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Abstract

We show polynomial-time quantum algorithms for the following problems:

1. Short integer solution (SIS) problem under the infinity norm, where the public
matrix is very wide, the modulus is a polynomially large prime, and the bound of
infinity norm is set to be half of the modulus minus a constant.

2. Learning with errors (LWE) problem given LWE-like quantum states with poly-
nomially large moduli and certain error distributions, including bounded uniform
distributions and Laplace distributions.

3. Extrapolated dihedral coset problem (EDCP) with certain parameters.

The SIS, LWE, and EDCP problems in their standard forms are as hard as solving
lattice problems in the worst case. However, the variants that we can solve are not in
the parameter regimes known to be as hard as solving worst-case lattice problems. Still,
no classical or quantum polynomial-time algorithms were known for the variants of SIS
and LWE we consider. For EDCP, our quantum algorithm slightly extends the result
of Ivanyos et al. (2018).

Our algorithms for variants of SIS and EDCP use the existing quantum reductions
from those problems to LWE, or more precisely, to the problem of solving LWE given
LWE-like quantum states. Our main contribution is solving LWE given LWE-like quan-
tum states with interesting parameters using a filtering technique.
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1 Introduction

Solving the shortest vector problem (SVP) over lattices has been a target for designing
efficient quantum algorithms for decades. In the literature, solving approximate SVP for
all lattices has been (classically or quantumly) reduced to the following problems:

1. The short integer solution (SIS) problem, classically, initially shown by Ajtai [Ajt96].

2. The dihedral coset problem (DCP), quantumly, initially shown by Regev [Reg02].

3. The learning with errors problem (LWE), quantumly, initially shown by Regev [Reg05].

Therefore, to show an efficient quantum algorithm for approximate SVP in the worst-case,
it suffices to construct an efficient quantum algorithm for any one of those average-case
problems. However, no polynomial (or even subexponential) time quantum algorithms
are known for SIS or LWE. For DCP, a subexponential quantum algorithm is given by
Kuperberg [Kup05]. But the quantum reduction shown by Regev [Reg02] requires the DCP
algorithm to be noise-tolerant, while the algorithm of Kuperberg is not. Let us also mention
that over the past few years, efficient quantum algorithms for SVP for ideal lattices in certain
parameter regimes have been shown in [CGS14, EHKS14, BS16, CDPR16, CDW17]. Still,
showing a polynomial (or even subexponential) time quantum algorithm for SVP with
polynomial approximation factors for all lattices is widely open.

The SIS and LWE problems are powerful tools for building cryptosystems, thus understand-
ing the quantum hardness of those two problems is interesting in its own right. The SIS prob-
lem is typically used in constructing elementary cryptographic primitives such as one-way
functions [Ajt96], collision-resistant hash functions [GGH96] digital signatures [GPV08].
The LWE problem is extremely versatile, yielding public-key cryptosystems [Reg05], and
advanced cryptographic capabilities such as fully homomorphic encryption (FHE) [BV11],
attribute-based encryption [GVW13], and quantum FHE [Mah18]. The conjectured quan-
tum hardness of SIS and LWE has also made lattice-based cryptosystems popular candidates
for post-quantum cryptography standardization [DKRV18, BDK+18, DKL+18].

1.1 Background of SIS, LWE, DCP, and our main results

We show polynomial-time quantum algorithms for certain variants of SIS, LWE, and DCP.
Our quantum algorithms for the variants of SIS and DCP go through the existing quantum
reductions from those problems to LWE, or more precisely, to the problems of Constructing
quantum LWE states (C|LWE〉) and Solving LWE given LWE-like quantum states (S|LWE〉).
In fact, the heart of our results is showing a quantum filtering technique for solving those
quantum versions of LWE.

Let us now provide more background of SIS, LWE, and DCP, then state our main results.

1.1.1 SIS

Let us first recall the standard definition of the SIS problem.
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Figure 1: Left: An overview of the reductions between SVP, SIS, EDCP, and LWE. “A→
B” means Problem A reduces to Problem B. “Q” means quantum. Right: The reductions
used in our quantum algorithms.

Definition 1 (Short integer solution (SIS) problem [Ajt96]). Let n,m, q be integers such
that m = Ω(n log q) ⊆ poly(n). Let β be a positive real number such that β < q. Let A be
a uniformly random matrix over Zn×mq . The SIS problem SISn,m,q,β asks to find a nonzero
vector x ∈ Zm such that ‖x‖2 ≤ β and Ax ≡ 0 (mod q).

The SIS problem is shown to be as hard as solving approximate SVP for all lattices [Ajt96].
The reductions are improved via a series of works [CN97, Mic02, MR07, GPV08, MP13].
Several variants of the SIS problem are studied in the literature. The most common variant
is the one that changes the restriction of the solution. The solution is bounded in `p norm
for some p ≥ 0, or even the `∞ norm, instead of bounded in `2 norm. In this paper, we
look at the variant where the solution is bounded by its `∞ norm. More precisely, we use
SIS∞n,m,q,β to denote the variant of SIS where the solution x is required to satisfy ‖x‖∞ ≤ β.
When β = 1, it corresponds to the subset-sum problem where the solution is bounded in
{−1, 0, 1}.
Bounding the SIS solution in its `∞ norm is used quite commonly in cryptography due to its
simplicity (it is used, e.g., in [BV15]). When the parameters are set so that β

√
m > q, i.e.,

when m is relatively large compared to q/β, we are not aware of any worst-case problem
that is reducible to SIS∞n,m,q,β. Still, such parameter settings are used in cryptosystems.
In a recent practical signature scheme proposed by Ducas et al. [DKL+18], the security of
the scheme relies on (the “Module” version of) SIS∞n,m,q,β with β

√
m > q. In their security

analysis, the authors mention that the problem of SIS∞ by itself has not been studied in-
depth. Most of the algorithms they can think of for SIS∞ are the ones designed for solving
SIS or SVP in the `2 norm, such as BKZ [SE94].

To date, the only algorithm we are aware of that takes advantage of the `∞-norm bound
has the following features. It solves SIS∞n,m,q,β with a highly composite q and a very large
m. For example, it is a polynomial-time algorithm for SIS∞n,O(nc),2c,1 when c is a constant.
The algorithm is classical, folklore, and we include a formal description of the algorithm in
Appendix A. It was not clear how to solve SIS∞n,m,q,β when q is a polynomial prime and β
is just slightly smaller than q/2, even if m is allowed to be an arbitrary polynomial.

We show a polynomial-time quantum algorithm for SIS∞n,m,q,β where q is a polynomial prime

2



modulus, β = q−c
2 for some constant c, and m is a large polynomial.

Theorem 2. Let c > 0 be a constant integer, q > c be a polynomially large prime mod-
ulus. Let m ∈ Ω

(
(q − c)3 · nc+1 · q · log q

)
⊆ poly(n), there is a polynomial-time quantum

algorithm that solves SIS∞
n,m,q, q−c

2

.

Remark 3. Note that if β = q/2, then a solution can be found classically by simply solving
Ax ≡ 0 (mod q) over Zq using Gaussian elimination. Then for each entry in x, pick
the representative over Z that lies in the range [−q/2, q/2). This classical algorithm also
extends to β = q−c

2 when q = Ω(n). In particular, as long as all the entries of x are at least
c/2 far from q/2, x will be a valid solution. In the regime q = Ω(n), a random solution
to Ax ≡ 0 (mod q) will satisfy this with probability at least O((1 − c/n)n) = O(e−c), a
constant. Theorem 2 thus gives a non-trivial algorithm for SIS∞

n,m,q, q−c
2

when q ∈ o(n), for

which (to the best of our knowledge), no prior classical or quantum algorithm was known.

Remark 4. Our algorithm can also solve a variant of SIS where the each entry of the
solution is required to be in an arbitrary subset S of Zq such that q − |S| = c, where c is
a constant (instead of the subset [−β, β] ∩ Z of Zq). The width of the A matrix is required
to satisfy m ∈ Ω

(
(q − c)3 · nc+1 · q · log q

)
⊆ poly(n). For example, suppose q = 3 and

m ∈ Ω(n2), our algorithm is able to provide a {0, 1}-solution for SIS.

Let us remark that our algorithm does not improve upon the existing algorithms for breaking
the signature scheme in [DKL+18] since we require m to be very large, while the m used
in [DKL+18] is fairly small.

1.1.2 LWE

Let us first recall the classical definition of the LWE problem.

Definition 5 (Learning with errors (LWE) [Reg05]). Let n, m, q be positive integers. Let
u ∈ Znq be a secret vector. The learning with errors problem LWEn,m,q,Dnoise

asks to find the

secret vector u given access to an oracle that outputs ai, ai ·u+ ei (mod q) on its ith query,
for i = 1, ...,m. Here each ai is a uniformly random vector in Znq , and each error term ei
is sampled from a distribution Dnoise over Zq.

Regev [Reg05] shows if there is a polynomial-time algorithm that solves LWEn,m,q,Dnoise
where

Dnoise is Gaussian and m can be an arbitrary polynomial, then there is a quantum algorithm
that solves worst-case approximate SVP. Note that in Regev’s definition, the LWE samples
are completely classical. In the variants of LWE we consider, the error distribution appears
in the amplitude of some quantum states. Those quantum variants of LWE were implicitly
used in the quantum reductions in [SSTX09, BKSW18], but they have not been made
formal. Looking ahead, our new quantum algorithms make explicit use of the quantum
nature of the noise distribution.

Our quantum algorithm for SIS∞ adapts the quantum reduction from SIS to the problem
of constructing LWE states implicitly used in [SSTX09].
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Definition 6. Let n, m, q be positive integers. Let f be a function from Zq to R. The
problem of constructing LWE states C|LWE〉n,m,q,f asks to construct a quantum state of the

form
∑

u∈Znq
⊗m

i=1

(∑
ei∈Zq f(ei)|ai · u+ ei mod q〉

)
, given the input {ai}i=1,...,m where each

ai is a uniformly random vector in Znq .

Our quantum algorithm for EDCP adapts the quantum reduction from EDCP to the problem
of solving LWE given LWE-like quantum states implicitly used in [BKSW18].

Definition 7. Let n, m, q be positive integers. Let f be a function from Zq to R. Let u ∈ Znq
be a secret vector. The problem of solving LWE given LWE-like states S|LWE〉n,m,q,f asks to
find u given access to an oracle that outputs independent samples ai,

∑
ei∈Zq f(ei)|ai · u +

ei mod q〉 on its ith query, for i = 1, ...,m. Here each ai is a uniformly random vector in
Znq .

We would like to remark that in the problem C|LWE〉, there is no secret vector u; the goal
is to construct an equal superposition of all LWE states for all possible u. Whereas for the
problem S|LWE〉, the goal is to find the secret vector u given samples of LWE states for this
particular secret vector.

Let us briefly discuss the relations among LWE, S|LWE〉, and C|LWE〉. If we set f as
√
Dnoise,

then an efficient algorithm for solving LWEn,m,q,Dnoise
implies efficient algorithms for solving

C|LWE〉n,m,q,f and S|LWE〉n,m,q,f . However, solving C|LWE〉n,m,q,f or S|LWE〉n,m,q,f does not
necessarily imply solving LWEn,m,q,Dnoise

in general. An algorithm for solving C|LWE〉n,m,q,f
only implies an efficient algorithm for solving LWEn,m,q,Dnoise

when m is small compared to
the ratio of the “widths” of f and Dnoise; we will explain in details in §1.4.

Let us also remark that the C|LWE〉 and S|LWE〉 problems we define are different from
the problem of “LWE with quantum samples” defined in [GKZ19]. In their definition, the
quantum LWE samples are of the form

∑
a∈Znq |a〉|a · u + e〉, where the error e is classical

and a is in the quantum state. This variant of quantum LWE is easy to solve [GKZ19], but
the idea in the algorithm does not carry to the quantum LWE variants we are interested in.

