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Abstract. Improving the exponential bound of [HHH21], we show that the largest possible gap
between the deterministic communication complexity and the public-coin zero-error randomized
communication complexity is at most polynomial. Previously, such a bound was known only in the
private-coin model. The proof combines the approach of Gavinsky and Lovett [GL14] with new
ideas.
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1. Introduction

The field of communication complexity studies the amount of communication required to solve the problem
of computing discrete functions when the input is split between two or more parties. In the most commonly
studied framework, there are two parties, often called Alice and Bob, and a communication problem is
defined by a Boolean function f : X × Y → {0, 1}. An input x ∈ X is given to Alice, and an input y ∈ Y
is given to Bob. Together, they should both compute the entry f(x, y) by exchanging bits of information in
turn, according to a previously agreed-on protocol. There is no restriction on their computational power;
the only measure we care to minimize is the number of exchanged bits.

A deterministic protocol π specifies for each of the two players, the bit to send next, as a function of their
input and history of the communication so far. It naturally corresponds to a binary tree as follows. Every
internal node is associated with either Alice or Bob. If an internal node v is associated with Alice, then it
is labeled with a function av : X → {0, 1}, which prescribes the bit sent by Alice at this node as a function
of her input. After this bit was sent, the players move to the corresponding child of v: they move to the left
child if the bit is 0, and to the right child if the bit is 1. Similarly, Bob’s nodes are labeled with Boolean
functions on Y. Each leaf is labeled by 0 or 1, which corresponds to the output of the protocol. The cost of
the protocol on an input (x, y), denoted by cost(π(x, y)), is the number of bits exchanged on this input. The
cost of the protocol is the maximum of cost(π(x, y)) over all inputs (x, y). The deterministic communication
complexity of f , denoted by D(f), is the smallest cost of a protocol that computes f correctly on all inputs.

Next, we discuss randomized communication complexity. Randomness can be introduced in two different
ways: private randomness or public randomness.

A private-coin randomized protocol assumes that each player has access to his or her independent random
bits and can use them to decide which bit to send next. More precisely, Alice and Bob have access to
random strings RA and RB , respectively. These two strings are chosen independently, each according to
some probability distribution described by the protocol. The bit sent by Alice at a node v is now determined
as a function of both x and RA. Similarly, the bits sent by Bob are determined as functions of y and RB .

On the other hand, in the public-coin model, it is assumed that the players have access to a shared source
of randomness. In other words, Alice and Bob are both given the same random string R. The public-coin
model is stronger than the private-coin model as the former can simulate the latter by using R = (RA, RB)
as the public random string.

In this article, we are interested in zero-error randomized communication protocols. There are two
commonly used definitions for these protocols: one uses average communication complexity, and the other
allows inconclusive outputs. The two definitions are equivalent up to a multiplicative constant. We will use
the second definition since it is more convenient for our purposes: the output of a zero-error protocol is 0,
1, or ⊥, where ⊥ indicates a failure to compute f(x, y). The protocol must never output 0 or 1 erroneously;
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however, on every input, it is allowed to output ⊥ with probability at most 1
2 . The cost of such a protocol

is the maximum number of bits exchanged over all inputs and choices of randomness.
The private-coin zero-error randomized communication complexity of a function f : X × Y → {0, 1},

denoted by Rprv
0 (f), is the infimum cost over all private-coin randomized protocols that compute f with zero

error. The public-coin zero-error randomized communication complexity is defined similarly using public

randomness and is denoted by Rpub
0 (f).

We have the trivial relations
Rpub

0 (f) ≤ Rprv
0 (f) ≤ D(f).

The quantity Rprv
0 (f) is very well-understood (see [Für87]), but in this article, our focus is Rpub

0 (f). In

particular, how small can Rpub
0 (f) be compared to Rprv

0 (f) and D(f)?
Every function f : X ×Y → {0, 1} naturally corresponds to an X ×Y matrix with the xy-entries given by

f(x, y). A fundamental fact in communication complexity is that the leaves of every deterministic protocol
computing f partitions this matrix into rectangles (a rectangle is a set S × T ⊆ X ×Y) such that the value
of f is constant on each rectangle. Such rectangles are called monochromatic. Hence, every deterministic
protocol of cost c provides a partition of X × Y into at most 2c monochromatic rectangles, and since the
rank (as a real matrix) of a monochromatic rectangle is at most one, we obtain the classical lower-bound

(1) D(f) ≥ log rk(f),

where rk(f) denotes the rank of the matrix of f over the reals, and here and throughout the paper logarithms
are in base 2.

