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Abstract

We study the matroid intersection problem from the parallel complexity perspective. Given
two matroids over the same ground set, the problem asks to decide whether they have a common
base and its search version asks to find a common base, if one exists. Another widely studied
variant is the weighted decision version where with the two matroids, we are given small weights
on the ground set elements and a target weight W , and the question is to decide whether there
is a common base of weight at least W . From the perspective of parallel complexity, the relation
between the search and the decision versions is not well understood. We make a significant
progress on this question by giving a pseudo-deterministic parallel (NC) algorithm for the search
version that uses an oracle access to the weighted decision.

The notion of pseudo-deterministic NC was recently introduced by Goldwasser and Gross-
man [GG17], which is a relaxation of NC. A pseudo-deterministic NC algorithm for a search
problem is a randomized NC algorithm that, for a given input, outputs a fixed solution with
high probability. In case the given matroids are linearly representable, our result implies a
pseudo-deterministic NC algorithm (without the weighted decision oracle). This resolves an open
question posed by Anari and Vazirani [AV20].

1 Introduction

Most often, a search problem can be efficiently solved using an oracle for a closely related decision
problem. For example, if you have access to a decision oracle that tells you whether a given graph
has a perfect matching, you can efficiently construct a perfect matching in a given graph using
the decision oracle. Such search-to-decision reductions usually involve self-reducibility and make a
linear number of oracle calls sequentially. However such reductions do not fit into the framework of
parallel complexity, where one can make multiple oracle calls in parallel, but wants poly-logarithmic
time complexity. For a more detailed discussion on the difference in parallel complexity of search
and decision problems, see [KUW88].

Graph matching and related problems like linear matroid intersection and linear matroid
matching were one of the first problems to be studied from the parallel complexity perspective [Lov79,
BvzGH82]. The decision versions of these problems ask to decide the existence of the respective
combinatorial substructures:

• Matching: Does a given graph contain a perfect matching – a set of disjoint edges that cover
all the vertices in the graph?

• Linear Matroid Intersection: Given two sets of m vectors each, is there a set of indices B ⊆ [m]
that corresponds to a basis set in each of the two sets?
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• Linear Matroid Matching/Parity: Given a set of pairs of vectors, is there a subset of pairs
whose union will give a basis for the union of all pairs?

The search versions of these problems ask for constructing the respective combinatorial substructures
(if one exists). The matching problem in bipartite graphs is a special case of all the three problems
above (see Figure 1). A bipartite graph is a graph whose vertices can be partitioned into two parts
such that every edge connects a vertex from one part to one in the other part. Even in the special
case of bipartite matching, the questions of the exact parallel complexity of decision and search and
whether decision and search are equivalent in a parallel sense still remain unresolved.

Bipartite Matching

General MatchingLinear Matroid Intersection

Linear Matroid Matching/Parity

Figure 1: Reductions among the four problems. A → B represents that problem A reduces to
problem B.

The first efficient randomized parallel algorithms for the three decision problems above followed
from the results of Lovász [Lov79]. Lovász gave randomized algorithms for these problems by
first reducing these decision questions to testing whether the determinant of a certain symbolic
matrix is nonzero, as a polynomial. Then he used the fact that the zeroness of a polynomial
can be tested efficiently by just evaluating it at a random point [Sch80, Zip79, DL78, Ore22].
Hence, the questions were basically reduced to computing determinant of a randomly generated
matrix. Interestingly, there are efficient parallel (NC) algorithms for computing the determinant of
a matrix [Ber84, Csa76, BCP84]. An NC algorithm is one which uses polynomially many parallel
processors and takes only polylogarithmic time. Thus, the algorithms of Lovász [Lov79] can be
viewed as randomized parallel (RNC) algorithms for the three decision problems. However, this did
not imply any parallel algorithms for the search versions.

Randomized parallel (RNC) algorithms for the search versions of these problems were obtained
some years later [KUW86, MVV87, NSV94]. However, these results did not go via a parallel
search-to-decision reduction. Instead, they gave randomized parallel (RNC) reductions from the
search version to a variant of the decision problem, namely weighted decision. For example, the
weighted decision version for perfect matchings asks: given a graph with small weights on edges and
a target weight W , is there a perfect matching of weight at most W (or at least W ). Here the weight
of a perfect matching is defined to be the sum of the weights of the edges in the perfect matching. It
turns out that Lovász’s RNC algorithms can be appropriately modified to solve the weighted decision
versions as well, when the given weights are small. The search-to-weighted-decision reductions
together with the weighted decision algorithms implied randomized parallel search algorithms for
the three problems. We elaborate a bit on the reductions.

Reductions from search to weighted-decision. Karp, Upfal and Wigderson [KUW86] do not
explicitly talk about weights, but their reduction is from finding a perfect matching to a subroutine
that can be viewed as weighted decision with 0-1 weights on the edges. From the perspective
of our current investigation, the result of Mulmuley, Vazirani, and Vazirani [MVV87] is much
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more interesting. They showed that using the weighted decision oracle, one can compute a perfect
matching with just two rounds of parallel calls to the oracle. The crucial ingredient in their algorithm
was the powerful Isolation Lemma which states that if the edges of a graph are assigned random
weights from a polynomially bounded range uniformly and independently then with high probability,
there is a unique minimum weight perfect matching in the graph. Once we have such a weight
assignment, we can first find the minimum weight w∗ of a perfect matching by calling the weighted
decision oracle for each possible target value W in a polynomially bounded range. Then for each
edge e in parallel, delete e and ask the oracle if there is a perfect matching of weight at most w∗.
The answer will be no if and only if e is a part of the unique minimum weight perfect matching.
Thus, in two rounds of polynomially many parallel oracle calls, we can compute the unique minimum
weight perfect matching.

The amazing thing about the Isolation Lemma is that it applies to not just the family of
perfect matchings in a graph, but to arbitrary families of subsets. Thus, the above described
search-to-weighted-decision reduction of [MVV87] can be made to work for any problem that admits
a similar self-reducibility property. Narayan, Saran, and Vazirani [NSV94] used the same Isolation
Lemma based reduction to give RNC algorithms for the search versions of linear matroid intersection
and linear matroid matching.

Derandomization. Since the work of Lovász [Lov79], it has been a big open question to deran-
domize these results i.e., to find deterministic parallel (NC) algorithms for these problems. While
derandomization results have been obtained for the matching problem in many special classes of
graphs [DKR10, TV12, DK98, GK87, AHT07], the question remains open even for bipartite graphs.
Only recently, there was a significant progress made when a quasi-NC algorithm was obtained for
finding a perfect matching in a bipartite graph [FGT16, FGT19]. A quasi-NC algorithm runs in

polylogarithmic time but can use quasipolynomially (2logO(1) n) many parallel processors, so this
result brought the problem quite close to the class NC. Similar quasi-NC algorithms were later
obtained for linear matroid intersection [GT17] and matching in general graphs [ST17] as well.

In the quest of understanding the deterministic parallel complexity of these problems, an
interesting question one can ask is whether there is a deterministic parallel (NC) search-to-decision
reduction. An easier question would be to ask for an NC reduction from search to weighted-decision,
i.e., derandomizing the reductions of [MVV87, KUW86, NSV94] described above. Soon after the
quasi-NC result for bipartite matching [FGT16], Goldwasser and Grossman [GG17] started quite an
interesting line of enquiry, where they answered the above question positively for bipartite matching.
They observed that the quasi-NC algorithm can be modified to give a deterministic parallel (NC)
search-to-weighted-decision reduction for bipartite matching. Their main result was, what they call,
a pseudo-deterministic NC algorithm for bipartite matching, which followed from this reduction.

Pseudo-determinism. The notion of pseudo-deterministic algorithms was introduced by Gat
and Goldwasser [GG11] which is applicable only for search problems. For a given instance of a
search problem, a randomized algorithm can possibly give different outputs for different choices of
the random seed. Pseudo-deterministic algorithms are randomized algorithms which give a fixed
output for a given input with high probability. Note that the earlier described RNC algorithm of
[MVV87] for matching is not pseudo-deterministic because for a given graph, it will output different
perfect matchings for different possibilities of the randomly chosen weight assignment.

It is not hard to see that if one gives a deterministic reduction from a search problem to a
decision problem that is known to have a randomized algorithm, then one immediately gets a
pseudo-deterministic algorithm for the search problem (see [GGR13, Theorem 2.2]). That is why
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the NC search-to-weighted-reduction for bipartite matching [GG17] implied a pseudo-deterministic
NC algorithm for bipartite matching, i.e., an RNC algorithm that, for a given graph, outputs the
same perfect matching with high probability. One interesting implication of this result is that if one
finds an NC algorithm for the weighted-decision of bipartite matching, one will get an NC algorithm
for the search version as well.

A natural question arises: can we similarly modify the quasi-NC algorithms for linear matroid
intersection [GT17] and matching in general graphs [ST17] into NC search-to-weighted-decision
reductions, and thus, get pseudo-deterministic NC algorithms for the search versions? It looks
quite possible because one can can extract out an abstract framework from [GG17] for converting
these quasi-NC algorithms into pseudo-deterministic NC algorithms. But as we discuss below, a
straightforward application of this framework does not work out for linear matroid intersection or
matching in general graphs. A key step in [GG17] is to compute a succinct description of the set of
all (possibly exponentially many) minimum weight perfect matchings in a weighted bipartite graph
in NC, given the weighted-decision oracle. However, it is not immediately clear how to solve the
analogous question in NC for linear matroid intersection or matching in general graphs. Interestingly,
in an earlier work in a different context, Cygan, Gabow, and Sankowski [CGS15] had already solved
this question for matching in general graphs. They had designed a procedure based on LP duality
to compute a succinct description of the set of all minimum weight perfect matchings, via the
weighted-decision oracle. Moreover, as observed in [San18], this procedure can also be parallelized
using standard techniques. Armed with this heavy hammer, Anari and Vazirani [AV20] give an
NC search-to-weighted-decision reduction, and thus, get a pseudo-deterministic NC algorithm for
perfect matching in general graphs. Anari and Vazirani [AV20] put it as an open question to obtain
similar results for linear matroid intersection. In this work, we take up this challenge.

Our contributions. In the setting of linear matroid intersection, the analogue of a perfect
matching is referred as a common base – a set of indices that corresponds to a basis in both the
sets of vectors. For the weighted version, it is well understood how to succinctly describe the set of
minimum or maximum weight common bases, i.e., the minimizing/maximizing face of the common
base polytope; see e.g., [Sch03, Chapter 41]. Any face of the common base polytope is characterized
by its tight sets. Suppose that M1 and M2 are two matroids over the same ground set E. Then,
a subset S of E is called a tight set for a maximizing face (of the common base polytope), if for
some matroid Mi the following holds: for every maximum weight common base B, the set S ∩B
spans the set S. Note that the number of tight sets of a maximizing face can be exponentially large.
However, they are known to have succinct representations. We give a randomized NC algorithm to
compute a succinct and unique representation for the tights sets of a maximizing face.

Theorem 1.1. [Informal version of Theorem 7.5] There exists a randomized NC algorithm to
compute a succinct and unique description for the tight sets of a maximizing face of the common
base polytope, given the weighted-decision oracle.

For a maximizing face of the common base polytope, all the tight sets for some matroid Mi

forms a lattice family, and our description for tight sets is motivated by the succinct representation
of lattice families based on the partial order of its prime subsets (also known as irreducible subsets).
We construct a digraph in bottom-up fashion, using bases from the maximizing face of the common
base polytope, such that it contains the necessary information regarding the tight sets of maximizing
face. From this digraph we shall be able to compute the succinct description. Here, we would
like to mention that the succinct representation of lattice families using the partial order of its
prime subsets is well known and has been used in multiple previous algorithms [Sch03, Chapter 49],
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[ILG87, EMSV12, BEL+16]. However, all these applications do not fall in the category of parallel
computation.

Note that the uniqueness of the description is important because then this RNC algorithm is by
default pseudo-deterministic, as there is only one possible output. Once we have designed this heavy
hammer, it is relatively easier to combine the procedure of [GT17] with the abstract framework
provided by [GG17] and obtain a pseudo-deterministic NC search-to-weighted-decision reduction.
This leads to our first main result.

Theorem 1.2. The search version of the linear matroid intersection problem has a pseudo-
deterministic NC algorithm.

General Matroid Intersection. Our main technical contributions are applicable to not just
linear matroid intersection but also to matroid intersection. In the general matroid intersection
problem, instead of two sets of vectors, we are given two matroids on the same ground set and the
goal is to find a set of elements that forms a base in each of the two matroids (see Section 4 for
definitions). In this problem, the matroids are not given explicitly but only via a independence or
rank oracle. Thus, it does not makes sense to talk about NC or RNC algorithms for this problem.
One can however consider a parallel oracle model where we can make polynomially many queries
to the oracle in parallel (see [KUW88]). To the best of our knowledge, there is no such parallel
algorithm known for the decision or the search version of matroid intersection, even with sub-linear
number of rounds of parallel oracle calls. This makes the question all the more interesting whether
decision and search are equivalent in a parallel sense.

Interestingly, the search-to-weighted-decision reduction of [NSV94] applies to general matroid
intersection as well and can be said to be in RNC. Our results make a significant progress on this
question by giving a pseudo-deterministic NC reduction from search to weighted decision. Formally,
we can show the following.

Theorem 1.3. There is a pseudo-deterministic NC algorithm for finding a common base of two
matroids M1 and M2 on the same ground set E, provided that the algorithm has an oracle access
to the following decision question: given two matroids with polynomially bound (in |E|) weights
on the ground set elements and a target weight W , is there a common base of weight at least W?
Furthermore, the oracle calls need to be made only for the following pairs of matroids: 〈M1,M2〉,
〈M1,M1〉, and 〈M2,M2〉.

Note that in the above theorem, as there is no explicit input, the ground set size is taken as the
input size.

Discussion. There are many natural open questions that are highlighted by our work. The big
question is whether there is an NC algorithm for linear matroid intersection. Going to the more
general setting, is there some kind of parallel algorithm for matroid intersection? Another question
which can generate some new ideas is whether there is an NC reduction from search to decision
for linear matroid intersection. For general matroid intersection, it would be interesting to find a
parallel search to decision reduction even with the use of randomization.

The third question mentioned in the beginning, that is, linear matroid matching is completely
open, in the sense that not even a quasi-NC algorithm is known for it. Given the wide applicability
of the Isolation Lemma, the randomized parallel search-to-weighted-decision reduction of Mulmuley,
Vazirani, and Vazirani [MVV87] would work for any combinatorial problem with an appropriate
self-reducibility property, including NP-hard problems like maximum independent set. An intriguing
meta-question is – what is the most general setting where we can find deterministic or pseudo-
deterministic parallel search-to-weighted-decision reductions.
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2 Previous works

We start by briefly describing the techniques of previous works [NSV94, GT17, GG17] that will be
helpful in both comprehending as well as describing our work. Wherever these works talk about a
minimization problem, we will describe it in terms of maximization, just for convenience. We will
be using the following notations for the two versions of the matroid intersection problem.

