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Abstract

Consider property testing on bounded degree graphs and let ε > 0 denote the proximity
parameter. A remarkable theorem of Newman-Sohler (SICOMP 2013) asserts that all properties
of planar graphs (more generally hyperfinite) are testable with query complexity only depending
on ε. Recent advances in testing minor-freeness have proven that all additive and monotone
properties of planar graphs can be tested in poly(ε−1) queries. Some properties falling outside
this class, such as Hamiltonicity, also have a similar complexity for planar graphs. Motivated
by these results, we ask: can all properties of planar graphs can be tested in poly(ε−1) queries?
Is there a uniform query complexity upper bound for all planar properties, and what is the
“hardest” such property to test?

We discover a surprisingly clean and optimal answer. Any property of bounded degree planar
graphs can be tested in exp(O(ε−2)) queries. Moreover, there is a matching lower bound, up
to constant factors in the exponent. The natural property of testing isomorphism to a fixed
graph requires exp(Ω(ε−2)) queries, thereby showing that (up to polynomial dependencies)
isomorphism to an explicit fixed graph is the hardest property of planar graphs. The upper
bound is a straightforward adapation of the Newman-Sohler analysis that tracks dependencies
on ε more carefully. The main technical contribution is the lower bound construction, which is
achieved by a special family of planar graphs that are all mutually far from each other.

We can also apply our techniques to get analogous results for bounded treewidth graphs.
We prove that all properties of bounded treewidth graphs can be tested in exp(O(ε−1 log ε−1))
queries. Moreover, testing isomorphism to a fixed forest requires exp(Ω(ε−1)) queries.

1 Introduction

Consider the setting of property testing for bounded degree graphs, under the model of random
access to a graph adjacency list, as introduced by Goldreich-Ron [GR02]. Let G = (V,E) be a
graph where V = [n] and the maximum degree is d. We have random access to the list through
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neighbor queries. There is an oracle that, given v ∈ V and i ∈ [d], returns the ith neighbor of v (if
no neighbor exists, it returns ⊥).

For a property P of graphs with degree bound d, the distance of G to P is the minimum number
of edge additions/removals required to make G have P, divided by dn. We say that G is ε-far from
P if the distance to P is more than ε. A property tester for P is a randomized procedure that takes
as input (query access to) G and a proximity parameter, ε > 0. If G ∈ P, the tester must accept
with probability at least 2/3. If G is ε-far from P, the tester must reject with probability at least
2/3. In our context, the property P is called testable if there exists a property tester for P whose
query complexity is independent of n.

One of the grand goals of property testing is to classify testable (graph) properties according to
the query complexity of testing them. Of special interest are efficiently testable properties, whose
testing complexity is poly(ε−1). For bounded degree graphs, there is little clarity on this issue. A
recent survey by Goldreich states: “Indeed, it is hard to find a common theme among [efficiently
testable] properties...”. [Gol21]

Our work focuses on properties of planar graphs. Even the problem of just testing planarity has
received much attention, whose complexity has only recently been shown to be poly(ε−1) [BSS08,
HKNO09, EHNO11, YI15, LR15, KSS19]. Newman-Sohler proved that every planar property
(actually, every hyperfinite property) is testable, but they do not provide an explicit complexity
bound depending on ε [NS13]. Kumar-Seshadhri-Stolman recently showed that every additive and
monotone planar property can tested in poly(ε−1) queries [KSS19]. Applying techniques from this
result, Levi-Shoshan showed that planar Hamiltonicity can be tested efficiently [LS21]. The latter
property is neither additive nor monotone, so it is natural to ask if all planar properties can be
tested efficiently. If not, does there exist a uniform complexity bound for all planar properties,
and a candidate for the “hardest planar property”? (We note that there is significant work on
characterizing testable planar properties, for the unbounded degree case, which is qualitatively
different [CMOS11, CS19]. Details are given in §1.2.)

We discover that the answer to this question is the query complexity bound exp(Θ(ε−2)). Up
to constant factors in the exponent, the hardest planar property is testing isomorphism to a fixed
explicit graph.

Let us give some formalism, and discuss the connection to isomorphism. In our discussions,
n is basically fixed, so we are considering a non-uniform setting. A planar property Π is a set of
unlabeled bounded degree planar graph with n vertices. The input G is a labeled graph and the
tester is trying to property test if G is isomorphic (or equal to, if one ignores the labels) to any
member of Π. Observe that singleton properties, where Π = {H}, are equivalent to testing if G is
isomorphic to an fixed graph H. With this premable, we can state our main results.

Our upper bound is a straightforward adaptation of arguments in Newman-Sohler [NS13].

Theorem 1.1. Consider a planar property Π of n-vertex, d degree-bounded graphs. There is a
property tester for Π that makes poly(d) exp(O(ε−2)) queries.

Our main technical result is a matching lower bound for an explicit singleton property. One
of the surprises (at least to the authors) is that testing isomorphism to an arbitrary set of planar
graphs is not harder, up to polynomial dependencies, than testing isomorphism to a single fixed
graph. A recent compendium of open problems by Goldreich states the question of determining
the complexity of testing isomorphism (Open Problem 2.4 in [Gol21]). We note that our theorems
resolve this question for bounded-degree planar graphs.
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Theorem 1.2. For every sufficiently large n, there exists a bounded-degree planar graph H on n
vertices such that property testing Π = {H} requires exp(Ω(ε−2)) queries. Equivalently, testing
isomorphism to H requires exp(Ω(ε−2)) queries.