In [Reg05] (followed by [SSTX09, BKSW18] and most of the papers that use LWE), the
noise distribution Dnoise or f is chosen to be Gaussian. One of the nice features of a Gaussian
function f is that both f and its discrete Fourier transform (DFT) (over Zq), defined as

f̂ : Zq → C, f̂ : y 7→
∑
x∈Zq

1
√
q
· e

2πixy
q · f(x),

are negligible beyond their centers. Such a feature of f̂ is crucial in establishing the quantum
reductions among lattice problems in [Reg05, SSTX09, BKSW18].

Other choices of noise distribution are also used for LWE in the literature. One popular
option is to let f be the bounded uniform distribution over [−B,B] for some 0 < B < q

2 .
For certain choices of n,m, q,B, (classical) LWE with B-bounded uniform error is proven to
be as hard as LWE with Gaussian noise [DM13]. On the other hand, Arora and Ge [AG11]
present a classical algorithm for breaking LWE with a prime modulus q when the support
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S of the LWE error distribution is very small. It requires m ∈ Ω(n|S|) and runs in time
poly(n|S|). When B ∈ ω(1) and q is a prime, no polynomial-time quantum algorithm has
been published for LWE, C|LWE〉, or S|LWE〉.
We show when the noise distribution f is chosen such that f̂ is non-negligible over Zq, then
we can solve both C|LWE〉 and S|LWE〉 in quantum polynomial-time.

Theorem 8. Let n ∈ N and q ∈ poly(n). Let f : Zq → R be the amplitude for the error

state such that the state
∑

e∈Zq f(e)|e〉 is efficiently constructible and η := miny∈Zq |f̂(y)|
is non-negligible. Let m ∈ Ω

(
n · q/η2

)
⊆ poly(n), there exist polynomial-time quantum

algorithms that solve C|LWE〉n,m,q,f and S|LWE〉n,m,q,f .

Although the theorem does not cover the case where f is Gaussian, it does cover some
interesting error distributions f , such as when f is super-Gaussian (i.e., when f(x) =
e−|x/B|

p
, for 0 < p < 2, 0 < B < q). It also covers the case where f is the bounded uniform

distribution. The following is a corollary of Theorem 8 given that the DFT of bounded
uniform distribution is non-negligible over Zq.

Corollary 9. Let n ∈ N and q ∈ poly(n). Let B ∈ Z such that 0 < 2B + 1 < q and
gcd(2B + 1, q) = 1. Let f : Zq → R be f(x) := 1/

√
2B + 1 when x ∈ [−B,B] ∩ Z and

0 elsewhere. Let m ∈ Ω
(
n · q4 · (2B + 1)

)
⊆ poly(n), there exist polynomial-time quantum

algorithms that solve C|LWE〉n,m,q,f and S|LWE〉n,m,q,f .

Our quantum algorithms for SIS∞ and EDCP (i.e., Theorem 2 and Theorem 13) are obtained
from the following variant of Theorem 8, where the noise amplitude for the quantum LWE
problems is set to be the DFT of the bounded uniform distribution.

Theorem 10. Let q be a polynomially large prime modulus. Let B ∈ Z be such that
q − (2B + 1) = c is a constant. Let f : Zq → R be the bounded uniform distribution over
[−B,B] ∩ Z. Let m ∈ Ω

(
(q − c)3 · nc+1 · q · log q

)
⊆ poly(n). There exist polynomial-time

quantum algorithms that solve C|LWE〉n,m,q,f̂ and S|LWE〉n,m,q,f̂ .

1.1.3 DCP

Let us introduce the variant of DCP defined by Brakerski et al. [BKSW18].

Definition 11 (Extrapolated Dihedral Coset Problem (EDCP)). Let n ∈ N be the dimen-
sion, q ≥ 2 be the modulus, and a function D : Zq → R, consists of m input states of the
form ∑

j∈Zq

D(j)|j〉|x+ j · s〉,

where x ∈ Znq is arbitrary and s ∈ Znq is fixed for all m states. We say that an algorithm
solves EDCPn,m,q,D if it outputs s with probability poly(1/(n log q)) in time poly(n log q).

In this paper we are interested in the parameter setting where n is the security parameter
and q ∈ poly(n). Although not strictly needed in this paper, let us briefly recall how the
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variants of the dihedral coset problem evolve. The original dihedral coset problem is a special
case of EDCP where n = 1, q is exponentially large, and D is the uniform distribution over
{0, 1}. Solving DCP implies solving the dihedral hidden subgroup problem. The two-point
problem defined by Regev [Reg02] is another special case of EDCP where D is the uniform
distribution over {0, 1}, and n is the security parameter. It was used as an intermediate
step for establishing the reduction from approximate SVP to DCP. When the distribution
D is non-zero beyond {0, 1}, the EDCP problem does not necessarily correspond to any
versions of the hidden subgroup problem. The reason that Brakerski et al. [BKSW18]
considers a distribution D supported beyond {0, 1} is to establish a reduction from EDCP
to LWE. Therefore, combining with the reduction from LWE to EDCP (by adapting Regev’s
reduction [Reg02]), they show that EDCP, as a natural generalization of DCP, is equivalent
to LWE.

Efficient quantum algorithms are known for variants of EDCP when the modulus q and
the distribution D satisfy certain conditions [FIM+03, CvD07, IPS18]. Let us remark that
EDCP with those parameter settings are not known to be as hard as worse-case SVP or
LWE through the reductions of [Reg02] or [BKSW18].

In this paper we show polynomial-time quantum algorithms that solve EDCP with the
following parameter settings.

Theorem 12. Let n ∈ N and q ∈ poly(n). Let f : Zq → R be such that the state∑
e∈Zq f(e)|e〉 is efficiently constructible and η := minz∈Zq |f̂(z)| is non-negligible. Let

m ∈ Ω
(
n · q/η2

)
⊆ poly(n). There is a polynomial time quantum algorithm that solves

EDCPn,m,q,f̂

Theorem 13. Let n ∈ N and q ∈ poly(n). Let c be a constant integer such that 0 < c < q.
Let m ∈ Ω

(
(q − c)3 · nc+1 · q · log q

)
⊆ poly(n), there is a quantum algorithm running in

time poly(n) that solves EDCPn,m,q,D where D is the uniform distribution over [0, q−c)∩Z.

We note that EDCP with the parameters in Theorem 13 has already been solved in the work
of Ivanyos et al. [IPS18] by a quantum algorithm with similar complexity. The parameters
in Theorem 12 are not covered by the result in [IPS18], but the implication of such a
parameter setting is unclear. Nevertheless, we include our result to demonstrate the wide
applicability of our techniques. We will compare our algorithm with the one in [IPS18] in
§1.3.

1.2 Solving the quantum versions of LWE via filtering

As mentioned, our main technical contribution is to solve S|LWE〉 and C|LWE〉 (the quantum
versions of LWE we define) with interesting parameters using a filtering technique. Let us
first explain the basic idea of filtering, then extend it to the general case.

The basic idea of filtering. To illustrate the basic idea of filtering, let us focus on
how to use it to solve S|LWE〉, namely, learning the secret u ∈ Znq given a uniformly random
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matrix A ∈ Zn×mq and the following state:

|φu〉 :=
m⊗
i=1

∑
ei∈Zq

f(ei)| (uTA)i + ei (mod q) 〉. (1)

Let us remark that an efficient quantum algorithm for S|LWE〉n,m,q,f does not necessarily
imply an efficient quantum algorithm for C|LWE〉n,m,q,f , since the quantum algorithm for
S|LWE〉n,m,q,f may, for example, destroy the input state. However, the quantum algorithm
we show for S|LWE〉n,m,q,f directly works for C|LWE〉n,m,q,f , so we focus on S|LWE〉n,m,q,f .

Let us assume m can be an arbitrary polynomial of n, q is a constant prime. The readers
can think of f as any distribution. For readers who would like to have a concrete example,
you can think of f as the QFT of bounded uniform distribution, i.e., let g(z) := 1/

√
2β + 1

for z ∈ [−β, β] ∩ Z and 0 elsewhere, then set f := ĝ (f is then the discrete sinc function,
but in the analysis we will not use the expression of f at all, we will only use g). By solving
S|LWE〉n,m,q,f and C|LWE〉n,m,q,f with such a choice of f , we can get a polynomial quantum
algorithm for SIS∞n,m,q,β with a constant prime q and any β ∈ [1, q/2), which was not known
before. All the details of the analysis will be given in §3. Here let us explain the basic idea
of filtering using this example.

Let us define
for v ∈ Zq, |ψv〉 :=

∑
e∈Zq

f(e)|(v + e) (mod q)〉.

Therefore the input state in Eqn (1) can also be written as

|φu〉 =
m⊗
i=1

|ψ(uTA)i〉.

To learn u from |φu〉, our algorithm proceeds in two stages: first we look at each coordinate
|ψ(uTA)i〉 for i = 1, ...,m separately, with the goal of learning some classical information

about each coordinate of uTA. We then continue with a classical step, which uses the
information obtained about each coordinate of uTA to learn u.

Warm-up 1: Orthogonal states. Suppose the vectors in the set {|ψv〉}v∈Zq were or-

thogonal. Then we could define a unitary U such that U |ψv〉 = |v〉. We could then apply
this unitary component-wise to |φu〉 and measure the results in the computational basis,
learning uTA. Gaussian elimination then recovers u.

Warm-up 2: Filtering out a single value. Unfortunately, the |ψv〉 will typically not
be orthogonal, so such a unitary as above will not exist. This means we cannot learn v with
certainty from |ψv〉.
Nevertheless, we can learn some information about v from |ψv〉. Concretely, pick some
value y ∈ Zq, and consider an arbitrary unitary Uy such that

Uy|ψy〉 = |0〉.
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Now imagine applying Uy to |ψv〉, and measuring in the computational basis. If v = y,
then the measurement will always give 0. Unfortunately, since the |ψv〉 are not orthogonal,
measuring Uy|ψv〉 for v 6= y may also give 0. Therefore, while a 0 outcome gives us some
prior on the value of v, it does not let us conclude anything for certain.

On the other hand, if a measurement gives a non-zero value, then we know for certain that
v 6= y. This is the basic idea of our filtering approach: we filter out the case where v = y,
learning an inequality constraint on v. This can be seen as a weak form of unambiguous
state discrimination [Per88], where the measurement either gives unambiguous information
about the unknowns or is thrown away. It turns out that, in some parameter regimes,
learning such non-equality constraints will let us compute u.

Concretely, given an unknown state |φu〉, we choose an independent random yi for each
coordinate, apply the unitary Uyi to the ith coordinate, and measure. Any measurement
result that gives 0, we throw away; for typical |ψv〉, few measurements will give 0. The
remaining results yield inequality constraints of the form (uTA)i 6= yi. We then apply
the classical Arora-Ge algorithm [AG11] to these constraints. This algorithm works by
viewing the inequality constraints as degree q− 1 constraints and then re-linearizing them.
This process converts the inequality constraints into equality constraints, but at the cost
of blowing up the number of unknowns to ≈ nq−1. In the regime where q is a constant
and m is a sufficiently large polynomial, the system can be solved in polynomial-time using
Gaussian elimination.

Our algorithm: filtering out multiple values. Our algorithm so far is limited to
filtering out a single value, which in turn limits us to a constant q, due to our use of
Arora-Ge.

In order to get a polynomial-time algorithm for larger q, we must filter out more points; in
fact, in order to use Arora-Ge, we need our constraints to have constant degree, which in
turn means we must filter out all but a constant number of elements of Zq. Filtering out
so many points requires care.

Consider the goal of filtering out two values. If there exists, for y0, y1 ∈ Zq, a unitary Uy0,y1
such that

Uy0,y1 |ψyb〉 = |b〉,

then we could apply Uy0,y1 and measure in the computational basis. If the result is not
equal to 0 or 1, then we know that v /∈ {y0, y1}, thus filtering out two values.

In general such a unitary does not exist, as it would require |ψy0〉 and |ψy1〉 to be orthogonal.
Instead what we do is to define a unitary Uy0,y1 such that

Uy0,y1 |ψyb〉 ∈ Span(|0〉, |1〉) .

