
Small Circuits Imply Efficient Arthur-Merlin Protocols

Michael Ezra∗ Ron D. Rothblum∗

August 30, 2021

Abstract

The inner product function 〈x, y〉 =
∑

i xiyi mod 2 can be easily computed by a (linear-
size) AC0(⊕) circuit: that is, a constant depth circuit with AND, OR and parity (XOR)
gates. But what if we impose the restriction that the parity gates can only be on the bottom
most layer (closest to the input)? Namely, can the inner product function be computed by
an AC0 circuit composed with a single layer of parity gates? This seemingly simple question
is an important open question at the frontier of circuit lower bound research.

In this work, we focus on a minimalistic version of the above question. Namely, whether
the inner product function cannot be approximated by a small DNF augmented with a single
layer of parity gates. Our main result shows that the existence of such a circuit would have
unexpected implications for interactive proofs, or more specifically, for interactive variants
of the Data Streaming and Communication Complexity models. In particular, we show that
the existence of such a small (i.e., polynomial-size) circuit yields:

1. An O(d)-message protocol in the Arthur-Merlin Data Streaming model for every n-
variate, degree d polynomial (over GF(2)), using only Õ (d) · log(n) communication
and space complexity. In particular, this gives an AM[2] Data Streaming protocol for
a variant of the well-studied triangle counting problem, with poly-logarithmic commu-
nication and space complexities.

2. A 2-message communication complexity protocol for any sparse (or low degree) poly-
nomial, and for any function computable by an AC0(⊕) circuit. Specifically, for the
latter, we obtain a protocol with communication complexity that is poly-logarithmic
in the size of the AC0(⊕) circuit.

∗Technion. Supported in part by a Milgrom family grant, by the Israeli Science Foundation (Grants No.
1262/18 and 2137/19), and grants from the Technion Hiroshi Fujiwara cyber security research center and Israel
cyber directorate. Email: {michaelezra,rothblum}@cs.technion.ac.il

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 127 (2021)

1 Introduction

Understanding the expressive power of bounded depth circuits is a central goal in complexity
theory, with the hope of eventually answering fundamental questions, such as NP * P/poly or
P * NC1. Seminal works from the 80’s showed that the parity function cannot be computed by
AC0 circuits - that is, constant-depth polynomial-size circuits with unbounded fan-in AND, OR
and NOT gates [FSS81, Ajt83, Hås86]. Razborov and Smolensky [Raz87, Smo87] took the next
step forward by considering the class AC0(⊕), which extends AC0 by allowing also (unbounded
fan-in) parity gates, and showed that this class cannot compute the majority or mod p functions.
Most recently, Williams [Wil14] separated the class ACC0, in which the circuit is further allowed
to use arbitrary mod p gates, from the class NEXP of non-deterministic exponential-time compu-
tations (see also the recent exciting sequence of works [CW19, VW20, CLW20, CR20, MW20]).

Despite these results, we are still far from understanding the power of constant-depth circuits.
For example, it is easy to construct an AC0(⊕) circuit for computing the inner product function:
simply take the parity of the respective point-wise products. On the other hand, if we do not
allow parity gates, then it is easy to show a lower bound. A natural question that arises is
whether a similar lower bound holds if we augment the AC0 circuit with a single layer of parity
gates immediately after the input layer. The resulting circuit class is called an AC0 of parities
(and is sometimes denoted by AC0

⊕). Recently, there has been growing interest in whether
this circuit class can compute the inner product function [Juk06, Rot12, SV12, ABG+14, CS16,
CGJ+18, BKT20, FIKK20].

Interestingly, an exponential lower bound for the inner product function is known [Jac97] for
the special case in which the AC0 circuit has depth 2.1 Namely, a DNF of parities, denoted by
DNF⊕. For depth 3 circuits (on top of the parity layer), only a relatively weak (quadratic) lower
bound is known [CGJ+18]. Lastly, for general AC0

⊕ circuits, an exponential lower bound is
known [FIKK20] only for the very restricted case in which the number of parity gates is linear.2

Even for the case of DNFs, the lower bound arising from the work of Jackson [Jac97] only
rules out an (almost) exact DNF⊕ for computing the inner product function. Thus, a question
(posed explicitly by Cohen and Shinkar [CS16]) that seems just beyond the reach of current
techniques is:

“Does there exist a small DNF of parities that approximates
the inner product function?”

We refer to the assumption that a positive answer holds for this question as the IP2∈̃DNF⊕
hypothesis (In the actual theorem statements below we use a quantitatively precise version of
the assumption). In this work, we study the ramifications of the IP2∈̃DNF⊕ hypothesis, with
the belief that these results develop our understanding of the hypothesis or could even bring us
closer to the eventual goal of refuting it.

