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Abstract

How much computational resource do we need for cryptography? This is an important
question of both theoretical and practical interests. In this paper, we study the problem on
pseudorandom functions (PRFs) in the context of circuit complexity. Perhaps surprisingly, we
prove extremely tight upper and lower bounds in various circuit models.

• In general B2 circuits, assuming the existence of PRFs, PRFs can be constructed in 2n +
o(n) size, simplifying and improving the O(n) bound by Ishai et al. (STOC 2008). We
show that such construction is almost optimal by giving an unconditional 2n − O(1)
lower bound.

• In logarithmic depth circuits, assuming the existence of NC1 PRFs, PRFs can be con-
structed in 2n + o(n) size and (1 + ε) log n depth simultaneously.

• In constant depth linear threshold circuits, assuming the existence of TC0 PRFs, PRFs
can be constructed with wire complexity n1+O(1.61−d). We also give an n1+Ω(c−d) wire
complexity lower bound for some constant c.

The upper bounds are proved with generalized Levin’s trick and novel constructions of
“almost” universal hash functions; the lower bound for general circuits is proved via a tricky
but elementary wire-counting argument; and the lower bound for TC0 circuits is proved by
extracting a “black-box” property of TC0 circuits from the “white-box” restriction lemma of
Chen, Santhanam, and Srinivasan (Theory Comput. 2018). As a byproduct, we prove uncondi-
tional tight upper and lower bounds for “almost” universal hashing, which we believe to have
independent interests.

Following Natural Proofs by Razborov and Rudich (J. Comput. Syst. Sci. 1997), our re-
sults make progress in realizing the difficulty to improve known circuit lower bounds, which
recently becomes significant due to the discovery of several “bootstrapping results”. In TC0,
this reveals the limitation of the current restriction-based methods; in particular, it brings new
insights in understanding the strange phenomenon of “sharp threshold results” such as the
one presented by Chen and Tell (STOC 2019).
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1 Introduction

Pseudorandom function (PRF), capturing the indistinguishability of a set of functions from a ran-
dom function, is a cornerstone of cryptography. The celebrated result of Goldreich, Goldwasser,
and Micali [GGM84] revealed the power of such a notion by showing its equivalence to pseu-
dorandom generator and therefore one-way function by later works [GL89; HILL99]. Being sim-
ple and powerful, it serves as the starting point of many constructions to useful cryptographic
primitives including message authentication, “memoryless” digital signature [Gol86], better ob-
fuscation [App14], etc (see [BR17] for an excellent survey on this topic). From both practical and
theoretical perspective, it is a natural problem to study the amount of computational recourse we
need to construct pseudorandom function.

We investigate this problem in the context of circuit complexity. Let n be the input length.
The syntax of a pseudorandom function can be modeled as a collection Fn of Boolean functions in
{0, 1}n → {0, 1} and a sampling distribution Dn supported over Fn (for simplicity, we only con-
sider single output PRFs). We consider PRFs that are secure against any probabilistic polynomial-
time (p.p.t.) adversary. We can naturally define the circuit complexity of a PRF as the maximum
complexity of functions in Fn (see Section 4.4 and 4.6 for formal definition).

In this work, we present tight upper bounds and lower bounds of pseudorandom functions in
general B2 circuits, NC1 circuits, and TC0 circuits1. We sketch the results below.

• In general B2 circuits, PRFs can be constructed in size 2n + o(n) assuming PRFs exist, sim-
plifying and improving the O(n) upper bound by Ishai, Kushilevitz, Ostrovsky, and Sahai
[IKOS08]. We also prove that any PRF would require at least 2n−O(1) size circuit to com-
pute, which is the first non-trivial (and already optimal) lower bound of PRF.

• In NC1 circuits, PRFs can be constructed in size 2n + o(n) and depth (1 + ε) log n simultane-
ously for arbitrarily small ε > 0 assuming NC1 PRFs exist. A trivial lower bound says that
any PRF would require at least log n−O(1) depth.

• In TC0 circuits of depth d, PRFs can be constructed in wire complexity n1+O(ϕ−d), where
ϕ = 1+

√
5

2 , assuming TC0 PRFs exist. We give a matching lower bound saying that any PRF
in TC0 requires wire complexity at least n1+Ω(c−d) for some constant c > ϕ. Both O(·) and
Ω(·) hides absolute constants independent of n and d. Following the paradigm of natural
proofs [RR97], our result can be interpreted as a barrier for current techniques to deal with
sparse TC0 circuits, see Section 2 for detailed discussion.

Natural proof barriers. Another motivation of our work is to understand why proving circuit
lower bounds are hard, following the Natural Proof barriers introduced by Razborov and Rudich
[RR97]. Informally, they showed that certain kinds of proofs do not seem to be strong enough
to prove super polynomial lower bounds since they break commonly-believed cryptographic as-
sumptions. However, it is not capable to refute the existence of “slightly non-trivial” improve-
ments to explicit lower bounds using current techniques.

On the other hand, realizing the (im-)possibility to improve known explicit lower bounds and
derandomization results recently becomes a significant problem in circuit complexity since the
discovery of a sequence of bootstrapping results (see, e.g., [AK10; OS18; Tel18; OPS19; CT19;

1B2 circuits refers to the circuits in which each gate can compute arbitrary fan-in 2 Boolean functions. TC0 is the
class of circuits with constant layers of unbounded-fanin linear threshold functions (see Section 4.2).
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MMW19; CJW19; Che+20; CJW20]). These works reveal a mysterious phenomenon that a minor
improvement of known results (for example, n1+ε lower bound for B2 circuits on some natural
problems) would imply a breakthrough (for example, NP ⊈ P/poly). Since the bootstrapping step
may not be natural [Che+20], no strong evidence hints the impossibility to obtain a breakthrough
by improving current results (even with natural proofs).

In this work, we make progress in understanding the limitation of this line of works. Fol-
lowing the duality of lower bound techniques and cryptanalysis [RR97], we are able to show
that even slight improvements to known lower bounds and derandomization results could not
be expected for certain kinds of techniques. The most interesting setting would be the wire com-
plexity of constant-depth linear threshold circuits TC0, which has been the frontier of proving
circuit lower bounds for years. The first explicit lower bound was given by Impagliazzo, Paturi,
and Saks [IPS93], who proved a worst-case lower bound of n1+Ω(c−d) form. Years later, a similar
average-case lower bound (with larger c) was given by Chen, Santhanam, and Srinivasan [CSS18]
following a rather different argument. With their new technique, similar results in quantified
derandomization [Tel18; CT19] and the construction of pseudorandom generators [HHTT21] can
even be proved.

We briefly illustrate our barriers in the context of quantified derandomization studied by Chen
and Tell [CT19] (see Section 2.1 for details). In their work, they showed that quantified derandom-
ization is possible for n1+O(c−d) circuits for some c > 1, and improving it to n1+Ω(1.61−d) would
imply breakthrough. We inspect the proof techniques and conclude the following.

• The proof of quantified derandomization for n1+O(c−d) circuits utilizes a structural lemma
about sparse TC0 circuits, which implies an n1+Ω(c−d) lower bound on TC0 circuits for PRFs.

• The proof of bootstrapping results for slightly improved quantified derandomization con-
structs an error-correctig code in sparse TC0 circuits, which implies an n1+O(ϕ−d) wire com-
plexity upper bound for PRFs assuming TC0 PRFs exist, where ϕ = 1+

√
5

2 .

Essentially, this means that we cannot expect to get the breakthrough by simple improvements
to any side of Chen-Tell’s results. We note that TC0 PRF follows from standard cryptographic
assumptions, such as factoring, decisional Diffie-Hellman [NR04], and ring learning-with-error
[BPR12].

Related works. To study the circuit upper bounds of PRFs, one needs to rely on specific crypto-
graphic assumptions. We focus on the weakest assumption possible: we study the upper bound
merely based on the existence of pseudorandom functions. To handle things in this setting, Levin’s
domain extension trick tells us that universal hash functions can be used to reduce the circuit com-
plexity of any PRF (see, e.g., [BR17] or Section 4.7 for more discussion). Combining with Spiel-
man’s error-correcting code [Spi96], Ishai, Kushilevitz, Ostrovsky, and Sahai [IKOS08] showed
that universal hash function can be constructed in O(n) size, which further implies linear-size con-
struction of PRF and many other primitives. However, their construction is quite complicated and
the multiplicative overhead (though constant) is huge, making it impossible to be implemented
for real-world applications. Due to this weakness, [IKOS08] gives little structural insights about
the power of small-size general circuits in constructing pseuodorandom primitives and cannot be
generalized to restricted circuit classes (for example, TC0 circuits).

On the other hand, proving circuit lower bounds for particular functions could be unexpect-
edly hard. Although most people believe that NP ⊈ P/poly, the best explicit circuit lower bounds
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we can prove are 3.1n− o(n) for B2 circuits [LY21] and 5n− o(n) for U2 circuits2 [IM02]. In more
restricted setting, we know n2−o(1) lower bound for B2 formulas [Nec66], n3−o(1) lower bound for
De Morgon formulas [And87; IN93; PZ93; Hås98; Tal14] and n1+Ω(2.42−d) lower bound for TC0 cir-
cuits of depth d [IPS93]. Super-polynomial lower bounds can only be proved up to ACC0 [MW20],
and even NEXP ⊈ TC0 remains to be open (see, e.g., [Che18; CT19]). For PRFs, prior work [RR97;
KL01] only refutes the existence of pseudorandom functions in AC0, unweighted depth-2 thresh-
old circuits and in AC0[p] against quasi-polynomial adversaries for primes p. To the best of our
knowledge, there is no known impossibility results of PRF on general circuits or TC0 circuits with
large depth.

1.1 Our results

General circuits. We will begin with our bounds for general circuits. The first theorem gives
a linear upper bound on the gate complexity of PRFs in general circuits. This will be proved as
Corollary 5.13.

Theorem 1.1. If PRF exists, then there exists a PRF of circuit complexity 2n + o(n). ♢

The proof of this theorem (together with all the other upper bounds to be presented below)
is constructive, in the sense that we can explicitly give an algorithm, which takes a polynomial-
size PRF as input, and outputs a PRF of size 2n + o(n). This means that if the original PRF is
uniform, then our newly constructed one is uniform as well. Indeed, uniform PRF follows from
standard cryptography, such as the existence of one-way functions [GGM84; GL89; HILL99]. So
it is plausible that p.p.t. adversary can be fooled even by functions with circuit complexity only
2n + o(n).

We then give an almost matching lower bound, saying that this construction cannot be im-
proved significantly. This lower bound will be proved as Corollary 6.5.

Theorem 1.2. The circuit complexity of any PRF must be at least 2n−O(1). ♢

The proof of this lower bound follows from a completely combinatorial argument, which does
not require uniformity. This essentially says that under the belief that PRFs exist, they should be
computed in complexity exactly around 2n, with no more and no less. We believe that this might
give us more efficient constructions of other useful cryptographic primitives.

NC1 circuits. By the same techniques of constructing efficient PRFs in general circuits, we can
additionally reduce the depth almost optimally. Indeed, the following theorem is proved as Corol-
lary 5.15.

Theorem 1.3. If PRF in NC1 exists, then for any constant ε > 0, there exists a PRF computable by
2n + o(n) size and (1 + ε) log n depth circuits. ♢

We note that the output of PRFs should depend on all of its inputs, or we can distinguish it
from truly random functions by identifying the unused input bit. This gives a trivial log n depth
lower bound. Hence this theorem is also close to optimal.

2In U2 circuits, gates can compute functions except for XOR and its complement.
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TC0 circuits. Another restricted model we are interested in is constant-depth linear threshold
circuits (denoted by TC0). We emphasize that we consider the number of wires in the circuit as
size complexity. Our upper bound, which is presented below and proved as Corollary 7.2, tightly
matches the parity upper bound in TC0 circuits. This is unavoidable since our proof utilizes a
linear error-correcting code by Chen and Tell [CT19]. Previously, only candidates of n1+O(1/d) size
based on much stronger assumptions are known [MV15]. Indeed, showing better candidates was
proposed as an open problem by Chen and Tell [CT19].

Theorem 1.4. Let ϕ = 1+
√

5
2 be an absolute constant. If PRF exists in TC0 of depth d0, then for

any depth d ≥ d0 + 4, there exists a PRF computable by depth d linear threshold circuits of size
n1+O(ϕ−d). ♢

We are also able to prove a nearly matching lower bound, which will be formally stated as
Theorem 7.3. The proof of this theorem builds upon the random restriction paradigm which has
already been used to prove size-depth trade-off lower bounds and derandomization for linear
threshold circuits [CSS18; Tel18; CT19; HHTT21]. In fact, the constant c in our theorem tightly
matches the corresponding constants in the previous line of work.

Theorem 1.5. There exists an absolute constant c such that for any d ≥ 1, any depth d linear
threshold circuits computing a PRF should have size at least n1+Ω(c−d). ♢

Unconditional exact complexity of “almost” universal hash functions. As a byproduct of our
analysis, we are also able to get upper and lower bounds for a weaker variant of universal hash
functions. These results are quantitatively similar to those for PRFs but are completely uncondi-
tional.

Recall that a hash function Hn is a collection of functions mapping n-bit strings to m-bit strings.
It is called universal if for any inputs x ̸= y ∈ {0, 1}n, we have Prh←Hn [h(x) = h(y)] = 2−m.
However, in many cases, we do not need the collision probability to be exactly 2−m. We only need
the collision to be not noticeable. This motivates the definition of almost universal hash function,
where the requirement is loosened to Prh←Hn [h(x) = h(y)] = negl(n).

For almost universal hash functions, we can get unconditional constructions from our proofs
of previous theorems. The first part of the following theorem (linear size and logarithmic depth)
is proved as Lemma 5.14. The second part of the theorem (slightly superlinear size for linear
threshold circuits) directly follows from Lemma 7.1 and Proposition 4.9. We can see that the depth
upper bound is even slightly better than the one for PRFs.

Theorem 1.6. Universal hash functions with output length m = nΘ(1) can be constructed by gen-
eral circuits of size 2n+ o(n) and depth (1+ o(1)) log n simultaneously, or depth d linear threshold
circuits of wire complexity n1+O(ϕ−d) for any d ≥ 4, where ϕ = 1+

√
5

2 is the absolute constant in
Theorem 1.4. ♢

Similarly, unconditional lower bounds for PRFs can be adapted to almost universal hash func-
tions. The general circuit lower bound is proved as Corollary 6.6, and the linear threshold circuit
lower bound is proved as Theorem 7.7.

6



Theorem 1.7. Let c be the absolute constant in Theorem 1.5. Any universal hash function with
output length3 m = no(1) needs general circuits of size 2n− 2m, or linear threshold circuits of wire
complexity n1+Ω(c−d) to compute, for any depth d ≥ 1. ♢

By the general connection between almost universal hash functions and error-correcting codes
(see Proposition 4.9), this lower bound also holds for error-correcting codes.

1.2 Organization of the paper

We will first discuss in Section 2 how our results give tighter barriers to particular proof techniques
in circuit lower bounds. We then give some intuition on how the upper bounds and lower bounds
are derived in Section 3. In Section 4, we will formally define our notations. We will also prove a
generalized version of Levin’s trick in this section, which is the starting point of our upper bound
constructions. We then give technical proofs to upper bounds in general circuits in Section 5, then
lower bounds in general circuits in Section 6. We will finally prove the results on linear threshold
circuits in Section 7. Some open problems will be discussed in Section 8.

Directions for readers We expect readers with various backgrounds to be interested in our pa-
per. For different interests, we give a guideline here for convenience.

• Readers interested in PRF (and almost universal hashing) complexity in general circuits are
referred to Section 3.1 and 3.2, Section 4, Section 5 for upper bounds, and Section 6 for lower
bounds. In preliminaries, one may skip Section 4.2, which are for linear threshold circuits.

• For readers interested in linear threshold circuits, and come for the lower bounds in TC0, we
refer them to Section 3.3, Section 4, and Section 7. In overview and preliminaries, one may
skip Section 3.1, 4.5 and 4.7 if you are not interested in how error-correcting codes give us
better upper bounds.

• Readers interested in barriers in circuit lower bounds are referred to Section 2. The remain-
ing parts are for proving the tight complexity results underlying the barriers. One may refer
to them for detailed proofs.

2 Connections to circuit lower bound proofs

We now discuss how our exact complexity results give insights of many circuit lower bound
results in the current frontier. Let us first review the natural proof framework by Razborov
and Rudich [RR97]. Let Γ and Λ be standard complexity classes. A combinatorial property
C = {Cn ⊆ {0, 1}n → {0, 1}}n≥1 over functions of input lengths n is Γ-natural useful against Λ
if the following conditions holds.

