sampler as in Definition 7.2, has a smaller number of bad inputs, but
correctly samples less subsets (i.e., it only samples subsets decidable by circuits from
the relevant class, or only samples the specific subset C−1).37

8 Polynomials that vanish extremely rarely

We are interested in multivariate polynomials p : Fn → F, where F is a finite field
and n is sufficiently large. I’ll denote the field size by q = |F| and the total degree
of a polynomial by d = deg(p), and our goal is to construct hitting-set generators for
polynomials that vanish extremely rarely, where “rarely” here refers to the probability
that the polynomial vanishes Prx∈Fn [p(x) = 0] (i.e., to the fraction of roots).

Definition 8.1 (polynomials that vanish rarely). For n, d, q, t ∈N, let Pn,d,q,t be the set of
polynomials p : Fn

q → Fq of degree at most d that vanish on at most an ε = q−t fraction of
their inputs; that is, Prx∈Fn

q→Fq [p(x) = 0] ≤ ε.

Definition 8.2 (HSGs for polynomials that vanish rarely). We say that H : {0, 1}` → Fn
q

is a HSG for Pn,d,q,t if for every p ∈ Pn,d,q,t there exists s ∈ {0, 1}` such that p(H(s)) 6= 0.
We stress that the seed length ` of H is measured in bits.

8.1 Upper bounds over F2

Kaufman, Lovett, and Porat [KLP12] proved an upper bound on the number of degree-
d polynomials Fn

2 → F2 that vanish on at most an ε = 2−t fraction of their roots;
specifically, they showed that the number of such polynomials is at most 2O(K) where
K = d2·t

d−t+1 · nd−t+1. This bound is almost tight, and the possible minor tightening is
immaterial for our application (see [ASW15] and [DTST20, After the proof of Theorem
22] for explanations). By a standard probabilistic argument first noted by Doron, Ta-
Shma and the current author [DTST20], it follows that:

37When trying to bypass the limitation in Theorem 7.3 with a “sampler” that correctly samples all
subsets decidable by circuits of size S, the seed length ` needs to be larger than log(S). This is since the
proof of Theorem 7.3 shows that, assuming a distribution over simplifier sets exists, there is a subset that
is sampled incorrectly and that is decidable by a DNF of size 2` (see [Tel17, Section 4.2]).

43

Theorem 8.3 (non-uniform HSG for polynomials that vanish rarely; see [DTST20, The-
orem 22]). Let n, d, t ∈ N where t < d ≤ n. Then, there exists a non-uniform HSG for
Pn,d,2,t with seed length O ((d− t) · log(n/(d− t))).

Goldreich and Wigderson [GW14] constructed a polynomial-time computable HSG
with seed length O(log(n)) for polynomials that vanish with probability at most
ε = O(2−d) = 2−(d−O(1)), and a different analysis of their construction was subse-
quently given in [Tel19]. The latter analysis was then extended in [DTST20] to show
the following more general construction:

Theorem 8.4 (efficient HSG for polynomials that vanish rarely; see [DTST20, Theo-
rem 3]). Let n ∈ N be sufficiently large, and let d > t + 4 be integers that may depend
on n. Then, there exists a polynomial-time computable HSG for Pn,2,d,t with seed length
O
(
(d− t) · (2d−t + log(n/(d− t)))

)
.

Note that the result of [GW14] is the special case of Theorem 8.4 with t = d −
O(1). The HSG in Theorem 8.4 is essentially Viola’s [Vio09b] PRG for low-degree
polynomials, instantiated for a suitable degree that depends on d − t. (Viola’s PRG,
in turn, computes the element-wise sum of independent copies of a PRG for linear
polynomials as in [NN93].) The analysis boils down to approximating any polynomial
that vanishes rarely by a probabilistic low-degree polynomial, and relying on the fact
that a PRG for low-degree polynomials also fools any function that is approximated
by probabilistic low-degree polynomials (see [DTST20, Theorem 24] for details).

8.2 Lower bound over general finite fields

The following lower bounds by Doron, Ta-Shma and the current author [DTST20]
hold for any HSG for polynomials that vanish rarely, regardless of its computational
complexity, and over fields of size 2 ≤ q ≤ poly(n). I’ll first state a nice special case,
which holds either for degree up to n.49, or over fields of size q ≥ n and for degree up
to n.99; for simplicity, in this special case we assume q ≤ n100. Then I’ll state the more
general result, which holds also for a broader range of parameters but is technically
cumbersome to state.

Theorem 8.5 (lower bound on HSGs for polynomials that vanish rarely; a nice special
case). Let n ∈ N be sufficiently large, let d ≤ n.99, let q ≤ n100 be a prime power, and let
t ≤ δ · d, where δ > 0 is a sufficiently small universal constant. Further assume that either
q ≥ n, or d ≤ n.49. Then, the seed length of any HSG for Pn,q,d,t is at least Ω

(
d
t · log

(
n

d/t

))
.

Theorem 8.6 (lower bound on HSGs for polynomials that vanish rarely; see [DTST20,
Theorem 28]). For any two constants γ > 0 and c > 1 there exists a constant δ > 0 such
that the following holds. Let n ∈ N be sufficiently large, let d ≤ n/4, let q ≤ nc be a prime
power, and let t ≤ δ · d. Assume that:

1. (main condition:) d/t ≤ δ ·min
{

q−1
log(q) · n

γ, n1−(γ+1/c)
}

.

44

2. (auxiliary condition that holds for typical settings:) q−1
log(q) · log(nt/d) ≥ 1/δ.

Then, the seed length of any HSG for degree-d polynomials Fn
q → Fq that vanish with proba-

bility at most ε =
√

2 · q−t is at least Ω
(

d
t · log

(
n1−(γ+1/c)

d/t

))
.

The proof of Theorem 8.6 applies the idea of disperser-based error-reduction, which is
natural for Boolean circuits, in the arithmetic setting of polynomials. Specifically, recall
that the seed length of any HSG for general n0-variate degree-d0 polynomials is at least
Ω(d0 · log(n0/d0)) (see, e.g., [DTST20, Preliminaries]). The proof idea is to transform
any degree-d0 polynomial p0 : Fn0 → F into a polynomial p : Fn → F defined by

p(z) =
∨

i∈{0,1}`
p0(Disp(z, i)) ,

where Disp is a sufficiently good disperser such that p vanishes extremely rarely and
has relatively low degree d > d0.38 If such a transformation exists, then any HSG for
degree-d polynomials that vanish with probability at most ε = Prz[p(z) = 0] whose
seed length is Kn,d,ε yields a HSG for general polynomials of degree d0 with seed length
Kn,d,ε + ` (where ` is the seed length of the disperser above). By the known lower
bound on the latter, it follows that Kn,d,ε ≥ Ω(d0 · log(n0/d0))− `.

Unfortunately, this idea does not work as-is, since the blow-up both in the degree
(i.e., d0 7→ d) and in the number of variables (i.e., n0 7→ n) is too large to yield the
sought lower bound. To implement the idea with smaller blow-ups and prove the bet-
ter lower bound, in [DTST20] they use an additional trick of approximating the p by a
specific probabilistic polynomial of lower degree, and adapt the extractor construction
of Shaltiel and Umans [SU05] to yield a good disperser Disp that is computable by a
linear function over F. Further details can be found in [DTST20, Section 2.1].

8.3 The connection to small sets with large degree-d closures

Nie and Wang [NW15] introduced the natural notion of a degree-d closure of a set

S ⊆ Fn, which is the variety induced by (i.e., set of common roots of) the set of
polynomials of degree at most d that vanish on S. Readers who are familiar with
algebraic geometry may recognize this as a natural bounded-degree analogue of the
Zariski closure of S.

Definition 8.7 (degree-d closure). Let F be a finite field, let n, d ∈ N, and let S ⊆ Fn. The
degree-d closure of S is

Cl(d)(S) =
{

x ∈ Fn : ∀p ∈ I (d)S , p(x) = 0
}

,

38The property of Disp that we need for p to vanish extremely rarely is that for almost all z’s there
exists i such that Disp(z, i) “hits” the set S = {x : p0(x) 6= 0}. This property is natural in the case that
p0 is of low degree compared to the field size (i.e., d0 � q, which implies that S is large), and is less
straightforward in other settings (i.e., when S might be small); see [DTST20] for details.

45

where I (d)S is the set of polynomials p : Fn → F of degree at most d that vanish on S (i.e., for
all s ∈ S it holds that p(s) = 0).

As a nice example, observe that the degree-d closure of any d + 1 points on a
fixed line in Fn contains the entire line. A natural question is whether there exists
a very small set with a very large degree-d closure. This is where the connection to
derandomization enters: Observe that Cl(d)(S) = Fn (i.e., the closure of S is the entire
space) if and only if S is a hitting-set for degree-d polynomials. (Since in both cases,
the only degree-d polynomial that vanishes on S is the zero polynomial.)

A more robust connection between degree-d closures and hitting-sets for polyno-
mials, which refers to a closure that is large but isn’t necessarily the entire space Fn,
comes from considering polynomials that vanish rarely. Loosely speaking, the follow-
ing result from [DTST20] asserts that sets with a large degree-d closure are hitting-sets
for degree-d polynomials that vanish rarely, and vice versa; that is:

Theorem 8.8 (small sets with large closures vs hitting-sets for polynomials that vanish
rarely). Let F be a field of size q = |F|, let t < d < n be integers, and let S ⊆ Fn. Then,∣∣∣Cl(d)(S)∣∣∣ > qn−t =⇒ S is a hitting-set for Pn,q,d,t =⇒

∣∣∣Cl(d/2(t+1))(S)
∣∣∣ > 1

2
· qn−t .

Indeed, Theorem 8.8 does not show a complete equivalence between the two no-
tions, because the RHS refers to degree ≈ d/2t rather than d. Thus, intuitively, the
result means that constructing a small set with a large degree-d closure is at least as
hard as constructing a hitting-set for polynomials that vanish rarely; and while the
result also shows a converse implication, it is nevertheless possible that constructing a
hitting-set for polynomials that vanish rarely is an easier problem.

9 Quantified derandomization and pseudoentropy

As explained in Section 2.6, there is a close connection between quantified derandom-
ization and metric pseudoentropy, as defined by Barak, Shaltiel and Wigderson [BSW03].
Let us recall the definition and then prove the equivalence between metric pseudoen-
tropy and pseudorandomness for biased distinguishers.