1.1 Our Results

We show that a positive answer to the IP2∈̃DNF⊕ hypothesis implies (unexpected) efficient
interactive (Arthur-Merlin) protocols for a large class of problems (in different models to be
described below). We note that the quantitative parameters of the resulting protocols seem to be
far more efficient than expected. Thus, these results fall in line with our belief that the IP2∈̃DNF⊕
hypothesis is false. Moreover, these results also form a new approach for refuting the IP2∈̃DNF⊕

1This bound was tightened by Cohen and Shinkar [CS16], who gave a lower bound that exactly matches the
known upper bound.

2In fact, their result holds for the more general case in which an arbitrary (i.e., not necessarily linear) prepro-
cessing step is done first on the two parts of the input separately.

2

hypothesis through Arthur-Merlin lower bounds, in the sense that progress in finding Arthur-
Merlin lower bounds can be applied, using our results, to refute the IP2∈̃DNF⊕ hypothesis.
While finding lower bounds for Arthur-Merlin protocols is a notoriously difficult problem (e.g.,
in communication complexity), all of our protocols go through efficient Holographic-Interactive
protocols (see Section 2.1), where Arthur-Merlin lower bounds are known [GR17].

The models that we consider are “Arthur-Merlin” variants of the standard Data Streaming
and the Communication Complexity models. In order to describe these variants, we first recall
the standard definitions of Data Streaming and Communication Complexity models and then
explain how they are extended to Arthur-Merlin variants, by giving the relevant parties access
to an all-powerful (but untrusted) prover.

Recall that in the standard Data Streaming Model (popularized by [AMS99]), a bounded
space algorithm is required to compute a certain function of the inputs by using the least amount
of space. The algorithm gets the input bits as a sequence of bits (stream), in the sense that
after seeing a bit in the sequence, the algorithm no longer has access to the bits that preceded
it (unless these were stored in its memory). In the standard Communication Complexity Model
[Yao79], there are two parties, called Alice and Bob, who are trying to evaluate a function f on
their joint input. That is, Alice and Bob are given inputs x and y, respectively, and need to
jointly compute the value f(x, y), while transmitting the least amount of bits.

We focus on the Arthur-Merlin (AM) variant of these models, where the parties are also
assisted by an untrusted prover, often referred to as Merlin, who sees all inputs (and has unlim-
ited computational resources). The parties are allowed to make a short public coin interaction
with Merlin, before (deterministically) running the standard protocol. The interaction is of the
AM (Arthur-Merlin) type in the sense that the messages to Merlin consist of only fresh random
coins, and in particular, do not depend on the input bits nor on previous messages that were
exchanged. Beyond the coins that were revealed to Merlin in the interaction, the parties are not
allowed to toss any additional coins. Throughout this work we use the notation AM[k] to refer
to AM protocols with k messages exchanged between the parties.

1.1.1 The AM Data Streaming Model

In the AM Data Streaming Model [CTY11, CCM+13, GR13, CCGT14, CCMT14, CCM+15,
Tha16, CGT20], we allow the bounded space algorithm processing the stream, to interact with
the untrusted prover Merlin, who sees the entire input (and is not space bounded). Many of
these works differ in the exact form of the interaction. For example, does the small-space verifier
get full access to messages sent by the prover, or merely streaming access? We elaborate on
these differences in Section 2.2.2. In this work we consider the following natural model, which
we refer to as the AM[k] Data Streaming model:

1. In the first phase, the verifier engages in a k-message public-coin interactive protocol with
the prover (starting with a verifier message). At the end of this phase the verifier holds a
transcript τ .

2. In the second phase, the verifier is allowed to process the input stream in a bit-by-bit
manner. The verifier’s computation in this phase is allowed to depend on the transcript τ
that it saw. We emphasize that the verifier in this phase is deterministic.3

3. After processing the stream, the verifier decides whether to accept or reject.
3The verifier could in principle toss additional coins in the first phase to be used in the second phase, but

we count this as an additional message. This is motivated by the definition of the classical complexity class AM
which does not allow Arthur additional coin tosses after seeing Merlin’s message.

3

As usual, we require that there is a strategy for Merlin to convince the streaming verifier to
accept true statements, but the verifier rejects any false statements (with high probability) even
if Merlin cheats. Naturally, we require the space complexity of the verifier to be small and the
communication with the prover to be short as well (since otherwise Merlin can provide the entire
input!).

As our first result, assuming the existence of a small DNF of parities for the inner product, we
construct (multi-round) AM Data Streaming protocol for any function f that can be computed
by a low-degree polynomial (over GF(2)).

Theorem 1 (Informally stated (see Theorem 9)). Assume that there exists a DNF of parities
of size S, that computes the inner product function on 5

6 + ε fraction of the inputs, for some
constant ε > 0. Then, there exists an AM[2d] Data Streaming protocol with Õ (d) · log(S) proof
length, space complexity and randomness complexity, for every degree d polynomial over GF(2).

