
The Exact Complexity of Pseudorandom Functions and the
Black-Box Natural Proof Barrier for Bootstrapping Results in

Computational Complexity

Zhiyuan Fan* Jiatu Li† Tianqi Yang‡

Institute for Interdisciplinary Information Sciences
Tsinghua University, Beijing, China

June 12, 2022

Abstract

Investigating the computational resources we need for cryptography is an essential task
of both theoretical and practical interests. This paper provides answers to this problem on
pseudorandom functions (PRFs). We resolve the exact complexity of PRFs by proving tight
upper and lower bounds for various circuit models.

• PRFs can be constructed in 2n + o(n) size general circuits assuming the existence of
polynomial-size PRFs, simplifying and improving the O(n) upper bound by Ishai, Kushile-
vitz, Ostrovsky, and Sahai (STOC 2008). Moreover, if PRFs exist in NC1, we can further
guarantee the depth of our construction to be (1+ ε) log n. We show that our construction
is almost optimal by giving an unconditional 2n−O(1) lower bound.

• PRFs can be constructed in AC0[2] circuits of o(n) gates and 2n + o(n) wires assuming the
existence of polynomial-size AC0[2] PRFs. We show the optimality of our construction
with a 2n + Ω(

√
n) wire complexity lower bound.

• PRFs can be constructed with wire complexity n1+O(1.61−d) in depth-d TC0 circuits as-
suming the existence of polynomial-size TC0 PRFs. We also present an n1+Ω(c−d) wire
complexity lower bound against depth-d TC0 circuits for some c > 1.61.

As a byproduct, we prove unconditional tight upper and lower bounds for “almost” universal
hash functions that are of independent interest.

Following the natural proof barrier of Razborov and Rudich (J. Comput. Syst. Sci. 1997), we
observe that our exact complexity results are closely related to the “bootstrapping phenomena”
in circuit complexity (such as hardness magnification and quantified derandomization). We
introduce the black-box natural proof barrier and show that a large range of techniques for
bootstrapping results cannot be combined with “black-box” lower bound proofs to obtain a
breakthrough.

*fan-zy19@mails.tsinghua.edu.cn
†lijt19@mails.tsinghua.edu.cn
‡yangtq19@mails.tsinghua.edu.cn

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 125 (2021)

mailto:fan-zy19@mails.tsinghua.edu.cn
mailto:lijt19@mails.tsinghua.edu.cn
mailto:yantq19@mails.tsinghua.edu.cn

Contents

1 Introduction 3
1.1 Our results . 4
1.2 A new barrier for “bootstrapping results” in circuit complexity 7
1.3 Related works . 9
1.4 Organization of the paper . 10

2 Proof Overview 11
2.1 Upper bounds in various classes . 11
2.2 Lower bounds in general and AC0[2] circuits . 13
2.3 Lower bounds in TC0 circuits . 14

3 A new barrier for bootstrapping results in circuit complexity 15
3.1 Background: bootstrapping results in circuit complexity 15
3.2 Known barriers for bootstrapping results . 16
3.3 Natural proof barrier and its limitation . 17
3.4 A new barrier: black-box natural proof . 18
3.5 Concrete examples of the black-box natural proof barrier 21

4 Preliminaries 24

5 A 2n + o(n) upper bound for B2 circuits 30
5.1 A linear upper bound . 30
5.2 Constructing hash function from 1-detector . 30
5.3 A simple probabilistic construction . 32
5.4 Better 1-detectors from high-girth graphs . 33

6 Upper bounds in low-depth classes 35
6.1 Candidate PRFs in low-depth classes . 35
6.2 Construction of NC1 PRFs via stacking . 36
6.3 Construction of TC0 PRFs from efficient ECC . 37
6.4 Construction of AC0[2] PRFs from optimally sparse hash function in CC0[2] 38

7 Lower bounds against B2 and AC0[2] circuits 39
7.1 A PRF lower bound for B2 circuits . 39
7.2 An unconditional lower bound for hash function . 41
7.3 Lower bounds against AC0[2] circuits . 42

8 A size-depth trade-off lower bound against TC0 44
8.1 Extracting black-box property from white-box restriction 44
8.2 A lower bound for hash functions against TC0 . 47
8.3 Proof of the restriction lemma . 48

A The leftover lemma for Levin’s trick 59

B Proof of Lemma 5.6 60

2

1 Introduction

A pseudorandom function is a fundamental primitive in cryptography, yielding, among others,
simple solutions for the main problems in private key cryptography (see [BR17] for an excellent
survey on this topic). The celebrated result of Goldreich, Goldwasser, and Micali [GGM84] re-
vealed the power of such a notion by showing its equivalence to pseudorandom generators and,
therefore, one-way function by later works [GL89; HILL99]. From both practical and theoretical
perspectives, it is natural to study the amount of computational recourses we need to construct
pseudorandom functions.

We use the usual definition of pseudorandom functions in this paper. The syntax of a pseu-
dorandom function is defined as a collection Fn of n-input single-output Boolean functions and
a sampling distribution Dn supported over Fn. A pseudorandom function with security s(n) is
a family of such collection, such that for any probabilistic s(n) time adversary A and sufficiently
large n, ∣∣∣∣ Pr

f←Fn
[A f (1n) = 1]− Pr

g:{0,1}n→{0,1}
[Ag(1n) = 1]

∣∣∣∣ ≤ 1/s(n),

where g is uniformly random from all n-input single-output Boolean functions. By default, we
focus on PRFs with polynomial security (i.e., secure against any probabilistic polynomial time
adversary). The circuit complexity of a PRF is naturally defined as the maximum complexity of
functions in Fn.

Prior to our work, low-complexity PRFs have been extensively studied in cryptography. Ishai,
Kushilevitz, Ostrovsky, and Sahai [IKOS08] proved that PRFs could be constructed in linear-size
general circuits assuming PRFs exist. For low-depth circuits, candidates in NC1, TC0, or even
AC0[2] of polynomial-size [NRR00; NR04; BPR12; Vio15] follow from standard assumptions like
Decisional Diffie-Hellman or Ring Learning-with-Error. More efficient candidates are known in
TC0 based on heuristics [MV15].

Our main contribution is to work out the exact complexity of pseudorandom functions in var-
ious circuit classes. We present extremely efficient constructions of pseudorandom functions in
general B2 circuits, NC1 circuits, TC0 circuits, and AC0[2] circuits. In the meantime, we show that
these constructions are almost optimal by proving matching circuit lower bounds (see Table 1).
All of our lower bounds are unconditional, and all of our upper bounds hold under the weakest
possible assumptions, namely the mere existence of (polynomial-size) PRFs in corresponding circuit
classes. As a technical byproduct, we also obtain tight unconditional upper and lower bounds for
“almost” universal hash functions in these circuit classes (see Table 2), which is of independent
interest.

Apart from direct cryptographic applications, the study of low-complexity pseudorandom
functions also brings insights to the study of circuit complexity. The seminal work of Razborov
and Rudich [RR97] showed that a large range of circuit lower bound techniques captured by the
concept of natural proofs are not capable of proving super-polynomial lower bounds since they
can be used to break exponentially strong PRFs that are believed to exist. By constructing low-
complexity PRF candidates with exponential security (see, e.g., [MV15]), we can find evidence
that natural proofs may not be able to prove even weaker lower bounds, say NP ⊈ SIZE[n log10 n].

Following the intuition from the natural proof barrier, we observe that our result on the exact
complexity of PRFs is closely related to a sequence of “bootstrapping results” in circuit complex-
ity, which showed that mild lower bounds or derandomization results could imply major break-
throughs (see, e.g., [AK10; OS18; Tel18; OPS19; CT19; MMW19; CJW19; Che+20; CJW20]). We
introduce a fine-grained variant of the natural proof barrier, which we call black-box natural proof

3

B2 circuits NC1 circuits TC0 circuits AC0[2] circuits
PRF upper
bounds

2n + o(n) size
2n + o(n) size

(1 + ε) log n depth
n1+O(ϕ−d) wires
for depth d

2n + o(n) wires
o(n) gates

PRF lower
bounds

2n−O(1) size
n1+Ω(c−d) wires
for depth d

2n + Ω(
√

n) wires

Table 1: Summary of our results on PRFs. In this table, n refers to the input length, ϕ = 1+
√

5
2 ≈

1.618 and c > ϕ is a constant. The upper bounds hold assuming the existence of polynomial-
size PRFs in corresponding models (in fact, we develop unconditional methods to transform
polynomial-size PRFs into low-complexity PRFs). See Theorem 1.1 for upper bounds and The-
orem 1.2 for lower bounds.

General circuits AC0[2] circuits TC0 circuits

Hash upper bounds
2n + o(n) size

(1 + o(1)) log n depth
2n + o(n) wires
o(n) gates

n1+O(ϕ−d) wires
for depth d

Techniques
High-girth graph
+ stacking

High-girth graph
+ sparse ECC

Sparse ECC

Hash lower bounds 2n− 2m size
2n + Ω(

√
n)− 2m

wires
n1+Ω(c−d) wires
for depth d

Techniques Wire-counting based distinguisher Random restriction

Table 2: Summary of our results on hash functions. In this table, n refers to the input length and m
refers to the output length of the hash functions. See Theorem 1.3 for upper bounds and Theorem
1.4 for lower bounds.

barrier, for these bootstrapping results. Intuitively, it shows that several widely used bootstrap-
ping techniques involving error-correcting codes or hash functions (see, e.g., [OPS19; Tel18; CT19;
CJW19; CJW20; Che+20]) cannot be combined with “black-box” proofs of circuit lower bounds to
establish a breakthrough. In particular, it explains the gap between the known lower bounds and
the bootstrapping premises in recent sharp threshold results [OPS19; CT19; CJW20].

1.1 Our results

We mainly consider the complexity of PRFs in the following four circuit models: general cir-
cuits of fan-in-two gates (also named B2 circuits), logarithmic-depth circuits (named NC1 cir-
cuits)1, constant-depth unbounded-fan-in circuits over basis {¬,∧,∨,⊕} (named AC0[2] circuits)
and constant-depth unbounded-fan-in circuits over linear threshold functions (named TC0 cir-
cuits). For almost universal hash functions, our upper bounds can be implemented in a very
restricted class CC0[2], which consists of all constant depth unbounded-fan-in circuits with only
parity gates.

1Each gate of B2 or NC1 circuits we defined here is of fan-in-two and can compute an arbitrary fan-in-two Boolean
function. Note that this is different from U2 circuits (or de Morgan circuits) in which there is no exclusive OR gate or
the negation of it.

4

PRF upper bounds. Our first results are efficient constructions of PRFs in B2 circuits, NC1 cir-
cuits, AC0[2] circuits and TC0 circuits under the weakest possible assumptions.

Theorem 1.1. PRF upper bounds (informal).

B2 circuits. If PRF exists, then there exists a PRF computable by B2 circuits of 2n + o(n) size
(see Corollary 5.13).

NC1 circuits. If PRF in NC1 exists, then for any constant ε > 0, there exists a PRF computable
by NC1 circuits of 2n + o(n) size and (1 + ε) log n depth simultaneously (see Corollary
6.2).

AC0[2] circuits. If PRF in depth-d AC0[2] exists, then there exists a PRF computable by AC0[2]
circuits of depth d + 3 with o(n) gates and 2n + o(n) wires (see Corollary 6.10).

TC0 circuits. If PRF exists in depth-d0 TC
0, then there exists an absolute constant c, such that

for any d ≥ d0 + 4, there exists a PRF computable by depth-d TC0 circuits with n1+cϕ−d

wires, where ϕ = 1+
√

5
2 (see Corollary 6.5).

Note that the proofs of these upper bounds are all constructive: we can explicitly give a
polynomial-time algorithm that takes a polynomial-size PRF in the corresponding class as input
and outputs a PRF with low complexity. So if the original PRFs are uniform (i.e., samplable by a
polynomial-time algorithm), our newly constructed low-complexity PRFs are uniform as well.

These upper bounds are proved by a general complexity reduction framework known as
Levin’s domain extension trick (see, e.g. [BR17], or Section 4.5). It states that we can construct a
PRF by compositing an almost universal hash function (that shrinks an n-bit input into an nδ-
bit hash value) and a PRF with input length nδ. If δ is chosen small enough, the complexity of
the original PRF can be absorbed into the o(n) term. Therefore the complexity of our final PRFs
merely depends on the complexity of the hash function. The PRF upper bounds then follow from
unconditional constructions of efficient hash functions in B2 circuits and low-depth circuit classes.

PRF lower bounds. We also prove tight circuit lower bounds of computing PRFs in these circuit
models, which shows that our constructions of PRFs are almost optimal.

Theorem 1.2. PRF lower bounds (informal).

B2 circuits. Computing PRFs in B2 circuits requires size at least 2n−O(1) (see Theorem 7.5).

NC1 circuits. Computing PRFs in NC1 circuits requires depth at least log n (trivial).

AC0[2] circuits. Computing PRFs in AC0[2] circuits requires at least 2n + Ω(
√

n) wires (see
Theorem 7.10).

TC0 circuits. There is an absolute constant c > 1 such that for all d ≥ 1, any depth-d TC0

circuits computing a PRF should have at least n1+Ω(c−d) wires, where Ω(·) hides an
absolute constant independent of d and n (see Theorem 8.1).

All these lower bounds are unconditional and follow completely combinatorial arguments,
which do not require the PRFs to be uniform. Intuitively, we show that all small-size circuits
have structural properties that make them “detectable” by polynomially many oracle queries. The

5

lower bounds for B2 and AC0[2] circuits are proved by a simple but tricky wire-counting technique.
The lower bound for TC0 circuits builds upon a random restriction technique that has already been
used to prove size-depth trade-off lower bounds and derandomization against linear threshold
circuits [CSS18; Tel18; CT19; HHTT21]. In fact, the constant c in our theorem tightly matches the
corresponding constants in the previous line of works.

Unconditional exact complexity of almost universal hash functions. As a byproduct of our
analysis, we can also get upper and lower bounds for a weaker variant of universal hash functions.
These results are quantitatively similar to those for PRFs but are completely unconditional.

Recall that a hash function Hn is a collection of functions mapping n-bit strings to m-bit strings.
It is called universal if for any inputs x ̸= y ∈ {0, 1}n, we have Prh←Hn [h(x) = h(y)] = 2−m. How-
ever, in many cases, we do not need the collision probability to be exactly 2−m. This motivates the
definition of almost universal hash function with collision probability ε(n), where the requirement
is loosened to Prh←Hn [h(x) = h(y)] ≤ ε(n). Without further clarification we take ε(n) = negl(n)
(i.e., ε(n) vanishes faster than the inverse of any polynomial).

Our upper bounds of hash functions for TC0 follow directly from sampling over the extremely
sparse error-correcting code in TC0 [CT19], while those for NC1 and CC0[2] require a novel con-
struction from high-girth graphs (see, e.g., [Cha03]). These unconditional hash constructions are
exactly the main technical ingredients of our PRF upper bounds.

Theorem 1.3. Almost universal hash functions with output length m = n0.1 can be constructed
by general circuits of 2n + o(n) size and (1 + o(1)) log n depth simultaneously (see Lemma 6.1),
CC0[2] circuits with o(n) gates and 2n + o(n) wires (see Lemma 6.9), or depth-d TC0 circuits of
n1+O(ϕ−d) wires for any d ≥ 4, where ϕ = 1+

√
5

2 , and O(·) hides an absolute constant independent
of d and n (see Corollary 6.4). ♢

On the other hand, unconditional lower bounds for PRFs can be adapted to almost universal
hash functions2. By the general connection between almost universal hash functions and error-
correcting codes (see Proposition 4.8), these lower bounds also hold for error-correcting codes.

Theorem 1.4. There exists a constant c such that the following holds. Any almost universal hash
function with output length m = n0.1 requires B2 (or NC1) circuits of size at least 2n − 2m (see
Theorem 7.6), AC0[2] circuits with wire complexity at least 2n + Ω(

√
n)− 2m (see Theorem 7.11),

or depth-d TC0 circuits of wire complexity at least n1+Ω(c−d) for any depth d ≥ 1 (see Corollary
8.6). ♢

A note on the security parameter. Although we use polynomial security throughout this paper
to make it clean and readable, it is helpful to mention the concrete security parameters of our
constructions. Recall that our PRFs are the composition of two parts: an almost universal hash
function of collision probability ε(n) which shrinks an n bits input to m = nε bits, and a PRF on
m inputs with security s(m). By examining the proof of Levin’s trick (see Section 4.5), one can see
that the resulting PRF has security roughly min{ε(n)−Ω(1), s(m)Ω(1)}.

• The hash functions for 2n+ o(n) size NC1 and CC0[2] in Theorem 1.3 has exp(−Ω(log2 n
poly(log log n)))

collision probability. Therefore, assuming the existence of exp(Ω(log2 n
poly(log log n))) secure PRFs

2One may notice that assuming the existence of corresponding PRFs, such lower bounds follow directly from Levin’s
trick and our PRF lower bounds. Here we make them unconditional by carefully adapting the proofs.

6

in B2, NC1, or AC0[2] circuits, the resulting low complexity PRFs are also exp(Ω(log2 n
poly(log log n)))

secure. We note that the existence of such a PRF in AC0[2] indeed follows from sub-exponential
DDH (see Section 6.1 for a brief survey).

• The TC0 hash function in Theorem 1.3 using efficient ECCs (see Section 6.3) can achieve
exp(−Ω(nε)) collision probability for output length m = nε. Assuming the existence of sub-
exponentially secure TC0 PRFs (following from sub-exponential DDH), our TC0 PRF also
has sub-exponential security.

Note that the collision probability of the TC0 hash function is already close to optimal, so
a major technical open problem is to improve the one in CC0[2]. In particular, it is interesting
to construct an almost universal hash function in 2n size circuits with inverse sub-exponential
collision probability, which would lead to constructions of sub-exponentially secure PRFs in 2n +
o(n) size circuits. We note that the hash function in [IKOS08] can achieve such collision probability
with circuit size O(n), and we make partial progress by presenting a non-uniform construction of
size 3n in Section 5.3.

1.2 A new barrier for “bootstrapping results” in circuit complexity

Recently, a sequence of works (see, e.g., [AK10; OS18; Tel18; OPS19; CT19; MMW19; CJW19;
Che+20; CJW20]) revealed a mysterious phenomenon that a mild lower bound (e.g. MCSP /∈
SIZE[n1.01]) or a derandomization algorithm for weak circuit classes (e.g. for TC0-SIZE[n1.01])
would lead to a major breakthrough in computational complexity (e.g. NP ⊈ P/poly, or derandom-
ization for the entire TC0). These bootstrapping results are formulated in different settings, such as
hardness magnification (see, e.g., [Che+20]), quantified derandomization (see, e.g., [Tel21]), and
explicit obstruction (see, e.g., [CJW20]). More interestingly, the bootstrapping frontiers in some
works (see, e.g., [OPS19; CT19; CJW20]) are extremely sharp in the sense that slightly weaker
variants of the bootstrapping premises can actually be resolved. For instance, Chen, Jin, and
Williams [CJW20] proved an n2−o(1) lower bound against probabilistic U2-formulas3 for the Mini-
mum Circuit Size Problem (MCSP) with certain parameters while improving this lower bound to
n2.01 would imply NP ⊈ Formula[nk] for all k.

As the bootstrapping phenomenon appears broadly in circuit complexity, understanding its
actual power turns out to be important. Some researchers believe that it is not a plausible approach
to resolve the desired open problems, and to consolidate this pessimistic view, barriers should be
set to address the weakness of current techniques. Although the bootstrapping techniques may
not be limited by the celebrated natural proof barrier [RR97; Che+20], specific barriers are known
in two major settings of the bootstrapping results. Namely, Chen et al. [Che+20] introduced the
locality barrier for hardness magnification, and Tell [Tel17; Tel21] introduced a black-box barrier
for quantified derandomization.

To obtain breakthroughs from bootstrapping phenomena, we need to close the gap between
the bootstrapping premises and the provable lower bounds with improved bootstrapping and/or
lower bound techniques. Therefore a barrier applied to the bootstrapping results needs to show
that the gap is unavoidable: the improvement of the bootstrapping side and the lower bound side
contradict each other if we only utilize known techniques. More precisely, we should describe a

3We use U2-formulas to represent formulas with all binary connectives except for XOR and its complement, which
is also known as de Morgan formulas.

7

tractable side that characterizes the lower bound techniques and a bootstrapping side that character-
izes the bootstrapping techniques, and then demonstrate how they refute the improvements of
each other.

This work presents a simple and general barrier, which we call black-box natural proof barrier,
that provides a novel perspective of the bootstrapping results. The barrier is inspired by both
the natural proof barrier [RR97] and our investigation on the complexity of PRFs; specifically, the
tractable side of our barrier is a refinement of the natural proof barrier, and the bootstrapping
side of it relates to low-complexity constructions of pseudorandom functions. It applies to the
following two kinds of techniques: bootstrapping techniques using low-complexity constructions
of certain combinatorial primitives that could be used to transform a polynomial-size PRF into
a low-complexity PRF, giving a PRF upper bound assuming PRFs exist; and lower bounds or
derandomization algorithms leading to a “property tester” that could efficiently distinguish any
small-size circuit from a truly random function and subsequently yield unconditional PRF lower
bounds. We will show that these two kinds of techniques should not be able to be combined to
establish a breakthrough, since it will lead to conflicting upper and lower bounds for PRFs and
then disprove the existence of PRFs.

We now discuss the techniques captured by our barrier on the tractable side and the bootstrap-
ping side respectively. More details are given in Section 3.

Tractable side. Our barrier applies to the lower bound or derandomization techniques that imply
efficient algorithms “recognizing” the small-size circuits in a black-box manner, i.e., dis-
tinguishing the small-size circuits from truly random functions via oracle queries.4 These
techniques are said to be black-box natural. Our barrier addresses the limitation of black-box
natural techniques: if we want to prove a black-box natural lower bound against slb(n)-
size circuits, the distinguisher as a byproduct of it will imply an unconditional slb(n)-size
PRF lower bound. This means that if we can construct PRFs computable by sprf(n)-size cir-
cuits from well-founded assumptions, we should not hope to prove better-than-sprf(n) lower
bounds with merely black-box techniques.

Black-box natural techniques have been used as the main component to prove many low-
depth circuit lower bounds [Hås86; Hås98; Tal14; CSS18] and (quantified) derandomization
[GW14; IMZ19; CT19; HHTT21]. To the best of our knowledge, most of the tractable sides
of sharp bootstrapping results (see, e.g., [CT19; CJW20]) essentially utilize black-box natural
techniques. Still, there are many lower bound techniques in the literature not being black-
box natural (at least in our eyes), such as gate elimination in proving B2 circuit lower bounds
(see, e.g., [DK11; FGHK16; LY21]), formula lower bounds for Andreev functions (see, e.g.,
[And87; Hås98; Tal14]), the polynomial method in proving AC0[2] lower bounds (see, e.g.,
[Raz87; Smo87]).

Bootstrapping side. Our barrier applies to the bootstrapping techniques that essentially follow
from error-correcting codes or almost universal hash functions, and whose bootstrapping
thresholds5 are determined by the complexity of these primitives. We observe that the at-
tempt to improve the bootstrapping thresholds by constructing more efficient ECCs or hash
functions cannot lead to a breakthrough if we only have a black-box natural lower bound to

4It is said to be black-box since the distinguisher has only the oracle access to the function and runs in poly(n) time,
whereas the distinguisher in natural proof barrier can read the entire truth-table and runs in 2O(n)-time. This means
that the tractable side of the black-box natural proof barrier is indeed a restricted version of the natural proof barrier.

5The bootstrapping threshold refers to the circuit size we need to work with to obtain a breakthrough. The bootstrap-
ping result “an n1.01-size lower bound for L will imply NP ⊈ P/poly”, for instance, has bootstrapping threshold n1.01.

8

combine with it. Assume that we can prove an slb(n) lower bound with black-box natural
techniques. The key insight is that the ECCs or hash functions can also be used to construct
PRFs with (roughly) the same complexity as long as polynomial-size PRFs exist.6 As a result,
when we prove a bootstrapping result with threshold sth(n), we will also obtain a PRF com-
putable in (roughly) sth(n)-size assuming PRFs exist. This means to obtain a breakthrough
(i.e., to make slb(n) > sth(n)) we will have to disprove the existence of polynomial-size PRFs
(recall that an slb(n) black-box natural technique implies an slb(n) PRF lower bound).

The bootstrapping side of our barrier covers a large range of known bootstrapping tech-
niques: the reduction-based [OS18; OPS19] and the kernelization-based [CJW19; CJW20]
techniques for hardness magnification; and the error-reduction technique using seeded ex-
tractors [GW14; CT19] for quantified derandomization. We note that hardness magnification
from tree-like structures of particular problems are not included (see, e.g., [AK10; MMW19]).

In summary, the black-box natural proof barrier captures the conflict between these two kinds
of techniques: it is inevitable to disprove the existence of PRFs in order to get a breakthrough. In
particular, this observation explains why “sharp frontiers” occur in recent bootstrapping results,
such as the hardness magnification in [OPS19; CJW20] and the quantified derandomization in
[CT19; CJW20] (see Section 3.5 for detailed discussion).

We borrow the following suggestion from the influential paper of Razborov and Rudich [RR97]
as our advice to the readers.

“We do not conclude that researchers should give up on proving serious lower bounds. Quite
the contrary, by classifying a large number of techniques that are unable to do the job we hope
to focus research in a more fruitful direction.”

The bootstrapping phenomenon is worth further investigation, given the fact that many known
lower bound techniques are not black-box natural. It remains appealing to adapt these techniques
to the problems that admit the bootstrapping phenomena or establish stronger barriers extending
to a broader class of lower bound techniques.

1.3 Related works

Linear-size PRFs in [IKOS08]. For B2 circuits, Ishai, Kushilevitz, Ostrovsky, and Sahai [IKOS08]
gave an O(n) upper bound based on Levin’s trick (see Section 4.5) and an efficient construction of
pairwise-independent hash functions. We briefly compare our construction with that of [IKOS08].

• Our construction is simpler and more efficient. The multiplicative overhead of [IKOS08] is
huge, making it harder to be implemented in practice. Our construction can be generalized
to restricted circuit classes like TC0 and AC0[2] and can give more structural insights about
the power of small-size circuits.