Let N(f) denote the logarithm of the minimum number of monochromatic rectangles required to cover
X × Y. It follows from the above discussion that N(f) ≤ D(f), and furthermore as it is shown in [AUY83]
(see also the proof of [KN97, Theorem 2.11]) the gap can be at most quadratic:

(2) D(f) ≤ 4 N(f)2.

The quantity N(f) can also be used to lower-bound Rprv
0 (f). Indeed, a zero-error private-coin protocol can

be interpreted as a deterministic protocol (with three possible outputs {0, 1,⊥}) where Alice’s input is (x,RA)
and Bob’s input is (y,RB). Hence the leaves of such a protocol provide a partition P of (X ×ΩA)× (Y×ΩB)
into monochromatic combinatorial rectangles, where ΩA and ΩB are the supports of the random strings RA
and RB , respectively. We shall ignore the ⊥-monochromatic rectangles, and focus on the set P ′ ⊆ P of 0-

and 1-monochromatic rectangles in P. For every such rectangle S × T ∈ P ′, define Ŝ × T̂ ⊆ X × Y as

Ŝ = {x ∈ X : ∃rA ∈ ΩA, (x, rA) ∈ S}, T̂ = {y ∈ Y : ∃rB ∈ ΩB , (y, rB) ∈ T}.

Since the protocol is of zero-error, every such Ŝ × T̂ is monochromatic, and moreover, every (x, y) ∈ X × Y
belongs to at least one such Ŝ× T̂ . Hence the set of all Ŝ× T̂ for S×T ∈ P ′ provides a cover of X ×Y with
at most 2c monochromatic rectangles. Thus N(f) ≤ log 2c = Rprv

0 (f). Combining this with Equation (2)
yields

(3) Rprv
0 (f) = Ω(

√
D(f)).

Furthermore, as it is shown by Fürer [Für87], there are examples for which this quadratic gap is necessary.

2. main result

Next, we turn our attention to the public-coin model, which is the main focus of this article. In general,
private-coin and public-coin communication complexities of a function can behave very differently. For
example, it is known [KN97, Lemma 3.8] that for every error-probability 0 ≤ ε < 1

2 ,

Rprv
ε (f) ≤ D(f) ≤ 2R

prv
ε (f)

(
log2

(
1

2
− ε
)−1

+ Rprv
ε (f)

)
.

In contrast, the example of the equality function shows that for every ε > 0, there are functions with
Rpub
ε (f) = O(1) that have arbitrarily large D(f). Can a similar gap hold for the case of zero-error? The

answer is negative. In [HHH21, Theorem 3], a Ramsey theoretic approach is used to prove that there is a

dimension-free relation between Rpub
0 (f) and D(f), that is,

Ω(log D(f)) ≤ Rpub
0 (f) ≤ D(f).
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To be more precise, [HHH21, Theorem 3] states that Ω(log rk(f)) ≤ Rpub
0 (f), which combined with the

well-known upper bound D(f) ≤ rk(f) + 1 (see [RY20, Theorem 2.2]) yields the above lower bound.
In this article, we establish an improved polynomial relation between these two parameters.

Theorem 2.1 (Main Theorem). For every f : X × Y → {0, 1} we have

Rpub
0 (f) = Ω(D(f)

1
4 ).

3. Proof of Theorem 2.1

Perhaps the most famous result relating public-coin and private-coin models is Newman’s lemma [New91],
which in the zero-error case (see [KN97, Exercise 3.15]) states

(4) Rprv
0 (f) ≤ O(Rpub

0 (f) + log log |X × Y|).

To prove Theorem 2.1, it is tempting to apply Newman’s lemma to replace Rprv
0 (f) with Rpub

0 (f) in
Equation (3). However, this will not result in a dimension-free bound since log log |X × Y| can be the
dominant term in Equation (4).