When S is polynomial and d is constant, the protocol has poly-logarithmic proof and space
complexities. This should be contrasted with approaches based on constant-round versions of
the celebrated sumcheck protocol [LFKN92], which have polynomial proof-length.

We also emphasize that (as usual in this context) here and throughout this work, we do not
consider the computational complexity of the verifier and only focus on the space and communi-
cation complexities.

Application: A Streaming Protocol for Counting Triangles Mod 2. We also point out
an interesting implication of Theorem 1 to a variant of the well studied Triangle-Count problem.
In the Triangle-Count problem, a streaming algorithm is required to count (or sometimes just
approximate) the number of triangles (i.e., cliques of three vertices) in an undirected (simple)
graph. A large body of work has studied this problem in the streaming context in general [BKS02,
JG05, BFL+06, KMPT12, KMSS12, JSP13, MVV16, BC17, KMPV19], and in particular when
the streaming algorithm is assisted by a prover [CCMT14, Tha16, CGT20]. There are two main
variants of the Triangle-Count problem, which differ in the exact form that the input is given to
the streaming algorithm. In the first variant, studied in [BKS02, BFL+06, KMPT12, MVV16,
KMPV19], the edges are given in an adjacency-list format. Namely, first, the edges connected
to the first vertex appear in the stream, then the edges that are connected to the second vertex,
and so on. In the second variant (also referred to as the dynamic updates variant), studied
in [BKS02, JG05, BFL+06, KMSS12, JSP13, MVV16, BC17], the stream consists of dynamic
additions (and sometime also deletions) of edges, in an arbitrary order.

We consider a variant of the Triangle-Count problem, denoted by
⊕

Triangle, where the goal
is to compute the parity of the number of triangles in the graph. We consider in which the graph
is given as a stream of its edges, where each edge appears in the stream exactly once. We note
that the MA complexity4 of

⊕
Triangle is well understood: for every proof length p and verifier

space complexity s, it holds that s · p = Ω(n2) [CCMT14, Tha16].5 Also, a matching quadratic
upper bound is known for (almost) any combination of s · p = Õ(n2) [Tha16, CGT20]. On the
other hand, this problem has no known (non-trivial) upper or lower bounds in the AM setting.

Assuming the IP2∈̃DNF⊕ hypothesis, we show an efficient AM protocol for
⊕

Triangle. Our
protocol has space complexity and proof length that are poly-logarithmic in the circuit size
(regardless of the specific order of the edges in the stream).

4Loosely speaking, in an MA model, first the prover sends a proof message. Then, the verifier gets the input
as a stream, and conducts a (randomized) streaming computation.

5The lower bound is not stated explicitly for this problem, but follows from the fact that it holds for the case
that the graph is promised to contain exactly one triangle or be triangle-free.

4

Theorem 2 (AM Streaming for
⊕

Triangle, informally stated (see Theorem 11). Assume that
there exists a DNF of parities of size S that computes the inner product function on 5

6 +ε fraction
of the inputs, for some constant ε > 0. Then, there exists an AM[2] Data Streaming protocol for⊕

Triangle with polylog
(
S
(
n3
))

proof length and space complexity.

Indeed, assuming that S is polynomial, the protocol of Theorem 2 has poly-logarithmic proof
length and space complexity.

1.1.2 AM Communication Complexity

We next describe our results in the (AM) Communication Complexity model. In the AM Com-
munication Complexity Model [Kla03, AW09, GS10, Kla11, GPW16], Alice and Bob are allowed
to also conduct a public-coin interaction with the prover Merlin, who sees both of their inputs,
but is non trustworthy. The parties communicate using a broadcast channel, namely, each of
the parties is exposed to all the messages sent by Merlin, and all the random coins tossed by
Alice and Bob. For sake of simplicity, we can assume that Alice and Bob do not interact, since
Merlin can simply provide all messages that they would have exchanged had they interacted
(and the two parties can check that the communication is consistent with what they would have
sent). As above, we require that Merlin will convince both Alice and Bob of the correctness of
true statements, but no matter what Merlin does, with high probability either Alice or Bob will
reject false statements.

It is not hard to show that any Data Streaming protocol can be transformed into a Commu-
nication Complexity protocol, for the same problem, as follows: Alice starts running the data
streaming algorithm until the algorithm finishes processing her portion of the input (i.e., at the
midpoint). She then transmits to Bob her memory state. Bob continues the emulation using
his portion of the input. The communication complexity of the resulting protocol is therefore
at most the space complexity of the streaming algorithm.

Thus, Theorem 1 immediately implies an AM communication complexity protocol for low-
degree polynomials as well. Interestingly, however, we are able to achieve significantly better
parameters by constructing an AM Communication Complexity protocol directly. In particular,
we construct a one-round protocol, which can also be extended to a protocol for any function that
is decidable by an AC0(⊕) circuit. Lastly, we also note that while the protocol in Theorem 1
depends on the degree of the polynomial, the protocol in Theorem 3 depends only on the number
of monomials, and therefore can also be applied to high-degree, but sparse, polynomials.