• The construction of [IKOS08] provides two features that have individual interests: it is a per-
fect pairwise-independent hash function (instead of being only almost universal), and there
is a linear-size circuit computing the PRF with the key as its second input. Our constructions
via almost universal hash functions do not support these features natively.

6This is done via the Levin’s trick that is also used in our PRF upper bounds. Note that here PRF means PRF secure
against any polynomial-time adversary, instead of 2Ω(n)-secure PRF (called pseudorandom function generator in [RR97])
for natural proof barrier.

9

Low-complexity PRFs. Low complexity PRFs have been extensively studied, motivated by both
cryptographic applications and the natural proof barrier [RR97].

General circuits. Since [IKOS08] proved the O(n) upper bound with sub-exponential security,
people have tried to construct exponentially secure candidates of small size. Miles and
Viola [MV15] proposed an exponentially secure PRF candidate in quasi-linear size circuits
based on the substitution-permutation network paradigm. Subsequently, Boneh, Ishai, Pas-
selègue, Sahai, and Wu [BIPSW18] proposed the first exponentially secure candidate in O(n)
size based on heuristics. Constructing efficient PRFs with exponential security from well-
founded assumptions remains to be an interesting and important open problem.

Low-depth circuits. Many PRF candidates with various security levels have been constructed in
low-depth circuit classes such as NC1, TC0, and even AC0[2]. From well-founded assump-
tions such as the Decisional Diffie-Hellman, PRFs can be constructed in TC0 [NR04; NRR00].
By strengthening the assumption to sub-exponentially secure, this construction can even be
implemented in AC0[2] with quasi-polynomial security [Vio15]. This quasi-polynomial se-
curity is known to be near-optimal by the natural proof in AC0[2] [RR97]. In TC0 with small
wire complexity, Miles and Viola [MV15] presented a candidate of wire complexity n1+O(1/d)

based on the substitution-permutation network paradigm. For weak PRFs (where the adver-
sary is given a random input together with the function value), several efficient candidates
are known (see, e.g. [ABGKR14; BIPSW18; Boy+21]). We refer interested readers to Table 1
of [Boy+21] for a comprehensive survey of known results.

It might be instructive to consider our results and these works as complements of each other.
We focus on optimizing the circuit complexity as a function of the input length, while these works
try to improve the security as a function of the key length.

Circuit lower bounds. Proving circuit lower bounds for particular functions can be unexpect-
edly hard. Although most people believe that NP ⊈ P/poly, the best explicit circuit lower bounds
we can prove are 3.1n− o(n) for B2 circuits [LY21] and 5n− o(n) for U2 circuits7 [IM02]. In a more
restricted setting, we know n2−o(1) lower bound for B2-formulas [Nec66], n3−o(1) lower bound for
U2-formulas [And87; IN93; PZ93; Hås98; Tal14] and n1+Ω(2.42−d) lower bound for TC0 circuits of
depth d [IPS93]. Super-polynomial lower bounds can only be proved up to ACC0 [MW20], and
even NEXP ⊈ TC0 remains to be open (see, e.g., [Che18; CT19]). For PRFs, prior work [RR97;
KL01] only refutes the existence of pseudorandom functions in AC0, unweighted depth-2 thresh-
old circuits, and in AC0[p] with more than quasi-polynomial security for primes p. To the best of
our knowledge, there are no known impossibility results of PRF on general circuits or TC0 circuits
with large depth.

Bootstrapping results and barriers. The interpretation of our results as a barrier in circuit com-
plexity relates to the works on hardness magnification and quantified derandomization. We provide a
complete discussion of related works in Section 3.1.

1.4 Organization of the paper

We will first give some intuition on how the upper bounds and lower bounds are derived in Sec-
tion 2. Then we discuss in Section 3 how our results give tight barriers on particular bootstrapping

7In U2 circuits, gates can compute fan-in-two Boolean functions except for XOR and its complement.

10

results in circuit complexity. In Section 4, we will formally define our notations. We then give tech-
nical proofs to upper bounds for general circuits in Section 5; upper bounds for low-depth circuits
in Section 6; lower bounds for general circuits and AC0[2] circuits in Section 7; and finally, the
lower bounds for TC0 circuits in Section 8.

2 Proof Overview

We now give intuitions of our results. In Section 2.1, we will first introduce the intuition of our
PRF upper bounds. We will discuss the PRF lower bounds against B2 circuits and AC0[2] circuits
in Section 2.2, and then the lower bound against TC0 circuits in Section 2.3.

2.1 Upper bounds in various classes

Levin’s trick. Our general paradigm of proving circuit upper bounds for pseudorandom func-
tions is a generalization of the standard domain extension technique called Levin’s trick. Informally,
it states that we can construct PRFs with input length n as follows: we firstly shrink an n-bit input
x to an nε-bit hash value h(x) by a (uniformly computable) almost universal hash function, and then
feed h(x) to a PRF with inputs length nε. Let us consider B2 circuits as an example. Assume the
original PRF has circuit complexity nc, we can choose ε < 1

c so that the “pseudorandom kernel”
has complexity o(n); therefore, the complexity of the resulting PRF mainly depends on the com-
plexity of the hash function. Through this observation, we reduce the construction of efficient
PRFs to the problem of designing low-complexity almost universal hash functions with output
length nε for all ε. Similarly, efficient PRFs in low-depth circuit classes follow from low-complexity
constructions of hash functions in low-depth classes.

Efficient construction via error-correcting codes. Previously, efficient constructions of almost
universal hash functions were built upon efficient error-correcting codes. Let E : Fn

2 → Fℓ
2 be an

ECC with constant rate (i.e. ℓ = O(n)) and distance. We can construct a hash function with output
length m as the following distribution: randomly choose i1, i2, . . . , im ∈ [ℓ], generate the function

h(x) ≜ E(x)i1∥E(x)i2∥ . . . ∥E(x)im .

For any x1 ̸= x2, since E(x1) and E(x2) differ by Ω(n) indices, the collision probability of this hash
function is at most exp(−Ω(m)). By utilizing ECC constructions in corresponding classes, this
approach has been sufficient to prove O(n) PRF upper bounds in B2 and NC1 circuits (see [Spi96])
and our n1+O(ϕ−d) upper bounds in depth-d TC0 circuits (see [CT19]).

Taking the intermediate primitive out. Inspired by the constructions of efficient ECC (see, e.g.,
[GDP73; Spi96; CT19]), we observe that one can construct efficient hash functions with a much
simpler primitive, which we call 1-detector. Intuitively, a 1-detector is a linear function D : Fn

2 →
Fm

2 such that for all inputs x ̸= 0 with Hamming weight smaller than a threshold r (called the
range), D(x) is not identically zero. If we view D as a “hash function”, it guarantees that the hash
value of distinct pairs (x, y) with a small Hamming distance will not collide. In addition, assuming
that the range r is appropriately large and m is small, we can also avoid (with high probability)
the collisions between pairs (x, y) with large Hamming distance by letting the hash value to be
the concatenation of the 1-detector and a randomly selected subset of the input bits.

11

Following this observation, it is now sufficient to construct (uniformly) 1-detectors with small
circuit complexity and a nice trade-off between parameters r and m. Gelfand, Dobrushin, and
Pinsker [GDP73] showed the existence of (non-uniform) 1-detectors by the standard probabilistic
method, which cannot be directly made uniform.

Weakly uniform construction from probabilistic argument. Although the 1-detector induced
by [GDP73] (which has circuit complexity 3n) is not uniform, we can still sample a 1-detector with
a small failure probability. By an error-reduction trick, for all integer d > 0, we can construct
a probabilistic polynomial time algorithm A such that A(1n) generates a 1-detector with failure
probability at most n−d. We call such 1-detectors (and corresponding hash functions) weakly uni-
form. We generalize Levin’s trick and show that it can be adapted for weakly uniform hash func-
tions, which leads to a 3n + o(n) upper bound in B2 circuits for non-uniform PRFs. Although this
construction has a larger circuit size, it can achieve sub-exponential collision probability (rather
than quasi-polynomial for the 2n construction below); therefore, it also provides a higher security
level for the corresponding PRFs. We think this is of independent interest.

High-girth-graph based (randomized) 1-detectors. To overcome the technical limitation of [GDP73],
we can again slacken the requirement to construct hash functions by allowing the 1-detectors to be
randomized. In particular, we define a randomized 1-detector as a linear function D : Fn

2 → Fm
2 such

that for all x ̸= 0 with small Hamming weight, D(ρ(x)) ̸= 0 with high probability for a random
permutation ρ of the input bits. Randomized 1-detectors are sufficient since hash functions also
have access to randomness. Perhaps surprisingly, such primitive is uniformly constructible with
circuit complexity only 2n using graphs with large girth8.

Let G = (V, E) be a graph with n edges and m = Θ(n/ log n) vertices with girth g =
Θ(log n/ log log n) (see, e.g., [Cha03]). We now show that the depth-1 CC0[2] circuit D whose
topology is specified by the edge-vertex incident graph9 of G computes a randomized 1-detectors
with input length n, output length m, and range r = n/2.

We identify the n input bits and the m gates of D as the edges and vertices in G, respectively.
Let Sx be the set of edges in G corresponding to the 1-indices of x ∈ Fn

2 . It is called good if at
least one vertex is adjacent to odd number of edges in Sx, or equivalently, D(x) ̸= 0. In order to
prove that D is a randomized 1-detector, it suffices to show that for all x with Hamming weight
at most n/2, Sρ(x) is good with high probability given random permutation ρ of input bits. This
is equivalent to show that for all 0 < ℓ ≤ n/2, a randomly chosen subset of edges of size ℓ is
good with high probability. We prove this by considering separately the cases for ℓ < g and
g ≤ ℓ ≤ n/2.

1. In the former case, we can see that every subset of size ℓ < g is good. Towards a contradic-
tion let S be such a bad subset, the induced subgraph of S contains a Eulerian cycle of size
|S| < g, which is impossible by the high-girth property.

2. In the latter case, we claim that if all but the first ⌈g/3⌉ edges has been chosen, there is at
most one choice of the remaining ⌈g/3⌉ edges such that the resulting subset is bad: if it is
not the case, the symmetric difference of these two bad subsets is a bad subset of size at most
2⌈g/3⌉ < g (for large g), which is impossible by the former case.

8The girth of an undirected graph is the length of the smallest (simple) cycle.
9The n input variables and m (output) gates of D correspond to the n edges and m vertices of G, respectively. The

gate corresponding to a vertex u computes the parity of variables corresponding to the edges incident to u.

12

Reducing the output length. It can be easily verified that our high-girth-graph based construc-
tion yields almost universal hash functions with logarithmic shrinkage (i.e.,H1 : {0, 1}n → {0, 1}m

for m = Θ(n/ log n)) in B2 circuits of size 2n, and in CC0[2] circuits of wire complexity 2n. By com-
posing this hash function with the O(n) size PRF in [IKOS08] we can already obtain a 2n + o(n)
PRF upper bound for B2 circuits.

To obtain PRF upper bounds for low-depth classes such as NC1, TC0, or AC0[2], we still need
to reduce the output length of the CC0[2] hash function to nε for arbitrarily small ε > 0. Our plan
is to compose two hash functions with different features: the hash function H1 with logarithmic
shrinkage and low complexity; and another hash function H2 : {0, 1}m → {0, 1}nε

with poly-
nomial shrinkage and slightly super-linear wire complexity, which can be constructed in CC0[2]
using the error-correcting codes in [CT19]. The combination of these two hash functions turns
out to be a hash function with both low complexity (in NC1,AC0[2], and TC0) and large shrinkage,
which satisfies our needs.

2.2 Lower bounds in general and AC0[2] circuits

The 2n−O(1) lower bound against B2 circuits The proof of our lower bound against B2 circuits
consists of two steps. Firstly, we define a combinatorial property P about B2 circuits such that
there exists a p.p.t. algorithmA that distinguishes circuits with the propertyP and a truly random
function. Then we prove by wire counting that all circuits with complexity 2n −O(1) have the
property P , which shows our algorithm A can break PRF candidates with wire complexity 2n−
O(1).

Let C be a circuit and I be the set of input variables. For simplicity, we assume that each
variable in C has an out-degree of at least 1. We define the critical path of a variable x ∈ I in
the circuit C as the set of nodes reachable from x via nodes with out-degree exactly 1. We will
utilize the (black-box natural) combinatorial property: C contains two variables with intersecting
critical paths. For a circuit C with such property, there are x, y ∈ I and a Boolean function G,
for all restrictions ρ to I \ {x, y}, the type10 of C↾ρ(x, y) only depends on the type of G. This
structure makes the circuit distinguishable from a truly random function f because the type of f ↾ρ

is independently randomly chosen for each ρ.
Now we only need to prove a lower bound for circuits without intersecting critical paths (and

no variable of out-degree zero), which can be done via a standard wire-counting argument. In-
tuitively, the n non-intersecting critical paths should give roughly 2n out-wires at their terminals.
By analyzing the number of wires between the critical paths and the other part of the circuit, we
can show that we need about 2n gates to handle all these out-wires.

Wire-complexity lower bound against AC0[2] circuits. Using the 2n−O(1) lower bound against
B2 circuits, we can obtain a slightly stronger 2n + Ω(

√
n) wire complexity lower bound against

AC0[2] circuits using a simple case analysis. Assume that we want to break a PRF candidate in
AC0[2] with low wire complexity, say 2n + 0.1

√
n. If there are at least 0.2

√
n gates in the circuit,

we can translate it into a B2 circuit of size 2n − 0.1
√

n and then break it with our distinguisher
for B2 circuits. Otherwise, it has only 0.2

√
n gates. By considering the number of input variables

with in-degree 1, 2, and ≥ 3, we can show that there exists a pair (x, y) of variables, such that

10We can classify Boolean functions in F2
2 → F2 into four types: trivial functions that output a constant, degenerate

functions that depends on only one of its input, ⊕-type functions that are linear over F2 and ∧-type functions that are
quadratic.

13

swapping them does not deviate from the functionality of the circuit. This property can be used
to distinguish it from a truly random function.

2.3 Lower bounds in TC0 circuits

Our PRF lower bound against TC0 circuits follows the random restriction method in [CSS18],
which has been a standard tool to analyze small-size TC0 circuits (see, e.g., [Tel18; HHTT21]). Their
main observation is that after a random restriction ρ and a cleverly chosen restriction σ (based on
the former random restriction and the circuit), with a nice probability, we can eliminate an entire
layer of linear threshold gates while keeping a moderately large fraction of variables alive. This
procedure is done by considering the variables and gates with different degrees separately and
analyzing the effect of the random restriction on them.

Large variables. For variables with large out-degrees, we arbitrarily fix them to a constant in the
restriction σ. There will not be many such variables since each of them contributes lots of
wires.

Small variables and small gates. Since variables with large out-degrees have already been re-
moved from the circuit, we can assume that all variables have out-degrees not too large.
In this case, we can choose a large subset of variables by a graph-theoretic argument, such
that each gate of small in-degree is fed by at most one chosen variable. Then by fixing other
variables in the restriction σ, we can make all these small gates depend on only one of its
inputs, hence can be eliminated.

Small variables and large gates. Now only small variables and large gates remain. We argue that
each gate has a nice probability of being extremely biased after the restriction ρ by anti-
concentration bounds. We can hence approximate these biased gates by constants. Since
only a few unbiased gates remain in expectation, we can remove them by fixing all their
inputs in σ.

What [CSS18] argued is that we can carefully choose the parameters such that after the above
three processes, there are still sufficiently many (say n0.99) variables unfixed. The starting point of
our argument is that the process above can be intuitively abstracted as follows.

Suppose that the variable set is I. We firstly take a random restriction to all variables. Let I′

denote the variables kept alive by the random restriction. With nice probability, a large subset
S ⊆ I′ exists such that randomly fixing all variables not in S would make it possible for us
with high probability to eliminate an entire layer of gates and obtain a new circuit that agrees
with the original circuit on most of the assignments to the unfixed variables.

The main technical difficulty in proving our PRF lower bound is to extract a black-box natural
property from this white-box argument. If we do not need to choose such S according to the circuit,
we can trivialize any depth-d TC0 circuit by repeating the process above for d times. The key to
resolving this issue is to define another distinguishing procedure whose correctness is ensured by
the restriction lemma. We define an input x to be good w.r.t. a TC0 circuit C if flipping a bit of
x would not change the output of C. If each sparse TC0 circuit of depth d has a large fraction of
good inputs, we can also argue according to the restriction lemma that each TC0 circuit of depth
d + 1 has a large fraction of good inputs. By induction, we can conclude as follows.

Let C be any sparse TC0 circuit. For a uniformly random input x and an input y obtained by
flipping a random bit of x, C(x) = C(y) with non-negligible probability.

14

This property itself does not suffice to break PRF candidates in sparse TC0 because a truly
random function f also has a large fraction of good inputs (for any x ̸= y, f (x) = f (y) with
probability 1/2). To deal with this issue, we transform the PRF candidate F that we want to
break into a PRF F′ with output length log2 n by expanding the last 2 log log n input bits, which
would not increase its circuit complexity significantly. It is easy to verify that the property above
still holds for multi-output functions. For truly random function, however, the probability that
f (x) = f (y) for x ̸= y reduces to 2− log2 n. This difference makes it possible to distinguish F′ (and
therefore F) from a truly random function.

3 A new barrier for bootstrapping results in circuit complexity

We now formally discuss the relationship between our exact complexity results and the boot-
strapping results in circuit complexity. In Section 3.1, we briefly introduce recent bootstrapping
results and known barriers. We discuss why the natural proof barrier [RR97] fails to capture the
limitations of these bootstrapping results in Section 3.3. Then we introduce our black-box natural
proof barrier in Section 3.4 and demonstrate how it captures the technical limitation of some recent
bootstrapping results in [OPS19; CT19; CJW20] with “sharp thresholds” in Section 3.5.

3.1 Background: bootstrapping results in circuit complexity

A sequence of recent works in circuit complexity (see, e.g., [AK10; GW14; OS18; Tel18; OPS19;
CT19; MMW19; CJW19; Che+20; CJW20]) revealed a mysterious phenomenon that a modest im-
provement over known circuit lower bounds or related problems may lead to a massive break-
through in complexity theory. We briefly summarize the bootstrapping results in hardness magni-
fication and quantified derandomization to gain more intuition.

Hardness magnification. Hardness magnification refers to the phenomenon that a relatively weak
lower bound for some particular problems would imply a strong complexity class separation. Al-
lender and Koucký [AK10] showed the existence of an NC1-complete problem whose n1+ε lower
bound against TC0 circuits would lead to the separation of NC1 and TC0. It was then strengthened
and generalized to many meta-complexity problems in [OS18; OPS19]. Most interestingly, [OPS19]
showed that a weak lower bound for Gap-MCSP or Gap-MKtP11 would lead to breakthroughs like
NP ⊈ NC1 or EXP ⊈ P/poly. McKay, Murray, and Williams [MMW19] proved that the similar
magnification phenomenon holds from weak worst-case lower bounds of MCSP or MKtP using
new techniques. The range of problems whose lower bounds admit such magnification is further
extended by [CJW19] to all sparse NP languages, once again by a different approach. Using a
derandomized restriction lemma, Chen, Jin, and Williams [CJW20] complemented the magnifi-
cation result under the setting of probabilistic U2-formulas by showing an MCSP lower bound,
which nearly matches the hardness magnification threshold. Chen et al. [Che+20] gave a good
survey on these results; they pointed out that in many settings, the current results can be viewed
as a sharp frontier, in the sense that slight improvements to known lower bounds could imply big
breakthroughs.

These hardness magnification results are typically proved by contrapositive. For instance,
if we want to show that n1+ε lower bound for Gap-MCSP of particular parameters can imply

11Gap-MCSP[s1(n), s2(n)] is the promise problem of MCSP where the given input has circuit complexity either greater
than s2(n) or less than s1(n). Gap-MKtP is similarly defined for MKtP

15

NP ⊈ P/poly [OPS19], we cleverly construct a language L which is computable by polynomial-
size circuits assuming NP ⊆ P/poly, and show that any n-bit instance of Gap-MCSP with the pa-
rameters can be reduced to an nε-bit instance of L. If the reduction is super-efficient (say in n1+ε-
size circuits), and ε is arbitrarily small, then we can conclude with a small-size circuit computing
Gap-MCSP. The most pivotal point in this argument is the reduction, which is done by error-
correcting codes [OS18; OPS19], universal hash functions [CJW19; CJW20], or tree-like structures
of particular problems [AK10; MMW19].

Quantified derandomization. Quantified derandomization is the task to derandomize probabilis-
tic algorithms with extremely small error probabilities (say 2n0.1−n). Formally, given a C-circuit
C which either accepts all but B(n) inputs or rejects all but B(n) inputs (say B(n) = 2n0.1

), we
need to design a deterministic algorithm to distinguish these two cases. Goldreich and Wigderson
[GW14] first introduced this problem and revealed a surprising fact that solving the quantified
derandomization for small B(n) could imply the standard derandomization for AC0[2] circuits.
This is a bootstrapping phenomenon on the error probability of derandomization problems. Re-
cent follow-up works [Tel18; CT19; CJW20] showed that this problem admits another interesting
bootstrapping on the size of the circuit to be derandomized, which is similar to hardness mag-
nification. These bootstrapping results on size lead to sharp phenomena in many natural classes
such as TC0 [CT19] and probabilistic formulas [CJW20]. We mainly focus on this dimension of
bootstrapping in this paper.

We briefly illustrate the results in [CJW20] as an example. They showed that quantified deran-
domization of n1.9 size probabilistic U2-formulas with B(n) = 2n0.01

is solvable while improving the
constant 1.9 to 2 with the same B(n) would imply standard derandomization for all polynomial-
size probabilistic U2 formulas.

Typically, known quantified derandomization algorithms on the tractable side generally fol-
low from derandomizing the standard random restriction methods. For instance, the quantified
derandomization algorithm for AC0 in [GW14] comes from derandomizing the switching lemma
of [Hås86], and the one for TC0 in [Tel18] comes from derandomizing a random restriction lemma
in [CSS18]. On the other hand, the bootstrapping side is usually done by an error-reduction trick
using Trevisan’s extractor [Tre01; RRV02], which is essentially a clever sampling over an error-
correcting code. The bootstrapping phenomena can be proved in many classes such as AC0[2]
circuits and TC0

d circuits of size n1+O(ϕd) by constructing error-correcting codes in corresponding
classes. We refer interested readers to the survey by Tell [Tel21] for a comprehensive discussion of
quantified derandomization.

3.2 Known barriers for bootstrapping results

Apart from the obvious view that these bootstrapping results shed new light towards resolving
longstanding open problems, some researchers hold a more pessimistic view that the results sug-
gest the inherent difficulty to prove the bootstrapping premise. In order to consolidate the pes-
simistic view, it is helpful to investigate why current techniques cannot be improved to obtain
breakthroughs. In particular, a few barriers12 have been introduced for hardness magnification

12Note that different from the well-known natural proof barrier [RR97] that only captures the limitation of lower
bound techniques, a barrier for bootstrapping phenomena says that the bootstrapping theorems (from certain kinds of
techniques) cannot be combined with explicit lower bounds or quantified derandomization (from certain kinds of tech-
niques) to obtain a breakthrough. Therefore it should contain two sides: a bootstrapping side that captures the techniques
for proving bootstrapping results, and a tractable side that captures the lower bound (or quantified derandomization)

16

and quantified derandomization separately.

• For hardness magnification, the locality barrier [Che+20] captured the conflicts between lower
bound techniques and magnification techniques. The observation is as follows. On the boot-
strapping side, known techniques usually imply an unconditional oracle circuit upper bound,
which says that the problem for magnification can be computed by small-size oracle circuits
with only few oracle gates of small fan-in. On the tractable lower bound side, it is known that an
extensive range of lower bound techniques can be extended to prove lower bounds against
oracle circuits with few oracle gates with small fan-in. Since the unconditional upper and
lower bounds cannot conflict with each other, the magnification threshold cannot be made
smaller than provable lower bounds using these two kinds of techniques.

• For quantified derandomization, Tell [Tel17; Tel21] showed that two natural “black-box”
techniques for quantified derandomization, random restriction (used to design quantified
derandomization algorithms) and error-reduction by extractors (used to prove bootstrap-
ping results), cannot be combined together to derive a standard derandomization algorithm.
The intuition of this barrier is that the output bits of an extractor cannot be easily trivialized
with random restrictions; therefore any circuit class that can compute extractors should not
have a simple restriction lemma for us to design quantified derandomization algorithms.13

In the remaining part of this section, we will demonstrate a new barrier, which is inspired by
both the natural proof barrier [RR97] and our investigation in the complexity of PRFs, that ap-
plies to hardness magnification, quantified derandomization, and potentially other bootstrapping
results with similar structures. The new barrier, which we call the black-box natural proof barrier, ex-
plains the limitation of the bootstrapping results by showing that the improvements of the known
lower bounds (or quantified derandomization algorithms) and the bootstrapping premises con-
tradict each other as long as we stick to certain kinds of techniques related to the complexity of
PRFs. Our barrier provides a unified view on all these bootstrapping results and is arguably more
general than that of Chen et al. [Che+20] and Tell [Tel17].

3.3 Natural proof barrier and its limitation

Let us first review the natural proof framework by Razborov and Rudich [RR97]. Let Γ and Λ be
typical complexity classes, and Bn ≜ {0, 1}n → {0, 1} be the set of all n-bit Boolean functions. A
combinatorial property P = {Pn ⊆ Bn}n≥1 over functions of input lengths n is Γ-natural against Λ
if the following conditions holds.

(Constructivity) Given the truth table of a function fn ∈ Bn as input (note that the input length is
2n), the language indicating whether fn is in Cn is decidable in Γ.

(Smallness) There exists a constant c > 0 such that, for sufficiently large n, let gn ∈ Bn be a
uniformly random function from all possible functions, we have Pr[gn ∈ Cn] ≤ 1− 2−cn.

(Usefulness) For any language L = {Ln}n≥1 ∈ Λ, Ln ∈ Pn for infinitely many n.

techniques.
13We clarify that Tell’s barrier mainly considers the bootstrapping of the parameter B(n) for quantified derandom-

ization (see, e.g., [Tel21]), while our barrier focuses on the bootstrapping of circuit size. To the best of our knowledge,
our barrier and Tell’s barrier are technically incomparable.