• search-MI: Given two matroids on a common ground set, compute a common base.

• weighted-decision-MI: Given two matroids on the same ground set, polynomially bounded
weights on the ground set elements, and a target weight W , is there a common base of weight
at least W?

See Section 4 for basic terminology in matroid theory. Whenever we are in a setting where the
matroids are not given explicitly, we will consider the ground set size as the input size.

The result of Narayanan, Saran, and Vazirani [NSV94] can be interpreted as an RNC reduction
from search-MI to weighted-decision-MI. The first step of this reduction is to assign weights to the
ground set elements, randomly and independently from a small range. Then from the Isolation
Lemma [MVV87], one can say that there is a unique maximum weight common base of the two
matroids, with high probability. Here, the weight of a common base is defined to be sum of the
weights of the elements in the common base. We can first find the maximum weight w∗ of a common
base by calling the weighted-decision-MI oracle for each possible target value W in a small range.
Then for each ground set element e in parallel, increase its weight by one and find out the new
maximum weight. The maximum weight increases if and only if e is a part of the unique maximum
weight common base. This way we can find the unique maximum weight common base.

Note that the uniqueness property is crucial for this construction and that is the only place
where randomness is needed. And this construction is not pseudo-deterministic because for different
choices of random weights, we will get a different maximum weight common base. There has been
several efforts to deterministically construct a weight assignment in NC that isolates a common base,
i.e., ensures unique maximum weight common base, but this goal has not been achieved till now. A
recent work [GT17] came quite close to this goal and constructed an isolating weight assignment in
quasi-NC. This work generalizes the ideas used to do the same for bipartite matching in [FGT16].
We build on their ideas to construct an isolating weight assignment in pseudo-deterministic NC. We
first give a brief description of their result.

Isolating a common base in quasi-NC. Suppose that M1 = (E, I1) and M2 = (E, I2) are
two matroids over the same ground set E where B1 and B2 are the family of bases of M1 and M2,
respectively. Let m = |E| and r1 and r2 be the rank functions of the matroids. The main idea of
[GT17] is to isolate a common base in logm rounds, where in each round they significantly reduce
the set of maximum weight common bases, and finally bring it down to just one maximum weight
common base. In each of these rounds, they deterministically propose a set of poly(m) weight
assignments, one of which will do the desired reduction in the set of maximum weight common bases.
In a round, they have no way of figuring out which one out of these poly(m) weight assignments
will do the job. So, they have to try all poly(m)logm combinations of these weight assignments.
Moreover, for any particular combination, they have to combine the logm weight assignments on
different scales, which means their weights become as large as poly(m)logm. Due to these two factors,
their construction is in quasi-NC and not in NC.

To measure the progress in each round, they need a succinct way to describe the current set
of maximum weight common bases. The most convenient way to understand the set of maximum
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weight common bases is through the common base polytope. The common base polytope P (B1 ∩ B2)
is a polytope formed by taking convex hull of the 0-1 indicator vectors of the sets in B1 ∩ B2. For
any weight assignment w ∈ RE , the weight of a common base B is defined as a linear function, and
thus, one can obtain the maximum weight common bases by maximizing the function

∑
e∈E wexe

over P (B1 ∩ B2). In particular, the set of maximum weight common bases will always be the set of
corners of a face of P (B1 ∩ B2).

Edmonds [Edm70] gave a nice description of P (B1 ∩ B2) using the rank functions r1 and r2. He
showed that a point x ∈ RE is in P (B1 ∩ B2) if and only if it satisfies the following constraints:

xe ≥ 0 ∀e ∈ E, (1)

x(S) =
∑
e∈S

xe ≤ ri(S) ∀S ⊂ E, i = 1, 2, (2)

x(E) =
∑
e∈E

xe = r1(E) = r2(E). (3)

The construction in [GT17] crucially uses the description of the common base polytope P (B1 ∩ B2).
In terms of the polytope, their construction of the weight assignment is such that in each round, the
maximum weight face of P (B1 ∩B2) gets significantly smaller and after logm rounds, the maximum
weight face is simply a corner point. The key notions they introduced to measure the improvement
in each iteration are cycles with respect to a face and their circulations with respect to a weight
assignment.

Suppose that F is a face of P (B1 ∩ B2). A subset S of E is called a tight set of Mi with
respect to F if the corresponding inequality in (2) is tight for F i.e, for all x ∈ F , x(S) = ri(S).
Then [GT17] showed that for every face F , we have two partitions of E, denoted by partition1[F ]
and partition2[F ], such that every tight set of Mi with respect to F is a union of the sets from
partitioni[F ]. The partitions of E naturally induce a bipartite graph, denoted by G[F ], with the left
vertex set partition1[F ], the right vertex set partition2[F ] and the edge set E: the edge corresponding
to an element e ∈ E is incident on the vertex corresponding to a set v ∈ partitioni[F ] if and only if
e ∈ v. A sequence of distinct elements (e1, . . . , ek) from E is called a cycle with respect to F if it
forms a cycle in the graph G[F ].

Let CF denotes the set of cycles with respect to a face F of P (B1 ∩ B2). Then [GT17] showed
that for face F , if CF = ∅ then F is a corner point of the polytope P (B1 ∩ B2). Their idea was to
keep eliminating cycles via appropriate modification of the weight assignment and get smaller and
smaller maximizing face of P (B1 ∩ B2) to eventually reach a corner point. For a weight assignment
w on E, define the circulation for a (even length) cycle as the absolute value of the difference of
weights in the two sets of alternating edges. Let C be a cycle, say with respect to F = P (B1 ∩ B2),
and let w be a weight assignment such that the circulation of C is non-zero w.r.t. w. Then they
showed that the cycle C does not appear in the maximizing face with respect to w. Now if the
weight assignment w gives non-zero circulation to all the cycles in P (B1 ∩ B2), then all the cycles
in the maximizing face F will be eliminated, i.e. CF = ∅, and F will be a corner. However, with
polynomially bounded weights, one cannot expect to give nonzero circulation to all the cycles at
once, since the number of cycles can be exponentially large.

One of the key ideas in [GT17, FGT16] was to eliminate the cycles in rounds. In each round,
they double the length of the eliminated cycles and reach to face of a smaller dimension. Thus, in
logm rounds, one can eliminate all the cycles and reach a corner point of P (B1 ∩ B2). They used
the fact that if in a graph all the cycles have length greater than 2i, then there are at most m4 many
cycles of length at most 2i+1 [Sub95]. This implies that, at each iteration, we have to give nonzero
circulation to at most m4 many cycles. Using a hashing technique (for example see [FGT16, Lemma

7



2.3]), one can design a family of O(m6) many weight assignments with weights bounded by O(m6)
such that for any set of m4 many cycles, one of the weight assignments gives nonzero circulation to
each of m4 many cycles. Now, as described earlier, we consider all possible combinations of weight
assignments from different rounds to get a family of poly(mlogm) many weight assignments with
weights bounded by poly(mlogm) such that for any two matroids on a ground set of size m, at least
one weight assignment isolates a common base.

In this paper, we give a pseudo-deterministic NC reduction from search-MI to weighted-decision-
MI. This line of work was started by Goldwasser and Grossman [GG17]. One can extract an
abstract framework from [GG17] with the following two steps to get a pseudo-deterministic NC
search-to-weighted-decision reduction: 1) Like [FGT16, GT17], an iterative approach of designing
an isolating weight assignment family, 2) Succinct representation of the maximum weight faces of
the underlying polytope with an RNC algorithm to compute it, assuming the oracle access to the
weighted decision. For example, a face of the bipartite matching polytope is completely described
by the set edges that participate in some perfect matching in that face, and [GG17] gives an NC
algorithm to compute it using the respective weighted decision oracle.

The faces of the perfect matching polytope for general graphs are more complicated than their
bipartite counterpart. Here, any face is described by a maximal laminar family of tight odd cuts.
The work of [CGS12, San18] give an NC procedure, with the oracle access to the weight decision
problem, to compute a maximal laminar family of tight odd cuts. This result supplies the second
ingredient of the [GG17] framework, which helped [AV20] give an NC reduction from search to
weighted decision for general perfect matching.

Our reduction also follows the abstract framework of [GG17]. We use the iterative approach
developed by [GT17]. On top of that, we need an RNC algorithm (using the oracle access to
weighted-decision-MI) to compute a succinct representation for a maximum weight face of the
common base polytope P (B1∩B2). However, none of the previous ideas help to answer this question,
and we need something completely new.

3 Proof techniques

In this section, we briefly describe the proof ideas of our results. Our proofs strongly rely on some
structural properties of lattice families over finite sets. Therefore, we briefly discuss the necessary
notations and facts about lattice families. For a finite set E, a family of subsets L of E is called a
lattice family over E if it is closed under set union and intersection and for every element a ∈ E
there exists a set in L containing a. For every element a ∈ E there exists a unique smallest set in L
containing a. Such sets are called as prime sets of L. All the sets in a lattice family can be written
as a union of its prime sets. Every lattice family L over E induces a unique partition P of E such
that every set in L is a disjoint union of sets in P. Moreover, the sets in P can be written as a
sequence (S1, . . . , S`) with the following property: for all k ∈ [`], ∪kj=1Sj is in L. A family L′ ⊆ L is
called a sublattice of L, if L′ is also a lattice family over E. The partition P is a refinement of the
partition P ′ induced by L′, that is for all S ∈ P ′, the sets in P having a nonempty intersection with
S form a partition of S. See Section 4.2 for the proofs of some of these properties .

3.1 Proof Idea of Theorem 1.1

We discuss a succinct representation for the maximum weight face of the common base polytope
and an RNC algorithm to compute it. First, we define some notations. Supppose that M1 = (E, I1)
and M2 = (E, I2) are two matroids with B1 and B2 as their family of the bases and r1 and r2 as
the rank functions, respectively. Let m = |E|. Let P (B1 ∩ B2) be the common base polytope of M1
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and M2 defined by the equations (1), (2), (3), and F be a face of P (B1 ∩ B2). Then a subset S of
E is called a tight set for Mi (with respect to F ) if for all x ∈ F , x(S) = ri(S). For all i ∈ [2], let
tight-setsi[F ] denote the family of all tight sets for Mi with respect to the face F . Edmonds [Edm70]
showed that for all i ∈ [2], tight-setsi[F ] forms a lattice family over E.

Suppose that w is a weight assignment on E. Let Fw be the maximizing face of the common base
polytope P (B1∩B2), with respect to w. The face Fw can be uniquely represented by tight-sets1[Fw]
and tight-sets2[Fw]. However, we can not compute them explicitly with our limited computational
resources since the size of each family can be exponentially large. On the other hand, since
tight-setsi[Fw] is a lattice family over E, each tight-setsi[Fw] has a succinct representation using
partial order defined on its prime sets. More specifically, one can define a pre-order �i (that is,
reflexive and transitive) on E as follows: for all a, b ∈ E, a �i b if and only if in tight-setsi[Fw],
the prime set containing b is a subset of the prime set containing a. The pre-order �i gives a
succinct representation of tight-setsi[Fw], that is for every S ⊆ E, S is in tight-setsi[Fw] if and
only if S is transitively closed under �i. Such succinct representation for lattice familes is well
known (see [Sch03, Chapter 49] 1). For any a ∈ E, the transitive closure of a in �i is same as the
prime set in tight-setsi[Fw] containing a. Also, the collection of all maximal subsets of E which
are symmetric under �i is same as the partition E induced by tight-setsi[Fw]. If one consider the
digraph representaion of ≺i, (that is (a, b) is an edge if and only if a �i b) then in tight-setsi[Fw],
the prime set containing a is same the set of vertices reachable from a in the digraph and the
partition of E induced by tight-setsi[Fw] is same as the set of strongly connected components.
Thus, the prime sets of tight-setsi[Fw] contain all the information regarding it. In our context,
we compute the following succinct objects related to Fw: prime-setsi[Fw] and partitioni[Fw] for all
i ∈ [2], where prime-setsi[F ] be the set of all primes sets of the lattice family tight-setsi[Fw] and
partitioni[Fw] denote the partition of E induced by tight-setsi[F ]. Recall from the description of
[GT17] (or, Definition 4.12) that the cycles of the bipartite graph induced by partition1[Fw] and
partition2[Fw] define the cycles with respect to the face Fw. And, the tight constraints coming
from sets in prime-setsi[Fw] serve as a basis for all the tight constraints from tight-setsi[Fw]. Here,
we would like to mention that basis forming families of tight sets are well studied (see [Sch03]).
However, to best of our knowledge, no efficient parallel algorithm is known to compute them. Also,
the succinct representation of lattices using the partial order of its prime sets has been widely used
to design algorithms for different optimization problems. For example, computing optimal stable
matching [ILG87], problems in computational geometry [EMSV12, BEL+16], submodular function
minimization [Sch03, Chapter 49]. However, the context of these applications are very different
from parallel computation.

With the above two objects, we also need the following characterization: for all i ∈ [2], there
exists a function NFw

i from partitioni[Fw] to Z≥0 such that a base B ∈ B1 ∩ B2 is in the face Fw if
and only if for all i ∈ [2] and S ∈ partitioni[Fw], we have |S ∩B| = NFw

i (S). Here, we would like to
mention that both the notions of partition and the function NFw

i and the criteria we just mentioned
were already introduced in [GT17], but were a bit weaker in the following ways: Our criteria is an
exact characterization, however, they showed it for one direction. Our partition has an additional
“chain property” ensured by the structural properties of the lattice families. All these additional
points will be useful in our proofs. For details see Lemma 4.11 in Section 4.5 and [GT17, Section
3.2].

Now we briefly discuss about our RNC algorithm to compute prime-setsi[Fw] and partitioni[Fw]
for all i ∈ [2]. One important point is that our algorithm is equipped with the oracle access to

1Our definition of �i is exactly opposite to the definition used [Sch03, Chapter 49], that is according to their
definition, a �i b if and only if the prime set containing a is a subset of the prime set containing b.
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weighted-decision-MI. Our idea is the following: We first compute a random vertex, equivalently a
random base, B in the face Fw. The base B can be computed in RNC using the oracle access to
weighted-decision-MI (see Lemma 5.3). Then iteratively construct a chain of subsets of bases from
Fw

{B} = B0 ⊆ B1 ⊆ · · · ⊆ B`
such that the minimal face containing B` is same as Fw and ` = dlogme. Next we briefly discuss
how to construct the set Bj from Bj−1 and compute prime-setsi[Fw] and partitioni[Fw] from the set
of common bases B`.