Theorem 3 (Informally stated (see Theorem 8 and Corollary 10)). Assume that there exists
a DNF of parities of size S that computes the inner product function on 5

6 + ε fraction of the
inputs, for some constant ε > 0. Then, there exist:

• An AM[2] Communication Complexity protocol with O
(

log
(
S(2N))

))
communication

complexity, for every function f that can be expressed as a polynomial (over GF(2)) with
N monomials.

In particular, if f is a degree d polynomial over 2n input bits, the AM[2] protocol has
communication complexity O

(
log
(
S
(
2 · (2n)d

)))
.

• An AM[2] Communication Complexity protocol with O
(
log
(
S
(
2polylog(T)

)))
communica-

tion complexity, for any function that is decidable by an AC0(⊕) circuit of size T .

Note that the protocols in Theorem 3 are 2-message protocols, whereas the protocol in
Theorem 1 require a large number of rounds of interaction. One could potentially reduce the
number of rounds using (a suitable variant of) the round collapse theorem [BM88] (see also,

5

Claim 5.2). However, we emphasize that Theorem 3 gives significantly better parameters than
round collapsing the protocol of Theorem 1. For example, if S = poly(n), by applying a round
collapse to our data streaming results, we get an AM[2] Communicating Complexity protocol
with O

(
logd n

)
communication complexity for degree d polynomials. In contrast, our explicit

protocol of Theorem 3 has a linear (rather than exponential) dependence on the degree d.
This improvement allows us to extend the explicit Communication Complexity protocol for low
degree (or sparse) polynomials, also for any function that is decidable by an AC0(⊕) circuit.
Interestingly, we do not know how to obtain a non-trivial result of the same flavor from the
protocol in Theorem 1.

1.2 Technical Overview

Our main technical step is to construct, assuming that the IP2∈̃DNF⊕ hypothesis holds, a special
type of proof-system for computing the inner product function, called a Holographic Interactive
Proof (HIP) - a notion introduced in the work of Gur and Rothblum [GR17] (inspired by a
similar model for PCPs, introduced by Babai et al. [BFLS91]). An HIP is defined similarly
to a standard interactive proof, except that the verifier, rather than being given access to the
main input explicitly, is given oracle access to an encoding of the input. The hope is that the
redundancy provided by the encoding will allow the verifier to run in sub-linear time. Hence,
the main complexity resources that we focus on are the query complexity, which is the number
of bits that the verifier reads from the encoding, and the communication complexity, which is
the total number of bits exchanged with the prover. We focus specifically on an AM[2] variant,
where the verifier first sends random coins r to the prover, who responds with a message π,
called the proof. The verifier then decides deterministically, based on the input queries, random
string r and proof π, whether to accept or reject.

Let us assume therefore that there exists a DNF of parities C of size S that approximates
the inner product function. We use C to design an AM[2] HIP for verifying inner product claims.
The input encoding that we will use in the HIP corresponds to the parity layer of the circuit C,
and is therefore a linear function. This point is crucial for our results.

1.2.1 An AM[2]-HIP for Inner Product Claims

As our first step, we construct a simple HIP for verifying that the inner product of two strings
is equal to 1 and which only works for most inputs. This falls short of our eventual goal which
is to check general inner products and over worst-case inputs. Nevertheless, we present this HIP
as it will serve as an important ingredient in our construction.

Step 1: Verifying one-sided claims, on the average. Recall that C is a DNF of parities
that approximates the inner product function. A simple one-round HIP protocol for verifying
whether f(x) = 1 on a given input x can be established as follows: the prover sends an index of a
satisfied clause (such an index exists if and only if f(x) = 1), and the verifier checks whether the
clause is indeed satisfied, by reading the bits in the clause from the input’s encoding. Note that
the proof-system is holographic as the verifier reads each bit in the clause by making a single
query to the output of the parity layer. The communication is log(S) and the query complexity
is bounded by the maximal width of the clauses.

Since we seek small query complexity, we would like to ensure that the DNF has small width.
To do so we observe that each clause in a DNF of parities can be viewed as a system of linear
equations. Also, note that with probability at most 1

2r , a random input satisfies a linear system
with rank at least r. Therefore, a natural idea is to remove all of the wide clauses. When doing
so one should first make sure that the equations forming the clause are linearly independent,

6

which can be easily done (by choosing a maximal set of linearly independent equations). Thus,
after eliminating linear dependencies, we remove all clauses with width Ω(logS). Since we only
removed clauses, the new circuit disagrees with f(x) only if x satisfies one of the removed clauses.
Since we only removed clauses of rank greater than O(logS), by the union bound and setting
the constant in the big-O to be large enough, the probability that an input x satisfies one of the
removed clauses is at most S

2O(log S) = 1
poly(S) = o(1).