17

As the name indicates, natural proof models the most natural way to prove explicit circuit
lower bounds. Indeed, a large range of known techniques for proving unconditional circuit lower
bounds fall into this region. What Razborov and Rudich [RR97] observed is that a natural proof
induces an algorithm in Γ that distinguishes any function family in Λ from truly random func-
tions given the truth tables. Hence assuming the existence of exponentially hard PRFs against
Γ computable in Λ, such combinatorial properties do not exist. For a typical setting such as
Γ = Λ = P/poly, the existence of the desired PRF follows from the existence of exponentially
hard PRG via [GGM84].

The natural proof paradigm successfully explains why proving super-polynomial circuit lower
bounds is hard. By proposing candidates of exponentially-secure PRFs in low-complexity classes,
we can even rule out natural proofs for lower bounds against TC0

d circuits with n1+O(1/d) wires and
Õ(n)-size general circuits14 assuming stronger cryptographic assumptions (see, e.g., [MV15]). This
has already been sufficient to show the limitation of some bootstrapping results requiring explicit
lower bounds against n1+ε-size general circuits or TC0 circuits.15 However, it cannot capture many
interesting bootstrapping results requiring only mild lower bounds due to our limited knowledge
about the complexity of exponentially-secure PRFs.

Take the bootstrapping of quantified derandomization in [Tel18; CT19; Tel21] as an exam-
ple. Their results roughly say that quantified derandomization for TC0

d circuits of n1+60−d
wires

with B(n) = 2n1−1.61−d
can be solved efficiently, while improving the constant 60 to 1.61 would

imply big breakthroughs such as NEXP ⊈ TC0. In order to put a barrier on this bootstrapping
result, the idea is to refute the existence of natural properties against n1+1.61−d

size TC0
d circuits,

so that improving the known quantified derandomization algorithm using natural proofs would
be impossible. To do this, we need to propose candidates of exponentially hard PRFs in TC0

d cir-
cuits of size n1+1.61−d

, which seems quite hard (recall that the best known candidate in TC0 has
n1+O(1/d) wires [MV15]). In general, the bootstrapping thresholds are usually determined by the
complexity of certain combinatorial primitives which support the magnification arguments (e.g.,
error-correcting codes, universal hash functions, or seeded extractors). In most cases, we do not
know plausible candidates of exponentially strong PRFs with such small complexity.

3.4 A new barrier: black-box natural proof

We want to show that one cannot improve the bootstrapping thresholds and the tractable lower
bounds to obtain a breakthrough with some typical techniques. Our plan is to refine the natural
proof barrier (which only has the tractable side) by restricting the concept of natural properties, so
that the PRFs required for the barrier can be constructed from the techniques of the bootstrapping side.

On the tractable side, we can argue that some techniques for circuit lower bounds and quan-
tified derandomization, such as the switching lemma of AC0 [Hås86] and the shrinkage exponent
of U2-formulas [IN93; PZ93; Hås98; Tal14], actually imply PRF distinguishers that are much more
efficient than the requirements of natural proofs. Take the random restriction method as an ex-
ample. If we can show that certain circuits become constants under random restrictions with nice
probability, we can distinguish them from truly random functions by simulating the restriction
procedure and checking whether the resulting function is constant. So it is sufficient to use stan-

14Recall that Õ notation hides the poly-logarithmic factors, i.e., Õ(T(n)) ≜ T(n) logO(1) T(n).
15Here the natural proof barrier is interpreted as a barrier for bootstrapping results with only the tractable side:

instead of saying that the bootstrapping and lower bound techniques contradict with each other, it shows that the
lower bound itself is hard to prove.

18

dard cryptographic PRFs to refute the existence of such proofs, which can be constructed in weak
classes like 2n + o(n) size general circuits, n1.01 size B2 formulas or depth-d threshold circuits of
size n1+O(c−d) by our upper bounds.

On the bootstrapping side, we can see that most recent works on hardness magnification
[OPS19; CJW19; CJW20] and quantified derandomization [CT19; CJW20] explicitly utilize com-
binatorial primitives such as error-correcting codes, universal hash functions, and seeded extrac-
tors16. In fact, the bootstrapping thresholds in these works tightly match the complexity of these
primitives in corresponding circuit classes. According to Levin’s trick (see Lemma 4.11) and our
construction of almost universal hash functions from error-correcting codes (see Proposition 4.8),
these primitives can be used to construct standard cryptographic PRFs with almost the same com-
plexity.

Intuitively, these two observations explain the difficulty of obtaining a breakthrough via the
bootstrapping results. Improving the bootstrapping thresholds using many techniques mentioned
before requires more efficient combinatorial primitives, which can be used to obtain tighter PRF
upper bounds. Improving the tractable results with specific techniques like random restrictions
would imply PRF distinguishers and therefore give stronger PRF lower bounds. If we obtain a
breakthrough by matching the thresholds and the tractable bounds, we will refute the existence of
PRFs in that circuit class simultaneously17, which is believed to be impossible.

Now we formally state the black-box natural proof barrier in a form similar to natural proofs.
Let Λ be a typical circuit class (e.g., general circuits of size 2.01n). We call a combinatorial property
P = {Pn}n≥1 black-box natural against Λ if it satisfies the following properties.

(Black-box constructivity) There exists an oracle probabilistic polynomial time algorithmAO such
that the following conditions hold.

• For any fn ∈ Pn, we have PrA
[
A fn(1n) = 1

]
≥ 2/3.

• For uniformly random function gn, we have Prgn,A [Agn(1n) = 1] ≤ 1/3.

(Usefulness) For any language L = {Ln}n≥1 ∈ Λ, Ln ∈ Pn for infinitely many n.

The usefulness in the above definition is completely the same as the one in the original natural
proof. We also note that smallness is not explicitly stated here because it is implied by our defini-
tion of black-box constructivity. The probability thresholds δ1 = 2/3 and δ2 = 1/3 in black-box
constructivity are taken for simplicity of presentation and can be arbitrary functions of n with a
non-negligible gap. We also emphasize that we can extend the definition of black-box constructiv-
ity by allowing algorithmA to run in quasi-polynomial or even sub-exponential time if PRFs with
stronger security can be constructed (recall the discussion in Section 1.1). Similar impossibility
results still hold for typical classes that can compute sub-exponentially strong PRFs. We stick to
the standard setting (i.e., p.p.t. adversary) here mainly for simplicity.

16Note that typical constructions of seeded extractors coming from the hardness vs. randomness paradigm [Tre01;
RRV02] are essentially cleverly chosen projections over error-correcting codes.

17Note that this argument has a small loophole. Assume that we can construct an ECC with circuit complexity
s(n), then the corresponding PRF upper bound should be slightly larger than s(n) (e.g. sprf (n) = s(n) + n0.01). If the
bootstrapping threshold could be made closer (e.g. sth(n) = s(n) + O(log n)), it is possible to obtain a breakthrough
with a black-box natural property against circuits of size sth(n), while keeping consistent with the existence of PRFs
since sth(n) > sprf (n). Arguably, this loophole does not reduce the strength of our barrier since it is not so likely that the
bootstrapping threshold sth(n) can be made such close to s(n). In hardness magnification results, for example, realizing
the oracle gates with actual circuits could introduce an overhead which can be larger than the complexity we need to
build PRFs from ECCs.

19

Tractable side. With the definition of the black-box natural property, the tractable side of our
barrier is indeed a straightforward refinement of the standard natural proof barrier by replacing
the exponentially-secure PRF with a polynomially-secure PRF.

Proposition 3.1 (The tractable side of black-box natural proof barrier). Let C be a circuit class. If
standard cryptographic PRFs can be constructed by s(n)-size C-circuits, then there is no black-box
natural property against s(n)-size C-circuits. ♢

Since we can obtain tight upper bounds for PRFs in various circuit classes, the tractable side
itself can be considered as an individual barrier for circuit lower bound techniques in spite of
being less general than the natural proof barrier. We provide some examples with the PRF upper
bounds in Theorem 1.1 and lower bounds in Theorem 1.2 to demonstrate the tractable side of the
black-box natural proof barrier.

• Our PRF in B2 circuits shows that black-box natural properties against SIZE[2n + o(n)] do
not exist, assuming PRFs exist, which directly follow from the existence of one-way functions
[GGM84; HILL99]. We note that Theorem 1.2 (also see Lemma 7.4), in fact, gives a black-box
natural property against SIZE[2n−O(1)]. One may check that known better-than-2n explicit
circuit lower bounds [Sto77; Pau77; Blu84; DK11; FGHK16; LY21], proved by gate elimination,
highly rely on a non-black-box procedure that eliminates all gates by introducing constraints
to input bits cleverly according to the circuit.

• Our PRFs in NC1 circuits show that black-box natural properties against (1 + ε) log n depth
circuits do not exist, assuming NC1 PRFs exist. From the general connections between NC1

and formula complexity, this means that black-box natural properties against n1+ε size B2-
formulas or n2+ε U2-formulas do not exist for arbitrarily small ε > 0. We note that the
quadratic lower bound for B2-formulas [Nec66] and the cubic lower bounds for U2-formulas
[And87; IN93; PZ93; Hås98; Tal14] are natural in the sense of [RR97], but does not seem to be
black-box natural because they utilize non-constructive counting arguments on particular
functions [Nec66; And87]. However, we still note that these arguments essentially follow
from the shrinkage exponent of the formula classes, which are black-box natural against
probabilistic B2-formulas of size n1+ε or probabilistic U2-formulas of size n2+ε.

• Our PRFs in TC0 circuits show that black-box natural properties against depth-d TC0 circuits
of n1+O(ϕ−d) wire complexity do not exist, assuming TC0 PRFs exist. On the other hand, the
main lemma for our TC0 PRF lower bound (see Lemma 8.3), whose variants are also used by
[CSS18; Tel18; HHTT21], can be viewed as a black-box natural property against TC0 circuits
of wire complexity n1+Ω(c−d).

Bootstrapping side. The bootstrapping side of our barrier captures the techniques for bootstrap-
ping results whose bootstrapping thresholds depend mostly on the complexity of error-correcting
codes or (almost universal) hash functions. The following proposition is a simple consequence
of Levin’s trick (see Lemma 4.11) and the construction of almost universal hash functions from
error-correcting codes (see Proposition 4.8).

Proposition 3.2 (The bootstrapping side of black-box natural proof barrier). Suppose that C is a
circuit class that can compute standard cryptographic PRFs in polynomial size. If error-correcting
codes with constant relative distance or almost universal hash functions with output length nε for
arbitrarily small ε > 0 are computable with s(n) size C-circuits, then PRFs are computable with
C-circuits of size s(n) + nδ, where δ > 0 is an arbitrarily small constant. ♢

20

The bootstrapping side of our barrier says that if one want to improve the bootstrapping result
by constructing more efficient ECCs or hash functions, it will reduce the complexity of PRFs at the
same time, which makes it harder to prove explicit lower bounds according to the tractable side.
Note that most of the known techniques for bootstrapping results (see, e.g., [GW14; OS18; OPS19;
CT19; CJW19; CJW20]) are indeed captured by the bootstrapping side of our barrier.

By combining the tractable side and the bootstrapping side, we can finally introduce the black-
box natural proof barrier for bootstrapping results.

Theorem 3.3 (Black-box natural proof barrier). Let C be a circuit class that can compute PRFs in
polynomial size. Suppose that we have the following two results.

(Bootstrapping side) A bootstrapping result with bootstrapping threshold sth(n) that, as a byprod-
uct, shows that error-correcting codes with constant relative distance or almost universal
hash functions with output length nε for arbitrarily small ε > 0 can be computable by C-
circuits of size sth(n)− nΩ(1).

(Tractable side) An explicit result (e.g., lower bounds or quantified derandomization) for str(n)-
size C-circuits that relies on a black-box natural property of str(n)-size C-circuits.

Then sth(n) > str(n), i.e., these two results cannot be combined to obtain a breakthrough. ♢

3.5 Concrete examples of the black-box natural proof barrier

From the discussion above it is clear that the concept of the black-box natural property is less
general than the natural property because several practical techniques (e.g., AC0[2] lower bound
from polynomial method [Raz87; Smo87] and Andreev’s function lower bounds from shrinkage
exponent [And87; Hås98; Tal14]) do not induce such efficient PRF distinguishers.

This section discusses the strength of the black-box natural proof barrier by showing that most
of the bootstrapping results with “sharp thresholds” [OPS19; CT19; CJW20] can be captured by it.
Our barrier provides formal evidence that current techniques for the sharp threshold results are
not likely to be simply improved in both the bootstrapping sides and the tractable sides to obtain
the desired breakthroughs.

3.5.1 Chen-Jin-Williams’s sharp threshold result on hardness magnification

A recent work of Chen, Jin, and Williams [CJW20] showed that probabilistic U2-formulas admit
sharp bootstrapping phenomena on hardness magnification, quantified derandomization, and ex-
plicit obstruction. We will focus on the hardness magnification results here, but similar arguments
hold for the other two.

A probabilistic U2-formula is a distribution F on U2-formulas; and it is said to compute a
function h if Pr f←F [f (x) = h(x)] ≥ 2/3 for all x. Chen, Jin, and Williams [CJW20] observed that
MCSP with certain parameters does not have n2−o(1) size probabilistic U2-formulas, while improv-
ing the lower bound to n2+ε for any ε > 0 would imply NP ⊈ Formula[nk] for all k. This result is
quite surprising, given the fact that there exists some explicit function that n3−o(1) lower bounds
for probabilistic U2-formulas are known, which follows from the average-case lower bounds in
[KRT17; CKLM20].

Now we demonstrate how our barrier applies to this hardness magnification result. We con-
sider both techniques used by the bootstrapping side and the tractable side of the result.

21

Bootstrapping side. The magnification part of Chen, Jin, and Williams [CJW20] comes from the
kernelization method in [CJW19]. It utilizes an efficient universal hash function with a short
seed length. Concisely speaking, they argue that to probabilistically decide a sparse lan-
guage18 like MCSP (with certain parameters), one can hash down the input and query an NP-
oracle whether the hash value (together with the seed) covers a YES-instance. By choosing a
sufficiently good hash function, we can guarantee at most one YES-instance corresponding
to each hash value. By encoding the instance with an error-correcting code, we can prob-
abilisticall check whether the current input is the YES-instance. Choosing the parameters
cleverly, we can realize the NP-oracle with complexity n0.01, assuming NP ⊆ Formula[nk] for
some k. In such case, the dominating part of the magnification threshold is determined by
the hash function.

Tractable side. The n2−o(1) lower bound for MCSP against probabilistic U2-formulas in [CJW20]
is proved by a derandomized version of shrinkage theorem for U2-formulas [Hås98; Tal14],
following the iterated pseudorandom restriction method [IMZ19; HS17; OPS19]. Take the
shrinkage theorem of Tal [Tal14] as an example. It said that for all p > 0 and function f with
U2-formula complexity L, if we apply a random restriction ρ ← Rp, the expected formula
complexity of f ↾ρ is O(p2L+ p

√
L). This property is black-box natural because we can easily

simulate the restriction process with p = no(1)−1 and check whether the function shrinks to
a constant to distinguish small size U2-formulas from truly random functions.

Since the two sides of the magnification results imply the upper and lower bounds for PRFs
in U2-formulas, respectively, the gap between them cannot be closed unless there is no PRF in
NC1. To obtain a breakthrough from this bootstrapping result, one needs to either introduce a new
bootstrapping method that avoids the usage of hash functions or prove a stronger circuit lower
bound for MCSP with non-black-box techniques.

3.5.2 Chen-Tell’s result on quantified derandomization

Another recent sharp threshold result due to Chen and Tell [CT19] is about quantified derandom-
ization of TC0

d circuits. They showed that there exists some constant c > 30 such that quantified
derandomization for moderately large B(n) is possible for TC0 circuits of size n1+O(c−d), and im-
proving the constant c to 1.61 would imply standard derandomization for all polynomial-size TC0

circuits. Again, we consider both the bootstrapping and the tractable sides of their result.

Bootstrapping side. The bootstrapping result of Chen and Tell [CT19] follows the usual paradigm
of error-reduction by extractors. The idea was first introduced by Goldreich and Wigder-
son [GW14] and is essentially the only way of proving bootstrapping results for quantified
derandomization. Following this proof, the key ingredient is an efficient seeded extractor
constructed using error-correcting codes and Trevisan’s extractor [Tre01; RRV02]. Here the
complexity of the error-correcting code is the only bottleneck throughout the construction,
and indeed the main technical contribution of [CT19] is an extremely efficient construction
of error-correcting codes in TC019. Following our general framework of proving PRF up-

18Sparse languages are those that have only a tiny amount of YES-instances (e.g., only 2nε
YES-instances for input

lenght n). Note that a simple counting argument can show the sparsity of MCSP-like problems.
19The original construction of ECC in [CT19] is linear, so that its complexity is limited by the parity lower bound

[IPS93]. They proposed an open problem to improve their construction with a non-linear ECC. We resolve this prob-
lem by showing that even non-linear ECC cannot be used to improve this upper bound. In fact, we can derive an
unconditional lower bound for error-correcting codes from the hash function lower bound (see Theorem 8.5)

22

per bounds (see Section 2.1 and 4.5), any improvement of the error-correcting code can be
translated to a corresponding PRF upper bound.

Tractable side. This part follows from a pseudorandom restriction lemma for linear threshold
functions [Tel18], which is essentially the derandomized version of Lemma 8.3 (also see
[CSS18]). Although this restriction lemma seems to be a white-box procedure, we can ex-
tract a black-box natural property by Lemma 8.4 and Theorem 8.1, and therefore derive a
polynomial-time PRF distinguisher against TC0

d circuits of size n1+O(c−d
1). This hints that a

simple improvement of the quantified derandomization algorithm following current tech-
niques would imply a stronger PRF lower bound at the same time.

Assume that PRFs can be constructed in TC0 (following from standard cryptographic assump-
tions such as DDH, factoring, and ring learning-with-errors). Simple improvement of both sides
of the result cannot lead to a breakthrough. A potential way to cross our barrier is to introduce an
inherently non-black-box technique for quantified derandomization of TC0, which can possibly
work for larger TC0 circuits.

3.5.3 Oliveira-Pich-Santhanam’s hardness magnification results for MKtP

The last one we will discuss is the hardness magnification results of Oliveira, Pich, and Santhanam
[OPS19]. This is an example of sharp threshold magnification that cannot be perfectly captured
by our black-box natural proof barrier, but we can still gain some insights when viewing it in
this way. Oliveira, Pich, and Santhanam [OPS19] investigated the sharp hardness magnification
phenomena in different circuit classes for the approximate version of MKtP. Interestingly, they
also gave explicit circuit lower bounds against MKtP with different parameters that tightly match
the magnification threshold.

We focus on their magnification result for U2-formulas. Following the notation of [OPS19], let
Gap-MKtP[s1(n), s2(n)] be the promise problem to distinguish length-n strings with Kt complexity
smaller than s1(n) with those with Kt complexity larger than s2(n).

Bootstrapping side. The magnification theorem says that for a universal constant c, if there exists
an ε > 0 such that for arbitrarily small β > 0, Gap-MKtP[nβ, nβ + c log n] cannot be computed
by U2-formulas of size n3+ε, then EXP ⊈ NC1. Their main observation is the following
random compression procedure. Let E be an error-correcting code. Given a string x of length
n with low (resp. high) Kt complexity, the string obtained by randomly selecting m = nβ

indices of E(x) will have relatively low (resp. high) complexity. This compression procedure
immediately gives a randomized reduction from Gap-MKtP to the following intermediate
language

L = {(a, 1b, (i1, α1), . . . , (ir, αr)) | ∃|x| = a,Kt(x) ≤ b ∧ ∀j, xij = αj}.

Assuming that EXP ⊆ NC1, we can then construct a (one-sided error) probabilistic U2-
formula computing Gap-MKtP of size roughly n2+β (for each of the m = nβ selected indices,
we need to compute a parity of n variables). Finally, we can derandomize the probabilistic
formula by O(n) parallel repetition to obtain a (deterministic) U2-formula of size roughly
n3+β computing Gap-MCSP.

Tractable side. Oliveira, Pich, and Santhanam [OPS19] also give a matching n3−o(1) U2-formula
lower bound against Gap-MKtP with different parameters. The idea is quite simple: if Gap-MKtP

23

with appropriate parameters can be decided by n3−o(1)-size U2-formulas, we can distinguish
strings of low Kt complexity with truly random strings, which will break the (unconditional)
pseudorandom generator of Impagliazzo, Meka, and Zuckerman [IMZ19]. We note that the
pseudorandom generator in [IMZ19] essentially follows from the shrinkage exponent of U2
formulas [Hås98; Tal14].

To improve the magnification threshold, one can construct a more efficient ECC or utilize a better
derandomization method. Our black-box natural proof barrier limits the former approach since
we can prove PRF lower bound against probabilistic U2-formulas of size n2−o(1). The latter does
not seem to be directly limited by our barrier, though some evidence shows that derandomization
requires this n overhead [CT21]. In order to improve the tractable lower bound, the most straight-
forward way is to introduce a better (i.e., low Kt complexity) pseudorandom generator against
U2-formulas, which does not necessarily prove a better PRF lower bound. Still, the current proof
follows from an n2−o(1) probabilistic U2 formula lower bound, which is black-box natural, so at
least we can say that this part cannot be improved.

4 Preliminaries

Throughout this paper, we define [n] ≜ {1, 2, . . . , n}, Bn ≜ Fn
2 → F2 as the set of single-output

Boolean functions with n inputs, and Bn,m ≜ Fn
2 → Fm

2 as the set of m-output Boolean functions
with n inputs. We represent Boolean AND function with ∧ and Boolean XOR function with ⊕. For
binary strings x and y of length n, the Hamming weight |x| is defined as the number of 1-entries
in x, and the Hamming distance ∆(x, y) ≜ |x⊕ y| is defined as the Hamming weight of point-wise
XOR of x and y. The relative distance ∆r(x, y) is defined as ∆(x, y)/n. We use x∥y to denote the
concatenation of two bit strings x and y.

All the graphs G = (V, E) are undirected in default. A cycle in a graph G is a subset of vertices
{v0, v1, . . . , vℓ−1} such that there is an edge between vi and v(i+1) mod ℓ for all 0 ≤ i < ℓ. We follow
standard notations for probability and expectation, where x ← D represents that x is a random
variable sampled according to the distribution D. In particular, for any finite set S, x ← S means
that x is the random variable sampled according to uniform distribution supported on S.

Without further clarification, pseudorandom functions are meant to be secure against uniform
probabilistic polynomial time (p.p.t. for short) adversary.

4.1 Circuit classes

4.1.1 B2 circuits

A Boolean circuit (or B2 circuit) is a directed acyclic graph where each vertex is either a variable of
in-degree 0 or a gate of in-degree 2. Each variable is labeled with an index identifying its corre-
sponding input bit, and each gate has a corresponding Boolean function out of B2. One or more
nodes are marked as output nodes, each of which is labeled with a set of indices identifying the
corresponding output bits20. During the evaluation, we decide the output of each gate according
to its corresponding function in topological order. We say a circuit C computes a function f ∈ Bn,m
if C contains exactly n variables and m output nodes, and it agrees with f on all inputs in Fn

2 .
According to the functionality, we can classify the 16 gates out of B2 into four types: trivial

gates that compute constant functions (i.e., f (x, y) = c1); degenerate gates that only depend on one

20That is, a node can have more than one corresponding output bits.

24

of their inputs (i.e., f (x, y) = x⊕ c1 or f (x, y) = y⊕ c2); ⊕-type gates that compute linear functions
(i.e., f (x, y) = x⊕ y⊕ c); and ∧-type gates that compute quadratic functions (i.e., f (x, y) = ((x⊕
c1) ∧ (y ⊕ c2)) ⊕ c3). It is easy to see that an optimal circuit computing any function f does not
contain trivial and degenerate gates since we can always remove them and properly rewire the
circuit while keeping the functionality of the circuit.

The size of a circuit is defined as the number of gates involved; and the depth of a circuit is
defined as the number of edges in the longest path of the graph.

4.1.2 Low-depth circuit classes

In this work, we consider several circuit classes with structural restrictions.

NC1 circuits. An NC1
d circuit is a B2 circuit with depth at most d log n. We will simply call it an

NC1 circuit if we do not care about the exact value of the constant d. The size and depth of
an NC1 circuit are defined similarly to the B2 circuits.

B2-formulas. A B2-formula is a single-output B2 circuit whose topology is a tree rooted as the
output node. The leaves of a B2 circuit are input variables. The size of a B2-formula is
defined as the number of leaves in the tree. It is well-known that the class of polynomial-
size B2 circuits is equivalent to NC1.

U2-formulas. A U2-formula is a B2-formula which does not contain ⊕-type gates. The classes
of polynomial size U2-formulas and B2-formulas are equivalent, but the B2 and U2 for-
mula complexity of concrete problems could be different. For instance, the parity function⊕

n(x1, . . . , xn) ≜ x1 ⊕ · · · ⊕ xn can be computed by B2-formulas of size n, but requires U2-
formulas of size n2−o(1) [Hås98; Tal14].

AC0[2] circuits. An AC0
d[2] circuit is a depth-d circuit with {∧,∨,⊕} gates of unbounded in-degree,

and on each in-wire of the gates, it is allowed to attach a “free” ¬ gate (i.e., not counted in
gate, wire and depth complexity). We simply call it an AC0[2] circuit if d = O(1) is indifferent
in the context. The size of an AC0[2] circuit can be measured using the number of gates or
wires involved.

CC0[2] circuits. A CC0
d[2] circuit is a depth-d circuit with only ⊕ gates of unbounded in-degree.

We define CC0[2], depth and size similar to AC0[2]. Note that CC0[2] is an incomplete circuit
class and can only compute linear functions.

4.1.3 Threshold functions and threshold circuits

In this work, another computation model we are interested in is the linear threshold circuit. For no-
tational convenience, we represent Boolean values by {1,−1} instead of {0, 1}when talking about
linear threshold circuits (i.e., we represent true by −1 and false by 1, so that XOR is simply mul-
tiplication). We will also often omit “linear” since we will not consider any non-linear threshold
functions in this paper.

Definition 4.1 (Linear threshold function). Let w ∈ Rm and θ ∈ R, a linear threshold function (or
simply threshold function) corresponding to weights w and threshold θ is defined as LTFw,θ(x) ≜
sgn(⟨w, x⟩ − θ), where ⟨·, ·⟩ is the standard inner product of real vectors and sgn(x) is the sign
function. ♢

25

A linear threshold circuit (or simply a threshold circuit) is a direct acyclic graph where each vertex
is either a variable corresponding to an input bit or a gate of arbitrary in-degree labeled with a
threshold function. Similar to B2 circuits, one or more nodes of a threshold circuit are marked as
output nodes.