The key insight for proving Theorem 2.1 is to consider the relation between rk(f) and D(f). If log rk(f) is
small, then by applying a classical result of Nisan and Wigderson [NW95], one can deduce that D(f) cannot

be much larger than Rpub
0 (f).

On the other hand, if log rk(f) is large, then by Equation (1) one can consider a full-rank submatrix of
f whose deterministic communication complexity is large as well. Since this submatrix is of full-rank, its
dimensions are equal to its rank, and thus one can successfully apply Newman’s lemma (the log log(·) term
will be small in Equation (4)) to obtain a strong lower-bound on its public-coin zero-error communication
complexity.

The following lemma follows from the work of Nisan and Wigderson [NW95]. In the statement, for a
rectangle A ⊆ X × Y, we denote by |A| its set-theoretic cardinality.

Lemma 3.1. [NW95] Let f : X × Y → {0, 1} be a Boolean function, and δ > 0 a real number. Assume
that for every rectangle A1 ⊆ X × Y, there exists a sub-rectangle A2 ⊆ A1 such that A2 is monochromatic
and |A2| ≥ δ|A1|. Then

D(f) ≤ O(log(1/δ) log rk(f) + log2 rk(f)).

Proof. Denote r = rk(f). Without loss of generality, we may assume that f has no repeated rows or columns,
which in particular implies |X × Y| ≤ 22r.

By applying the assumption to A1 = X × Y, we find a monochromatic rectangle R ⊆ X × Y of size at
least δ|X × Y|. Consider the partition of the matrix of f as

f =

[
R S
P Q

]
.

Since R is monochromatic, we have rk(R) ≤ 1, and thus rk(S) + rk(P ) ≤ r + 1. Without loss of generality,
we assume that rk(S) ≤ r/2 + 1, as otherwise, we can switch the roles of the rows and columns. The row
player sends one bit, indicating whether the input x is in the top part or in the bottom part of the matrix.
If it is in the top part, then the rank decreases to rk([R S]) ≤ rk(R) + rk(S) ≤ r

2 + 2. If it is in the bottom
part, the size of the matrix reduces to at most (1− δ)|X × Y|.

We construct a partial protocol tree by iterating the above process recursively and stopping as soon as
the rank drops to ≤ r

2 + 2. Note that for every internal node, we immediately stop on one of the children,

and decrease the size of the matrix by a factor of (1− δ) on the other child. Since for k = log(|X×Y|)
δ ≤ 2r

δ ,

we have (1− δ)k|X × Y| ≤ e−δk|X × Y| ≤ 1, this partial tree has at most O( 2r
δ ) leaves.

We constructed a partial protocol tree with O( 2r
δ ) leaves such that the rank of the sub-matrix correspond-

ing to each leaf is at most r
2 + 2. Applying this process recursively for O(log(r)) times decreases the rank to

O(1) resulting in a deterministic communication protocol for f with (2r/δ)
O(log(r))

leaves. In particular, the

matrix of f can be partitioned into (2r/δ)
O(log(r))

monochromatic rectangles. Now we can apply a standard
tree-balancing procedure (i.e., [KN97, Lemma 2.8]) to conclude that

D(f) ≤ log
(

(2r/δ)
O(log(r))

)
= O(log(1/δ) log r + log2 r).
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In the following simple corollary, we observe that f satisfies the assumption of Lemma 3.1 with δ =

2−2Rpub
0 (f)−1.

Corollary 3.2. There exists a universal constant c ≥ 1 such that every f : X × Y → {0, 1} satisfies

D(f) ≤ cRpub
0 (f) log rk(f) + c log2 rk(f).

Proof. Let πR be a zero-error public-coin communication protocol of cost Rpub
0 (f) for f . Here, R denotes

the public randomness, and any fixation of R to a string r leads to a deterministic protocol πr with three
possible outputs {0, 1,⊥}. Since PrR[πR(x, y) 6=⊥] ≥ 1

2 for every (x, y), there exists a fixation of R to r such
that

Pr
(x,y)∈A1

[πr(x, y) 6=⊥] ≥ 1

2
.

In other words, the 0-leaves and 1-leaves of the protocol πr contain at least half of the points in A1. Since

there are at most 2−Rpub
0 (f) such leaves, one of them must contain at least 2−Rpub

0 (f)−1|A1| points in A1.