Overall we have constructed an HIP that can verify whether an inner product of two strings
is 1 on most inputs, with O(logS) proof length, and O(logS) query complexity. As noted before,
our next step is to convert this protocol – which works in the average case – into a protocol that
can verify any inner product claim.

Self-correction of the inner product function. As an initial observation, we observe that
the self-correction property of linear functions can be extended also to the inner product function
(this can also be viewed as a special case of locally decoding the Reed-Muller code over GF(2),
see [GKZ08]). For any input strings x, y, and vectors u, v′ which are taken at random, it holds
that 〈

x, y
〉

=
〈
x⊕ u, y ⊕ v

〉
⊕
〈
x⊕ u, v

〉
⊕
〈
u, y ⊕ v

〉
⊕
〈
u, v
〉
, (1)

where 〈a, b〉 denotes the inner product of strings a, b ∈ {0, 1}n. Note that the terms on the
right-hand side of Eq. (1), are inner product over different (correlated) random inputs. Also,
recall that the “simple” protocol that was described previously, can verify inner product claims
about random inputs with high probability over the inputs. Thus, at first glance it may seem
sufficient to use Eq. (1), and verify the random claims using our average-case protocol. Unfortu-
nately, by moving to claims over inner products of random inputs we will also need the ability to
verify whether an inner product is 0, while so far we only have an HIP for “1-claims”. Therefore,
instead of using Eq. (1) directly, we present a generic compiler that extends the self-correction
property of Eq. (1) also to the case where there is a protocol that can only verify most of the
1-claims (a similar idea was used also in the works of Shaltiel and Umans [SU05, SU06]). In this
compiler, we rely on the fact that in our HIP the prover can’t convince the verifier to accept a
false 1-claim (with high probability over the inputs). For simplicity, we outline this compiler
with respect to protocols for the inner product function but in the technical sections, we extend
this argument to any homogeneous multilinear mapping (see Lemma 3.5).

Step 2: Self-correction with one-sided errors. In order to use Eq. (1), we need to verify
also the 0-claims on the right-hand side of Eq. (1). Observe, that since Eq. (1) gives inner
product claims of (individually) random inputs, then, in expectation, about half will be 0’s and
half will be 1’s.

Thus, since (with high probability) a cheating prover cannot lie on false 1-claim, it will likely
have to generate false 0-claims and therefore skew the distribution of 0 vs. 1 claims. In order
to detect this, we simply repeat the experiment sufficiently many times (using independent coin
tosses) and checking the empirical average value of the prover’s claims. To sum up, given a
ground protocol that works only on most 1-claims, the compiler produces the following protocol:
the verifier uses Eq. (1) several times, each time with fresh random strings. At each iteration,
the prover sends the values of the random inner products on the right-hand side of Eq. (1), while
having the verifier check only the 1-claims, by using the ground protocol, and blindly accepting
the 0-claims. At the end of the interaction, the verifier checks whether the average value of
all the prover’s claims is close enough to the expectation of the inner product function. If the
average is close enough, the verifier infers that the prover is honest. Otherwise, the verifier infers
that the prover lies, and thus it rejects.

Lastly, in order to reduce the randomness complexity to O (log n) randomness complexity,

7

we use a standard technique, due to Newman [New91], for reducing the randomness complexity
(using non-uniformity). We show that this technique works also in the context of AM-HIPs.

An alternate approach. We find it also instructive to describe another approach for dealing
with the 0-claims in Eq. (1), and explain the reason we decided not to use it. The idea here is
to show a random self-reduction from a 0-claim to a 1-claim. This can be done by embedding
the input strings x and y into longer random string strings x′ and y′, while ensuring that the
〈x′, y′〉 = 1⊕ 〈x, y〉.

The reason we decided not to follows this approach is that it changes the input size. In
particular, it would mean that the verifier in the HIP would need to access a different linear
transformation then that in the bottom layer of the DNF.

1.2.2 From HIP to Communication Complexity (Proving Theorem 3)

Our key idea in proving to construct an AM Communication Complexity protocol for sparse
polynomials is the observation that a polynomial can be viewed as a linear combination of its
monomials. In the communication complexity setting, each monomial is a product between a
subset of Alice’s input bits, and a subset of Bob’s input bits. Thus, we can view the evaluation
of the polynomial f(x, y) =

∑
monomial (α,β) xα · yβ , where xα =

∏
i∈α xi and yβ =

∏
j∈β yj , as

an inner product between the strings (xα) and (yβ).
Thus, in order to solve the problem, it suffices to construct an AM Communication Com-

plexity protocol for computing the inner product function. Such a protocol follows easily from
our HIP for inner products - since each query that the HIP verifier makes, is a linear query to
the joint input (x, y), it can be emulated by having Alice and Bob compute and share their
individual contributions.