Definition 9.1 (metric pseudoentropy, as defined in [BSW03]). We say that a distribution
w over {0, 1}n has metric ε-pseudoentropy k for a class C ⊆ {{0, 1}n → {0, 1}} if for every
C ∈ C there exists a distribution hC over {0, 1}n with min-entropy39 at least k such that
Pr[C(w) = 1] ∈ Pr[C(hC) = 1]± ε.

The following is the formal version of Theorem 2.15. It was proved by Doron et
al. [DMO+20, Section 5], and appears in the form below in [CT21b, Proposition 3.11].
For completeness, let me include the short proof.

39Recall that the min-entropy of a distribution is the largest integer k such that every outcome has
probability 2−k or less.

46

Theorem 9.2 (metric pseudoentropy vs pseudorandomness for biased distinguishers).
For any distribution w over {0, 1}n and every k < n and ε, δ > 0 the following holds:

1. If w has metric ε-pseudoentropy at least k for circuits of size S, then w is (ε + δ)-
pseudorandom for size-S circuits with at most B(n) = δ · 2k exceptional inputs.

2. If w is ε-pseudorandom for size-S circuits with at most B(n) = 2k exceptional inputs,
then w has metric ε-pseudoentropy at least k for size-S circuits.

Proof. The core of the proof is the following lemma proved by Barak, Shaltiel and
Wigderson [BSW03, Lemma 3.3]:

Lemma 9.2.1. A distribution w has metric ε-pseudoentropy at least k for size-S circuits if and
only if for every size-S circuit D over n bits and every σ ∈ {0, 1} it holds that Pr[D(w) =
σ] ≤ Pr[D(un) = σ] · 2n−k + ε.

Now, assume that w has metric ε-pseudoentropy at least k for size-S circuits, and let
D be an n-bit size-S circuit with at most δ · 2k exceptional inputs. Then, for the majority
output σ of D the bound Pr[D(un) = σ] · 2n−k + ε is trivial (recall that k ≤ n− 1); and
for the minority output σ′ of D it holds that

Pr[D(w) = σ′] ≤ Pr[D(un) = σ′] · 2n−k + ε ≤ δ + ε ,

where the second inequality is since Pr[D(un) = σ′] ≤ δ · 2k−n.
For the other direction, assume that w is ε-pseudorandom for size-S circuits with at

most 2k exceptional inputs, and let us prove that for every size-S circuit D : {0, 1}n →
{0, 1} and σ ∈ {0, 1} it holds that Pr[D(w) = σ] ≤ Pr[D(un) = σ] · 2n−k + ε. To see
this, note that if Pr[D(un) = σ] > 2k−n then the bound is trivial; and otherwise, D has
at most 2k exceptional inputs, in which case

Pr[D(w) = σ] ≤ Pr[D(un) = σ] + ε ≤ Pr[D(un) = σ] · 2n−k + ε .

One implication of the equivalence in Theorem 9.2, which is essentially the content
of Theorem 2.16, is that PRG constructions that “extract randomness from a pseudoen-
tropic string” can be analyzed in an easier and more general way by thinking of the
construction as “error-reduction and then quantified derandomization”. To see this,
let me restate Theorem 2.16 with more general parameters and include a full proof,
which fleshes out an idea explained in [CT21b, Section 2.2].

Theorem 9.3 (“extract from a pseudoentropic string” as a special case of “error-re-
duction and quantified derandomization”). Let Ext : {0, 1}n̄ × {0, 1}O(log(n̄)) → {0, 1}n

be a (k, ε)-extractor, where k ≤ n̄ − log(1/ε), that is computable in time poly(n), and
let G0 : {0, 1}` → {0, 1}n̄ be a metric ε-pseudoentropy generator with pseudoentropy k +
log(1/ε) for circuits of size nc for a sufficiently large constant c > 1 that depends on Ext.
Then, G(s0, s1) = Ext(G0(s0), s1) is a 4ε-PRG for linear-sized circuits.

47

Proof. Fix a linear-sized circuit C over n bits, and denote the acceptance probability
of C by µ = Prx∈{0,1}n [C(x) = 1]. For ¯̀ = O(log(n̄)), we call a string z ∈ {0, 1}n̄ good

if Pr[Ext(z, u ¯̀) ∈ C−1(1)] ∈ µ± ε.
We define a function C̄ over n̄ input bits that accepts its input z ∈ {0, 1}n̄ if and

only if z is good. Note that C̄ can be computed by a circuit of size nc, where c ∈ N

is a sufficiently large constant that depends on the precise poly(n) time complexity
of Ext and on its seed length. (Indeed, the circuit for C̄ has the value µ hard-wired,
whereas our algorithm G does not “know” µ; but at this point we are only defining C̄
as a thought experiment in the analysis.)

By the properties of Ext it holds that C̄ accepts all but 2k inputs z ∈ {0, 1}n̄. We
also claim that any distribution w that is 2ε-pseudorandom for C̄ yields a distribution
Ext(w, u ¯̀) that is 4ε-pseudorandom for C. To see this, note that

Pr[C(Ext(w, u ¯̀)) = 1] ≤ Pr[w is not good] + (µ + ε)

= Pr[C̄(w) = 0] + µ + ε

≤ 2k−n̄ + µ + 3ε (|C−1(0)| ≤ 2k|)
≤ µ + 4ε , (k ≤ n̄− log(1/ε))

and by a similar calculation Pr[C(Ext(w, u ¯̀)) = 0] ≤ 1− µ + 4ε.
Finally, by Theorem 9.2 (instantiated with δ = ε and with pseudoentropy k +

log(1/ε)), we have that G0 is 2ε-pseudorandom for C̄. Thus, the distribution Ext(G0(u`), u ¯̀)
is 4ε-pseudorandom for C, as we wanted.

10 A host of concrete challenges

The area of quantified derandomization is rich with unsolved open problems. Let
me name a few prominent ones, while suggesting that interested readers also refer to
specific papers such as [GW14; Tel19; CT19; CJW20; CT21b].

The first problem calls for improving the connection between quantified deran-
domization and circuit lower bounds. Theorems 2.2 and 2.3 deduce very fast quantified
derandomization, but only under hardness assumptions that refer to SVN circuits,
which are stronger assumptions than lower bounds for standard circuits. Can we de-
duce very fast quantified derandomizatoin from lower bounds for standard circuits?

Open Problem 1: Deduce very fast quantified derandomization from lower bounds
for standard circuits. Show that prBPT IMEB[n] ⊆ prDT IME [n2.01], for some B(n)�
n, under the assumption that DT IME [2n] is hard for circuits of size 2(1−o(1))·n.

A second main direction in which we hope to strengthen the conditional quanti-
fied derandomization in Theorems 2.2 and 2.3 is to allow for more exceptional random
strings. Recall that the non-uniform quantified derandomization in Theorem 2.1 holds
for B(T) = 2(1−Ω(1))·T, whereas the conditional quantified derandomization in Theo-
rems 2.2 and 2.3 holds only for the smaller value B(T) = 2T1−Ω(1)

. Can we strengthen
the latter results to hold for larger B’s?

48

Open Problem 2: Hardness-to-quantified-randomness with relatively many excep-
tional inputs. For some B(T) = 2T1−o(1)

, show that prBPT IMEB[n] ⊆ prDT IME [n2.01]
under appealing hardness hypotheses (e.g., similar to the ones in Theorems 2.2 and 2.3).

Can we construct a new algorithm for general derandomization (i.e., for CAPP) by
first applying error-reduction and then solving the corresponding quantified deran-
domization problem? This question is particularly appealing for classes of low-depth
circuits such as AC0, T C0, or FORMULAS, for which the known reductions of CAPP
to QDB yield parameters that are remarkably close to those that known algorithms for
QDB can handle. For concreteness, let me suggest this problem for the class T C0:

Open Problem 3: An algorithm for CAPP via quantified derandomization. Improve
either the algorithm in Corollary 6.11 or the reduction in Theorem 6.13 such that the tractable
values for T C0 surpass the threshold values for T C0. Deduce that there exists a non-trivial
CAPP algorithm for T C0, and consequently that NEXP 6⊂ T C0.

The following open problem calls for materializing an approach outlined in Sec-
tion 7.3. As explained there, a natural way to bypass the limitation in Theorem 2.12 is
to construct a non-black-box sampler: Such an algorithm gets as input an n-bit circuit
C and a long random string z ∈ {0, 1}n̄ (for some n̄ > n), and outputs a small sample
S ⊆ {0, 1}n such that for all but a small number of strings z it holds that C−1(1) is
sampled approximately correctly in S. The question presented next asks whether we
can construct such samplers with parameters that are better than the ones possible for
general-purpose samplers. For concreteness, the question focuses on the case of AC0,
but it is nevertheless interesting for any natural circuit class.

Open Problem 4: Construct a non-black-box sampler that outperforms general-
purpose samplers. For example, construct a polynomial-sized AC0 circuit that gets as input
a description of an n-bit AC0 circuit C and a random string z ∈ {0, 1}n̄, and for all but
at most 2n̄1−Ω(1)

strings z it outputs a sample S ⊆ {0, 1}n such that Prs∈S[C(s) = 1] ∈
Prx∈{0,1}n [C(x) = 1]± .01.

Turning to polynomials that vanish extremely rarely, as mentioned in Section 2.5, I
find it remarkable that we do not even know the optimal size of a non-uniform hitting-
set for such polynomials. Is the optimal seed length closer to (d− t) · log(n/(d− t)) as
in the upper bound in Theorem 2.13, or closer to (d/t) · log(n/(d/t)) as in the lower
bound in Theorem 2.14? Since the upper bound is obtained by simply choosing strings
at random (and relying on a bound on the number of polynomials), this question boils
down to asking whether or not a random set of strings is an optimal HSG.

Open Problem 5: What is the optimal size of HSGs for polynomials that vanish
extremely rarely? What is the minimal seed length of a hitting-set (not necessarily an effi-
ciently computable one) for degree-d polynomials Fn → F that vanish with probability at most
ε, as a function of n, d, |F|, and ε? What is the minimal seed length when |F| = 2?