This method also naturally extends to filtering a larger number of y values. The limitation
is that, as the number of y increases, the probability of getting a successful measurement
(where “success” means, e.g. getting a result other than 0,1) decreases. For example,
suppose the |ψv〉 all lie in the space of dimension d � q. Then after excluding d values,
the probability of a successful measurement will be 0. Even if the vectors are technically
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linear independent but close to a d-dimensional subspace, the probability will be non-zero
but negligible. This, for example, rules out an algorithm for the case where f is discrete
Gaussian.

Therefore, whether or not the algorithm will succeed depends crucially on the “shape” of
the states |ψv〉, and in particular, the distribution f . Our applications roughly follow the
outline above, analyzing specific cases of |ψv〉. Our main observation is that, since all the
vectors |ψv〉 are just shifts of a single fixed vector, we can construct a unitary operator by
taking the normalized Gram-Schmidt orthogonalization of a circulant matrix Mf , defined
by

Mf := [|ψv〉, |ψv+1〉, ..., |ψv+q−1〉]. (2)

This allows us to relate the success probability of filtering out q − 1 values to the length
of the last Gram-Schmidt vector of Mf (before normalization). The length of the last
Gram-Schmidt vector is related to the eigenvalues of the circulant matrix Mf , and it can

be bounded in terms of the discrete Fourier transform f̂ of f . Our calculation suggests that
when f̂ is non-negligible over all the values in Zq, the success probability of correctly guessing
each coordinate is non-negligible. Therefore when m is a sufficiently large polynomial, we
get a polynomial-time algorithm for S|LWE〉n,m,q,f . In Figure 1.2 we give four examples of

error amplitudes. It shows that if the minimum of f̂ is non-negligible, then the length of
the last Gram-Schmidt of Mf is non-negligible.

1.3 The related work of Ivanyos et al.

Let us briefly compare our paper with the work of Ivanyos et al. [IPS18]1. As mentioned
in §1.1.3, EDCP with the parameters in Theorem 13 has already been solved in [IPS18] by
a quantum algorithm with similar complexity. While we solve EDCP using the quantum
reduction from EDCP to S|LWE〉 with sinc error distribution, Ivanyos et al. used a reduction
from EDCP to a problem called “learning from disequations” (LSF), defined as follows: the
goal is to learn a secret s ∈ Znq by querying an oracle which outputs some a ∈ Znq such that

〈a, s〉 ∈ A, where A is a known subset of Zq. Given the set A and m ∈ nO(|A|) samples
a1, ..., am, they solve LSF in time nO(|A|) classically (using the Arora-Ge algorithm). This
means when |A| is a constant, the problem of LSF is solvable in poly(n) time.

In their algorithm they also used an idea similar to what we called “filtering”. While we
use filtering to solve S|LWE〉, they used the idea of filtering in the quantum reduction from
EDCP to the LSF problem.

Overall, both papers use the idea of filtering to solve EDCP for the parameters settings in
Theorem 13, but the intermediate problems we reduced to are different. It appears that
solving S|LWE〉 allows us to obtain a richer variety of algorithms. In particular, it allows us
to obtain a quantum algorithm for SIS∞, which was not achieved in [IPS18]. Furthermore,
our results give evidence that the S|LWE〉 and C|LWE〉 problems are quantumly easier to
solve than the classical LWE problem, which shows another hope of solving the worst-case
lattice problems. Let us elaborate on this point in the next section.

1In the initial version of our paper (August 25, 2021) we were not aware of the results in [IPS18]. We
sincerely thank Gábor Ivanyos for telling us the results in [IPS18].
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Figure 2: Examples of error amplitude f (top), its DFT f̂ (middle), and the length of
the ith Gram-Schmidt vector of Mf in Eqn. (2) for 0 ≤ i < q (bottom). Let q = 31 for all
examples. The error amplitude f is (from left to right): (1) Gaussian: f(x) = exp(−(x/3)2);
(2) Laplacian: f(x) = exp(−|x/3|); (3) Uniform over [−3, 3] ∩ Z; (4) The DFT of Uniform
over [−3, 3] ∩ Z.

1.4 Future directions

Our results show polynomial time quantum algorithms for variants of average-case lattice
problems. They do not appear to affect the security of any lattice-based cryptosystems in
use. One may ask how far are we from solving standard LWE or approximate SVP for all
lattices? Here we discuss two potential approaches of extending our results towards those
ultimate goals.

Our first observation is that in order to solve standard LWE, “all” what we need to do
is to solve C|LWE〉n,m,q,f with a smaller m than what we have achieved in Theorem 8
or Corollary 9. For the simplicity of explanation, assume the parameters σ,B, q satisfy
σ < B � q ∈ poly(n). To solve decisional LWEn,m,q,D where the noise distribution D is
uniform over [−σ, σ]∩Z, it suffices to solve C|LWE〉n,m,q,f where f is the uniform distribution
over [−B,B] ∩ Z, and with m ≤ B/σ. Currently, using our result in Corollary 9, we need
m ∈ Ω

(
n · q4 · (2B + 1)

)
, which is polynomial in n but way larger than B/σ.

The algorithm of breaking decisional LWE via solving C|LWE〉 is well-known and was im-
plicitly used in the attempt of designing quantum algorithms for lattice problems in [ES16].
Let the decisional LWEn,m,q,D instance be (A ∈ Zn×mq , y ∈ Zmq ) where y is either an LWE
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sample or uniformly random. We solve C|LWE〉n,m,q,f , i.e., construct a state

|ρ〉 :=
∑
u∈Znq

m⊗
i=1

∑
ei∈Zq

f(ei)|ai · u+ ei (mod q)〉

 .

Let Uy denote a unitary operator that maps any x ∈ Zmq to x+y. Then we compute 〈ρ|Uy|ρ〉
by performing a Hadamard test. If y is an LWE sample, we expect the overlap between
|ρ〉 and |ρ + y〉 to be at least (1 − σ/B)m, whereas if y is uniform, we expect the overlap
to be 0. Therefore, if we are able to solve C|LWE〉n,m,q,f with m ≤ B/σ, then we can solve
decisional LWEn,m,q,D. The distributions f and D in the example can be changed to other
ones, but all of them require m to be relatively small in order to break standard LWE.

If we are not able to decrease the number of samples in our solutions of C|LWE〉n,m,q,f or
S|LWE〉n,m,q,f , another hope of solving worst-case approximate SVP is to modify Regev’s
reduction [Reg05]. Recall that Regev reduces worst-case approximate SVP to LWE with
Gaussian noise and arbitrarily polynomially many classical samples. Suppose we can re-
place LWE with classical samples by its quantum variants C|LWE〉 or S|LWE〉, and replace
Gaussian distribution by distributions with non-negligible DFT (like bounded uniform or
Laplace distributions). Then approximate SVP can be solved using Theorem 8 without
decreasing the number of samples. However, it is not clear to us whether modifying Regev’s
reduction is feasible or not.

1.5 Organization and readers’ guide

The rest of the paper is organized as follows. In §2 we provide more background of quantum
computation and algorithms for lattice problems. In §3 we provide details of the basic idea
of filtering and a mini result for SIS∞. The mini result in §3 will be subsumed by the
result in §6, but the analysis in §3 is simple and instructive for understanding the main
results. The main results in this paper require some mathematical statements about the
Gram-Schmidt orthogonalization of circulant matrices, which will be presented in §4. Then
we present the quantum algorithms for solving S|LWE〉 and C|LWE〉 in §5. The quantum
algorithms for SIS∞ and EDCP are given in §6 and §7.

2 Preliminaries

Notation and terminology. Let R,Z,N be the set of real numbers, integers and positive
integers. For q ∈ N≥2, denote Z/qZ by Zq. For n ∈ N, [n] := {1, ..., n}. When a variable v
is drawn uniformly at random from the set S, we denote by v ← U(S).

A vector in Rn is represented in column form by default. For a vector v, the ith component
of v will be denoted by vi. For a matrix A, the ith column vector of A is denoted ai.
We use AT to denote the transpose of A, AH to denote the conjugate transpose of A.
The length of a vector is the `p-norm ‖v‖p := (

∑
vpi )

1/p, or the infinity norm given by its
largest entry ‖v‖∞ := maxi{|vi|}. The length of a matrix is the norm of its longest column:
‖A‖p := maxi ‖ai‖p. By default, we use `2-norm unless explicitly mentioned.
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2.1 Quantum background

We assume the readers are familiar with the basic concepts of quantum computation. All
the background we need in this paper is available in standard textbooks of quantum com-
putation, e.g., [NC16]. When writing a quantum state such as

∑
x∈S f(x)|x〉, we typically

omit the normalization factor except when needed. When a state can be approximately
constructed within a negligible distance, we sometimes say the state is constructible and
not mention the negligible distance.

Efficiently constructible unitary operators. In this paper we will use the fact that
all the unitary matrices of polynomial dimension can be efficiently approximated within
exponentially small distance.

Proposition 14 (Page 191 of [NC16]). Any unitary matrix U on an n-qubit system can be
written as a product of at most 2n−1(2n − 1) two-level unitary matrices.

Then, using Solovay-Kitaev Theorem, all the unitary matrices of poly(n) dimensions (there-
fore, applied on O(log n) qubits) can be approximated by 2O(logn) ∈ poly(n) elementary
quantum gates.

Proposition 15. Let G denote set of unitary matrices that are universal for two-level
gates. Given a unitary matrix U ∈ Cd×d, there is a classical algorithm that runs in time
poly(d), outputs a sequence of two-level unitary matrices U1, ..., Um ∈ G such that

∏m
i=1 Ui

approximates U within distance negligible in d, and m ∈ poly(d).

Looking ahead, the quantum algorithms in this work require quantum Fourier transform,
superposition evaluations of classical circuits on quantum states and quantum gates that
operate on O(log n) qubits. Thus, all quantum algorithms in the work can be efficiently
approximated.

Quantum Fourier Transform. For any integer q ≥ 2, let ωq = e2πi/q denote a primitive

q-th root of unity. Define a unitary matrix Fq ∈ Cq×q where (Fq)i,j := 1√
q ·ω

ij
n , for i, j ∈ Zq.

Theorem 16 (QFT). The unitary operator QFTq := Fq can be implemented by poly(log q)
elementary quantum gates. When QFTq is applied on a quantum state |φ〉 :=

∑
x∈Zq f(x)|x〉,

we have

QFTq|φ〉 =
∑
y∈Zq

f̂(y)|y〉 :=
∑
y∈Zq

∑
x∈Zq

1
√
q
· ωxyq · f(x)|y〉.

2.2 Arora-Ge algorithm for solving LWE

We have defined the SIS, DCP, and LWE problems in the introduction. Here let us mention
the Arora-Ge algorithm for solving LWE when the support of the error distribution is small.
The following theorem is implicitly proven in [AG11, Section 3].
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Theorem 17. Let q be a prime, n be an integer. Let Dnoise be an error distribution which
satisfies:

1. The support of Dnoise is of size D < q.

2. Pr[e = 0, e← Dnoise] = 1
δ for some δ > 1.

Then, let N be
(
n+D
D

)
and C be a sufficiently large constant. Let m := CNδq log q. There is

a classical algorithm that solves LWEn,m,q,Dnoise
in time poly(m) and succeeds with probability

1− q−N .

Note that the probability is only taken over the randomness of samples. The algorithm is
deterministic.

Suppose the error distribution Dnoise is known (which is always the case in our application).
We can remove the second condition in Theorem 17 by shifting the error distribution such
that the probability of getting 0 is maximized. More precisely, suppose Dnoise outputs
some e′ ∈ Zq with the highest probability; we can always change an LWE sample (ai, yi)
to (ai, yi − e′), and apply Arora-Ge on the shifted samples. Thus, we can shift the error
distribution so that the probability of getting zero error is at least 1/q. This transformation
gives the following simple corollary.

Corollary 18. Let q be a prime, n be an integer. Let Dnoise be an error distribution whose
support is of size D < q and known to the algorithm. Let m := C · nDq2 log q where C is a
sufficiently large constant. There is a classical algorithm that solves LWEn,m,q,Dnoise

in time

poly(m) and succeeds with probability 1−O(q−n
D

).