Bounded treewidth classes: In the context of property testing, many results for planar
graphs also hold for minor-free classes. It is natural to ask whether the bound of exp(Θ(ε−2)) is
the “right” answer for any property of minor-free graphs. We discover that to not be the case. For
properties of bounded treewidth graphs, the answer is between exp((ε−1)) and exp((ε−1) log ε−1).
The following theorems are also derived from the same methods for planar graphs, but the construc-
tions are substantially simpler. The lower bound is achieved by a simple construction of forests.
The main point of these results is to show that the bounded of exp(Θ(ε−2)) achieved for planar
properties can be significantly beaten for non-trivial minor-closed families.

Theorem 1.3. Consider a bounded treewidth property Π of n-vertex, d degree-bounded graphs.
There is a property tester for Π that makes poly(d) exp(O(ε−1 log ε−1)) queries.

Theorem 1.4. For every sufficiently large n, there exists a bounded-degree forest H on n vertices
such that property testing Π = {H} requires exp(Ω(ε−1)) queries.

1.1 Main ideas

One of the key components of property testers for planar graphs is the notion of partition oracles for
hyperfinite graphs, as introduced by Hassidim-Kelner-Nguyen-Onak [HKNO09]. Bounded degree
planar graphs (and more generally, minor-closed families) are hyperfinite, meaning that one can
remove a constant fraction of edges and obtain connected components of constant size. Specifically,
one can remove εdn edges to get connected components of size O(ε−2).

Suppose G is hyperfinite. A partition oracle is a local procedure that gives access to a hyperfinite
decomposition to a graph G, without any preprocessing. Given a query vertex v, the partition oracle
outputs a connected subgraph C(v) of size O(ε−2), such that the union of components C(v) forms
a hyperfinite partition. Recent results give a partition oracle that runs in time poly(ε−1) per
query [LR15, KSS21].

Newman-Sohler used partition oracles to prove that all hyperfinite (and hence planar) properties
are testable [NS13]. This is where our results begin. Stripping down the Newman-Sohler arguments
to their core, we can essentially treat a planar G, up to εdn edge changes, as a distribution over
connected planar graphs of size O(ε−2). The partition oracle allows us to sample efficiently from this
distribution. (If the input graph G is not hyperfinite, the partition oracle can detect that efficiently,
and the graph can be directly rejected.) For convenience, let D(G) denote this distribution.

Existing theorems in combinatorics show that the number of planar graphs of size O(ε−2) is
exp(O(ε−2)) [MR01]; hence, this bounds the support size of D(G). We can learn an approximation
of D(G) up to ε TV-distance with exp(O(ε−2)) queries to the partition oracle. It is not hard, but
central to the argument, to show that if ‖D(G) − D(H)‖1 ≤ ε, then G is ε-close to H. For any
property Π, one can simply check exhaustively if the learned approximation to D(G) is close to
D(H) for any H ∈ Π. (While this could be expensive in running time, it requires no further queries
to G.)

The main challenge is in the lower bound. We need to find a property Π such that testing
Π requires exp(Ω(ε−2)) samples from D(G). We seem to need a converse to the upper bound
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argument, showing if ‖D(G) − D(H)‖1 is large, then G and H are far from each other. But this
is false in general! The support of D(G) is a set of graphs, which are mutable objects. Meaning,
we can modify D(G) dramatically by only modifying a few edges of G. (As an extreme case, D(G)
and D(H) could have disjoint supports on graphs that are close to each other.)

All our graphs (both input and hard instance) will be collections of connected components of size
O(ε−2). We begin by trying to construct a graphH such that: for allG, ‖D(G)−D(H)‖1 ≥ ε implies
that G is ε-far from H. Moreover, determining if ‖D(G)−D(H)‖1 ≥ ε should require exp(Ω(ε−2))
samples from D(G). A candidate is suggested by the problem of uniformity testing of distributions.
Suppose we construct H where D(H) is a uniform distribution on a collection F of graphs (each
member of which has size O(ε−2)), such that |F| = exp(Ω(ε−2)). By standard distribution testing
arguments, distinguishing the uniform distribution on F from a uniform distribution on half of F
requires

√
|F| = exp(Ω(ε−2)) samples. Suppose furthermore that all graphs in F are ε-far from

each other and all balanced separators of F ∈ F are at least of size ε|F |. We prove that any graph
G such that D(G) is supported on half of F must be ε-far from H. Moreover, we can construct
candidate input graphs G, where any property tester can be simulated by sampling from D(G).
Putting all the arguments together, we get a bonafide lower bound: property testing Π = {H}
requires exp(Ω(ε−2)) queries.

What remains is the main technical construction. We need to design F , the “suitable family”
of graphs for the lower bound. We achieve this family by taking the ε−1 × ε−1 grid and adding a
collection of diagonal edges. We apply a cleaning procedure to get a large family of graphs that are
all far from each other. The separator size holds trivially, since each graph in F contains a large
grid.

1.2 Related Work

Property testing on bounded-degree graphs is a vast topic and we direct the reader to Chapter 9
of Goldreich’s book [Gol17] for an introduction to the subject.

Arguably, the starting point for testing planarity is the seminal work of Benjamini-Schramm-
Shapira [BSS08], who showed that all minor-closed properties are testable. This paper also intro-
duced the significance of hyperfiniteness to property testing. Hassidim-Kelner-Nguyen-Onak [HKNO09]
introduced the concept of partition oracles, a key tool in property testing for hyperfinite classes. Im-
proving the query time of partition oracles was addressed by Edelman-Hassidim-Nguyen-Onak [EHNO11],
Levi-Ron [LR15] and Kumar-Seshadhri-Stolman [KSS21].