(Constructivity) Given the truth table of a function fn : {0, 1}n → {0, 1} as input (note that the
input length is 2n), the language indicating whether fn is in Cn is decidable in Γ.

3One may note that there is a small gap between the output length of our upper bounds and lower bounds. In fact,
our lower bound are proved even for m = nε, where ε > 0 is some constant. We present it here in this form to keep the
statement clean and easy to read. One may refer to Theorem 7.7 for the exact statement.
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(Largeness) For sufficiently large input length n, let fn : {0, 1}n → {0, 1} be a uniformly random
function from all possible functions, then Pr[ fn ∈ Cn] ≥ 1/poly(n).

(Usefulness) For any language L = {Ln : {0, 1}n → {0, 1}}n≥1 ∈ Λ, there exists infinitely many
input length n such that Ln /∈ Cn.

What Razborov and Rudich [RR97] observed is that such a property induces an algorithm
in Γ that distinguishes any function family in Λ from truly random functions given the truth
tables. Hence assuming the existence of exponentially hard PRFs against Γ computable in Λ, such
combinatorial properties do not exist. For a typical setting such as Γ = Λ = P/poly, the existence
of desired PRF follows from the existence of exponentially hard PRG via [GGM84].

Although natural proof paradigm successfully explains why proving super-polynomial circuit
lower bounds is hard, it remains open to understand the difficulty in proving much weaker lower
bounds such as NP /∈ SIZE[10n]. This is because there is no plausible candidates of sufficiently
hard PRFs in weak classes like SIZE[10n]. For instance, there is no PRF in SIZE[10n] secure against
2n1.01

-time adversary, because to break PRF candidates in 10n size, the adversary can enumerate
all 10n size circuits in 2O(n log n) time and check whether one of them realizes the truly table.

The main observation leading to our barrier is that some techniques such as random restric-
tion (e.g. switching lemma of [Hås86] or simplifier sets characterization of [Tel17]) actually imply
distinguishers which are much more efficient than the requirements of natural proofs. Take ran-
dom restriction method for example. If we can show that certain type of circuits becomes constant
under random restrictions with nice probability, we can distinguish it from truly random func-
tion with only polynomially many oracle accesses. This means that to refute the existence of
such proofs, it is sufficient to use standard cryptographic PRFs, which can be constructed in weak
classes like SIZE[2n + o(n)], Formula[n1.01] or depth-d threshold circuits of size n1+O(c−d) by our
upper bounds.

Formally, we call a combinatorial property C = {Cn}n≥1 black-box natural against Λ if, instead
of constructivity, it has the following stronger property.

(Black-box constructivity) There exists an oracle p.p.t. algorithm AO such that the following
conditions hold.

• For any fn ∈ Cn, we have PrA
[
A fn(1n) = 1

]
≥ 2/3.

• For uniformly random function fn, we have Pr fn,A
[
A fn(1n) accepts

]
≤ 1/3.

Note that the probability thresholds δ1 = 2/3 and δ2 = 1/3 are taken for simplicity of pre-
sentation and can be arbitrary functions of n with non-negligible gap. In fact, the distinguishing
algorithm induced by our PRF lower bound proofs satisfies δ1 = 1.

With this definition, we can immediately get the following impossibility result.

Proposition 2.1. Let Λ be a complexity class. If (standard cryptographic) PRF can be constructed
in Λ, then black-box natural properties against Λ does not exist. ♢

• With Theorem 1.1, black-box natural properties against SIZE[2n + o(n)] does not exist, as-
suming PRF exists, which simply follows from the existence of one-way functions [HILL99].
We note that Theorem 1.2 in fact gives a black-box natural property against SIZE[2n−O(1)].
One may check that known better-than-2n explicit circuit lower bounds [Sto77; Pau77; Blu84;
DK11; FGHK16; LY21], proved by gate elimination, highly rely on a non-black-box procedure
that eliminates all gates by introducing constraints to input bits cleverly according to the
circuit.

8



• With Theorem 1.3, black-box natural properties against (1 + ε) log n depth circuits does
not exist, assuming NC1 PRF exists. From the general connections between NC1 and for-
mula complexity, this means that black-box natural properties against n1+ε size B2-formulas
should not exist for arbitrarily small ε > 0. We note that known quadratic lower bounds for
B2-formulas by Nechiporuk [Nec66] is natural in the sense of [RR97], but does not seem to
be black-box natural because it utilizes a non-constructive counting argument.

• With Theorem 1.4, black-box natural properties against depth-d TC0 circuits of wire com-
plexity n1+O(ϕ−d) does not exist, assuming TC0 PRF exists. We note that it is still open
whether such an assumption can be derived from the existence of one-way functions, but
it is known to follow from many standard cryptographic assumption, such as factoring, de-
cisional Deffie-Hellman [NR04], and ring learning-with-error [BPR12]. On the other hand,
the main lemma for our TC0 PRF lower bound (see Lemma 7.5), whose variants are also
used by [CSS18; Tel18; HHTT21], can be viewed as a black-box natural property against TC0

circuits of wire complexity n1+Ω(c−d).

We should note that learnability is a black-box natural property. Our PRFs refute the existence
of learning algorithms for the concept classes of 2n + o(n) size general circuits, n1+ε size formulas
and depth-d TC0 circuits with wire complexity n1+O(ϕ−d).

2.1 A case study: Chen-Tell’s bootstrapping result

What makes black-box constructivity different from the standard constructivity is that the algo-
rithm A no longer runs in exponential time 2O(n), but in polynomial time poly(n). Still, if we rely
on stronger cryptographic assumptions, we can loosen the running time requirement to super-
polynomial time, say 2poly log n, which may slightly extend our barrier. This difference makes our
barrier less general than natural proofs of Razborov and Rudich [RR97]: for instance, formula
size lower bound proofs, including storage-access function against B2-formulas [Nec66] and An-
dreev’s function against De Morgan formulas [And87; IN93; PZ93; Hås98; Tal14], are natural but
not likely to be black-box natural.

Nevertheless, our barrier explains the limitation of certain black-box techniques including ran-
dom restriction method and its simple generalizations (e.g. random “affine” restriction). Most
interestingly, it may give us some insights on the current frontier in linear threshold circuit, for
example, the quantified derandomization results by Chen and Tell [CT19]. Recall that a linear
threshold function LTF(x1, x2, . . . , xn) is defined as sgn(∑i wixi − θi). The class of constant depth
linear threshold circuits TC0 contains circuits with constant layers of LTF functions. Also recall that
the quantified derandomization problem for circuit class C with exceptional inputs B(n) is to distinguish,
deterministically, the circuits in C which accept all but B(n) of its inputs with those which reject all
but B(n) of its inputs. This problem was firstly introduced by Goldreich and Wigderson [GW14]
and can be viewed as a generalization of standard derandomization problem (i.e. B(n) = 2n/3).
Under this framework, Chen-Tell’s bootstrapping result [CT19] roughly says the following.

• There exists a constant c1 > 1, such that the quantified derandomization problem for TC0

circuits of size n1+O(c−d
1 ) with B(n) = 2n

1−O(c−d
1 )

, can be solved. This follows from a pseudo-
random restriction lemma for linear threshold functions [CSS18; Tel18].

• Let c2 be any constant smaller than ϕ = 1+
√

5
2 , if the quantified derandomization problem

for TC0 circuits of size n1+Ω(c−d
2 ) with B(n) = 2n1−c−d

2 can be solved, then there exists an
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algorithm for standard derandomization of TC0. This result utilizes error reduction by ex-
tractors, following the idea of Goldreich and Wigderson [GW14]. Their main contribution
is an extremely efficient construction of extractors in TC0, by constructing an efficient error
correcting code by the expander in [CRVW02] and then plugging it into Trevisan’s extractor
[Tre01; RRV02].

Similar to other sharp threshold results in circuit lower bounds, Chen-Tell’s result can be inter-
preted in either optimistic or pessimistic perspective. In an optimistic point of view, this provides a
new (and seemingly viable) approach to solve a long-standing open problem (which is derandom-
ization of TC0 in this setting). In a pessimistic point of view, however, this suggests the inherent
difficulty to improve current results. The pessimists can be further divided into two kinds with
entirely different opinions: pure pessimists who believes (maybe with or without formal evidence)
that the breakthrough itself is intractable; and technical pessimists who thinks the desired improve-
ment to current results is out of reach with known techniques. In some sense, our results provide
justifications for technical pessimists. Let us again take Chen and Tell [CT19] for example.

• The only known technique to deal with average-case hardness and derandomization of gen-
eral TC0 circuits is the random (or pseudorandom) restriction framework [CSS18; Tel18;
HHTT21], which essentially utilizes a variant of a restriction lemma (see Lemma 7.5). Al-
though this lemma seems to be non-black-box, we can indeed extract a black-box property
by a clever sampling (see Lemma 7.6). By Proposition 2.1, this suggests that it is hard to ob-
tain the breakthrough by improving Chen-Tell’s quantified derandomization algorithm with
simple extensions of the restriction framework4. We will need to find some other non-black-
box approaches, unless one wish to break factoring, DDH and ring learning-with-error.

• Recall that the bootstrapping step of Chen-Tell’s result utilizes a linear error-correcting code.
Constructing an efficient ECC is the most natural way to lower the bootstrapping thresh-
old and hence bring us closer to the breakthrough. From the parity lower bound of [IPS93],
[CT19] noted that linear codes cannot give us better results, but leave the non-linear code
case as an interesting direction. From our results, we are able to argue that even non-linear
error-correcting codes would not work. This is because any efficient error-correcting code
can be translated into a PRF upper bound (see Section 4.5 and 4.7) and thus cannot go be-
low known lower bounds assuming the existence of TC0 PRF. In fact, this can be made un-
conditional if we use the unconditional construction of almost universal hash from ECC
(see Proposition 4.9), together with the unconditional lower bound of almost universal hash
functions.

2.2 Comparisons to previous barriers

Natural proofs. Natural proofs are inevitably the most notable barrier in these decades. Our
results can be seen as a modification of the standard natural proof barrier, since we are arguing
the non-existence of a more black-box type of proofs basing on weaker assumptions. Indeed, we
utilize this weakness in assumption to reduce down the complexity of the cryptographic primi-
tives, and get very tight barriers, in the sense that such black-box proofs cannot be improved even

4The restriction lemma roughly shows that a random restriction followed by a white-box restriction can eliminate a
layer of a sparse TC0 circuit. One may observe that the upper bound of parity function already implies that one cannot
directly utilize the current random restriction technique to prove better lower bound results. However, our black-box
natural barrier could be more general: even slightly extending the restriction used, the white-box restriction strategy or
the hard function used, should not work.
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slightly. Comparably, we are not able to get such tight barriers in the standard natural proofs con-
text, since reducing the complexity of such strong assumptions (the exponential hardness assumed
by natural proofs) would be difficult. This is indeed, explicitly noted by Chen et al. [Che+20] in
the context of hardness magnification.

Tell’s barrier on quantified derandomization. Another related barrier is the one by Tell [Tel17].
It says that it is impossible to obtain standard derandomization by combining a quantified deran-
domization algorithm with “black-box” random restriction and an error reduction procedure by
seeded extractor, since these two techniques somewhat contradict with each other. Although his
barrier is unconditional, the requirement of “black-box” random restriction is stronger than black-
box natural proofs. Typically, the random restrictions used in TC0 circuits [CSS18; Tel18; HHTT21]
are black-box natural, but they does not naturally fit into Tell’s characterization of “black-box ran-
dom restriction” as he explicitly noted in [Tel17].

Parallel to our work, Tell [Tel21] claimed very recently that his barrier can be generalized to the
TC0 setting. His barrier and ours provide completely different view of Chen-Tell’s bootstrapping
result, and indeed the results are incomparible with each other. Also, Tell’s barrier only works for
quantified derandomization, while our results are general enough to apply to all tasks related to
proving circuit lower bounds.

3 Proof overview

We now give intuition to how we prove the results. We will first show our general paradigm
of reducing the circuit complexity of PRFs from efficient constructions of almost universal hash
functions in Section 3.1. This is done via a generalization of the seemingly folkloric technique
called Levin’s trick. We then briefly show how almost universal hash functions are constructed in
different models. Then we discuss the way of proving lower bounds in general circuits and linear
threshold circuits in Section 3.2 and 3.3 respectively.

3.1 Upper bounds: Levin’s trick and hash function

Our general paradigm of proving circuit upper bounds for pseudorandom functions is a general-
ization of the standard domain extension technique called Levin’s trick. Informally, it states that we
can construct PRF with input length n as follows: we firstly shrink the n-bit input x to nε-bit hash
value h(x) by a uniform almost universal hash function5 and then feed h(x) to a PRF with inputs
length nε.

The reason why Levin’s trick may improve the efficiency of PRF is that hash function is a
combinatorial (instead of cryptographic) primitive so that its complexity can be much lower. As-
sume the original PRF has circuit complexity nc, we can choose ε < 1

c so that the “pseudorandom
kernel” has complexity o(n), and therefore the complexity of resulting PRF mainly depends on
the complexity of hash function. This reduces the construction of efficient PRF to the problem of
designing low-complexity almost universal hash functions.

Previously, the efficient construction of almost universal hash functions is built upon efficient
error-correcting codes, for example, Spielman’s linear-size encodable code [Spi96]. Although this
is sufficient to prove an O(n) upper bound for PRF, the constant factor hidden in big-O is rather

5Note that a hash function is called almost universal if for all distinct pair of inputs, their hash values collide with
only negligible probability, see Section 4.
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hard to analyze. Inspired by the constructions of efficient ECC [GDP73; Spi96; CT19], we observe
that one can construct efficient hash function with a much simpler primitive, which we call it 1-
detector. Intuitively, a 1-detector is a linear function D : Fn

2 → Fm
2 such that for all inputs x ̸= 0

with Hamming weight smaller than a threshold r, D(x) is not identically zero. If we view D as
a hash function, it guarantees that the hash value of distinct pairs (x, y) with small Hamming
distance will not collide. In addition, assume that r is appropriately large and m is small, we can
also avoid (with high probability) the collisions between pairs (x, y) with large Hamming distance
by involving a random subset of input bits in the hash value.

Following this observation, it is now sufficient to construct (uniformly constructible) 1-detectors
with small circuit complexity and nice trade-off between parameters r and m. In fact, the existence
of (non-uniform) 1-detectors has been shown in [GDP73] by standard probabilistic method, which
cannot be made uniform due to technical reasons. We provide two ways to overcome this issue.

1. Although 1-detector induced by [GDP73] (which has circuit complexity 3n) is not uniform,
we can still sample a 1-detector with small failure probability. By an error-reduction trick,
for all integer d > 0, we can construct a p.p.t. algorithm A such that A(1n) generates a
1-detector with failure probability at most n−d. We call such 1-detector (and corresponding
hash function) weakly uniform. We generalize Levin’s trick for non-uniform PRF, and show
that it can be adapted for weakly uniform hash function. This leads to a 3n + o(n) circuit
upper bound for (non-uniform) PRF. Although this construction has a larger circuit size, its
collision probability can be reduced to much smaller than the 2n construction below. We
think that this may lead to independent interest.

2. To improve the upper bound to 2n, we can no longer rely on the probabilistic method in
[GDP73]. However, we can again slacken the requirement: to construct hash functions, we
can allow the 1-detectors to be randomized. In particular, we define randomized 1-detector as
a linear function D : F2

n → F2
m such that for all x ̸= 0 with small Hamming weight, for a ran-

dom permutation ρ of input bits, D(ρ(x)) ̸= 0 with high probability. Perhaps surprisingly,
such primitive with circuit complexity 2n can be uniformly constructible using graphs with
large girth, whose explicit construction has been extensively studied in combinatorics. This
leads to a 2n + o(n) PRF upper bound for both uniform and non-uniform setting.

3.2 Lower bounds in general circuits

We prove our 2n −O(1) circuit lower bound with the following two steps. Firstly, we define a
combinatorial property P about B2 circuits such that there exists a p.p.t. algorithm A that distin-
guishes circuits with such property and truly random functions. Then we prove by wire counting
that all circuits with complexity 2n−O(1) have property P , so that our algorithm A can be used
to break PRF candidates with complexity 2n−O(1).