For all j ∈ {0, . . . , `}, let Fj denotes the minimal face containing Bj . For all j ∈ [`], the set Bj
contains the elements in Bj−1 with the following extra elements: For all i ∈ [2], A ∈ partitioni[Fj−1],

we add a common base B
(A)
ij (if it exists) from the face Fw with the property

|A ∩B(A)
ij | 6= N

Fj−1

i (A). (4)

We know that for all i ∈ [2] A ∈ partitioni[Fj−1], every base in Fj−1 contains exactly N
Fj−1

i (A)

many elements from A. However, our property on B
(A)
ij says that we want a base from Fw which

violates that condition, and if exists, we can compute such a base in RNC using the oracle access to
weighted-decision-MI (see Lemma 5.4). Next, we discuss how to compute partitioni[Fj ] in NC. Note

that, after computing partitioni[Fj ], N
Fj

i can be computed in NC by computing |B ∩A|, for some
B ∈ Bj , in parallel for all A ∈ partitioni[Fj ].

The set families tight-setsi[Fj ] for all i ∈ [2] form lattice families over E, and given Bj , we are
interested to compute prime-setsi[Fj ] and partitioni[Fj ] in NC. As we mentioned earlier, every lattice
family has a digraph representation based on the partial order on primes sets of lattice family. Given
this digraph representation of tight-setsi[Fj ], one can compute prime-setsi[Fj ] and partitioni[Fj ] in
NC. However, given Bj , it is not clear how to construct the digraph representation of the lattice
family tight-setsi[Fj ] in NC. We show that, instead of this digraph, it would sufficient for us if we
work with a subgraph Gi[Bj ] defined as follows: the vertex set is same as the ground set E and for
all a, b ∈ E, (a, b) is an edge of Gi[Bj ] if and only if

there exists a base B ∈ Bj such that b ∈ B and (B \ {b}) ∪ {a} is also a base of Mi.

More specifically, we prove that for every a ∈ E the prime set in tight-setsi[Fj ] containing a is same
as the set of vertices reachable from a in Gi[Fj ] and partitioni[Fj ] is same as the set of strongly
connected components in Gi[Bj ]. Using this characterization, we can compute prime-setsi[Fj ] and
partitioni[Fj ] in NC, given the graph Gi[Bj ]. For more details see Section 6. Also, using the weighted
decision oracle we can compute Gi[Bj ] in NC (Lemma 7.4). Thus, given Bj , prime-setsi[Fj ] and
partitioni[Fj ] are computable in NC. Here, we would like to mention that constructing directed
graphs using base exchange property is a well known technique in matroid literature and has been
used in various contexts. For example, one can see the augmenting path based algorithm for matroid
intersection in [Sch03, Section 41.2], and some other context in [Sch03, Section 40.3]. The definition
of Gi[Bj ] is very close to the definition used in the second example.

At very high level, this part of our algorithm is doing exactly the opposite of the idea used
to construct isolating weight assignment family in [FGT16, GT17, ST17]. They start from a face
of the polytope and iteratively move to the subfaces of smaller dimensions until a corner point is
reached. On the other hand, we are starting from a corner point of the face and iteratively reaching
bigger faces until we cover the whole face.

Now we give a very brief overview of the correctness of our algorithm. For all j ∈ {0, 1, . . . , `},
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since Fj is a subface of Fw, tight-setsi[Fw] is a sublattice of tight-setsi[Fj ] for all i ∈ [2]. Therefore
partitioni[Fj ] is a refinement of partitioni[Fw], that is for all S ∈ partitioni[Fw], the sets in partitioni[Fj ]

having nonempty intersection with S create a partition of S. Let W(S)
ij denote the family of sets in

partitioni[Fj ] which have nonempty intersection with S ∈ partitioni[Fw]. As we move from (j − 1)th
iteration to jth iteration, our algorithm satisfies the following property: either the size of the smallest

sets in W(S)
ij satisfying the equation 4 becomes double, or if no such set exists in W(S)

ij , it becomes
equal to {S}. Thus, after `th iteration, partitioni[F`] becomes equal to partitioni[Fw] for all i ∈ [2].
This leads us to prove that F` = Fw. Therefore, prime-setsi[F`] is also same as prime-setsi[Fw]. For
details see Section 7.

3.2 Proof idea of Theorem 1.3

In this section, we give a proof overview of Theorem 1.3, which states that there is a pseudo-
deterministic NC algorithm for the matroid intersection search problem that uses the weighted-
decision oracle. Since the weighted-decision for linear matroid intersection can be solved in RNC
(see Lemma 4.19), we get a pseudo-deterministic NC algorithm for the search version of linear
matroid intersection, that is, Theorem 1.2.

Suppose that M1 = (E, I1) and M2 = (E, I2) are two matroids with B1 and B2 as the family
of bases, respectively. Let P (B1 ∩ B2) be the common base polytope of M1 and M2. Let w0 be a
weight assignment defined as w0(a) = 1 for all a ∈ E. Then the maximizing face of P (B1 ∩B2) with
respect to w0 is the polytope itself. Let m = |E| and ` = dlogme. Now our idea is the following:
We start from the weight assignment w0 and inductively construct a sequence of weight assignments

w0,w1, . . . ,w`

such that for all j ∈ {0, 1, . . . , `}, the weights in wj are bounded by O(m) and the length of the
shortest cycle with respect to the face Fj is greater than 2j where Fj denotes the maximizing face
with respect to wj . Therefore, the face F` does not have any cycle, and from [GT17], it has a unique
base. Now using the oracle access to weighted-decision-MI the base in F` can be computed in NC
(see Lemma 5.3). Next we discuss how to construct wj from wj−1.

For all j ∈ {0, 1, . . . , `}, let CFj denotes the set of all cycles with respect to the face Fj . From the
induction hypothesis, for some j, all the cycles in CFj have length greater than 2j . Then from [GT17],
there are at most m4 many cycles of length at most 2j+1. Let W be a polynomially large family of
weight assignments with polynomially bounded weights such that one of the weight assignments in
W gives nonzero circulation to all the cycles in CFj of length at most 2j+1. There are well known
NC constructions of such a family W (see e.g., [FGT16, Lemma 2.3]). For each w ∈ W we do the
following in parallel: combine wj and w in decreasing order of precedence. Let w′ be the combined
weight and Fw′ is the maximizing face with respect to it. Now using our RNC algorithm discussed
in the previous section, compute prime-setsi[Fw′ ] and partitioni[Fw′ ] for all i ∈ [2]. Now, construct
the bipartite graph G[Fw′ ] from partition1[Fw′ ] and partition2[Fw′ ] as defined in the description of
[GT17]. The length of the shortest cycles in G[Fw′ ] can be computed in NC. Thus, in NC, we
can compute the lexicographically smallest weight assignment w ∈ W such that the length of the
shortest cycles in G[Fw′ ] is greater than 2j+1.

Next we show how to compute wj+1 from w′ such that weights in wj+1 are bounded by O(m).
Define wj+1 as the following:

wj+1 =
2∑
i=1

∑
S∈prime-setsi[Fw′ ]

1S ,
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where 1S ∈ RE denotes the indicator vector for the set S. From the defnition, it is clear that
weights are bounded by 2m, and can be computed in NC from prime-sets1[Fw′ ] and prime-sets2[Fw′ ].
Using the description of P (B1 ∩ B2), we can show that every point x in the maximizing face Fj+1

must satisfy x(S) = ri(S) for all i ∈ [2], S ∈ prime-setsi[Fw′ ]. This implies that prime-setsi[Fw′ ] is a
subset of tight-setsi[Fj+1]. Thus tight-setsi[Fw′ ] is a subset of tight-setsi[Fj+1] since all the sets in a
lattice family can be written as a union of its prime sets. This helps us to show that Fw′ is same as
Fj+1. Also, one can verify that each step of our algorithm as has a unique answer, therefore it is
pseudo-deterministic. For details see Section 8.

Organization of this paper In Section 4, we discuss all the preliminaries and necessary notations.
Section 5 describes various problems which can be solved efficiently using weighted-decision-MI
oracle. In Section 6, we describe and prove our graph theoretic characterization of tight sets. In
Section 7, we give our RNC algorithm for computing a succinct representation of a maximizing face.
Finally, in Section 8, we describe our algorithm for search-MI based on weighted-decision-MI oracle.

4 Preliminaries and Notations

We use R, Z≥0 to denote the set of real numbers and the set of non-negative integers, respectively.
For any positive integer n, [n] denotes the set of integers {1, 2, . . . , n}. For a set E and a vector in
u ∈ RE , we use ua for an a ∈ E to denote the coordinate of u indexed by a. For any subset S of E,
u(S) =

∑
a∈S ua. By 1 we denote the vector whose all coordinates are 1. For any subset S ⊆ E, its

indicator vector 1S ∈ RE is defined as follows: for all a ∈ E, the coordinate indexed by a is 1 if
a ∈ S, otherwise it is zero. When S is a singleton set, that is S = {a} for some a ∈ E, we use 1a to
denote 1{a}. For a set E, P(E) denotes the set of all subsets of E. For a set E, a weight assignment

w on E is a function from E to Z≥0. It can also be represented as a vector in ZE≥0. For a set E, a
family of subsets P of E is called a partition of E, if the sets in P are mutually disjoint and for
every element a ∈ E there exists a set in P containing a. For a subset A of a set E, Ā denotes the
complement set of A.

4.1 Isolation Lemma

Suppose that E is a finite set, and F ⊆ P(E) is a family of subsets. A weight assignment
w : E → Z≥0 is called isolating for F if there is a unique maximum weight subset in F . The
Isolation Lemma by Mulmuley, Vazirani and Vazirani [MVV87] states that for any of family subsets
F of E, a weight assignment with small random weights is isolating for F with high probability.
Formally, it says the following.

Lemma 4.1 (Isolation Lemma [MVV87]). Let F be a family of subsets over a finite set E. Let
|E| = m, 0 < ε < 1 and ` = d2m

ε e. Let w : E → Z≥0 be a weight assignment where the weights are
chosen uniformly and independently from {0, . . . , `}. Then, there is a unique maximum weight set
in F with probability ≥ 1− ε.

For proof one can see [KS01, Lemma 4]. Although the proof shows the uniqueness of minimum
weight subset, it is also applicable to show the uniqueness of maximum weight subset. The most
powerful thing about the Isolation Lemma is that it is independent on the choice of the family and its
size. It is a widely used tool in theoretical computer science [MVV87, NSV94, Wig94, KS01, AM08].
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4.2 Some structural results about Lattice families

Suppose that E is a finite set. A family of subsets L (of E) is called a lattice family over E if it is
closed under intersection and union, that is for all A,B ∈ L both A ∩B and A ∪B are in L, and
for all a ∈ E there exists a set in L containing a. For every element a ∈ E, there exists a unique
smallest set in L containing a. Otherwise, the intersection of the multiple smallest sets containing a
gives us a smaller size set in L containing a. We call such a set as prime set of the lattice family.
They can be also defined as the sets in L which cannot be written as a union of two smaller sets. In
the literature, prime sets are referred as join-irreducible (or, join-prime) elements of L. A subset
L′ of L is called a sublattice of L, if L′ is also a lattice family over E. Here, we describe some
structural properties about lattice families which will be useful for us. For more detailed study on
lattice families one can see [Sta11, Chapter 3].

Lemma 4.2. Let L be a lattice family over a finite set E. Then, every set in L can be written as a
union of prime sets of L.

The proof directly follows from the definition of prime sets. Next we show the existence of a
partition of E such that every set in L is a disjoint union of sets from the partition.

Lemma 4.3. Let L be a lattice family over a finite set E. Then there exists a unique partition
P of E such that every set in L is a disjoint union of sets from P. Furthermore, the sets in the
partition P can be written in a sequence (S1, . . . , S`) such that for all i ∈ [`], the set ∪ij=1Si is in L.

Proof. Let I be the prime sets of L. Let θ be a mapping defined over I as follows: for all I ∈ I,

θ(I) := I \ (∪I′∈I:I′⊂II
′).

Let P = {θ(I) | I ∈ I}. Next, we show that P is a partition of E.
Let a be an element of E. Let Ia be the smallest set in I containing a. Then θ(Ia) contains a.

Therefore, for every element a ∈ E, there exists a set in P containing a. Let I1, I2 be two distinct
elements in I such that θ(I1) and θ(I2) are not disjoint, and let a ∈ θ(I1) ∩ θ(I2). Then, both I1

and I2 are the smallest sets in L containing a, which is a contradiction. Thus, P is a partition of E.
For any I ∈ I, let C(I) be the subset of I defined as follows: for all I ′ ∈ I, I ′ is in C(I) if and

only if I ′ ⊆ I. The set C(I) can also be seen as Birkhoff’s representation for the set I. For details
about Birkhoff’s representation see [Bir37], or [Sta11, Chapter 3]. We show that

I = ∪I′∈C(I)θ(I
′).

Since for all I ′ ∈ C(I), θ(I ′) ⊆ I ′ ⊆ I, the set ∪I′∈C(I)θ(I
′) is a subset of I. Let a be an element in

I, and Ia be the smallest set in C(I) containing a. It is not hard to see Ia is also the smallest set in
I containing a. Therefore, θ(Ia) contains a. Hence, I ⊆ ∪I′∈C(I)θ(I

′). This implies that every set
in I is a disjoint union of sets from P. Now applying Lemma 4.2, we get that every set in L is a
disjoint union of sets from P.

Let I = {I1, . . . , I`} such that
|I1| ≤ |I2| ≤ · · · ≤ |I`|.

Then for all i ∈ [`], C(Ii) ⊆ {I1, . . . , Ii}. Now from the previous paragraph, we can claim that

∪ij=1Ij = ∪ij=1θ(Ij).

Since ∪ij=1Ij is in L, ∪ij=1θ(Ij) is also in L. Let Si = θ(Ii) for all i ∈ [`]. Then, (S1, . . . , S`) is our
desired sequence of the sets in P.
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To show uniqueness, assume that there exists another partition T = {T1, . . . , Ts} (of E) such
that every set in L is a disjoint union of sets from T , and the elements of T can be written as a
sequence

(T1, . . . , Ts)

such that for all k ∈ [s], ∪kj=1Tj is a set from L. We show that for all k ∈ [s], Ti ∈ P . For all k ∈ [s],

let Bk be the Birkhoff’s representation for the set ∪kj=1Tj , that is Bk be the subset of I defined as

follows: for all I ∈ I, I is in Bk if and only if I ⊆ ∪kj=1Tj .
First, we show that Bk \ Bk−1 is singleton. It is not hard to see that Bk \ Bk−1 is nonempty.

Let I be the smallest set from Bk \Bk−1. Let B′k = Bk−1 ∪ {I}. Then U = ∪I′∈B′kI
′ is an element

in L such that
∪k−1
j=1Tj ⊂ U ⊆ ∪

k
j=1Tj .