49

As a special case of Open Problem 5, recall that for fields of size larger than two,
even non-tight upper bounds such as the ones in Theorem 2.13 are currently unknown.
The following question calls for showing some upper bounds for fields of size |F| > 2,
even in the “slightly non-trivial” case where the fraction of roots is ε = O(q−d). (Recall
that a polynomial with less than q−d roots has no roots at all [War35], and therefore
the problem is non-trivial only for ε ≥ q−d.)

Open Problem 6: Show results similar to Theorem 2.13 over fields other than F2.
For a field F of size q > 2 and every c > 1, construct an HSG with seed length o(d · log(n))
for degree-d polynomials Fn → F that vanish with probability at most c · q−d. (The HSG may
even be non-uniform.)

The next open problem refers to quantified derandomization of AC0[⊕] circuits.
Recall that at the moment we do not know of a quantified derandomization algorithm
even for depth-3 circuits with B(n) = 2nΩ(1)

exceptional inputs, and the culprit is the
last remaining open case of ⊕ ◦ AND ◦ ⊕ circuits. Can we handle this case?

Open Problem 7: Solve the remaining open case of depth-3 AC0[⊕] circuits. For
every k ∈ N and an arbitrarily small ε = ε(k) > 0, construct an algorithm that solves QDB
for ⊕ ◦ AND ◦ ⊕ circuits of size nk, where B(n) = 2nε

.

The last open problem is stated in a broad and somewhat vague way, but I believe
that there is value in reminding the reader of it. This problem refers to further explor-
ing the close connection between quantified derandomization (a relatively new notion)
and pseudoentropy (a classic notion), in the hope of finding further implications of this
connection (other than Theorem 2.16).

Open Problem 8: Explore the connection between quantified derandomization and
pseudoentropy. As I mentioned in Section 2.6, I believe that more interesting implications of
this connection exist and have yet to be discovered.

Additional open problems, which focus on quantified derandomization of logspace
machines and of interactive proofs, are suggested in Appendix D.

Acknowledgements

I’m grateful to Oded Goldreich for many valuable comments on a draft of the survey,
for elaborate discussions about the conceptual perspective, and for pointing out the
elementary proof of Theorem 2.1 (replacing an original complicated proof). I thank
Ryan Williams for encouraging me to write the survey, for pointing out that Theo-
rem 2.6 is a strict generalization of his result [Wil13], and for providing good writing
advice. I’m grateful to Avi Wigderson for several useful comments and additions, and
in particular for pointing out a flaw that existed in the definitions in an early draft.
I thank Lijie Chen for very useful comments, and for suggesting the same elemen-
tary proof of Theorem 2.1 suggested by Oded. And I’m grateful to William Hoza for
sharing his proof of Theorem D.1 and for his permission to include it in the survey.

50

References

[Aar16] Scott Aaronson. “P ?
= NP”. In: Open Problems in Mathematics. Ed. by John

Forbes Nash Jr. and Michael Th. Rassias. Springer International Publish-
ing, 2016, pp. 1–122.

[AB09] Sanjeev Arora and Boaz Barak. Computational complexity: A modern ap-
proach. Cambridge University Press, Cambridge, 2009.

[Adl78] Leonard Adleman. “Two theorems on random polynomial time”. In: Proc.
19th Annual IEEE Symposium on Foundations of Computer Science (FOCS).
1978, pp. 75–83.

[And87] A. E. Andreev. “On a method for obtaining more than quadratic effective
lower bounds for the complexity of π-schemes”. In: Vestnik Moskovskogo
Universiteta. Seriya I. Matematika, Mekhanika 1 (1987), pp. 70–73, 103.

[ASW15] Emmanuel Abbe, Amir Shpilka, and Avi Wigderson. “Reed-Muller codes
for random erasures and errors”. In: IEEE Transactions on Information The-
ory 61.10 (2015), pp. 5229–5252.

[AW85] Miklos Ajtai and Avi Wigderson. “Deterministic simulation of probabilis-
tic constant depth circuits”. In: Proc. 26th Annual IEEE Symposium on Foun-
dations of Computer Science (FOCS). 1985.

[BBL92] Paul Beame, Erik Brisson, and Richard Ladner. “The complexity of com-
puting symmetric functions using threshold circuits”. In: Theoretical Com-
puter Science 100.1 (1992), pp. 253–265.

[BHS08] Markus Bläser, Moritz Hardt, and David Steurer. “Asymptotically Opti-
mal Hitting Sets Against Polynomials”. In: Proceedings of the 35th Inter-
national Colloquium on Automata, Languages and Programming, Part I. Proc.
35th International Colloquium on Automata, Languages and Program-
ming (ICALP). 2008, pp. 345–356.

[Bog05] Andrej Bogdanov. “Pseudorandom generators for low degree polynomi-
als”. In: Proc. 37th Annual ACM Symposium on Theory of Computing (STOC).
2005, pp. 21–30.

[Bog18] Andrej Bogdanov. “Small Bias Requires Large Formulas”. In: Proc. 45th
International Colloquium on Automata, Languages and Programming (ICALP).
2018, 22:1–22:12.

[BSV14] Eli Ben-Sasson and Emanuele Viola. “Short PCPs with projection queries”.
In: Proc. 41st International Colloquium on Automata, Languages and Program-
ming (ICALP). 2014, pp. 163–173.

[BSW03] Boaz Barak, Ronen Shaltiel, and Avi Wigderson. “Computational ana-
logues of entropy”. In: Proc. 7th International Workshop on Randomization
and Approximation Techniques in Computer Science (RANDOM). 2003, pp. 200–
215.

51

[BV10] Andrej Bogdanov and Emanuele Viola. “Pseudorandom bits for polyno-
mials”. In: SIAM Journal of Computing 39.6 (2010), pp. 2464–2486.

[Che19] Lijie Chen. “Non-deterministic Quasi-Polynomial Time is Average-case
Hard for ACC Circuits”. In: Proc. 60th Annual IEEE Symposium on Founda-
tions of Computer Science (FOCS). 2019.

[CJW20] Lijie Chen, Ce Jin, and Richard Ryan Williams. “Sharp threshold results
for computational complexity”. In: Proc. 52nd Annual ACM Symposium on
Theory of Computing (STOC). 2020, 1335–1348.

[CL16] Kuan Cheng and Xin Li. “Randomness Extraction in AC0 and with Small
Locality”. In: Electronic Colloquium on Computational Complexity: ECCC 23
(2016), p. 18.

[CLW20] Lijie Chen, Xin Lyu, and Richard Ryan Williams. “Almost-Everywhere
Circuit Lower Bounds from Non-Trivial Derandomization”. In: Proc. 61st
Annual IEEE Symposium on Foundations of Computer Science (FOCS). 2020.

[CR20] Lijie Chen and Hanlin Ren. “Strong average-case lower bounds from non-
trivial derandomization”. In: Proc. 52th Annual ACM Symposium on Theory
of Computing (STOC). 2020, pp. 1327–1334.

[CSS16] Ruiwen Chen, Rahul Santhanam, and Srikanth Srinivasan. “Average-case
lower bounds and satisfiability algorithms for small threshold circuits”.
In: Proc. 31st Annual IEEE Conference on Computational Complexity (CCC).
2016, 1:1–1:35.

[CT19] Lijie Chen and Roei Tell. “Bootstrapping results for threshold circuits
“just beyond” known lower bounds”. In: Proc. 51st Annual ACM Sym-
posium on Theory of Computing (STOC). 2019, pp. 34–41.

[CT21a] Lijie Chen and Roei Tell. “Hardness vs Randomness, Revised: Uniform,
Non-Black-Box, and Instance-Wise”. In: Electronic Colloquium on Computa-
tional Complexity: ECCC 28 (2021), p. 080.

[CT21b] Lijie Chen and Roei Tell. “Simple and fast derandomization from very
hard functions: Eliminating randomness at almost no cost”. In: Proc. 53st
Annual ACM Symposium on Theory of Computing (STOC). 2021.

[CTS13] Gil Cohen and Amnon Ta-Shma. “Pseudorandom Generators for Low
Degree Polynomials from Algebraic Geometry Codes”. In: Electronic Col-
loquium on Computational Complexity: ECCC 20 (2013), p. 155.

[CW19] Lijie Chen and R. Ryan Williams. “Stronger Connections Between Circuit
Analysis and Circuit Lower Bounds, via PCPs of Proximity”. In: Proc. 34th
Annual IEEE Conference on Computational Complexity (CCC). 2019, 19:1–
19:43.

[CW89] Aviad Cohen and Avi Wigderson. “Dispersers, deterministic amplifica-
tion, and weak random sources”. In: Proc. 30th Annual IEEE Symposium
on Foundations of Computer Science (FOCS). 1989, pp. 14–19.

52

[DGJ+10] Ilias Diakonikolas, Parikshit Gopalan, Ragesh Jaiswal, Rocco A. Servedio,
and Emanuele Viola. “Bounded independence fools halfspaces”. In: SIAM
Journal of Computing 39.8 (2010), pp. 3441–3462.

[DKS+13] Zeev Dvir, Swastik Kopparty, Shubhangi Saraf, and Madhu Sudan. “Ex-
tensions to the method of multiplicities, with applications to Kakeya sets
and mergers”. In: SIAM Journal of Computing 42.6 (2013), pp. 2305–2328.

[DM18] Irit Dinur and Or Meir. “Toward the KRW composition conjecture: cubic
formula lower bounds via communication complexity”. In: Computational
Complexity 27.3 (2018), pp. 375–462.

[DMO+20] Dean Doron, Dana Moshkovitz, Justin Oh, and David Zuckerman. “Nearly
Optimal Pseudorandomness From Hardness”. In: Proc. 61st Annual IEEE
Symposium on Foundations of Computer Science (FOCS). 2020.

[DTST20] Dean Doron, Amnon Ta-Shma, and Roei Tell. “On hitting-set generators
for polynomials that vanish rarely”. In: Proc. 24th International Workshop
on Randomization and Approximation Techniques in Computer Science (RAN-
DOM). 2020, Art. 7–22.

[FSU+13] Bill Fefferman, Ronen Shaltiel, Christopher Umans, and Emanuele Vi-
ola. “On beating the hybrid argument”. In: Theory of Computing 9 (2013),
pp. 809–843.