The second part of Theorem 3 now follows easily by observing that every degree d polynomial
over GF(2) can have at most nd monomials, and by applying the polynomial approximation
method of Razborov and Smolensky [Raz87, Smo87] (where the choice of the random polynomial
can be made by the verifier as part of its first step in the protocol).

1.2.3 From HIP to Data Streaming (Proving Theorem 1)

Unfortunately, our approach for computing sparse polynomials that worked in the communica-
tion complexity setting, fails in the streaming setting. The issue is that each monomial consists
of a product of multiple input bits. Therefore, the polynomial’s monomials induce an inner
product between a coefficient vector, and a tensor of the input, rather than the input in its ba-
sic form. While it is relatively easy to make queries to an encoding of the input by a streaming
verifier, it is not clear at all how to make queries to an encoding of a tensor of the input.

Nevertheless, our starting point is the above observation that a polynomial can be expressed
as a certain inner product. In more details, a degree d polynomial P : {0, 1}n → {0, 1} (over
the field GF(2)) can be viewed as a linear combination of its monomials, each of which is a
product between a coefficient and a product of d input bits. Therefore, there exists a function
CoefP : [n]d → {0, 1} that depends only on P, such that:

P(x) =
⊕

j1,...,jd∈[n]

xj1 · xj2 · · · · xjd · CoefP(j1, . . . , jd). (2)

The basic idea of the protocol is to iteratively use the HIP protocol for inner product claims
(henceforth, the ground HIP protocol), to gradually reduce a claim about the right-hand side
of Eq. (2), to claims that don’t depend on the inputs - that is, claims that depend only the

8

structure of the specific code that the HIP uses, and the structure of the polynomial P. Since
the resulting claims do not depend on the input, the verifier will be able to check them without
additional communication or queries.

Inspired by the celebrated sumcheck protocol of Lund et al. [LFKN92], we construct a d-
round AM-HIP protocol, so that in the i-th round we reduce a set of claims over d− (i−1) input
variables, to a set of claims that depend on only d − i input variables. The i-th round starts
with claims of the form:⊕

j1,...,jd∈[n]

(
β̂(i−1) (j1, . . . , ji−1) · xji · xji+1 · · ·xjd · CoefP(j1, . . . , jd)

)
= b(i−1), (3)

where β̂(i−1) is a function that depends only on the structure of the linear code that the base
HIP protocol uses. Our goal is to end the round with multiple claims of the form:⊕

j1,...,jd∈[n]

β̂(i)(j1, . . . , ji) · xji+1 · · ·xjd · CoefP(j1, . . . , jd) = b(i).

Observe that by changing the order of summation in Eq. (3), we can rewrite each claim as:

⊕
ji∈[n]

xji ·
(⊕
j1,...,ji−1∈[n],
ji+1,...,jd∈[n]

(
β̂(i−1) (j1, . . . , ji−1) · xji+1 · · ·xjd · CoefP(j1, . . . , jd)

))
= b(i−1). (4)

The claims in Eq. (4) are an inner product between x and the truth table of a function that
depends on only d − i inputs variables. Thus, by applying the ground HIP protocol, we get
multiple claims on the encoding of x, and multiple claims on the encoding of the truth table
of a function that depends on d − i variables. The claims on the encoding of x can be verified
using the HIP verifier’s oracle queries. Regarding the second class of queries, since the code is
linear, the t-th claim is of the form of⊕

ji∈[n]

γt,z(ji) ·
⊕

j1,...,ji−1∈[n],
ji+1,...,jd∈[n]

(
β̂(i−1) (j1, . . . , ji−1) · xji+1 · · ·xjd · CoefP(j1, . . . , jd)

)
= b

(i)
t,z.

where the (γt,z)’s correspond to the coefficients of the base code T . By changing the order of
summation again, and defining β̂(i)z,t (j1, . . . , ji) = γt,z(ji) · β̂(i−1)t (j1, . . . , ji−1) we get claims of
the form: ⊕

j1,...jd∈[n]

(
β̂
(i)
t,z (j1, . . . , ji) · xji+1 · · ·xjd · CoefP(j1, . . . , jd)

)
= b

(i)
t,z,

where the β̂(i)t,z (j1, . . . , ji) don’t depend on the input variables. Note that we got new claims that
depend on d− i input variables, as required.

Avoiding a complexity blowup. Although the above idea seems promising, we have one
additional issue to deal with. In contrast to the traditional sumcheck protocol which generates
a single claim in the end of each round, our ground HIP protocol produces multiple claims.6

As a result, the number of times we need to use the ground HIP protocol grows by a at least a
constant factor in each round, and overall becomes (at least) exponential in d. In order to reduce
the dependence on d to linear, at the beginning of each round we combine claims together by

6Recall that the query complexity is roughly logarithmic in the size of our DNF of parities.