This implies that Tk ∩ U is nonempty. Therefore, Tk ⊂ U . Hence, U = ∪kj=1Tj . One can observe
that like Bk, the set B′k also satisfies the following property: if I ′ ∈ B′k then every set I ′′ in I
with I ′′ ⊂ I ′ is also in B′k. Thus, using Birkhhoff’s representation theorem (also known as the
fundamental theorem for finite distributive lattices) [Bir37], we get that Bk = B′k. Now,

∪kj=1Tj = (∪I′∈Bk−1
I ′) ∪ I

= (∪I′∈Bk−1
θ(I ′)) ∪ θ(I).

Since
∪k−1
j=1Tj = ∪I′∈Bk−1

I ′ = ∪I′∈Bk−1
θ(I ′),

Tk = θ(I). Therefore, Tk ∈ P. For k = 1, we assume both Bk−1 and ∪k−1
j=1Tj are empty sets.

In the following lemma, we describe some structural properties of a sublattice.

Lemma 4.4. Let L be a lattice family over a finite set E, and L′ be a sublattice of L. For all
a ∈ E, let Ea and E′a be the smallest sets containing a in L and L′, respectively. Let P and P ′ be
the partitions of E, as mentioned in Lemma 4.3, corresponding to L and L′, respectively. For all
A ∈ P ′, let WA be the family containing all the sets from P which have nonempty intersection with
A. Then,

1. for all a ∈ E, Ea ⊆ E′a.

2. for all A ∈ P ′, WA is a partition of A.

Proof. Since L′ is a sublattice of L, E′a is also a set in L containing a. Therefore, Ea is subset of
E′a. Otherwise, Ea ∩ E′a is a smaller set in L containing a.

From Lemma 4.3, the elements in P ′ can be written as a sequence

(S1, . . . , S`)

such that for all k ∈ [`], ∪kj=1Sj is in L′. Since L′ is a sublattice of L, for all k ∈ [`], ∪kj=1Sj is also
in L. Let B be a set from WSk

for some k ∈ [`], and a be an element in Sk ∩ B. Now we show
that B ⊆ Sk. Since ∪kj=1Sj is a set in L containing a, B is a subset of ∪kj=1Sj . On the other hand,

∪k−1
j=1Sj is a set in L not containing a. Thus, for all j ∈ [k− 1], Sj ∩B = ∅. Therefore, B is a subset

of Sk. Also, all the sets in WSk
are mutually disjoint and for every a ∈ Sk there exists a set in WSk

containing a. Therefore, WSk
is a partition of Sk for all k ∈ [`].
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4.3 Matroid Intersection Polytope

Matroid is a well studied object in both mathematics and computer science with its origin around
mid 1930s. There is a huge literature on matroid theory. For example, one can see some excellent
text books like [Oxl06, Sch03]. Here we mention some basic definitions and known results about
matroid which will be useful for us.

An ordered pair M = (E, I) is called matroid if E is a finite set and I is a family of subsets of
E satisfying the following properties:

1. Closure under subsets: For every I ∈ I, all its subsets are also in I.

2. Augmentation property: For every I, J ∈ I with |J | > |I|, there exists an element a in J \ I
such that I ∪ {a} is also in I.

The set E is called the ground set, and the sets in I are called the independent sets. A set in I is
called a base if it is an inclusion-wise maximal set in I. Note that by Augmentation property, every
base of M has the same cardinality. Let B denote the collection of all bases. We use m throughout
the paper to denote the cardinality of E.

A well known example of matroid is the linear matroids. A linear matroid is defined by a martix
M in Rk×m such that the columns are indexed by the elements of E with |E| = m. Let I be the
collection of those subsets I of E such that the columns indexed by I are linearly independent. Then
one can show that (E, I) satisfies the axioms of matroid. An easy class of matroid is the uniform
matroids. They are defined by a finite set E and a positive integer k, and the independent sets are
the subsets of E with size ≤ k. Another popular example of matroid is the graphic matroids. They
are defined by an undirected graph G = (V,E), where the ground set is the set of edges E, and the
independent sets are subset of edges which form a forest. It is not hard to see that forests satisfy
the matroid axioms. For more examples, see [Sch03, Chapter 39].

Matroid rank. Suppose that M = (E, I) is a matoid. For any subset S of E, the rank of S is
defined as

max{|I| | I ⊆ S and I ∈ I}.

It is analogous to the notion of rank in linear algebra. The rank of a matroid is defined as the rank
of its groud set, or equivalently, the size of its bases. The rank function of M , denoted by r, is a
function from P(E) to Z≥0 where for all S ∈ P(E), r(S) is defined as the rank of the set S. The
rank function r satisfies the submodularity property, that is, for every S, T ∈ P(E),

r(S ∪ T ) + r(S ∩ T ) ≤ r(S) + r(T ).

For proof see [Sch03, Theorem 39.8].

Matroid Intersection. Suppose that M1 = (E, I1) and M2 = (E, I2) are two matroids over the
same ground set E. Let B1 and B2 be the set of bases, respectively. In matroid intersection, we
are interested in studying the family of common independent sets which is I1 ∩ I2, and the family
of common bases which is B1 ∩ B2. Note that the ordered pair (E, I1 ∩ I2) may not be a matroid
anymore. There are many interesting computational problems which can formulated in the language
of intersection of two matroids. For example,

• As mentioned in the introduction, given two set of vectors finding a common basis of them
can be formulated as finding a common base of two linear matroids.
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• Finding a perfect matching in a bipartite graph can also be seen as finding a common base of
two linear matroids. For details one can see [GT17, Section 2.2]

For more examples see [GT17, Section 4.4].

Matroid Polytope. A polytope is a convex hull of finitely many points from Rm. Every polytope
P can be described as a intersection of halfspaces, that is P = {x ∈ Rm | Ax ≤ b} where A is a
martix in Rk×m and b is a vector in Rk. A set of points F in P is called face if and only if there exists
a vector c ∈ Rm such that F is the set of points in P attaining max{〈c,x〉 | x ∈ P}. Alternatively,
a face F is a set of points in P if and only if F is non-empty and F = {x ∈ P | A′x = b′} for
some subsystem A′x ≤ b′ of Ax ≤ b. A equation 〈a,x〉 ≤ b in the system Ax ≤ b is called a tight
constraint with respect to the face F if for every point x ∈ F , 〈a,x〉 = b. A face can be uniquely
defined by its tight constraints.

Suppose that E is a finite set. Then for every family of subsets F (of E), a polytope P (F)
can be defined by taking the convex hull of {1S ∈ RE | S ∈ F}. For a matroid M = (E, I), its
matroid polytope is defined as P (I), that is, the convex hull of the independent sets of M . Edmonds
[Edm70] gave a nice description of the matroid polytope using its rank function.

Theorem 4.5 (Matroid Polytope [Edm70]). Let M = (E, I) be a matroid with r be the rank
function. Then for every x ∈ RE, x ∈ P (I) if and only if it satisfies the following inequalities:

xe ≥ 0 ∀e ∈ E, (5)

x(S) ≤ r(S) ∀S ⊆ E. (6)

For proof one can see [Sch03, Section 40.2]. Let B be the set of bases of M . Then the matroid base
polytope, defined as P (B), is clearly a face of of the matroid polytope. It is the set points in P (I)
which satisfy

x(E) = r(E). (7)

Matroid Intersection Polytope. Given two matroids M1 = (E, I1) and M2 = (E, I2), the
matroid intersection polytope, defined as P (I1 ∩ I2), has also a nice description.

Theorem 4.6 (Matroid Intersection Polytope[Edm70]). Let M1 = (E, I1) and M2 = (E, I2) be two
matroids with r1 and r2 be the rank functions, respectively. Then

P (I1 ∩ I2) = P (I1) ∩ P (I2).

That is, for every point x ∈ RE, x is in P (I1∩I2) if and only if it satisfies the following inequalities:

xe ≥ 0 ∀e ∈ E, (8)

x(S) ≤ ri(S) ∀S ⊆ E, i = 1, 2. (9)

For proof one can see [Sch03, Section 41.4]. Let B1 and B2 be the set of bases, respectively. Then
the common base polytope P (B1 ∩B2) can be defined as the set of points in P (I1 ∩I2) which satisfy

x(E) = ri(E), i = 1, 2. (10)

This implies that P (B1 ∩ B2) is same as P (B1) ∩ P (B2). Also, for any face F of P (B1 ∩ B2),
F = F1 ∩F2 where Fi is the face of P (Bi) defined by the tight constraints of F which correspond to
the matroid Mi.
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4.4 Combining multiple weight assignments to a single one

Suppose that M1 = (E, I1) and M2 = (E, I2) are two matroids with the family of bases B1 and
B2, respectively. Let w0, . . . ,w` be a sequence of weight assignments on E, and F0, . . . , F` be a
sequence of faces of the common base polytope P (B1 ∩ B2) with the following properties:

1. F0 be the set of points in P (B1 ∩ B2) maximizing the weight assignment w0.

2. For all i ∈ [`], Fi is the set of points in Fi−1 maximizing the weight assignment wi.

We combine the weight assignments w0, . . . ,w` in decreasing precedence. It is a standard trick used
in many othe previous works, for example [FGT16, GT17, ST17]. Let N be a positive integer larger
than the weight of any point in P (B1 ∩ B2) with respect to any of these weight assignments. For
i = 0, 1, . . . , `, define a weight assignment

Wi = w0N
i + · · ·+ wiN

0.

Now we show that

Lemma 4.7. The face F` is the set of points in P (B1 ∩ B2) maximizing the weight assignment W`.

Proof. We use induction to prove the lemma. We show that for all i = 0, . . . , `, Fi is the set of
maximizing points in P (B1 ∩ B2) with respect to the weight assignment Wi. It is clearly true for
i = 0. From the induction hypothesis, assume that from some i ∈ [`], Fi−1 is same as the set of
maximizing points in P (B1 ∩ B2) with respect to the weight assignment Wi−1. Then Fi−1 is also
same as the set of maximizing points in P (B1 ∩ B2) with respect to the weight assignment NWi−1.
Since the construction of Wi promises that NWi−1 always dominates wi, the set of maximizing
points in P (B1 ∩ B2) with respect to Wi = NWi−1 + wi is a subset of Fi−1. Moreover, it exactly
contains the maximizing points in Fi−1 with respect to wi, that is same as the points in Fi.

4.5 Face of the Matroid Intersection Polytope

Suppose that M = (E, I) is a matroid with r is the rank function and B is the set of bases. Let
P (B) be the matroid base polytope, and A be a set of points from P (B). For a subset S of E, S is
called a tight set with respect to A if for all x ∈ A, x(S) = r(S). We use tight-sets[A] to denote
the family of all tight sets with respect to A. Edmonds [Edm70] showed the following structural
property for all the tight sets of a point in P (B).

Lemma 4.8 ([Edm70]). For any point x ∈ P (B) and any sets S, T ⊆ E, if x(S) = r(S) and
x(T ) = r(T ) then

x(S ∪ T ) = r(S ∪ T ) and x(S ∩ T ) = r(S ∩ T ).

Proof. From the lemma hypothesis,

r(S) + r(T ) = x(S) + x(T ) = x(S ∪ T ) + x(S ∩ T )

≤ r(S ∪ T ) + r(S ∩ T )

≤ r(S) + r(T ).

The first inequality follows from the inequalities of the matroid polytope (Equation 5). The second
inequality comes from the submodularity property of the rank function. Therefore, to make all
the inequalities to equalities, x(S ∪ T ) and x(S ∩ T ) must be equal to r(S ∪ T ) and r(S ∩ T ),
respectively.
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Using the above lemma, we get the following structural property of the family tight-sets[A].

Corollary 4.9. Let M = (E, I) be a matroid with r be the rank function and B be the set of bases.
Let A be a set of points from P (B). Then tight-sets[A] is a lattice family over A. Furthermore, for
any subset A′ of A, tight-sets[A] is a sublattice of tight-sets[A′].

Proof. Let x be a point in A. Then, from Lemma 4.8, the family of subsets tight-sets[{x}] (over E)
is closed under intersection and union. Since

tight-sets[A] = ∩x∈Atight-sets[{x}],

tight-sets[A] is also closed under intersection and union. Also, for every x ∈ E there exists a set
in tight-sets[A] containing x since x(E) = r(E) for all x ∈ A. Therefore tight-sets[A] is a lattice
family over E. Since A′ is a subset of A, ∩x∈Atight-sets[{x}] is also a subset of ∩x∈A′tight-sets[{x}].
Therefore tight-sets[A] is a sublattice of tight-sets[A′].

The above corollary promise us that tight-sets[A] is a lattice family over E. We use prime-sets[A]
to denote the family of prime sets of tight-sets[A]. According to Lemma 4.3, the lattice family
tight-sets[A] induces a unique partition of E. We denote it by partition[A].

Suppose that M1 = (E, I1) and M2 = (E, I2) are two matroids with r1 and r2 are the rank
functions and B1 and B2 are the set of bases, respectively. Let A be a set of points in P (B1 ∩ B2).
For all i ∈ [2], tight-setsi[A] denotes the family of tight sets with respect to A and correspond to
the matroid Mi, that is a subset S of E is in tight-setsi[A] if and only if x(S) = ri(S) for all x ∈ A.
Like Corollary 4.9, we get the following structural property of tight-setsi[A].

Corollary 4.10. Let M1 = (E, I1) and M2 = (E, I2) be two matroids with the family of bases B1

and B2 and the rank functions r1 and r2, respectively. Let A be a set of points from P (B1 ∩ B2).
Then for all i ∈ [2], tight-setsi[A] is a lattice family over E. Furthermore, for any subset A′ of A,
tight-setsi[A] is a sublattice of tight-setsi[A

′] for all i ∈ [2].

Now we describe a structural property of the faces of P (B1 ∩ B2). A slightly weaker version of
this result was shown in [GT17, Lemma 3.4].

Lemma 4.11. Let M1 = (E, I1) and M2 = (E, I2) be two matroids with the family of bases B1 and
B2 and the rank functions r1 and r2, respectively. Let F be a face of the polytope P (B1 ∩ B2). For
all i ∈ [2], let partitioni[F ] denotes the partition of E, as promised by Lemma 4.3, corresponding to
the lattice family tight-setsi[F ]. Then for every i ∈ [2] there exists a function NF

i from partitioni[F ]
to Z≥0 with the following properties:

1. Every element in tight-setsi[F ] is a disjoint union of sets from partitioni[F ].

2. If for some a ∈ E, xa = 0 for all x ∈ F , then for all i ∈ [2] there exists a singleton set S in
partitioni[F ] containing a and NF

i (S) = 0.