[GHR92] Mikael Goldmann, Johan Håstad, and Alexander Razborov. “Majority
gates vs. general weighted threshold gates”. In: Proc. 7th Annual Structure
in Complexity Theory Conference. 1992, pp. 2–13.

[Gil74] John T. Gill III. “Computational complexity of probabilistic Turing ma-
chines”. In: Proc. 6th Annual ACM Symposium on Theory of Computing
(STOC). 1974, pp. 91–95.

[GK98] Mikael Goldmann and Marek Karpinski. “Simulating Threshold Circuits
by Majority Circuits”. In: SIAM Journal of Computing 27.1 (1998), pp. 230–
246.

[GMR13] Parikshit Gopalan, Raghu Meka, and Omer Reingold. “DNF sparsifica-
tion and a faster deterministic counting algorithm”. In: Computational
Complexity 22.2 (2013), pp. 275–310.

[Gol08] Oded Goldreich. Computational Complexity: A Conceptual Perspective. New
York, NY, USA: Cambridge University Press, 2008.

[Gol11] Oded Goldreich. “In a World of P=BPP”. In: Studies in Complexity and
Cryptography. Miscellanea on the Interplay Randomness and Computation. 2011,
pp. 191–232.

[GTN19] Anna Gál, Avishay Tal, and Adrian Trejo Nuñez. “Cubic formula size
lower bounds based on compositions with majority”. In: Proc. 10th Con-
ference on Innovations in Theoretical Computer Science (ITCS). 2019, Art. No.
35, 13.

53

[GUV09] Venkatesan Guruswami, Christopher Umans, and Salil Vadhan. “Unbal-
anced expanders and randomness extractors from Parvaresh-Vardy codes”.
In: Journal of the ACM 56.4 (2009), Art. 20, 34.

[GVW15] Oded Goldreich, Emanuele Viola, and Avi Wigderson. “On Randomness
Extraction in AC0”. In: Proc. 30th Annual IEEE Conference on Computational
Complexity (CCC). 2015, pp. 601–668.

[GW14] Oded Goldreich and Avi Widgerson. “On derandomizing algorithms that
err extremely rarely”. In: Proc. 46th Annual ACM Symposium on Theory of
Computing (STOC). Full version available online at Electronic Colloquium
on Computational Complexity: ECCC, 20:152 (Rev. 2), 2013. 2014, pp. 109–
118.

[Hås14] Johan Håstad. “On the correlation of parity and small-depth circuits”. In:
SIAM Journal of Computing 43.5 (2014), pp. 1699–1708.

[Hås87] Johan Håstad. Computational Limitations of Small-depth Circuits. MIT Press,
1987.

[Hås98] Johan Håstad. “The shrinkage exponent of De Morgan formulas is 2”. In:
SIAM Journal of Computing 27.1 (1998), pp. 48–64.

[HHT+21] Pooya Hatami, William M. Hoza, Avishay Tal, and Roei Tell. “Fooling
Constant-Depth Threshold Circuits”. In: Electronic Colloquium on Compu-
tational Complexity: ECCC 28 (2021), p. 002.

[HIL+99] Johan Håstad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby.
“A Pseudorandom Generator from any One-way Function”. In: SIAM
Journal of Computing 28.4 (1999), pp. 1364–1396.

[Hoz21] William M. Hoza. Private Communication. 2021.

[IK17] Russell Impagliazzo and Valentine Kabanets. “Fourier concentration from
shrinkage”. In: Computational Complexity 26.1 (2017), pp. 275–321.

[IKW02] Russell Impagliazzo, Valentine Kabanets, and Avi Wigderson. “In search
of an easy witness: exponential time vs. probabilistic polynomial time”.
In: Journal of Computer and System Sciences 65.4 (2002), pp. 672–694.

[IMZ12] Russell Impagliazzo, Raghu Meka, and David Zuckerman. “Pseudoran-
domness from shrinkage”. In: Proc. 53rd Annual IEEE Symposium on Foun-
dations of Computer Science (FOCS). 2012, pp. 111–119.

[IN93] Russell Impagliazzo and Noam Nisan. “The effect of random restrictions
on formula size”. In: Random Structures & Algorithms 4.2 (1993), pp. 121–
133.

[IPS97] Russell Impagliazzo, Ramamohan Paturi, and Michael E. Saks. “Size-
depth tradeoffs for threshold circuits”. In: SIAM Journal of Computing 26.3
(1997), pp. 693–707.

54

[IW99] Russell Impagliazzo and Avi Wigderson. “P = BPP if E requires expo-
nential circuits: derandomizing the XOR lemma”. In: Proc. 29th Annual
ACM Symposium on Theory of Computing (STOC). 1999, pp. 220–229.

[Kel21] Zander Kelley. “An Improved Derandomization of the Switching Lemma”.
In: Proc. 53rd Annual ACM Symposium on Theory of Computing (STOC).
2021.

[Khr71] V. M. Khrapčenko. “A certain method of obtaining estimates from below
of the complexity of π-schemes”. In: Matematicheskie Zametki 10 (1971),
pp. 83–92.

[KI04] Valentine Kabanets and Russell Impagliazzo. “Derandomizing Polyno-
mial Identity Tests Means Proving Circuit Lower Bounds”. In: Computa-
tional Complexity 13.1-2 (2004), pp. 1–46.

[KL18] Valentine Kabanets and Zhenjian Lu. “Satisfiability and derandomization
for small polynomial threshold circuits”. In: Proc. 22nd International Work-
shop on Randomization and Approximation Techniques in Computer Science
(RANDOM). 2018, Art. No. 46, 19.

[KLP12] Tali Kaufman, Shachar Lovett, and Ely Porat. “Weight distribution and
list-decoding size of Reed-Muller codes”. In: IEEE Transactions on Infor-
mation Theory 58.5 (2012), pp. 2689–2696.

[KM02] Adam R. Klivans and Dieter van Melkebeek. “Graph nonisomorphism
has subexponential size proofs unless the polynomial-time hierarchy col-
lapses”. In: SIAM Journal of Computing 31.5 (2002), pp. 1501–1526.

[KR13] Ilan Komargodski and Ran Raz. “Average-case lower bounds for for-
mula size”. In: Proc. 45th Annual ACM Symposium on Theory of Computing
(STOC). 2013, pp. 171–180.

[KRT17] Ilan Komargodski, Ran Raz, and Avishay Tal. “Improved average-case
lower bounds for De Morgan formula size: matching worst-case lower
bound”. In: SIAM Journal of Computing 46.1 (2017), pp. 37–57.

[KS01] Adam R. Klivans and Daniel Spielman. “Randomness efficient identity
testing of multivariate polynomials”. In: Proc. 33rd Annual ACM Sympo-
sium on Theory of Computing (STOC). 2001, pp. 216–223.

[Li16] Xin Li. “Improved two-source extractors, and affine extractors for poly-
logarithmic entropy”. In: Proc. 57th Annual IEEE Symposium on Founda-
tions of Computer Science (FOCS). 2016, pp. 168–177.

[Lov09] Shachar Lovett. “Unconditional pseudorandom generators for low-degree
polynomials”. In: Theory of Computing 5 (2009), pp. 69–82.

[LRV+03] Chi-Jen Lu, Omer Reingold, Salil Vadhan, and Avi Wigderson. “Extrac-
tors: Optimal up to Constant Factors”. In: Proc. 35th Annual ACM Sympo-
sium on Theory of Computing (STOC). 2003, pp. 602–611.

55

[Lu12] Chi-Jen Lu. “Hitting set generators for sparse polynomials over any finite
fields”. In: Proc. 27th Annual IEEE Conference on Computational Complexity
(CCC). 2012, pp. 280–286.

[LV98] Daniel Lewin and Salil Vadhan. “Checking polynomial identities over any
field: towards a derandomization?” In: Proc. 30th Annual ACM Symposium
on Theory of Computing (STOC). 1998, pp. 438–447.

[LVW93] M. Luby, B. Velickovic, and A. Wigderson. “Deterministic approximate
counting of depth-2 circuits”. In: Proc. 2nd Israel Symposium on Theory and
Computing Systems. 1993, pp. 18–24.

[MW18] Cody Murray and Ryan Williams. “Circuit Lower Bounds for Nondeter-
ministic Quasi-Polytime: An Easy Witness Lemma for NP and NQP”. In:
Proc. 50th Annual ACM Symposium on Theory of Computing (STOC). 2018.

[Nis91] Noam Nisan. “Pseudorandom bits for constant depth circuits”. In: Com-
binatorica 11.1 (1991), pp. 63–70.

[NN93] Joseph Naor and Moni Naor. “Small-bias probability spaces: efficient con-
structions and applications”. In: SIAM Journal of Computing 22.4 (1993),
pp. 838–856.

[NW15] Zipei Nie and Anthony Y. Wang. “Hilbert functions and the finite de-
gree Zariski closure in finite field combinatorial geometry”. In: Journal of
Combinatorial Theory. Series A 134 (2015), pp. 196–220.

[NW94] Noam Nisan and Avi Wigderson. “Hardness vs. randomness”. In: Journal
of Computer and System Sciences 49.2 (1994), pp. 149–167.

[PS94] Ramamohan Paturi and Michael E. Saks. “Approximating threshold cir-
cuits by rational functions”. In: Information and Computation 112.2 (1994),
pp. 257–272.

[PZ93] Michael S. Paterson and Uri Zwick. “Shrinkage of De Morgan formulae
under restriction”. In: Random Structures & Algorithms 4.2 (1993), pp. 135–
150.

[RRV02] Ran Raz, Omer Reingold, and Salil Vadhan. “Extracting all the random-
ness and reducing the error in Trevisan’s extractors”. In: Journal of Com-
puter and System Sciences 65.1 (2002), pp. 97–128.

[RTS00] Jaikumar Radhakrishnan and Amnon Ta-Shma. “Bounds for dispersers,
extractors, and depth-two superconcentrators”. In: SIAM Journal of Com-
puting 13.1 (2000), pp. 2–24.

[San10] Rahul Santhanam. “Fighting perebor: new and improved algorithms for
formula and QBF satisfiability”. In: Proc. 51st Annual IEEE Symposium on
Foundations of Computer Science (FOCS). 2010, pp. 183–192.