9

taking random linear combinations. This method lets us preserve the number of queries after
each round, and thus achieve a linear dependence on d.

On the approximation factor. The (roughly) 5
6 approximation factor required in all of our

results, stems from the use of Eq. (1). Recall that the verifier needs to check all the 1-claims
on the right-hand side of Eq. (1) with a success probability greater than 1

2 . Leveraging the fact
that one of the terms on the right-hand side of Eq. (1) is independent of the input strings, we
only have three terms to check. As a result, we must have a circuit that computes all the three
terms correctly with probability greater than 1

2 . By union bounding over these three terms, we
get that the circuit must compute a random input incorrectly with probability at most 1

6 , which
sets the approximation limitation to 5

6 . A potential approach for improving the approximation
factor is to rely on locally list, and we leave this possibility to future work.

1.2.4 Counting Triangles Mod 2 (Theorem 2)

Lastly, we give the outline of the streaming protocol for the
⊕

Triangle problem. To do so we
leverage the fact that

⊕
Triangle can be expressed as a degree 3 polynomial over GF(2) and

apply the streaming protocol of Theorem 1.
In more detail, let {I(u,v)}u,v be a set of indicator variables where I(u,v) is 1 if and only if the

edge (u, v) appears in the graph. We can express the parity of the number of triangles in the
graph, by evaluating the following degree 3 polynomial:

P⊕Tri
(
Ie1 , . . . , Ien2

)
=

⊕
v<u<w∈[n]

I(v,u) · I(u,w) · I(w,v).

Thus, by applying our streaming protocol for low degree polynomials from Theorem 1, we derive
an AM[6] Data streaming protocol for

⊕
Triangle. Lastly, in order to derive a one-round protocol,

we use the round collapsing technique of Babai and Moran [BM88] for reducing the number of
rounds in public coin interactions.

1.3 Organization

In Section 2 we provide definitions and notations that are used throughout our work. In Section 3
we construct the HIP for inner product claims, which serves as a basis for all our other results.
Next, in Section 4, we present the Communication Complexity and the Streaming protocols
for any problem that is decidable by a low degree polynomial. In the end of Section 4, we also
extend the Communication Complexity result for any polynomial that is decidable by a constant
depth circuit. Lastly, in Section 5, we study the

⊕
Triangle problem as a concrete application of

our streaming protocol. Appendices A and B contain some standard proofs that were deferred
from the main sections.

Acknowledgments

We thank Yuval Ishai, Eyal Kushilevitz, Or Meir and the anonymous reviewers for useful com-
ments.

2 Preliminaries

All the logarithms in this work are in base 2, and by default operations are over GF(2), unless
stated otherwise. For k ∈ N we use [k] to denote the set {1, 2, . . . , k}, and IP2 : {0, 1}n×{0, 1}n →
{0, 1} to denote the inner product function (over the field GF(2)), that is, IP2(x, y) = ⊕i∈[n]xi ·yi.

10

The relative Hamming distance of two Boolean strings x, y ∈ {0, 1}n is defined as |{i : xi 6=yi}|n .
The relative distance of two Boolean functions f, g : {0, 1}n → {0, 1} is defined as the relative
distance of their truth tables, namely Pr

x
[f(x) 6= g(x)]. We say that f is δ-close to g if their

relative distance is at most δ. Otherwise, we say that g and f are δ-far.

Error Correcting Codes. An error-correcting code over a field F is an injective function
C : Fk → Fn, where n ≥ k. Strings in the domain are called messages and string in the image
are called codewords. We say that C is linear if the function is a linear map (over F). Two
important parameters of an error-correcting code are the rate of the code, which is defined as
k
n , and the minimal distance, which is defined as the minimal relative Hamming distance of any
two distinct codewords.

2.1 Holographic Interactive Proofs

We first recall the definition of an interactive proof. Then, we define holographic interactive
proofs (HIP), which are similar to interactive proofs, except that the verifier has oracle access to
an encoding of the input via some error-correcting code, rather than direct access as in classical
interactive proofs.

Definition 2.1 (Interactive Proof). An interactive proof for a language L is a pair of two algo-
rithms: a computationally unbounded prover P and a probabilistic polynomial-time verifier V .
Given common input x, V and P exchange messages, and at the of the interaction the verifier
decides whether to accept or reject. The interaction must satisfy the following requirements:

• Completeness: if x ∈ L, then, when V interacts with P , with probability of at least 2/3
it accepts.

• Soundness: if x /∈ L, then for every prover strategy P ∗, when V interacts with P ∗, it
accepts with probability of at most 1/3.