3 The Idea of Filtering and a Mini Result for SIS∞

In this section we give more details of the basic idea of filtering. Using the basic filtering
technique, we obtain a polynomial-time quantum algorithm for SIS∞n,m,q,β with q being a
constant prime, m being as large as Ω(nq−1), and 1 ≤ β < q/2. Quantum polynomial-time
algorithms for SIS∞ with such parameter settings have not been given before.

Theorem 19. Let n be an integer, q be a constant prime modulus. There is a quantum

algorithm running in time poly(n) that solves SIS∞n,m,q,β with m ∈ Ω
(

nq−1q2 log q
0.9−1/(2β+1)

)
⊆ poly(n)

and any β ∈ Z such that 1 ≤ β < q/2.

Note that in the above theorem, 0.9 − 1/(2β + 1) is at least 0.56 for β ≥ 1. Thus, m is in
the order of nq−1q2 log q.

Let us first recall the existing quantum reduction from SIS to the problem of constructing
certain LWE states presented implicitly in [SSTX09], then show the filtering technique and
explain how to construct the required LWE states.
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3.1 Recalling the quantum reduction from SIS to LWE

To give a quantum algorithm for solving SIS∞n,m,q,β w.r.t. a uniformly random matrix A ∈
Zn×mq , it suffices to produce a state

∑
z∈([−β,β]∩Z)m s.t. Az=0 (mod q) |z〉. As long as the set

([−β, β] ∩ Z)m contains a non-zero solution for Az = 0 (mod q), we can solve SIS∞n,m,q,β
with probability ≥ 1/2 by simply measuring the state.

The following is a quantum reduction from SIS to LWE where the distribution of z is
general. Let f : Zq → R be a function (in the example above, f is the uniform distribution
over [−β, β]∩Z). We abuse the notation to let f : Zmq → R be defined as f(x) =

∏m
i=1 f(xi)

(we will clearly state the domain when using f).

Proposition 20. To construct an SIS state of the form

|φSIS〉 :=
∑

z∈Zmq s.t. Az=0 (mod q)

f(z)|z〉.

It suffices to construct an LWE state of the following form

|φLWE〉 :=
∑
u∈Znq

∑
e∈Zmq

f̂(e)|uTA+ eT (mod q)〉,

where f̂(ei) =
∑

xi∈Zq
1√
q · ω

eixi
q f(xi), for i = 1, ...,m, and f̂(e) =

∏
i=1,...,m f̂(ei) =∑

x∈Zmq
1√
qm
· ω〈e,x〉q f(x).

Proof. QFTmq |φLWE〉 = |φSIS〉.

The following lemma is immediate from Proposition 20.

Lemma 21. Let n,m, q be any integers such that m ∈ Ω(n log q) ⊆ poly(n). Let 0 < β <
q/2. Let f be the uniform distribution over ([−β, β] ∩ Z)m. Let A be a matrix in Zn×mq .
If there is a polynomial-time quantum algorithm that generates a state negligibly close to∑

u∈Znq
∑

e∈Zmq f̂(e)|uTA+e〉, then there is a polynomial-time quantum algorithm that solves

SIS∞n,m,q,β for A.

3.2 Constructing the LWE state via filtering

Now let us describe an algorithm for C|LWE〉.

1. The algorithm first prepares the following state:∑
x∈Zmq

f(x)|x〉 ⊗
∑
u∈Znq

|u〉,

where we assume we work with a function f such that
∑

x∈Zmq f(x)|x〉 can be efficiently

generated. If so, then the whole state can be efficiently generated.
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2. It then applies QFTmq on the x registers and gets:QFTmq
∑
x∈Zmq

f(x)|x〉

⊗ ∑
u∈Znq

|u〉 =

∑
e∈Zmq

f̂(e)|e〉

⊗(∑
u

|u〉

)
.

3. It then adds uTA to the e registers in superposition, the state becomes:∑
u∈Znq

∑
e∈Zmq

f̂(e)|uTA+ e〉 ⊗ |u〉. (3)

4. Suppose there is a quantum algorithm that takes a state
∑

u∈Znq
∑

e∈Zmq f̂(e)|uTA +

e〉 ⊗ |u〉, outputs a state that is negligibly close to∑
u∈Znq

∑
e∈Zmq

f̂(e)|uTA+ e〉 ⊗ |0〉, (4)

then we are done.

Let us now explain how to learn the secret u from the following state

|φu〉 :=
∑
e∈Zmq

f̂(e)|uTA+ e〉. (5)

For convenience, although |φu〉 depends on A, we ignore the subscript since A will be clear
from the context. We focus on the case where q is a constant prime, and for i = 1, ...,m,
f(ei) = 1/

√
2β + 1 for ei ∈ [−β, β] ∩ Z and 0 elsewhere. At the end of this subsection we

will prove Theorem 19.

For the convenience of the rest of the presentation, let us also define

for v ∈ Zq, |ψv〉 :=
∑
e∈Zq

f̂(e)|(v + e) mod q〉. (6)

Therefore Eqn (3) can also be written as

∑
u∈Znq

(|φu〉 ⊗ |u〉) =
∑
u∈Znq

 ⊗
i=1,...,m

|ψ(uTA)i〉 ⊗ |u〉

 . (7)

Now let us fix a vector u ∈ Znq . To learn u from |φu〉, we look at each coordinate |ψ(uTA)i〉
for i = 1, ...,m separately. Let us (classically) pick a uniformly random yi ∈ Zq, then define
a q-dimensional unitary matrix that always maps |ψyi〉 to |0〉; more precisely,

Uyi :=

q−1∑
j=0

|j〉〈αi,j |,

15



where |αi,0〉 := |ψyi〉 and the rest of the vectors {|αi,j〉}q−1
j=1 are picked arbitrarily as long as

Uyi is unitary.

Looking ahead, we will apply Uyi on |ψ(uTA)i〉. Suppose we measure Uyi |ψ(uTA)i〉 and get an

outcome in {0, 1, ..., q − 1}. If the outcome is not 0, then we are 100% sure that (uTA)i 6= yi.
This is the basic idea of filtering, namely, we will filter out the case where (uTA)i = yi for
a randomly chosen yi ∈ Zq. Then we will handle the rest of the q− 1 possibilities of (uTA)i
using the Arora-Ge algorithm (recall that we assume q is a constant in this subsection).

To explain why filtering works, consider for any x, y ∈ Zq. Let Uy :=
∑q−1

j=0 |j〉〈αj | where

|α0〉 := |ψy〉 and the rest of the vectors {|αj〉}q−1
j=1 span the rest of the space which are

orthogonal to |α0〉. Then for any x, |ψx〉 can be written as a linear combination of basis
{|αj〉}q−1

j=0 (which contains |ψy〉), i.e,

|ψx〉 =

q−1∑
j=0

〈αj |ψx〉 · |αj〉.

Imagine if we apply Uy on |ψx〉 and measure, we will get q different possible outcomes.

• If the outcome is 0, we know that both x = y and x 6= y can happen.

– If x = y, the outcome is 0 with probability 1;

– Otherwise, the outcome is 0 with probability |〈ψx|ψy〉|2, which can still be non-
zero.

• If the outcome is not 0, we know that it can only be the case: x 6= y. Because when
x = y, the measurement will always give outcome 0.

In the next lemma, we show that if we choose y uniformly at random, the above measurement
will give a non-zero outcome with “good” probability.

Lemma 22. Let y be a uniformly random value in Zq. Then for any x ∈ Zq, the probability
of measuring Uy|ψx〉 and getting an outcome not equal to 0 is at least 1− 1/(2β + 1):

∀x, Pr
y∈Zq

[s 6= 0 ∧ s←Mst ◦ Uy|ψx〉] ≥ 1− 1

2β + 1
,

where Mst is the measurement operator in the computational basis.

Proof. Fixing y, the probability of getting outcome 0 is |〈ψy|ψx〉|2. The probability of get-

ting a non-zero outcome (when y is chosen uniformly at random) is: 1
q

∑q−1
y=0

(
1− |〈ψy|ψx〉|2

)
.

To bound the probability, we define |ψ̂a〉 =
∑q−1

x=0 f(x)ω−xaq |x〉, we have |ψa〉 = QFTq|ψ̂a〉.

16



For any x, y, the inner product 〈ψx|ψy〉 = 〈ψ̂x|ψ̂y〉. The probability we want to bound is,

1− 1

q

q−1∑
y=0

〈ψy|ψx〉〈ψx|ψy〉 = 1− 1

q

q−1∑
y=0

Tr
[
|ψ̂x〉〈ψ̂x| |ψ̂y〉〈ψ̂y|

]

= 1− 1

q
· Tr

|ψ̂x〉〈ψ̂x|
q−1∑
y=0

|ψ̂y〉〈ψ̂y|

 .
Let Ψ :=

∑q−1
y=0 |ψ̂y〉〈ψ̂y|. It can be simplified as follows:

Ψ =

q−1∑
y=0

|ψ̂y〉〈ψ̂y| =

q−1∑
y=0

∑
x∈Zq ,x′∈Zq

f(x)f(x′)ω(x′−x)y
q |x〉〈x′|

=
∑

x∈Zq ,x′∈Zq

f(x)f(x′)

q−1∑
y=0

ω(x′−x)y
q |x〉〈x′|

= q ·
q−1∑
x=0

f(x)2|x〉〈x|

=
q

2β + 1

β∑
x=−β

|x〉〈x|.

Here, we use the fact that f(x) = 1/
√

2β + 1 for any x ∈ [−β, β] ∩ Z and f(x) = 0
otherwise.Therefore,

1− 1

q
· Tr

|ψ̂x〉〈ψ̂x|
q−1∑
y=0

|ψ̂y〉〈ψ̂y|

 = 1− 1

2β + 1
· Tr

|ψ̂x〉〈ψ̂x|
 β∑
x=−β

|x〉〈x|

 ≥ 1− 1

2β + 1
,

where the last inequality follows from Tr
[
|ψ̂x〉〈ψ̂x|

(∑β
x=−β |x〉〈x|

)]
≤ 1.

Thus, if we measure the superposition |φu〉 entry-by-entry, with overwhelming probability,
we will get at least (1− 1/(2β + 1)− ε)m outcomes which are not 0 and at most (1/(2β +
1) + ε)m outcomes are 0 (for any constant ε > 0). Here we choose ε = 0.1.

Lemma 23. For any fixed x1, · · · , xm ∈ Zq, uniformly random y1, · · · , ym ∈ Zq, the proba-
bility of measuring Uyi |ψxi〉 for all i ∈ [m] and at least (0.9− 1/(2β + 1))m outcomes being
non-zero is at least 1−O(e−m). Namely, for any fixed x1, · · · , xm ∈ Zq,

Pr
y1,··· ,ym∈Zq

[
z ≥

(
0.9− 1

2β + 1

)
·m ∧ ∀i, si ←Mst ◦ Uyi |ψxi〉

]
≥ 1−O(e−m),

where z is defined as the number of non-zero outcomes among all s1, · · · , sm and Mst is the
measurement operator in the computational basis.

Proof. This is a direct consequence of Lemma 22 and Chernoff bound.
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By union bound, it can also be shown that, with probability at least 1 − O(qne−m), when
the measurements on each bit are chosen uniformly at random, we will get at least (0.9 −
1/(2β + 1)) ·m non-zeros for all u ∈ Znq .

Corollary 24. For any fixed A in Zn×mq , the probability that for all u ∈ Znq , measuring
Uyi |ψ(uTA)i〉 for all i ∈ [m] and at least (0.9− 1/(2β + 1))m outcomes being non-zero is at
least 1−O(qne−m). Namely,

Pr
y1,··· ,ym∈Zq

[
∀u ∈ Znq , zu ≥

(
0.9− 1

2β + 1

)
m

]
≥ 1−O(qne−m),

where zu is defined as the number of non-zero outcomes among all su,1, · · · , su,m, each su,i
is defined as the measurement outcome of Uyi |ψ(uTA)i〉.

The above corollary implies that, for an overwhelming fraction (at least 1 − O(qne−m))
of y1, · · · , ym, the following event happens with probability at least 1 − O(qne−m): for all
u ∈ Znq , measuring Uyi |ψ(uTA))i〉 for all i ∈ [m] and getting at least (0.9 − 1/(2β + 1)m
outcomes being non-zero.