Let C be a circuit and I be the set of variables. For simplicity, we assume that each variable in C
has out-degree at least 1. We define the critical path of a variable x ∈ I as the set of nodes reachable
from x via nodes with out-degree exactly 1. The (black-box natural) combinatorial property we
will utilize is: C contains two variables with intersecting critical paths. For a circuit C with such
property, there exists x, y ∈ I and a Boolean function G, for all restrictions ρ to I \ {x, y}, the
type6 of C↾ρ(x, y) only depends on the type of G. This can be easily separated from truly random

6We can classify Boolean functions in F2
2 → F2 into four types: trivial functions that output a constant, degenerate

functions that depends on only one of its input, ⊕-type functions that are linear over F2 and ∧-type functions that are
quadratic. See Section 4.1 for details.
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functions f because the type of f ↾ρ is independently randomly chosen for each ρ.
Now we only need to prove a lower bound for circuits without intersecting critical paths (and

no variable of out-degree zero). This is done via a standard wire-counting argument. Intuitively,
the n non-intersecting critical paths should give roughly 2n out-wires at their terminals. By an-
alyzing the number of wires between the critical paths and the other part of the circuit, we can
show that we need about 2n gates to handle all these out-wires.

3.3 Lower bounds in linear threshold circuits: random restriction

This part of the result follows the random restriction method which has already been used exten-
sively on TC0 circuits to prove lower bounds and pseudorandom generators. We first review the
effect of random restriction on a layer of linear threshold functions. We will show that after a ran-
dom restriction and a cleverly chosen restriction (based on the former random restriction and the
circuit), with nice probability, we can eliminate a full layer of linear threshold gates while keeping
a good fraction of variables alive. This is done by considering variables and gates with different
degrees separately.

Large variables. For variables with a large out-degree, we arbitrarily fix them to a constant. There
will not be many such variables, since each of them contributes lots of edges.

Small variables and small gates. Since variables with a large out-degree has already been re-
moved from the circuit, we can assume that all variables have out-degree not too large. In
this case, we can choose a large subset of variables by a graph-theoretic argument, such that
each gate of small in-degree is fed at at most one chosen variable. Then by fixing all others, we
can make all these small gates depend on only one of its inputs, hence can be eliminated.

Small variables and large gates. Now only small variable and large gates remains. We do a ran-
dom restriction to all the variables, then argue that each gate has a good probability of being
extremely biased by anti-concentration bounds. We can hence approximate these biased
gates by constants. Since there is not too much unbiased gates remain in expectation, we can
remove them by fixing all of their inputs.

What [CSS18] argued is that we can carefully choose the parameters such that after the above
three processes, there are still sufficiently many (say n0.99) variables unfixed. The starting point of
our argument is that the process above can be intuitively abstracted as follows.

Suppose that the variable set is I. We firstly take a random restriction to all variables. Let I′

denote the variables kept alive by the random restriction. With nice probability, there exists a
large subset S ⊆ I′ such that randomly fixing all variables not in S would eliminate a full layer
of gates with high probability.

The main technical difficulty in proving PRF lower bound is to extract a black-box natural
property from this white-box argument: if we do not need to choose such S according to the
circuit, we can simply repeat the above process for d times so that the circuit would be trivialized.
The key to bypass this issue is to define another distinguishing procedure whose correctness is
implied by the restriction lemma. We define an input x to be good w.r.t. a TC0 circuit c if flipping a
bit of x would not deviate the output of C. If each sparse TC0 circuit of depth d has a large fraction
of good inputs, we can also argue according to the restriction lemma that each TC0 circuit of depth
d + 1 has a large fraction of good inputs. By induction, we can conclude as follows.
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Let C be any sparse TC0 circuit. For a uniformly random input x and an input y obtained by
flipping a random bit of x, C(x) = C(y) with non-negligible probability.

This property itself does not suffice to break PRF candidates in sparse TC0, because a truly
random function f also has a large fraction of good inputs (for any x ̸= y, f (x) = f (y) with
probability 1/2). To deal with this issue, we transform the PRF candidate F we want to break into
a PRF F′ with output length log2 n by expanding the last 2 log log n input bits, which would not
increase its circuit complexity significantly. It is easy to verify that the property above still holds
for multi-output functions. For truly random function, however, the probability that f (x) = f (y)
for x ̸= y reduces to 2− log2 n. This makes it possible to distinguish F′ (and therefore F) from truly
random function.

4 Preliminaries

Throughout this paper we define [n] ≜ {1, 2, . . . , n}, Bn ≜ Fn
2 → F2 as the set of single-output

Boolean functions with n inputs and Bn,m ≜ Fn
2 → Fm

2 as the set of m-output Boolean functions
with n inputs. We represent Boolean AND function with ∧ and Boolean XOR function with ⊕. For
binary strings x and y of length n, the Hamming weight |x| is defined as the number of 1-entries
in x, and the Hamming distance ∆(x, y) ≜ |x⊕ y| is defined as the Hamming weight of point-wise
XOR of x and y. The relative distance ∆r(x, y) is defined as ∆(x, y)/n. We use x∥y to denote the
concatenation of two bit string x and y.

All the graphs G = (V, E) are undirected in default. A cycle in a graph G is a subset of vertices
{v0, v1, . . . , vℓ−1} such that there is an edge between vi and v(i+1) mod ℓ for all 0 ≤ i < ℓ. We follow
standard notations for probability and expectation, where x ← D represents that x is a random
variable sampled according to the distribution D. In particular, for any finite set S, x ← S means
that x is the random variable sampled according to uniform distribution supported on S.

Without further clarification, pseudorandom functions are meant to be secure against uniform
probabilistic polynomial time (p.p.t. for short) adversary.

4.1 Boolean circuits

A Boolean circuit (or B2 circuit) is a directed acyclic graph where each vertex is either a variable of
in-degree 0 or a gate of in-degree 2. Each variable is labeled with an index identifying its corre-
sponding input bit, and each gate has a corresponding Boolean function out of B2. One or more
nodes are marked as output nodes, each of which is labeled with a set of indices identifying the
corresponding output bits7. During evaluation, we decide the output of each gate according to its
corresponding function in topological order. We say a circuit C computes a function f ∈ Bn,m if C
contains exactly n variables and m output nodes, and it agrees with f on all inputs in Fn

2 .
According to the functionality, we can classify the 16 gates out of B2 into four types: trivial

gates that compute constant functions (i.e. f (x, y) = c1); degenerate gates that only depend on
one of their inputs (i.e. f (x, y) = x ⊕ c1 or f (x, y) = y ⊕ c2); ⊕-type gates that compute linear
functions (i.e. f (x, y) = x⊕ y⊕ c); and ∧-type gates that compute quadratic functions (i.e. f (x, y) =
((x⊕ c1) ∧ (y⊕ c2))⊕ c3). It is easy to see that an optimal circuit computing any function f does
not contain trivial and degenerate gates, since we can always remove them and properly rewire
the circuit while keeping functionality of the circuit.

7That is, a node can have more than one corresponding output bits.
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The size of a circuit is defined as the number of gates involved. The circuit complexity of f ,
denoted by B2-CC( f ) or simply CC( f ), is defined as the size of the smallest circuit computing f .
The depth of a circuit is defined as the number of edges in the longest path of the graph.

4.2 Threshold function and threshold circuits

Another computation model we are interested in this paper is linear threshold circuit. For nota-
tional convenience, we represent Boolean value by {1,−1} instead of {0, 1} when talking about
linear threshold circuits (i.e. we represent true by −1 and false by 1, so that XOR is simply mul-
tiplication). We will also often omit “linear” since we will not consider any non-linear threshold
functions in this paper.

Definition 4.1 (Linear threshold function). Let w ∈ Rm and θ ∈ R, a linear threshold function (or
simply threshold function) corresponding to weights w and threshold θ is defined as LTFw,θ(x) ≜
sgn(⟨w, x⟩ − θ), where ⟨·, ·⟩ is the standard inner product of real vectors and sgn(x) is the sign
function. ♢

A linear threshold circuit (or simply threshold circuit) is a direct acyclic graph where each vertex
is either a variable corresponding to an input bit, or a gate of arbitrary in-degree labeled with a
threshold function. Similar to B2 circuits, one or more nodes of a threshold circuit are marked as
output nodes.

The depth of a vertex in a threshold circuit is defined as the number of edges in the longest path
from any variable to it. The depth of the threshold circuit is the maximum depth of all vertices. The
size of a threshold circuit is defined as the number of wires (i.e. edges) in it. As a convention, we use
TC0

d to denote the class of depth-d circuits, and the TC0-circuit complexity TC0
d-CC( f ) represents

the minimum size of TC0
d circuits to compute f . To compute a function f ∈ Bn with threshold

circuit, there is usually a trade-off between the depth and the size. For example, Paturi and Saks
[PS94] shows that the parity function

⊕
n(x1, . . . , xn) ≜ x1 ⊕ · · · ⊕ xn can be computed by depth d

threshold circuits of size n1+O(1)d
. A matching n1+Ω(1)d

lower bound is also given in Impagliazzo,
Paturi, and Saks [IPS93].

Theorem 4.2 ([PS94; IPS93]). Let ϕ1 = 1 +
√

2 and ϕ2 = (1 +
√

5)/2. There exist absolute con-
stants c1 and c2, such that for sufficiently large n, TC0

d-CC(
⊕

n) ∈ [n1+c1ϕ−d
1 , n1+c2ϕ−d

2 ]. ♢

4.3 Restriction

To prove PRF lower bounds against B2 and TC0
d circuits, we need to define the notation of re-

striction. A restriction ρ is a mapping from input bits to {0, 1, ⋆}8, where those bits mapped to
⋆, denoted by ρ−1(⋆), are called unfixed or free bits. Let f ∈ Bn,m be a Boolean function and
ρ : [n] → {0, 1, ⋆} be a restriction. We can then define the restricted function f ↾ρ ∈ B|ρ−1(⋆)|,m as
the function over unfixed bits obtained by fixing the ith bit as ρ(i) for each i ∈ ρ−1({0, 1}).

Definition 4.3 (Random restriction). Let n be the number of input bits. A random p-restriction (or
p-restriction) is the following distribution Rn

p over all restrictions: independently for each input
bit, we set it to ⋆ with probability p and to 0 and 1 with probability (1− p)/2 each. ♢

8Or {1,−1, ⋆} when we are working with threshold circuits.
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During probabilistic arguments, it may be convenient to view a random p-restriction as a pair
(S, y) of random variables, where S denotes the set of fixed bits and y ∈ F

|S|
2 refers to the as-

signment to the fixed bits. Condition on a particular S, the distribution of the assignment y is
uniformly chosen from F

|S|
2 .

4.4 Pseudorandom function

The syntax of pseudorandom functions consists of a collection of functions Fn ⊆ Bn and a dis-
tribution Dn supported over Fn, both of which are labeled by the input length n. In this work,
we assume that PRF is defined for all input length. For convenience, we represent a PRF as
F = {Fn ⊆ Bn}n≥1, implicitly keep the distribution Dn in mind and denote the sampling pro-
cedure simply by f ← Fn.

Definition 4.4 (Negligible function). A function ε(n) is called negligible if for all c > 0 and suffi-
ciently large n, we have ε(n) < n−c. We use the notation negl(n) to mean an arbitrary negligible
functions w.r.t. n if there is no ambiguity. ♢

Definition 4.5 (Indistinguishability). Two function families F = {Fn ⊆ Bn}n≥1 and G = {Gn ⊆
Bn}n≥1 are indistinguishable, denoted by F ≈c G, if for all p.p.t. adversary AO with oracle access
to O, there exists a negligible function ε(·) such that∣∣∣∣ Pr

f←Fn,A
[A f (1n) = 1]− Pr

g←Gn,A
[Ag(1n) = 1]

∣∣∣∣ ≤ ε(n).
♢

One can easily verify that the indistinguishability relation is an equivalence relation, i.e. it is
transitive, symmetric and reflexive.

Definition 4.6 (Pseudorandom functions). A pseudorandom function (PRF) is a family F = {Fn ⊆
Bn}n≥1 that is indistinguishable from truly random function B = {Bn}n≥1. ♢

4.5 Hash function and error-correcting code

Let n be the input length. Similar to PRF, the syntax of a hash function is defined by a family of
functions H = {Hn ⊆ Bn,m} and a family of distribution Dn supported over Hn. Again, we will
simply omit the distribution and denote the sampling procedure by h← Hn.

Definition 4.7 (Hash functions). Let m = m(n) be a function, a hash function is a family H =
{Hn ⊆ Bn,m}n≥1. It is called universal if for all n and x ̸= y ∈ Fn

2 ,

Pr
h←Hn

[h(x) = h(y)] = 2−m.

It is called almost universal if there exists a negligible function ε(·) such that for all n and distinct
inputs x, y ∈ Fn

2 ,
Pr

h←Hn
[h(x) = h(y)] ≤ ε(n). ♢

Definition 4.8 (Error-correcting code). Let m = m(n) > n be a function. A function family E =
{Encn ∈ Bn,m}n≥1 is called an error-correcting code with relative distance δ ∈ (0, 1) if for sufficiently
large n, for all x ̸= y ∈ Fn

2 , the Hamming distance ∆(Encn(x), Encn(y)) is at least δ. Moreover, E
is called systematic if the encoding function can be interpreted as Encn(x) = x∥Parn(x), where the
last m− n bits generated by Parn is called the parity-checking bits. ♢
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There is a simple construction of almost universal hash function from error-correcting code,
which is probably folklore. Let 0 < ε < 1, m = Θ(nε) be the desired output length and Encn ∈
Bn,m′ be an encoding function with relative distance δ. The hash function HEnc

n is defined as the
collection of all functions hS indexed by subsets S = {i1, i2, . . . , im} ⊆ [m′] of size exactly m, such
that

hS(x) ≜ Encn(x)i1∥Encn(x)i2∥. . . ∥Encn(x)im .

That is, the hash function HEnc selects a random m-subset of the output of Encn(x). Clearly, this
construction does not increase the circuit complexity of the function since we only need to relabel
the output nodes.

Proposition 4.9. HEnc = {HEnc
n }n≥1 is almost universal. ♢

Proof. Let x ̸= y be distinct inputs of length n. By the distance property of error-correcting code,
Encn(x) and Encn(y) have Hamming distance at least δm′. The probability that h(x) = h(y) given
h← HEnc

n can be bounded by

Pr
h←HEnc

n

[h(x) = h(y)] ≤
((1−δ)m′

m )

(m′
m )

= ∏
0≤i<m

(1− δ)m′ − i
m′ − i

≤ (1− δ)m .

Recall that we take m = Θ(nε), so this would be negligible whenever the relative distance δ of the
error-correcting code is constant. □

4.6 Circuit complexity and uniformity

Both pseudorandom functions and hash functions are defined as families of function collections
F = {Fn ⊆ Bn}n≥1, hence there are several ways to define the complexity of them. For example,
one can define the complexity of F as the complexity to sample the distribution Dn. In this paper,
however, we define the complexity of F just as the maximum circuit complexity of f ∈ Fn.

Definition 4.10 (Circuit complexity of a function collection). Let C be a circuit class (for exam-
ple, B2 or TC0

d). For a family of function collection F = {Fn ⊆ Bn}n≥1, the C-circuit complexity9 of
F , denoted by C-CC(F ), is defined as the size function s(n) ≜ max f∈Fn C-CC( f ). ♢

In default, pseudorandom functions and hash functions can be non-uniform, i.e. there is no
requirement on the complexity of generating the circuits for a function f ∈ Fn given the corre-
sponding key. We can also define uniform counterparts of these primitives.

Definition 4.11 (Uniformity of collection). Let C be a circuit class. A family F = {Fn}n∈N (with
sampling distribution Dn over Fn) is called a uniform-C family if there exists a p.p.t. algorithm G,
such that for all n and f ∈ Fn,

D( f ) = Pr
G
[G(1n) outputs a C-circuit computing f ].

Similarly, it is called a weakly uniform-C family if for all d ∈N, there exists a p.p.t. algorithm G and
an event E (denoting whether G successes) such that for all n,

Pr
G(1n)

[E ] ≥ 1− 1
nd ,

9For simplicity of presentation, when we say C-CC(F ) ≤ s1(n) (or C-CC(F ) ≥ s2(n)) in the rest of the paper, we
always mean that the inequality holds for sufficiently large n. This means that both our upper bounds and lower
bounds are “almost everywhere” versions.
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and for all f ∈ Fn,

D( f ) = Pr
G
[G(1n) outputs a C-circuit computing f | E ].

We say a collection has uniform complexity (or weakly-uniform complexity) s(n), if it is uniform (or
weakly uniform), and the generated circuits is of size at most s(n) for sufficiently large n. ♢

We introduce the notion of weak uniformity mainly due to technical reasons. We require our
primitives to have a certain degree of uniformity even when we consider non-uniform PRF, since
the adversary is uniform. Intuitively, a family is weakly uniform if one can sample from the family
with error probability n−d for arbitrarily large d.

For simplicity, we may omit the circuit class if C is the class of B2 circuits.

4.7 Levin’s trick for domain extension

One of the key tools to prove circuit upper bounds for PRF is the Levin’s trick for domain exten-
sion. It shows that one can construct a PRF Fn ⊆ Bn with a PRF F′m ⊆ Bm for m = Ω(nε) by hiding
F′ behind a uniform universal hash function. We will need a generalized version of Levin’s trick
by allowing the hash function to be almost universal and weakly uniform.