The quest for characterizing testable (bounded-degree) graph properties and finding properties
testable in poly(ε−1) is an important theme in property testing. We note that Goldreich’s recent
survey explicitly calls these out as Open Problems 2.2 and 2.3 [Gol21]. One of the main inspira-
tions for our work is the result of Newman-Sohler that proves that all hyperfinite properties are
testable [NS13]. The recent work of [KSS21] proves that all additive and monotone minor-closed
properties are efficiently testable, and Levi-Shoshan show that Hamiltonicity of minor-closed fam-
ilies is also efficiently testable [LS21].

We note an important line of work of testing properties of planar graphs, in the unbounded
degree case. This direction was pioneered by Czumaj-Monemizadeh-Onak-Sohler [CMOS11], who
showed the bipartitenesss is testable (independent of the size). A recent result of Czumaj-Sohler
prove that all testable planar properties in the unbounded degree setting are related to subgraph
freeness [CS19].
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2 Proof of Theorem1.1 and Theorem1.3

We begin with some preliminaries: the notions of hyperfiniteness and partition oracles. Note that
all graphs have n vertices and degree bound d.

Definition 2.1. A graph G is (ε, k) hyperfinite if there exists a subset of εdn edges whose removal
results in connected components of size at most k.

A classic result of Alon-Seymour-Thomas (Prop. 4.1 of [AST94]) shows that all minor-closed
families are (ε,O(ε−2))-hyperfinite. In Lemma A.3, we prove that all bounded treewidth families
are (ε,O(ε−1))-hyperfinite. A partition oracle gives local access to a hyperfinite decomposition. We
give the formal definition below (adapted from Def. 1.1 of [KSS21]).

Definition 2.2. A procedure A is a partition oracle for a minor-closed family Π of graphs if it
satisfies the following properties. The deterministic procedure takes as input random access to
G = (V,E), access to a random seed r, a proximity parameter ε > 0, and a vertex v of G. (We will
think of fixing G, r, ε, so we use the notation AG,r,ε. All probabilities are with respect to r.) The
procedure AG,r,ε(v) outputs a connected set of vertices, such that the sets {AG,r,ε(v)}, over all v,
form a partition of V .

We say that the partition oracle outputs an (ε, k)-hyperfinite decomposition if the following
properties hold. (i) For all v, |AG,r,ε(v)| ≤ k and (ii) with probability > 2/3 (over r), the number
of edges between the sets AG,r,ε(v) is at most εdn.

The main result of [KSS21] that we use is the following.

Theorem 2.3 (Rephrasing of Theorem 1.2 [KSS21]). For any bounded degree graph in a minor-
closed family, there is a partition oracle that outputs an (ε,O(ε−2))-hyperfinite partition, and runs
in time O(poly(dε−1)) per query.

For bounded treewidth classes, the partition oracle can output (ε,O(ε−1))-hyperfinite partitions
using standard arguments (Claim A.4)

2.1 Property testers through subgraph count vectors

We use partition oracles to summarize a hyperfinite graph by an approximate count vector. This
technique was first used by Newman-Sohler [NS13]. We follow their analysis, but take care to keep
track of various dependencies on ε. This allows for getting the optimal query complexity bound.

Consider any planar property Π (technically, the following arguments hold for any minor-closed
property). For any planar G, let P(G) denote the partition given by the partition oracle of Theo-
rem 2.3. (Note that the partition is a random variable.) Let Bk be the set of unlabeled graphs in
the family Π with at most k vertices. We will always set k = O(ε−2) (though the exact setting will
change for bounded-treewidth properties).

For any graph G′ consisting of connected components of size at most k and any F ∈ Bk, let
ctF (G′) be the number of occurrences of F in G′. Let ct(G′) be the |Bk|-dimensional vector of these
counts. Note that ‖ ct(G′)‖1 ∈ [n/k, n].

Claim 2.4. Consider two graphs G′1, G
′
2 consisting entirely of connected components of size at most

k. If ‖ ct(G′1)− ct(G′2)‖1 ≤ γn, then dist(G′1, G
′
2) ≤ γkd.
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Proof: For every F ∈ Bk, we will modify G′1 and G′2 to equalize the ctF (G′1) and ctF (G′2). We
simply delete | ctF (G′1)− ctF (G′2)| instances from either G′1 or G′2 (whichever has the larger count).
This operation deletes at most | ctF (G′1)− ctF (G′2)|kd edges. In total, the number of edges deleted
is at most ‖ ct(G′1)− ct(G′2)‖1kd ≤ γnkd.

For the property Π that we wish to test, construct the following set CΠ of count vectors: for
every F ∈ Π (with n vertices and degree bound d) and every subgraph F ′ that is an (ε, k) partition
of F , add ct(F ′) to CΠ.

Lemma 2.5. Suppose P(G) is a valid (ε, k)-partition of G. If G ∈ Π, then ct(P(G)) ∈ CΠ. If G
is 3ε-far from Π, then ∀v ∈ CΠ, ‖ ct(P(G))− v‖1 > εn/kd.