We are now ready to state the main theorem.

Theorem 25. Let n be an integer, q be a constant prime, C be a sufficiently large constant.
Let m ≥ (0.9−1/(2β+ 1))−1 ·C ·nq−1q2 log q. Then there exists a QPT algorithm that with
overwhelming probability, given a random A ∈ Zn×mq and

∑
u∈Znq |φu〉 ⊗ |u〉, outputs a state

negligibly close to
∑

u∈Znq |φu〉. Here |φu〉 is defined in Eqn. (5).

Proof. Our algorithm works as follows on state
∑

u∈Znq |φu〉|u〉 =
∑

u

⊗m
i=1 |ψ(uTA)i〉|u〉:

1. Pick m uniformly random values y1, ..., ym ∈ Zq. For each i ∈ [m], construct a unitary

Ui :=
∑q−1

j=0 |j〉〈αi,j | where for j = 0, ..., q − 1,

|αi,j〉 :=

{
|ψyi〉, when j = 0;

An arbitrary q-dim unit vector orthogonal to {|αi,k〉}j−1
k=0 , for 1 ≤ j ≤ q − 1;

(8)

2. For i = 1, ...,m, apply Ui to the ith register, we get

Ui|ψ(uTA)i〉 = Ui

q−1∑
j=0

〈αi,j |ψ(uTA)i〉 · |αi,j〉


=

q−1∑
j=0

〈αi,j |ψ(uTA)i〉 · |j〉

 =:
∑

su,i∈Zq

wsu,i |su,i〉.

Here, su,i denotes the ‘measurement outcome’ of Ui|ψ(uTA)i〉, but we do not physically
measure the register su,i. We denote the vector (su,1, · · · , su,m) by su.
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Algorithm 1 Learning u from uTA

1: procedure Dy1,y2,··· ,ym(su)
2: for each i = 1, 2, · · · ,m do
3: if su,i 6= 0 (meaning that (uTA)i 6= yi) then
4: Let ai and yi (mod q) be a sample of LWE
5: end if
6: end for
7: If there are more than m′ = (0.9−1/(2β+1))m samples, it runs Arora-Ge algorithm

over those samples to learn u and outputs u.
8: end procedure

3. Then we apply the quantum unitary implementation of the classical algorithm in [AG11]
to
∑

u

∑
su∈Zmq wsu |su〉 ⊗ |u〉 :=

∑
u

⊗m
i=1

∑
su,i∈Zq wsu,i |su,i〉 ⊗ |u〉. Let the algorithm

Dy1,y2,··· ,ym be the following in Fig 1:

For any y1, · · · , ym ∈ Zq and u ∈ Znq , if su,i 6= 0, then (uTA)i 6= yi; moreover, the LWE
sample (ai, yi) has an error distribution with support {1, ..., q − 1}, so Corollary 18
applies here.

We apply Dy1,y2,··· ,ym in superposition to
∑

u

∑
su∈Zmq wsu |su〉 ⊗ |u〉. For every fixed

u ∈ Znq , let Badu be the set such that if all su ∈ Badu, when we apply this algorithm
to su, it does not compute u correctly.

By Corollaries 24 and 18, for an overwhelming fraction (1−O(qne−m)) of y1, · · · , ym,
for every u,

∑
su∈Badu |wsu |

2 ≤ negl(n). This is because:

(a) By Corollary 24, for an overwhelming fraction of y1, · · · , ym, for every u, su pro-
vides at least (0.9−1/(2β+1))m = C ·nq−1q2 log q samples with probability more
than 1−O(qne−m). Since m� n, it happens with overwhelming probability.

(b) By Corollary 18, as long as there are more than C · nq−1q2 log q random sam-
ples, Arora-Ge algorithm succeeds with probability more than 1 − O(q−n

q−1
).

Note that the probability is taken over these random samples; in our case, the
probability is taken over A, y1, · · · , ym.

Thus, for an overwhelming fraction ofA, y1, · · · , ym, for every u, the weight
∑

su∈Badu |wsu |
2 ≤

O(qne−m + q−n
q−1

) = negl(n).

Therefore, for an overwhelming fraction of A, y1, · · · , ym, the resulting state is:
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|φ〉 := Dy1,y2,··· ,ym · q−n/2
∑
u∈Znq

∑
su∈Zmq

wsu |su, u〉

= q−n/2
∑
u∈Znq

 ∑
su 6∈Badu

wsu |su, 0〉+
∑

su∈Badu

wsu |su, Dy1,··· ,ym(su)〉


= q−n/2

∑
u∈Znq

(∑
su

wsu |su, 0〉+ neglu(n)|erru〉

)

= q−n/2
∑
u∈Znq

∑
su

wsu |su, 0〉+ negl(n)|err〉.

Here neglu(n) is a complex number whose norm is negligible in n, |erru〉 is some unit
vector. Similarly, it is the case for negl(n) and |err〉.

4. Finally, we apply
⊗m

i=1 U
−1
i to uncompute the projections and get

m⊗
i=1

U−1
i |φ〉 =

∑
u∈Znq

⊗
i=1,...,m

|ψ(uTA)i〉⊗|0〉+negl(n)|err′〉 =
∑
u∈Znq

|φu〉⊗|0〉+negl(n)|err′〉.

Therefore we get a state negligibly close to
∑

u∈Znq |φu〉 =
∑

u∈Znq
∑

e∈Zmq f̂(e)|uTA + e〉.
This completes the proof of Theorem 25.

Finally, by Lemma 21 and Theorem 25, we complete the proof of Theorem 19.

4 Gram-Schmidt for Circulant Matrices

The general filtering algorithms used later in this paper construct unitary matrices ob-
tained from applying the normalized Gram-Schmidt orthogonalization (GSO) on circulant
matrices. The success probabilities of the general filtering algorithms are related to the
norm of the columns in the matrices obtained from GSO. Thus, let us provide some related
mathematical background in this section.

Given an ordered set of k ≤ n linearly independent vectors {b0, ..., bk−1} in Rn, let B :=(
b0, ..., bk−1

)
∈ Rn×k. For convenience, we sometimes denote bi by Bi. Recall the Gram-

Schmidt orthogonalization process.

Definition 26 (GSO). The Gram-Schmidt orthogonalization of B, denoted as GS (B) =(
GS (b0) , · · · ,GS (bk−1)

)
, is defined iteratively for i = 0, ..., k − 1 as

GS (bi) = bi −
i−1∑
j=0

〈bi,GS (bj)〉
〈GS (bj),GS (bj)〉

· GS (bj) .

Let us also define the normalized version of Gram-Schmidt orthogonalization.
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Definition 27. Given an ordered set of k ≤ n linearly independent vectors {b0, ..., bk−1}
in Rn, let B :=

(
b0, ..., bk−1

)
∈ Rn×k. The normalized Gram-Schmidt orthogonalization

of B, denoted as NGS (B) =
(
NGS (b0) , · · · ,NGS (bk−1)

)
, is defined for i = 0, ..., k − 1 as

NGS (bi) := GS (bi) /‖GS (bi) ‖2 where GS (bi) is defined in Definition 26.

The following lemma is helpful for bounding the length of GSO vectors.

Lemma 28 (Derived from Corollary 14 of [Mic12]). Let D =
(
d0, ..., dk−1

)
:= B ·(BT ·B)−1.

Then we have ‖GS (bk−1) ‖2 = 1/‖dk−1‖2.

GSO of circulant matrices. Let C ∈ Rn×n be a real circulant matrix, defined as

C :=


c0 c1 c2 ... cn−1

cn−1 c0 c1 ... cn−2

cn−2 cn−1 c0 ... cn−3

... ... ... ... ...
c1 c2 c3 ... c0

 . (9)

Fact 29. The QFT basis is an eigenbasis of a circulant matrix, namely,

C = F−1
n · Λ · Fn, (10)

where (Fn)i,j := 1√
n
· ωijn , for 0 ≤ i, j ≤ n − 1; Λ := diag (λ0, ..., λn−1), where λi :=∑n−1

j=0 cj · ω
ij
n . In other words, the eigenvalues of C are the QFT of the first row of C.

In our application, we need to compute the lower bound of the length of the kth column of
GS (C), for some 1 ≤ k ≤ n such that the first k columns of C are linearly independent.
Below we present a lemma for general parameter settings. For simplicity, the readers can
assume we are interested in the range of parameters where n is a polynomial, and k is either
equal to n or n− c where c is a constant.

Lemma 30. Let C = F−1
n ·Λ · Fn be a real circulant matrix where Λ := diag (λ0, ..., λn−1),

λi :=
∑n−1

j=0 cj · ω
ij
n . Suppose λ0, ..., λk−1 are non-zero and λk, ..., λn−1 are zero. Then the

length of the kth column of GS (C), i.e., ‖GS (C)k−1 ‖2, is lower-bounded by

1. If k = n, then ‖GS (C)n−1 ‖2 ≥
1√
n
·mini=0,...,n−1 |λi|.

2. If k < n, then ‖GS (C)k−1 ‖2 ≥
√
n

k·2n−k ·mini=0,...,k−1 |λi|.

21



Proof. If k = n, then let D := C · (CT · C)−1 = C−T = F−1
n · Λ−1 · Fn. Therefore

‖dn−1‖2 ≤ ‖dn−1‖∞ ·
√
n

≤(1) n · ‖F−1
n · Λ−1‖∞ · ‖(Fn)n−1‖∞ ·

√
n

≤ n ·
(

1√
n
· max
i=0,...,n−1

|λi|−1

)
· 1√

n
·
√
n

≤
√
n · max

i=0,...,n−1
|λi|−1.

The inequality (1) follows from the fact that ‖Ax‖∞ ≤ n · ‖A‖∞‖x‖∞, where A ∈ Cn×n
and x ∈ Cn; and dn−1 = F−1

n · Λ−1 · (Fn)n−1.

Then by Lemma 28, ‖GS (C)n−1 ‖2 ≥
1√
n
·mini=0,...,n−1 |λi|.

If k < n, let C(k) ∈ Rn×k denote the first k columns of C. Then C(k) can be written as

C(k) = L · Λ(k) ·R, (11)

where L ∈ Cn×k denotes the first k columns of F−1
n ; Λ(k) := diag (λ0, ..., λk−1) ∈ Rk×k;

R ∈ Ck×k denotes the upper-left block of Fn, i.e., Ri,j = 1√
n
· ωijn , for 0 ≤ i, j ≤ k − 1.

Let D := C(k) · (C(k)T · C(k))−1 = C(k) · (C(k)H · C(k))−1 (the second equality uses the
property that C is real), then

D = L · Λ(k) ·R ·
(
RH · Λ(k)H · LH · L · Λ(k) ·R

)−1
= L · Λ(k)−H ·R−H , (12)

where we use the property that LH · L = I ∈ Rk×k.

From Lemma 28 we know that ‖GS (C)k−1 ‖2 = 1/‖dk−1‖2. To get an lower bound of
‖GS (C)k−1 ‖2, it suffices to get an upper bound of ‖dk−1‖2. To get an upper bound of

‖dk−1‖2, we need to get an upper bound of the entries in the kth column of R−H , i.e.,
‖R−Hk−1‖∞. To estimate ‖R−Hk−1‖∞, we use the fact that RH is a Vandermonde matrix.

Proposition 31 ([Raw18]). Let V ∈ Ck×k be a Vandermonde matrix such that Vj,` := cj`
for 0 ≤ j, ` ≤ k − 1 where c0, ..., ck−1 are distinct complex numbers. Then the kth column
of V −1 is (V −1)j,k−1 = (−1)k−1 · 1∏

0≤`≤k−1,m 6=j (c`−cj) .