[Ser07] Rocco A. Servedio. “Every linear threshold function has a low-weight
approximator”. In: Computational Complexity 16.2 (2007), pp. 180–209.

56

[Sip86] Michael Sipser. “Expanders, randomness, or time versus space”. In: Proc.
Conference on Structure in Complexity Theory. 1986, pp. 325–329.

[ST17] Rocco Servedio and Li-Yang Tan. “Deterministic search for CNF satisfy-
ing assignments in almost polynomial time”. In: Proc. 58th Annual IEEE
Symposium on Foundations of Computer Science (FOCS). 2017.

[ST18] Rocco A. Servedio and Li-Yang Tan. “Luby-Veličković-Wigderson revis-
ited: improved correlation bounds and pseudorandom generators for depth-
two circuits”. In: Proc. 22nd International Workshop on Randomization and
Approximation Techniques in Computer Science (RANDOM). Vol. 116. 2018,
Art. No. 56, 20.

[ST19] Rocco A. Servedio and Li-Yang Tan. “Improved pseudorandom genera-
tors from pseudorandom multi-switching lemmas”. In: Proc. 23rd Interna-
tional Workshop on Randomization and Approximation Techniques in Computer
Science (RANDOM). 2019, Art. No. 45, 23.

[STV01] Madhu Sudan, Luca Trevisan, and Salil Vadhan. “Pseudorandom genera-
tors without the XOR lemma”. In: Journal of Computer and System Sciences
62.2 (2001), pp. 236–266.

[SU05] Ronen Shaltiel and Christopher Umans. “Simple extractors for all min-
entropies and a new pseudorandom generator”. In: Journal of the ACM
52.2 (2005), pp. 172–216.

[Sub61] B. A. Subbotovskaja. “Realization of linear functions by formulas using
∨, &, −”. In: Soviet Mathematics. Doklady 2 (1961), pp. 110–112.

[SW13] Rahul Santhanam and Ryan Williams. “On medium-uniformity and cir-
cuit lower bounds”. In: Proc. 28th Annual IEEE Conference on Computational
Complexity (CCC). 2013, pp. 15–23.

[Tal14] Avishay Tal. “Shrinkage of De Morgan formulae by spectral techniques”.
In: Proc. 55th Annual IEEE Symposium on Foundations of Computer Science
(FOCS). 2014, pp. 551–560.

[Tal17a] Avishay Tal. “Formula lower bounds via the quantum method”. In: Proc.
49th Annual ACM Symposium on Theory of Computing (STOC). 2017, pp. 1256–
1268.

[Tal17b] Avishay Tal. “Tight Bounds on the Fourier Spectrum of AC0”. In: Proc.
32nd Annual IEEE Conference on Computational Complexity (CCC). 2017,
15:1–15:31.

[Tel17] Roei Tell. “A Note on the Limitations of Two Black-Box Techniques in
Quantified Derandomization”. In: Electronic Colloquium on Computational
Complexity: ECCC 24 (2017), p. 187.

[Tel18] Roei Tell. “Quantified Derandomization of Linear Threshold Circuits”. In:
Proc. 50th Annual ACM Symposium on Theory of Computing (STOC). 2018,
pp. 855–865.

57

[Tel19] Roei Tell. “Improved bounds for quantified derandomization of constant-
depth circuits and polynomials”. In: Computational Complexity 28.2 (2019),
pp. 259–343.

[Tel20] Roei Tell. On implications of better sub-exponential lower bounds for AC0. Ac-
cessed at https://sites.google.com/site/roeitell/Expositions,
June 22, 2021. 2020.

[Tod91] Seinosuke Toda. “PP is as hard as the polynomial-time hierarchy”. In:
SIAM Journal of Computing 20.5 (1991), pp. 865–877.

[Tre01] Luca Trevisan. “Extractors and Pseudorandom Generators”. In: Journal of
the ACM 48.4 (2001), pp. 860–879.

[TSUZ07] Amnon Ta-Shma, Christopher Umans, and David Zuckerman. “Lossless
condensers, unbalanced expanders, and extractors”. In: Combinatorica 27.2
(2007), pp. 213–240.

[TX13] Luca Trevisan and TongKe Xue. “A derandomized switching lemma and
an improved derandomization of AC0”. In: Proc. 28th Annual IEEE Con-
ference on Computational Complexity (CCC). 2013, pp. 242–247.

[Uma03] Christopher Umans. “Pseudo-random generators for all hardnesses”. In:
Journal of Computer and System Sciences 67.2 (2003), pp. 419–440.

[Vad12] Salil P. Vadhan. Pseudorandomness. Foundations and Trends in Theoretical
Computer Science. Now Publishers, 2012.

[Vio05] Emanuele Viola. “The complexity of constructing pseudorandom gen-
erators from hard functions”. In: Computational Complexity 13.3-4 (2005),
pp. 147–188.

[Vio09a] Emanuele Viola. “On approximate majority and probabilistic time”. In:
Computational Complexity 18.3 (2009), pp. 337–375.

[Vio09b] Emanuele Viola. “The sum of d small-bias generators fools polynomials
of degree d”. In: Computational Complexity 18.2 (2009), pp. 209–217.

[War35] Ewald Warning. “Bemerkung zur vorstehenden Arbeit von Herrn Cheval-
ley”. In: Abhandlungen aus dem Mathematischen Seminar der Universität Ham-
burg 11 (1935), pp. 76–83.

[Wil11] Ryan Williams. “Non-uniform ACC circuit lower bounds”. In: Proc. 26th
Annual IEEE Conference on Computational Complexity (CCC). 2011, pp. 115–
125.

[Wil13] Ryan Williams. “Improving Exhaustive Search Implies Superpolynomial
Lower Bounds”. In: SIAM Journal of Computing 42.3 (2013), pp. 1218–1244.

[Wil14] Ryan Williams. “Algorithms for circuits and circuits for algorithms: Con-
necting the tractable and intractable”. In: Proc. International Congress of
Mathematicians (ICM). 2014, pp. 659–682.

58

https://sites.google.com/site/roeitell/Expositions

Appendix A Error-reduction by itself is not enough

Can we construct a better-than-brute-force algorithm for CAPP via the naive approach
of first reducing CAPP to QDB using a standard sampler-based error-reduction, and
then using a brute-force algorithm for QDB (i.e., solving quantified derandomization
by evaluating the given circuit over some fixed O(B(n)) inputs)?

The following result shows a negative answer to this question: Any such algorithm
will be slower than the brute-force algorithm that simply evaluates the original circuit
on all of its inputs. The meaning of this result is that when constructing CAPP algo-
rithms that are based on an initial step of sampler-based error-reduction, a non-trivial
algorithm for quantified derandomization is necessary. The statement below shows that this
is the case even for derandomization with one-sided error (i.e., for CAPP 1

2 ,0) and even
when using dispersers rather than samplers.

Definition A.1 (disperser). A function Disp : {0, 1}n̄ × {0, 1}` → {0, 1}n is a (k, ε)-
disperser if for every T ⊆ {0, 1}n of density |T|/2n ≥ ε, for all but at most 2k strings
z ∈ {0, 1}n̄ there exists s ∈ {0, 1}` such that Disp(z, s) ∈ T.

Theorem A.2 (disperser-based error-reduction should be coupled with non-trivial al-
gorithms for quantified derandomization). Consider the following algorithm for CAPP 1

2 ,0.

Given an n-bit circuit C, let Disp : {0, 1}n̄ × {0, 1}` → {0, 1}n be an arbitrary (k, .01)-
disperser for some value of k ≤ n. The algorithm:

1. Constructs the n̄-bit circuit C′ such that C′(z) =
∨

s∈{0,1}` C(Disp(z, s)).

2. Evaluates C′ over (arbitrary) fixed 2k + 1 inputs.

3. Outputs “yes” if and only if C′ accepted one of the inputs.

Then, the running time of this algorithm is larger than 2n · Õ(|C|).

Proof. Radhakrishnan and Ta-Shma [RTS00] proved that for any (k, .01)-disperser
Disp : {0, 1}n̄ × {0, 1}` → {0, 1}n it holds that n ≤ k + `−O(1) (i.e., an entropy loss
is inherent). Also note that the size of C′ is more than 2` · |C|, even without tak-
ing into account the complexity of Disp. Thus, the running time of the algorithm is(
2k + 1

)
· Õ(|C′|) > 2k+` · Õ(|C|) ≥ 2n · Õ(|C|).

Appendix B Pseudorandom restrictions for low-depth circuits
and formulas

In this section I describe the technical results underlying the algorithms for quantified
derandomization that were presented in Section 6. These technical results assert the
existence of efficient pseudorandom restriction procedures that yield simplifier sets, in the
sense of Definition 7.1.

59

B.1 Width-dependent derandomization of Håstad’s switching lemma

Let me start with the class AC0. Using standard techniques following [Hås87], the
problem of constructing a pseudorandom restriction procedure reduces to the prob-
lem of derandomizing Håstad’s switching lemma [Hås87]; that is, to the problem of
constructing a pseudorandom distribution of restrictions that simplifies every depth-2
formula into a decision tree of bounded depth, with high probability (see, e.g., [Tel19,
Proof of Theorem 5.16] for an explanation).40

Note that for our application (i.e., to construct an algorithm for QDB) we want
to pseudorandomly choose both the variables to fix and the values for fixed variables. This
should be distinguished from applications for which we only need to pseudorandomly
choose which variables to fix, while leaving the choice of values to be completely
uniform. (A very recent result of Kelley [Kel21] showed that the latter task can be
solved in polynomial time with seed length O(log(n)).)

To optimize the trade-off between B(n) and the seed length, we will be interested
in derandomization of the switching lemma for depth-two formulas of bounded width
(see [Tel19] for an explanation of why this is the case). We denote the formula size
by m ≥ n and its width by w, and for our application we can assume wlog that
w ≤ O(log(m)) and we fix the error probability to be 1/poly(m) for a sufficiently
large polynomial.