3. For every base B ∈ B1 ∩ B2, B is in the face F if and only if for all i ∈ [2] S ∈ partitioni[F ],
|B ∩ S| = NF

i (S).

The differences between the above lemma and [GT17, Lemma 3.4] are the following: The point
3 in the conclusion of the above lemma is an exact characterization for a common base to be in
F . On the other hand, [GT17, Lemma 3.4] showed only one direction. Our definition of partitions
have the additional “chain property” as promised by Lemma 4.3. These additional properties will
be used in our proofs. Also, our proof is different from them. We prove it using the structural
properties of lattice families shown in Section 4.2 which may have independent interest.
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Proof. From Lemma 4.3, we know that for all i ∈ [2], the elements of partitioni[F ] can be written as
a sequence

(Si1, . . . , Si`i)

such that for all k ∈ [`i], ∪kj=1Sij is an element in tight-setsi[F ]. Now, for all i ∈ [2], the function

NF
i is defined as follows: for all k ∈ [`i],

NF
i (Sik) := ri

(
∪kj=1Sij

)
− ri

(
∪k−1
j=1Sij

)
.

From the definition of the rank function, it is not hard to see that for all k ∈ [`i], N
F
i (Sik) is a

non-negative integer. Lemma 4.3 also ensures that every element in tight-setsi[F ] is a disjoint union
of sets from partitioni[F ]. Next, we show the other two properties mentioned in the lemma.

Let a ∈ E such that for all x ∈ F , xa = 0. Let a ∈ Sik for some i ∈ [2] and k ∈ [`i]. Now we
show that Sik is a singleton set. For the sake of contradiction, assume that Sik is not a singleton
set, and b be an element from Sik \ {a}. Let Eb the smallest set in tight-setsi[F ] containing b. Then
a ∈ Eb since every set in tight-setsi[F ] is a disjoint union of sets from partitioni[F ]. Let E′b = Eb \{a}.
From the definition of the rank function,

ri(Eb) ≥ ri(E′b).

On the other hand, since Eb ∈ tight-setsi[F ], for all x ∈ F ,

x(Eb) = ri(Eb) = xa + x(E′b)

= x(E′b) since xa = 0

≤ ri(E′b).

This implies that ri(Eb) = ri(E
′
b), thus for all x ∈ F , x(E′b) = ri(E

′
b). Therefore, Eb∩E′b is a smaller

set in tight-setsi[F ] containing b. This is a contradiction. Hence, Sik is a singleton set containing a.
Now

NF
i (Sik) = ri

(
∪kj=1Sij

)
− ri

(
∪k−1
j=1Sij

)
= x

(
∪kj=1Sij

)
− x

(
∪k−1
j=1Sij

)
for any x ∈ F

= 0 since for all x ∈ F, xa = 0.

Let B be a common base (of M1 and M2) in the face F . Let i ∈ [2]. Then for all k ∈ [`i],

|B ∩
(
∪kj=1Sij

)
| = ri

(
∪kj=1Sij

)
.

Since all the sets in partitioni[F ] are mutually disjoint,

|B ∩ Sik| = ri

(
∪kj=1Sij

)
− ri

(
∪k−1
j=1Sij

)
= NF

i (Sik).

For the converse direction, assume that B is a common base of M1 and M2 such that for all
i ∈ [2] k ∈ [`i], |B ∩ Sik| = NF

i (S). Let i ∈ [2]. Let S ∈ tight-setsi[F ]. Then there exists a subset
{k1, . . . , ks} of [`i], with k1 < · · · < ks, such that

S = Sik1 ∪ · · · ∪ Siks .
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Now for all x ∈ F ,

ri(S) = x(S) =
s∑
r=1

x(Sikr)

=

s∑
r=1

x
(
∪krj=1Sij

)
− x

(
∪kr−1
j=1 Sij

)
=

s∑
r=1

ri

(
∪krj=1Sij

)
− ri

(
∪kr−1
j=1 Sij

)
=

s∑
r=1

NF
i (Sij),

where NF
i (Si0) is assumed to be zero. Hence, |B ∩ S| = ri(S). This implies that B satisfies all the

tight constraints of the face F . Therefore, B is in the face F .

4.6 Some frequently used notations

Suppose that M1 = (E, I1) and M2 = (E, I2) are two matroids with r1 and r2 are the rank functions
and B1 and B2 are the set of bases, respectively. Now we mention some notations which will be
frequently used in our work. Some of the them already defined. However, it would be helpful to
keep our important notations in a single place. For a subset A ⊆ P (B1 ∩ B2) and i ∈ [2],

• tight-setsi[A] denotes the family of all tight sets with respect to A, that is a subset S of E is
in tight-setsi[A] if and only if x(S) = ri(S) for all x ∈ A. Applying Corollary 4.10, we know
that tight-setsi[A] forms a lattice family over E.

• prime-setsi[A] denotes the family of prime sets of the lattice family tight-setsi[A], that is
prime-setsi[A] = {Ei[a] | a ∈ E} where Ei[a] is the smallest set in tight-setsi[A] containing
a. Using Lemma 4.2, every set in tight-setsi[A] can be expressed as a union of sets from
prime-setsi[A].

• As promised by Lemma 4.3, partitioni[A] denotes the partition of E induced by the lattice
family tight-setsi[F ]. It is already defined in Lemma 4.11.

• When A is a face of P (B1 ∩ B2), NA
i denotes the function, as promised by Lemma 4.11, from

partitioni[A] to Z≥0.

• G[A] denotes the bipartite graph with partition1[A] is the left part of the vertex set, partition2[A]
is the right part of the vertex set and E is the set of edges. For an edge a ∈ E, S1 and
S2 are its end points if and only if S1 and S2 are the sets in partition1[A] and partition2[A],
respectively, containing a.

4.7 Cycles in Matroid Intersection

Suppose that B1 and B2 are the set of bases for matroids M1 and M2, respectively. In this section,
we define the notion of cycle for matroid intersection and its properties which we will need. Most of
definitions and results are borrowed from [GT17, Section 3.3].
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Definition 4.12 (Cycle). Let F be a face in the polytope P (B1∩B2). Then, a sequence (e1, . . . , e2r)
of distinct elements from E is called a cycle with respect to the face F , if the consecutive pairs are
alternately in a set from partition1[F ] and a set from partition2[F ]. That is, for all i ∈ [r]

e2i−1, e2i ∈ S, for some S ∈ partition1[F ]

e2i, e2i+1 ∈ T, for some T ∈ partition2[F ],

where e2i+1 = e1. Alternatively, a sequence (e1, . . . , e2r) of distinct elements from E is called a cycle
with respect to the face F , if it forms a cycle in the bipartite graph G[F ].

To motivate the above the definition of cycle, one can observe that it becomes same as the
cycle in a bipartite graph when we reduce the bipartite graph matching problem to linear matroid
intersection problem. Also, one can observe that if for an element e ∈ E, xe = 0 for all x ∈ F ,
it does not participate in any cycle since from Lemma 4.11 it appears as a singleton set in both
partition1[F ] and partition2[F ]. Using the notion of cycle, [GT17] shows a nice characterization for
the faces containing a single vertex, or equivalently, a corner point of the polytope P (B1 ∩B2). Such
faces contain a unique common base of M1 and M2 since the corner points of P (B1 ∩B2) are exactly
same as the set of common bases B1 ∩ B2. For a face F , let CF denotes the set of all cycles with
respect to the face F .

Lemma 4.13. For a face F of the polytope P (B1 ∩ B2), if CF = ∅, then F contains a unique
common base of M1 and M2.

The proof comes from the observation that if a face F contains at least two bases, then it must
contain a cycle. For detailed proof see [GT17, Lemma 3.6 and Corollary 3.7]. On the other hand,
using the notion of circulation, they give an approach to eliminate the cycles from a face so that we
can reach a corner point of P (B1 ∩ B2).

Definition 4.14 (Circulation). For a weight assignment w : E → Z≥0, the circulation cw(C) for a
cycle C = (e1, . . . , er) is defined as

cw(C) = |w(e1)−w(e2) + · · · −w(er)|.

Lemma 4.15. Let w : E → Z≥0 be a weight assignment, and Fw be the set of points in P (B1 ∩B2)
maximizing the weight assignment w. Then for any cycle C with respect to Fw, cw(C) = 0.

The converse of the above lemma says that if cw(C) 6= 0, then C does not appear in CFw . To
prove this lemma, take a relatively interior point a in the face Fw. For example, consider a as the
average of all the corner points of Fw. Let δC =

∑r
i=1(−1)i1ei . Then we move to a new point from

b = a + εδC for some sufficiently small constant ε > 0 such that we remain inside the face Fw. Now,
without loss of generality, if we assume 〈w, δC〉 > 0, then b becomes a point in Fw with larger
weight. This gives a contradiction. For more detailed proof see [GT17, Lemma 3.10]. In addition
with the above results, we also need the following lemma.

Lemma 4.16. Let F be a face of the polytope P (B1 ∩ B2) such that CF has no cycle of length r.
Then one can construct a set of O(m6) many weight assignments with weights bounded by O(m6) in
NC such that one of the weight assignment will give nonzero circulation to all the cycles in CF of
length at most 2r.

The proof can be divided into two parts. The first part shows that the number of cycles in CF of
length at most 2r is upper bounded by m4. For details see [GT17, Lemma 3.11]. The other half gives
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the construction of a family of weight assignments such that for any set of m4 cycles, one of the weight
assignments gives nonzero circulation to each of the m4 cycles. Designing such a family of weight
assignments is a standard trick used to give distinct weights to a small family of sets. It appears in
many other results in various other forms [FKS84, CRS95, KS01, AGKS15, FGT16, ST17]. For a
detailed proof one can see [FGT16, Lemma 2.3].

4.8 An RNC-algorithm for Linear Matroid Intersection

Suppose that M1 = (E, I1) and M2 = (E, I2) are two linear matroids given by two matrices U and
V . Let m = |E|. Without loss of generality, we can assume both the matrices are n×m and have full
row rank. Then the decision version of linear matroid intersection problem asks to decide whether
M1 and M2 have a common base. The search version of this problem is to compute a common base
of M1 and M2. Narayanan, Saran and Vazirani [NSV94] gives a randomized NC algorithm for both
these problems. They reduce the decision version of the linear matroid intersection problem to
deciding nonzeroness of the determinant of a symbolic matrix.

Lemma 4.17. Let X be an m×m diagonal matrix with variables on the diagonal, that is Xa,a = xa
for all a ∈ E. Let D be a symbolic matrix defined as UXV T . Then M1 and M2 have a common
base if and only if det(D) 6= 0.

Proof. Applying Cauchy-Binet formula [Zen93],

det(D) =
∑

B⊆E : |B|=n

det(UB) det(VB)
∏
a∈E

xa, (11)

where UB and VB are submatrices of U and V , respectively, with columns indexed by B. Thus, for
a subset B of E with the cardinality n, the coefficient of

∏
a∈E xa is nonzero if and only if B is

a base of both M1 and M2. Therefore, M1 and M2 have a common base if and only if det(D) is
nonzero.

From Lemma 4.1, we know that a random weight assignment w with polynomially bounded
weights is isolating for any family of subsets with high probability. Now replace each variable xa by
xwa in Equation 11, and compute det(D)(x). Then it will remain nonzero with high probability,
if both M1 and M2 have a common base. Moreover, the determinant of matrix with entries are
low degree univariate polynomials can be computed in NC [BCP84]. Therefore, we have an RNC
algorithm to decide whether two linear matroids have a common base. One can also compute the
isolated base in NC. For all a ∈ E, in parallel, delete the columns indexed by a from both U and V
and re-compute det(D)(x). If the maximum degree term changes, then a is in the isolated base.
Thus,

Theorem 4.18 ([NSV94]). Linear matroid intersection is in RNC.

For our work, we need to compute the weight of a maximum common base, and the technique
in [NSV94] also gives an RNC algorithm for that problem.

Lemma 4.19. Let M1 = (E, I1) and M2 = (E, I2) are two linear matroids given by two n×m full
rank matrices U and V , respectively. Let w : E → Z≥0 be a weight assignment. Then the weight of
a maximum weight common base can be computed in randomized NC. Furthermore, for any positive
integer c, the success probability of the algorithm can be made 1− 1

mc .
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Proof. Let ` = 2mc+1. Let w′ be a weight assignment such that the weights are picked uniformly
and independently from {0, . . . , `}. Using the techniques mentioned in Section 4.4, combine the
weight assignments w and w′ with decreasing order in precedence. Let w∗ be the combined weight.
Then Lemma 4.1 and 4.7 ensures that with respect to w∗ we have a unique maximum weight
common base B∗ with probability 1 − 1

mc . Thus, using the above mentioned technique we can
compute B∗ in RNC. Moreover, the construction of w∗ promises that B∗ is a maximum weight
common base of M1 and M2 with respect to w. Therefore compute w(B∗).

5 The Weighted Decision Oracle

We assume that our algorithm is equipped with the oracle access of the following decision problem.

Definition 5.1 (weighted-decision-MI). Given two matroids M1 = (E, I1), M2 = (E, I2) with small
weights on E and a target weight W , is there exists a common base of M1 and M2 with weight at
least W?

Suppose that B1 and B2 are the set of bases of M1 and M2, respectively. Then, given the oracle
access to the above problem with polynomially bounded weights w ∈ ZE≥0, using the binary search
one can compute the function

max
x∈P (B1∩B2)

〈w,x〉

in NC. Hence, we can say that

Lemma 5.2. Let M1 = (E, I1) and M2 = (E, I2) be two matroids with B1 and B2 be the family
of bases, respectively. Then, given M1 and M2 with polynomially bounded weights w ∈ ZE≥0, the
function

max
x∈P (B1∩B2)

〈w,x〉

can be computed in NC, provided that the algorithm has an oracle access to weighted-decision-MI.

In the following lemma, we show that how to compute a maximum weight base in RNC using
the oracle access to weighted-decision-MI.

Lemma 5.3. Let M1 = (E, I1) and M2 = (E, I2) be two matroids with the family of bases B1 and
B2, respectively. Let w be a weight assignment on E with polynomially bounded weights. Then,
given M1 M2 and w as inputs, a base in B1 ∩ B2 maximizing the weight assignment w can be
computed in randomized NC, provided that the algorithm has an oracle access to weighted-decision-
MI. Furthermore, for every positive integer c, the success probability of the algorithm can be made
≥ 1− 1

mc , where m = |E|.

Proof. Let Fw be the maximizing face of P (B1 ∩ B2) with respect to w. Let ` = 2mc+1, and w′

be a weight assignment where weights are picked uniformly and independently from {0, 1, . . . , `}.
Then Lemma 4.1 ensures that with probability ≥ 1− 1

mc , there exists a unique maximizing base
in Fw with respect to w′. As discussed in Section 4.4, combine the weight assignments w and
w′ with decreasing precedence. Let W be the combined weight. Then the weights in W are also
polynomially bounded. From Lemma 4.7, the maximizing face FW (with respect to W ) contains a
unique base from Fw.