Plug in Proposition 31 with c` = ω−`n for 0 ≤ ` ≤ k − 1, we have

(R−H)j,k−1 =
√
n · (−1)k−1 · 1∏

0≤`≤k−1,` 6=j (ω−`n − ω−jn )
. (13)
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Let us now bound the norm of the denominators. For j = 0, ..., k − 1:∣∣∣∣∣∣
∏

0≤`≤k−1,` 6=j
(ω−`n − ω−jn )

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∏

0≤`≤k−1,` 6=j
(1− ω`−jn )

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∏

0≤`≤k−1,` 6=j
2 sin(π(`− j)/n)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∏

`∈{n−j,n−j+1,··· ,n−1}∩{1,··· ,k−1−j}

2 sin(π`/n)

∣∣∣∣∣∣
=(1)

∣∣∣∣∣ n

2n−k ·
∏n−j−1
`=k−j sin(π`/n)

∣∣∣∣∣ ,
where (1) uses the identity

∏n−1
`=1 sin(`π/n) = n/2n−1.

Thus, for all 0 ≤ j ≤ k − 1, |R−Hj,k−1| ≤
√
n · 1

n/2n−k
= 2n−k√

n
.

Therefore, we have

‖dk−1‖2 ≤ k · ‖L · Λ(k)−H‖∞ · ‖R−Hk−1‖∞ ·
√
n

≤ k ·
(

1√
n
· max
i=0,...,k−1

|λi|−1

)
· 2n−k√

n
·
√
n

≤ k · 2n−k√
n

max
i=0,...,k−1

|λi|−1.

By Lemma 28, ‖GS (C)k−1 ‖2 = 1/‖dk−1‖2 ≥
√
n

k·2n−k ·mini=0,...,k−1 |λi|.
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5 Quantum Algorithm for Solving the LWE State Problems

Recall in our mini result, every time a “measurement” (we do not physically implement
the measurement) gives a non-zero result; it provides us with an inequality 〈u, ai〉 6= yi.
The algorithm, therefore, collects enough inequalities and then runs Arora-Ge to learn the
secret vector u. There are two bottlenecks in the previous algorithm: (1) we are only able
to filter out one value for 〈u, ai〉; (2) to run Arora-Ge, one needs to collect many samples
(up to roughly nq−1). Therefore, it is only possible to provide quantum polynomial-time
algorithms for S|LWE〉, C|LWE〉, and SIS∞ for a constantly large modulus q.

In this section, we generalize the filtering algorithm in a way that allows us to filter out
q− c many possible values of 〈u, ai〉 for some constant c even when q is a polynomially large
modulus. In the best possible case, the filtering algorithm can filter out q−1 possibilities and
get the exact value of 〈u, ai〉. Therefore, to learn the secret vector u ∈ Znq , one can collect
roughly n samples and run Gaussian elimination. However, the probability of filtering out
q − 1 or q − c (for some constant c) values depends on the concrete f and is typically very
small. We will precisely show when such a probability is non-negligible.

We now provide quantum algorithms for C|LWE〉n,m,q,f (cf. Def. 6) and S|LWE〉n,m,q,f (cf.
Def. 7). Let us first present the algorithms for a general error amplitude f , then state
corollaries for some functions f of special interest. Looking ahead, the results in §6 and §7
use a slight modification of the algorithms presented in this section. Namely, in this section
we will only show algorithms for functions f which allow us to filter out q−1 possible values
then use Gaussian elimination, whereas the results in §6 and §7 require us to deal with a
function f that allows us to filter out q − c possible values then use Arora-Ge.

5.1 Overview of the general filtering algorithm

Let q be a polynomially large modulus, f be an arbitrary noise amplitude. Define

∀v ∈ Zq, |ψv〉 :=
∑
e∈Zq

f(e)|v + e mod q〉.

Following the basic notations and ideas in §3.2, let us now explain how to filter out two
possible values for (uTA)i, say we are filtering out (uTA)i = yi and (uTA)i = yi + 1 where
yi is a random value in Zq. To do so, let us define a basis {|αi,j〉}q−1

j=0 where

|αi,0〉 = |ψyi〉; |αi,1〉 = NGS (|ψyi+1〉) .

The rest of the vectors in the basis are picked arbitrarily as long as they are orthogonal to
|αi,0〉 and |αi,1〉.

Define Uyi :=
∑q−1

j=0 |j〉〈αi,j |. Suppose we “measure” Uyi |ψ(uTA)i〉 and get an outcome in
{0, 1, ..., q − 1}:

1. If the outcome is 0, then (uTA)i can be any values in Zq;

2. If the outcome is 1, then we are 100% sure that (uTA)i 6= yi, since if (uTA)i = yi,
then the measurement outcome must be 0.
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3. If the outcome is ≥ 2, then we are 100% sure that (uTA)i does not equal to yi or
yi + 1.

The idea can be further generalized by continuing to do normalized Gram-Schmidt orthogo-
nalization. Suppose for a moment that |ψyi+j〉, for j = 0, ..., q−1, are linearly independent.
Then we define unitary matrices

Uyi :=

q−1∑
j=0

|j〉〈αi,j |, where |αi,j〉 = NGS (|ψyi+j〉) .

Following the previous logic, if we “measure” Uyi |ψ(uTA)i〉, only the outcome “q − 1” gives

us a definitive answer of (uTA)i, that is, (uTA)i = yi + q − 1 (mod q).

The probability of filtering out q−1 values. It remains to understand the probability
of getting the measurement outcome q − 1.

Pr
yi∈Zq

[(uTA)i = yi + q − 1 (mod q) ∧ q − 1←Mst ◦ Uyi |ψ(uTA)i〉]

=
1

q
·
∑
j∈Zq

|〈αi,q−1|ψyi+j〉|2 =
1

q
· |〈αi,q−1|ψyi+q−1〉|2,

where the second equality follows from the fact that |αi,q−1〉 is defined to be orthogonal to
all the states except |ψyi+q−1〉. Furthermore,

|〈αi,q−1|ψyi+q−1〉| =
∣∣∣NGS (|ψyi+q−1〉)† |ψyi+q−1〉

∣∣∣ = ‖GS (|ψyi+q−1〉) ‖2,

i.e., it is exactly the norm of the Gram-Schmidt of |ψyi+q−1〉. This quantity has been shown

in Lemma 30 to be related to the minimum of f̂ over Zq, namely,

‖GS (|ψyi+q−1〉) ‖2 ≥ min
x=0,...,q−1

|f̂(x)|.

Therefore, we are able to use the general filtering technique to achieve polynomial-time
quantum algorithms for S|LWE〉n,m,q,f and C|LWE〉n,m,q,f where q is polynomially large and

f is a function such that the minimum of f̂ over Zq is non-negligible.

5.2 Quantum algorithm for generating LWE states with general error

Theorem 32. Let q be a polynomially large modulus. Let f : Zq → R be the amplitude
for the error state such that the state

∑
e∈Zq f(e)|e〉 is efficiently constructible and η :=

minz∈Zq |f̂(z)| is non-negligible. Let m ∈ Ω
(
n · q/η2

)
⊆ poly(n), there exist polynomial-

time quantum algorithms that solve C|LWE〉n,m,q,f and S|LWE〉n,m,q,f .

Proof. We will describe an algorithm for C|LWE〉n,m,q,f . The algorithm for S|LWE〉n,m,q,f
appears as a subroutine in the algorithm for C|LWE〉n,m,q,f .
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1. The algorithm first prepares the following state:

m⊗
i=1

∑
ei∈Zq

f(ei)|ei〉

⊗ ∑
u∈Znq

|u〉.

We abuse the notation of f to let f(e) :=
∏m
i=1 f(ei) for e := (e1, ..., em). Then the

state above can be written as
∑

e∈Zmq f(e)|e〉 ⊗
∑

u∈Znq |u〉.

2. It then adds uTA to the e registers in superposition, the state is:∑
u∈Znq

∑
e∈Zmq

f(e)|uTA+ e〉 ⊗ |u〉 (14)

Similarly, let us define

for v ∈ Zq, |ψv〉 :=
∑
e∈Zq

f(e)|(v + e) mod q〉. (15)

Therefore Eqn (14) can also be written as∑
u∈Znq

⊗
i=1,...,m

|ψ(uTA)i〉 ⊗ |u〉. (16)

3. Pick m uniformly random values y1, ..., ym ∈ Zq. Construct unitary matrices

For 1 ≤ i ≤ m, Ui :=

q−1∑
j=0

|j〉〈αi,j |, where |αi,j〉 := NGS (|ψyi+j〉) . (17)

4. For i = 1, ...,m, apply Ui to the ith register, we get

Ui|ψ(uTA)i〉 = Ui

q−1∑
j=0

〈αi,j |ψ(uTA)i〉 · |αi,j〉


=

q−1∑
j=0

〈αi,j |ψ(uTA)i〉 · |j〉

 =:
∑

su,i∈Zq

wsu,i |su,i〉.

5. Then we apply the quantum unitary implementation of Gaussian elimination to the
superposition

∑
u

∑
su∈Zmq wsu |su〉 :=

∑
u

⊗m
i=1

∑
su,i∈Zq wsu,i |su,i〉. The algorithm

Dy1,y2,··· ,ym is described in Algorithm 2. In Lemma 35, we prove our parameters
guarantee that with overwhelming probability,

(a) There exists a set Badu such that for all su ∈ Badu, when we apply Dy1,y2,··· ,ym
to su, it does not compute u correctly;

(b) For an overwhelming choice of y1, · · · , ym, for all u,
∑

su∈Badu |wsu |
2 = O(qne−m+

q−n) = negl(n). Here q−n is the probability that the linear system is not full
rank with 2n samples.
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Algorithm 2 Learning u from uTA

1: procedure Dy1,y2,··· ,ym({su,i}1≤i≤m)
2: for each i = 1, 2, · · · ,m do
3: if If su,i = q − 1 (meaning that (uTA)i = yi + q − 1 (mod q)) then
4: Let ai and yi − 1 mod q be one sample of the linear system
5: end if
6: end for
7: With overwhelming probability, there are ≥ 2 ·n random samples (to make sure the

linear system is full rank)
8: Run the Gaussian elimination algorithm to learn u and return u
9: end procedure

Therefore, for an overwhelming fraction of A, y1, · · · , ym, the resulting state is:

|φ〉 := q−n/2 ·Dy1,y2,··· ,ym
∑
u∈Znq

∑
su∈Zmq

wsu |su, u〉

= q−n/2
∑
u∈Znq

 ∑
su 6∈Badu

wsu |su, 0〉+
∑

su∈Badu

wsu |su, Dy1,··· ,ym(su)〉


= q−n/2

∑
u∈Znq

(∑
su

wsu |su, 0〉+ neglu(n)|erru〉

)

= q−n/2
∑
u∈Znq

∑
su

wsu |su, 0〉+ negl(n)|err〉.

Here neglu(n) returns a complex number whose norm is negligible in n, |erru〉 is some
unit vector. Similarly, it is the case for negl(n) and |err〉.

6. Finally, we just apply
⊗m

i=1 U
−1
i to uncompute the projections and get

m⊗
i=1

U−1
i |φ〉 =

∑
u∈Znq

⊗
i=1,...,m

|ψ(uTA)i〉 ⊗ |0〉+ negl(n)|err′〉.

Thus, with overwhelming probability, we get a state close to
∑

u∈Znq
∑

e∈Zmq f(e)|uTA+ e〉.
It completes the description of our algorithm.

The analysis. Let us begin with an explanation of the properties of the unitary matrices
Ui defined in Eqn (17). Recall from Eqn. (15) that

|ψv〉 =
∑
e∈Zq

f(e)|(v + e) mod q〉.

Let Wi :=
∑q−1

j=0 |j〉〈ψyi+j |. In other words, W T
i =

(
|ψyi〉, · · · , |ψyi+q−1〉

)
. Then UTi =

NGS
(
W T
i

)
. We would like to show that the length of the GSO of |ψyi+q−1〉, i.e., the length

of the last column of GS
(
W T
i

)
, is non-negligible.
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Lemma 33. ‖GS (|ψyi+q−1〉) ‖2 ≥ minz∈Zq |f̂(z)| = η.

Proof. Note that W T
i is a circulant matrix. The eigenvalues of W T

i are
{√

q · f̂(z)
}
z∈Zq

(see

Fact 29). Therefore, by applying Lemma 30, we have ‖GS (|ψyi+q−1〉) ‖2 ≥ minz∈Zq |f̂(z)| =
η.