Proof: Suppose G ∈ Π. In the construction of CΠ described above, we can select F as G and F ′

as P(G). Hence, ct(P(G)) ∈ CΠ.
Suppose G is 3ε-far from Π. Consider any v ∈ CΠ, so v = ct(F ′), for F ′ being an (ε, k)-partition

of F ∈ Π. By triangle inequality, dist(P(G), F ′) ≥ dist(G,F ) − dist(G,P(G)) − dist(F, F ′). By
farness, dist(G,F ) ≥ 3ε. Because P(G) and F ′ are respective (ε, k)-partitions, dist(G,P(G)) and
dist(F, F ′) are at most ε. Hence, dist(P(G), F ′) ≥ ε. By Claim 2.4, ‖ ct(P(G))−v‖1 > εn/kd.

Now, we present the main algorithmic ingredient of our property tester.

Claim 2.6. Given G and a setting of P(G) that is a valid (ε, k)-partition, using O(poly(dε−1)δ−2|Bk|3 log |Bk|)
queries one can compute a vector v such that ‖v−ct(P(G))‖1 < δn with probability at least 1− 1

|Bk| .

Proof: Fix F ∈ Bk. We show how to approximate ctF (P(G)). Pick uar vertex s, and using the
partition oracle, determine the component of P(G) containing s. If the component is isomorphic to
F , declare success. The probability of success is exactly |F | ctF (P(G))/n. By Chernoff-Hoeffding,
we can get an additive δ/|Bk| estimate with error probability < |Bk|−2 using O(|Bk|2δ−2 log |Bk|)
samples. Thus, we get an additive δn/(|F |·|Bk|) ≤ δn/|Bk| estimate for ctF (P(G)). Applying for all
F , we get our estimate vector v. Note that the total approximation is ‖v−ct(P(G))‖1 < δn/|Bk|×
|Bk| = δn. The error probability, by union bound, is at most |Bk|−1. By the running time bound
of the partition oracle, the total number of queries made is O(poly(dε−1)δ−2|Bk|3 log |Bk|).

Now, we prove Theorem 1.1, repeated for convenience. To get the optimal bound for planar
properties, we need the right upper bound for Bk. Numerous results in the past show that the
answer is exp(O(k)). We cite one specific reference.

Theorem 2.7. (Theorem 5 of [MR01]) A planar graph on k vertices and k′ edges can be represented
uniquely by 8k + 2k′ + o(k + k′) bits.

Hence, the number of planar graphs on k vertices is exp(O(k)).

Theorem 1.1. Consider a planar property Π of n-vertex, d degree-bounded graphs. There is a
property tester for Π that makes poly(d) exp(O(ε−2)) queries.

Proof: The tester has two phases. In the first phase, it uses Theorem 2.3 to get a hyperfinite
partition. If it succeeds, then the tester proceeds to the second phase. It uses Claim 2.6 to
approximate ct(P(G)) and checks if it lies in CΠ.

The tester repeats the following O(1) times. For a random seed R, it sets up the partition
oracle with this seed, and then estimates the number of cut edges via random sampling. This is
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done by sampling Θ(ε−1) uar vertices u, picking a uar neighbor v of u, and calling the partition
oracle on u and v. If the outputs are different components, then edge (u, v) is cut. If more than
an ε/4-fraction of edges are cut, the process is repeated with a new choice of R. Otherwise, R is
fixed, and the tester proceeds to the next phase. If no R is found, the tester rejects.

At this point, a suitable P(G) has been discovered. We set k = O(ε−2), to be the size bound
of components, as promised by Theorem 2.3. Using Claim 2.6, the tester computes an approximate
count vector v of ct(P(G)), setting δ = ε/4kd. Note that CΠ is a fixed set of vectors, independent
of the input. The tester then determines if ∃w ∈ CΠ such that ‖v−w‖1 ≤ εn/2kd. If such a vector
w exists, it accepts. Otherwise, it rejects. The description of the property tester is complete, and
we proceed to the analysis.

Query complexity bound: Note that k = O(ε−2), δ = ε/4kd, and, by Theorem 2.7, |Bk| =
exp(O(ε−2)). Hence, by Claim 2.6, the overall query complexity is poly(d) exp(O(ε−2)).

Correctness analysis: If G is planar and hence (ε/8, O(ε−2))-hyperfinite, with probability at
least 2/3 over R, the partition oracle computes a hyperfinite decomposition. Hence, with probability
at least 5/6, the tester proceeds to the second phase with P(G) being a valid (ε,O(ε−2))-hyperfinite
partition. Conversely, with probability at least 5/6, if the tester finds a suitable R, then P(G) is a
valid (ε,O(ε−2))-hyperfinite partition.

Suppose G ∈ Π and hence planar. As argued above, with probability > 5/6, P(G) is an
(ε,O(ε−2))-hyperfinite decomposition. By Claim 2.6, with probability > 5/6, ‖v − ct(P(G))‖1 <
εn/4kd. By the union bound, both conditions hold with probability at least 2/3. By Lemma 2.5,
ct(P(G)) ∈ CΠ. Thus, there exists w in CΠ such that ‖v −w|1 ≤ εn/2kd and the tester accepts
with probability at least 2/3.

Suppose G is 3ε-far from Π. By Lemma 2.5, for all w ∈ CΠ, ‖ ct(P(G))−w‖1 > εn/kd. By the
triangle inequality, ‖v−w‖1 > εn/kd−εn/4kd > εn/2kd. Thus, the tester rejects with probability
at least 2/3.

The proof of Theorem 1.3 is nearly identical.

Theorem 1.3. Consider a bounded treewidth property Π of n-vertex, d degree-bounded graphs.
There is a property tester for Π that makes poly(d) exp(O(ε−1 log ε−1)) queries.