Let B∗ be the base in FW . Now we describe how to compute the elements of B∗ in NC. Let w∗

be the weight of B∗ with respect to W . From Lemma 5.2, with the help of the oracle access, w∗
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can be computed in NC. Now for every a ∈ E, consider a weight assignment Wa defined as follows:
for all b ∈ E,

Wa(b) =

{
W (b) + 1 if b = a
W (b) otherwise.

Then an element a ∈ E is in B∗ if and only if the maximum weight base with respect to Wa has
weight w∗ + 1. For all a ∈ E, in parallel, we can compute the weight of the maximum weight base
with respect to Wa and decide whether a is in B. Lemma 5.2 ensures that this step can be done in
NC. This completes our proof.

Our next lemma can be seen as a stronger version of the previous one. Given the oracle access
to weighted-decision-MI, it shows how to compute, in RNC, a maximum weight base with some
additional constraint.

Lemma 5.4. Let M1 = (E, I1) and M2 = (E, I2) be two matroids with B1 and B2 be the family of
bases, respectively. Let w be a weight assignment on E with polynomially bounded weights. Let A be a
subset of E, and n be a non-negative integer. Then, given 〈M1,M2,w, A, n〉 as input, if exists, a base
B in B1 ∩B2 maximizing the weight assignment w with |B ∩A| 6= n can be computed in randomized
NC, provided that the algorithm has an oracle access to weighted-decision-MI. Furthermore, for every
positive integer c, the success probability of the algorithm can be made ≥ 1− 1

mc , where m = |E|.

Proof. Let Fw be the maximizing face of P (B1 ∩ B2) with respect to w, and Bw be the set of
common bases present in Fw. Then, it is not hard to see that Bw contains a base B with |B∩A| 6= n
if and only if

either n 6= max
B∈Bw

|B ∩A|, or n 6= min
B∈Bw

|B ∩A|.

Let FA and FĀ be the subfaces of Fw maximizing the weight assignments 1A and 1Ā, respectively.
Let B be a base in Fw. Then one can observe that B is also a base in FA if and only if

|B ∩A| = max
B′∈Bw

|B′ ∩A|.

Similarly, B is a base in FĀ if and only

|B ∩A| = min
B′∈Bw

|B′ ∩A|.

Let wA be the combined weight of w and 1A such that w is given higher precedence over 1A.
Similarly, let wĀ be the combined weight of w and 1Ā such that w is given higher precedence
over 1Ā. Then from Lemma 4.7, FA and FĀ are the faces of P (B1 ∩ B2) maximizing the weight
assignments wA and wĀ, respectively. Using Lemma 5.3, we can compute two bases BA and BĀ
from FA and FĀ, respectively, in RNC with success probability ≥ 1 − 1

mc . Now if |BA ∩ A| 6= n,
output BA. Otherwise, check whether |BĀ ∩A| = n. If it is not equal to n, output BĀ. Otherwise,
there is no base B in Fw with |B ∩A| 6= n.

6 Graph theoretic characterization of tight sets

Suppose that M = (E, I) is a matroid with r is the rank function and B is the set of bases. Let
B′ ⊆ B be a set of bases of M . We give a graph theoretic characterization for tight-sets[B′], the
tight sets with respect to B′. For any set of bases B′, we define a directed graph, denoted by G[B′],
as follows: The vertex set is same as the ground set E, and for any a, b ∈ E, (a, b) is an edge of
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G[B′] if and only if

there exists a base B ∈ B′ such that b ∈ B and (B \ {b}) ∪ {a} is also a base of M.

The property used to define an ordered pair (a, b) being an edge of the graph G[B′] is known as
base exchange property.

Lemma 6.1. Let M = (E, I) be a matroid with r be the rank function and B be the set of bases.
Let B′ ⊆ B be a set of bases for M . Then for every subset S ⊆ E, S is in tight-sets[B′] if and only
if there exists no directed edge from S to E \ S in the graph G[B′].

Remark. Constructing directed graphs using base exchange property is a well known technique in
matroid literature and has been used in various contexts. For example, one can see the augmenting
path based algorithm for matroid intersection in [Sch03, Section 41.2], and some other context
in [Sch03, Section 40.3]. The definition of G[B′] is very close to the definition used in the second
example. Also, the relation between the subset of vertices with no outgoing edges and the tight sets,
in some weaker forms, is also used in those examples. The main difference with the previous ones is
that the above lemma gives an exact characterization of the tight sets.

Proof. Let S be a set in tight-sets[B′]. We show that there exists no directed edge from S to E \ S
in G[B′]. For the sake of contradiction, assume that there exists an a ∈ S and a b ∈ E \ S such
that (a, b) is an edge of the graph G[B′]. Then, there exists a base B ∈ B′ containing b such that
B′ = (B \ {b})∪ {a} is also a base of M . Since S ∈ tight-sets[B′], S ∩B is an independent set of M
with size r(S). Therefore,

|S ∩B| = max {|I| | I ∈ I and I ⊆ S} .

On the other hand, S ∩ B′ ⊆ S is also an independent set of M with size greater than |S ∩ B|,
which is a contradiction. Therefore, there exists no directed edge from S to E \ S in G[B′].

For the converse direction, assume that S /∈ tight-sets[B′]. Then there exists a base B ∈ B′ such
that

|B ∩ S| < r(S).

Let BS denotes the set B ∩ S, and A ⊆ S be an independent set of M with |A| = r(S). Then,

|BS | < |A| = r(S).

Since both BS and A are independent sets (of the matroid M) with |A| > |BS |, there exists an
element a ∈ A \ BS such that B′S = BS ∪ {a} is also an independent set of M . Now applying
Augmentation Property (of matroid) repeatedly, we can extend the independent set B′S to a base
B′ (of M) such that

∃ b ∈ B \BS , B′ = (B \ {b}) ∪ {a}.

This implies that (a, b) is an edge in the graph G[B′]. Since a ∈ S and b ∈ B \BS ⊆ E \ S, there
exists a directed edge from S to E \ S in G[B′].

For a subset B′ ⊆ B, let FB′ be the minimal face of P (B) containing B′. The set family
tight-sets[FB′ ] forms a lattice family over E, and given the set B′ we are interested to compute
prime-sets[FB′ ] and partition[FB′ ] in NC. It is well known that every lattice family L over a finite
set E has a succinct digraph representation GL as follows: the vertex set is same as E and for all
a, b ∈ E, (a, b) is an edge of GL if and only if the prime set containing b is a subset of the prime set
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containing a. It is not hard to show that for every a ∈ E, the set of vertices reachable from a in
GL is the prime set in L containing a. Also, the partition of E induced by L is the set of strongly
connected components of GL. For more on the digraph representation of lattice families see [Sch03,
Chapter 49] 2. The digraph representation of lattice families has been widely used in designing
(sequential) algorithms [ILG87, EMSV12, BEL+16].

As we mentioned, given B′, we want to compute prime-sets[FB′ ] and partition[FB′ ] in NC. However,
given B′, it is not clear how to construct the digraph representation of the lattice family tight-sets[FB′ ]
in NC. In the next lemma, we show that instead of Gtight-sets[FB′ ]

, it is sufficient to work with the
graph G[B′]. More specifically, we show that for every a ∈ E the prime set in tight-sets[FB′ ]
containing a is same as the set of vertices reachable from a in G[FB′ ] and partition[FB′ ] is same as
the set of strongly connected components in G[B′]. Also, using the weighted decision oracle we can
compute G[B′] in NC (Lemma 7.4). Therefore, given B′, the following lemma also gives us a way to
compute prime-sets[FB′ ] and partition[FB′ ] in NC.

Lemma 6.2. Let M = (E, I) be a matroid with r be the rank function and B be the set of bases.
Let B′ be a subset of B, and FB′ be the minimal face of P (B) containing B′. For all a ∈ E, let E[a]
be the set of vertices reachable from a in the graph G[B′]. Then

1. prime-sets[FB′ ] = {E[a] | a ∈ E}.

2. the set of all strongly connected components in G[B′] is same as partition[FB′ ].

Proof. First, we show that 1) prime-sets[B′] = {E[a] | a ∈ E}, and 2) the set of strongly con-
nected components in G[B′] is same as partition[B′]. Later, we prove that tight-sets[B′] is same as
tight-sets[FB′ ]. Hence, prime-sets[B′] = prime-sets[FB′ ] and partition[B′] = partition[FB′ ] which will
complete our proof.

We prove that prime-sets[B′] = {E[a] | a ∈ E}. The proof has two steps. In the first step, we
show that for all a ∈ E, E[a] is in tight-sets[B′]. Later, we show that E[a] is the smallest set in
tight-sets[B′] containing a, which will prove our claim. For the sake of contradiction, assume that
E[a] is not in tight-sets[B′]. Then, from Lemma 6.1, there exists an edge (b, c) in G[B′] such that
b ∈ E[a] and c ∈ E \E[a]. This implies that c is also reachable from a. This is a contradiction since
c ∈ E \E[a]. Hence, E[a] ∈ tight-sets[B′]. Now, we show that E[a] is the smallest set in tight-sets[B′]
containing a. Let Ea be the smallest set in tight-sets[B′]. Then, Ea is a subset of E[a]. Otherwise,
Ea ∩E[a] is a much smaller set containing a in tight-sets[B′] since tight-sets[B′] is a lattice family
over E (Corollary 4.9). Since Ea ∈ tight-sets[B′], from Lemma 6.1, there exists no directed edge
from Ea to E \Ea in the graph G[B′]. Hence, no vertex in E \Ea is reachable from a in G[B′]. This
implies that E[a] is a subset of Ea. Therefore, E[a] = Ea.

Now we show that the set of strongly connected components in G[B′] is same as partition[B′].
Using Lemma 4.3, the elements of partition[B′] can be written in a sequence

(S1, S2, . . . , S`)

such that for all k ∈ [`], ∪kj=1Sj is a set in tight-sets[B′]. Let a be an element from Sk for some

k ∈ [`]. Let SL be the union of all the sets on the left of Sk , that is SL = ∪k−1
j=1Sj . Let SR be the

union of all the sets on right of Sk, that is SR = ∪`j=k+1Sj . Let b be an element in E. Now we
divide our proof into the following cases.

2In [Sch03, Chapter], the digraph representation is described in terms of a pre-order � on E defined as follows:
a � b if and only if (b, a) is an edge in GL.
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1. When b ∈ SL: Since SL ∈ tight-sets[B′], from Lemma 6.1, there is no directed edge from SL
to E \ SL. Hence, there is no directed path from b to a in G[B′].

2. When b ∈ SR: Let SC = SL ∪ Sk. Since SC ∈ tight-sets[B′], like the previous case, we can
show that there exists no directed path from a to b in G[B′].

3. When b ∈ Sk: Since E[a] ∈ tight-sets[B′], from Lemma 4.3, E[a] is a union of some sets from
partition[B′]. Also, the union must contain the set Sk since the sets in partition[B′] are disjoint.
Hence, b ∈ E[a]. This implies that there exists a directed path from a to b in G[B′]. Similarly,
we can show that there exists a directed path from b to a in G[B′].

Hence, for any two vertices a, b in the graph G[B′], there are directed paths both from a to b and
from b to a if and only if both a and b belong to the same set in partition[B′]. Therefore, the set of
strongly connected components in G[B′] is same as partition[B′].

Now we show that tight-sets[B′] is same as tight-sets[FB′ ]. Since B′ is a subset of FB′ , tight-sets[FB′ ]
is a subset of tight-sets[B′]. Let F be the face of P (B) defined as follows: for all x ∈ RE , x is in F if
and only if for all S ∈ tight-sets[B′], x(S) = r(S). Then B′ is a subset of F , and thus, tight-sets[B′] is
same as tight-sets[F ]. On the other hand, F is a subset of FB′ since FB′ is the minimal face containing
B′. Therefore tight-sets[F ] is a subset of tight-sets[FB′ ]. Thus tight-sets[B′] = tight-sets[FB′ ]. This
implies that prime-sets[B′] = prime-sets[FB′ ] and partition[B′] = partition[FB′ ], which completes our
proof.

Now we extend our previous two lemmas for the matroid intersection. It will be crucially used in
our work. First we extend the definition of our graph, used in the previous lemmas, for the matroid
intersection. Suppose that M1 = (E, I1) and M2 = (E, I2) are the two matroids with B1 and B2 are
the family of bases, respectively. Let B ⊆ B1 ∩ B2 be a set of common bases of M1 and M2. Then
for every i ∈ [2] we define a directed graph, denoted by Gi[B], as follows: the vertex set is same as
the ground set E, and for a, b ∈ E, (a, b) is an edge of Gi[B] if and only if

there exists a base B ∈ B such that b ∈ B and (B \ {b}) ∪ {a} is also a base of Mi.

For matroid intersection we show the following lemma.

Lemma 6.3. Let M1 = (E, I1) and M2 = (E, I2) be two matroids with B1 and B2 be the family of
bases, and r1 and r2 be the rank functions, respectively. Let B ⊆ B1 ∩ B2 be a set of common bases
of M1 and M2. Let FB be the minimal face of P (B1 ∩ B2) containing B. For all i ∈ [2] and a ∈ E,
let Ei[a] be the set of vertices reachable from a in the graph Gi[B]. Then for all i ∈ [2],

1. a subset S of E is in tight-setsi[B] if and only if there is no directed edge from S to E \ S in
the graph Gi[B].

2. prime-setsi[FB] = {Ei[a] | a ∈ E}.

3. the set of all strongly connected components in Gi[B] is same as partitioni[FB].

Proof. From the equations 8, 9 and 10, one can show that the face FB can be defined as F1 ∩ F2

where for i ∈ [2], Fi is the minimal face of P (Bi) containing B. Now applying Lemma 6.1 and 6.2,
we get the above one.
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7 An RNC-algorithm to compute the max-weight face

Suppose that M1 = (E, I1) and M2 = (E, I2) are two matroids with r1 and r2 are the rank functions
and B1 and B2 are the set of bases, respectively. Let m = |E|. Let w be a weight assignment on E
with polynomially large weights, and Fw is the maximizing face of P (B1 ∩B2) with respect to w. In
this section, we describe a randomized NC algorithm to compute prime-setsi[Fw] and partitioni[Fw]
for all i ∈ [2], provided that the algorithm has an oracle access to weighted-decision-MI.