For such parameters, Trevisan and Xue [TX13] constructed a pseudorandom re-
striction algorithm with seed length Õ(w) · log2(m), and Goldreich and Wigderson [GW14]
constructed such an algorithm with seed length Õ(2w) · log(m). The following result
from [Tel19] improved on both these results by constructing a pseudorandom restric-
tion algorithm with seed length Õ(w2 · log(m)): 41

Proposition B.1 (width-dependent derandomization of Håstad’s switching lemma;
see [Tel19, Theorem 1.4]). Let m, n ∈ N, let w ≤ O(log(m)), and let δ = δ(n) > 0.
Then, there exists an algorithm that gets as input a random seed of length Õ(w2 · log(mn/δ)),
runs in time poly(n), and outputs a restriction ρ ∈ {0, 1, ?}n such that for every n-bit depth-2
formula F of size m and width w, with probability 1−O(δ) the following holds:

1. The number of variables kept alive by ρ is Ω(n/w).

2. There exist “lower-sandwiching” and “upper-sandwiching” formulas Flow and Fhigh

for F 42 such that both Flow�ρ and Fhigh�ρ can be computed by decision trees of depth
O(log(1/δ)), and each of the two formulas agrees with F�ρ on 1− δ of the inputs.

Proposition B.1 is the main technical result underlying the algorithm for QDB in
Theorem 2.7. Observe that, crucially, both Flow and Fhigh agree with F on 1 − δ of

40We will focus on pseudorandom distributions that achieve the same bound on the decision tree depth,
and approximately the same error probability, as in Håstad’s original result [Hås87]. Pseudorandom
restriction procedures that achieve worse parameters but are more efficient are known (these date back
to [AW85], with a recent construction presented in [GMR13]).

41Strictly speaking, the result of [GW14] is still better in the case of w = O(1), since it yields seed
length O(log(n)) rather than Õ(log(n)).

42That is, for every x ∈ {0, 1}n it holds that Flow(x) ≤ F(x) ≤ Fhigh(x).

60

the inputs in the subcube that corresponds to ρ; that is, they approximate F after the
restriction. Also, we can take δ to be an arbitrarily large polynomial in m without
noticeably affecting the seed length.

B.2 Pseudorandom restrictions for threshold circuits

For constant-depth linear threshold circuits (LTF circuits), even random restriction pro-
cedures (let alone pseudorandom procedures) are relatively new. Impagliazzo, Pa-
turi, and Saks [IPS97] showed a random restriction procedure in which neither the
fixed variables nor their values are chosen uniformly; this procedure sufficed to show
worst-case lower bounds, but does not suffice for many applications, such as proving
average-case lower bounds or constructing quantified derandomization algorithms.

Several years ago Chen, Santhanam, and Srinivasan [CSS16] (relying on results de-
veloped in [Ser07; DGJ+10] and other works) showed a random restriction procedure
for LTF circuits in which the variables are chosen in an adaptive way that depends on
the given circuit, but values for fixed variables are chosen uniformly; they used this
procedure to deduce average-case lower bounds for LTF circuits. This restriction pro-
cedure was subsequently derandomized and refined in [Tel18], yielding the following
result, which is the main technical result underlying Theorem 2.8:

Proposition B.2 (pseudorandom restrictions for LTF circuits; see [Tel18, Proposition
3.1]). Let c, d ≥ 1, let ε > 0 be a sufficiently small constant, and let δ = d · 30d−1 · ε. Then,
there exists a polynomial-time algorithm that for every n ∈ N, when given as input an LTF
circuit over n input bits of depth d with at most n1+ε wires, and a random seed of length
O(log(n) · loglog(n)), with probability at least 1− n−ε/2 outputs the following:

1. A restriction ρ that keeps at least n1−δ variables alive.

2. An LTF that is (1− n−c)-close to C�ρ.

Note that the original statement in [Tel18] only asserts that Φ is (9/10)-close to C�ρ,
but the proof already shows that the closeness is 1− n−c for every desired constant
c ∈ N. (To see this, note that in Claim 5.11.1 of the full version, the bound on the
closeness of each biased gate to the corresponding constant after all the restriction is
stated to be δt = 1− n−c for an arbitrary constant c ∈N.)

Let me also note that another pseudorandom restriction procedure for LTF circuits
was very recently shown by Hatami et al. [HHT+21]. In this procedure the failure
probaiblity is exp(−nΩ(1)) instead of n−Ω(1), but only the variables to be fixed are
chosen pseudorandomly, whereas values for fixed variables are chosen uniformly.

Kabanets and Lu [KL18] showed a result analogous to Proposition B.2 that holds
for the stronger class of PTF circuits of low degree; this is the main technical result
underlying the algorithm for QDB of PTF circuits in Theorem 6.12. They also showed
a similar result for PTF circuits in which each gate computes a sparse polynomial (i.e.,
a polynomial with n∆ monomials for a small constant ∆).

61

Proposition B.3 (pseudorandom restrictions for low-degree PTF circuits; see [KL18,
Proof of Theorem 4.4]). Let c, d ≥ 1, let E ≥ 11, and let ∆ : N → N such that ∆ �√

εd · log(n)/loglog(n), where εd = E−2(d−1). Let Cn be the class of PTF circuits over n
input bits of depth d with n1+εd wires in which each gate computes a PTF with degree at most
∆(n). Then, there exists an algorithm that gets as input C ∈ Cn and a random seed of length
log(n)O(∆(n)2), and with probability at least 1− nΩ(1) outputs the following:

1. A restriction ρ that keeps at least n1−6/E variables alive.

2. A PTF with at most nεd·∆(n) monomials that is (1− n−c)-close to C�ρ.

Proposition B.3 is not explicitly stated in [KL18] (which is a conference version), but
as explained there after the statement of Theorem 4.7, this result follows immediately
by mimicking the proof of Theorem 4.4 (which is an analogous result for PTF circuits
in which each gate computes a sparse polynomial). Also, similarly to Proposition B.2,
in [KL18] the closeness parameter is taken to be 9/10 rather than 1 − n−c, but the
latter value is immediate from their proof. (To see this, in the proof of Theorem 4.4,
instantiate Lemma 4.5 with an arbitrarily large constant c ≥ 1 instead of with c = 1.)

The restriction procedures are non-black-box. The algorithms in Propositions B.2
and B.3 both work in a non-black-box fashion: They get as input a circuit C, and tai-
lor a restriction that is specifically designed to simplify C. However, as mentioned in
Section 7, a key component in these procedures is already “somewhat black-box” (i.e.,
going layer-by-layer, these restrictions are pseudorandom distributions that simplify
each of the gates in the layer with high marginal probability). Moreover, both proce-
dures can be made fully black-box at the expense of simplifying the circuit not to a
single LTF or PTF, but rather to the more complicated model of a relatively shallow
decision tree with LTFs or PTFs at its leaves; see [HHT+21] for an explanation.

B.3 Pseudorandom restrictions for formulas

Random restrictions for De Morgan formulas have been extensively studied since the
1960’s, focusing on the well-known implication that a formula is expected to shrink (in
size) under such restrictions (see, e.g., [Sub61; PZ93; IN93; Hås98; Tal14]). However,
only in the last decade have pseudorandom versions been constructed.

Impagliazzo, Meka, and Zuckerman [IMZ12] constructed a pseudorandom re-
striction procedure that shrinks any formula of size s to be of size p2 · s1+o(1), with
probability 1 − n−O(1); this procedure has seed length 2O(log2/3(s)) = so(1). Hatami
et al. [HHT+21] showed a pseudorandom retriction procedure that supports a much
smaller failure probability ε � s−O(1), but shrinks any formula to a decision tree of
depth so(1) · polylog(1/ε) with formulas of size p2−o(1) · s at its leaves; the seed length
for this procedure is so(1) · polylog(n/ε).

For quantified derandomization we do not need the strong concentration bounds
above on the shrinkage of the formula, and shrinkage in expectation suffices. For

62

this application, Chen, Jin, and Williams [CJW20] showed a procedure that uses seed
length only O(log(n)) and indeed obtains shrinkage in expectation:

Proposition B.4 (pseudorandom restrictions for formulas; see [CJW20]). Let p : N →
N. Then, there exists an algorithm that gets as input a random seed of length O(log(n)), runs
in time poly(n), and outputs a restriction ρ ∈ {0, 1, ?}n such that:

1. With probability at least 2/3 it holds that ρ keeps at least pn/2 variables alive.

2. For every n-variable formula it holds that

E[L(F�ρ)] ≤
(

p2 · L(F) + p ·
√

L(F)
)
· nc/loglog(n) ,

where c > 1 is a universal constant.

Proposition B.4 is the main technical result underlying the algorithm for QDB of
formulas in Theorem 2.10. In addition, the pseudorandom restriction in [CJW20] is
even stronger, since it guarantees the existence of a circuit C of size polylog(n) that
gets as input the random seed (of length O(log(n))) and an index i ∈ [n] of an output,
an prints the ith coordinate of the restriction ρ.

Appendix C Extractors computable by low-depth circuits and
formulas

In this section I describe the technical results underlying the reductions of CAPP to
QDB that were presented in Section 6. These technical results are constructions of
extractors that are computable in weak circuit classes. The precise notion of being com-
putable in a weak circuit class will differ across the constructions presented below,
but in general it will be at least as strict as the one in Definition 7.2 (and hence the
limitation in Theorem 7.3 applies to the results that use these constructions).

In general, there are very efficient constructions of extractors with good parame-
ters: For example, each output bit of Trevisan’s [Tre01] extractor (and of its improve-
ment in [RRV02]) is just a parity of the input. However, in the following results we
will be interested in computing extractors by circuits or formulas that are too weak to
even compute the parity of their input.