The depth of a vertex in a threshold circuit is defined as the number of edges in the longest path
from any variable to it. The depth of the threshold circuit is the maximum depth of all vertices.
The size of a TC0 circuit can be measured using the number of gates or wires, and in this paper,
we only consider the wire complexity. There is usually a trade-off between the depth and the size
to compute a function f ∈ Bn with threshold circuits. For example, Paturi and Saks [PS94] shows
that the parity function

⊕
n(x1, . . . , xn) ≜ x1 ⊕ · · · ⊕ xn can be computed by depth d threshold

circuits of size n1+O(1)d
. A matching n1+Ω(1)d

lower bound is also given in Impagliazzo, Paturi,
and Saks [IPS93].

4.1.4 Restrictions

To prove PRF lower bounds against B2 and TC0
d circuits, we need to define the notation of re-

striction. A restriction ρ is a mapping from input bits to {0, 1, ⋆}21, where those bits mapped to
⋆, denoted by ρ−1(⋆), are called unfixed or free bits. Let f ∈ Bn,m be a Boolean function and
ρ : [n] → {0, 1, ⋆} be a restriction. We can then define the restricted function f ↾ρ ∈ B|ρ−1(⋆)|,m as
the function over unfixed bits obtained by fixing the ith bit as ρ(i) for each i ∈ ρ−1({0, 1}).

Definition 4.2 (Random restriction). Let n be the number of input bits. A random p-restriction (or
p-restriction) is the following distribution Rn

p over all restrictions: independently for each input
bit, we set it to ⋆ with probability p and to 0 and 1 with probability (1− p)/2 each. ♢

During probabilistic arguments, it may be convenient to view a random p-restriction as a pair
(S, y) of random variables, where S denotes the set of fixed bits and y ∈ F

|S|
2 refers to the as-

signment to the fixed bits. Condition on a particular S, the distribution of the assignment y is
uniformly chosen from F

|S|
2 .

4.2 Pseudorandom function

The syntax of pseudorandom functions consists of a collection of functions Fn ⊆ Bn and a dis-
tribution Dn supported over Fn, both of which are labeled by the input length n. In this work,
we assume that PRFs are defined for all input lengths. For convenience, we represent a PRF as
F = {Fn ⊆ Bn}n≥1, implicitly keep the distribution Dn in mind and denote the sampling proce-
dure simply by f ← Fn.

Definition 4.3 (Negligible functions). A function ε(n) is called negligible if for all c > 0 and suf-
ficiently large n, we have ε(n) < n−c. We use the notation negl(n) to mean an arbitrary negligible
functions w.r.t. n if there is no ambiguity. ♢

Definition 4.4 (Indistinguishability). Two function families F = {Fn ⊆ Bn}n≥1 and G = {Gn ⊆
Bn}n≥1 are indistinguishable if for all p.p.t. adversary AO with oracle access to O, there exists a
negligible function ε(·) such that∣∣∣∣ Pr

f←Fn,A
[A f (1n) = 1]− Pr

g←Gn,A
[Ag(1n) = 1]

∣∣∣∣ ≤ ε(n).
♢

21Or {1,−1, ⋆} when we are working with threshold circuits.

26

One can easily verify that the indistinguishability relation is an equivalence relation, i.e., it is
transitive, symmetric, and reflexive.

Definition 4.5 (Pseudorandom functions). A pseudorandom function (PRF) is a family F = {Fn ⊆
Bn}n≥1 that is indistinguishable from truly random function B = {Bn}n≥1. ♢

4.3 Hash functions and error-correcting codes

Let n be the input length. Similar to PRF, the syntax of a hash function is defined by a family of
functions H = {Hn ⊆ Bn,m} and a family of distribution Dn supported over Hn. Again, we will
omit the distribution and denote the sampling procedure by h← Hn.

Definition 4.6 (Hash functions). Let m = m(n) be a function, a hash function is a family H =
{Hn ⊆ Bn,m}n≥1. It is called universal if for all n and x ̸= y ∈ Fn

2 ,

Pr
h←Hn

[h(x) = h(y)] = 2−m.

It is called almost universal if there exists a negligible function ε(·) such that for all n and distinct
inputs x, y ∈ Fn

2 ,
Pr

h←Hn
[h(x) = h(y)] ≤ ε(n). ♢

Definition 4.7 (Error-correcting codes). Let m = m(n) > n be a function. A function family E =
{Encn ∈ Bn,m}n≥1 is called an error-correcting code with relative distance δ ∈ (0, 1) if for sufficiently
large n, for all x ̸= y ∈ Fn

2 , the relative distance ∆r(Encn(x), Encn(y)) is at least δ. Moreover, E is
called systematic if the encoding function can be interpreted as Encn(x) = x∥Parn(x), where the
last m− n bits generated by Parn is called the parity-checking bits. ♢

There is a simple construction of almost universal hash functions from error-correcting codes,
which is probably folklore. Let 0 < ε < 1, m = Θ(nε) be the desired output length and Encn ∈
Bn,m′ be an encoding function with relative distance δ. The hash function HEnc

n is defined as the
collection of all functions hS indexed by subsets S = {i1, i2, . . . , im} ⊆ [m′] of size exactly m, such
that

hS(x) ≜ Encn(x)i1∥Encn(x)i2∥. . . ∥Encn(x)im .

That is, the hash function HEnc selects a random m-subset of the output of Encn(x). Clearly, this
construction does not increase the circuit complexity of the function since we only need to relabel
the output nodes.

Proposition 4.8. HEnc = {HEnc
n }n≥1 is almost universal. ♢

Proof. Let x ̸= y be distinct inputs of length n. By the distance property of the error-correcting
code, Encn(x) and Encn(y) have Hamming distance at least δm′. The probability that h(x) = h(y)
given h← HEnc

n can be bounded by

Pr
h←HEnc

n

[h(x) = h(y)] ≤
((1−δ)m′

m)

(m′
m)

= ∏
0≤i<m

(1− δ)m′ − i
m′ − i

≤ (1− δ)m .

Recall that we take m = Θ(nε), so this would be negligible whenever the relative distance δ of the
error-correcting code is constant. □

27

4.4 Circuit complexity and uniformity

Both pseudorandom functions and hash functions are defined as families of function collections
F = {Fn ⊆ Bn}n≥1, hence there are several ways to define the complexity of them. For example,
one can define the complexity of F as the complexity to sample the distribution Dn. In this paper,
however, we define the complexity of F just as the maximum circuit complexity of f ∈ Fn.

Definition 4.9 (Circuit complexity of a function collection). Let C be a circuit class (for example,
B2 or TC0

d). For a family of function collection F = {Fn ⊆ Bn}n≥1, the C-circuit complexity of F is
defined as the size function s(n) ≜ max f∈Fn C-CC(f), where C-CC(f) stands for the minimum size
of C-circuits to compute f . ♢

In default, pseudorandom functions and hash functions in this paper can be non-uniform, i.e.,
there is no requirement on the complexity of generating the circuits for a function f ∈ Fn given
the corresponding key. We can also define uniform counterparts of these primitives.

Definition 4.10 (Uniformity of collection). Let C be a circuit class. A family F = {Fn}n∈N (with
sampling distribution Dn over Fn) is called a uniform-C family if there exists a p.p.t. algorithm G,
such that for all n and f ∈ Fn,

D(f) = Pr
G
[G(1n) outputs a C-circuit computing f].

Similarly, it is called a weakly uniform-C family if for all d ∈N, there exists a p.p.t. algorithm G and
an event E (denoting whether G successes) such that for all n,

Pr
G(1n)

[E] ≥ 1− 1
nd ,

and for all f ∈ Fn,

D(f) = Pr
G
[G(1n) outputs a C-circuit computing f | E].

We say a collection has uniform complexity (or weakly-uniform complexity) s(n), if it is uniform (or
weakly uniform), and the generated circuits is of size at most s(n) for sufficiently large n. ♢

We introduce the notion of weak uniformity mainly due to technical reasons. We require our
primitives to have a certain degree of uniformity even when we consider non-uniform PRF, since
the adversary is uniform. Intuitively, a family is weakly uniform if one can sample from the family
with error probability n−d for arbitrarily large d.

4.5 Levin’s trick for domain extension

One of the key tools to prove circuit upper bounds for PRF is Levin’s trick for domain extension.
It shows that one can construct a PRF Fn ⊆ Bn with a PRF F′m ⊆ Bm for m = Ω(nε) by hiding F′

behind a uniform universal hash function. We will need a generalized version of Levin’s trick by
allowing the hash function to be almost universal and weakly uniform.

Lemma 4.11 (Levin’s trick, generalized). Let F = {Fn ⊆ Bn}n≥1 be a PRF and H = {Hn ⊆
Bn,m}n≥1 be an almost universal hash function of polynomial weakly-uniform complexity with
m = m(n) = Θ(nε) for some absolute constant 0 < ε < 1. The composition of F and H, i.e.,
F ′ = {F′n}n≥1 for F′n ≜ { f ◦ h | f ∈ Fm, h ∈ Hn}, is also a PRF. ♢

28

Proof. Let B′ be the composition of B = {Bm}m≥1 and H, i.e., B′n = { f ◦ h | f ∈ Bm, h ∈ Hn}. It is
known that B′ is indistinguishable from truly random functions B = {Bn}n≥1 (for completeness,
we present a proof in Appendix A). By transitivity, it suffices to show that F ′ is indistinguishable
from B′.

Towards a contradiction we assume that F ′ and B′ are distinguishable, then there exists a
p.p.t. adversary A such that there exists a constant c and infinitely many bad input length, say
n ∈ {n1, n2, . . . }, such that∣∣∣∣ Pr

f←F′n,A
[A f (1n) = 1]− Pr

f←B′n,A
[A f (1n) = 1]

∣∣∣∣ > n−c.

Now we construct a p.p.t. adversary that breaks the original PRF on inputs m ∈ {m(n1), m(n2), . . . }.
By the (weakly) uniformity of H, there exists a p.p.t. generator G and an event E (denoting
whether G successes) such that G(1n) successfully samples a hash function conditioning on E ,
and Pr[E] ≥ 1− n−(c+1). Our adversary A′ f (1m) samples such a circuit C ← G(1n) and then sim-
ulatesA f ◦C(1n). That is, wheneverA performs an oracle call for x, it evaluate C on x and perform
an oracle call for C(x). Note that

Pr
f ′←F′n,A

[A f ′(1n) = 1]

= Pr
f←Fm

h←Hn,A

[A f ◦h(1n) = 1]

= Pr
f←Fm

A,C←G(1n)

[A f ◦C(1n) = 1 | E]

= Pr
f←Fm,A′

[A′ f (1n) = 1 | E].

Similarly, we have
Pr

f ′←B′n,A
[A f ′(1n) = 1] = Pr

f←Bm,A′
[A′ f (1n) = 1 | E].

Together with the fact that Pr[E] ≥ 1− n−(c+1), we can see that for large n,∣∣∣∣ Pr
f←Fm,A′

[A′ f (1m) = 1]− Pr
f←Bm,A′

[A′ f (1m) = 1]
∣∣∣∣

>n−c Pr[E]−
∣∣∣∣ Pr

f←Fm,A′
[A′ f (1m) = 1 | ¬E]− Pr

f←Bm,A′
[A′ f (1m) = 1 | ¬E]

∣∣∣∣Pr[¬E]

≥n−c(1− n−(c+1))− n−(c+1)

≥n−(c+1)

≥Θ(m−ε−1(c+1)),

which is non-negligible. Hence A′ breaks the original PRF and a contradiction arises. □

4.6 Probability theory

We need to use standard Hoeffding’s inequality and Chernoff bound.

29

Lemma 4.12 (Hoeffding’s inequality). Assume that X1, X2, . . . , Xn are independent random vari-
ables such that Xi ∈ [ai, bi]. Let X = X1 + X2 + · · ·+ Xn and µ = E[X], then for any t > 0,

Pr[|X− µ| ≥ εn] ≤ 2 exp
(
− 2n2ε2

∑n
i=1(bi − ai)2

)
.

♢

Lemma 4.13 (Chernoff bound). Assume that X1, X2, . . . , Xn are independent random variables
such that Xi ∈ [0, 1]. Let X = X1 + X2 + · · ·+ Xn and µ = E[X], then for any 0 ≤ δ ≤ 1,

Pr[|X− µ| > δµ] ≤ 2 exp
(
−δ2µ

3

)
.

♢

5 A 2n + o(n) upper bound for B2 circuits

In this section, we will present a construction of PRFs in 2n + o(n) size B2 circuits assuming the
existence of PRFs. Our construction preserves the uniformity of the original PRF, and the key
ingredient is a uniform construction of almost universal hash function in 2n+ o(n) size B2 circuits.

To gain more intuition on our construction, we will firstly demonstrate a direct O(n) upper
bound using the linear-size encodable error-correcting code [Spi96] in Section 5.1. Then in Section
5.2, we show that it is sufficient to construct a primitive called 1-detector that is much simpler than
error-correcting code and prove a 3n + o(n) construction of it. We improve the upper bound to
2n+ o(n) using a novel construction of almost universal hash function based on graphs with large
girth in Section 5.4.

5.1 A linear upper bound

We present a simplified version of O(n) upper bound from Ishai, Kushilevitz, Ostrovsky, and
Sahai [IKOS08] based on the following explicit error-correcting code with linear circuit complexity.

Lemma 5.1 (Spielman [Spi96]). There exists a uniform error-correcting code {Encn ∈ Bn,m}n≥1 of
O(n) gates with constant distance and m = O(n). ♢

Theorem 5.2. There exists a PRF (resp. a uniform PRF) computable by B2 circuits of size O(n) if
polynomial-size PRFs (resp. uniform PRFs) exist. ♢

Proof. Assume that there exists a PRF F = {Fn ⊆ Bn} of circuit complexity nc. By Lemma
5.1, there exists a uniform error-correcting code {Encn ∈ Bn,m}n≥1 with distance δ ∈ (0, 1) of
complexity O(n). Using Proposition 4.8, we can construct a linear-size uniform almost universal
hash function H = {Hn ⊆ Bn,m}n≥1 for m = ⌈n1/2c⌉. By Levin’s trick (see Lemma 4.11), the
concatenation of F and H, say F ◦ H, is still a PRF. The circuit complexity of F ◦ H is at most
O(n) + O(mc) = O(n). In addition, it is easy to see that F ◦H is uniform if F is uniform. □

5.2 Constructing hash function from 1-detector

As seen from the above proof, if we have an almost universal hash function {Hn ∈ Bn,m}n≥1 of size
cn for m = o(n), we can composite the hash function and the O(n) PRF in Theorem 5.2 to construct
a PRF of size cn + o(n). We note that the exact constant hidden in O(·) for the construction above

30

is hard to analyze because the construction in [Spi96] utilizes explicit expanders and brute-force
searched good codes, whose exact parameters are not well-studied.

This hints us to explore a “low-level” primitive with smaller complexity for our application
instead of directly using an ECC. Such a notion indeed exists, which we call 1-detector. We first
formally define this concept and show that it implies almost universal hash functions in this sec-
tion. In the following subsections, we will show how to construct them efficiently. In particular,
we will first give a 3n + o(n) construction and then a novel construction of 2n + o(n) from graphs
with large girth.

Definition 5.3 (1-detector). Let m = m(n) and r = r(n). An (n, r, m) 1-detector is a linear function
Ln ∈ Bn,m such that for all x ∈ Fn

2 with Hamming weight |x| ≤ r, Ln(x) ̸= 0. A family of linear
functions L = {Ln ∈ Bn,m}n≥1 is called a (r, m) 1-detector if Ln is (n, r, m) 1-detector for all n. The
output bits Ln(x) are called the parity-checking bits of x. ♢

Since 1-detectors are relatively hard to construct in small size circuits, we can slacken the defi-
nition to allow the 1-detectors to be randomized.

Definition 5.4 (Randomized 1-detector). Let m = m(n), r = r(n) and ε = ε(n). An (n, r, m, ε)
randomized 1-detector is a linear function Ln ∈ Bn,m such that for all x ∈ Fn

2 with Hamming weight
|x| ≤ r, Prρ[Ln(ρ(x)) = 0] < ε(n) for a random permutation ρ over input bits. For simplicity, we
may omit ε if it is a negligible function and simply call it (n, r, m) randomized 1-detector. A family
of linear functions L = {Ln ∈ Bn,m}n≥1 is called a (r, m) randomized 1-detector if Ln is (n, r, m)
randomized 1-detector for all n. The output bits Ln(ρ(x)) are called the parity-checking bits of x. ♢

Note that a (n, r, m) (deterministic) 1-detector is also an (n, r, m, ε) randomized 1-detector with
ε = 0.

Let L = {Ln ∈ Bn,m}n≥1 be an (r, m) randomized 1-detector22. By the linearity, we can see that
for all x, y ∈ Fn

2 such that 1 ≤ ∆(x, y) ≤ r, Ln(ρ(x)) = Ln(ρ(y)) with only negligible probability.
If m = o(n) and r is moderately large, say r = Θ(nε), we can construct an almost universal hash
function as follows. Let ρ ∈ Sn be a permutation over input bits and let S ⊆ [n] be a subset of size
|S| = s = Θ(n1−ε/2). For S = {i1, i2, . . . , is} we can define

hρ,S(x) ≜ xi1∥xi2∥. . . ∥xis∥Ln(ρ(x)),

that is the concatenation of s random bits from x and the parity-checking bits.

Lemma 5.5. Assume that s = ω(n log n)/r. If L is an (r, m) randomized 1-detector, the collection
HL = {Hn = {hρ,S | ρ ∈ Sn, |S| = s, S ⊆ [n]}}n≥1 is almost universal. ♢

Proof. Let x, y ∈ Fn
2 be an arbitrary pair of distinct inputs. If ∆(x, y) ≤ r, the probability that the

last m bits of hρ,S(x) and hρ,S(y) coincide is less than ε(n) according to randomized 1-detector. If
∆(x, y) > r, the probability that the first s bits of hρ,S(x) and hρ,S(y) are the same is at most

(n−r
s)

(n
s)
≤

s−1

∏
i=0

n− r− i
n− i

≤
(

1− r
n

)s
≤ exp

(
− rs

n

)
,

which is negligible since rs/n = ω(log n). □
22Indeed we will construct a (non-uniform) 3n-gate computable deterministic 1-detector with r = Θ(nε) and

s = Θ(n1−ε/2) for ε ∈ (0, 1) in Section 5.3 and a 2n-gate computable randomized 1-detector with r = n/2 and
m = Θ(n/ log n) in Section 5.4.

31

The existence of (deterministic) 1-detectors with nice parameters has been known for a long
time. Gelfand, Dobrushin, and Pinsker [GDP73] present a construction of ECC using 1-detector
(although they did not name it) with slightly different parameters. A primitive called range de-
tector used by Gál, Hansen, Koucký, Pudlák, and Viola [GHKPV13] is a generalized version of
1-detector. The intermediate primitive called error-reduction code of Spielman’s ECC [Spi96] also
has the property of 1-detection. However, these constructions are either not constructive or of
circuit complexity larger than 3n, therefore they are insufficient for our use.

5.3 A simple probabilistic construction

In this section, we will present a construction of 1-detectors inspired by the standard existence
proof with the probabilistic method. Concretely speaking, for each positive integer k, we will give
a p.p.t. algorithm Gk that outputs a 3n size circuit computing an (n, m, r) (deterministic) 1-detector
with probability23 at least 1− n−Ω(k). One may see that it is sufficient for constructing PRF using
Lemma 5.5 and Levin’s trick.

The evaluation circuit generated by Gk is a CC0
1[2] circuit containing m XOR gates of unbounded

fan-in while each variable is of out-degree exactly d ≥ 3, which can be transformed into a standard
B2 circuit with d · n gates. The underlying topology between variables and gates are defined by a
bipartite graph G = (V1 ∪V2, E ⊆ V1 ×V2), where |V1| = n and |V2| = m = m(n). The evaluation
circuit CG corresponding to a graph G = (V1 ∪ V2, E) is a depth-1 linear circuit: each vertex in V1
corresponds to an input variable, each vertex in V2 corresponds to an XOR gate, and the connection
between gates and variables follows the edges of the graph. A bipartite graph G is called good if
CG computes an (n, r, m) 1-detector. Equivalently, a graph is good if for any subset S ⊆ V1 of size
at most r, at least one of variable v′ ∈ V2 connects to odd number of variables in S. For a typical
choice of parameters, we assume that r = Θ(nε) and m = Θ(n1−ε/2) for some constant ε ∈ (0, 1).

To complete our algorithm Gk, it suffices to describe an algorithm that generates a good graph
with nice probability. By adopting the random procedure defined by [GDP73] together with an
error reduction trick, we can actually design Algorithm 1 running in time nO(k) that generates a
good graph with probability n−0.1k, for any positive integer k.

Algorithm 1: Generating good graphs

1 for i = 1, 2, . . . , t do
2 Let G ← (V1 ∪V2,∅) be an empty graph;
3 for v ∈ V1, j = 1, 2, . . . , d do
4 Link a random edge ev,j = (v, v′) with v′ ← V2;
5 end
6 if ∀S ⊆ V1 of size ≤ k, there exists v′ ∈ V2 connecting to odd number of vertices in S then
7 return G;
8 end
9 end

10 return ⊥

23On a fail execution, our algorithm may output an arbitrary circuit (or simply⊥) without any additional information,
so there is no obvious way to amplify success probability. We note that it is similar (but not precisely equivalent) to the
concept of weak uniformity: our algorithm will output a 1-detector on successful execution, but it is not guaranteed to
output a particular one for all successful executions.

32

Lemma 5.6. Let t = ω(log n) and d ≥ 3. There exists a constant ε ∈ (0, 1), such that for r = Θ(nε)
and m = Θ(n1−ε/2), with probability at least 1− n−0.1k, Algorithm 1 generates a good graph (and
therefore a 1-detector) for sufficiently large n. ♢

Corollary 5.7. For any constant ε ∈ (0, 1), let m = m(n) = Θ(nε), there exists an almost universal
hash functionH = {Hn,m ⊆ Bn,m}n≥1 with weakly uniform complexity 3n. ♢

Since the proofs of Lemma 5.6 and Corollary 5.7 are technical and the construction in Section
5.4 will have better circuit complexity24, we defer them to the Appendix B. The intuition of the
corollary is that, if we take d = 3 in Lemma 5.6, the generated CC0

1[2] circuit can be transformed
into a B2 circuit of size 3n by expanding each XOR gate independently. Then we can construct
a desired hash function using Lemma 5.5. By this corollary, a 3n + o(n) upper bound directly
follows using Levin’s trick (Lemma 4.11).

Theorem 5.8. There exists a PRF of circuit complexity 3n + o(n) assuming PRF exists. ♢

5.4 Better 1-detectors from high-girth graphs

We will now present a randomized 1-detector which is realizable by a CC0
1[1] circuit C where each

variable is of out-degree exactly 2. Let G = (V1 ∪ V2, E ⊆ V1 × V2) be the graph indicating the
topology of C. To further improve the construction in the previous subsection, we would like to
inspect graphs with fine structures instead of picking random graphs. Since each input variable is
of out-degree 2, graph G can be viewed as the edge-vertex incidence relation of another undirected
graph D, such that each vertex u ∈ V2 corresponds to a vertex ũ in the new graph D and each
vertex in v ∈ V1 adjacent to u1, u2 ∈ V2 corresponds to an edge connecting ũ1 and ũ2. In such case,
an assignment x ∈ Fn

2 of the input bits such that C(x) = 0 corresponds to a subset X of edges in
D such that each vertex is incident to an even number of edges in X. Thus, X contains an Eulerian
cycle and therefore a cycle, which means, intuitively, if we want to construct a nice 1-detector, the
graph D cannot contain small cycles.

By convention, the girth of a graph is defined as the length of its shortest cycle. The following
lemma shows the connection between good graphs for randomized 1-detector and the girth of
graphs.

Lemma 5.9. Let D = (V, E) be a graph of girth g ≥ 5 and let S ⊆ E be a random subset of size
k. For all 1 ≤ k < |E|/2, with probability at most (|E|/g)−g/3, every vertex is incident to an even
number of edges in S. ♢

Proof. Let D = (V, E) be a graph and S ⊆ E be a subset of size k. If all vertices connect to an even
number of edges in S, each vertex in the subgraph D′ = (V, S) is of even degree. In such a case,
any connected component of D′ consists of an Eulerian cycle, which can only happen if G contains
a cycle of length no more than |S|. So if k < g, there always exists a vertex that is incident to an
odd number of edges in S.

Now we consider the case when k ≥ g. For a random subset S of size k, we can view it as
first taking a random subset of size k − ⌈g/3⌉, then another random subset of size ⌈g/3⌉ in the

24We should also note, however, that the collision probability of this 3n size hash function could be much better than
the construction in Section 5.4. This may make it of independent interest.

33

remaining edges. Let L(S) be the event that every vertex is incident to an even number of edges
in S, then

Pr
S⊆E,|S|=k

[L(S)] = E
S1⊆E,|S1|=k−⌈g/3⌉

[
Pr

S2⊆E\S1,|S2|=⌈g/3⌉
[L(S1 ∪ S2)]

]

= E
S1⊆E,|S1|=k−⌈g/3⌉

(|E \ S1|
⌈g/3⌉

)−1

∑
S2⊆E\S1,|S2|=⌈g/3⌉

[L(S1 ∪ S2)]

 .

We will show the summation in the above equation does not exceed 1, that is for any fixed
S1 ⊆ E with |S1| = k− ⌈g/3⌉, there exists at most one S2 makes L(S1 ∪ S2) happens. If this is true,
then we can clearly bound the above probability by

Pr
S⊆E,|S|=k

[L(S)] ≤
(
|E| − (k− ⌈g/3⌉)

⌈g/3⌉

)−1

≤
(
|E|
g

)−g/3

.