Lemma 4.12 (Levin’s trick, generalized). Let F = {Fn ⊆ Bn}n≥1 be a PRF and H = {Hn ⊆
Bn,m}n≥1 be an almost universal hash function of polynomial weakly-uniform complexity with
m = m(n) = Θ(nε) for some absolute constant 0 < ε < 1. The composition of F and H, i.e.
F ′ = {F′n}n≥1 for F′n = { f ◦ h | f ∈ Fm, h ∈ Hn}, is also a PRF. ♢

Proof. Let B′ be the composition of B = {Bm}m≥1 and H, i.e., B′n = { f ◦ h | f ∈ Bm, h ∈ Hn}.
It is known that B′ is indistinguishable from truly random functions B = {Bn}n≥1 (for complete-
ness, we present a complete proof in Appendix A). By transitivity, it suffices to show that F ′ is
indistinguishable from B′.

Towards a contradiction assume that F ′ and B′ are distinguishable, then there exists a p.p.t.
adversary A such that there exists a constant c and infinitely many bad input length, say n ∈
{n1, n2, . . . }, such that ∣∣∣∣ Pr

f←F′n,A
[A f (1n) = 1]− Pr

f←B′n,A
[A f (1n) = 1]

∣∣∣∣ > n−c.

Now we construct a p.p.t. adversary that breaks the original PRF on inputs m ∈ {m(n1), m(n2), . . . }.
By the (weakly) uniformity of H, there exists a p.p.t. generator G and an event E (denoting
whether G successes) such that G(1n) successfully samples a hash function conditioning on E ,
and Pr[E ] ≥ 1− n−(c+1). Our adversary A′ f (1m) samples such a circuit C ← G(1n) and then sim-
ulatesA f ◦C(1n). That is, wheneverA performs an oracle call for x, it evaluate C on x and perform
an oracle call for C(x). Note that

Pr
f ′←F′n,A

[A f ′(1n) = 1]

= Pr
f←Fm

h←Hn,A

[A f ◦h(1n) = 1]

= Pr
f←Fm

A,C←G(1n)

[A f ◦C(1n) = 1 | E ]
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= Pr
f←Fm,A′

[A′ f (1n) = 1 | E ].

Similarly, we have
Pr

f ′←B′n,A
[A f ′(1n) = 1] = Pr

f←Bm,A′
[A′ f (1n) = 1 | E ].

Together with the fact that Pr[E ] ≥ 1− n−(c+1), we can see that for large n,∣∣∣∣ Pr
f←Fm,A′

[A′ f (1m) = 1]− Pr
f←Bm,A′

[A′ f (1m) = 1]
∣∣∣∣

>n−c Pr[E ]−
∣∣∣∣ Pr

f←Fm,A′
[A′ f (1m) = 1 | ¬E ]− Pr

f←Bm,A′
[A′ f (1m) = 1 | ¬E ]

∣∣∣∣Pr[¬E ]

≥n−c(1− n−(c+1))− n−(c+1)

≥n−(c+1)

≥Θ(m−ε−1(c+1)),

which is non-negligible. Hence A′ breaks the original PRF and a contradiction arises. □

4.8 Probability theory

We need to use standard Hoeffding’s inequality and Chernoff bound.

Lemma 4.13 (Hoeffding’s inequality). Assume that X1, X2, . . . , Xn are independent random vari-
ables such that Xi ∈ [ai, bi]. Let X = X1 + X2 + · · ·+ Xn and µ = E[X], then for any t > 0,

Pr[|X− µ| ≥ εn] ≤ 2 exp
(
− 2n2ε2

∑n
i=1(bi − ai)2

)
.

♢

Lemma 4.14 (Chernoff bound). Assume that X1, X2, . . . , Xn are independent random variables
such that Xi ∈ [0, 1]. Let X = X1 + X2 + · · ·+ Xn and µ = E[X], then for any 0 ≤ δ ≤ 1,

Pr[|X− µ| > δµ] ≤ 2 exp
(
−δ2µ

3

)
.

♢

5 A 2n + o(n) upper bound for B2 circuits

In this section, we will present a construction of PRF of 2n + o(n) size assuming the existence of
PRF, and a construction of PRF of both 2n + o(n) size and (1 + ε) log n depth for any constant
ε > 0 assuming the existence of NC1 PRF. Both of our constructions preserve the uniformity of the
original PRF. The key ingredient is a uniform construction of almost universal hash function in
2n + o(n) size and (1 + o(1)) log n depth simultaneously.

To gain more intuition on our construction, we will firstly demonstrate a direct O(n) upper
bound using linear-size encodable error-correcting code [Spi96] in Section 5.1. Then in Section 5.2,
we show that it is sufficient to construct a primitive called 1-detector that is much simpler then
error-correcting code, and prove a 3n + o(n) construction of it. We improve the upper bound to
2n+ o(n) using a novel construction of almost universal hash function based on graphs with large
girth in Section 5.4, and consider the circuit depth in Section 5.5.
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5.1 An O(n) upper bound

We present a simplified version of O(n) upper bound from Ishai, Kushilevitz, Ostrovsky, and
Sahai [IKOS08] based on the following explicit error-correcting code with linear circuit complexity.

Lemma 5.1 (Spielman [Spi96]). There exists a uniform error-correcting code {Encn ∈ Bn,m}n≥1
with constant distance such that m = O(n) and CC(Encn) = O(n). ♢

Theorem 5.2. There exists a PRF (resp. uniform PRF) {Fn ⊆ Bn}n≥1 with CC(Fn) = O(n) if PRF
(resp. uniform PRF) of polynomial circuit complexity exists. ♢

Proof. Assume that there exists a PRF F = {Fn ⊆ Bn} of circuit complexity nc. By Lemma
5.1, there exists a uniform error-correcting code {Encn ∈ Bn,m}n≥1 with distance δ ∈ (0, 1) of
complexity O(n). Using Proposition 4.9, we can construct a linear-size uniform almost universal
hash function H = {Hn ⊆ Bn,m}n≥1 for m = ⌈n1/2c⌉. By Levin’s trick (see Lemma 4.12), the
concatenation of F andH, say F ◦H, is still a PRF. The circuit complexity of F ◦H is at most

max
h∈Hn, f∈Fm

CC( f ◦ h) ≤ CC(Hn) + CC(Fm) ≤ O(n) + O(mc) = O(n).

This first inequality holds since to compute f ◦ h, it is sufficient to identify the outputs of the circuit
computing h as the inputs of the circuit computing f . In addition, it is easy to see that F ◦ H is
uniform if F is uniform. □

5.2 Constructing hash function from 1-detector

As seen from the above proof, if we have an almost universal hash function {Hn ∈ Bn,m}n≥1 of size
cn for m = o(n), we can composite the hash function and the O(n) PRF in Theorem 5.2 to construct
a PRF of size cn + o(n). We note that for the construction above, the exact constant hidden in O(·)
is hard to analyze. This is because the explicit construction in [Spi96] utilizes bipartite expander
and brute-force searched good codes, whose exact parameters are not well-studied.

This hints us to explore a “low-level” primitive with smaller complexity for our application
instead of directly use an ECC. Such a notion indeed exists, and we call it 1-detector. We first
formally define this concept, and show that it indeed implies almost universal hash functions in
this section. In the following subsections, we will show how to construct them efficiently. In
particular, we will first give a 3n + o(n) construction and then give a novel construction of 2n +
o(n) from graphs with large girth.

Definition 5.3 (1-detector). Let m = m(n) and r = r(n). An (n, r, m) 1-detector is a linear function
Ln ∈ Bn,m such that for all x ∈ Fn

2 with Hamming weight |x| ≤ r, Ln(x) ̸= 0. A family of linear
functions L = {Ln ∈ Bn,m}n≥1 is called a (r, m) 1-detector if Ln is (n, r, m) 1-detector for all n. The
output bits Ln(x) are called the parity-checking bits of x. ♢

We emphasize that our definition requires 1-detector to be linear, in the sense that every output
bit of Ln(x) is the parity function of some of the input bits. For our application of constructing hash
function and PRF, even a randomized 1-detector is sufficient.

Definition 5.4 (Randomized 1-detector). Let m = m(n), r = r(n) and ε = ε(n). An (n, r, m, ε)
randomized 1-detector is a linear function Ln ∈ Bn,m such that for all x ∈ Fn

2 with Hamming weight
|x| ≤ r, Prρ[Ln(ρ(x)) = 0] < ε(n) for a random permutation ρ over input bits. A family of
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linear functions L = {Ln ∈ Bn,m}n≥1 is called a (r, m, ε) randomized 1-detector if Ln is (n, r, m, ε)
randomized 1-detector for all n. For simplicity, we may omit ε if it is a negligible function and
simply call it (r, m) randomized 1-detector. The output bits Ln(ρ(x)) are called the parity-checking
bits of x. ♢

It is easy to see that a (n, r, m) (deterministic) 1-detector is also an (n, r, m, ε) randomized 1-
detector with ε = 0.

Let L = {Ln ∈ Bn,m}n≥1 be an (r, m) randomized 1-detector. By the linearity, we can see that
for all x, y ∈ Fn

2 such that 1 ≤ ∆(x, y) ≤ r, Ln(ρ(x)) = Ln(ρ(y)) with only negligible probability.
If m = o(n) and r is moderately large, say r = Θ(nε), we can construct an almost universal hash
function as follows. Let ρ ∈ Sn be a permutation over input bits and let S ⊆ [n] be a subset of size
|S| = s = Θ(n1−ε/2). For S = {i1, i2, . . . , is} we can define

hρ,S(x) ≜ xi1∥xi2∥. . . ∥xis∥Ln(ρ(x)),

that is the concatenation of m random bits from x and the parity-checking bits.

Lemma 5.5. Assume that s = ω(n log n)/r. If L is an (r, m) randomized 1-detector, the collection
HL = {Hn = {hρ,S | ρ ∈ Sn, |S| = s, S ⊆ [n]}}n≥1 is almost universal. ♢

Proof. Let x, y ∈ Fn
2 be an arbitrary pair of distinct inputs. If ∆(x, y) ≤ r, the probability that

the last m bits of hS(x) and hS(y) coincide is less than ε(n) according to randomized 1-detector. If
∆(x, y) > r, the probability that the first s bits of hS(x) and hS(y) are the same is at most

(n−r
s )

(n
s)
≤

s−1

∏
i=0

n− r− i
n− i

≤
(

1− r
n

)s
≤ exp

(
− rs

n

)
,

which is negligible since rs/n = ω(log n). □

The existence of (deterministic) 1-detector with nice parameter has been known for a long
time. Gelfand, Dobrushin, and Pinsker [GDP73] presents a construction of ECC using 1-detector
(although they did not name it) with slightly different parameter. A primitive called range de-
tector used by Gál, Hansen, Koucký, Pudlák, and Viola [GHKPV13] is a generalized version of
1-detector. The intermediate primitive called error-reduction code of Spielman’s ECC [Spi96] also
has the property of 1-detection. However, these constructions are either not constructive or of
circuit complexity larger than 3n, so that they are insufficient for our use.

5.3 A simple probabilistic construction

In this section, we will present a construction of 1-detectors inspired by standard existence proof
with probabilistic method. Concretely speaking, for each positive integer k, we will give a p.p.t.
algorithm Gk that outputs a 3n size circuit computing an (n, m, r) (deterministic) 1-detector with
probability10 at least 1−n−Ω(k). One may see that it is sufficient for constructing PRF using Lemma
5.5 and Levin’s trick.

10On a fail execution, our algorithm may output an arbitrary circuit (or simply⊥) without any additional information,
so there is no obvious way to amplify success probability. We note that it is similar (but not precisely equivalent) to the
concept of weak uniformity: our algorithm will output a 1-detector on a successful execution, but it is not guaranteed
to output a particular one for all successful executions.
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The evaluation circuit generated by Gk is a depth-1 circuit containing m XOR gates of un-
bounded fan-in while each variable is of out-degree exactly d ≥ 3, which can be transformed
into a standard B2 circuit with d · n gates. The underlying topology between variables and gates
are defined by a bipartite graph G = (V1 ∪V2, E ⊆ V1×V2), where |V1| = n and |V2| = m = m(n).
The evaluation circuit CG corresponding to a graph G = (V1 ∪ V2, E) is a depth-1 linear circuit:
each vertex in V1 corresponds to an input variable, each vertex in V2 corresponds to an XOR gate,
and the connection between gates and variables follows the edges of the graph. A bipartite graph
G is called good if CG computes an (n, r, m) 1-detector. Equivalently, a graph is good if for any
subset S ⊆ V1 of size at most r, at least one of variable v′ ∈ V2 connects to odd number of variables
in S. For a typical choice of parameters, we assume that r = Θ(nε) and m = Θ(n1−ε/2) for some
constant ε ∈ (0, 1).

To complete our algorithm Gk, it suffices to describe an algorithm that generates a good graph
with nice probability. By adopting the random procedure defined by [GDP73] together with an
error reduction trick, we can actually design Algorithm 1 running in time nO(k) that generates a
good graph with probability n−0.1k, for any positive integer k.

Algorithm 1: Generating good graphs

1 for i = 1, 2, . . . , t do
2 Let G ← (V1 ∪V2,∅) be an empty graph;
3 for v ∈ V1, j = 1, 2, . . . , d do
4 Link a random edge ev,j = (v, v′) with v′ ← V2;
5 end
6 if ∀S ⊆ V1 of size ≤ k, there exists v′ ∈ V2 connecting to odd number of vertices in S then
7 return G;
8 end
9 end

10 return ⊥

Lemma 5.6. Let t = ω(log n) and d ≥ 3. There exists a constant ε ∈ (0, 1), such that for r = Θ(nε)
and m = Θ(n1−ε/2), with probability at least 1− n−0.1k, Algorithm 1 generates a good graph (and
therefore a 1-detector) for sufficiently large n. ♢

Corollary 5.7. For some constant ε ∈ (0, 1), let m = m(n) = Θ(nε), there exists an almost univer-
sal hash functionH = {Hn ⊆ Bn,m}n≥1 with weakly uniform complexity 3n. ♢

Since the proofs of Lemma 5.6 and Corollary 5.7 are technical and the construction in Sec-
tion 5.4 will have better circuit complexity11, we defer them to the Appendix B. The intuition of
the corollary is that, if we take d = 3 in Lemma 5.6, the generated depth-1 XOR circuit can be
transformed into a B2 circuit of size 3n by expanding each XOR gate independently. Then we can
construct a desired hash function using Lemma 5.5. By this corollary, a 3n + o(n) upper bound
directly follows using Levin’s trick (Lemma 4.12).

Theorem 5.8. There exists a PRF of circuit complexity 3n + o(n) assuming PRF exists. ♢
11We should also note, however, that the collision probability of this 3n size hash function could be much better than

the construction in Section 5.4. This may make it of independent interests.
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5.4 Better 1-detector from high-girth graphs

We will now present a randomized 1-detector which is realizable by depth-1 unbounded fan-in
XOR circuit C where each variable is of out-degree exactly 2. Let G = (V1 ∪ V2, E ⊆ V1 × V2)
be the graph indicating the topology of C. To further improve the construction in the previous
subsection, we would like to inspect graphs with fine structures instead of picking random graphs.
Since each input variable is of out-degree 2, graph G can be viewed as the edge-vertex incidence
relation of another undirected graph D, such that each vertex u ∈ V2 corresponds to a vertex ũ
in the new graph D and each vertex in v ∈ V1 adjacent to u1, u2 ∈ V2 corresponds to an edge
connecting ũ1 and ũ2. In such case, an assignment x ∈ Fn

2 of the input bits such that C(x) = 0
corresponds to a subset X of edges in D such that each vertex is incident to an even number of
edges in X. Thus, X contains an Eulerian cycle and therefore a cycle. This means that, intuitively,
if we want to construct a nice 1-detector, the graph D cannot contain small cycles.

By convention, the girth of a graph is defined as the length of its shortest cycle. The following
lemma shows the connection between good graphs for randomized 1-detector and the girth of
graph.

Lemma 5.9. Let D = (V, E) be a graph of girth g ≥ 5 and let S ⊆ E be a random subset of size
k. For all 1 ≤ k < |E|/2, with probability at most (|E|/g)−g/3, every vertex is incident to an even
number of edges in S. ♢

Proof. Let D = (V, E) be a graph and S ⊆ E be a subset of size k. If all vertices connect to even
number of edges in S, each vertex in the subgraph D′ = (V, S) is of even degree. In such case,
any connected component of D′ consists an Eulerian cycle, which can only happen if G contains
a cycle of length no more than |S|. This means that if k < g, there always exists a vertex that is
incident to an odd number of edges in S.