Next, we relate the GSO of |ψyi+q−1〉 to the probability of getting desirable samples in
Algorithm 2.

Lemma 34. For any fixed x1, · · · , xm ∈ Zq,

Pr
y1,··· ,ym∈Zq

[
z ≥ Ω

(
m · (η2/q)

)
∧ ∀i, si ←Mst ◦ Uyi |ψxi〉

]
≥ 1−O(e−m),

where z is defined as the number of outcomes such that si = q− 1 among all s1, · · · , sm and
Mst is a measurement operator in the computational basis.

Proof. For i = 1, ...,m, we have

Pr
yi

[yi + q − 1 = xi] · Pr [si = q − 1 ∧ si ←Mst ◦ Uyi |ψxi〉 | yi + q − 1 = xi]

=
1

q
· |〈αi,q−1|ψyi+q−1〉|2 =

1

q
· ‖GS (|ψyi+q−1〉) ‖22 ≥

η2

q
.

The lemma then follows Chernoff bound.

Lemma 35. When m ∈ Ω
(
n · q/η2

)
⊆ poly(n), for an overwhelming fraction of all possible

A, y1, · · · , ym, we have: for all u,
∑

su∈Badu |wsu |
2 ≤ negl(n).

Proof. It follows from Lemma 34 that when m ∈ Ω
(
n · q/η2

)
, we have ≥ 2 · n samples

where (uTA)i = yi− 1 (mod q) with overwhelming probability. Thus, we can use Gaussian
elimination to compute u. Therefore

∑
su∈Badu |wsu |

2 ≤ negl(n).

This completes the proof of Theorem 32.

5.3 Examples of error distributions of special interest

We give some examples of error amplitude f where miny∈Zq |f̂(y)| is non-negligible and q is
polynomially large. The first example is where f is the bounded uniform distribution.

Corollary 36. Let q be a polynomially large modulus. Let B ∈ Z such that 0 < 2B+ 1 < q
and gcd(2B + 1, q) = 1. Let f : Zq → R be f(x) := 1/

√
2B + 1 where x ∈ [−B,B] ∩ Z and

0 elsewhere. Let m ∈ Ω
(
n · q4 · (2B + 1)

)
⊆ poly(n), there exist polynomial-time quantum

algorithms that solve C|LWE〉n,m,q,f and S|LWE〉n,m,q,f .
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Proof. The QFT of f is

∀y ∈ Zq, f̂(y) :=

√
1

q · (2B + 1)
·

B∑
x=−B

ωxyq =

√
1

q · (2B + 1)
·

sin
(

2π
q ·

2B+1
2 · y

)
sin
(

2π
q ·

y
2

) . (18)

Here we use the identity: 1 + 2 cosx+ · · ·+ 2 cosnx = sin
(
(n+ 1

2)x
)
/ sin

(
x
2

)
.

Note that when y = 0, f̂(y) =
√

2B+1
q . When y ∈ {1, ..., q − 1}, the denominator satisfies

0 < sin
(

2π
q ·

y
2

)
≤ 1; since gcd(2B+1, q) = 1, we have (2B+1)y

q /∈ Z for any y ∈ {1, ..., q − 1},

the numerator satisfies
∣∣∣sin(2π

q ·
2B+1

2 · y
)∣∣∣ ≥ ∣∣∣sin(πq )∣∣∣ > 1

q .

Therefore η = miny∈Zq |f̂(y)| ≥
√

1
q·(2B+1) ·

1
q . The corollary follows by plugging η ≥√

1
q·(2B+1) ·

1
q in Theorem 32.

Remark 37. When gcd(2B + 1, q) = v for some v > 1, we have (2B+1)y
q ∈ Z for q/v − 1

values of y ∈ {1, ..., q − 1}. Therefore f̂(y) defined in Eqn. (18) is 0 on q/v − 1 values. It
is not clear to us how to extend our algorithm to the case where gcd(2B + 1, q) > 1.

Other examples of f where miny∈Zq |f̂(y)| is non-negligible and q is polynomially large
include Laplace and super-Gaussian functions. Their q-DFT is easier to express by first
taking the continuous Fourier transform (CFT) of f , denoted as g, then discretize to obtain

the DFT. Namely, for y ∈ Zq, f̂(y) =
∑
z∈y+qZ g(z/q)∑
z∈Z g(z/q)

. Let 0 < B < q/nc for some c > 0.

1. Laplace: f(x) = e−|x/B|, the CFT of f is g(y) ∝ 2
1+4(πBy)2

.

2. Super-Gaussian: For 0 < p < 2, f(x) = e−|x/B|
p
, the CFT of f is asymptotic to

g(y) ∝ −π−p−
1
2 |By|−p−1Γ( p+1

2
)

Γ(− p
2

)
(see, for example, [MS19]).

6 Solving SIS∞ with Polynomial Moduli

Let us now present our quantum algorithm for solving SIS∞.

Theorem 38. Let c > 0 be a constant integer, q > c be a polynomially large prime mod-
ulus. Let m ∈ Ω

(
(q − c)3 · nc+1 · q · log q

)
⊆ poly(n), there is a polynomial time quantum

algorithm that solves SIS∞
n,m,q, q−c

2

.

The algorithm uses the quantum reduction from SIS to LWE given in Lemma 21. To
generate the LWE state needed, we slightly modify the algorithm in §5 as follows. Let the
LWE noise amplitude be the DFT of the bounded uniform distribution over a support of
size q− c. In the algorithm for C|LWE〉, we filter out q− c possible values for some constant
c and then use Arora-Ge to learn the secret vector. The reason we only filter out q − c
values instead of q − 1 values is explained in the analysis of the algorithm in Lemma 40.
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Theorem 39. Let q be a polynomially large prime modulus. Let B ∈ Z be such that
q − (2B + 1) = c is a constant. Let f : Zq → R be the bounded uniform distribution over
[−B,B] ∩ Z. Let m ∈ Ω

(
(q − c)3 · nc+1 · q · log q

)
⊆ poly(n). There exist polynomial time

quantum algorithms that solve C|LWE〉n,m,q,f̂ and S|LWE〉n,m,q,f̂ .

Proof. Let B be the bound of the infinity norm of the SIS solution such that q−(2B+1) = c
is a constant. Let B := [−B,B] ∩ Z. Our goal is to generate an LWE state where the error
distribution is the quantum Fourier transformation of the B-bounded uniform state.

The algorithm for generating the LWE state is given as follows.

1. The algorithm first prepares the following state:∑
x∈Bm

|x〉 ⊗
∑
u∈Znq

|u〉,

where we can view the state on x registers as
∑

x∈Zmq f(x)|x〉, f(x) = 1 if each entry

of x is in Bm and f(x) = 0 otherwise. This state can be efficiently generated.

2. It then applies QFTmq on the x registers and gets:(
QFTmq

∑
x∈Bm

|x〉

)
⊗
∑
u∈Znq

|u〉 =

∑
e∈Zmq

f̂(e)|e〉

⊗(∑
u

|u〉

)
.

where f̂(e) = 1√
q ·
∑

x∈Zmq ω
ex
q f(x).

3. It then adds uTA to the e registers in superposition, the state is:∑
u∈Znq

∑
e∈Zmq

f̂(e)|uTA+ e〉 ⊗ |u〉. (19)

Similarly, let us define

for v ∈ Zq, |ψv〉 :=
∑
e∈Zq

f̂(e)|(v + e) mod q〉, (20)

where we abuse the notations of e and f̂(e) to represent a value and a function on Zq
instead of Zmq . Therefore Eqn (19) can also be written as∑

u∈Znq

⊗
i=1,...,m

|ψ(uTA)i〉 ⊗ |u〉. (21)

4. Pick m uniformly random values y1, ..., ym ∈ Zq. For each i ∈ 1, ...,m, construct a

unitary Ui :=
∑q−1

j=0 |j〉〈αi,j | where for j = 0, ..., q − 1,

|αi,j〉 :=

{
NGS (|ψyi+j〉) , for 0 ≤ j ≤ 2B;

An arbitrary q-dim unit vector orthogonal to {|αi,k〉}j−1
k=0 , for 2B + 1 ≤ j ≤ q − 1;

(22)
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5. For i = 1, ...,m, apply Ui to the ith register, we get

Ui|ψ(uTA)i〉 = Ui

q−1∑
j=0

〈αi,j |ψ(uTA)i〉 · |αi,j〉


=

q−1∑
j=0

〈αi,j |ψ(uTA)i〉 · |j〉

 =:
∑

su,i∈Zq

wsu,i |su,i〉.

6. Then we apply the quantum unitary implementation of the classical algorithm in [AG11]
to the superposition

∑
u

∑
su∈Zmq wsu |su〉 :=

∑
u

⊗m
i=1

∑
su,i∈Zq wsu,i |su,i〉. Let the al-

gorithm Dy1,y2,··· ,ym be the following:

Algorithm 3 Learning u from uTA

1: procedure Dy1,y2,··· ,ym({su,i}1≤i≤m)
2: for each i = 1, 2, · · · ,m do
3: if If su,i = 2B (meaning that (uTA)i ∈ {yi + 2B, ..., yi + q − 1}) then
4: Let ai and yi be a sample of LWE
5: end if
6: end for
7: Run the Arora-Ge algorithm to learn u and return u
8: end procedure

In Lemma 43 we prove our parameters guarantee that with overwhelming probability,

(a) There exists a set Badu such that for all su ∈ Badu, when we apply this algorithm
to su, it does not compute u correctly;

(b)
∑

su∈Badu |wsu |
2 ≤ negl(n), for an overwhelming choice of A, y1, · · · , ym.

Therefore, the resulting state is:

|φ〉 := q−n/2 ·Dy1,y2,··· ,ym
∑
u∈Znq

∑
su∈Zmq

wsu |su, u〉

= q−n/2 ·
∑
u∈Znq

 ∑
su 6∈Badu

wsu |su, 0〉+
∑

su∈Badu

wsu |su, Dy1,··· ,ym(su)〉


= q−n/2 ·

∑
u∈Znq

(∑
su

wsu |su, 0〉+ neglu(n)|erru〉

)

= q−n/2 ·
∑
u∈Znq

∑
su

wsu |su, 0〉+ negl(n)|err〉.

Here neglu(n) is a complex number whose norm is negligible in n, |erru〉 is some unit
vector. Similarly, it is the case for negl(n) and |err〉.
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7. Finally, we just apply
⊗m

i=1 U
−1
i to uncompute the projections and get

m⊗
i=1

U−1
i |φ〉 =

∑
u∈Znq

⊗
i=1,...,m

|ψ(uTA)i〉 ⊗ |0〉+ negl(n)|err′〉.

So with overwhelming probability, we get a state close to
∑

u∈Znq
∑

e∈Zmq f̂(e)|uTA+ e〉. It

completes the description of our algorithm.

The analysis. Let us begin with an explanation of the properties of the unitary matrices
Ui defined in Eqn. (22). Recall from Eqn. (20) that

|ψv〉 =
∑
e∈Zq

B∑
x=−B

√
1

q
·
√

1

2B + 1
· ωexq |v + e〉.

Let Wi :=
∑q−1

j=0 |j〉〈ψyi+j |. In other words, W T
i =

(
|ψyi〉, · · · , |ψyi+q−1〉

)
. Then the first

2B + 1 columns of UTi are the same as the first 2B + 1 columns of NGS
(
W T
i

)
. Let us first

understand why we choose “2B + 1” columns.

Lemma 40. The rank of Wi is 2B + 1.

Proof. By the definition of |ψv〉,

QFT−1
q |ψv〉 =

B∑
x=−B

√
1

2B + 1
· ω−vxq |x〉.

Therefore, if we define Q ∈ Cq×q as (we think of the indexes of Q as values in Zq)

Qj,` =

{√
1

2B+1 · ω
j`
q if yi −B ≤ ` ≤ yi +B

0 else
.

Then W T
i = QFTq ·Q. Therefore the rank of Wi is 2B + 1.