What remains is the claim above. Towards a contradiction, assume L(S1 ∪ S2) and L(S1 ∪ S′2)
holds simultaneously for S2 ̸= S′2. Consider the symmetric difference of the two sets S2 ⊕ S′2 =
(S1 ∪ S2)⊕ (S1 ∪ S′2). By our definition of the event L, each vertex is incident to even number of
edges in S2 ⊕ S′2, resulting in a cycle of length no more than |S2 ⊕ S′2| ≤ |S2|+ |S′2| = 2⌈g/3⌉ < g.
This contradicts to the fact that the girth of G is g. □

This lemma shows that if we construct a circuit C based on the edge-vertex incident graph of
an undirected graph D = (V, E) with |V| = m, |E| = n and girth g = ω(1), for an assignment
x with Hamming weight |x| ≤ n/2 and a random permutation ρ of input bits, C(ρ(x)) = 0 with
only negligible probability. If the graph D is moderately dense, say m = Θ(n/ log n), we can
obtain a CC0

1[2] circuit computing an (n, n/2, m) randomized 1-detector and therefore an almost
universal hash function by Lemma 5.5.

What remains is the explicit construction of graphs with large girth. This problem has been
studied in combinatorics since the 1960s, motivated by both theoretical interests and the practical
issue to construct efficient low-density parity-checking (LDPC) codes. For our application, it is
sufficient to use the simple construction given by Chandran [Cha03].

Lemma 5.10 ([Cha03]). There exists a polynomial-time algorithm such that given any m and k <
m/3, constructs a graph G = (V, E) of m vertices with |E| = ⌊mk/2⌋ such that the girth of the
graph is at least g > logk m + O(1). Moreover, the degree of each vertex is k− 1, k or k + 1. ♢

Corollary 5.11. For every n and m such that ⌈2n/m⌉ < m/3, there exists a graph Dm,n with m
vertices and n edges where the girth g > log m

log(⌈2n/m⌉) + O(1). The degree of every vertex is at most
2n/m + O(1). Moreover, there exists a deterministic polynomial time algorithm construct Dm,n
taking m, n. ♢

Proof. Assume that we are given n and m. Let k = ⌈2n/m⌉, our algorithm firstly calls the algo-
rithm in Lemma 5.10 to generate a graph D = (V, E) with |V| = m, |E| = ⌊mk/2⌋ ≥ n and girth
g > logk(m) + O(1). The degree of each vertex is at most 2n/m + 2. We can arbitrarily remove
|E| − n edges to obtain a desired graph. □

Now we formally describe the construction of our uniform randomized 1-detector and hash
function. Take m = Θ(n/ log n). We firstly construct a graph Dm,n with girth g = Ω

(
log m

log(2n/m)

)
=

34

Ω
(

log n
log log n

)
. Then, we construct bipartite graph G using Dm,n and then generate the CC0

1[2] cir-
cuit C according to it. By Lemma 5.9 and previous discussion, one can easily see that C is an
(n, n/2, n/ log n) randomized 1-detector and can be transformed into B2 circuit of size 2n−m. The
circuit family is hence an (n/2, n/ log n) randomized 1-detector. Finally, we take s = Θ(log2 n)
and construct an almost universal hash function with sufficient shrinkage using the sampling trick
in Lemma 5.5.

Theorem 5.12. There exists a uniform almost universal hash function H = {Hn,m ⊆ Bn,m}n≥1 of
circuit size 2n−m, where m = Θ(n/ log n). ♢

We can then compose this hash function with the simple O(n) PRF in Theorem 5.2 by Levin’s
trick (see Lemma 4.11) and give the following upper bound of PRF.

Corollary 5.13. There exists a PRF (resp. uniform PRF) of circuit complexity 2n + o(n) if PRF
(resp. uniform PRF) exists. ♢

6 Upper bounds in low-depth classes

Besides circuit size (or running time in uniform case), circuit depth (or parallel time) is also an
essential measure with theoretical and practical interests. Many efforts have been made to study
the existence of PRF in low-depth circuit classes such as NC1, TC0, and even AC0[2]. However,
it remains open whether we can build PRFs that are efficient in both size and depth complexity
simultaneously.

In this section, we will show that some slight modifications of our PRF based on high-girth
graphs would yield efficiency in both size and depth. In Section 6.1, we will first briefly present
some known candidates of PRFs in low-complexity classes from well-founded cryptographic as-
sumptions as the foundation of our constructions. In Section 6.2, we will construct an NC1 PRF
of size 2n + o(n) and depth (1 + ε) log n for any ε > 0 using a simple stacking argument. In Sec-
tion 6.3, we will construct an efficient TC0 PRF using the error-correcting code of Chen and Tell
[CT19]. In Section 6.4, we will construct an almost universal hash function with arbitrary polyno-
mial shrinkage in CC0[2] with depth-2 and wire complexity 2n+ o(n) by combining our high-girth
based 1-detector with the efficient error-correcting codes from [CT19], which further leads to an
AC0[2] PRF with o(n) gates and 2n + o(n) wires.

6.1 Candidate PRFs in low-depth classes

Although it is unknown whether the existence of low-depth PRFs (say, in TC0) can be based on the
elementary primitives such as one-way functions, there are several constructions under standard
cryptographic assumptions like factoring (of Blum-integers) or Decisional Diffie-Hellman [NR04],
as well as Ring Learning-with-Error [BPR12].

We now sketch the construction of Naor and Reingold [NR04] based on the Decisional Diffie-
Hellman assumption and explain how it can be implemented in NC1, TC0 and AC0[2] circuits of
polynomial size. Let n be desired input length. The key of the PRF is a tuple (p, q, g, a), where
p is an n-bit prime, q is a prime dividing p − 1, g is an element in Z×p with order q > 2n and
a ∈ Zn+1

q . Note that (p, q, g) is chosen over some polynomially samplable distribution and a is
chosen uniformly. Let x = x1∥x2∥ . . . ∥xn. The output of the PRF is defined as

fp,q,g,a(x) ≜ (ga0)∏n
i=1 a

xi
i .

35

The DDH-assumption. The security of this PRF candidate follows from the Decisional version of
Diffie-Hellman assumption, which states that it is intractable to distinguish (ga, gb, gab) from
(ga, gb, gc) for random a, b and c, where g is a generator of certain cyclic group G. In this
candidate, we choose G as the multiplicative group of the finite field, in which the state-of-
the-art cryptoanalysis algorithm works in 2O(n1/3) time [Gor93]. It is widely believed that the
DDH-assumption (in finite fields) is secure against all 2nε

-time adversaries for some ε > 0.

Implementation in TC0 (and therefore NC1). Naor and Reingold [NR04] showed that this candi-
date can be implemented in TC0 (and therefore NC1 since TC0 ⊆ NC1) based on the result of
Reif and Tate [RT92], which shows that multiple product ∏i axi

i can be evaluated in TC0. The
candidate function is computed in two steps. Firstly, we compute a0 ∏i axi

i with the multiple
product scheme and obtain its binary form y = ym−1 . . . y1y0. Let bi = g2i

be hard-wired pa-
rameters. We can again use the multiple product scheme to compute ∏i byi

i , which is exactly
what we need.

Implementation in AC0[2]. Viola [Vio15] gives a simple construction of AC0[2] PRF secure against
2polylogn-time adversary from an 2nε

-time secure TC0 PRF for some ε > 0, whose existence
follows from the 2nε

hard DDH-assumption. Assume that such TC0 PRF exists. We can
hash down the input length to polylog(n) by Levin’s trick (see Lemma 4.11) using a hash in
AC0[2]25. By a folklore result that the majority gate of fan-in m can be realized by AC0 circuits
of size 2Õ(m1/(d−1)) in depth d (see, e.g., [OSS19]), the TC0 PRF with polylog(n) input length
can be converted into a polynomial size AC0[2] circuit.

6.2 Construction of NC1 PRFs via stacking

We start with an uniform construction of an almost universal hash function of size 2n and depth
(1 + o(1)) log n that shrinks n-bit input to nε-bit output for arbitrary ε > 0. This is achieved by
stacking the hash functions in Theorem 5.12 for o(log n) number of times.

Lemma 6.1. For any ε > 0, there exists a uniform construction of almost universal hash function
H = {Hn ∈ Bn,c}n≥1 of size 2n + o(n) and depth (1 + o(1)) log n for some c = c(n) < nε. ♢

Proof. Let m = m(n) be the function in Theorem 5.12. In Section 5.4 we have present a uni-
form construction of (n, n/2, m) randomized 1-detector based on graph with large girth. Such
1-detector can be evaluated by a CC0

1[2] circuit Cn whose topology is induced from the edge-vertex
incident graph of Dm,n = (V, E) given by Corollary 5.11. Note that the degree of each vertex in
Dm,n is at most 2n/m + O(1), so that each XOR gate in C is of fan-in Θ(n/m). This means that Cn
can be realized by a B2 circuit of size at most 2n and depth log(n/m) + O(1).

Now we will construct a hash function H = {Hn ⊆ Bn,c}n≥1 for arbitrary c < nε by stacking
the hash function H̃ = {H̃n ∈ Bn,m}n≥1 in Theorem 5.12. Define n0, n1, . . . , nℓ by n0 = n and
ni+1 = m(ni) for all 0 ≤ i < ℓ, where ℓ is the smallest integer such that nℓ < nε. It is easy to see
that ℓ = O(log n). Then we define

Hn ≜ {hℓ−1 ◦ hℓ−2 ◦ · · · ◦ h0 | hi ∈ H̃ni},

where each hi is sampled independently from H̃ni .

25In the work of Viola [Vio15], a simple hash function is used without optimizing its concrete complexity. We will
give an efficient construction of hash function in Section 6.4 to obtain our PRF upper bounds.

36

Since hi can be computed by a circuit of 2ni size and log(ni/ni+1) + O(1) depth, it is easy to
verify that H can be computed by a circuit of size 2n + o(n) and depth (1 + o(1)) log n. Now
it is sufficient to show that H is indeed an almost universal hash function. Because H̃ is almost
universal, there exists a negligible function ε(n) such that for all n and x ̸= y of length n, Pr[h(x) =
h(y)] ≤ ε(n) for h← H̃n. Then we can see that for all x ̸= y of length n,

Pr
h←Hn

[h(x) = h(y)]

= Pr
h=(h0,...,hℓ)←Hn

[∃i, hi is the first layer with same output for x and y]

≤
ℓ−1

∑
i=1

ε(ni),

which is also negligible. This completes the proof. □

Then the upper bound of PRFs in NC1 follows directly from Levin’s trick (Lemma 4.11).

Corollary 6.2. For any ε > 0, there exists an NC1 PRF (resp. a uniform NC1 PRF) of 2n + o(n) size
and (1 + ε) log n depth assuming NC1 PRF (resp. uniform NC1 PRF) exists. ♢

Proof. Suppose that there exists a PRF computable by a circuit of depth d log n and size nd. By
Lemma 4.11, we can compose it with a hash function that shrinks an n-bit input to nε/(2d) bits to
obtain a PRF with 2n + o(n) size and (1 + ε) log n depth, where ε > 0 can be arbitrarily small. □

6.3 Construction of TC0 PRFs from efficient ECC

To obtain an upper bound for PRFs in TC0, we only need to construct an efficient TC0 almost
universal hash function with nice shrinkage. Fortunately, we can directly use the error-correcting
code given by Chen and Tell [CT19].

Lemma 6.3 ([CT19], Proposition 10). Let ϕ = 1+
√

5
2 and c > 0 be an absolute constant. For ev-

ery d ≥ 4 there exists a family of depth-d TC0 circuits of O(n1+cϕd
) wires that encodes an linear

error-correcting code of constant relative distance. Moreover, this circuit family is uniformly con-
structible in polynomial time. ♢

This immediately shows that for any d ≥ 4, there exists a uniform almost universal hash
function realizable by TC0

d circuits of n1+O(ϕ−d) size that shrinks an n-bit input to m = Θ(nε) bits
for arbitrarily small ε > 0 (see Proposition 4.8). Then by Levin’s trick (see Lemma 4.11), we can
obtain an upper bound for PRFs.

Corollary 6.4. Let ϕ = 1+
√

5
2 and c > 0 be an absolute constant. For any d ≥ 4 and ε > 0, there

exists a uniform almost universal hash function H = {Hn ⊆ Bn,m}n≥1 computable in TC0
d circuits

of O(n1+cϕd
) wires, where m = m(n) = Θ(nε). ♢

Corollary 6.5. Let ϕ = 1+
√

5
2 and c > 0 be an absolute constant. For any constant d0, assume that

there exists a PRF (resp. uniform PRF) computable in TC0
d0

, then there exists a PRF (resp. uniform

PRF) computable by TC0 circuits of d + d0 depth and O(n1+cϕ−d
) wires, for any d ≥ 4. ♢

37

6.4 Construction of AC0[2] PRFs from optimally sparse hash function in CC0[2]

In this section, we will construct an AC0[2] PRF with o(n) gates and 2n + o(n) wires using an
extremely hash function within CC0[2], the class of constant-depth circuits with only unbounded
fan-in XOR gates.

Theorem 6.6. Let 0 < ε < 1 be any constant and m = m(n) = Θ(nε) be the output length, there
exists a uniform almost universal hash function H = {Hn ⊆ Bn,m}n≥1 with 2n + o(n) wires and
o(n) gates in CC0

3[2]. ♢

Our plan is to compose two hash functions in CC0[2] with different features: the first layer is
a high-girth-graph-based construction (see Section 5.4) with wire complexity 2n + o(n) and poly-
logarithmic shrinkage, which can ensure that overall complexity; and the second layer is based on
the sparse error-correcting code in [CT19] that provides polynomial shrinkage. We first introduce
the error-correcting code used by the second layer of our hash function.

Theorem 6.7 ([CT19], Proposition 31). Let c be an absolute constant. There exists a family of
CC0

2[2] circuits with wire complexity O(n exp((log log n)c) that encodes an error-correcting codes
of constant relative distance. Moreover, this family is uniformly constructible in polynomial
time. ♢

Corollary 6.8. Let c be the constant in Theorem 6.7. For all constant ε ∈ (0, 1) and output length
m = m(n) = Θ(nε), there exists a uniform almost universal hash functionH1 = {H1

n,m ⊆ Bn,m}n≥1

with O(n · exp((log log n)c)) wires and m gates in CC0
2[2]. ♢

Proof. This directly follows from Theorem 6.7 and Proposition 4.8. □

To construct a linear-size almost universal hash function in CC0[2], we would hide the loga-
rithmic factor in Corollary 6.8 by composing it with a variant of construction in Section 5.4.

Lemma 6.9. For any constant c > 1, there exists a uniform almost universal hash function H2 =
{H2

n,m ⊆ Bn,m}n≥1 in CC0
1[2] with at most 2n wires and m gates, where m = m(n) = Θ(n ·

exp(−(log log n)c+1)). ♢

Proof. According to Corollary 5.11, we first generate a graph Dm,n with girth g = Ω
(

log m
log(2n/m)

)
=

Ω
(

log n
(log log n)c+1

)
and construct an bipartite graph G as the edge-vertex incident graph of Dm,n. Let C

be the CC0
1[2] circuit with 2n wires and m gates whose topology is given by the graph G. By Lemma

5.9, it is an (n, n/2, m) randomized 1-detector. The circuit family is hence an (n/2, n/ log n) ran-
domized 1-detector. Finally, we take s = Θ(log2 n) to construct an almost universal hash function
with the same number of wires and gates using Lemma 5.5. □

Proof of Theorem 6.6. Let H1
n,k be the hash function of input length n and output length k in

Corollary 6.8, and H2
k,m be the hash function of input length k and output length m in Lemma 6.9,

where k = Θ(n · exp(−(log log n)c+1)). We construct a hash functionH = {Hn ⊆ Bn,m}n≥1 where

Hn ≜ {h2 ◦ h1|h1 ∈ H1
n,k, h2 ∈ H2

k,m}.

This is clearly almost universal and uniform. Now we consider the circuit complexity. The first
layer of the circuit requires 2n wires and k = o(n) gates, and the second layer of the circuit requires

O(k · exp((log log k)c)) = O(n · exp(−(log log n)c+1 + (log log k)c)) = O(n/ log n) = o(n)

38

wires and o(n) gates. Therefore, H can be computed by CC0
3[2] circuits with 2n + o(n) wires and

o(n) gates. □

Using Levin’s trick (see Lemma 4.11) with the hash function in Theorem 6.6, we get a PRF
upper bound in AC0[2] circuits.

Corollary 6.10. If there exist PRFs (resp. uniform PRFs) in AC0
d[2], then there exists a PRF (resp. a

uniform PRF) in AC0
d+3[2] with o(n) gates and 2n + o(n) wires. ♢

7 Lower bounds against B2 and AC0[2] circuits

In this section, we will prove several lower bounds showing that our constructions of PRFs and
hash functions are near optimal (with respect to size or wire complexity) in B2 circuits, NC1 circuits
and AC0[2] circuits. In Section 7.1, we will present our 2n−O(1) PRF lower bound for B2 circuits26

using a clever distinguishing algorithm based on a wire-counting argument. In Section 7.2, we
will adapt our technique to prove an unconditional lower bound for hash function. In Section 7.3,
we will prove tight lower bound on the wire complexity of AC0[2] in computing PRFs and hash
functions.

7.1 A PRF lower bound for B2 circuits

Our proof first studies a combinatorial structure on circuits, which we call critical path. We present
an efficient algorithm that distinguishes circuits with intersecting critical paths and truly random
functions via oracle access. Then we do a standard wire counting argument to show that 2n−O(1)
gates are required to avoid intersecting critical paths, which leads to a circuit lower bound for PRF.

We begin by defining the combinatorial structure to be interested.

Definition 7.1 (Critical path). Let C be a circuit, and x be one of its inputs. The critical path of x in
C is a sequence of vertices v0, v1, . . . , vk satisfying the following conditions:

1. v0 = x, and vi is a descendent of vi−1 for all i ≥ 1, and

2. out-degree(vi) = 1 for all 0 ≤ i < k, and out-degree(vk) ̸= 1. ♢

Without loss of generality, we can only deal with circuits without obvious redundancy. For-
mally, a circuit C is called normalized if each gate of out-degree 0 is an output gate. Since a non-
output gate of out-degree 0 can be removed, any optimal circuit computing a function f must be
normalized.

Informally speaking, the critical path of x in C is the maximal path starting from x such that all
but the last vertices have out degree exactly 1. The last vertex may have out-degree 0 or more than
2. It is obvious that the critical path is unique for each input x, so we denote it by LC(x). We will
be interested in the intersection of critical paths. Two critical paths are called intersecting, if they
share a common vertex. We emphasize here that sharing the last vertex of out-degree not 1 is also
called intersecting.

Our key observation is that if a circuit has an isolated variable (i.e., of out-degree 0 and is not
an output node, recall that we are considering single-output functions) or intersecting critical paths,
then it can be distinguished from truly random functions. This is presented in the following two
lemmas.

26Because NC1 circuits are simply B2 circuits with depth restriction, this lower bound also applies to NC1 circuits.

39

Lemma 7.2. There exists a p.p.t. oracle algorithm A which always accepts if it is given oracle
access to a circuit C with intersecting critical path, and rejects with high probability if it is given
the truly random function. ♢

Proof. Suppose that inputs x and y have intersecting critical paths. Let G be the gate on their first
(i.e., closest to input) intersection. Under any restriction ρ to all the variables except x and y, we
can see that the circuit can be viewed as computing

C↾ρ(x, y) = fρ(G(gρ(x), hρ(y)))

for some unary functions fρ, gρ, hρ. By trying all possible truth tables, one can easily check that
no matter what function G is, C↾ρ(x, y) can never compute an ⊕-type function for some restric-
tion ρ1, and compute an ∧-type function for another restriction ρ2. Indeed, when G is of ∧-type,
then C↾ρ(x, y) cannot be an ⊕-type function; when G is of ⊕-type, C↾ρ(x, y) cannot be an ∧-type
function; and when G is degenerate or trivial, C↾ρ(x, y) is also degenerate or trivial.

This motivates us to do the following test for each pair of inputs (x, y). Randomly sample n
restrictions for all inputs except x and y. For each sampled restriction ρ, compute the truth table
of C↾ρ(x, y), and check whether truth tables of ⊕-type and ∧-type appear both. We accept if there
exists a pair (x, y), such that either⊕-type or ∧-type does not appear in the truth tables of C↾ρ(x, y)
for our n samples of ρ.

If our algorithm is given a circuit with intersecting critical paths, there always exists a pair
(x, y) such that the two kinds of truth table does not appear simultaneously, so that our algorithm
always accepts. Assume otherwise our algorithm is given a truly random function. Since for
each pair (x, y), the n samples of restriction ρ are drawn independently, we can show by union
bound that the sampled restrictions ρ are pairwisely distinct with high probability. In such case,
the oracle returns independent random bits for our queries, hence both ⊕-type and ∧-type truth
tables appear for truly random functions with probability 1− exp(−Ω(n)). By union bound, our
algorithm accepts with high probability. □

Lemma 7.3. There exists a p.p.t. oracle algorithm B which accepts if it is given oracle access to a
circuit C with isolated variables, and rejects with high probability if it is given the truly random
function. ♢

Proof. Consider the following algorithm. For each variable x, we sample n restrictions for all
variables except x. We accept if there exists a variable such that n sampled restrictions give the
same output, and reject otherwise. The correctness of our algorithm is easy to verify. □

By combining these two tests, we can distinguish a circuit with either intersecting critical paths
or isolated variables. To complete the lower bound, it is sufficient to show that small circuits
contain either intersecting critical paths or isolated variables. We prove this by a standard wire
counting technique.

Lemma 7.4. For any normalized n-input m-output circuit C with no intersecting critical paths and
isolated variable, the number of gates in the circuit should be at least 2n− 2m. ♢

Proof. We divide all nodes (including variables and gates) in the circuit into two types: on the
critical path of some variable, or outside of all critical paths. In particular, all variables fall into the
first type. Suppose that there are c1 nodes of the first type, and c2 nodes of the second. Let l be

40

the number of wires connecting two nodes of the first type, and o be the number of output nodes
belonging to the first type.

Since there is no isolated variables, the endpoints of critical paths must be gates or variables
of out-degree at least 2. By the non-intersection property of critical paths, there should be exactly
n nodes of the first type having out-degree not equal to 1, hence (c1 − n) of them have out-degree
1. Since the circuit is normalized, only output gates can have out-degree 0, so that at least (n− o)
nodes of first type have out-degree at least 2.

We now count different types of wires. Type i → Type j denotes the number of wires from
Type i nodes to Type j nodes.

(Type 1→ Type 1) By definition this is l.

(Type 1→ Type 2) There are at least 2(n− o) + (c1 − n) wires going out of Type 1 nodes, among
which l wires go to Type 1, hence there should be at least c1 + n− 2o− l wires going to Type
2.

(Type 2→ Type 1) Among the c1 nodes of Type 1, (c1 − n) of them are gates. Since each of these
gates takes two wires as inputs, the number of wires going from Type 2 to Type 1 is exactly
2(c1 − n)− l.

(Type 2→ Type 2) Since all gates except for (m− o) output nodes of Type 2 have out-degree at
least 1, there is at least c2 − (m− o) wires going out of Type 2. Because 2(c1 − n)− l of them
goes to Type 1, there are at least (c2 − (m− o))− 2(c1 − n) + l remains.

Now, notice that the total number of wires going into Type 2 gates is exactly 2c2, so we should
have the inequality

(c1 + n− 2o− l) + ((c2 − (m− o))− 2(c1 − n) + l) ≤ 2c2,

which gives us c1 + c2 ≥ 3n−m− o ≥ 3n− 2m. Subtracting the n input nodes from it completes
the proof of the lemma. □

Combining these three lemmas, the lower bound is immediate.

Theorem 7.5. If F = {Fn ⊆ Bn}n≥1 is a PRF, then it requires at least 2n− 2 gates to compute Fn in
general circuits for sufficiently large n. ♢

7.2 An unconditional lower bound for hash function

Since we can construct efficient PRF with almost universal hash function, this lower bound also
yields a lower bound for almost universal hash function assuming PRF exists. By modifying the
proof a little bit, we are also able to make this lower bound unconditional.

Theorem 7.6. If H = {Hn ⊆ Bn,m}n≥1 is an almost universal hash function, then it requires at
least 2n− 2m gates to compute Hn in general circuits for sufficiently large n. ♢

Proof. Towards a contradiction, we assume that for infinitely many bad n, Hn can be realized by
B2 circuits with 2n − 2m gates. By Lemma 7.4, for each h ∈ Hn and any normalized circuit C
computing h, C contains either isolated variable or intersecting critical paths.

Let n be an arbitrary “bad” input length, we will construct a set Tn of distinct pairs of inputs
such that for all h ∈ Hn, there exists a pair (x, y) ∈ Tn with h(x) = h(y).

41

We first consider intersecting critical paths. Suppose that x and y have their critical paths
intersecting, and the intersection starts from the gate G. Then by our definition of critical paths,
the outputs of the circuit should be completed determined by the output of G if all other inputs are
arbitrarily fixed (e.g., fixed to be zeros). Hence there must exist a pair of assignments to x and y
such that their outputs collide with all other variables fixed. We can always fix the other variables
to 0, and let Sn be the set of all possible colliding pairs of inputs from above. Formally, define

ρx,y,a,b(v) =


a, v = x
b, v = y
0, otherwise

,

then the set Sn is

Sn = {(ρx,y,a,b, ρx,y,c,d) | x, y are input variables, a, b, c, d ∈ {0, 1}, (a, b) ̸= (c, d)}.

Hence for any circuit containing an intersecting critical path, there must exist a pair in Sn making
their outputs collide.

Finding collision for circuits with an isolated variable is rather simple. Let In be the set of pairs
(x, y) such that x = 0∥0∥ . . . ∥0 and y contains exactly one non-zero index. All circuits with an
isolated variable collides on one of the pairs in In.

Let Tn ≜ In ∪ Sn. It is easy to see that |Tn| = O(n2). Since n is an bad input length, each h ∈ Hn
has circuit complexity smaller than 2n − 2m so that contains either intersecting critical paths or
isolated variables, hence indeed has a collision in Tn. By previous discussion we know that

Pr
h←Hn,(x,y)←Tn

[h(x) = h(y)] ≥ 1
|Tn|

= Ω(n−2).

By the averaging argument, there exists a particular pair in Tn with collision probability Ω(n−2).
This is clearly not an almost universal hash function. □

Note that this lower bound is (almost) tight for m = o(n) by the 2n upper bound (see Lemma
6.1). Since we can construct almost universal hash function from good ECC (see Proposition 4.8),
we can also obtain an unconditional (almost) tight lower bound for ECC of the same complexity.