C.1 Extractors computable by AC0 circuits

Goldreich and Wigderson [GW14, Theorem 3.4 in the full version] constructed an AC0

circuit computing a function that can be thought of as a middle-point between a stan-
dard extractor (which outputs a distribution close to uniform) and a non-black-box
extractor as referred to in Section 7.3 (which outputs a distribution that only looks
uniform to a circuit whose description is given to the non-black-box extractor). Specif-
ically, the output distribution of their function looks uniform to any AC0 observer; this

63

is equivalent to a sampler that only samples correctly subsets that are decidable byAC0

circuits. Their function was computable by P-uniform AC0 circuits, had n0 = nΩ(1)

output bits, and supported min-entropy k = 2n/polylog(n).
Their construction was later superseded by a construction of standard extractors

that are computable by P-uniform AC0 circuits, which was shown by Cheng and
Li [CL16]. (That is, the construction of [CL16] is of a standard extractor rather than of
a non-black-box one, and also has better parameters than the one in [GW14].) In fact,
there are various different such constructions in [CL16], supporting different trade-offs
between the parameters; let me mention one such construction of theirs:

Proposition C.1 (extractors in uniform AC0; see [CL16, Theorem 4.11]). For any d ≥ 7
there exists an extractor family

{
Extn : {0, 1}n × {0, 1}` → {0, 1}n0

}
n∈N

with seed length
` = O(log(n)), output length n0 =

⌊
n1/3600⌋, min-entropy k = Θ(n/ logd−7(n)), and error

n−1/600, such that the function mapping (z, s) ∈ {0, 1}n × {0, 1}` to Extn(z, s) is computable
by P-uniform AC0 circuits of depth d and size poly(n).

The parameters of Proposition C.1 are close to the best possible (and various op-
timizations and tradeoffs appear in [CL16]). This follows from a lower bound of Vi-
ola [Vio05] (see also [GVW15]), which asserts that AC0 circuits of size poly(n) and
depth d can compute extractors for min-entropy at most k = n/ logd−1(n), even if
the seed is very long compared to the output length (i.e., even if the seed is of length
n.999

0). A similar lower bound follows by combining Theorem 7.3 with Håstad’s switch-
ing lemma [Hås87]. (In fact, Theorem 7.3 yields a more general approach for showing
such lower bounds, since the simplifier set need not be a subcube and may even par-
tially depend on the circuit that it simplifies (as explained in Section 7).)

C.2 Extractors computable by extremely sparse threshold circuits

Recall that the parity function can be computed by LTF circuits of depth d and size
n1+c−d

⊕ , for some constant c⊕ ≥ 1+
√

5
2 (see [BBL92; PS94]). Thus, if we instantiate

Trevisan’s [Tre01] extractor Ext with seed length close to log(n) and output length nε

for a small constant ε > 0, we can compute the mapping z 7→ {Ext(z, s)}s by a uniform
T C0 circuit of super-quadratic size. (This is since this extractor only computes parities
of the input, and since for these parameters the circuit that prints the outputs of the
extractor on all seeds has n1+O(ε) output bits.)

As far as I know, the first extractor that is computable by uniform T C0 circuits of
super-linear size was constructed in [Tel18]; each output bit of this extractor is still a
parity of the input, but these parities are computed “in a batch” rather than paying
n1+c−d

⊕ per each output bit. This construction was later improved by Chen and the
current author [CT19], who showed a construction with seed length and output length
as above that uses only n1+c−d

wires, for any c < c⊕; that is:

Proposition C.2 (extractors in uniform T C0 of super-linear size). For any d ≥ 7 and c <
c⊕ there exists an extractor family

{
Extn : {0, 1}n × {0, 1}` → {0, 1}n0

}
n∈N

with seed length

64

` = (1 + exp(−d)) · log(n), output length n0 = nexp(−d), min-entropy k = n1−exp(−d), and
error ε > 0, such that the following holds: The function mapping z ∈ {0, 1}n to the output-set
(Extn(z, s))s∈{0,1}` is computable by P-uniform T C0 circuits of depth d and size n1+c−d

.

Note that the circuits in Proposition C.2 are T C0 circuits rather than LTF circuits;
that is, to compute the extractor we only use unweighted majority gates rather than
(the stronger) linear threshold functions.

C.3 Dispersers computable by formulas of subquadratic size

Recall that the parity function can be computed by formulas of size O(n2). Thus,
a naive implmentation of Trevisan’s extractor with seed length close to log(n) and
output length nε for a small constant ε > 0 yields formulas of size O(n3+O(ε)).

The reduction of CAPP to QDB by Chen, Jin, and Williams [CJW20] yields for-
mulas of sub-quadratic size, using two ideas. The first idea is to combine a standard
linear extractor with naive error reduction; the addition of naive error reduction yields
slightly poorer extraction properties, but also reduces the computational complexity
(intuiviely, since naive error reduction has very low complexity but poor extractor
properties). In particular, the combination yields the following construction:

Proposition C.3 (dispersers computable by uniform sub-quadratic formulas). For any
ε ∈ (0, 1) and δ > 0 there exists a family of functions D̂ispn : {0, 1}n × {0, 1}O(log(n)) →
{0, 1}n0 , where n0 = nΩδ,ε(1), that satisfies the following:

1. Seeds are pairs. The seed of D̂isp is a pair (s, i) ∈ {0, 1}O(log(n)) × {0, 1}ε·log(n).

2. Computable by formulas of sub-quadratic size: For each fixed s ∈ {0, 1}O(log(n)),
the mapping of x ∈ {0, 1}n to the tuple (D̂ispn(x, (s, i)))i∈{0,1}ε·log(n) is computable by
P-uniform formulas of size n2−ε+δ.

3. Disperser with density Ω(n−ε): For every T ⊆ {0, 1}n0 such that |T|/2n0 ≥ 9/10,
for all but at most 2nε

inputs x ∈ {0, 1}n there exists i ∈ {0, 1}ε·log(n) such that
Prs

[
D̂isp(x, (s, i)) ∈ T

]
≥ 2/3.

Proof. For two constants α > 0 and β < 1 that will be defined below, and for n1 = nβ,
let Ext : {0, 1}n1 ×{0, 1}O(log(n1)) → {0, 1}n0 be the extractor that is implicit in the work
of Li [Li16, Theorem 3.14] and was explicitly stated in [CJW20, Theorem 4.1], where
n0 = nα/2

1 ; the min-entropy of Ext is nα
1 , its error is n−α

1 , and it can be computed by P-
uniform formulas of size n2+α

1 . We think of any n-bit string x as a sequence of r = n/n1

disjoint substrings x1, ..., xr of length n1, and define D̂isp(x, (s, i)) = Ext(xi, s); that is,
the random seed of D̂isp consists of an index i ∈ [r] and of a seed s for Ext, and D̂isp
applies Ext with seed s to the ith substring of n1 bits in its input x.

The seed length of D̂isp is (1 − β) · log(n) + O(log(n)), and its output length is
n0 = nβ·α/2. Also, for each fixed s, the mapping x 7→ (D̂ispn(x, (s, i)))i∈[r] is com-
putable by P-uniform formulas of size r · n2+α

1 . Now, let T ⊆ {0, 1}n0 be of density

65

at least 9/10. For every fixed i ∈ [r] there exist at most 2nα
1 strings xi ∈ {0, 1}n1 such

that Pr[Ext(xi, s) ∈ T] < 9/10 − n−α. Thus, the number of strings x = (x1, ..., xr)
such that for all i ∈ [r] it holds that Pr[Ext(xi, s) ∈ T] < 9/10− n−α is at most 2nα

1 ·r.
Hence, for all but at most 2nα

1 ·r of the strings x ∈ {0, 1}n there exists i ∈ [r] such that
Pr[D̂isp(x, (s, i)) ∈ T] = Pr[Ext(xi, s) ∈ T] ≥ 9/10− o(1) > 2/3.

To conclude we need to choose α > 0 and β < 1 such that nα
1 · r ≤ nε (for the

number of exceptional inputs) and r · n2+α
1 ≤ n2−ε+δ (for the size bound) and (1− β) ·

log(n) < ε · log(n) (for the seed length). Choosing β = 1−ε
1−α and a sufficiently small

α = αε,δ > 0 suffices.

The second idea of [CJW20] is that in their reduction, instead of the standard
approach of reducing CAPP of a formula F to QDB for F′(x) =

∨
s,i F(D̂isp(x, (s, i))),

they reduce CAPP of F to QDB for a probabilistic formula, defined as follows:

F(x) =
∨

i∈[r]
F(D̂isp(x, (s, i))) ,

where s (i.e., the first part of the seed) is the only random choice made by the prob-
abilistic formula F. By Proposition C.3, each formula in the support of F is of size
n2−ε+δ, and if F accepts at least 9/10 of its inputs, then for all but 2nε

of the inputs x
for F it holds that Pr[F(x) = 1] ≥ 2/3.

The limitation in Theorem 7.3 still applies to this construction. The limitation in
Theorem 7.3 is proved under the hypothesis that the distribution of simplifier sets sim-
plifies every circuit in the class (in the current setting this will refer to every formula
of bounded size) with probability at least 1/2. This hypothesis suffices to deduce a
limitation on extractor-based construction. In the setting of formulas the known distri-
bution of simplifier sets has a considerably higher success probability (i.e., 1− n−O(1)

instead of 1/2), and thus its existence suffices to deduce a limitation also on disperser-
based constructions as in Proposition C.3.

In particular, the following claim asserts that a disperser construction as in Propo-
sition C.3 cannot be computed by formulas of size n2−2ε+o(1) (as in Corollary 6.16)
instead of n2−ε+δ. The claim even rules out a weaker disperser construction, in which
we do not have a density guarantee (as in Item (3)) and in which only require the
disperser to be computable by formulas of the corresponding size on each fixed seed
(rather than requiring a batch-computation property as in Item (2)).

Claim C.4. For any ε > 0, there does not exist an (nε, .01)-disperser Disp : {0, 1}n ×
{0, 1}O(log(n)) → {0, 1}n0 , where n0 = nΩ(1), such that for every fixed s ∈ {0, 1}O(log(n))

it holds that Disp(s)(x) = Disp(x, s) is computable by a formula of size n2−2ε+o(1).

Proof. Assume towards a contradiction that such construction exists, and let ϕ =
ϕ(ε) > 0 be a sufficiently small constant. For p = n−1+ε+ϕ, let X be a distribution over
subcubes X ⊂ {0, 1}n of size at least 2p·n/2 = 2nε+ϕ/2 that shrinks every formula of

66

size S to be of size p2 · S1+o(1), with probability at least 1− S−c for an arbitrarily large
constant c > 1 (see [IMZ12, Lemma 4.8]).43

Let F =
{
Disp(s)

}
s∈{0,1}O(log(n))

. Note that there are poly(n) functions in F , and

each function has n0 = nΩ(1) output bits. Taking the constant c > 1 in the error bound
above to be sufficiently large, there exists X ∼ X such that the formula size of every
function Disp(s) ∈ F decreases by a factor of p2 · no(1); in particular, each Disp(s) is
computable by a formula of size p2 · n2−2ε+o(1) = n2ϕ+o(1). 44

It follows that on the subset X, each function Disp(s) ∈ F is sensitive to less than
n2ϕ+o(1) input bits. Hence, the support size of Disp when given inputs from X satisfies∣∣∣ ⋃

x∈X,s∈{0,1}O(log(n))

Disp(x, s)
∣∣∣ ≤ poly(n) · 2n2ϕ+o(1) ≤ 2n2ϕ+o(1)

.