Now we consider the case when k ≥ g. For a random subset S of size k, we can view it as
first taking a random subset of size k − ⌈g/3⌉, then another random subset of size ⌈g/3⌉ in the
remaining edges. Let L(S) be the event that every vertex is incident to even number of edges in
S, then

Pr
S⊆E,|S|=k

[L(S)] = E
S1⊆E,|S1|=k−⌈g/3⌉

[
Pr

S2⊆E\S1,|S2|=⌈g/3⌉
[L(S1 ∪ S2)]

]

= E
S1⊆E,|S1|=k−⌈g/3⌉

(|E \ S1|
⌈g/3⌉

)−1

∑
S2⊆E\S1,|S2|=⌈g/3⌉

[L(S1 ∪ S2)]

 .

We will show the summation in the above equation does not exceed 1, that is for any fixed
S1 ⊆ E with |S1| = k− ⌈g/3⌉, there exists at most one S2 makes L(S1 ∪ S2) happens. If this is true,
then we can clearly bound the above probability by

Pr
S⊆E,|S|=k

[L(S)] ≤
(
|E| − (k− ⌈g/3⌉)

⌈g/3⌉

)−1

≤
(
|E|
g

)−g/3

.

What remains is the claim above. Towards a contradiction, assume L(S1 ∪ S2) and L(S1 ∪ S′2)
holds simultaneously for S2 ̸= S′2. Consider the symmetric difference of the two sets S2 ⊕ S′2 =
(S1 ∪ S2)⊕ (S1 ∪ S′2). By our definition of the event L, each vertex is incident to even number of
edges in S2 ⊕ S′2, resulting in a cycle of length no more than |S2 ⊕ S′2| ≤ |S2|+ |S′2| = 2⌈g/3⌉ < g.
This contradicts to the fact that the girth of G is g. □
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This lemma shows that if we construct a circuit C based on the edge-vertex incident graph of
an undirected graph D = (V, E) with |V| = m, |E| = n and girth g = ω(1), for an assignment
x with Hamming weight |x| ≤ n/2 and a random permutation ρ of input bits, C(ρ(x)) = 0 with
only negligible probability. If the graph D is moderately dense, say m = Θ(n/ log n), we can
obtain a depth-1 XOR circuit computing an (n, n/2, m) randomized 1-detector and therefore an
almost universal hash function by Lemma 5.5.

What remains is the explicit construction of graphs with large girth. This has been studied
in combinatorics since 1960s motivated by both theoretical interests and the practical issue to
construct efficient low-density parity-checking (LDPC) codes. For our application, it is sufficient
to use the simple construction given by Chandran [Cha03].

Lemma 5.10 ([Cha03]). There exists a polynomial time algorithm such that given any m and k <
m/3, constructs a graph G = (V, E) of m vertices with |E| = ⌊mk/2⌋ such that the girth of the
graph is at least g > logk m + O(1). Moreover, the degree of each vertex is k− 1, k or k + 1. ♢

Corollary 5.11. For every n and m such that ⌈2n/m⌉ < m/3, there exists a graph Dm,n with m
vertices and n edges where the girth g > log m

log(⌈2n/m⌉) + O(1). The degree of every vertex is at most
2n/m + O(1). Moreover, there exists a deterministic polynomial time algorithm construct Dm,n
taking m, n. ♢

Proof. Assume that we are given n and m. Let k = ⌈2n/m⌉, our algorithm firstly calls the algo-
rithm in Lemma 5.10 to generate a graph D = (V, E) with |V| = m, |E| = ⌊mk/2⌋ ≥ n and girth
g > logk(m) + O(1). The degree of each vertex is at most 2n/m + 2. We can arbitrarily remove
|E| − n edges to obtain a desired graph. □

Now we formally describe the construction of our uniform randomized 1-detector and hash
function. Take m = Θ(n/ log n). We firstly construct a graph Dm,n with girth g = Ω

(
log m

log(2n/m)

)
=

Ω
(

log n
log log n

)
. Then, we construct bipartite graph G using Dm,n and then generate depth-1 XOR

circuit C according to it. By Lemma 5.9 and previous discussion, one can easily see that C is an
(n, n/2, n/ log n) randomized 1-detector and can be transformed into B2 circuit of size 2n − m.
Finally, we take s = Θ(log2 n) and construct an almost universal hash function with sufficient
shrinkage using the sampling trick in Lemma 5.5.

Theorem 5.12. There exists m = m(n) = o(n) and a uniform almost universal hash function
H = {Hn ∈ Bn,m}n≥1 of size 2n−m. ♢

We can then compose this hash function with the simple O(n) PRF in Theorem 5.2 by Levin’s
trick (see Lemma 4.12) and give the following upper bound of PRF.

Corollary 5.13. There exists a PRF (resp. uniform PRF) of circuit complexity 2n + o(n) if PRF
(resp. uniform PRF) exists. ♢

5.5 The upper bound of depth for PRF and hash

Besides circuit size (or running time in uniform case), circuit depth (or parallel time) is also an
important measure with both theoretical and practical interests. Many efforts have been made on
studying the existence of PRF in low-depth circuit classes such as NC1 and even TC0. Indeed, it
turns out that NC1 and TC0 PRFs can be based on quite standard cryptographic assumptions, such
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as Decisional Diffie-Hellman [NR04] and Ring Learning with Errors [BPR12]. In this part, we will
show how to reduce the circuit depth of PRF together with the circuit size in previous subsections
using similar techniques.

As before, we start with the uniform construction of an almost universal hash function of size
2n and depth (1 + o(1)) log n that shrinks n-bit input to nε-bit output for arbitrary ε > 0. This is
achieved by stacking the hash functions constructed before for super-constant number of times,
under the output length is reduced down to nε bits.

Lemma 5.14. For any ε > 0, there exists a uniform construction of almost universal hash function
H = {Hn ∈ Bn,c}n≥1 of size 2n + o(n) and depth (1 + o(1)) log n for some c = c(n) < nε. ♢

Proof. Let m = m(n) be the function in Theorem 5.12. In Section 5.4 we have present a uni-
form construction of (n, n/2, m) randomized 1-detector based on graph with large girth. Such
1-detector can be evaluated by a depth-1 XOR circuit Cn whose topology is induced from the
vertex-edge incident graph of Dm,n = (V, E) given by Corollary 5.11. Note that the degree of each
vertex in Dm,n is at most 2n/m +O(1), so that each XOR gate in C is of fan-in Θ(n/m). This means
that Cn can be realized by a B2 circuit of size at most 2n and depth log(n/m) + O(1).

Now we will construct a hash function H = {Hn ⊆ Bn,c}n≥1 for arbitrary c < nε by stacking
the hash function H̃ = {H̃n ∈ Bn,m}n≥1 in Theorem 5.12. Define n0, n1, . . . , nℓ by n0 = n and
ni+1 = m(ni) for all 0 ≤ i < ℓ, where ℓ is the smallest integer such that nℓ < nε. It is easy to see
that ℓ = O(log n). Then we define

Hn ≜ {hℓ−1 ◦ hℓ−2 ◦ · · · ◦ h0 | hi ∈ H̃ni},

where each hi is sampled independently from H̃ni .
Since hi can be computed by a circuit of size 2ni size and log(ni/ni+1) + O(1) depth, it is

easy to verify that H can be computed by a circuit of size 2n + o(n) and depth (1 + o(1)) log n.
Now it is sufficient to show that H is indeed an almost universal hash function. Because H̃ is
almost universal, there exists a negligible function ε(n) such that for all n and x ̸= y of length n,
Pr[h(x) = h(y)] ≤ ε(n) for h← H̃n. Then we can see that for all x ̸= y of length n,

Pr
h←Hn

[h(x) = h(y)]

= Pr
h=(h0,...,hℓ)←Hn

[∃i, hi is the first layer with same output for x and y]

≤
ℓ−1

∑
i=1

ε(ni),

which is also negligible. This completes the proof. □

Then the depth upper bound of PRF follows directly from Levin’s trick (Lemma 4.12).

Corollary 5.15. For any ε > 0, there exists a PRF (resp. uniform PRF) of circuit size 2n + o(n) and
depth (1 + ε) log n assuming NC1 PRF (resp. uniform NC1 PRF) exists. ♢

Proof. Suppose that there exists a PRF computable by a circuit of depth d log n and size nd. By
Lemma 4.12, we can compose it with a hash function that shrinks n-bit input to nε/(2d) bits to
obtain a PRF with 2n + o(n) size and (1 + ε) log n, where ε can be arbitrary constants. □
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Remark. Although our “stacking” construction in Lemma 5.14 is natural, it fails to provide a
hash function with constant depth, polynomial shrinkage and low wire complexity in unbounded fan-
in circuit models. Note that weakly uniform almost universal hash with depth 1, polynomial
shrinkage and wire complexity 3n can be obtained using the simple probabilistic construction in
Section 5.3.

In fact, uniform construction in constant depth 2 size circuit can be done by combining our
high-girth based 1-detector with range-detector in [CT19]. In more details, it is an almost universal
hash function in CC0[2] (constant depth circuits with unbounded fan-in XOR gates) with depth 2
and wire complexity 2n+ o(n). By looking into the construction, we can implement it in B2 circuits
with log n + O(1) depth (this is a slight improvement comparing with the stacking upper bound
(1 + o(1)) log n). We give a complete discussion of this construction in Appendix C.

6 A 2n−O(1) lower bound for B2 circuits

In this section, we will prove a matching circuit lower bound, showing that any circuit family
of size less than 2n −O(1) cannot be pseudorandom function. Our proof first studies a combi-
natorial structure on circuits, which we call critical path. We present an efficient algorithm that
distinguishes circuits with intersecting critical paths and truly random functions via oracle ac-
cess. Then we do a standard wire counting argument to show that 2n−O(1) gates are required to
avoid intersecting critical paths, which leads to a circuit lower bound for PRF. By noticing that our
distinguisher is non-adaptive, we can also prove a tight unconditional lower bound for universal
hash function with super-linear shrinkage.

We begin by defining the combinatorial structure to be interested.

Definition 6.1 (Critical path). Let C be a circuit, and x be one of its inputs. The critical path of x in
C is a sequence of vertices v0, v1, . . . , vk satisfying the following conditions:

1. v0 = x, and vi is a descendent of vi−1 for all i ≥ 1, and

2. out-degree(vi) = 1 for all 0 ≤ i < k, and out-degree(vk) ̸= 1. ♢

Without loss of generality, we can only deal with circuits without obvious redundancy. For-
mally, a circuit C is called normalized if each gate of out-degree 0 is an output gate. Since a non-
output gate of out-degree 0 can be removed, any optimal circuit computing a function f must be
normalized.

Informally speaking, the critical path of x in C is the maximal path starting from x such that all
but the last vertices have out degree exactly 1. The last vertex may have out-degree 0 or more than
2. It is obvious that the critical path is unique for each input x, so we denote it by LC(x). We will
be interested in the intersection of critical paths. Two critical paths are called intersecting, if they
share a common vertex. We emphasize here that sharing the last vertex of out-degree not 1 is also
called intersecting.

Our key observation is that if a circuit has an isolated variable (i.e. of out-degree 0 and is not
an output node, recall that we are considering single-output functions) or intersecting critical paths,
then it can be distinguished from truly random functions. This is presented in the following two
lemmas.

Lemma 6.2. There exists a p.p.t. oracle algorithm A which always accepts if it is given oracle
access to a circuit C with intersecting critical path, and rejects with high probability if it is given
the truly random function. ♢
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Proof. Suppose that inputs x and y have intersecting critical paths. Let G be the gate on their first
(i.e. closest to input) intersection. Under any restriction ρ to all the variables except x and y, we
can see that the circuit can be viewed as computing

C↾ρ(x, y) = fρ(G(gρ(x), hρ(y)))

for some unary functions fρ, gρ, hρ. By trying all possible truth tables, one can easily check that
no matter what function G is, C↾ρ(x, y) can never compute an ⊕-type function for some restric-
tion ρ1, and compute an ∧-type function for another restriction ρ2. Indeed, when G is of ∧-type,
then C↾ρ(x, y) cannot be an ⊕-type function; when G is of ⊕-type, C↾ρ(x, y) cannot be an ∧-type
function; and when G is degenerate or trivial, C↾ρ(x, y) is also degenerate or trivial.

This motivates us to do the following test for each pair of inputs (x, y). Randomly sample n
restrictions for all inputs except x and y. For each sampled restriction ρ, compute the truth table
of C↾ρ(x, y), and check whether truth tables of ⊕-type and ∧-type appear both. We accept if there
exists a pair (x, y), such that either⊕-type or ∧-type does not appear in the truth tables of C↾ρ(x, y)
for our n samples of ρ.

If our algorithm is given a circuit with intersecting critical paths, there always exists a pair
(x, y) such that the two kinds of truth table does not appear simultaneously, so that our algorithm
always accepts. Assume otherwise our algorithm is given a truly random function. Since for
each pair (x, y), the n samples of restriction ρ are drawn independently, we can show by union
bound that the sampled restrictions ρ are pairwisely distinct with high probability. In such case,
the oracle returns independent random bits for our queries, hence both ⊕-type and ∧-type truth
tables appear for truly random functions with probability 1− exp(O(n)). By union bound, our
algorithm accepts with high probability. □

Lemma 6.3. There exists a p.p.t. oracle algorithm B which accepts if it is given oracle access to a
circuit C with isolated variables, and rejects with high probability if it is given the truly random
function. ♢

Proof. Consider the following algorithm. For each variable x, we sample n restrictions for all
variables except x. We accept if there exists a variable such that n sampled restrictions give the
same output, and reject otherwise. The correctness of our algorithm is easy to verify. □

By combining these two tests, we can distinguish a circuit with either intersecting critical paths
or isolated variables. To complete the lower bound, it is sufficient to show that small circuits
contain either intersecting critical paths or isolated variables. We prove this by a standard wire
counting technique.

Lemma 6.4. For any normalized n-input m-output circuit C with no intersecting critical paths and
isolated variable, the number of gates in the circuit should be at least 2n− 2m. ♢

Proof. We divide all nodes (including variables and gates) in the circuit into two types: on the
critical path of some variable, or outside of all critical paths. In particular, all variables fall into the
first type. Suppose that there are c1 nodes of the first type, and c2 nodes of the second. Let l be
the number of wires connecting two nodes of the first type, and o be the number of output nodes
belonging to the first type.

Since there is no isolated variables, the endpoints of critical paths must be gates or variables
of out-degree at least 2. By the non-intersection property of critical paths, there should be exactly
n nodes of the first type having out-degree not equal to 1, hence (c1 − n) of them have out-degree

27



1. Since the circuit is normalized, only output gates can have out-degree 0, so that at least (n− o)
nodes of first type have out-degree at least 2.

We now count different types of wires. Type i → Type j denotes the number of wires from
Type i nodes to Type j nodes.

(Type 1→ Type 1) By definition this is l.

(Type 1→ Type 2) There are at least 2(n− o) + (c1 − n) wires going out of Type 1 nodes, among
which l wires go to Type 1, hence there should be at least c1 + n− 2o− l wires going to Type
2.

(Type 2→ Type 1) Among the c1 nodes of Type 1, (c1 − n) of them are gates. Since each of these
gates takes two wires as inputs, the number of wires going from Type 2 to Type 1 is exactly
2(c1 − n)− l.

(Type 2→ Type 2) Since all gates except for (m− o) output nodes of Type 2 have out-degree at
least 1, there is at least c2 − (m− o) wires going out of Type 2. Because 2(c1 − n)− l of them
goes to Type 1, there are at least (c2 − (m− o))− 2(c1 − n) + l remains.

Now, notice that the total number of wires going into Type 2 gates is exactly 2c2, so we should
have the inequality

(c1 + n− 2o− l) + ((c2 − (m− o))− 2(c1 − n) + l) ≤ 2c2,

which gives us c1 + c2 ≥ 3n−m− o ≥ 3n− 2m. Subtracting the n input nodes from it completes
the proof of the lemma. □

Combining these three lemmas, the lower bound is immediate.

Corollary 6.5. If F = {Fn ⊆ Bn}n≥1 is a PRF, then CC(F ) ≥ 2n− 2. ♢

Since we can construct efficient PRF with almost universal hash function, this lower bound
also yields a lower bound for almost universal hash function assuming PRF exists. By modifying
the proof a little bit, we are also able to make this lower bound unconditional.

Corollary 6.6. If H = {Hn ⊆ Bn,m}n≥1 is an almost universal hash function, then CC(H) ≥ 2n−
2m. In particular, if m = o(n), then CC(H) ≥ 2n− o(n). ♢

Proof. Towards a contradiction, we assume that for infinitely many bad n, CC(Hn) < 2n− 2m. By
Lemma 6.4, for each h ∈ Hn and any normalized circuit C computing h, C contains either isolated
variable or intersecting critical paths.