Our idea is the following: We start from a random vertex B in Fw (or, equivalently, a random
common base in Fw), and inductively construct a chain of subset of bases from Fw

{B} = B0 ⊆ B1 ⊆ · · · ⊆ B`

such that the minimal face containing B` is same as Fw and ` = dlogme. Then, using Lemma 6.3,
for all i ∈ [2] we can compute prime-setsi[Fw] and partitioni[Fw] from the graph Gi[B`] in NC. Now
we briefly discuss how to construct the set Bj for all j ∈ [`]. For all j ∈ {0, . . . , `}, let Fj denotes
the minimal face containing Bj . For all j ∈ [`], the set Bj contains the elements in Bj−1 with the

following extra elements: For all i ∈ [2] A ∈ partitioni[Fj−1], if exists, we add a base B
(A)
ij from the

face Fw with the property

|A ∩B(A)
ij | 6= N

Fj−1

i (A).

From Lemma 4.11, we know that for all i ∈ [2] A ∈ partitioni[Fj−1], every base in Fj−1 contains

exactly N
Fj−1

i (A) many elements from A. However, our property on B
(A)
ij says that we want a base

from Fw which violates that condition, and Lemma 5.4 ensures that, if exists, we can compute
such a base in randomized NC using the oracle access to weighted-decision-MI. In Algorithm 1, we
describe all the steps to compute prime-setsi[Fw] and partitioni[Fw] for all i ∈ [2].

7.1 Correctness

Now we discuss about the correctness of Algorithm 1. First, we describe some notations which will
be used in our proofs. Let ` = dlogme. For all j ∈ {0, 1, . . . , `} i ∈ [2] S ∈ partitioni[Fw],

• W(S)
ij denotes the set

{A ∈ partitioni[Fj ] | A ∩ S 6= ∅} .

Since Fj is a subface of Fw, using Corollary 4.10, we get that tight-setsi[Fw] is a sublattice of

tight-setsi[Fj ]. Therefore, Lemma 4.4 ensures that W(S)
ij is a partition of S.

• I(S)
ij denotes the set{

A ∈ W(S)
ij | ∃ a base B in Fw s.t. |B ∩A| 6= N

Fj

i (A)
}
.

From Lemma 4.11, we know that every base B from Fj contains exactly N
Fj

i (A) many elements

from every A ∈ W(S)
ij . On the other hand, I(S)

ij denotes the following subset of W(S)
ij : For all

A ∈ W(S)
ij , A ∈ I(S)

ij if and only if there exists a base from Fw which violates the numerical
constraint on A satisfied by the bases in Fj .

In the next lemma, we describe an invariant satisfied by I(S)
ij as the for loop in Algorithm 1 moves

from (j − 1)th iteration to jth iteration. This helps us to argue how quickly the subface Fj becomes
equal to the face Fw.
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Algorithm 1 Computing prime sets and partitions corresponding to a max-weight face

Input: Two matroids M1 = (E, I1), M2(E, I2), and a weight assignment w : E → Z≥0.
Output: prime-setsi[Fw] and partitioni[Fw] for all i ∈ [2], where Fw denotes the max-weight face.
Assumption: Oracle access to weighted-decision-MI.

1: Compute a base B in Fw.
2: B0 ← {B}.
3: for all i ∈ [2] do in parallel
4: Compute the graph Gi[B0].
5: Let F0 be the minimal face containing B0.
6: Compute prime-setsi[F0], partitioni[F0] and NF0

i .
7: end for
8: for j ← 1 to dlogme do
9: Bj ← Bj−1.

10: for all i ∈ [2] do in parallel
11: for all A ∈ partitioni[Fj−1] do in parallel

12: If exists, compute a base B
(A)
ij in Fw such that

|A ∩B(A)
ij | 6= N

Fj−1

i (A).

13: Bj ← Bj
⋃{

B
(A)
ij

}
.

14: end for
15: end for
16: for all i ∈ [2] do in parallel
17: Let Fj be the minimal face containing Bj .
18: Compute prime-setsi[Fj ], partitioni[Fj ] and N

Fj

i using Lemma 6.3.
19: end for
20: end for
21: return prime-setsi[F`] and partitioni[F`] for i ∈ [2] and ` = dlogme.
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Lemma 7.1 (Invariant). Let m = |E|, and ` = dlogme. Then for all j ∈ [`] i ∈ [2] S ∈
partitioni[Fw], either

I(S)
ij = ∅,

or
min
A∈I(S)

ij

|A| ≥ 2 · min
A∈I(S)

i(j−1)

|A|.

Proof. For some j ∈ [`] i ∈ [2] S ∈ partitioni[Fw], let I(S)
ij be nonempty and A be an element from

I(S)
ij . First, we show that A is a disjoint union of sets from W(S)

i(j−1). Since Fj is a subface of Fw,

from Corollary 4.10, tight-setsi[Fw] is a sublattice of tight-setsi[Fj ]. Therefore, applying Lemma

4.4, we get that W(S)
ij is a partition of S. Hence, A is a subset of S. This implies that W(S)

i(j−1)

contains all the sets in partitioni[Fj−1] which have nonempty intersection with A ∈ partitioni[Fj ].
Also, tight-setsi[Fj−1] is a sublattice of tight-setsi[Fj ] since Fj−1 is a subface of Fj . Therefore, from

Lemma 4.4, the set A can be written as ∪sk=1Ak where each Ak is a set from W(S)
i(j−1). Our goal is

to show that at least two sets in {A1, . . . , As} are from I(S)
i(j−1) which will complete our proof.

As a first step, we show that there exists at least a k ∈ [s] such that Ak is from I(S)
i(j−1). For the

sake of contradiction, assume that no such k exists. Then for every base B in the face Fw contains

exactly
∑s

k=1N
Fj−1

i (Ak) elements from A. From Lemma 4.11, every base C in Fj−1 contains exactly

N
Fj−1

i (Ak) many elements from Ak for all k ∈ [s]. On the other hand, Fj−1 is a subface of Fj .
Therefore, C is also a base in Fj . Hence, again applying Lemma 4.11, we get that C contains exactly

N
Fj

i (A) many elements from A. Thus,

N
Fj

i (A) =
s∑

k=1

N
Fj−1

i (Ak). (12)

This implies that every base B in the face Fw also contains exactly N
Fj

i (A) elements from A.

Therefore A is a set from W(S)
ij \ I

(S)
ij , which is a contradiction. Hence, without loss of generality,

assume As ∈ I(S)
i(j−1). Next we show that {A1, . . . , As−1} also contains a set from I(S)

i(j−1).

For the sake of contradiction, assume that for all k ∈ [s− 1], Ak is a set from W(S)
i(j−1) \ I

(S)
i(j−1).

Therefore, every base B in Fw contains exactly N
Fj−1

i (Ak) many elements from Ak for all k ∈ [s−1].

Since As is a set from I(S)
i(j−1), the step 12 of Algorithm 1 promises that there exists a base B

(As)
ij in

Bj such that

|As ∩B(As)
ij | 6= N

Fj−1

i (As).

On the other hand, since B
(As)
ij is a base in Bj ,

|A ∩B(As)
ij | = N

Fj

i (A) = |As ∩B(As)
ij |+

s−1∑
k=1

N
Fj−1

i (Ak). (13)

From Equation 12 and 13,

|As ∩B(As)
ij | = N

Fj−1

i (As),

which is a contradiction. Therefore, there exists a k ∈ [s − 1] such that Ak is in I(S)
i(j−1). This

completes our proof.
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Our next lemma tells what happens when in the above lemma I
(S)
ij becomes empty. It will be

helpful to prove the successful termination of Algorithm 1.

Lemma 7.2. Let m = |E| and ` = dlogme. For some j ∈ {0, 1, . . . , `} i ∈ [2] S ∈ partitioni[Fw],

let I(S)
ij be the empty set. Then W(S)

ij = {S}, that is S ∈ partitioni[Fj ].

Proof. For the sake of contradiction, assume that W(S)
ij = {A1, . . . , As} where s ≥ 2. Since Fj is a

subface of Fw, from Corollary 4.10, tight-setsi[Fw] is a sublattice of tight-setsi[Fj ]. Therefore, from
Lemma 4.4, {A1, . . . , As} is a partition of S. From Lemma 4.3, the elements of partitioni[Fw] can
be written as a sequence

(S1, . . . , S`)

such that for all k ∈ [`], ∪kr=1Sr is in tight-setsi[Fw]. Let S = Sk for some k ∈ [`], and SL = ∪k−1
r=1Sr.

Similarly, the elements of partitioni[Fj ] can also be written as a sequence

(T1, . . . , Tn) (14)

such that for all k ∈ [n], ∪kr=1Tr is in tight-setsi[Fj ]. Without loss of generality, assume that

among all the sets in W(S)
ij , A1 appears first in the sequence. Let Tk = A1 for some k ∈ [n], and

TL = ∪k−1
r=1Tr. Let a be an element in A1. Let Ea and E′a be the smallest sets in tight-setsi[Fw]

and tight-setsi[Fj ], respectively, containing a. Since SL ∈ tight-setsi[Fw] and tight-setsi[Fw] is a
sublattice of tight-setsi[Fj ], SL is also in tight-setsi[Fj ]. Our overall goal is to show that SL ∪A1 is
in tight-setsi[Fw], which will give us contradiction. As a first step, we prove that that SL ∪A1 is an
element in tight-setsi[Fj ].

To show SL ∪ A1 is in tight-setsi[Fj ], first we prove that E′a is a subset of SL ∪ A1. Since
tight-setsi[Fw] is a sublattice of tight-setsi[Fj ], from Lemma 4.4, E′a is a subset of Ea. Also, Ea is a
subset of SL ∪ S since both of them are sets in tight-setsi[Fw] containing a and the former is the
smallest such set. Therefore,

E′a ⊆ SL ∪ S. (15)

From Sequence 14, we know that TL ∪A1 is in tight-setsi[Fj ] containing a. Since E′a is the smallest
set in tight-setsi[Fj ] containing a,

E′a ⊆ TL ∪A1. (16)

From Equation 15 and 16, we get that

E′a ⊆ (SL ∪ S) ∩ (TL ∪A1)

= (SL ∩ TL) ∪ (SL ∩A1) ∪ (S ∩ TL) ∪ (S ∩A1)

= (SL ∩ TL) ∪A1, since SL ∩A1 = S ∩ TL = ∅ and A1 ⊆ S
⊆ SL ∪A1.

Since both SL and E′a are in tight-setsi[Fj ], SL ∪ E′a is also in tight-setsi[Fj ]. The set SL ∪ E′a is a
subset of SL ∪A1 since E′a is a subset of SL ∪A1. From Lemma 4.11, we know that every element
in tight-setsi[Fj ] can be written as a disjoint union of sets from partitioni[Fj ]. Hence, A1 is a subset
of E′a. Therefore, SL ∪ A1 is a subset of SL ∪ E′a, which implies that SL ∪ E′a = SL ∪ A1. Hence,
SL ∪A1 is in tight-setsi[Fj ].

Now we show that SL ∪ A1 is also in tight-setsi[Fw]. Since both SL and SL ∪ A1 are in
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tight-setsi[Fj ], for every base B in the face Fj the following holds:

|B ∩ (SL ∪A1)| = ri(SL ∪A1)

= |B ∩ SL|+ |B ∩A1|, since SL ∩A1 = ∅

= ri(SL) +N
Fj

i (A1).

On the other hand, SL is also in tight-setsi[Fw]. Hence, for all base C in Fw, the cardinality of C∩SL
is same as ri(SL). Since the set I(S)

ij is empty, again for every base C in Fw, |C ∩A1| = N
Fj

i (A1).
Therefore for every base C in Fw,

|C ∩ (SL ∪A1)| = ri(SL) +N
Fj

i (A1) = ri(SL ∪A1),

which implies that SL ∪ A1 is also in tight-setsi[Fw]. This is a contradiction since from Lemma
4.11, any set in tight-setsi[Fw] containing an element from S must contain the whole set S. Thus,

W(S)
ij = {S}, which completes our proof.

Lemma 7.3 (Termination). Let m = |E|, and ` = dlogme. Then F` = Fw.

Proof. Since the set B` is formed by taking bases from Fw, the face F` is a subface of Fw. Lemma 7.1

implies that after `th iteration of the for loop, I(S)
i` = ∅ for all i ∈ [2] S ∈ partitioni[Fw]. Otherwise,

I(S)
i` contains a set of size greater than m, which is a contradiction. Now applying Lemma 7.2 we

get that W(S)
i` = {S} for all i ∈ [2] S ∈ partitioni[F`]. This implies that partitioni[F`] is same as

partitioni[Fw]. Let B be a base in F`. Therefore B is also base in Fw. Now applying Lemma 4.11,
we get that for all i ∈ [2] S ∈ partitioni[F`],

NF`
i (S) = |S ∩B| = NFw

i (S).

Again, from Lemma 4.11, we know that a common base B (of M1 and M2) is in F` if and only if for
all i ∈ [2] S ∈ partitioni[F`],

NF`
i (S) = |B ∩ S|,

which is also satisfied by every base present in Fw. Therefore, Fw is a subset of F`. Thus, F` = Fw.
This completes our proof.

From the above lemma, at the end of `th iteration of the for loop, prime-setsi[F`] = prime-setsi[Fw]
and partitioni[F`] = partitioni[Fw] for all i ∈ [2]. They can be computed using the graph theoretic
characterization given in Lemma 6.3.

7.2 Time Complexity and Success Probability

In Algorithm 1, for all j ∈ {0, 1, . . . , `}, we use Lemma 6.3 to compute prime-setsi[Fj ] and
partitioni[Fj ] for all i ∈ [2]. Hence, we need to compute the graph Gi[Bj ] for all i ∈ [2]. Our
next lemma describes the time complexity of computing the graph Gi[Bj ].

Lemma 7.4. Let M1 = (E, I1) and M2 = (E, I2) be two matroids with the family of bases B1 and
B2, respectively. Let B be a polynomially large subset of B1 ∩ B2. Then, given M1, M2 and B as
inputs, the graph Gi[B] for all i ∈ [2] can be computed in NC, provided that the algorithm has an
oracle access to weighted-decision-MI.
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Proof. Let i ∈ [2]. Let a, b be two elements from E, and B be a base from B. First we show that
how to decide whether B′ = (B \ {b}) ∪ {a} is a base of the matroid Mi. It is not hard to see that
B′ is a base of Mi if and only if the weight of the maximum weight base in Mi with respect to the
weight assignment 1B′ is equal to |B|. Also, the weight of the maximum weight base with respect
to 1B′ can be at most |B|. Therefore using a single oracle call to weighted-decision-MI we can decide
whether B′ is a base of Mi. Observe that in the input of the oracle both matroids will be Mi. From
the definition of Gi[B], (a, b) is an edge of it if and only if there exists a base B ∈ B containing b
such that B′ = (B \ {b}) ∪ {a} is a base of Mi . Therefore, in parallel, for all a, b ∈ E and B ∈ B
we check whether b ∈ B and B′ = (B \ {b}) ∪ {a} is base of Mi. Thus, we get all the edges of Gi[B]
in NC.