Proof: We redo the proof of Theorem 1.1. Claim A.4 shows that graphs with treewidth at most
τ admit a partition oracle with k = O(τ/ε). For bounded treewidth graphs, we apply the trivial
bound |Bk| ≤ 2O(k log k) (Claim A.1). We apply these bounds in the above proof, and get a query
complexity of O(poly(d) exp(ε−1 log ε−1)) queries.

3 Lower bounds through suitable families

The key construct for the lower bounds is given in the following definition. A graph class is
monotone if it is closed under edge removals. A graph class is additive if it closed under taking
disjoint unions of graphs.

Definition 3.1. Fix ε > 0 and a monotone, additive graph class C. We call a family F of distinct
graphs (in C) ε-suitable if the following conditions hold:

� All graphs in F have the same number of vertices (denoted t).
� If t > 2/ε, ∀F, F ′ ∈ F , dist(F, F ′) ≥ 0.02.
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� ∀F ∈ F , the size of any (0.01
d , 1− 0.01

d ) balanced separator in F is Ω(εt).

The main lemma used in our lower bound says that a large suitable family leads to a property
testing lower bound.

Lemma 3.2. Fix ε > 0, and let F denote an ε-suitable family of a monotone, additive graph class
C. Then, for all sufficiently large n, there exists a graph H ∈ C with the following property. Any
property tester for the property {H} with proximity parameter ε requires Ω(

√
|F|) queries.

The proof of Lemma 3.2 requires some tools, that we shall build up in this section. Firstly, using
the properties of a suitable family, we can construct two graphs consisting entirely of components
in F that are far from each other. These graphs form the core of the lower bound.

Claim 3.3. Let F denote an ε-suitable family of a graph class C (as defined in Lemma 3.2). Let
I = [|F|] denote a set indexing graphs in F .

Let H1 be the graph consisting of a disjoint union of all graphs in |F|. For any subset R ⊆ I
with |R| = |I|/2, let HR be the disjoint union of two copies of each graph in F indexed by R. Then
the graphs H and HR are Ω(ε) far from each other.

Proof: Since F is ε-suitable, we know that all graphs F ∈ F are defined on t = t(ε) vertices. We
know for any F, F ′ ∈ F , since |F | = |F ′| = t the number of edge edits needed to change F to F ′ is at
least Ω(t). Since R will be fixed for the remainder of the proof, it will be convenient to refer to HR as
H2 for the rest of the argument. Let us denote the components of H1 (resp H2) as components(H1)
(resp as components(H2)). Let s = |components(F)|. H2 contains s/2 connected components in F
each of which occurs twice. Recall from Definition 3.1, C,C ′ ∈ components(F) are Ω(1)-far from
each other. Let M1/2 denote the set of missing components of F in H2. And let P1/2 denote the
set of components from F that are present in H2 (without duplicates). Thus, H2 contains two
subgraphs isomorphic to P1/2 which we denote as P1

1/2 and P2
1/2. For C ∈ components(P1/2), let

C1 ∈ components(P1
1/2) denote the subgraph of P1

1/2 isomorphic to C. Similarly, define C2. Let

4E = argmin
4E′⊆V (H2)×V (H2)
E(H1)=E(H2)⊕4E′

|4E′|

denote the smallest set of edge modifications to H2 that produce a graph isomorphic to H1. We
now lower bound |4E|. For a component C ∈ F , let E(C) denote the edge set of that component.
Fix a component C such that E(C) ∩4E 6= ∅. The following cases arise.

� Case 1: 4E∩E(C) is connected. Thus, the deletion edits do not disconnect C. In this case,
after the insertion edits in 4E, we obtain a component inM1/2. By the definition of suitable
families, if t > 2/ε, it takes at least (follow the sentence). If t ≤ 2/ε, then C obviously gets
at least one edit, which is at least Ω(εt) edits. In both cases, the number of edits is Ω(εt).

� Case 2: 4E ∩ E(C) is not connected. Now, we get two subcases depending on size of the
biggest component in 4E ∩ E(C).

1. The biggest component in C\4E has size at least (1−1/100d)·t. In this case,4E⊕E(C)
maps C to some component in M1/2. Now we split into two cases. Suppose t > 2/ε.
Since C is a bounded degree graph, the number of insertion edits (by Definition 3.1) is
at least 0.02t− (0.01

d · d)t = 0.01t. Suppose t ≤ 2/ε. In any case C must get at least one
insertion edit to make it have size t. So the number of edits is at least Ω(εt).
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2. The biggest component in 4E ∩ E(C) has size at most (1− 1
100d) · t. In this case, note

that 4E removes a balanced separator of C. Thus, the number of deletion edits made
to C is at least Ω(εt).

In all of the above cases we see that for any component C ∈ components(H2) with 4E∩E(C) 6=
∅, the number of edits made to C is at least Ω(εt). Finally, note that

|{C ∈ components(H2) : E(C) ∩4E 6= ∅}| ≥ |components(H2)|
2

.

And therefore, the distance between graphs H1 and H2 is at least Ω(ε) as desired.

We can now define the graph H used to prove the lower bound Theorem 1.2. For convenience,
assume that n is a multiple of t|F|, the size of graphs in F . (If not, we will pad the final graph
with extra isolated vertices.) The (unlabeled) graph H is a disjoint union of n/t|F| copies of every
graph in F .

Analogously, for R ⊂ I, |R| = |F|/2, let HR be the graph that has n/(2t|F|) copies of every
graph in F indexed by R. For convenience, we refer to any such R as a half index set.