7.3 Lower bounds against AC0[2] circuits

In Section 6.4 we have shown that almost universal hash function with polynomial shrinkage and
PRFs can be constructed in AC0[2] with wire complexity 2n + o(n). Since any AC0[2] circuit with m
wires can be translated to a B2 circuit with at most m gates, we can easily obtain a 2n−O(1) lower
bound from Theorem 7.5. In this section, we will prove slightly better 2n + Ω(

√
n) lower bounds

for PRF and hash function with large shrinkage using a finer wire-counting argument.

Definition 7.7. A pair (x, y) of input variables in an AC0[2] circuit is said to be symmetric if for each
gate G, either none of x and y connect to G or both of x and y connect to G, and in the latter case,
x connects to G via a ¬ gate if and only if y connects to G via a ¬ gate. ♢

Lemma 7.8. Let C be an m-output AC0[2] circuit with at most 2n +
√

n/2 − 2m wires. For any
n ≥ 100, if C has no isolated variable, then either it can be converted into a B2 circuit of size at
most 2n− 2m, or there is a symmetric pair of input variables. ♢

42

Proof. We prove this lemma by a simple case study.

Case 1. If there are at least
√

n/2 gates, we can easily convert it into an m-output B2 circuit of size
at most 2n− 2m, since each gate in C of fan-in k can be realized by k − 1 gates of fan-in 2.
After this case, we can assume that the number of gates is smaller than

√
n/2.

Case 2. If there are at least
√

n variables with out-degree 1, by the pigeon hole principle, two
of them must connect to the same gate in the same manner and therefore we can find a
symmetric pair of variables. After this case, we assume that at most

√
n variables of out-

degree at most 1.

Case 3. Recall that C has wire complexity at most 2n +
√

n/2− 2m. Since there are at most
√

n
variables of out-degree at most 1, we can see that at most 3

√
n/2 variables have out-degree

larger than 2. As a result, at least n− 5
√

n/2 variables have out-degree 2. Because there are
at most

√
n/2 gates, the number of different ways for an out-degree-2 variable to connect

to the circuit is at most 4 · (
√

n/2)2/2 = n/2 < n− 5
√

n/2 for n ≥ 100. Hence there must
be two variables of out-degree 2 connecting to the same pair of gates in the same manner,
which forms a symmetric pair. □

Lemma 7.9. There exists a p.p.t. oracle algorithm D which accepts if it is given oracle access to a
circuit with at least one symmetric pair of variables, and rejects with high probability if it is given
the truly random function. ♢

Proof. The algorithm enumerates all pairs (xi, xj) of distinct input variables. For each of such pair,
it randomly sample n assignments to the input variables and see whether exchanging the value
of xi and xj would change the function value. The algorithm accepts if and only if there exists a
pair (xi, xj) such that for all n sampled assignment, exchanging the value of xi and xj would not
change the function value. The correctness of the algorithm is obvious. □

Combining the three algorithms in Lemma 7.2, Lemma 7.3 and Lemma 7.8, we can distinguish
AC0[2] circuits with small wire complexity with truly random functions. This gives the following
PRF lower bound.

Theorem 7.10. If F = {Fn ⊆ Bn}n≥1 is a PRF, then it requires at least 2n +
√

n/2− 2 wires to
compute Fn in AC0[2] circuits for sufficiently large n. ♢

Similar to Section 7.2, we can also prove an unconditional AC0[2] lower bounds against almost
universal hash functions (and therefore a lower bound against ECC).

Theorem 7.11. If H = {Hn ⊆ Bn,m}n≥1 is an almost universal hash function, then it requires at
least 2n +

√
n/2− 2m wires to compute Fn in AC0[2] circuits for sufficiently large n. ♢

Proof. Recall that in the proof of Theorem 7.6 we have construct a subset Tn ⊆ Fn
2 × Fn

2 of size
O(n2) such that for all B2 circuits C with either intersecting critical paths or isolated variables,
there exists a pair (x, y) ∈ Tn such that C(x) = C(y). Let T̂n ≜ Tn ∪ {(x, y) | x ̸= y, |x| = |y| = 1}.
By Lemma 7.8, for all AC0[2] circuits of size at most 2n +

√
n/2−m, there exists a pair (x, y) ∈ T̂n

such that C(x) = C(y). Following the same argument of Theorem 7.6 we immediately obtain this
lower bound. □

43

8 A size-depth trade-off lower bound against TC0

In this section, we consider the regime of constant-depth linear threshold circuits, and prove a
slightly super-linear size-depth trade-off lower bound for pseudorandom function. Our lower
bound follows from a structural result for threshold circuits used in developing average-case hard-
ness [CSS18], quantified derandomization [Tel18] and pseudorandomness [HHTT21].

8.1 Extracting black-box property from white-box restriction

In this section, we will show that computing a PRF with depth-d threshold circuits require size at
least n1+Ω(1)d

.

Theorem 8.1. There exist θ > 0 and c > 1 such that the following lower bound holds. If F =

{Fn ⊆ Bn}n≥1 is a PRF, then for all d ≥ 1 and sufficiently large n, it requires at least n1+θc−d
wires

to compute Fn in TC0
d circuits. ♢

The technique we will use is the “white-box” random restriction method developed in pre-
vious works of average-case hardness and pseudorandomness for TC0 circuits [CSS18; Tel18;
HHTT21]. Although their results are presented in different forms, all of them essentially use
the following fact about threshold circuits: for a random restriction (or pseudorandom restriction)
ρ applied to a small threshold circuit C of depth d, with nice probability, there exists a properly
large subset Sρ of free variables such that for a random assignments σ to all variables but Sρ, again
with nice probability, the circuit C restricted by ρσ can be approxmable by a small threshold cir-
cuit of depth d − 1. For our purpose, we formalize this fact as Lemma 8.3 and generalize it to
multi-output case. We defer its proof to Section 8.3.

Definition 8.2. Let n, m ≥ 1 and 0 ≤ ε ≤ 1 be a parameter. A function f ∈ Bn,m is said to be ε-
approximable by a TC0

d circuit C if for a uniformly random input x, C(x) ̸= f (x) with probability
at most ε. A function f ∈ Bn,m is said to be transparent if each of its output bits is a constant or only
depends on exact one input variable. ♢

Lemma 8.3 (Restriction lemma for TC0). There exist absolute constants c > 30 and some con-
stant 0 < ε0 < 1 such that following holds. For all ε < ε0 and function α1(n), there exists some
δ > 0, such that for all depth d ≥ 1, output length m = m(n) and sufficiently large n, for any
f ∈ Bn,m that is α1(n)-approximable by a multi-output depth d threshold circuit of size n1+ε, if
we apply the restriction ρ ← Rn−δ to the function, with probability at least 1/8 there exists a
set of unfixed variables Sρ (which depends on ρ) of size at least n0.99, such that at least a half of
the restrictions σ to all variables not fixed by ρ and not in Sρ would make f ↾ρσ 4(α1(n) + α2(n))-
approximable by a multi-output threshold circuit of depth d− 1 and size |Sρ|1+cε (or a transparent
function if d = 1), where α2(n) ≜ 2n1+ε−δ exp(−2nδc1). ♢

Lemma 8.3 and its counterparts in [CSS18; Tel18] are considered as white-box techniques be-
cause the subset Sρ of unfixed variables is chosen according to the circuit approximating f and the
result of the random restriction ρ.27 To prove circuit lower bound for pseudorandom functions,

27We note that the restriction lemma for TC0 in [HHTT21] is indeed black-box: they argue that the circuit simpli-
fies to a hybrid computation model called LTF decision tree with appropriate parameters after the random restriction
even without selecting Sρ. Unfortunately, we are not aware of any simple way to obtain our lower bounds with their
restriction lemma.

44

we need to specify a black-box property of sparse TC0
d circuits to distinguish it from truly random

function with only oracle accesses. The key observation of our lower bound is that the following
black-box property can be extracted from the white-box restriction lemma.

Lemma 8.4. Let c be the constant in Lemma 8.3. There exists constants θ > 0 so that the following
holds. For all depth d ≥ 1, output length m = m(n) < n0.99d

, and sufficiently large n, for any
f ∈ Bn,m that is 1/8d+1-approximable by a multi-output depth d threshold circuit of size less than
n1+θc−d

, for a random assignment x ∈ Fn
2 to all input variables, with probability at least 1/16d+1,

there exists another assignment y different from x by exact one bit such that f (x) = f (y) holds.♢

Proof. Assume that ε0, δ, p, Sρ, α2(n) follows Lemma 8.3. Take θ < ε0 (therefore θc−d < ε0 for
any d). We will prove the statement by doing induction over d using Lemma 8.3. Assume that n
is sufficiently large28 and f ∈ Bn,m is 1/8d+1-approximable by a multi-output TC0

d circuit of size
n1+θc−d

. Since α2(n) = exp(−poly(n)), we have α2(n) < 1/8d+1 for sufficiently large n.
For simplicity, we call an assignment x good if there exists another assignment y that differs

on exactly one bit from x such that f (x) = f (y). What we want to show is that Pr[x is good] ≥
1/16d+1 for uniformly random x. For a random assignment to all input variables, we consider it
as a pair of a random restriction ρ ← Rp and a random assignment β to the leftover variables.
Clearly, it is sufficient to show that

Pr
ρ←Rp,β←{−1,1}|ρ−1(⋆)|

[(ρ, β) is good] ≥ 1
16d+1 . (1)

We call a random restriction ρ← Rp good if Sρ in Lemma 8.3 exists. By Lemma 8.3, Pr[ρ is good] ≥
1/8. Then it is sufficient to show that for any fixed good ρ,

Pr
β←{−1,1}|ρ−1(⋆)|

[(ρ, β) is good] ≥ 8
16d+1 . (2)

Now we fix any good ρ (so that there exists Sρ satisfying Lemma 8.3) and prove Equation (2). In
such case, the assignment β to the leftover variables can be further considered as the composition
of a random restriction σ to variables not in Sρ and another random assignment τ to the remaining
variables Sρ. Identify β = (σ, τ) as discussed above. We call an assignment σ good if f ↾ρσ can

be approximable by a TC0
d−1 circuit of size |Sρ|1+θc−(d−1)

(or a transparent function) with error
4(1/8d+1 + α2(n)) < 1/8d. By Lemma 8.3, at least a half of the assignments σ are good. This
means to prove Equation (2), it is sufficient to show that for any fixed good ρ and good σ,

Pr
τ←{−1,1}|Sρ |

[(ρ, σ, τ) is good] ≥ 1
16d . (3)

Firstly we consider d = 1. In this case, f ↾ρσ can be 1/8 approximated by a transparent function
such that each output bit depends on at most one input variable. Since the output length m < n0.99

is smaller than the input length |Sρ| ≥ n0.99, the transparent function is independent from some
input variable v. By union bound, for uniformly chosen τ and the corresponding τ′ only differ on

28Rigorously speaking, we will take n > n0, where n0 satisfies the following three constraints: (1) Lemma 8.3 holds
for depth d; (2) induction hypothesis holds for depth d− 1; and (3) the inequality α2(n) < 1/8d+1 holds.

45

input variable v, Pr[f ↾ρσ(τ) = f ↾ρσ(τ
′)] ≥ 3/4. By averaging argument, for at least 1/2 fraction

of τ, there exists some τ′ such that f ↾ρσ(τ) = f ↾ρσ(τ
′). This immediately shows that

Pr
τ←{−1,1}|Sρ |

[(ρ, σ, τ) is good] ≥ 1
2
≥ 1

16d .

When d > 1, there exists a multi-output threshold circuit of depth d − 1 and size less than
|Sρ|1+θc−(d−1)

that 1/8d-approximates f ↾ρσ, where |Sρ| is the input length of the new circuit. Since

|Sρ| ≥ n0.99, this circuit is of output length m < n0.99d ≤ |Sρ|0.99d−1
which satisfies the induction

condition. According to induction hypothesis, for at least 1/16d fraction of τ, there exists τ′ such
that f ↾ρσ(τ) = f ↾ρσ(τ

′). Then Equation (3) immediately follows since for each of such τ, (ρ, σ, τ)
is good. This completes the induction. □

This lemma shows that finding a collision is easy for multi-output functions approximable by
sparse threshold circuits. Since it is hard to find a collision for truly random functions, we can
then distinguish sparse threshold circuits from truly random functions.

Proof of Theorem 8.1. We will prove this result by presenting a distinguisher which separates
functions computable by sparse TC0

d circuits and truly random functions. Suppose that the set of
input variables is I, and the algorithm is given oracle access to the function f . Our algorithm is
quite simple.

• Let S be the subset of first ℓ(n) = 2⌈log log n⌉ input variables.

• Randomly choose an assignment x ← F
|I\S|
2 for other variables.

• Randomly flip an input variable of x to obtain y.

• Accept if f (z∥x) = f (z∥y) holds for all assignment z ∈ F
|S|
2 .

Since there are in total 2ℓ(n) = Θ(log2 n) different assignments to S, the algorithm queries
Θ(log2 n) separated pairs of assignments which can be done in polynomial time. For truly random
functions, each pair of assignments outputs the same result with probability 1/2 independently.
Thus, the algorithm would accept with probability 2−Θ(log2 n), which is negligible.

We then show the algorithm would accept functions computable by sparse TC0 circuits with
non-negligible probability. Firstly, f can be viewed as a multi-output function g ∈ Bn−ℓ(n),2ℓ(n) such
that z-th output bit of g(x) is f (z∥x). Clearly, our algorithm accept if and only if g(x) = g(y) holds.
Since each output bit of g compute f under some restriction, g can be computed by a TC0

d circuit
of output length Θ(log2(n)) and wire complexity less than Θ(log2(n)) · n1+θc−d

. Let θ be some
constant moderately smaller than the parameter required in Lemma 8.4. When n is sufficiently
large, both the output length and the wire complexity would satisfy the requirement in Lemma
8.4. Thus, there exists some y such that g(x) = g(y) with probability at least 1/16d+1. Since there
are only n different ways to flip one bit, the algorithm can hit the proper y with probability at
least 1/n. This shows the algorithm can accept the original TC0 circuit with probability at least
1/(16d+1n), which is non-negligible.

Notice that we can easily boost up the gap between the acceptance probability of the two cases
by repeating the test polynomial times. So the algorithm can effectively distinguish two cases,
which concludes that any PRF cannot be computed by threshold circuits with less than n1+θc−d

wires if the depths of the circuits are bounded by d. □

46

8.2 A lower bound for hash functions against TC0

Similar to Theorem 7.6, we can modify the proof for the PRF lower bound to obtain an uncondi-
tional circuit lower bound for almost universal hash functions (and also for error-correcting codes
with exactly the same wire complexity).

Theorem 8.5. Let c > 30 be the constant in Lemma 8.3. There exists a constant θ > 0 so that the
following holds. Let m = m(n) < n0.99d

. If H = {Hn ⊆ Bn,m}n≥1 is an almost universal hash
function, then for all d ≥ 1 and sufficiently large n, it requires at least n1+θc−d

wires to compute Hn
in TC0

d[2] circuits. ♢

Proof. Let θ be the constant in Lemma 8.4. Towards a contradiction assume that H can be com-
puted by TC0

d circuits of size n1+θc−d
for infinitely many length n. Consider the following distribu-

tion Dn supported over pairs of distinct n-bit inputs: we first choose an input x uniformly, choose
an index i← [n], and generate the pair (x, y) where y differs from x only on the ith bit. By Lemma
8.4, for any TC0

d circuit C of size n1+θc−d
, we have

Pr
(x,y)←Dn

[C(x) = C(y)] ≥ 1
16d+1n

.

This means that for those bad n,

Pr
(x,y)←Dn,h←Hn

[h(x) = h(y)] ≥ 1
16d+1n

.

By averaging argument, for each of the bad n, there exists a pair (x, y) of distinct inputs such that
h(x) = h(y) with non-negligible probability. This contradicts the almost universality ofH. □

Note that here we need to assume m < n0.99d
to apply Lemma 8.4. In fact, we can remove this

requirement to make our lower bounds more general for large d.

Corollary 8.6. Let c > 30 be the constant in Lemma 8.3 and θ̂ ∈ (0, 1) be an absolute constant.
For any constant ε ∈ (0, 1/3) and output length m = m(n) = Θ(nε), if H = {Hn ⊆ Bn,m}n≥1

is an almost universal hash function, then it requires at least n1+θ̂c−d
wires to compute Hn in TC0

d
circuits for all d ≥ 1 and sufficiently large n. ♢

Proof. Let θ be the constant in Theorem 8.5. Set θ̂ ≜ 0.99 · θ · c−2. Towards a contradiction we
assume that there exists an almost universal hash function H = {Hn ⊆ Bn,m}n≥1 for m = Θ(nε)

that is computable by TC0
d circuits of n1+θ̂c−d

wires for infinitely many n. If ε < 0.99d we can
immediately derive a contradiction by Theorem 8.5.

Now we assume that ε ≥ 0.99d. By Corollary 6.4, we can construct a linear almost universal
hash function Ĥ = {Ĥm ⊆ Bm,k}m≥1 for k = k(m) = Θ(m0.99d/(2ε)). Since the parity function of
m variables can be computed by a TC0

2 circuit of wire complexity O(m2) (see, e.g., [PS90]), Ĥm can
be realized by TC0

2 circuits of wire complexity O(km2). The composition of Ĥ and H turns out to
be an almost universal hash function with output length k(m) < n0.99d

computable in TC0
d+2 with

wire complexity
n1+θ̂c−d

+ O(km2) ≤ n1+θ̂c−d
+ o(n) ≤ n1+θc−(d+2)

for sufficiently large n. This leads to a contradiction with Theorem 8.5. □

47

8.3 Proof of the restriction lemma

The technique we use to prove the restriction lemma follows the standard method based on
anti-concentration of threshold functions, which has been used to prove average-case hardness
[CSS18], quantified derandomization [Tel18], and pseudorandom generator [HHTT21] for sparse
TC0 circuits. There is essentially nothing new in the proof, but we need to carefully check that the
previous proofs can be adapted to our statement. The proof mainly involves three steps.

1. We notice that after a random restriction, most gates in depth-1 connected to many variables
become highly “imbalanced” to be approximable by constants. This procedure is done by a
structural lemma from [CSS18].

2. Then we count the number of variables feeding a gate that is both “balanced” and large fan-
in. It can be shown that the number of such variables is o(n) with nice probability. We will
not include these variables in Sρ, so that fixing all variables outside Sρ will make all such
gates (i.e., both balanced and of large fan-in) become constants.

3. Finally, we only need to consider gates with small fan-in. It is easy to see that it can select
sufficiently many variables into Sρ, such that for each small gate, at most one of its input
variables is in Sρ. By fixing all variables but Sρ, all gates in depth-1 can be approximable by
constants.

We start by defining what “balance” means to a threshold function.

Definition 8.7 (t-balance). A function LTFw,θ(x) is called t-balanced if |θ| ≤ t · ∥w∥2. Otherwise, it
is called t-imbalanced. ♢

By Hoeffding’s inequality (Lemma 4.12), a t-imbalanced LTF function has a large fraction of its
input being constant.

Proposition 8.8. Let LTFw,θ(x) be a t-imbalanced function, then

Pr
x∈{−1,1}n

[LTFw,θ(x) = sgn(θ)] ≤ 2 exp(−2t2). ♢

Proof. We suppose, without loss of generality, that θ > 0. Then,

Pr
x∈{−1,1}n

[LTFw,θ(x) = 1] = Pr
x∈{−1,1}n

[⟨w, x⟩ ≥ t∥w∥2] (t-imbalance)

≤2 exp
(
−2t2∥w∥2

2

∑n
i=1 w2

i

)
(Lemma 4.12)

=2 exp(−2t2). □

We will make use of the following anti-concentration lemma for linear threshold functions.

Lemma 8.9 ([CSS18], Lemma 4.4; or [Tel18], Proposition 5.8). There exist absolute constants p0 <
1, c1, c2 > 0, such that for any p ∈ [0, p0], any LTF function Φ over n input variables satisfies

Pr
ρ←Rp

[
Φ↾ρ is p−c1-balanced

]
≤ O(pc2). ♢

48

This lemma tells us that after a random p-restriction, any LTF function will become extremely
biased with nice probability. If a function is indeed imbalanced after random restriction, we can
then approximate it using a constant by Proposition 8.8.

We are now ready to prove the main restriction lemma, following the intuition above.

Reminder of Lemma 8.3. There exist absolute constants c > 1 and some constant 0 < ε0 < 1
such that following holds. For all ε < ε0 and function α1(n), there exists some δ > 0, such that
for all depth d ≥ 1, output length m = m(n), and sufficiently large n, for any f ∈ Bn,m that
is α1(n)-approximable by a multi-output depth d threshold circuit of size n1+ε, if we apply the
restriction ρ ← Rn−δ to the function, with probability at least 1/8 there exists a set of unfixed
variables Sρ (which depends on ρ) of size at least n0.99, such that at least a half of the restrictions σ
to all variables not fixed by ρ and not in Sρ would make f ↾ρσ 4(α1(n) + α2(n))-approximable by a
multi-output threshold circuit of depth d− 1 and size |Sρ|1+cε (or a transparent function if d = 1),
where α2(n) ≜ 2n1+ε−δ exp(−2nδc1). ♢

Proof. Let f ∈ Bn,m be a function that can be α1(n)-approximated by a depth d threshold circuit C
of size n1+ε. Assume that ϕ1, ϕ2, . . . , ϕt are the gates of depth 1 (i.e., directly fed by inputs). A gate
ϕi is called small if its in-degree is at most nδ, where δ is a constant to be chosen later; and is called
large otherwise. We use Φs and Φl to denote the set of small and large gates of depth 1, respectively.
A variable xi is called small if its out-degree is at most n2ε, and is called large otherwise. We use Xs
and Xl to denote the set of small and large variables, respectively. Since the circuit has only n1+ε

wires, |Φl | ≤ n1+ε−δ and |Xl | ≤ n1−ε.
Assume that the circuit C is randomly restricted with ρ ← Rp for p = n−δ/2. For simplicity,

we identify the restriction ρ as a pair (I, y) where I ⊆ [n] represents the fixed variables and y ∈
{−1, 1}|I| represents the assignment. A restriction ρ = (I, y) is called generic for a large gate ϕi ∈ Φl
of in-degree k if the number of free variables after the restriction is in the range [kp/2, 3kp/2], and
a restriction ρ = (I, y) (or simply an I) is called generic if |Xs ∩ ρ−1(⋆)| ≥ pn/2, and it is generic for
all large gates. Let G be the event that ρ is generic. Note that |Xs| ≥ n− n1−ε = n− o(n). Clearly,

Pr
ρ←Rp

[¬G]

≤ Pr
ρ←Rp

[|Xs ∩ ρ−1(⋆)| < pn/2] + ∑
ϕ∈Φl

[ρ is not generic for ϕ] (Union bound)

≤ exp(−Ω(pn)) + ∑
ϕ∈Φl

[ρ is not generic for ϕ] (Chernoff bound)

≤ exp(−Ω(pn)) + |Φl | · exp(−Ω(p · in-degree(ϕ))) (Chernoff bound)

≤ exp(−Ω(n1−δ/2)) + n1+ε−δ exp(−Ω(nδ/2))

≤negl(n).

Hence we can stick to the case when the restriction is generic from now on.
Recall that our goal is to find a large subset Sρ of unfixed variables such that at least a half

of the restrictions that fixes all variables not in Sρ would make f approximable by a small TC0
d−1

circuit. Let Fρ be the set of unfixed variables not in Sρ. Now will we define the set Fρ and Sρ by the
following three-phase procedure.

Large variables. Let n1 = |Xs ∩ I|, which is the number of unfixed small variables. If ρ is
generic, we know that n1 ≥ pn/2 ≥ n1−δ/2/2, which is sufficiently large for small δ. In this phase,
we simply put all unfixed large variables into Fρ.

49

Large gates. Let ϕi ∈ Φl be a large gate. By Lemma 8.9, we know that Prρ←Rp [ϕi is p−c1-balanced] ≤
pc2 for absolute constants c1 and c2, which means that for large n,

Pr
ρ←Rp

[ϕi is p−c1-balanced | G] ≤ pc2

Prρ←Rp [G]
≤ pc2

1− negl(n)
≤ 2pc2 .

By Proposition 8.8, the large gates that become imbalanced would output a constant value with
high probability, so that they will not bother us. Hence in this phase, we will put all the inputs of
p−c1-balanced large gates into Fρ.

To analyze the number of inputs that will be put into Fρ, we define a random variable Yi for
each ϕi ∈ Φl , which is 0 if ϕi is p−c1-imbalanced, and is the in-degree of ϕi after the restriction if ϕi
is p−c1-balanced. Let Y = ∑ϕi∈Φl

Yi be an upper bound of the number of variables to be put into
Fρ. Clearly,

E
ρ←Rp

[Yi | G] ≤
3p
2
· in-degree(ϕi) Pr

ρ←Rp
[ϕi is p−c1-balanced | G] ≤ 3p1+c2 · in-degree(ϕi),

hence
E

ρ←Rp
[Y | G] = ∑

ϕi∈Φl

E
ρ←Rp

[Yi | G] ≤ 3p1+c2 · ∑
ϕi∈Φl

in-degree(ϕi) ≤ 3p1+c2 n1+ε.

Let µ ≜ 3p1+c2 n1+ε. By Markov’s inequality, we know that

Pr
ρ←Rp

[Y > 4µ | G] ≤ 1
4

.

Let L be the event that Y ≤ 4µ, i.e., only 4µ variables are put into Fρ in this phase. If ρ is generic
and we set δ to be moderately large, say δ = 3ε/c2, with probability at least 3/4, Lwill happen, in
which case we will put only O(n1+ε−(1+c2)δ/2) = o(n1) variables into Fρ.