Let n be an arbitrary “bad” input length, we will construct a set Tn of distinct pairs of inputs
such that for all h ∈ Hn, there exists a pair (x, y) ∈ Tn with h(x) = h(y).

We first consider intersecting critical paths. Suppose that x and y have their critical paths
intersecting, and the intersection starts from the gate G. Then by our definition of critical paths,
the outputs of the circuit should be completed determined by the output of G if all other inputs are
arbitrarily fixed (e.g., fixed to be zeros). Hence there must exist a pair of assignments to x and y
such that their outputs collide with all other variables fixed. We can always fix the other variables
to 0, and let Sn be the set of all possible colliding pairs of inputs from above. Formally, define

ρx,y,a,b(v) =


a, v = x
b, v = y
0, otherwise

,
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then the set Sn is

Sn = {(ρx,y,a,b, ρx,y,c,d) | x, y are input variables, a, b, c, d ∈ {0, 1}, (a, b) ̸= (c, d)}.

Hence for any circuit containing an intersecting critical path, there must exist a pair in Sn making
their outputs collide.

Finding collision for circuits with an isolated variable is rather simple. Let In be the set of pairs
(x, y) such that x = 0∥0∥ . . . ∥0 and y contains exactly one non-zero index. All circuits with an
isolated variable collides on one of the pairs in In.

Let Tn ≜ In ∪ Sn. It is easy to see that |Tn| = O(n2). Since n is an bad input length, each h ∈ Hn
has circuit complexity smaller than 2n − 2m so that contains either intersecting critical paths or
isolated variables, hence indeed has a collision in Tn. By previous discussion we know that

Pr
h←Hn,(x,y)←Tn

[h(x) = h(y)] ≥ 1
|Tn|

= Ω(n−2).

By averaging argument, there exists a particular pair in Tn with collision probability Ω(n−2). This
is clearly not an almost universal hash function. □

Note that this lower bound is (almost) tight for m = o(n) by the 2n upper bound (see Lemma
5.14). Since we can construct almost universal hash function from good ECC (see Proposition 4.9),
we can also obtain an unconditional (almost) tight lower bound for ECC of the same complexity.

7 Constant-depth linear threshold circuits

In this section, we consider the regime of constant-depth linear threshold circuits, and prove a
slightly super-linear lower bound for pseudorandom function. Our lower bound follows from a
structural result for threshold circuits used in developing average-case hardness [CSS18], quan-
tified derandomization [Tel18] and pseudorandomness [HHTT21]. Our result can be interpreted
as a “fine-grained” barrier (although weaker than Natural Proofs [RR97]) on circuit lower bound
techniques that explains why proving TC0

d lower bounds beyond n1+c−d
is not easy.

7.1 Upper bound via efficient ECC

We first show the easy part: an upper bound by Levin’s trick. To do so, it is necessary to have
a construction for PRF with polynomial size threshold circuits. Although it is unknown whether
the existence of TC0 PRF can be based on the elementary primitive such as one-way functions,
there are several constructions under standard cryptographic assumption like factoring (of Blum-
integers) or decisional Diffie-Hellman [NR04], as well as ring learning-with-error [BPR12].

For completeness, we sketch the construction of Naor and Reingold [NR04] based on deci-
sional Diffie-Hellman assumption. Let n be desired input length. The key of the PRF is a tuple
(p, q, g, a), where p is an n-bit prime, q is a prime dividing p− 1, g is an element in Z×p with order
q > 2n and a ∈ Zn+1

q . Note that (p, q, g) is chosen over some polynomially samplable distribution
and a is chosen uniformly. Let x = x1∥x2∥ . . . ∥xn. The output of the PRF is defined as

fp,q,g,a(x) ≜ (ga0)∏n
i=1 a

xi
i .

By the efficient multiple product circuit given by Reif and Tate [RT92], with suitable preprocessing,
this PRF can be evaluated by polynomial size TC0 circuits.
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To obtain an upper bound for TC0 PRF, we only need to construct a low complexity almost
universal hash function with nice shrinkage. For instance, we can use the error-correcting code
given by Chen and Tell [CT19].

Lemma 7.1 ([CT19], Proposition 10). Let ϕ = 1+
√

5
2 . For every d ≥ 4 there exists a family of linear

threshold circuits of size n1+O(ϕ−d) and depth d that encodes an linear error correcting code of
constant relative distance. Moreover, this circuit family is uniformly constructible in polynomial
time. ♢

This immediately shows that for any d ≥ 4, there exists a uniform almost universal hash
function realizable by n1+O(ϕ−d) size TC0

d circuits that shrinks n-bit input to m = Θ(nε) bits for
arbitrarily small ε > 0 (see Proposition 4.9). Then by Levin’s trick (see Lemma 4.12), we have the
following upper bound.

Corollary 7.2. Let ϕ = 1+
√

5
2 . For any constant d0, assume that there exists a PRF (resp. uniform

PRF) computable in TC0
d0

, then there exists a PRF (resp. uniform PRF) computable by threshold

circuits of size n1+O(ϕ−d) and depth d + d0 for any d ≥ 4. ♢

Remark. The construction of Chen and Tell [CT19] is based on the framework of Gál, Hansen,
Koucký, Pudlák, and Viola [GHKPV13], the lossless expander constructed in Capalbo, Reingold,
Vadhan, and Wigderson [CRVW02] and the parity upper bound in TC0

d circuits given by Paturi
and Saks [PS94]. Combining the lossless expander approach and the high-girth graph from Section
5.4, we are able to get an explicit construction of almost universal hash function in depth 2 CC0[2]
of size 2n + o(n). We give a self-contained description for this construction in Appendix C.

7.2 Extracting black-box property from white-box restriction

In this section, we will show that computing PRF with depth-d threshold circuits require size at
least n1+Ω(1)d

.

Theorem 7.3. There exists universal constants θ > 0 and c > 1, such that for any PRFF , TC0
d-CC(F ) ≥

n1+θc−d
. ♢

The technique we will use is the “white-box” random restriction method developed in pre-
vious works of average-case hardness and pseudorandomness for TC0 circuits [CSS18; Tel18;
HHTT21]. Although their results are presented in different forms, all of them essentially use
the following fact about threshold circuits: for a random restriction (or pseudorandom restriction)
ρ applied to a small threshold circuit C of depth d, with nice probability, there exists a properly
large subset Sρ of free variables such that for a random assignments σ to all variables but Sρ, again
with nice probability, the circuit C restricted by ρσ can be approxmable by a small threshold cir-
cuit of depth d − 1. For our purpose, we formalize this fact as Lemma 7.5 and generalize it to
multi-output case. We defer its proof to Section 7.3.

Definition 7.4. Let n, m ≥ 1 and 0 ≤ ε ≤ 1 be a parameter. A function f ∈ Bn,m is said to be ε-
approximable by a TC0

d circuit C if for a uniformly random input x, C(x) ̸= f (x) with probability
at most ε. A function f ∈ Bn,m is said to be transparent if each of its output bits is a constant or only
depends on exact one input variable. ♢
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Lemma 7.5 (Restriction lemma for TC0). There exists absolute constants c > 1 and some constant
0 < ε0 < 1 such that following holds. For all ε < ε0 and function α1(n), there exists some δ > 0,
such that for all depth d ≥ 1, output length m = m(n) and sufficiently large n, for any f ∈ Bn,m
that is α1(n)-approximable by a multi-output depth d threshold circuit of size n1+ε, if we apply
the restriction ρ ← Rn−δ to the function, with probability at least 1/8 there exists a set of unfixed
variables Sρ (which depends on ρ) of size at least n0.99, such that at least a half of the restrictions σ
to all variables not fixed by ρ and not in Sρ would make f ↾ρσ 4(α1(n) + α2(n))-approximable by a
multi-output threshold circuit of depth d− 1 and size |Sρ|1+cε (or a transparent function if d = 1),
where α2(n) ≜ 2n1+ε−δ exp(−2nδc1). ♢

Lemma 7.5 and its counterparts in [CSS18; Tel18; HHTT21] are considered as white-box tech-
niques because the subset Sρ of unfixed variables is chosen according to the circuit approximating
f and the result of the random restriction ρ. To prove circuit lower bound for pseudorandom func-
tions, we need to specify a black-box property of sparse TC0

d circuits to distinguish it from truly
random function with only oracle accesses. The key observation of our lower bound is that the
following black-box property can be extracted from the white-box restriction lemma.

Lemma 7.6. Let c be the constant in Lemma 7.5. There exists constants θ > 0 so that the following
holds. For all depth d ≥ 1, output length m = m(n) < n0.99d

, and sufficiently large n, for any
f ∈ Bn,m that is 1/8d+1-approximable by a multi-output depth d threshold circuit of size less than
n1+θc−d

, for a random assignment x ∈ Fn
2 to all input variables, with probability at least 1/16d+1,

there exists another assignment y different from x by exact one bit such that f (x) = f (y) holds.♢

Proof. Assume that ε0, δ, p, Sρ, α2(n) follows Lemma 7.5. Take θ < ε0 (therefore θc−d < ε0 for
any d). We will prove the statement by doing induction over d using Lemma 7.5. Assume that n
is sufficiently large12 and f ∈ Bn,m is 1/8d+1-approximable by a multi-output TC0

d circuit of size
n1+θc−d

. Since α2(n) = exp(−poly(n)), we have α2(n) < 1/8d+1 for sufficiently large n.
For simplicity, we call an assignment x good if there exists another assignment y that differs

on exactly one bit from x such that f (x) = f (y). What we want to show is that Pr[x is good] ≥
1/16d+1 for uniformly random x. For a random assignment to all input variables, we consider it
as a pair of a random restriction ρ ← Rp and a random assignment β to the leftover variables.
Clearly, it is sufficient to show that

Pr
ρ←Rp,β←{−1,1}|ρ−1(⋆)|

[(ρ, β) is good] ≥ 1
16d+1 . (1)

We call a random restriction ρ← Rp good if Sρ in Lemma 7.5 exists. By Lemma 7.5, Pr[ρ is good] ≥
1/8. Then it is sufficient to show that for any fixed good ρ,

Pr
β←{−1,1}|ρ−1(⋆)|

[(ρ, β) is good] ≥ 8
16d+1 . (2)

Now we fix any good ρ (so that there exists Sρ satisfying Lemma 7.5) and prove Equation (2). In
such case, the assignment β to the leftover variables can be further considered as the composition
of a random restriction σ to variables not in Sρ and another random assignment τ to the remaining
variables Sρ. Identify β = (σ, τ) as discussed above. We call an assignment σ good if f ↾ρσ can

12Rigorously speaking, we will take n > n0, where n0 satisfies the following three constraints: (1) Lemma 7.5 holds
for depth d; (2) induction hypothesis holds for depth d− 1; and (3) the inequality α2(n) < 1/8d+1 holds.
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be approximable by a TC0
d−1 circuit of size |Sρ|1+θc−(d−1)

(or a transparent function) with error
4(1/8d+1 + α2(n)) < 1/8d. By Lemma 7.5, at least a half of the assignments σ are good. This
means to prove Equation (2), it is sufficient to show that for any fixed good ρ and good σ,

Pr
τ←{−1,1}|Sρ |

[(ρ, σ, τ) is good] ≥ 1
16d . (3)

Firstly we consider d = 1. In this case, f ↾ρσ can be 1/8 approximated by a transparent function
such that each output bit depends on at most one input variable. Since the output length m < n0.99

is smaller than the input length |Sρ| ≥ n0.99, the transparent function is independent from some
input variable v. By union bound, for uniformly chosen τ and the corresponding τ′ only differ on
input variable v, Pr[ f ↾ρσ(τ) = f ↾ρσ(τ

′)] ≥ 3/4. By averaging argument, for at least 1/2 fraction
of τ, there exists some τ′ such that f ↾ρσ(τ) = f ↾ρσ(τ

′). This immediately shows that

Pr
τ←{−1,1}|Sρ |

[(ρ, σ, τ) is good] ≥ 1
2
≥ 1

16d .

When d > 1, there exists a multi-output threshold circuit of depth d − 1 and size less than
|Sρ|1+θc−(d−1)

that 1/8d-approximates f ↾ρσ, where |Sρ| is the input length of the new circuit. Since

|Sρ| ≥ n0.99, this circuit is of output length m < n0.99d ≤ |Sρ|0.99d−1
which satisfies the induction

condition. According to induction hypothesis, for at least 1/16d fraction of τ, there exists τ′ such
that f ↾ρσ(τ) = f ↾ρσ(τ

′). Then Equation (3) immediately follows since for each of such τ, (ρ, σ, τ)
is good. This completes the induction. □

This lemma shows that finding a collision is easy for multi-output functions approximable by
sparse threshold circuits. Since it is hard to find a collision for truly random functions, we can
then distinguish sparse threshold circuits from truly random functions.

Proof of Theorem 7.3. We will prove this result by presenting a distinguisher which separates
functions computable by sparse TC0

d circuits and truly random functions. Suppose that the set of
input variables is I, and the algorithm is given oracle access to the function f . Our algorithm is
quite simple.

• Let S be the subset of first ℓ(n) = 2⌈log log n⌉ input variables.

• Randomly choose an assignment x ← F
|I\S|
2 for other variables.

• Randomly flip an input variable of x to obtain y.

• Accept if f (z∥x) = f (z∥y) holds for all assignment z ∈ F
|S|
2 .

Since there are in total 2ℓ(n) = Θ(log2 n) different assignments to S, the algorithm queries
Θ(log2 n) separated pairs of assignments which can be done in polynomial time. For truly random
functions, each pair of assignments outputs the same result with probability 1/2 independently.
Thus, the algorithm would accept with probability 2−Θ(log2 n), which is negligible.

We then show the algorithm would accept functions computable by sparse TC0 circuits with
non-negligible probability. Firstly, f can be viewed as a multi-output function g ∈ Bn−ℓ(n),2ℓ(n) such
that z-th output bit of g(x) is f (z∥x). Clearly, our algorithm accept if and only if g(x) = g(y) holds.
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Since each output bit of g compute f under some restriction, g can be computed by a TC0
d circuit

of output length Θ(log2(n)) and wire complexity less than Θ(log2(n)) · n1+θc−d
. Let θ be some

constant moderately smaller than the parameter required in Lemma 7.6. When n is sufficiently
large, both the output length and the wire complexity would satisfy the requirement in Lemma
7.6. Thus, there exists some y such that g(x) = g(y) with probability at least 1/16d+1. Since there
are only n different ways to flip one bit, the algorithm can hit the proper y with probability at
least 1/n. This shows the algorithm can accept the original TC0 circuit with probability at least
1/(16d+1n), which is non-negligible.

Notice that we can easily boost up the gap between the acceptance probability of the two cases
by repeating the test polynomial times. So the algorithm can effectively distinguish two cases,
which concludes that any PRF cannot be computed by threshold circuits with less than n1+θc−d

wires if the depths of the circuits are bounded by d. □

Similar to Corollary 6.6, we can modify the proof for PRF to obtain an unconditional circuit
lower bound for almost universal hash function (and also for ECC with exactly the same wire
complexity).

Theorem 7.7. Let c be the constant in Lemma 7.5. There exists constants θ > 0 so that the follow-
ing holds. Let m = m(n) < n0.99d

. If H = {Hn ⊆ Bn,m} is an almost universal hash function, then
for all depth d ≥ 1, TC0

d-CC(H) ≥ n1+θc−d
. ♢

Proof. Let θ be the constant in Lemma 7.6. Towards a contradiction assume that H can be com-
puted by TC0

d circuits of size n1+θc−d
for infinitely many length n. Consider the following distribu-

tion Dn supported over pairs of distinct n-bit inputs: we first choose an input x uniformly, choose
an index i← [n], and generate the pair (x, y) where y differs from x only on the ith bit. By Lemma
7.6, for any TC0

d circuit C of size n1+θc−d
, we have

Pr
(x,y)←Dn

[C(x) = C(y)] ≥ 1
16d+1n

.

This means that for those bad n,

Pr
(x,y)←Dn,h←Hn

[h(x) = h(y)] ≥ 1
16d+1n

.

By averaging argument, for each of the bad n, there exists a pair (x, y) of distinct inputs such that
h(x) = h(y) with non-negligible probability. This contradicts the almost universality ofH. □

7.3 Proof of restriction lemma

The technique we use to prove the restriction lemma follows the standard method based on
anti-concentration of threshold functions, which has been used to prove average-case hardness
[CSS18], quantified derandomization [Tel18] and pseudorandom generator [HHTT21] for sparse
TC0 circuits. There are essentially nothing new in the proof, but we need to carefully check that
the previous proofs can be adapted to our statement. The proof mainly involves three steps.