3.1 The distinguishing problem

Note that input graph is really a labeled instance, as given by the adjacency list. We now give the
explicit distribution of labeled inputs G and the main “distinguishing” problem. By Yao’s minimax
lemma, it suffices to prove lower bounds for determinstic algorithms over randomized inputs. So
let us define the YES and NO distributions.

� YES: Generate a uar labeling of H.

� NO: Generate a uar half index set R. Then, generate a uar labeling of HR.

Given an input G generated from either of these distribution, the distinguishing problem is to
determine, with probability > 2/3, which distribution G came from. (Note that the supports of
these distributions are disjoint.)

Claim 3.4. If there exists a deterministic distinguisher that makes q queries (where q is independent
of n), then there exists an algorithm with the following property. Given input G (generated as
above), the algorithm gets q uar connected components of G and determines, with probability >
2/3− o(1), whether G came from the YES or NO distribution.

Proof: Consider any deterministic algorithm. One can express its behavior as follows. At any
stage, it has explored the adjacency lists of some vertices v1, v2, . . . , vb. It can choose to further
query the adjacency lists of these vertices. In this case, it further explores the connected components
already visited. The algorithm can also choose to visit a new vertex ID v′. Note that v′ is an
arbitrary (but fixed) function of all the vertex IDs and edges seen so far. Since the input is a uar
labeling of either H or HR, the probability that v′ lies in a component already visited is at most
qt/n. With probability at least 1−qt/n, v′ lies in a uar connected component (since all components
have exactly the same size, t). By a union bound, with probability at least 1 − q2t/n = 1 − o(1),
the algorithm sees a uar set of at most q components and makes its decision.
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The total number of components is n/t, and hence the probability of seeing a specific set of q
components is (up to 1±o(1)-factors) 1/

(
n/t
q

)
. Since n is sufficiently large, this probability is within

(1 + o(1))-factors of q!/(n/t)q. This implies that with probability at least 1 − o(1), the algorithm
sees a uniform distribution of multisets of q components. Alternately, the algorithm gets q uar
connected components of G. The success probability only changes by (1− o(1))-factors.

The proof of Lemma 3.2 is now a straightforward reduction from distribution testing and an
application of the tools built thus far.

Proof: (of Lemma 3.2) By Claim 3.3, all graphs generated by the NO distribution are ε-far from
the property {H}. By Yao’s minimax lemma, it suffices to show that any deterministic distinguisher
requires Ω(

√
|F|) queries.

By Claim 3.4, if there is a deterministic distinguisher making q queries, then there is an algorithm
that can distinguish H from HR (with probability > 2/3 − o(1)) by querying q uar connected
components. Standard arguments in distribution testing show that Ω(

√
|F|) samples are required

to distinguish the uniform distribution on the index set I = [|F|] from the uniform distribution on a
uar half index set R (refer to the section titled “An Ω(

√
n/ε2) lower bound” on page 13 of [Can20]).

By mapping I arbitrarily to F , getting samples from the uniform distribution in I is equivalent
to getting uar components from G generated from the YES distribution. Analogously, samples
from the uniform distribution on a uar half index set R is equivalent to uar components from G
generated from the NO distribution. Thus, any algorithm that distinguishes H from HR with
uar connected components requires Ω(

√
|F|) samples, leading to the lower bound for deterministic

distinguishers.

4 A suitable family for planar graphs

The main result of this section is the following theorem.

Theorem 4.1. There exists a family F of planar graphs where each graph has s2 vertices and
� |F| ≥ exp(Ω(s2)).
� For every G ∈ F , the size of a minimum balanced vertex separator in G is Ω(s)
� For every pair of graphs G,G′ ∈ F , it takes at least 0.16s2 edge edits to go from G to G′. In

particular, it holds that G and G′ are 0.02-far.

We collect some ingredients which will be useful in proving Theorem 4.1. The first important
ingredient we need is Whitney’s theorem.

Theorem 4.2 (Whitney’s Theorem. (Theorem 4.3.2 in [Die17])). Any two planar embeddings of
a 3-connected planar graph are equivalent.

We first define a “base” graph (Definition 4.3). This is obtained in the following manner. Let
us start with the s × s grid which we denote as G0. The label set of G0 is indexed by a pair
(i, j) ∈ [s]× [s]. We call this labeling the standard grid order. We denote the base graph by G, and
G is constructed on top of G0 by the addition of some specific edges. Essentially, we add edges at
the corners; we refer the reader to Fig. 1. We add edges from (0, 0) to (0, 2), (2, 0), from (0, s) to
(0, s − 3), (3, s), from (s, s) to (s, s − 4), (s − 4, s) and from (s, 0) to (s, 5), (s − 5, 0). This graph
G thus differs from G0 only in the edges adjacent to the corner vertices, making all the corners
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unique. Let us label G according to the standard grid order. For u ∈ V , we thus identify u as
the pair (xu, yu) which refers to the (x, y) coordinate of u on the grid. With this labeling, we have
E(G) = E(G0)∪E1. where the set E1 contains all the non grid neighbors of all the corner vertices.

Definition 4.3. Consider the graph G obtained above and consider the planar embedding of G
(which is unique by Theorem 4.2). We will fix an embedding of G where

� The unique corner vertex adjacent to two vertices 2 hops away (according to standard grid
order) is located at (0, 0).

� The unique corner vertex adjacent to two vertices 3 hops away (in the standard grid order)
is located at (0, s).

� The unique corner vertex adjacent to two vertices 4 hops away (in the standard grid order)
is located at (s, s).