This explains why we define |αi,j〉 in Eqn (22) to be the normalized GSO of the first 2B+ 1
vectors in {|ψyi+j〉}j=0,...,q−1 plus q − (2B + 1) arbitrarily orthogonal vectors - we can only
guarantee the first 2B+1 columns are linearly independent. It also explains why we choose
to let “su,i = 2B” be the successful condition in Algorithm 3 - numbers in {2B + 1, ..., q − 1}
will never be the outcome of Ui|ψv〉 for any v ∈ Zq since any ψv is in the span of the first
2B + 1 vectors of Ui.

Next we show that the length of the GSO of |ψyi+2B〉, i.e., the length of the (2B + 1)th

column of GS
(
W T
i

)
, is non-negligible.

Lemma 41. ‖GS (|ψyi+2B〉) ‖2 ≥ q
(2B+1)1.5·2q−2B−1 .
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Proof. To bound ‖GS (|ψyi+2B〉) ‖2, we note that W T
i is a circulant matrix. By Fact 29, the

norm of non-zero eigenvalues of W T
i are all equal to

√
q · 1√

2B+1
. Therefore, by applying

Lemma 30 with k = 2B + 1, λi =
√

q
2B+1 , for i = 0, ..., 2B, we have ‖GS (|ψyi+2B〉) ‖2 ≥

√
q

(2B+1)·2q−2B−1 ·
√

q
2B+1 = q

(2B+1)1.5·2q−2B−1 .

Next, we relate ‖GS (|ψyi+2B〉) ‖2 to the probability of getting desirable samples in Algo-
rithm 3.

Lemma 42. For any fixed x1, · · · , xm ∈ Zq,

Pr
y1,··· ,ym∈Zq

[
z ≥ Ω

(
m · q

(2B + 1)3 · 22c

)
∧ ∀i, si ←Mst ◦ Uyi |ψxi〉

]
≥ 1−O(e−m),

where z is defined as the number of outcomes such that si = 2B among all s1, · · · , sm and
Mst is a measurement operator in the computational basis.

Proof. For any fixed |ψxi〉 and yi such that xi ∈ {yi + 2B, · · · , yi + q − 1}, we bound the
probability that the measurement gives 2B. Only in this case, we can get information:
namely, xi is in the set G = {yi + 2B, · · · , yi + q − 1}.
For i = 1, ...,m, we have

Pr
yi

[xi ∈ G] · Pr [si = 2B ∧ si ←Mst ◦ Uyi |ψxi〉 | xi ∈ G]

≥ Pr
yi

[xi = yi + 2B] · Pr [si = 2B ∧ si ←Mst ◦ Uyi |ψxi〉 | xi = yi + 2B]

=
1

q
· |〈αi,2B|ψyi+2B〉|2

=
1

q
· ‖GS (|ψyi+2B〉) ‖22

≥ q

(2B + 1)3 · 22c
.

The lemma then follows Chernoff bound.

Lemma 43. Let c = q − 2B − 1 be a constant. When m ∈ Ω
(
(2B + 1)3 · nc+1 · q · log q

)
⊆

poly(n), the following holds for an overwhelming fraction of all A, y1, · · · , ym: for every
u ∈ Znq ,

∑
su∈Badu |wsu |

2 ≤ negl(n).

Proof. For each i = 1, ...,m, when su,i = 2B, it means that (uTA)i ∈ {yi + 2B, ..., yi + q − 1}.
Therefore, by setting ai and yi as an LWE sample, we know the error is in the set of
{2B, ..., q − 1} of size c+ 1.

Then, by Corollary 18, we know that when m ∈ Ω
(
(2B + 1)3 · nc+1 · q · log q

)
, the Arora-

Ge algorithm has sufficiently many samples for solving LWE with c possible error terms,
therefore

∑
su∈Badu |wsu |

2 ≤ negl(n).

This completes the proof of Theorem 39.
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Proof of Theorem 38. The proof of Theorem 38 follows Theorem 39 and the SIS to LWE
reduction in Lemma 21.

7 Solving Variants of Dihedral Coset Problems

We have already provided the background of the extrapolated dihedral coset problem
(EDCP) in the introduction. Here let us recall the definition (cf. Def. 11).

Definition 44 (Extrapolated Dihedral Coset Problem). Let n ∈ N be the dimension, q ≥ 2
be the modulus, and a function D : Zq → R, consists of m input states of the form∑

j∈Zq

D(j)|j〉|x+ j · s〉,

where x ∈ Znq is arbitrary and s ∈ Znq is fixed for all m states. We say that an algorithm
solves EDCPn,m,q,D if it outputs s with probability poly(1/(n log q)) in time poly(n log q).

We show polynomial time quantum algorithms that solve EDCP with the following param-
eter settings.

Theorem 45. Let q be a polynomially large modulus. Let f : Zq → R be such that the

state
∑

e∈Zq f(e)|e〉 is efficiently constructible and η := minz∈Zq |f̂(z)| is non-negligible. Let

m ∈ Ω
(
n · q/η2

)
⊆ poly(n). There is a polynomial time quantum algorithm that solves

EDCPn,m,q,f̂

Theorem 46. Let c > 0 be a constant integer, q > c be a polynomially large prime mod-
ulus. Let m ∈ Ω

(
(q − c)3 · nc+1 · q · log q

)
∈ poly(n), there is a polynomial time quantum

algorithm that solves EDCPn,m,q,D where D is the uniform distribution on [0, q − c) ∩ Z.

We use the quantum reduction from EDCP to LWE of Brakerski et al. [BKSW18]. Let us
recall their reduction.

Lemma 47. Let n,m, q be integers. Let f : Zq → R. If there is a polynomial time quantum
algorithm that solves S|LWE〉n,m,q,f̂ , then there is a polynomial time quantum algorithm that
solves EDCPn,m,q,f .

Proof. The proof is the same as the proof of [BKSW18, Theorem 4] except that we generalize
the function f in EDCPn,m,q,f from discrete Gaussian to a general function.

Given an instance of EDCPn,m,q,f∑
j∈Zq

f(j)|j〉|xi + j · s〉


i=1,...,m

(23)

For each i = 1, ...,m, first apply QFTnq over the second register, which gives∑
ai∈Znq

∑
j∈Zq

ω〈ai,xi+j·s〉q f(j)|j〉|ai〉 (24)
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Then we measure the second register and omit a phase of ω
〈ai,xi〉
q , we have

ai ← U(Znq ),
∑
j∈Zq

ω〈ai,j·s〉q f(j)|j〉, (25)

Apply QFTq over |j〉, which gives

ai ← U(Znq ),
∑
z∈Zq

∑
j∈Zq

ωj·(〈ai,s〉+z)q f(j)|z〉 =
∑
e∈Zq

f̂(e)|e− 〈ai, s〉〉, (26)

where the equality is obtained by a change of variable e = 〈ai, s〉 + z mod q and the
definition of QFTq. This completes the proof of the lemma.

Proof of Theorems 45 and 46. They are the immediate applications of Lemma 47 on The-
orem 32 and Theorem 39.
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[CDW17] Ronald Cramer, Léo Ducas, and Benjamin Wesolowski. Short stickelberger class
relations and application to ideal-svp. In EUROCRYPT (1), volume 10210 of
Lecture Notes in Computer Science, pages 324–348, 2017. 1

[CGS14] Peter Campbell, Michael Groves, and Dan Shepherd. Soliloquy: A cautionary
tale, 2014. 1

[CN97] Jin-yi Cai and Ajay Nerurkar. An improved worst-case to average-case connec-
tion for lattice problems. In FOCS, pages 468–477. IEEE Computer Society,
1997. 2

[CvD07] Andrew M. Childs and Wim van Dam. Quantum algorithm for a generalized
hidden shift problem. In SODA, pages 1225–1232. SIAM, 2007. 6
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A An algorithm for solving SIS with non-trivial `∞-norm
bounds

We sketch an algorithm that we heard from Regev (personal communication) that solves
SIS∞n,m,q,T when the modulus q is a composite number and m is very large. The idea of the

algorithm is as follows. Let A ∈ Zn×mq denote the public matrix for SIS. Assume q = 2k.
The algorithm starts by finding a combination of column vectors in A that is equal to 0
mod 2. This zeros out the LSB (least significant bits). Then we find a combination of
those combinations that makes the second bit zero, etc. Each time the effective width of A
shrinks by a factor of n+ 1, so m = (n+ 1)k is needed to get a solution with `∞-norm 1.

Here is a formal description of the algorithm that generalizes the idea to any composite q.

Theorem 48. Let n be an integer. Let q =
∏
i∈[k] pi for some k > 1 and (possibly composite

and duplicated) factors pi. Let m = nk, T =
∏
i∈[k] bpi/2c. There is a classical algorithm

that solves SIS∞n−1,m,q,T in time poly(m).

Note that when all the factors of q are 2 and 3, say q = 2c, m = nc where c is a constant,
then ‖x‖∞ = 1 which is the smallest possible `∞-norm one can get.

Proof. The algorithm runs the following procedure recursively for k times. Define the initial
values as A(1) := A, m(1) := m, q(1) := q. For 1 ≤ i ≤ k:

1. Partitions A(i) in m(i)/n blocks, each block is an (n− 1)× n-dimensional matrix. In

other words we let A(i) = [A
(i)
1 , ..., A

(i)

m(i)/n
].
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2. For 1 ≤ j ≤ m(i)/n, compute a non-zero vector zj ∈ Zn such that

A
(i)
j · zj = 0 (mod pi) and ‖zj‖∞ ≤ bpi/2c

Note that such vectors are efficiently computable by solving linear systems over Zpi .

3. Put
{
z1, ..., zm(i)/n

}
into a matrix Yi ∈ Zm(i)×(m(i)/n) as follows:

Yi :=


z1

z2

...
zm(i)/n

 , (27)

where the empty spots are zero. Note that A(i) · Yi = 0(n−1)×(m(i)/n) (mod pi) and
‖Yi‖∞ ≤ bpi/2c.

4. Let q(i+1) := q(i)/pi, m
(i+1) := m(i)/n, A(i+1) := A(i) ·Yi/pi mod q(i+1), and send the

new instance A(i), m(i), q(i) to the next iteration.

After k iterations we let y := Y1 · ... · Yk ∈ Zm be the final SIS solution.

Let us first verify that Ay = 0 (mod q). Note that

Ay = A · Y1 · ... · Yk = p1 ·A(2) · Y2 · ... · Yk
= p1 · p2 ·A(3) · Y3 · ... · Yk
...

= p1 · ... · pk−1 ·A(k) · Yk
= p1 · ... · pk · v = 0 (mod q)

where v ∈ Z(n− 1) is some integer vector.

We now verify that ‖y‖∞ ≤
∏
i∈[k] bpi/2c. Let W1 := Y1, Wi := Wi−1 · Yi, for 2 ≤ i ≤ k.

Then

y = Y1 · Y2 · ... · Yk = W2 · Y3 · ... · Yk
...

= Wk−1 · Yk = Wk

For 2 ≤ i ≤ k, observe that if

1. each row of Wi−1 has at most 1 non-zero entry;

2. each row of Yi has at most 1 non-zero entry;

then each row of Wi has at most 1 non-zero entry, and ‖Wi‖∞ ≤ ‖Wi−1‖∞ · ‖Yi‖∞. The
proof completes by making the observation above through i = 2, ..., k.
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The algorithm presented above essentially runs Gaussian elimination for smaller moduli
recursively and then put the solutions together. If we replace Gaussian elimination by
better algorithms for solving SIS∞ in the recursive steps (for example, using the quantum
algorithms in Section 6), then Theorem 48 can be generalized as follows.

Theorem 49. Let q =
∏
i∈[k] pi for some k > 1 and (possibly composite and duplicated)

factors pi. Let m =
∏
i∈[k]mi where m1, ...,mk ∈ N are length parameters. Let β =

∏
i∈[k] βi

where β1, ..., βk ∈ N are threshold parameters. If there exist algorithms that solve SIS∞n,mi,pi,βi
in time poly(mi), for i = 1, ..., k, then there is an algorithm that solves SIS∞n,m,q,β in time
polynomial in m. The resulting algorithm is quantum if one of the algorithms for SIS∞n,mi,pi,βi
is quantum.
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