1. We notice that after a random restriction, most gates in depth-1 that are connected to many
variables become highly “imbalanced” so that can be approximable by constants. This is
done by a structural lemma from [CSS18].

33



2. Then we count the number of variables feeding a gate that is both “balanced” and of large
fan-in. It can be shown that with nice probability, the number of such variables is o(n). We
will not include these variables in Sρ, so that fixing all variables outside Sρ will make all such
gates (i.e. both balanced and of large fan-in) become constants.

3. Finally, we only need to consider gates with small fan-in. It is easy to see that it is able to se-
lect sufficiently many variables into Sρ, such that for each small gate, at most one of its input
variables is in Sρ. By fixing all variables but Sρ, all gates in depth-1 can be approximable by
constants.

We start by defining what “balance” means to a threshold function.

Definition 7.8 (t-balance). A function LTFw,θ(x) is called t-balanced if |θ| ≤ t · ∥w∥2. Otherwise, it
is called t-imbalanced. ♢

By Hoeffding’s inequality (Lemma 4.13), a t-imbalanced LTF function has a large fraction of its
input being constant.

Proposition 7.9. Let LTFw,θ(x) be a t-imbalanced function, then

Pr
x∈{−1,1}n

[LTFw,θ(x) = sgn(θ)] ≤ 2 exp(−2t2). ♢

Proof. We suppose, without loss of generality, that θ > 0. Then,

Pr
x∈{−1,1}n

[LTFw,θ(x) = 1] = Pr
x∈{−1,1}n

[⟨w, x⟩ ≥ t∥w∥2] (t-imbalance)

≤2 exp
(
−2t2∥w∥2

2

∑n
i=1 w2

i

)
(Lemma 4.13)

=2 exp(−2t2). □

We will make use of the following anti-concentration lemma for linear threshold functions.

Lemma 7.10 ([CSS18], Lemma 4.4; or [Tel18], Proposition 5.8). There exists absolute constants p0 <
1, c1, c2 > 0, such that for any p ∈ [0, p0], any LTF function Φ over n input variables satisfies

Pr
ρ←Rp

[
Φ↾ρ is p−c1-balance

]
≤ O(pc2). ♢

This lemma tells us that after a random p-restriction, any LTF function will become extremely
biased with nice probability. If a function is indeed imbalanced after random restriction, we can
then approximate it using a constant by Proposition 7.9.

We are now ready to prove the main restriction lemma, following the intuition above.

Remainder of Lemma 7.5. There exists absolute constants c > 1 and some constant 0 < ε0 < 1
such that following holds. For all ε < ε0 and function α1(n), there exists some δ > 0, such that
for all depth d ≥ 1, output length m = m(n), and sufficiently large n, for any f ∈ Bn,m that
is α1(n)-approximable by a multi-output depth d threshold circuit of size n1+ε, if we apply the
restriction ρ ← Rn−δ to the function, with probability at least 1/8 there exists a set of unfixed
variables Sρ (which depends on ρ) of size at least n0.99, such that at least a half of the restrictions σ
to all variables not fixed by ρ and not in Sρ would make f ↾ρσ 4(α1(n) + α2(n))-approximable by a
multi-output threshold circuit of depth d− 1 and size |Sρ|1+cε (or a transparent function if d = 1),
where α2(n) ≜ 2n1+ε−δ exp(−2nδc1). ♢
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Proof. Let f ∈ Bn,m be a function that can be α1(n)-approximated by a depth d threshold circuit C
of size n1+ε. Assume that ϕ1, ϕ2, . . . , ϕt are the gates of depth 1 (i.e. directly fed by inputs). A gate
ϕi is called small if its in-degree is at most nδ, where δ is a constant to be chosen later; and is called
large otherwise. We use Φs and Φl to denote the set of small and large gates of depth 1, respectively.
A variable xi is called small if its out-degree is at most n2ε, and is called large otherwise. We use Xs
and Xl to denote the set of small and large variables, respectively. Since the circuit has only n1+ε

wires, |Φl | ≤ n1+ε−δ and |Xl | ≤ n1−ε.
Assume that the circuit C is randomly restricted with ρ ← Rp for p = n−δ/2. For simplicity,

we identify the restriction ρ as a pair (I, y) where I ⊆ [n] represents the fixed variables and y ∈
{−1, 1}|I| represents the assignment. A restriction ρ = (I, y) is called generic for a large gate ϕi ∈ Φl
of in-degree k if the number of free variables after the restriction is in the range [kp/2, 3kp/2], and
a restriction ρ = (I, y) (or simply an I) is called generic if |Xs ∩ ρ−1(⋆)| ≥ pn/2, and it is generic for
all large gates. Let G be the event that ρ is generic. Note that |Xs| ≥ n− n1−ε = n− o(n). Clearly,

Pr
ρ←Rp

[¬G]

≤ Pr
ρ←Rp

[|Xs ∩ ρ−1(⋆)| < pn/2] + ∑
ϕ∈Φl

[ρ is not generic for ϕ] (Union bound)

≤ exp(−Ω(pn)) + ∑
ϕ∈Φl

[ρ is not generic for ϕ] (Chernoff bound)

≤ exp(−Ω(pn)) + |Φl | · exp(−Ω(p · in-degree(ϕ))) (Chernoff bound)

≤ exp(−Ω(n1−δ/2)) + n1+ε−δ exp(−Ω(nδ/2))

≤negl(n).

Hence we can stick to the case when the restriction is generic from now on.
Recall that our goal is to find a large subset Sρ of unfixed variables such that at least a half

of the restrictions that fixes all variables not in Sρ would make f approximable by a small TC0
d−1

circuit. Let Fρ be the set of unfixed variables not in Sρ. Now will we define the set Fρ and Sρ by the
following three-phase procedure.

Large variables. Let n1 = |Xs ∩ I|, which is the number of unfixed small variables. If ρ is
generic, we know that n1 ≥ pn/2 ≥ n1−δ/2/2, which is sufficiently large for small δ. In this phase,
we simply put all unfixed large variables into Fρ.

Large gates. Let ϕi ∈ Φl be a large gate. By Lemma 7.10, we know that Prρ←Rp [ϕi is p−c1-balanced] ≤
pc2 for absolute constants c1 and c2, which means that for large n,

Pr
ρ←Rp

[ϕi is p−c1-balanced | G] ≤ pc2

Prρ←Rp [G]
≤ pc2

1− negl(n)
≤ 2pc2 .

By Proposition 7.9, the large gates that become imbalanced would output a constant value with
high probability, so that they will not bother us. Hence in this phase, we will put all the inputs of
p−c1-balanced large gates into Fρ.

To analyze the number of inputs that will be put into Fρ, we define a random variable Yi for
each ϕi ∈ Φl , which is 0 if ϕi is p−c1-imbalanced, and is the in-degree of ϕi after the restriction if ϕi
is p−c1-balanced. Let Y = ∑ϕi∈Φl

Yi be an upper bound of the number of variables to be put into
Fρ. Clearly,

E
ρ←Rp

[Yi | G] ≤
3p
2
· in-degree(ϕi) Pr

ρ←Rp
[Yi | G] ≤ 3p1+c2 · in-degree(ϕi),
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hence
E

ρ←Rp
[Y | G] = ∑

ϕi∈Φl

E
ρ←Rp

[Yi | G] ≤ 3p1+c2 · ∑
ϕi∈Φl

in-degree(ϕi) ≤ 3p1+c2 n1+ε.

Let µ ≜ 3p1+c2 n1+ε. By Markov’s inequality, we know that

Pr
ρ←Rp

[Y > 4µ | G] ≤ 1
4

.

Let L be the event that Y ≤ 4µ, i.e. only 4µ variables are put into Fρ in this phase. If ρ is generic
and we set δ to be moderately large, say δ = 3ε/c2, with probability at least 3/4, Lwill happen, in
which case we will put only O(n1+ε−(1+c2)δ/2) = o(n1) variables into Fρ.

Small variables feeding small gates. Now we deal with small gates in depth 1. We will put
(roughly) all but n1−(2ε+δ)

1 variables into Fρ, so that for each small gate ϕj ∈ Φs, at most one of its
input variables is free. Consider the undirected graph G = (V, E) where each node represents a
variables that is neither fixed nor put in Fρ in the above two cases, and two nodes are connected
if both of them feed a small gate ϕj ∈ Φs. Since the out-degree of small variables and in-degree
of small gates are all bounded, each node in G is of degree at most n2ε+δ, hence there exists an
independent set S of size |V|/n2ε+δ. We define Sρ to be all the vertices inside the independent
set, and put all other variables into Fρ. Note that condition on G and L, the size of Sρ is at least
β ≜ np/2−4µ

n2ε+δ .
Analysis. Now it is sufficient to show that under the random restriction ρ, with nice probabil-

ity, |Sρ| ≥ β = np/2−4µ

n2ε+δ and for at least a half of the assignments σ to the unfixed variables not in
Sρ, f ↾ρσ can be approximated by a circuit of size |Sρ|1+cε for an absolute constant c. Let ρ = (Iρ, yρ)
and σ = (Iσ, yσ), the circuit C′ that approximates f ↾ρσ is defined as follows. We start with the
circuit C that approximates f .

1. For a small gate ρj ∈ Φs, since at most one of its input variables is in Sρ, it is of in-degree
at most 1 after the restrictions ρ and σ. Hence we can make its descendants directly fed by
its input nodes and modify the functions computed by its descendants accordingly without
deviating the functionality of the circuit.

2. By the phase dealing with large gates, all p−c1-balanced large gates become in-degree 0. We
can replace them by constants and simplify the circuit accordingly. For a p−c1-imbalanced
large gate ϕi = LTFw,θ after the restriction, we simply replace it by the most probable con-
stant following Proposition 7.9.

For d > 1, the depth of C′ becomes d− 1 since all the gates in depth 1 are eliminated. When
d = 1, this circuit becomes transparent, i.e. each output node depends on at most one input bit.
By the preceding discussion, we have already known that |Sρ| ≥ β with certainty if G and L holds
simultaneously. Now we set the parameters ε0 ≜ 0.01 min{c2, 1/(2+ 4.5/c2)} and δ ≜ 3ε/c2, such
that for large n,

µ = o(np), β =

(
1
2
− o(1)

)
n1−2ε−3δ/2 ≥

(
1
2
− o(1)

)
n1−(2+4.5/c2)ε > n0.99.

Since the size of C′ is at most the size of C, we can see that for large constant c independent of ε, n
and d,

size(C′) ≤ size(C) ≤ n1+ε ≤ β
1+ε

1−(2+4.5/c2)ε ≤ |Sρ|1+cε
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for sufficently large n conditioning on G and L. Let S be the event that |Sρ| ≥ β and size(C′) ≤
|Sρ|1+cε. So we can see that

Pr
ρ←Rp,yσ←F

|Iσ |
2

[S | G] = Pr
ρ←Rp,yσ←F

|Iσ |
2

[L] · Pr
ρ←Rp,yσ←F

|Iσ |
2

[S | G,L] = Pr
ρ←Rp,yσ←F

|Iσ |
2

[L] ≥ 3
4

. (4)

Now we show that C′ approximates f ↾ρσ. Fix an arbitrary generic Iρ. Firstly, we can see that

Pr
yρ←F

|Iρ |
2 ,yσ←F

|Iσ |
2 ,z←F

|Sρ |
2

[ f ↾ρσ(z) ̸= C(yρ, yσ, z)] = Pr
z←Fn

2

[ f (z) ̸= C(z)] ≤ α1(n),

since f is α1(n)-approximated by C. Notice that replacing imbalanced gates is the only place
that introduces additional errors in the procedure defining Sρ. Let ϕ↾ρ denote the gate ϕ under
restriction ρ (so that its input is restricted to unfixed variables and its internal function is modified).
We can see that

Pr
yρ←F

|Iρ |
2 ,yσ←F

|Iσ |
2 ,z←F

|Sρ |
2

[C(yρ, yσ, z) ̸= C′(z)]

≤ Pr
yρ←F

|Iρ |
2 ,yσ←F

|Iσ |
2 ,z←F

|Sρ |
2

[∃ϕ = LTFw,θ ∈ Φl , ϕ↾ρ is p−c1-imbalanced∧ ϕ(yρ, yσ, z) = sgn(ϕ↾ρ)]

≤ ∑
ϕ=LTFw,θ∈Φl

 Pr
yρ←F

|Iρ |
2 ,yσ←F

|Iσ |
2 ,z←F

|Sρ |
2

[ϕ is p−c1-imbalanced∧ ϕ = sgn(ϕ↾ρ)]

 (Union bound)

≤ ∑
ϕ=LTFw,θ∈Φl

 Pr
yρ←F

|Iρ |
2 ,yσ←F

|Iσ |
2 ,z←F

|Sρ |
2

[ϕ = sgn(ϕ↾ρ) | ϕ is p−c1-imbalanced]


≤2|Φl | · exp(−2p−c1) (Proposition 7.9)

≤2n1+ε−δ exp(−2nδc1).

Let α2(n) ≜ 2n1+ε−δ exp(−2nδc1). Again by union bound,

Pr
yρ←F

|Iρ |
2 yσ←F

|Iσ |
2 z←F

|Sρ |
2

[ f ↾ρσ(z) ̸= C′(z)] ≤ α1(n) + α2(n).

By averaging argument, for at least 1/2 fraction of assignments yρ to Iρ, there exists 1/2 fraction
of assignments yσ to Iρ such that

Pr
z←F

|Sρ |
2

[ f ↾ρσ(z) ̸= C′(z)] ≤ 4(α1(n) + α2(n)).

Let A be the event that for at least 1/2 fraction of assignments yσ to the variables in Iσ, f ↾ρσ is
4(α1(n) + α2(n))-approximated by C′. Then

Pr
ρ←Rp

[A | G] ≥ 1
2

. (5)

Combining (4) and (5), we can see that for large n,

Pr
ρ←Rρ

[S ∧A]
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≥ Pr
ρ←Rρ

[S ∧A | G] Pr
ρ←Rp

[G]

≥
(

1− Pr
ρ←Rρ

[¬S | G]− Pr
ρ←Rρ

[¬A | G]
)

Pr
ρ←Rp

[G]

≥
(

1− 1
4
− 1

2

)
(1− negl(n))

≥1
8

.

This means that under a random restriction ρ ← Rp, with probability 1/8, there exists a subset
Sρ of unfixed variables such that |Sρ| ≥ β > n0.99 and for at least a half of the assignments σ to
unfixed variables not in Sρ, the function f ↾ρσ can be 4(α1(n) + α2(n))-approximated by a circuit of
size |Sρ|1+cε, which completes the proof. □

8 Open problems

Other complexity measures. Besides size or wire complexity, upper bounds and lower bounds
about other complexity measures may give us new insights about pseudorandomness. For in-
stance, multiplicative complexity, which is the number of ∧-type gates in the circuit, is closely
related to the error propagation in fully-homomorphic encryption. Proving an upper bound bet-
ter than nε (i.e. Levin’s trick) or a lower bound beyond log log n (i.e. brute-force low-degree test) is
quite interesting. Also, it is open whether there exists a circuit depth lower bound slightly better
than log n.

Improving exact security. Since our 2n + o(n) size hash function has quasi-polynomial collision
probability, it cannot be used to create exponentially secure PRFs. Our 3n size hash function has
collision probability exp(−nε) but is not uniform. It would be interesting to prove upper and
lower bounds for exponentially secure PRFs and uniform almost universal hash functions with
exponentially small collision probability.

PRF and hash functions. By Levin’s trick, a PRF lower bound only implies a conditional lower
bound for almost universal hash functions. However, we can even derive unconditional lower
bounds for hash functions from our techniques. Can we always extract such unconditional lower
bounds from PRF lower bound proofs, or proofs under restrictions (for example, non-adaptive,
constructive, etc)?

Impossibility results. Can we refute the existence of PRF in certain circuit models (for exam-
ple, AC0[2]) by proving conflicting upper and lower bounds? Or is there formal evidence that our
method cannot be used to prove powerful impossibility results? This can be considered together
with the previous one: can we obtain a general connection from PRF lower bounds to hash func-
tion lower bounds, to show that this kind of proof cannot be used to refute the existence of PRFs
in certain models, since they will refute the existence of hash functions at the same time.