Taking ϕ to be sufficiently small such that n2ϕ <
√

n0, there exists a set T ⊆ {0, 1}n0

of size more than 2n0 − 2
√

n0 = (1− o(1)) · 2n0 that avoids Disp on a set X ⊆ {0, 1}n of
size 2nε+Ω(1)

, a contradiction to the hypothesized properties of Disp.

Appendix D Quantified derandomization of logspace and of
proof systems

In this appendix I mention two interesting directions that were raised in the original
work of Goldreich and Wigderson [GW14] but have not been explored further so far.

D.1 Quantified derandomization of logspace

Can we simulate probabilisitic logspace machine in deterministic logspace if the num-
ber of exceptional random strings is extremely small? As reported in [GW14], Mike
Saks showed in the 1990s that this is indeed possible, even when the number of excep-
tional random strings is relatively not that small:

Theorem D.1 (quantified derandomization of logspace; attributed to Saks [GW14, Ap-
pendix A of the Full Version]). Let L ⊆ {0, 1}∗ be decidable by a probabilistic logspace
machine M such that for some constant ε > 0, on n-bit inputs M uses T = T(n) bits of
randomness and errs on at most B(T) = 2(1−ε)·T random choices. Then, L ∈ L.

43The subsets in the support of the distribution from [IMZ12] are of size p · n/2 only with very high
probability (rather than always). I ignore this issue for simplicity, as we can always modify the distri-
bution such that it is supported only on subsets of sufficiently large size p · n/2, while preserving the
property that each size-S formula is simplified with probability at least 1− S−c.

44To elaborate, each Disp(s) is a multi-output function computable by a collection of n0 formulas. Let
S be the sub-collection of formulas of size less than nϕ/n0, and let L be the sub-collection of formulas of
size at least nϕ/n0. For each F ∈ L, with probability 1− 1/poly(n) its size decreased by a multplicative
factor of p2 · no(1); and the total contribution to size of the formulas in S is at most nϕ. Thus, with
probability 1− 1/poly(n) the size of Disp(s) after the restriction is at most p2 · S1+o(1) + nϕ ≤ n2ϕ+o(1).

67

The number B(T) = 2(1−Ω(1))·T of exceptional random strings in Theorem D.1
matches the non-uniform derandomization in Theorem 2.1, and is indeed significantly
larger than in all other settings in this survey (i.e., in all other settings the number of
exceptional random strings was B(T) = 2o(T)).

Saks’ original quantified derandomization algorithm was non-black-box: Given as
input a description of a polynomial-sized read-once branching program (ROBP), the
algorithm relies on the description to find its most likely output. (Recall that the
ROBP represents the computation of a probabilistic logspace machine on a fixed input
as a function of the random coins.) William Hoza [Hoz21] strengthened this result by
constructing a black-box algorithm (i.e., a PRG for biased ROBPs) that yields the same
parameters; the proof below presents Hoza’s construction.

Proof of Theorem D.1 by William Hoza. For any ε = ε(n) > 0 and any B(n) ≤ ε · 2n,
we construct an ε-PRG for of B-biased ROBPs over n input bits of w, whose seed
length is ` = `(n) = n

n−log(B) · log(2nw/ε). Given seed s ∈ {0, 1}`, the PRG simply

outputs the n-bit string (s, s, s, ..., s) ∈ ({0, 1}`)n/` (for simplicity we assume that n/`
is an integer). Note that this PRG is indeed computable in logspace, and that for
B(n) = 2(1−Ω(1))·n its seed length satisfies `(n) = O(log(nw/ε)).

To see that this construction works, fix an ROBP as above, and let σ ∈ {0, 1} be
its less likely output. Index the layers of the ROBP by 0, ..., n where 0 is the layer of
the starting vertex and n is the last layer, and consider the vertices at layers indexed
0, `, ..., i · `, ..., n. For each such vertex v, denote by pv the probability that a random
walk starting from v reaches a vertex in the last layer labeled with σ, and for s ∈ {0, 1}`
denote by v(s) the vertex reached when starting from v and walking according to s.
(For vertices v in the last layer we will only care about pv, which is either 0 or 1.)

Note that pv = Es∈{0,1}`
[

pv(s)

]
, and hence (by Markov’s inequality)

Pr
s

[
pv(s) ≥ pv · (2nw/ε)

]
≤ ε/(2nw) .

By a union-bound over the (n + 1) · w/` < 2nw vertices in the relevant layers, with
probability more than 1− ε over choice of s ∈ {0, 1}`, for every vertex in these layers
we have that pv(s) < pv · (2nw/ε). In this case, when starting from the initial vertex
v0 in the ROBP and walking according to the n-bit string (s, s, s, ..., s) we pass through
vertices v1, v`, ... and reach a vertex vn, and by induction for each i ∈ [n/`] we have

pvi = pvi−1(s) < pvi−1 · (2nw/ε) < ... < pv1 · (2nw/ε)i .

In particular, applying the above for i = n and recalling that pv1 ≤ B/2n, we have that
pvn < pv1 · (2nw/ε)n/` ≤ B/2n · (2nw/ε)n/` < 1, where the last inequality relied on
our choice of `. Hence, vn is labeled with the more likely output ¬σ of the ROBP.

The above proves that with probability at least 1− ε over choice of seed s for the
PRG, the ROBP evaluates to its more likely output. The pseudorandomness of this
PRG follows because the probability over a uniform input that the ROBP evaluates to
its more likely output is at least 1− B/2n ≥ 1− ε.

68

The proof above (as well as Saks’ original proof) is elementary, and does not rely
on the vast literature concerning derandomization of logspace (or of ROBP). Never-
theless, improving on the result that it yields is still an open problem:

Open Problem 9: Quantified derandomization of logspace with B(T) = 2(1−o(1))·T.
Strengthen Theorem D.1 to work with B(T) = 2T−s(T) for some sub-linear function s, or show
that such an improvement implies that BPL = L.

D.2 Quantified derandomization of Merlin-Arthur protocols

We are interested in derandomizing Merlin-Arthur protocols, and particularly in de-
randomizingMA and AM (see, e.g., [AB09, Section 8.2] for the standard definitions
of these classes). Recall that assuming sufficiently strong lower bounds, both of these
classes can be derandomized and equal NP (see [KM02]).

Goldreich and Wigderson asked if derandomizing MA or AM becomes easier
when the verifier is extremely unlikely to err (i.e., to accept an incorrect proof or to
reject a correct proof). They showed two complementary results, the first of which is
the following quantified derandomization algorithm for a subclass ofMA.

Definition D.2 (MA with restricted verifiers). For a circuit class C = {Cn}n∈N, we say
that L ⊆ {0, 1}∗ can be decided by an MA protocol with C-veri�ers if there exists an MA
verifier V that decides L such that the following holds: For every input x ∈ {0, 1}∗ and proof
w ∈ {0, 1}poly(|x|), the decision of V at x with proof w as a function of the m = poly(n)
random coins can be computed by a circuit in Cm.

Theorem D.3 (quantified derandomization of MA with AC0 verifiers; see [GW14,
Theorem 7.3 in the Full Version]). Assume that L ⊆ {0, 1}∗ can be decided by an MA
protocol with AC0 verifiers such that the verifier always errs on at most B(T) = 2T1−ε

random
choices. Then L ∈ NP .

Theorem D.3 may appear weak, because it only refers to MA verifiers whose
decision as a function of the random coins is an AC0 circuit. However, if an analogous
result holds for AM verifiers, then AM = NP ! In fact, this conclusion holds even if
the verifier’s decision is only a CNF, and even for smaller values of B(T) = 2Tε

.

Definition D.4 (AM with restricted verifiers). For a circuit class C = {Cn}n∈N, we
say that L ⊆ {0, 1}∗ can be decided by an AM protocol with C-veri�ers if there exists a
deterministic procedure V and a polynomial p : N→N such that the following holds:

• For every x ∈ L it holds that Prr∈{0,1}p(n) [∃w ∈ {0, 1}p(n), V(x, w, r) = 1] ≥ 2/3.

• For every x /∈ L it holds that Prr∈{0,1}p(n) [∀w ∈ {0, 1}p(n), V(x, w, r) = 0] ≥ 2/3.

• On n-bit inputs V can be computed by a circuit from Cn+2p(n).

69

Theorem D.5 (threshold values for quantified derandomization of AM with CNF ver-
ifiers; see [GW14, Theorem 7.4 in the Full Version]). Assume that for some ε ∈ (0, 1)
the following holds: For any L ⊆ {0, 1}∗ that can be decided by an AM protocol with CNF
verifiers such that the verifier always errs on at most B(T) = 2Tε

random choices, we have that
L ∈ NP . Then AM = NP .

To make sense of Theorems D.3 and D.5, recall that derandomization of AM is in
general a harder problem than derandomization of MA (since AM ⊇ MA). Never-
theless, the contrast between the two results is still striking.

The proof of Theorem D.3 amounts to applying the quantified derandomization
algorithm of Theorem 6.3 to the verifier’s residual decision as a function of the random
coins, when the input and the proof are fixed. Similar results can be obtained for
analogous classes of MA with restricted verifiers (such as verifiers computable by
formulas) using Theorems 6.4, 6.10, 6.12, and 6.15. However, this approach does not
use the power of interaction for the quantified derandomization algorithm, but rather
only applies a known quantified derandomization algorithm to the verifier’s decision.

Open Problem 10: Quantified derandomization ofMA using the power of interac-
tion. For any class C, letMAC be the set of problems solvable byMA protocols in which the
verifier’s decision as a function of the random coins is computable in C. Can we construct a
quantified derandomization algorithm forMAC with better parameters than the known quan-
tified derandomization algorithm for C, using the interaction with the prover?

70

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