Small variables feeding small gates. Now we deal with small gates in depth 1. We will put
(roughly) all but n1−(2ε+δ)

1 variables into Fρ, so that for each small gate ϕj ∈ Φs, at most one of its
input variables is free. Consider the undirected graph G = (V, E) where each node represents a
variables that is neither fixed nor put in Fρ in the above two cases, and two nodes are connected
if both of them feed a small gate ϕj ∈ Φs. Since the out-degree of small variables and in-degree
of small gates are all bounded, each node in G is of degree at most n2ε+δ, hence there exists an
independent set S of size |V|/n2ε+δ. We define Sρ to be all the vertices inside the independent
set, and put all other variables into Fρ. Note that condition on G and L, the size of Sρ is at least
β ≜ np/2−4µ

n2ε+δ .
Analysis. Now it is sufficient to show that under the random restriction ρ, with nice probabil-

ity, |Sρ| ≥ β = np/2−4µ

n2ε+δ and for at least a half of the assignments σ to the unfixed variables not in
Sρ, f ↾ρσ can be approximated by a circuit of size |Sρ|1+cε for an absolute constant c. Let ρ = (Iρ, yρ)
and σ = (Iσ, yσ), the circuit C′ that approximates f ↾ρσ is defined as follows. We start with the
circuit C that approximates f .

1. For a small gate ρj ∈ Φs, since at most one of its input variables is in Sρ, it is of in-degree
at most 1 after the restrictions ρ and σ. Hence we can make its descendants directly fed by
its input nodes and modify the functions computed by its descendants accordingly without
deviating the functionality of the circuit.

50

2. By the phase dealing with large gates, all p−c1-balanced large gates become in-degree 0. We
can replace them by constants and simplify the circuit accordingly. For a p−c1-imbalanced
large gate ϕi = LTFw,θ after the restriction, we simply replace it by the most probable con-
stant following Proposition 8.8.

For d > 1, the depth of C′ becomes d− 1 since all the gates in depth 1 are eliminated. When
d = 1, this circuit becomes transparent, i.e., each output node depends on at most one input bit.
By the preceding discussion, we have already known that |Sρ| ≥ β with certainty if G and L holds
simultaneously. Now we set the parameters ε0 ≜ 0.01 min{c2, 1/(2+ 4.5/c2)} and δ ≜ 3ε/c2, such
that for large n,

µ = o(np), β =

(
1
2
− o(1)

)
n1−2ε−3δ/2 ≥

(
1
2
− o(1)

)
n1−(2+4.5/c2)ε > n0.99.

Since the size of C′ is at most the size of C, we can see that for large constant c independent of ε, n
and d,

size(C′) ≤ size(C) ≤ n1+ε ≤ β
1+ε

1−(2+4.5/c2)ε ≤ |Sρ|1+cε

for sufficently large n conditioning on G and L. Let S be the event that |Sρ| ≥ β and size(C′) ≤
|Sρ|1+cε. So we can see that

Pr
ρ←Rp,yσ←F

|Iσ |
2

[S | G] = Pr
ρ←Rp,yσ←F

|Iσ |
2

[L] · Pr
ρ←Rp,yσ←F

|Iσ |
2

[S | G,L] = Pr
ρ←Rp,yσ←F

|Iσ |
2

[L] ≥ 3
4

. (4)

Now we show that C′ approximates f ↾ρσ. Fix an arbitrary generic Iρ. Firstly, we can see that

Pr
yρ←F

|Iρ |
2 ,yσ←F

|Iσ |
2 ,z←F

|Sρ |
2

[f ↾ρσ(z) ̸= C(yρ, yσ, z)] = Pr
z←Fn

2

[f (z) ̸= C(z)] ≤ α1(n),

since f is α1(n)-approximated by C. Notice that replacing imbalanced gates is the only place
that introduces additional errors in the procedure defining Sρ. Let ϕ↾ρ denote the gate ϕ under
restriction ρ (so that its input is restricted to unfixed variables and its internal function is modified).
We can see that

Pr
yρ←F

|Iρ |
2 ,yσ←F

|Iσ |
2 ,z←F

|Sρ |
2

[C(yρ, yσ, z) ̸= C′(z)]

≤ Pr
yρ←F

|Iρ |
2 ,yσ←F

|Iσ |
2 ,z←F

|Sρ |
2

[∃ϕ = LTFw,θ ∈ Φl , ϕ↾ρ is p−c1-imbalanced∧ ϕ(yρ, yσ, z) = sgn(ϕ↾ρ)]

≤ ∑
ϕ=LTFw,θ∈Φl

 Pr
yρ←F

|Iρ |
2 ,yσ←F

|Iσ |
2 ,z←F

|Sρ |
2

[ϕ is p−c1-imbalanced∧ ϕ = sgn(ϕ↾ρ)]

 (Union bound)

≤ ∑
ϕ=LTFw,θ∈Φl

 Pr
yρ←F

|Iρ |
2 ,yσ←F

|Iσ |
2 ,z←F

|Sρ |
2

[ϕ = sgn(ϕ↾ρ) | ϕ is p−c1-imbalanced]


≤2|Φl | · exp(−2p−c1) (Proposition 8.8)

≤2n1+ε−δ exp(−2nδc1).

Let α2(n) ≜ 2n1+ε−δ exp(−2nδc1). Again by union bound,

Pr
yρ←F

|Iρ |
2 ,yσ←F

|Iσ |
2 ,z←F

|Sρ |
2

[f ↾ρσ(z) ̸= C′(z)] ≤ α1(n) + α2(n).

51

By averaging argument, for at least 1/2 fraction of assignments yρ to Iρ, there exists 1/2 fraction
of assignments yσ to Iσ such that

Pr
z←F

|Sρ |
2

[f ↾ρσ(z) ̸= C′(z)] ≤ 4(α1(n) + α2(n)).

Let A be the event that for at least 1/2 fraction of assignments yσ to the variables in Iσ, f ↾ρσ is
4(α1(n) + α2(n))-approximated by C′. Then

Pr
ρ←Rp

[A | G] ≥ 1
2

. (5)

Combining (4) and (5), we can see that for large n,

Pr
ρ←Rρ

[S ∧A]

≥ Pr
ρ←Rρ

[S ∧A | G] Pr
ρ←Rp

[G]

≥
(

1− Pr
ρ←Rρ

[¬S | G]− Pr
ρ←Rρ

[¬A | G]
)

Pr
ρ←Rp

[G]

≥
(

1− 1
4
− 1

2

)
(1− negl(n))

≥1
8

.

This means that under a random restriction ρ ← Rp, with probability 1/8, there exists a subset
Sρ of unfixed variables such that |Sρ| ≥ β > n0.99 and for at least a half of the assignments σ to
unfixed variables not in Sρ, the function f ↾ρσ can be 4(α1(n) + α2(n))-approximated by a circuit of
size |Sρ|1+cε, which completes the proof. □

Acknowledgement

We are greatly thankful to Yilei Chen for his support throughout this project. We thank Lijie
Chen, Hanlin Ren, and Ryan Williams for the insightful discussion; and Lijie Chen for proofread-
ing an earlier draft of the paper. We are grateful to Yuval Ishai for telling us recent results on
low-complexity cryptography, and Roei Tell for helpful discussion on the black-box natural proof
barrier. We thank Igor C. Oliveira for organizing a virtual seminar and valuable comments. We are
thankful to Tianyi Zhang for addressing a typo in an earlier draft and Yiding Zhang for his help in
improving some writing. We also thank anonymous reviewers for comments on the presentation
of the paper.

References

[ABGKR14] Adi Akavia, Andrej Bogdanov, Siyao Guo, Akshay Kamath, and Alon Rosen. “Can-
didate weak pseudorandom functions in AC0 ◦MOD2”. In: Innovations in Theoreti-
cal Computer Science, ITCS’14, Princeton, NJ, USA, January 12-14, 2014. Ed. by Moni
Naor. ACM, 2014, pp. 251–260. DOI: 10.1145/2554797.2554821. URL: https://
doi.org/10.1145/2554797.2554821 (cit. on p. 10).

52

https://doi.org/10.1145/2554797.2554821
https://doi.org/10.1145/2554797.2554821
https://doi.org/10.1145/2554797.2554821

[AK10] Eric Allender and Michal Koucký. “Amplifying lower bounds by means of self-
reducibility”. In: J. ACM 57.3 (2010), 14:1–14:36. DOI: 10.1145/1706591.1706594.
URL: https://doi.org/10.1145/1706591.1706594 (cit. on pp. 3, 7, 9, 15, 16).

[And87] A. E. Andreev. “On a method for obtaining more than quadratic effective lower
bounds for the complexity of π-schemes”. In: Vestnik Moskov. Univ. Ser. 1. Mat. Mekh.
(1 1987), pp. 70–73 (cit. on pp. 8, 10, 20, 21).

[AHIKV17] Benny Applebaum, Naama Haramaty, Yuval Ishai, Eyal Kushilevitz, and Vinod
Vaikuntanathan. “Low-Complexity Cryptographic Hash Functions”. In: 8th Innova-
tions in Theoretical Computer Science Conference, ITCS 2017, January 9-11, 2017, Berke-
ley, CA, USA. Ed. by Christos H. Papadimitriou. Vol. 67. LIPIcs. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2017, 7:1–7:31. DOI: 10.4230/LIPIcs.ITCS.2017.
7. URL: https://doi.org/10.4230/LIPIcs.ITCS.2017.7 (cit. on p. 62).

[BPR12] Abhishek Banerjee, Chris Peikert, and Alon Rosen. “Pseudorandom Functions and
Lattices”. In: Advances in Cryptology - EUROCRYPT 2012 - 31st Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Cambridge, UK,
April 15-19, 2012. Proceedings. Ed. by David Pointcheval and Thomas Johansson.
Vol. 7237. Lecture Notes in Computer Science. Springer, 2012, pp. 719–737. DOI:
10.1007/978-3-642-29011-4_42. URL: https://doi.org/10.1007/978-3-642-
29011-4_42 (cit. on pp. 3, 35).

[Blu84] Norbert Blum. “A Boolean Function Requiring 3n Network Size”. In: Theor. Comput.
Sci. 28 (1984), pp. 337–345. DOI: 10.1016/0304- 3975(83)90029- 4. URL: https:
//doi.org/10.1016/0304-3975(83)90029-4 (cit. on p. 20).

[BR17] Andrej Bogdanov and Alon Rosen. “Pseudorandom Functions: Three Decades Later”.
In: Tutorials on the Foundations of Cryptography. Ed. by Yehuda Lindell. Springer In-
ternational Publishing, 2017, pp. 79–158. DOI: 10.1007/978-3-319-57048-8_3.
URL: https://doi.org/10.1007/978-3-319-57048-8_3 (cit. on pp. 3, 5).

[BIPSW18] Dan Boneh, Yuval Ishai, Alain Passelègue, Amit Sahai, and David J. Wu. “Explor-
ing Crypto Dark Matter: - New Simple PRF Candidates and Their Applications”. In:
Theory of Cryptography - 16th International Conference, TCC 2018, Panaji, India, Novem-
ber 11-14, 2018, Proceedings, Part II. Ed. by Amos Beimel and Stefan Dziembowski.
Vol. 11240. Lecture Notes in Computer Science. Springer, 2018, pp. 699–729. DOI:
10.1007/978-3-030-03810-6_25. URL: https://doi.org/10.1007/978-3-030-
03810-6_25 (cit. on p. 10).

[Boy+21] Elette Boyle et al. “Low-Complexity Weak Pseudorandom Functions in AC0[MOD2]”.
In: Advances in Cryptology - CRYPTO 2021 - 41st Annual International Cryptology Con-
ference, CRYPTO 2021, Virtual Event, August 16-20, 2021, Proceedings, Part IV. Ed.
by Tal Malkin and Chris Peikert. Vol. 12828. Lecture Notes in Computer Science.
Springer, 2021, pp. 487–516. DOI: 10.1007/978-3-030-84259-8_17. URL: https:
//doi.org/10.1007/978-3-030-84259-8_17 (cit. on p. 10).

[Cha03] L. Sunil Chandran. “A High Girth Graph Construction”. In: SIAM J. Discret. Math.
16.3 (2003), pp. 366–370. DOI: 10.1137/S0895480101387893. URL: https://doi.
org/10.1137/S0895480101387893 (cit. on pp. 6, 12, 34).

[Che18] Lijie Chen. “Toward Super-Polynomial Size Lower Bounds for Depth-Two Thresh-
old Circuits”. In: CoRR abs/1805.10698 (2018). arXiv: 1805.10698. URL: http://
arxiv.org/abs/1805.10698 (cit. on p. 10).

53

https://doi.org/10.1145/1706591.1706594
https://doi.org/10.1145/1706591.1706594
https://doi.org/10.4230/LIPIcs.ITCS.2017.7
https://doi.org/10.4230/LIPIcs.ITCS.2017.7
https://doi.org/10.4230/LIPIcs.ITCS.2017.7
https://doi.org/10.1007/978-3-642-29011-4_42
https://doi.org/10.1007/978-3-642-29011-4_42
https://doi.org/10.1007/978-3-642-29011-4_42
https://doi.org/10.1016/0304-3975(83)90029-4
https://doi.org/10.1016/0304-3975(83)90029-4
https://doi.org/10.1016/0304-3975(83)90029-4
https://doi.org/10.1007/978-3-319-57048-8_3
https://doi.org/10.1007/978-3-319-57048-8_3
https://doi.org/10.1007/978-3-030-03810-6_25
https://doi.org/10.1007/978-3-030-03810-6_25
https://doi.org/10.1007/978-3-030-03810-6_25
https://doi.org/10.1007/978-3-030-84259-8_17
https://doi.org/10.1007/978-3-030-84259-8_17
https://doi.org/10.1007/978-3-030-84259-8_17
https://doi.org/10.1137/S0895480101387893
https://doi.org/10.1137/S0895480101387893
https://doi.org/10.1137/S0895480101387893
https://arxiv.org/abs/1805.10698
http://arxiv.org/abs/1805.10698
http://arxiv.org/abs/1805.10698

[CJW19] Lijie Chen, Ce Jin, and R. Ryan Williams. “Hardness Magnification for all Sparse
NP Languages”. In: 60th IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2019, Baltimore, Maryland, USA, November 9-12, 2019. Ed. by David Zucker-
man. IEEE Computer Society, 2019, pp. 1240–1255. DOI: 10.1109/FOCS.2019.00077.
URL: https://doi.org/10.1109/FOCS.2019.00077 (cit. on pp. 3, 4, 7, 9, 15, 16, 19,
21, 22).

[CJW20] Lijie Chen, Ce Jin, and R. Ryan Williams. “Sharp threshold results for computa-
tional complexity”. In: Proccedings of the 52nd Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2020, Chicago, IL, USA, June 22-26, 2020. Ed. by Kon-
stantin Makarychev, Yury Makarychev, Madhur Tulsiani, Gautam Kamath, and Ju-
lia Chuzhoy. ACM, 2020, pp. 1335–1348. DOI: 10.1145/3357713.3384283. URL:
https://doi.org/10.1145/3357713.3384283 (cit. on pp. 3, 4, 7, 8, 9, 15, 16, 19, 21,
22).

[CT19] Lijie Chen and Roei Tell. “Bootstrapping results for threshold circuits "just beyond"
known lower bounds”. In: Proceedings of the 51st Annual ACM SIGACT Symposium
on Theory of Computing, STOC 2019, Phoenix, AZ, USA, June 23-26, 2019. Ed. by Moses
Charikar and Edith Cohen. ACM, 2019, pp. 34–41. DOI: 10.1145/3313276.3316333.
URL: https://doi.org/10.1145/3313276.3316333 (cit. on pp. 3, 4, 6, 7, 8, 9, 10, 11,
13, 15, 16, 18, 19, 21, 22, 35, 37, 38).

[CT21] Lijie Chen and Roei Tell. “Simple and fast derandomization from very hard func-
tions: eliminating randomness at almost no cost”. In: STOC ’21: 53rd Annual ACM
SIGACT Symposium on Theory of Computing, Virtual Event, Italy, June 21-25, 2021. Ed.
by Samir Khuller and Virginia Vassilevska Williams. ACM, 2021, pp. 283–291. DOI:
10.1145/3406325.3451059. URL: https://doi.org/10.1145/3406325.3451059
(cit. on p. 24).

[Che+20] Lijie Chen et al. “Beyond Natural Proofs: Hardness Magnification and Locality”.
In: 11th Innovations in Theoretical Computer Science Conference, ITCS 2020, January 12-
14, 2020, Seattle, Washington, USA. Ed. by Thomas Vidick. Vol. 151. LIPIcs. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2020, 70:1–70:48. DOI: 10.4230/LIPIcs.
ITCS.2020.70. URL: https://doi.org/10.4230/LIPIcs.ITCS.2020.70 (cit. on
pp. 3, 4, 7, 15, 17).

[CSS18] Ruiwen Chen, Rahul Santhanam, and Srikanth Srinivasan. “Average-Case Lower
Bounds and Satisfiability Algorithms for Small Threshold Circuits”. In: Theory Com-
put. 14.1 (2018), pp. 1–55. DOI: 10.4086/toc.2018.v014a009. URL: https://doi.
org/10.4086/toc.2018.v014a009 (cit. on pp. 6, 8, 14, 16, 20, 23, 44, 48).

[CKLM20] Mahdi Cheraghchi, Valentine Kabanets, Zhenjian Lu, and Dimitrios Myrisiotis. “Cir-
cuit Lower Bounds for MCSP from Local Pseudorandom Generators”. In: ACM
Trans. Comput. Theory 12.3 (2020), 21:1–21:27. DOI: 10.1145/3404860. URL: https:
//doi.org/10.1145/3404860 (cit. on p. 21).

[DK11] Evgeny Demenkov and Alexander S. Kulikov. “An Elementary Proof of a 3n - o(n)
Lower Bound on the Circuit Complexity of Affine Dispersers”. In: Mathematical
Foundations of Computer Science 2011 - 36th International Symposium, MFCS 2011, War-
saw, Poland, August 22-26, 2011. Proceedings. Ed. by Filip Murlak and Piotr Sankowski.
Vol. 6907. Lecture Notes in Computer Science. Springer, 2011, pp. 256–265. DOI:

54

https://doi.org/10.1109/FOCS.2019.00077
https://doi.org/10.1109/FOCS.2019.00077
https://doi.org/10.1145/3357713.3384283
https://doi.org/10.1145/3357713.3384283
https://doi.org/10.1145/3313276.3316333
https://doi.org/10.1145/3313276.3316333
https://doi.org/10.1145/3406325.3451059
https://doi.org/10.1145/3406325.3451059
https://doi.org/10.4230/LIPIcs.ITCS.2020.70
https://doi.org/10.4230/LIPIcs.ITCS.2020.70
https://doi.org/10.4230/LIPIcs.ITCS.2020.70
https://doi.org/10.4086/toc.2018.v014a009
https://doi.org/10.4086/toc.2018.v014a009
https://doi.org/10.4086/toc.2018.v014a009
https://doi.org/10.1145/3404860
https://doi.org/10.1145/3404860
https://doi.org/10.1145/3404860

10.1007/978-3-642-22993-0_25. URL: https://doi.org/10.1007/978-3-642-
22993-0_25 (cit. on pp. 8, 20).

[FGHK16] Magnus Gausdal Find, Alexander Golovnev, Edward A. Hirsch, and Alexander S.
Kulikov. “A Better-Than-3n Lower Bound for the Circuit Complexity of an Explicit
Function”. In: IEEE 57th Annual Symposium on Foundations of Computer Science, FOCS
2016, 9-11 October 2016, Hyatt Regency, New Brunswick, New Jersey, USA. Ed. by Irit
Dinur. IEEE Computer Society, 2016, pp. 89–98. DOI: 10.1109/FOCS.2016.19. URL:
https://doi.org/10.1109/FOCS.2016.19 (cit. on pp. 8, 20).

[GHKPV13] Anna Gál, Kristoffer Arnsfelt Hansen, Michal Koucký, Pavel Pudlák, and Emanuele
Viola. “Tight Bounds on Computing Error-Correcting Codes by Bounded-Depth
Circuits With Arbitrary Gates”. In: IEEE Trans. Inf. Theory 59.10 (2013), pp. 6611–
6627. DOI: 10.1109/TIT.2013.2270275. URL: https://doi.org/10.1109/TIT.
2013.2270275 (cit. on p. 32).

[GDP73] S. I. Gelfand, R. L. Dobrushin, and M. S. Pinsker. “On the Complexity of Coding”.
In: Second International Symposium on Information Theory. 1973, pp. 177–184 (cit. on
pp. 11, 12, 32).

[GGM84] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. “How to Construct Random
Functions (Extended Abstract)”. In: 25th Annual Symposium on Foundations of Com-
puter Science, West Palm Beach, Florida, USA, 24-26 October 1984. IEEE Computer So-
ciety, 1984, pp. 464–479. DOI: 10.1109/SFCS.1984.715949. URL: https://doi.org/
10.1109/SFCS.1984.715949 (cit. on pp. 3, 18, 20).

[GL89] Oded Goldreich and Leonid A. Levin. “A Hard-Core Predicate for all One-Way
Functions”. In: Proceedings of the 21st Annual ACM Symposium on Theory of Comput-
ing, May 14-17, 1989, Seattle, Washigton, USA. Ed. by David S. Johnson. ACM, 1989,
pp. 25–32. DOI: 10.1145/73007.73010. URL: https://doi.org/10.1145/73007.
73010 (cit. on p. 3).

[GW14] Oded Goldreich and Avi Wigderson. “On derandomizing algorithms that err ex-
tremely rarely”. In: Symposium on Theory of Computing, STOC 2014, New York, NY,
USA, May 31 - June 03, 2014. Ed. by David B. Shmoys. ACM, 2014, pp. 109–118. DOI:
10.1145/2591796.2591808. URL: https://doi.org/10.1145/2591796.2591808
(cit. on pp. 8, 9, 15, 16, 21, 22).

[Gor93] Daniel M. Gordon. “Discrete Logarithms in GF(P) Using the Number Field Sieve”.
In: SIAM J. Discret. Math. 6.1 (1993), pp. 124–138. DOI: 10 . 1137 / 0406010. URL:
https://doi.org/10.1137/0406010 (cit. on p. 36).

[Hås86] Johan Håstad. “Almost Optimal Lower Bounds for Small Depth Circuits”. In: Pro-
ceedings of the 18th Annual ACM Symposium on Theory of Computing, May 28-30, 1986,
Berkeley, California, USA. Ed. by Juris Hartmanis. ACM, 1986, pp. 6–20. DOI: 10.
1145/12130.12132. URL: https://doi.org/10.1145/12130.12132 (cit. on pp. 8,
16, 18).

[Hås98] Johan Håstad. “The Shrinkage Exponent of de Morgan Formulas is 2”. In: SIAM
J. Comput. 27.1 (1998), pp. 48–64. DOI: 10.1137/S0097539794261556. URL: https:
//doi.org/10.1137/S0097539794261556 (cit. on pp. 8, 10, 18, 20, 21, 22, 24, 25).

55

https://doi.org/10.1007/978-3-642-22993-0_25
https://doi.org/10.1007/978-3-642-22993-0_25
https://doi.org/10.1007/978-3-642-22993-0_25
https://doi.org/10.1109/FOCS.2016.19
https://doi.org/10.1109/FOCS.2016.19
https://doi.org/10.1109/TIT.2013.2270275
https://doi.org/10.1109/TIT.2013.2270275
https://doi.org/10.1109/TIT.2013.2270275
https://doi.org/10.1109/SFCS.1984.715949
https://doi.org/10.1109/SFCS.1984.715949
https://doi.org/10.1109/SFCS.1984.715949
https://doi.org/10.1145/73007.73010
https://doi.org/10.1145/73007.73010
https://doi.org/10.1145/73007.73010
https://doi.org/10.1145/2591796.2591808
https://doi.org/10.1145/2591796.2591808
https://doi.org/10.1137/0406010
https://doi.org/10.1137/0406010
https://doi.org/10.1145/12130.12132
https://doi.org/10.1145/12130.12132
https://doi.org/10.1145/12130.12132
https://doi.org/10.1137/S0097539794261556
https://doi.org/10.1137/S0097539794261556
https://doi.org/10.1137/S0097539794261556

[HILL99] Johan Håstad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. “A Pseu-
dorandom Generator from any One-way Function”. In: SIAM J. Comput. 28.4 (1999),
pp. 1364–1396. DOI: 10.1137/S0097539793244708. URL: https://doi.org/10.
1137/S0097539793244708 (cit. on pp. 3, 20).

[HHTT21] Pooya Hatami, William Hoza, Avishay Tal, and Roei Tell. “Fooling Constant-Depth
Threshold Circuits”. In: Electron. Colloquium Comput. Complex. 28 (2021), p. 2. URL:
https://eccc.weizmann.ac.il/report/2021/002 (cit. on pp. 6, 8, 14, 20, 44, 48).

[HS17] Shuichi Hirahara and Rahul Santhanam. “On the Average-Case Complexity of MCSP
and Its Variants”. In: 32nd Computational Complexity Conference, CCC 2017, July 6-
9, 2017, Riga, Latvia. Ed. by Ryan O’Donnell. Vol. 79. LIPIcs. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2017, 7:1–7:20. DOI: 10.4230/LIPIcs.CCC.2017.7.
URL: https://doi.org/10.4230/LIPIcs.CCC.2017.7 (cit. on p. 22).

[IMZ19] Russell Impagliazzo, Raghu Meka, and David Zuckerman. “Pseudorandomness
from Shrinkage”. In: J. ACM 66.2 (2019), 11:1–11:16. DOI: 10.1145/3230630. URL:
https://doi.org/10.1145/3230630 (cit. on pp. 8, 22, 24).

[IN93] Russell Impagliazzo and Noam Nisan. “The Effect of Random Restrictions on For-
mula Size”. In: Random Struct. Algorithms 4.2 (1993), pp. 121–134. DOI: 10.1002/
rsa.3240040202. URL: https://doi.org/10.1002/rsa.3240040202 (cit. on pp. 10,
18, 20).

[IPS93] Russell Impagliazzo, Ramamohan Paturi, and Michael E. Saks. “Size-depth trade-
offs for threshold circuits”. In: Proceedings of the Twenty-Fifth Annual ACM Sympo-
sium on Theory of Computing, May 16-18, 1993, San Diego, CA, USA. Ed. by S. Rao
Kosaraju, David S. Johnson, and Alok Aggarwal. ACM, 1993, pp. 541–550. DOI:
10 . 1145 / 167088 . 167233. URL: https : / / doi . org / 10 . 1145 / 167088 . 167233
(cit. on pp. 10, 22, 26).

[IKOS08] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. “Cryptography
with constant computational overhead”. In: Proceedings of the 40th Annual ACM Sym-
posium on Theory of Computing, Victoria, British Columbia, Canada, May 17-20, 2008.
Ed. by Cynthia Dwork. ACM, 2008, pp. 433–442. DOI: 10.1145/1374376.1374438.
URL: https://doi.org/10.1145/1374376.1374438 (cit. on pp. 3, 7, 9, 10, 13, 30).