� The unique corner vertex adjacent to two vertices 5 hops away (in the standard grid order)
is located at (s, 0).
We call this graph (and by abuse of terminology, its embedding) as the base graph.

Figure 1: An example of one of the graphs from our family B.
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4.1 Proof of Theorem4.1

Let us begin by defining the following family of graphs. We will show that all graphs in this family
are pairwise non isomorphic.

Construction 4.4. The family B of graphs is a family of graphs labeled according to standard grid
order which is obtained from the base graph G in the following way. Let

I = [0, s)× (1, s]

denote an index set for vertices in V (G). Graphs in this family are obtained in the following
manner. For each (i, j) ∈ I, we add exactly one of the following edges. Either we add
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� The upward diagonal ((i, j), (i+ 1, j + 1)), or

� The downward diagonal ((i+ 1, j), (i+ 1, j − 1)).

Noting |I| = s2, note that the size of this family is |B| = 2s
2
.

Lemma 4.5. The family B defined in Construction 4.4 is a collection of 2s
2

pairwise non isomor-
phic graphs on s2 vertices.

Proof: As mentioned earlier in Definition 4.3, the base graph G admits a unique planar drawing.
This is due to Theorem 4.2, because the additional edges made our graph 3-connected. We fix
that embedding. Now consider two drawings B1, B2 ∈ B. They differ in at least one diagonal and
therefore they are non isomorphic.

However, we still need to show that this family has a sufficient number of graphs that are far
from being isomorphic to each other. We state this in the following lemma.

Lemma 4.6. There is a greedy procedure that takes as input the family B of graphs and returns a
family F of size at least 2s

2/5 all of which are pairwise 0.01-far from each other.

Proof: We begin with the following observations. Consider the ball Bb(G) for any instance of the
modified grid G, which is the set of graphs reachable from G by b (diagonal) edge deletions. For
any G ∈ B, note that the number of edges in G is at most s2. Thus, the number of possible graphs

reachable from G after making b deletions is at most
(
s2

b

)
. We replace these deleted diagonals with

diagonals oriented the other way. Choose b = 0.16s2. We apply the bound
(
a
b

)
≤ (ea/b)b.

max
G∈B
|Bb(G)| ≤

(
s2

b

)
≤
(
es2

b

)b
≤
(

es2

0.16s2

)0.16s2

≤ 20.8s2

Let F denote the set found by the algorithm below. Using the above bound on maxG∈B |Bb(G)|,
it holds that

|F| ≥ 2s
2

maxG∈B B0.16s2(G)
≥ 2s

2

20.8s2
≥ 2s

2/5.

Since for any G ∈ B, the maximum degree of any vertex in G is at most 8, and all the graphs in
the set F disagree in at least 0.16s2 edges, it follows that all the graphs in F are pairwise 0.02-far.
Below, we present our greedy procedure.

TakeScoops(B)

1. Initialize F = ∅.
2. While B 6= ∅:

(a) F = ∅.
(b) B = B \B0.16s2(G).
(c) F = F ∪G.

end while
3. return F .

The family F is thus the family output with the desired properties as stated in Theo-
rem 4.1.
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The proof of the theorem follows immediately from the lemmas.

Proof of Theorem 4.1. We show that the family F obtained in Lemma 4.6 satisfies all the criteria
we require to be satisfied in Theorem 4.1. We pick these one by one:

� |F| ≥ exp(Ω(s2)) : This is a direct consequence of Lemma 4.6.

� For every G ∈ F , the size of the minimum balanced separator is Ω(s) : This follows from the
fact that the family F comprises graphs that contain the grid on s × s vertices as proper
induced subgraphs. The grid has balanced separators of size Ω(s), so all graphs in F must
have separators at least as large.

� Graphs in F are all pairwise 0.01 far from each other: Follows from Lemma 4.6.

This shows that F follows the properties described in theorem 4.1, thus completing its proof.

4.1.1 Proof of Theorem 1.2

The proof follows from plugging in the right value for s. In Theorem 4.1, we set s = ε−1. We get
a suitable family F with t = ε−2, where |F| = exp(Ω(ε−2)). By Lemma 3.2, we have a explicit
singleton property that requires Ω(

√
|F|) = exp(Ω(ε−2)) queries to test.

5 A suitable family of trees

This construction is fairly straightforward: we simply pick all distinct trees on ε−1 vertices. We
need to take care to count the number of unrooted trees, so some work is required.

Let UNLABr(s) denote the set of unlabled and rooted binary trees on s vertices. We first recall
the following fact.

Fact 5.1. The number of different unlabeled rooted binary trees on s vertices is |UNLABr(s)| ≥ 2Ω(s)

(Probelm 1.44 in [FS09] where they attribute this result to [Ott48]).

We would like to lower bound the number of unlabeled, unrooted and binary trees on s vertices.
To this end, we first make the following definition.

Definition 5.2. Write UNLABr(s) = {(T, r) : T is unlableled with root r}. For (T, r) ∈ UNLABr(n),
let

Orbit(T ) = {(T ′, r′) ∈ UNLABr(n) : T ′ ∼= T}.

Note that this also means T ∈ Orbit(T ′). Also, note that if (T ′′, r′′) 6∈ Orbit(T ) then Orbit(T ′′) ∩
Orbit(T ) = ∅.

Now, we note the following.

Claim 5.3. For any (T, r) ∈ UNLABr(s), |Orbit(T )| ≤ s.