Practical issues. Is our PRF construction of size 2n+ o(1) and depth (1+ ε) log n practical? To the
best of our knowledge, this is the first construction of pseudorandom function (even in practice)
with both small size (related to energy consumption) and low depth (related to efficiency). Also,
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our construction is strongly uniform: our hash function only requires a random permutation over
input bits and a random sampling to inputs, which seems relatively easy to be implemented in
physical hardwares.
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A The leftover lemma for Levin’s trick

Lemma A.1. Let m = m(n) = Θ(nε) for 0 < ε < 1. Assume that H = {Hn ⊆ Bn,m}n≥1 is an
almost universal hash function, then B = {Bn}n≥1 and B′ = {B′n = { f ◦ h | f ∈ Bm, h ∈ Hn}}n≥1
are indistinguishable. ♢

Proof. Towards a contradiction we assume that B and B′ are distinguishable, then there exists a
p.p.t. adversary A distinguishing B and B′. Without loss of generality, we assume that A queries
the oracle on exactly t = nd distinct points for some constant d.

Let X1, X2, . . . , Xt be random variables such that Xi denotes the ith query point, h be the random
variable denoting the hash function involved in B′, and Ei be the event that h(X1), h(X2), . . . , h(Xi)
are pairwisely distinct during the execution of A. Clearly, we know that

Pr
f←Bn,A

[A f (1n) = 1] = Pr
f ′←B′n,A

[A f ′(1n) = 1 | Et],

since under Et, f and f ′ are identically distributed. To obtain a contradiction, it is sufficient to
show that

Pr
f ′←B′,A

[¬Et] < negl(n)

by elementary probability calculation. By union bound, we can see that

Pr
f ′←B′,A

[¬Et] = Pr
f ′←B′,A

[∃i,¬Ei ∧ Ei−1] ≤ ∑
1≤i≤t

Pr
f ′←B′,A

[¬Ei | Ei−1],
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hence it is sufficient to show that Pr f ′←B′,A[¬Ei | Ei−1] ≤ negl(n).
Conditioning on the fact that Ei−1 happens (the hash values of the first i − 1 queries to the

oracle are pairwisely distinct), the oracle returns independent random values. This means that the
adaptive adversary does not gain any advantage from the oracle queries, hence the probability
that ¬Ei happens is exactly the collision probability of the hash function, i.e.

Pr[¬Ei | Ei−1] = Pr
h←Hn

[∃j < i, h(xi) = h(xj) | Ei−1]

≤ ∑
1≤j<i

Pr[h(xi) = h(xj) | Ei−1]

= ∑
1≤j<i

Pr[h(xi) = h(xj) | xi ̸= xj]

≤ ∑
1≤j<i

negl(n)

≤negl(n),

which completes the proof. □

Remark. From the proof one can see that B and B′ are indistinguishable even if the adversary is
not computational bounded, as long as it can perform oracle query for only polynomially many
times.

B Proof of Lemma 5.6

Remainder of Lemma 5.6. Let t = ω(log n) and d ≥ 3. There exists a constant ε ∈ (0, 1), such
that for r = Θ(nε) and m = Θ(n1−ε/2), with probability at least 1− n−0.1k, Algorithm 1 generates
a good graph (and therefore a 1-detector) for sufficiently large n. ♢

Remainder of Algorithm 1: Generating good graphs

1 for i = 1, 2, . . . , t do
2 Let G ← (V1 ∪V2,∅) be an empty graph;
3 for v ∈ V1, j = 1, 2, . . . , d do
4 Link a random edge ev,j = (v, v′) for v′ ← V2;
5 end
6 if ∀S ⊆ V1 of size ≤ k, there exists v′ ∈ V2 connects to odd number of vertices in S then
7 return G;
8 end
9 end

10 return ⊥;

To analyze this algorithm, we will separately bound the probability that it returns ⊥ and it
returns a graph that is not good. In both of the case, our analysis is similar to the standard proba-
bilistic argument while proving the existence of good graphs.

Proposition B.1. Let d ≥ 3 and k ≥ 1 be constants, t = ω(log n). For any 0 < ε < 2− 4/d and
m = Θ(n1−ε/2), the algorithm returns ⊥ with negligible probability. ♢
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Proof. We bound the probability of refusing to return the graph G in each iteration of the main
loop. This will happen when there exists a subset S ⊆ V1 of size at most k, such that each v′ ∈ V2
connects to even number of vertices in S. Since there are at most d|S| wires connecting to vertices
in S, at most d|S|/2 vertices in V2 connect to more than 2 vertices in S. This means that if some
subset S ⊆ V1 of size at most k spans more than d|S|/2 vertices in V2, then there must exist some
v′ ∈ V2 with exactly 1 incidence in S. Hence we can calculate the probability at follows.

Pr[∃|S| ≤ k, ∀v′ ∈ V2, v′ connects to even # of vertices in S]

≤ ∑
S⊆V1,|S|≤k

[
∑

T⊆V2,|T|=⌊d|S|/2⌋
Pr[S only connects to T]

]

≤
k

∑
i=1

(
n
i

)(
m

⌊di/2⌋

)(
⌊di/2⌋

m

)di

≤
k

∑
i=1

(ne
i

)i
(

2me
di

)di/2 ( di
2m

)di

=
k

∑
i=1

(
id/2−1t

)i
.

(
t ≜ (ne)

( 2me
d

)d/2
(

d
2m

)d
)

Since both d and k are constants, clearly t = Θ(nm−d/2). If ε < min{2− 4/d, 1}, then t = o(1). In
such case, the probability that the algorithm refuses to return G in each iteration is at most 1/2 for
sufficiently large n, which is reduced to negligible for t = ω(log n) repetitions. □

Proposition B.2. Let d ≥ 3 be a constant, 0 < ε < 2d−5
3d−4 , r = Θ(nε) and m = Θ(n1−ε/2). Con-

ditioned on the fact that the algorithm does not return ⊥, the probability that it outputs a good
graph is at least 1− n−0.2k for sufficiently large n. ♢

Proof. Note that a graph G = (V1 ∪V2, E) is not good if and only if there exists a set S ⊆ V1 of size
≤ r such that every vertex in V2 connects to even number of vertices in S. Let E be the event that
the algorithm outputs ⊥. Condition on ¬E , a graph is not good if there exists such a set S with
k < |S| ≤ r (see Line 6 to 8). Similar to Proposition B.1, we can calculate the probability as follows.

Pr[G is not good | E ]

≤
r

∑
i=k+1

(ne
i

)i
(

2me
di

)di/2 ( di
2m

)di

=
r

∑
i=k+1

(
id/2−1t

)i
.

(
t ≜ (ne)

( 2me
d

)d/2
(

d
2m

)d
)

As before, we have t = Θ(nm−d/2). Note that i ≤ r = Θ(nε), if

1− d(1− ε/2)
2

+ ε

(
d
2
− 1

)
< −1

4
,

that is ε < 2d−5
3d−4 , then id/2−1t = o(n−0.2) . In such case, for sufficiently large n, the probability that

G is not good condition on E is at most

∞

∑
i=k+1

1
n0.2i ≤ n−0.2k.

□
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Then our proof for Lemma 5.6 follows directly.

Proof of Lemma 5.6. Let ε ≜ 1
2 min{2− 4/d, (2d− 5)/(3d− 4)}. Assume that G is the event that

the algorithm outputs a good graph and E is the event that the algorithm outputs ⊥, then

Pr[¬G] ≤ Pr[E ] + Pr[¬G | ¬E ] ≤ negl(n) + n−0.2k ≤ n−0.1k

according to Proposition B.1 and B.2. □

Remark. From the proof we can clearly see that the if clause in Line 6 to 8 is the key to amplify
the success probability. A natural question is whether there exists a p.p.t. algorithm checking if
a graph is good or not, since such algorithm would further reduce the error probability to negli-
gible instead of polynomial. Unfortunately, such algorithm may not exist, if solving binary anal-
ogy of shortest vector problem (binarySVP) is hard for random sparse matrix. Such assumption
is used to construct low complexity collision resistant hash function by Applebaum, Haramaty,
Ishai, Kushilevitz, and Vaikuntanathan [AHIKV17]. Intuitively, Line 6 to 8 of our algorithm solves
binarySVP with width ≤ k = O(1), which is sufficient since the error probability is mainly con-
tributed by small width terms.

Remainder of Corollary 5.7. For some constant ε ∈ (0, 1), let m = m(n) = Θ(n1−ε/2), there exists
an almost universal hash functionH = {Hn ⊆ Bn,m}n≥1 with weakly uniform complexity 3n. ♢

Proof. Let d = 3, ε ∈ (0, 1) be a constant given by Lemma 5.6 and r = Θ(nε). We firstly define a
p.p.t. sampling algorithm G for the hash function and then write down the explicit form {Hn ⊆
Bn,m}n≥1 (and the distribution Dn over Hn). Given parameters n and c (where the desired success
probability is n−c), our algorithm firstly runs Algorithm 1 with k = 10c and obtain a depth-1 XOR
circuit C with unbounded fan-in (if Algorithm 1 returns⊥, we immediately output⊥). We expand
C to a B2 circuit of size 3n by realizing each XOR gates as a tree of fan-in 2 XOR gates. Then, similar
to Lemma 5.5, we randomly choose a subset S ⊆ [n] of size s = Θ(n1−ε/2), say S = {i1, i2, . . . , is},
and labels xi1 , xi2 , . . . , xis to be output bits. The resulting circuit is the output of our algorithm.

Now we write down the explicit form. Let E be the event that Algorithm 1 generates a good
graph. Let Cn be the set of circuits that are generated by G(1n, k = 0) with non-zero probability
condition on E , and Hn ≜ {h | ∃C ∈ Cn, C computes h}. The distribution Dn over Hn is defined as

Dn(h) ≜ Pr
G
[G(1n, c = 0) outputs a circuit computing h | E ]

for all h ∈ Hn. By Lemma 5.6, we know that Pr[E ] ≥ 1− n−0.1k = 1− n−c. We can easily see that
the parameter k does not influence the output distribution of Algorithm 1 condition on E , hence
for all positive integer c,

Dn(h) = Pr
G
[G(1n, c) outputs a circuit computing h | E ].

This means that the familyH = {Hn}n≥1 is weakly uniform of complexity 3n.
Finally it is sufficient to show that H is actually a hash function. According to the definition,

one can see that a random function h ← Hn can be represented by a pair (C, S) of random vari-
ables, where C is a (n, r, m) 1-detector and S is a subset of [n] of size s. Similar to Lemma 5.5, we
can see that for each fixed C and any x ̸= y, Pr[h(x) = h(y)] < negl(n). Hence it directly implies
that Prh=(C,S)←Hn [h(x) = h(y)] < negl(n), which completes the proof. □
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C An optimally sparse explicit almost universal hash in CC0[2]

As we have discussed above, both of our constructions in Section 5.3 and Section 5.4 have its own
weakness: the 3n construction based on counting is only weakly uniform, and the 2n construction
based on high-girth graph has only logarithmic shrinkage. Although we do not know how to
construct a depth-1 linear-wire-complexity sparse almost universal hash function with both uni-
formity and polynomial shrinkage, we can construct a linear-wire-complexity almost universal
hash with both uniformity and polynomial shrinkage in depth-2 XOR circuit. In this section, we
will present such a construction by composing the hash function in Section 5.4 with an explicit
almost universal hash of polynomial shrinkage and with slightly super-linear wire complexity.

Definition C.1. Let n be the input length and m be the output length. The circuit class CC0[2]
contains the set of circuits with only unbounded fan-in XOR gates of constant depth. ♢

Theorem C.2. Let 0 < c < 1 be a constant and m = m(n) = O(nc) be the output length, there
exists an almost universal hash function H = {Hn ⊆ Bn,m}n≥1 with uniform wire complexity
2n + o(n) and of depth 2 in CC0[2]. ♢

By introducing explicit lossless expander, it is possible to construct explicit 1-detector with
polynomial shrinkage.

Theorem C.3 ([CRVW02; CT19]). There exists some function p(n) ∈ poly(n) such that the follow-
ing holds. Let ε > 0 be some arbitrarily small constant. Let m = m(n) be a function. For all n, m
that are both power of 2, there exists some G = (V1 ∪ V2, E ⊆ V1 × V2) where |V1| = n, |V2| = m,
the degree of each vertex in V1 is d = 2p(log log(n/m)), and every subset S ⊆ V1 of size at most
Θ(m/d) vertices is connected to at least (1 − ε)d|S| neighbors. Such graph is called a lossless
expander. Moreover, there exists an algorithm computes G in deterministic polynomial time. ♢

Pick ε = 1/3. Let S ⊆ V1 be an arbitrary subset of size at most Θ(m/d). Since there are
at most d|S| wires connecting to vertices in S, at most d|S|/2 neighbors connects to more than
2 vertices in S. From the expansion of the graph, there must exist some vertex in V2 connects
to exactly one vertex in S. This shows the depth-1 circuit with such topological structure is a
(n, Θ(m/2p(log log(n/m))), m) 1-detector with n · 2p(log log(n/m)) wires. According to Lemma 5.5, there
exists an explicit almost universal hash function of the same wire complexity.

Lemma C.4. There exists some function p(n) ∈ poly(n). For any constant ε ∈ (0, 1), there exists
an almost universal hash function H1 = {H1

n,m ⊆ Bn,m}n≥1 for m = m(n) = Θ(nε), with uniform
wire complexity n · 2p(log log(n/m)) and of depth 1 in CC0[2]. ♢

It is important to mention that this hash function also give us an explicit almost universal hash
function in extremely sparse TC0

d. According to Paturi and Saks [PS94], the parity function over n
input variables can be realized by a TC0

d circuit of wire complexity n1+O(ϕ−d). By replacing gates
by such structure, it is possible to transform a depth-1 circuit of wire complexity m into a TC0

d
circuit of wire complexity nO(ϕ−d). This shows the above almost universal hash function can be
transformed into a TC0

d circuit of wire complexity n · 2p(log log(n/m)) · nO(ϕ−d) = n1+O(ϕ−d).

Theorem C.5. For any constant ε ∈ (0, 1) and d ≥ 2, let m = m(n) = Θ(nε), there exists an almost
universal hash functionH = {Hn ⊆ Bn,m}n≥1 with wire complexity n1+O(ϕ−d) and in TC0

d. ♢
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To construct a linear-size almost universal hash function, we would hide the logarithmic fac-
tor in Lemma C.4 by composing it with a variant of construction in Section 5.4. Let p̂(x) ≜
2 · p(x) ∈ poly(n) and m = n/2p̂(log log(n)). The generated graph Dm,n according to Corollary
5.11 is of girth g = Ω

(
log m

log(2n/m)

)
= Ω

(
log n

p̂(log log n)

)
. From Lemma 5.9, it can be transformed into

a (n, n/2, n/2p̂(log log(n))) randomized 1-detector of 2n wires. According to Lemma 5.5, we can
construct an explicit almost universal hash function with the same wire complexity.

Lemma C.6. For some p̂(n) ∈ poly(n), let m = m(n) = n/2p̂(log log(n)), there exists an almost
universal hash function H2 = {H2

n,m ⊆ Bn,m}n≥1 with uniform wire complexity 2n and of depth 1
in CC0[2]. ♢

By composing the above hash function in Lemma C.6 together with the hash function in
Lemma C.4, it is possible to construct an almost universal hash function with all desired prop-
erties.

Theorem C.7. For any constant ε ∈ (0, 1), let m = m(n) = Θ(nε), there exists an almost universal
hash function H = {Hn ⊆ Bn,m}n≥1 with uniform wire complexity 2n + o(n) and of depth 2 in
CC0[2]. ♢

Proof. Let H1
n,k be the hash function in Lemma C.4 and let H2

n,k be the hash function in Lemma
C.6, where k = n/2p̂(log log n). We construct a hash functionH = {Hn ⊆ Bn,m}n≥1 where

Hn ≜ {h2 ◦ h1|h2 ∈ H2
k,m, h1 ∈ H1

n,k}.

This is clearly almost universal.
Now we consider the wire complexity. The first layer of the circuit requires 2n wires and the

second layer of the circuit requires

k · 2p(log log(k/m)) = n · 2p(log log(k/m))− p̂(log log(n)) = o(n)

wires. Therefore,H can be computed by a CC0[2] circuit of 2n + o(n) wires and depth 2. □

Since a fan-in-n XOR gates can be realized by n− 1 fan-in-2 XOR circuits in depth log n +O(1),
we can transform the CC0[2] circuit into a sparse and shallow B2 circuit. This gives us an explicit
linear-size almost universal hash function in B2.

Corollary C.8. For any constant ε ∈ (0, 1), let m = m(n) = Θ(nε), there exists an almost universal
hash functionH = {Hn ⊆ Bn,m}n≥1 of size 2n + o(n) and depth log n + O(1) in B2. ♢

Proof. Look into the construction of Theorem C.7. The first layer of the circuit can be transformed
into a B2 circuit of size 2n and depth log(n/k) + O(1). The second layer of the circuit can be
transformed into a B2 circuit of size o(n) and depth log(k) + O(1). In general, it is a B2 circuit of
size 2n + o(n) and depth log(n) + O(1). □
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