Now we show that Algorithm 1 runs in randomized NC. Also, we show that for every positive
integer c, the success probability of the algorithm can be made at least 1− 1

mc , where m = |E|. Let
c0 = c+ 2, and ` = dlogme. Then using Lemma 5.3, we can compute the set B0 in randomized NC
with probability at least 1− 1

mc0 . Let j ∈ [`]. At jth iteration, applying Lemma 5.4, we can compute

B
(A)
ij in randomized NC with probability 1− 1

mc0 for all i ∈ [2] and A ∈ partitioni[Fj−1]. The size
of the family partitioni[Fj−1] can be at most m. Thus, using union bound we get that the set Bj ,
assuming Bj−1 is successfully computed, can be computed in randomized NC with probability at
least 1− 2m

mc0 . Therefore, using union bound we get that for all j ∈ {0, 1, . . . , `}, the set Bj can be

computed with probability at least 1− O(`m)
mc0 . Next, assuming all Bjs are perfectly computed, we

show that the other steps can be done in NC.
Let j ∈ {0, 1, . . . , `}. From Lemma 6.3, we know that for all i ∈ [2],

1. prime-setsi[Fj ] = {Ei[a] | a ∈ E}, where Ei[a] is the set vertices reachable from a in the graph
Gi[Bj ], and

2. partitioni[Fj ] is same as the set of strongly connected components in Gi[Bj ].

Using Lemma 7.4, for all i ∈ [2], the graph Gi[Bj ] can be computed in NC. Given a directed graph
G and a vertex a, the set of vertices reachable from a in G can be computed in NC. Also, all
the strongly connected components of G can be computed in NC. Therefore, prime-setsi[Fj ] and

partitioni[Fj ] for all i ∈ [2] can be computed in NC. The function N
Fj

i can be computed in NC
by computing |B ∩ A|, for some B ∈ Bj , in parallel for all A ∈ partitioni[Fj ]. Thus, Algorithm 1
computes prime-setsi[Fw] and partitioni[Fw] for all i ∈ [2] in randomized NC with success probability
at least 1− 1

mc .
The above discussions can be summarized in the following theorem.

Theorem 7.5. Let M1 = (E, I1) and M2 = (E, I2) be two matroids with B1 and B2 be the family
of bases, respectively. Let w be a weight assignment on E with polynomially bounded weights, and
Fw be the maximizing face of P (B1 ∩ B2) with respect to w. Then, given M1, M2 and w as inputs,
Algorithm 1 computes prime-setsi[Fw] and partitioni[Fw] for all i ∈ [2] in randomized NC, provided
that the algorithm has an oracle access to weighted-decision-MI. Furthermore, for all positive integer
c, the success probability of the algorithm can be made at least 1− 1

mc , where m = |E|.

8 The Oracle based Algorithm

Suppose that M1 = (E, I1) and M2 = (E, I2) are two matroids with r1 and r2 are the rank functions
and B1 and B2 are the family of bases, respectively. Let m = |E|, and ` = dlogme. We are interested
in designing a pseudo-deterministic NC algorithm to compute a common base B ∈ B1∩B2, provided
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that the algorithm has an oracle access to weighted-decision-MI. Briefly, our strategy will be the
following: We start with an weight assignment w0 such that the maximizing face of P (B1 ∩ B2)
with respect to w0 is same as the polytope itself. Then, starting from w0, we design a sequence of
weight assignments

w0,w1, . . . ,w`

such that the maximizing face with respect to w` has a unique base and our algorithm will output
it. For all j ∈ {0, 1, . . . , `}, Fj will denote the maximizing face of P (B1 ∩ B2) with respect to the
weight fuction wj . The detailed steps of our algorithm are given in Algorithm 2.

Algorithm 2 Pseudo-deterministic NC algorithm for computing a common base of two matroids

Input: Two matroids M1 = (E, I1) and M2 = (E, I2).
Output: A common base of M1 and M2, if exists.
Assumption: Oracle access to weighted-decision-MI.

1: w0 ← 1.
2: for j ← 1 to dlogme do
3: Compute a family of weight assignments W as promised by Lemma 4.16.
4: for all w ∈ W do in parallel
5: As mentioned in Section 4.4, combine wj−1 and w with descending order in precedence.
6: For a w ∈ W, let w′ be the combined weight.
7: Let Fw′ be the maximizing face of P (B1 ∩ B2) with respect to w′.
8: For all i ∈ [2], compute prime-setsi[Fw′ ] and partitioni[Fw′ ] using Algorithm 1.
9: Compute the graph G[Fw′ ] and the length of its shortest cycles.

10: end for
11: Take some fixed ordering on W, like lexicographic ordering.
12: Take the smallest w such that the length of the shortest cycle in G[Fw′ ] > 2j .
13: Using Lemma 8.1, compute wj from prime-sets1[Fw′ ] and prime-sets2[Fw′ ] such that

Fj = Fw′ .

14: end for
15: Compute the base present in the face Fdlogme and output.

8.1 Correctness

Our next lemma will be crucially used to compute wj from w′ at step 13 of Algorithm 2.

Lemma 8.1. Let M1 = (E, I1) and M2 = (E, I2) be two matroids with the family of bases B1 and
B2, respectively. Let F be a face of the polytope P (B1 ∩ B2). Then there exists a weight assignment
w on E with the following properties:

1. The face F is same as the set of points in P (B1 ∩ B2) maximizing the weight assignment w.

2. Weights are bounded by O(|E|).

3. Given prime-sets1[F ] and prime-sets2[F ], w can be computed in NC.
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Proof. Consider the weight assignment defined as

w =
2∑
i=1

∑
S∈prime-setsi[F ]

1S .

Now we show that w is our desired weight assignment. Let Fw be the maximizing face of P (B1∩B2)
with respect to w. From the description of the polytope P (B1 ∩ B2), we know that for all i ∈ [2]
S ⊆ E and x ∈ P (B1 ∩ B2), 〈1S ,x〉 ≤ ri(S). Therefore, for all x ∈ P (B1 ∩ B2),

〈w,x〉 ≤
2∑
i=1

∑
S∈prime-setsi[F ]

ri(S).

Since F is nonempty and 〈1S ,x〉 = ri(S) for all x ∈ F i ∈ [2] S ∈ prime-setsi[F ],

max
x∈P (B1∩B2)

〈w,x〉 =

2∑
i=1

∑
S∈prime-setsi[F ]

ri(S).

This implies that F is a subset of Fw and for all i ∈ [2], prime-setsi[F ] is a subset of tight-setsi[Fw].
Therefore, from Corollary 4.10, tight-setsi[Fw] is a sublattice of tight-setsi[F ] for all i ∈ [2]. Also,
from Lemma 4.2, tight-setsi[F ] is a subset of tight-setsi[Fw] for all i ∈ [2]. Therefore, tight-setsi[F ] =
tight-setsi[Fw] for all i ∈ [2].

Let a ∈ E such that xa = 0 for all x ∈ F . We show that xa = 0 for all x ∈ Fw. From
Lemma 4.11, a appears as a singleton set in partitioni[F ] with NF

i ({a}) = 0 for all i ∈ [2]. Since
tight-setsi[F ] = tight-setsi[Fw] for all i ∈ [2], partitioni[F ] is same as partitioni[Fw] for all i ∈ [2].
Therefore a also appears as a singleton set in partitioni[Fw] for all i ∈ [2]. Now if NFw

i ({a}) is not
equal to zero for some i ∈ [2], then it must be one. This implies that {a} is in tight-setsi[Fw]. Thus
it is also in tight-setsi[F ], which contradicts that NF

i ({a}) = 0. Therefore, NFw
i ({a}) is equal to

zero for all i ∈ [2]. This implies that xa = 0 for all x ∈ Fw. Thus F is subface of Fw, which implies
F = Fw. The other two properties of w directly follows from the definition of w.

Suppose that for all j ∈ {0, 1, . . . , `}, CFj denotes the set of all the cycles with respect to the
face Fj . Our next lemma shows that as we move jth iteration to (j + 1)th iteration, the length of
the smallest cycles in CFj+1 becomes doubled.

Lemma 8.2. The set CFj has no cycle of length ≤ 2j for all j ∈ {0, 1, . . . , `}.

Proof. We prove the lemma using induction. For j = 0, it is clearly true since the length of any
cycle is greater than one. Now assume that for some j ∈ [`], CFj−1 has no cycle of length ≤ 2j−1.
From Lemma 4.16, W contains a weight assignment such that it gives nonzero circulation to all
the cycles in CFj−1 of length at most 2j . With respect to the ordering defined on W, let w be the
smallest weight assignment having such property. Let w′ be the combined weight of wj−1 and w
with decreasing precedence. Then from Lemma 4.7, Fw′ is the face which contains the maximizing
points in Fj−1 with respect to w. Therefore, from Lemma 4.15, the length of any cycle with respect
to the face Fw′ is greater than 2j . Lemma 8.1 promises that Fw′ is same as Fj , which completes
our proof.

Now we show that our algorithm is pseudo-deterministic. The step 8 of Algorithm 2 is the only
place where randomness is used. This randomness is used by Algorithm 1 to compute prime-setsi[Fw′ ]
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and partitioni[Fw′ ] for all i ∈ [2]. For a face F of P (B1∩B2) and i ∈ [2], prime-setsi[F ] and partitioni[F ]
is unique. Thus, after `th iteration, the face F` also becomes unique with high probability. Also,
from Lemma 8.2, CF`

= ∅ since the length of any cycle can be at most m. Hence, from Lemma 4.13,
F` contains a unique common base of both M1 and M2, and applying Lemma 5.3, we can compute
it. Thus, our algorithm outputs the same common base of M1 and M2 with high probability, and is
therefore pseudo-deterministic.

8.2 Time Complexity and Success Probability

Now we show that Algorithm 2 runs in randomized NC. From Lemma 4.16, the family of weight
assignments W can be computed in NC. For all w ∈ W, the combined weight assignment w′ (of w
and wj) is also computable in NC. Computing prime-setsi[Fw′ ] and partitioni[Fw′ ], for all i ∈ [2],
can be done in RNC using Algorithm 1. From the definition (see Section 4.6), it not hard to see
that the graph G[Fw′ ] is computable in NC. Given a graph G, the length of its shortest cycles
can be computed in NC. Hence, the length of the shortest cycles of G[Fw′ ] is computable in NC.
Using Lemma 8.1, the weight wj at step 13 can be computed in NC from prime-sets1[Fw′ ] and
prime-sets2[Fw′ ]. Thus, each iteration of the for loop can be done in RNC. Applying Lemma 5.3, the
base in Fw`

is computable in NC. Since the for loop runs for dlogme many rounds, our algorithm
runs in RNC.

Now we analysis the success probability of our algorithm. More specifically, every positive
integer c, we show that the success probability of the algorithm can be made 1− 1

mc . Let c0 = c+ 7.
Algorithm 1, called at step 8, is the only place where randomness is used. At each call of Algorithm
1, run it with success probability probability 1 − 1

mc0 . From Lemma 4.16, the size of the weight
assignment family W is m6. Hence the total number of calls to Algorithm 1 is bounded by `m6.
Therefore, by the union bound the success probability of all the executions of Algorithm 1 is at
least 1− `m6

mc0 , which is ≥ 1− 1
mc . Since all other steps are deterministic, the success probability of

our algorithm is at least 1− 1
mc .

From the above discussions, we can conclude that

Theorem 1.3 (restated). There is a pseudo-deterministic NC algorithm for finding a common
base of two matroids M1 and M2 on the same ground set E, provided that the algorithm has an
oracle access to the following decision question: given two matroids with polynomially bound (in
|E|) weights on the ground set elements and a target weight W , is there a common base of weight at
least W? Furthermore, the oracle calls need to be made only for the following pairs of matroids:
〈M1,M2〉, 〈M1,M1〉, and 〈M2,M2〉.

From Lemma 4.19, weighted-decision-MI has an RNC algorithm when the input matroids are
linear matroids. Hence,

Theorem 1.2 (restated). The search version of the linear matroid intersection problem has
a pseudo-deterministic NC algorithm.
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[Ore22] Øystein Ore. Über höhere Kongruenzen. Norsk Mat. Forenings Skrifter Ser. I, 7(15):27,
1922. 2

[Oxl06] James G. Oxley. Matroid Theory (Oxford Graduate Texts in Mathematics). Oxford
University Press, Inc., New York, NY, USA, 2006. 15

[San18] Piotr Sankowski. NC algorithms for weighted planar perfect matching and related
problems. In Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and Donald
Sannella, editors, 45th International Colloquium on Automata, Languages, and Pro-
gramming, ICALP 2018, July 9-13, 2018, Prague, Czech Republic, volume 107 of LIPIcs,
pages 97:1–97:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. 4, 8

[Sch80] J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities. J.
ACM, 27(4):701–717, October 1980. 2

[Sch03] Alexander Schrijver. Combinatorial optimization : polyhedra and efficiency. Vol. B. ,
Matroids, trees, stable sets. chapters 39-69. Algorithms and combinatorics. Springer-
Verlag, Berlin, Heidelberg, New York, N.Y., et al., 2003. 4, 9, 10, 15, 16, 25, 26

[ST17] Ola Svensson and Jakub Tarnawski. The matching problem in general graphs is in
quasi-nc. In 58th IEEE Annual Symposium on Foundations of Computer Science, FOCS
2017, Berkeley, CA, USA, October 15-17, 2017, pages 696–707, 2017. 3, 4, 10, 17, 22

[Sta11] Richard P. Stanley. Enumerative Combinatorics, volume 1 of Cambridge Studies in
Advanced Mathematics. Cambridge University Press, 2 edition, 2011. 13

[Sub95] Ashok Subramanian. A polynomial bound on the number of light cycles in an undirected
graph. Information Processing Letters, 53(4):173 – 176, 1995. 7

[TV12] Raghunath Tewari and N. V. Vinodchandran. Green’s theorem and isolation in planar
graphs. Information and Computation, 215:1–7, 2012. 3

39



[Wig94] Avi Wigderson. Nl/poly <= +/poly (preliminary version). In Proceedings of the Ninth
Annual Structure in Complexity Theory Conference, Amsterdam, The Netherlands, June
28 - July 1, 1994, pages 59–62. IEEE Computer Society, 1994. 12

[Zen93] Jiang Zeng. A bijective proof of Muir’s identity and the Cauchy-Binet formula. Linear
Algebra and its Applications, 184:79–82, 1993. 22

[Zip79] Richard Zippel. Probabilistic algorithms for sparse polynomials. In Proceedings of
the International Symposium on Symbolic and Algebraic Computation, EUROSAM ’79,
pages 216–226, 1979. 2

40
ECCC   ISSN 1433-8092 

https://eccc.weizmann.ac.il