Proof: Suppose not. Then ∃(T ′, x), (T ′′, x) ∈ Orbit(T ) which share x as the root where both
T ∼= T ′ and T ∼= T ′′. Then T ′ ∼= T ′′ as well. However, we also have (T ′, x), (T ′′, x) ∈ UNLABr(n).
Contradiction.
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Now, we will produce a family of unlabeled and unrooted binary trees. This is done by picking
a single tree from each orbit in UNLABr(s). The following is immediate.

Claim 5.4. |UNLABu(s)| ≥ 2Ω(s).

Proof: Since all orbits have size at most s, it holds that |UNLABu(s)| ≥ |UNLABr(s)| ≥ 2Ω(s).

We can now complete the proof of the main lower bound for forests.

Proof: (of Theorem 1.4) The suitable family is simply UNLABu(ε−1). Since all graphs are of size
t = 1/ε, it only suffices to verify the separator bound for suitable families. But that trivially holds,
since the separator size is non-zero, which is Ω(1) = Ω(εt). The size of the family is exp(ε−1), by
Claim 5.4. Lemma 3.2 gives the lower bound of exp(ε−1) for property testing an explicit singleton
property.
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A Missing proofs from §2

In this appendix, our objective is to prove Claim A.1 and Claim A.4. The former claim counts the
number of graphs with treewidth at most τ and is proved below.

Claim A.1. The number of unlabeled bounded treewidth graphs on t vertices is at most expO(t log t).

15



Proof: Observe that for a graph on t vertices with bounded treewidth τ = O(1) has O(t) edges.
Then, the number of unlabelled graphs of this form, Tt is at most

(
N
O(t)

)
, where N =

(
t
2

)
. Thus

Tt = tO(t), which implies that the number of bounded treewidth graphs on t vertices is at most
exp(O(t log t)).

Next, we produce the statment of Claim A.4. It postulates that there exist efficient poly(dε−1)
time implementations of partition oracles for d-degree bounde graphs with bounded treewidth.

One key tool we need to prove this theorem is an analog of Alon-Seymour-Thomas style result
which proves that a graph with treewidth at most τ is (ε,O(τ/ε))-hyperfinite.

Let s̃(G) be the size of the smallest 1/3 − 2/3 balanced separator, whose removal leads to
connected components of size at most 2/3 of the vertices.

Theorem A.2. [Theorem 2 of [Gru12] and Theorem 12 of [BGHK95]] s̃(G)− 1 ≤ tw(G).

We now prove that every treewidth τ graph is (ε, 6τ/ε) hyperfinite.

Lemma A.3. Fix ε > 0, d, τ ∈ N. Then for any graph G with tw(G) ≤ τ − 1 there exists a set of
edges E′ such that the following hold:

� G \ E′ is a graph with connected components no larger than 6τ/ε.

� |E′| ≤ εdn

Proof: We begin by showing item 1. Since G has treewidth at most τ , all of its subgraphs also
have treewidth τ . Also, recall tw(G) ≤ τ , implies that for all 1/3-balanced separators of G satisfy
|BalSep(G)| ≤ O(τ).

Consider the following recursive procedure. Here Delsep(G) is a routine which returns a three
tuple (S,G0, G1) where S is the smallest balanced separator of G and G0 and G1 are collections of
connected components of G each with size at least |V (G)|/3.

Decompose(G)

1. If |V (G)| ≥ 6τ/ε
(a) Write (S0, G0, G1) = Delsep(G).
(b) Decompose(G0), Decompose(G1).

Note that the sets G0 and G1 produced at any intermediate step of this procedure are unions of
connected components (and they are not necessarily connected components themselves). Consider
the recursion tree of this process and let us examine the leaves of this recursion tree. The leaf
nodes correspond to some subgraph G (which is a union of connected components) obtained after
repeated applications of balanced separator routine such that |V (G)| ≤ 6τ/ε. Also, since the
procedure repeatedly deletes a 1/3-separator, it also holds that all the leaf nodes of the recursion
tree correspond to graphs with at least 2τ/ε vertices. Thus, since the leaves correspond to disjoint
subgraphs, the number of leaves equals L ≤ εn

2τ and the total number of nodes produced in the
recursion is at most 2L. Generating every node requires deleting at most τ edges. Thus, in all, we
delete εdn edges which proves the lemma.

We now prove bounds on partition oracles for bounded treewidth graphs.
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Claim A.4. Let Tτ denote the class of graphs with treewidth at most τ . Let G ∈ Tτ denote a graph
with treewidth at most τ . Then G admits an (ε, k) partition oracle with k ≤ 30τ

ε .

Proof: Set α = ε/2. Since Tτ is a minor-closed class of graphs, it follows from Theorem 2.3 that
any G ∈ Tτ admits an (α,O(α−2)) partition oracle whose setting on G is denoted as P(G). Note
that the number of edges that run between the connected components of the underlying partition
is at most αnd ≤ 1/2 · εdn. We will show how to modify the parition obtained by this oracle and
obtain another oracle which returns components with size at most 30τ/ε. This is done as follows.

Let P ∈ P(G) denote some connected component in the partition P(G). If |P | ≤ 30τ/ε, we do
not refine P . On the other hand, if |P | > 30τ/ε, we use Lemma A.3 on P with parameter β = ε/2.
This refines P and produces connected components of size at most 3τ/β ≤ 6τ/ε ≤ 30τ/ε as desired.
And the total number of edges lost is at most βdn ≤ 1/2 · εdn. Overall, the total number of edges
lost is at most εdn as desired.
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