Thus f satisfies the assumption of Lemma 3.1 with δ = 2−2Rpub
0 (f)−1. �

To optimize our bound, instead of applying Newman’s lemma, we apply the next lemma from [DW07,
Corollary 3.6], whose proof is almost identical to the proof of Newman’s lemma.

Lemma 3.3. Every Boolean function f : X × Y → {0, 1} satisfies

N(f) ≤ Rpub
0 (f) + log log |X ||Y|+ 1.

Proof. Let f : X ×Y → {0, 1} be a Boolean function and Rpub
0 (f) = t, witnessed by a zero-error randomized

protocol πR.
Let ` = log(|X ||Y|) + 1 so that 2` > |X ×Y|, and consider ` independent executions of πR by considering

` independent copies R1, . . . , R` of R. For every (x, y), we have

Pr
R1,...,R`

[∀i, πRi(x, y) =⊥] ≤ 1

2`
<

1

|X × Y|
.

Hence there exists a choice of r1, . . . , r` such that for every (x, y) ∈ X ×Y, at least one i ∈ {1, . . . , `} satisfies
πri(x, y) 6=⊥. Since the protocol does not make errors πri(x, y) = f(x, y).

To obtain the desired bound on N(f), observe that each πri is a deterministic protocol with communi-
cation cost at most t, and thus provides a partition of the points (x, y) with πri(x, y) 6=⊥ into at most 2t

monochromatic rectangles. Consequently, there exists a collection of `2t monochromatic rectangles whose
union is all of X × Y, or in other words,

N(f) ≤ log
(
`2t
)

= Rpub
0 (f) + log log |X × Y|+ 1.

�

Proof of Theorem 2.1. Let f : X × Y → {0, 1} be a Boolean function, and let c ≥ 1 be the constant from
Corollary 3.2. We consider two cases.

Case I: In this case we assume

log rk(f) ≤ 1

2c

√
D(f).

By Corollary 3.2, we have

D(f) ≤ 1

2
Rpub

0 (f)
√

D(f) +
D(f)

4
,

which simplifies to √
D(f) ≤ Rpub

0 (f).

Case II: In this case we assume

log rk(f) >
1

2c

√
D(f).
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Denote m = 2
1
2c

√
D(f). By the assumption, f contains a full-rank m×m submatrix A. By Equation (2)

and Lemma 3.3, we have√
D(A)

2
≤ N(A) ≤ Rpub

0 (f) + log log
(
m2
)

+ 1 ≤ Rpub
0 (f) + log logm+ 2.

Combining this with the rank lower-bound (see Equation (1))

D(A) ≥ log rk(A) ≥ logm,

yields √
logm

2
− log logm− 2 ≤ Rpub

0 (f).

Substituting m = 2
1
2c

√
D(f), we obtain

Rpub
0 (f) = Ω(D(f)1/4).

�

4. Concluding remarks and open problems

• We suspect that the bound in Theorem 2.1 can be improved. Is it true that similar to private-coin
model, for every function f : X × Y → {0, 1},

(5) Rpub
0 (f) = Ω(

√
D(f))?

Note that by Fürer’s result [Für87] there are functions f for which Rpub
0 (f) = Θ(

√
D(f)), and

thus Equation (5) is the strongest bound one can hope for.

• We are not aware of any examples separating N(f), Rprv
0 (f), and Rpub

0 (f). To the best of our
knowledge, it could be the case that these parameters are within constant factors of each other. See
also [KN97, Problem 3.11].
• In the case where protocols are allowed to make error, the gap between the public-coin and private-

coin randomized communication complexities can be arbitrarily large. For example, for the N ×N
identity matrix IN , allowing an error probability of 1

3 , we have

Rpub
1/3 (IN ) = O(1), Rprv

1/3(IN ) = Θ(log logN), D(IN ) = Θ(logN).

• Corollary 3.2 shows that if rk(f) is small, then D(f) can be bounded from above by a function of

Rpub
0 (f). Gavinsky and Lovett [GL14] show that this can be generalized to a similar bound for

Rpub
1/3 (f), albeit with slightly worse parameters:

D(f) = O(Rpub
1/3 (f) log2 rk(f)).
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