[IM02] Kazuo Iwama and Hiroki Morizumi. “An Explicit Lower Bound of 5n - o(n) for
Boolean Circuits”. In: Mathematical Foundations of Computer Science 2002, 27th Inter-
national Symposium, MFCS 2002, Warsaw, Poland, August 26-30, 2002, Proceedings. Ed.
by Krzysztof Diks and Wojciech Rytter. Vol. 2420. Lecture Notes in Computer Sci-
ence. Springer, 2002, pp. 353–364. DOI: 10.1007/3-540-45687-2_29. URL: https:
//doi.org/10.1007/3-540-45687-2_29 (cit. on p. 10).

[KRT17] Ilan Komargodski, Ran Raz, and Avishay Tal. “Improved Average-Case Lower Bounds
for De Morgan Formula Size: Matching Worst-Case Lower Bound”. In: SIAM J. Com-
put. 46.1 (2017), pp. 37–57. DOI: 10.1137/15M1048045. URL: https://doi.org/10.
1137/15M1048045 (cit. on p. 21).

[KL01] Matthias Krause and Stefan Lucks. “On the Minimal Hardware Complexity of Pseu-
dorandom Function Generators”. In: STACS 2001, 18th Annual Symposium on Theo-
retical Aspects of Computer Science, Dresden, Germany, February 15-17, 2001, Proceed-
ings. Ed. by Afonso Ferreira and Horst Reichel. Vol. 2010. Lecture Notes in Com-

56

https://doi.org/10.1137/S0097539793244708
https://doi.org/10.1137/S0097539793244708
https://doi.org/10.1137/S0097539793244708
https://eccc.weizmann.ac.il/report/2021/002
https://doi.org/10.4230/LIPIcs.CCC.2017.7
https://doi.org/10.4230/LIPIcs.CCC.2017.7
https://doi.org/10.1145/3230630
https://doi.org/10.1145/3230630
https://doi.org/10.1002/rsa.3240040202
https://doi.org/10.1002/rsa.3240040202
https://doi.org/10.1002/rsa.3240040202
https://doi.org/10.1145/167088.167233
https://doi.org/10.1145/167088.167233
https://doi.org/10.1145/1374376.1374438
https://doi.org/10.1145/1374376.1374438
https://doi.org/10.1007/3-540-45687-2_29
https://doi.org/10.1007/3-540-45687-2_29
https://doi.org/10.1007/3-540-45687-2_29
https://doi.org/10.1137/15M1048045
https://doi.org/10.1137/15M1048045
https://doi.org/10.1137/15M1048045

puter Science. Springer, 2001, pp. 419–430. DOI: 10.1007/3-540-44693-1_37. URL:
https://doi.org/10.1007/3-540-44693-1_37 (cit. on p. 10).

[LY21] Jiatu Li and Tianqi Yang. “3.1n - o(n) Circuit Lower Bounds for Explicit Functions”.
In: Electron. Colloquium Comput. Complex. 28 (2021), p. 23. URL: https : / / eccc .
weizmann.ac.il/report/2021/023 (cit. on pp. 8, 10, 20).

[MMW19] Dylan M. McKay, Cody D. Murray, and R. Ryan Williams. “Weak lower bounds
on resource-bounded compression imply strong separations of complexity classes”.
In: Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2019, Phoenix, AZ, USA, June 23-26, 2019. Ed. by Moses Charikar and Edith
Cohen. ACM, 2019, pp. 1215–1225. DOI: 10.1145/3313276.3316396. URL: https:
//doi.org/10.1145/3313276.3316396 (cit. on pp. 3, 7, 9, 15, 16).

[MV15] Eric Miles and Emanuele Viola. “Substitution-Permutation Networks, Pseudoran-
dom Functions, and Natural Proofs”. In: J. ACM 62.6 (2015), 46:1–46:29. DOI: 10.
1145/2792978. URL: https://doi.org/10.1145/2792978 (cit. on pp. 3, 10, 18).

[MW20] Cody D. Murray and R. Ryan Williams. “Circuit Lower Bounds for Nondetermin-
istic Quasi-polytime from a New Easy Witness Lemma”. In: SIAM J. Comput. 49.5
(2020). DOI: 10.1137/18M1195887. URL: https://doi.org/10.1137/18M1195887
(cit. on p. 10).

[NR04] Moni Naor and Omer Reingold. “Number-theoretic constructions of efficient pseudo-
random functions”. In: J. ACM 51.2 (2004), pp. 231–262. DOI: 10.1145/972639.
972643. URL: https://doi.org/10.1145/972639.972643 (cit. on pp. 3, 10, 35, 36).

[NRR00] Moni Naor, Omer Reingold, and Alon Rosen. “Pseudo-random functions and fac-
toring (extended abstract)”. In: Proceedings of the Thirty-Second Annual ACM Sympo-
sium on Theory of Computing, May 21-23, 2000, Portland, OR, USA. Ed. by F. Frances
Yao and Eugene M. Luks. ACM, 2000, pp. 11–20. DOI: 10.1145/335305.335307.
URL: https://doi.org/10.1145/335305.335307 (cit. on pp. 3, 10).

[Nec66] E.I. Nechiporuk. “On a Boolean function”. In: Soviet Math. Dokl. (4 1966), pp. 999–
1000 (cit. on pp. 10, 20).

[OPS19] Igor Carboni Oliveira, Ján Pich, and Rahul Santhanam. “Hardness Magnification
near State-Of-The-Art Lower Bounds”. In: 34th Computational Complexity Conference,
CCC 2019, July 18-20, 2019, New Brunswick, NJ, USA. Ed. by Amir Shpilka. Vol. 137.
LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019, 27:1–27:29. DOI:
10.4230/LIPIcs.CCC.2019.27. URL: https://doi.org/10.4230/LIPIcs.CCC.
2019.27 (cit. on pp. 3, 4, 7, 9, 15, 16, 19, 21, 22, 23).

[OS18] Igor Carboni Oliveira and Rahul Santhanam. “Hardness Magnification for Natu-
ral Problems”. In: 59th IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2018, Paris, France, October 7-9, 2018. Ed. by Mikkel Thorup. IEEE Computer
Society, 2018, pp. 65–76. DOI: 10.1109/FOCS.2018.00016. URL: https://doi.org/
10.1109/FOCS.2018.00016 (cit. on pp. 3, 7, 9, 15, 16, 21).

[OSS19] Igor Carboni Oliveira, Rahul Santhanam, and Srikanth Srinivasan. “Parity Helps
to Compute Majority”. In: 34th Computational Complexity Conference, CCC 2019, July
18-20, 2019, New Brunswick, NJ, USA. Ed. by Amir Shpilka. Vol. 137. LIPIcs. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2019, 23:1–23:17. DOI: 10.4230/LIPIcs.
CCC.2019.23. URL: https://doi.org/10.4230/LIPIcs.CCC.2019.23 (cit. on p. 36).

57

https://doi.org/10.1007/3-540-44693-1_37
https://doi.org/10.1007/3-540-44693-1_37
https://eccc.weizmann.ac.il/report/2021/023
https://eccc.weizmann.ac.il/report/2021/023
https://doi.org/10.1145/3313276.3316396
https://doi.org/10.1145/3313276.3316396
https://doi.org/10.1145/3313276.3316396
https://doi.org/10.1145/2792978
https://doi.org/10.1145/2792978
https://doi.org/10.1145/2792978
https://doi.org/10.1137/18M1195887
https://doi.org/10.1137/18M1195887
https://doi.org/10.1145/972639.972643
https://doi.org/10.1145/972639.972643
https://doi.org/10.1145/972639.972643
https://doi.org/10.1145/335305.335307
https://doi.org/10.1145/335305.335307
https://doi.org/10.4230/LIPIcs.CCC.2019.27
https://doi.org/10.4230/LIPIcs.CCC.2019.27
https://doi.org/10.4230/LIPIcs.CCC.2019.27
https://doi.org/10.1109/FOCS.2018.00016
https://doi.org/10.1109/FOCS.2018.00016
https://doi.org/10.1109/FOCS.2018.00016
https://doi.org/10.4230/LIPIcs.CCC.2019.23
https://doi.org/10.4230/LIPIcs.CCC.2019.23
https://doi.org/10.4230/LIPIcs.CCC.2019.23

[PZ93] Mike Paterson and Uri Zwick. “Shrinkage of de Morgan Formulae under Restric-
tion”. In: Random Struct. Algorithms 4.2 (1993), pp. 135–150. DOI: 10 . 1002 / rsa .
3240040203. URL: https://doi.org/10.1002/rsa.3240040203 (cit. on pp. 10, 18,
20).

[PS90] Ramamohan Paturi and Michael E. Saks. “On Threshold Circuits for Parity”. In:
31st Annual Symposium on Foundations of Computer Science, St. Louis, Missouri, USA,
October 22-24, 1990, Volume I. IEEE Computer Society, 1990, pp. 397–404. DOI: 10.
1109/FSCS.1990.89559. URL: https://doi.org/10.1109/FSCS.1990.89559
(cit. on p. 47).

[PS94] Ramamohan Paturi and Michael E. Saks. “Approximating Threshold Circuits by
Rational Functions”. In: Inf. Comput. 112.2 (1994), pp. 257–272. DOI: 10.1006/inco.
1994.1059. URL: https://doi.org/10.1006/inco.1994.1059 (cit. on p. 26).

[Pau77] Wolfgang J. Paul. “A 2.5 n-Lower Bound on the Combinational Complexity of Boolean
Functions”. In: SIAM J. Comput. 6.3 (1977), pp. 427–443. DOI: 10.1137/0206030. URL:
https://doi.org/10.1137/0206030 (cit. on p. 20).

[RRV02] Ran Raz, Omer Reingold, and Salil P. Vadhan. “Extracting all the Randomness and
Reducing the Error in Trevisan’s Extractors”. In: J. Comput. Syst. Sci. 65.1 (2002),
pp. 97–128. DOI: 10.1006/jcss.2002.1824. URL: https://doi.org/10.1006/
jcss.2002.1824 (cit. on pp. 16, 19, 22).

[Raz87] Alexander A. Razborov. “Lower bounds on the size of constant-depth networks
over a complete basis with logical addition”. In: Mathematicheskie Zametki 41.4 (1987),
pp. 598–607 (cit. on pp. 8, 21).

[RR97] Alexander A. Razborov and Steven Rudich. “Natural Proofs”. In: J. Comput. Syst.
Sci. 55.1 (1997), pp. 24–35. DOI: 10.1006/jcss.1997.1494. URL: https://doi.org/
10.1006/jcss.1997.1494 (cit. on pp. 3, 7, 8, 9, 10, 15, 16, 17, 18, 20).

[RT92] John H. Reif and Stephen R. Tate. “On Threshold Circuits and Polynomial Compu-
tation”. In: SIAM J. Comput. 21.5 (1992), pp. 896–908. DOI: 10.1137/0221053. URL:
https://doi.org/10.1137/0221053 (cit. on p. 36).

[Smo87] Roman Smolensky. “Algebraic Methods in the Theory of Lower Bounds for Boolean
Circuit Complexity”. In: Proceedings of the 19th Annual ACM Symposium on Theory of
Computing, 1987, New York, New York, USA. Ed. by Alfred V. Aho. ACM, 1987, pp. 77–
82. DOI: 10.1145/28395.28404. URL: https://doi.org/10.1145/28395.28404
(cit. on pp. 8, 21).

[Spi96] Daniel A. Spielman. “Linear-time encodable and decodable error-correcting codes”.
In: IEEE Trans. Inf. Theory 42.6 (1996), pp. 1723–1731. DOI: 10.1109/18.556668. URL:
https://doi.org/10.1109/18.556668 (cit. on pp. 11, 30, 31, 32).

[Sto77] Larry J. Stockmeyer. “On the Combinational Complexity of Certain Symmetric Boolean
Functions”. In: Math. Syst. Theory 10 (1977), pp. 323–336. DOI: 10.1007/BF01683282.
URL: https://doi.org/10.1007/BF01683282 (cit. on p. 20).

[Tal14] Avishay Tal. “Shrinkage of De Morgan Formulae by Spectral Techniques”. In: 55th
IEEE Annual Symposium on Foundations of Computer Science, FOCS 2014, Philadelphia,
PA, USA, October 18-21, 2014. IEEE Computer Society, 2014, pp. 551–560. DOI: 10.
1109/FOCS.2014.65. URL: https://doi.org/10.1109/FOCS.2014.65 (cit. on pp. 8,
10, 18, 20, 21, 22, 24, 25).

58

https://doi.org/10.1002/rsa.3240040203
https://doi.org/10.1002/rsa.3240040203
https://doi.org/10.1002/rsa.3240040203
https://doi.org/10.1109/FSCS.1990.89559
https://doi.org/10.1109/FSCS.1990.89559
https://doi.org/10.1109/FSCS.1990.89559
https://doi.org/10.1006/inco.1994.1059
https://doi.org/10.1006/inco.1994.1059
https://doi.org/10.1006/inco.1994.1059
https://doi.org/10.1137/0206030
https://doi.org/10.1137/0206030
https://doi.org/10.1006/jcss.2002.1824
https://doi.org/10.1006/jcss.2002.1824
https://doi.org/10.1006/jcss.2002.1824
https://doi.org/10.1006/jcss.1997.1494
https://doi.org/10.1006/jcss.1997.1494
https://doi.org/10.1006/jcss.1997.1494
https://doi.org/10.1137/0221053
https://doi.org/10.1137/0221053
https://doi.org/10.1145/28395.28404
https://doi.org/10.1145/28395.28404
https://doi.org/10.1109/18.556668
https://doi.org/10.1109/18.556668
https://doi.org/10.1007/BF01683282
https://doi.org/10.1007/BF01683282
https://doi.org/10.1109/FOCS.2014.65
https://doi.org/10.1109/FOCS.2014.65
https://doi.org/10.1109/FOCS.2014.65

[Tel17] Roei Tell. “A Note on the Limitations of Two Black-Box Techniques in Quantified
Derandomization”. In: Electron. Colloquium Comput. Complex. 24 (2017), p. 187. URL:
https://eccc.weizmann.ac.il/report/2017/187 (cit. on pp. 7, 17).

[Tel18] Roei Tell. “Quantified derandomization of linear threshold circuits”. In: Proceedings
of the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, Los
Angeles, CA, USA, June 25-29, 2018. Ed. by Ilias Diakonikolas, David Kempe, and
Monika Henzinger. ACM, 2018, pp. 855–865. DOI: 10.1145/3188745.3188822. URL:
https://doi.org/10.1145/3188745.3188822 (cit. on pp. 3, 4, 6, 7, 14, 15, 16, 18,
20, 23, 44, 48).

[Tel21] Roei Tell. “How to Find Water in the Ocean: A Survey on Quantified Derandom-
ization”. In: Electron. Colloquium Comput. Complex. 28 (2021), p. 120. URL: https:
//eccc.weizmann.ac.il/report/2021/120 (cit. on pp. 7, 16, 17, 18).

[Tre01] Luca Trevisan. “Extractors and pseudorandom generators”. In: J. ACM 48.4 (2001),
pp. 860–879. DOI: 10.1145/502090.502099. URL: https://doi.org/10.1145/
502090.502099 (cit. on pp. 16, 19, 22).

[Vio15] Emanuele Viola. “The communication complexity of addition”. In: Comb. 35.6 (2015),
pp. 703–747. DOI: 10.1007/s00493-014-3078-3. URL: https://doi.org/10.1007/
s00493-014-3078-3 (cit. on pp. 3, 10, 36).

A The leftover lemma for Levin’s trick

Lemma A.1. Let m = m(n) = Θ(nε) for 0 < ε < 1. Assume that H = {Hn ⊆ Bn,m}n≥1 is an
almost universal hash function, then B = {Bn}n≥1 and B′ = {B′n = { f ◦ h | f ∈ Bm, h ∈ Hn}}n≥1
are indistinguishable. ♢

Proof. Towards a contradiction we assume that B and B′ are distinguishable, then there exists a
p.p.t. adversary A distinguishing B and B′. Without loss of generality, we assume that A queries
the oracle on exactly t = nd distinct points for some constant d.

Let X1, X2, . . . , Xt be random variables such that Xi denotes the ith query point, h be the random
variable denoting the hash function involved in B′, and Ei be the event that h(X1), h(X2), . . . , h(Xi)
are pairwisely distinct during the execution of A. Clearly, we know that

Pr
f←Bn,A

[A f (1n) = 1] = Pr
f ′←B′n,A

[A f ′(1n) = 1 | Et],

since under Et, f and f ′ are identically distributed. To obtain a contradiction, it is sufficient to
show that

Pr
f ′←B′,A

[¬Et] < negl(n)

by elementary probability calculation. By union bound, we can see that

Pr
f ′←B′,A

[¬Et] = Pr
f ′←B′,A

[∃i,¬Ei ∧ Ei−1] ≤ ∑
1≤i≤t

Pr
f ′←B′,A

[¬Ei | Ei−1],

hence it is sufficient to show that Pr f ′←B′,A[¬Ei | Ei−1] ≤ negl(n).
Conditioning on the fact that Ei−1 happens (the hash values of the first i − 1 queries to the

oracle are pairwisely distinct), the oracle returns independent random values. This means that the

59

https://eccc.weizmann.ac.il/report/2017/187
https://doi.org/10.1145/3188745.3188822
https://doi.org/10.1145/3188745.3188822
https://eccc.weizmann.ac.il/report/2021/120
https://eccc.weizmann.ac.il/report/2021/120
https://doi.org/10.1145/502090.502099
https://doi.org/10.1145/502090.502099
https://doi.org/10.1145/502090.502099
https://doi.org/10.1007/s00493-014-3078-3
https://doi.org/10.1007/s00493-014-3078-3
https://doi.org/10.1007/s00493-014-3078-3

adaptive adversary does not gain any advantage from the oracle queries, hence the probability
that ¬Ei happens is exactly the collision probability of the hash function, i.e.

Pr[¬Ei | Ei−1] = Pr
h←Hn

[∃j < i, h(xi) = h(xj) | Ei−1]

≤ ∑
1≤j<i

Pr[h(xi) = h(xj) | Ei−1]

= ∑
1≤j<i

Pr[h(xi) = h(xj) | xi ̸= xj]

≤ ∑
1≤j<i

negl(n)

≤negl(n),

which completes the proof. □

Remark. From the proof one can see that B and B′ are indistinguishable even if the adversary is
not computational bounded, as long as it can perform oracle query for only polynomially many
times.

B Proof of Lemma 5.6

Reminder of Lemma 5.6. Let t = ω(log n) and d ≥ 3. There exists a constant ε ∈ (0, 1), such that
for r = Θ(nε) and m = Θ(n1−ε/2), with probability at least 1− n−0.1k, Algorithm 1 generates a
good graph (and therefore a 1-detector) for sufficiently large n. ♢

Reminder of Algorithm 1: Generating good graphs

1 for i = 1, 2, . . . , t do
2 Let G ← (V1 ∪V2,∅) be an empty graph;
3 for v ∈ V1, j = 1, 2, . . . , d do
4 Link a random edge ev,j = (v, v′) for v′ ← V2;
5 end
6 if ∀S ⊆ V1 of size ≤ k, there exists v′ ∈ V2 connects to odd number of vertices in S then
7 return G;
8 end
9 end

10 return ⊥;

To analyze this algorithm, we will separately bound the probability that it returns ⊥ and it
returns a graph that is not good. In both of the case, our analysis is similar to the standard proba-
bilistic argument while proving the existence of good graphs.

Proposition B.1. Let d ≥ 3 and k ≥ 1 be constants, t = ω(log n). For any 0 < ε < 2− 4/d and
m = Θ(n1−ε/2), the algorithm returns ⊥ with negligible probability. ♢

Proof. We bound the probability of refusing to return the graph G in each iteration of the main
loop. This will happen when there exists a subset S ⊆ V1 of size at most k, such that each v′ ∈ V2
connects to even number of vertices in S. Since there are at most d|S| wires connecting to vertices
in S, at most d|S|/2 vertices in V2 connect to more than 2 vertices in S. This means that if some

60

subset S ⊆ V1 of size at most k spans more than d|S|/2 vertices in V2, then there must exist some
v′ ∈ V2 with exactly 1 incidence in S. Hence we can calculate the probability at follows.

Pr[∃|S| ≤ k, ∀v′ ∈ V2, v′ connects to even # of vertices in S]

≤ ∑
S⊆V1,|S|≤k

[
∑

T⊆V2,|T|=⌊d|S|/2⌋
Pr[S only connects to T]

]

≤
k

∑
i=1

(
n
i

)(
m

⌊di/2⌋

)(
⌊di/2⌋

m

)di

≤
k

∑
i=1

(ne
i

)i
(

2me
di

)di/2 (di
2m

)di

=
k

∑
i=1

(
id/2−1t

)i
.

(
t ≜ (ne)

(2me
d

)d/2
(

d
2m

)d
)

Since both d and k are constants, clearly t = Θ(nm−d/2). If ε < min{2− 4/d, 1}, then t = o(1). In
such case, the probability that the algorithm refuses to return G in each iteration is at most 1/2 for
sufficiently large n, which is reduced to negligible for t = ω(log n) repetitions. □

Proposition B.2. Let d ≥ 3 be a constant, 0 < ε < 2d−5
3d−4 , r = Θ(nε) and m = Θ(n1−ε/2). Con-

ditioned on the fact that the algorithm does not return ⊥, the probability that it outputs a good
graph is at least 1− n−0.2k for sufficiently large n. ♢

Proof. Note that a graph G = (V1 ∪V2, E) is not good if and only if there exists a set S ⊆ V1 of size
≤ r such that every vertex in V2 connects to even number of vertices in S. Let E be the event that
the algorithm outputs ⊥. Condition on ¬E , a graph is not good if there exists such a set S with
k < |S| ≤ r (see Line 6 to 8). Similar to Proposition B.1, we can calculate the probability as follows.

Pr[G is not good | E]

≤
r

∑
i=k+1

(ne
i

)i
(

2me
di

)di/2 (di
2m

)di

=
r

∑
i=k+1

(
id/2−1t

)i
.

(
t ≜ (ne)

(2me
d

)d/2
(

d
2m

)d
)

As before, we have t = Θ(nm−d/2). Note that i ≤ r = Θ(nε), if

1− d(1− ε/2)
2

+ ε

(
d
2
− 1

)
< −1

4
,

that is ε < 2d−5
3d−4 , then id/2−1t = o(n−0.2) . In such case, for sufficiently large n, the probability that

G is not good condition on E is at most

∞

∑
i=k+1

1
n0.2i ≤ n−0.2k.

□

Then our proof for Lemma 5.6 follows directly.

61

Proof of Lemma 5.6. Let ε ≜ 1
2 min{2− 4/d, (2d− 5)/(3d− 4)}. Assume that G is the event that

the algorithm outputs a good graph and E is the event that the algorithm outputs ⊥, then

Pr[¬G] ≤ Pr[E] + Pr[¬G | ¬E] ≤ negl(n) + n−0.2k ≤ n−0.1k

according to Proposition B.1 and B.2. □

Remark. From the proof we can clearly see that the if clause in Line 6 to 8 is the key to amplify
the success probability. A natural question is whether there exists a p.p.t. algorithm checking if
a graph is good or not, since such algorithm would further reduce the error probability to negli-
gible instead of polynomial. Unfortunately, such algorithm may not exist, if solving binary anal-
ogy of shortest vector problem (binarySVP) is hard for random sparse matrix. Such assumption
is used to construct low complexity collision resistant hash function by Applebaum, Haramaty,
Ishai, Kushilevitz, and Vaikuntanathan [AHIKV17]. Intuitively, Line 6 to 8 of our algorithm solves
binarySVP with width ≤ k = O(1), which is sufficient since the error probability is mainly con-
tributed by small width terms.

Reminder of Corollary 5.7. For some constant ε ∈ (0, 1), let m = m(n) = Θ(n1−ε/2), there exists
an almost universal hash functionH = {Hn ⊆ Bn,m}n≥1 with weakly uniform complexity 3n. ♢

Proof. Let d = 3, ε ∈ (0, 1) be a constant given by Lemma 5.6 and r = Θ(nε). We firstly define a
p.p.t. sampling algorithm G for the hash function and then write down the explicit form {Hn ⊆
Bn,m}n≥1 (and the distribution Dn over Hn). Given parameters n and c (where the desired success
probability is n−c), our algorithm firstly runs Algorithm 1 with k = 10c and obtain a depth-1
XOR circuit C with unbounded fan-in (if Algorithm 1 returns ⊥, we immediately output ⊥). We
expand C to a B2 circuit of size 3n by realizing each XOR gate with a tree of fan-in 2 XOR gates.
Then, similar to Lemma 5.5, we randomly choose a subset S ⊆ [n] of size s = Θ(n1−ε/2), say
S = {i1, i2, . . . , is}, and label xi1 , xi2 , . . . , xis to be output bits. The resulting circuit is the output of
our algorithm.

Now we write down the explicit form. Let E be the event that Algorithm 1 generates a good
graph. Let Cn be the set of circuits that are generated by G(1n, k = 0) with non-zero probability
condition on E , and Hn ≜ {h | ∃C ∈ Cn, C computes h}. The distribution Dn over Hn is defined as

Dn(h) ≜ Pr
G
[G(1n, c = 0) outputs a circuit computing h | E]

for all h ∈ Hn. By Lemma 5.6, we know that Pr[E] ≥ 1− n−0.1k = 1− n−c. We can easily see that
the parameter k does not influence the output distribution of Algorithm 1 condition on E , hence
for all positive integer c,

Dn(h) = Pr
G
[G(1n, c) outputs a circuit computing h | E].

This means that the familyH = {Hn}n≥1 is weakly uniform of complexity 3n.
Finally it is sufficient to show that H is actually a hash function. According to the definition,

one can see that a random function h ← Hn can be represented by a pair (C, S) of random vari-
ables, where C is a (n, r, m) 1-detector and S is a subset of [n] of size s. Similar to Lemma 5.5, we
can see that for each fixed C and any x ̸= y, Pr[h(x) = h(y)] < negl(n). Hence it directly implies
that Prh=(C,S)←Hn [h(x) = h(y)] < negl(n), which completes the proof. □

62 ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