Complexity. An interactive proof has several complexity parameters that we care about: the
number of rounds in the interaction (round complexity); the number of bits transferred between
the prover and the verifier (communication complexity); the number of random coins the verifier
tosses (randomness complexity); and the runtime of the verifier (time complexity) as well as the
runtime of the honest prover.

In this work, we focus on a variant of interactive proofs, where the verifier can access the
input only through oracle access to an encoding of the input via some error-correcting code.
This variant of interactive proof introduced in [GR17] (following [BFLS91]), is denoted as a
Holographic Interactive Proof (HIP) and it is defined as follows:

Definition 2.2. (Holographic Interactive Proof [GR17]). A Holographic Interactive Proof (HIP)
for a language L with respect to an error-correcting code C, is defined similarly to an interactive
proof except that the verifier, rather than having direct access to x, has oracle access to C(x).

An HIP has an additional complexity parameter that we shall care about, which is the total
number of queries that the verifier makes to the encoded input during the interaction. In addi-
tion, we say that an HIP verifier is non-adaptive if each query does not depend on answers to
past queries.

Arthur-Merlin (Public Coins) Games. Public-coin interactive proofs (also known as Arthur-
Merlin proofs) are interactive proofs in which the verifier sends all its random coins to the prover
immediately as they are tossed. At each round, the verifier sends a single message that consists

11

of only fresh random coins, and in particular, doesn’t depend on the input, prover’s messages, or
on the previous coins. At the end of the interaction, the verifier, which is not allowed to toss any
other random coins, decides whether to accept or reject by running a deterministic computation
that depends on the tossed random coins, the input and the prover’s messages. These protocols
are denoted AM[k], where k indicates the maximal number of messages exchanged between the
verifier and the prover.

Similarly to AM[k], we define the Holographic Interactive Proof variant, denoted AM[k]-HIP,
where the verifier, rather than having direct access to the input, has oracle access to an encoding
of the input via some error-correcting code. In our discussion about AM[k]-HIP, we separate
the communication complexity into randomness complexity and proof length. The randomness
complexity is the overall number of bits the verifier sends, and the proof length is the overall
number of bits the prover sends.

2.2 AM Data Streaming and Communication Complexity

2.2.1 AM Communication Complexity

Communication Complexity, introduced by Yao [Yao79], studies the amount of communication
required for a number of (computationally unbounded) parties to compute a certain function f
on an input which is distributed among them. In the standard setting, there are two parties,
Alice, who is given as input a string x, and Bob, who is given a string y. The goal is for Alice
and Bob to compute f(x, y) with the least amount of communication between them.

Babai et al. [BFS86] considered the analogs of complexity classes, such as P, NP and Arthur-
Merlin games, in the field of communication complexity. Loosely speaking, in an AM (Arthur-
Merlin) communication complexity variant, in addition to Alice and Bob, there is also a third
party (called Merlin), which gets both of their inputs. Alice and Bob first interact with Merlin
via multiple rounds of public coin interaction, such that at each round Alice and Bob send a
message that consists of only fresh random coins, and Merlin responds with a proof message.
After the interaction is over, each of the parties gets the transcript of the interaction (all Merlin’s
messages and all the tossed coins), and deterministically decides whether to accept or reject the
transcript. We say that the protocol accepts if and only if both Alice and Bob decide to accept.
We remark that the parties communicate using a broadcast channel. Namely, each of the parties
is exposed to all the messages sent by Merlin, and all the random coins. In addition, in contrast to
the traditional communication complexity model, Alice and Bob are not allowed to interact with
each other. Yet, a similar model in which Alice and Bob are allowed to interact is expressively
equal since Merlin can always send also the messages that Alice and Bob would have exchanged.

Definition 2.3. AM[k]-Communication Complexity). Let f : X × Y → {0, 1} be a function for
some (finite) sets X and Y. An AM[k]-Communication Complexity (AM[k]-CC) protocol for f is a
protocol between three deterministic algorithms: A (Alice) which gets an input x ∈ X, B (Bob)
which gets an input y ∈ Y , and a prover P (Merlin) which gets both x and y. The protocol pro-
ceeds as follows: first, a public-coin interactive protocol with k exchanged messages is conducted,
where Merlin gets fresh random coins as messages and responds with proof messages. Then, Al-
ice and Bob get all the tossed coins and Merlin’s messages, and each of them deterministically
decides whether to accept or reject. The protocol must satisfy the following requirements:

• Completeness: if f(x, y) = 1, then, when Alice and Bob interact with P , with probability
of at least 2/3 they both accept.

• Soundness: if f(x, y) = 0, then for every prover strategy P ∗, when Alice and Bob interact
with P ∗, the probability they both accept is at most 1/3.

12

Complexity. The communication complexity of the protocol is defined to be the maximal
number of bits that are exchanged between the three parties, over all inputs x ∈ X, y ∈ Y . That
is, the maximum, over x ∈ X and y ∈ Y , of the sum of the number of random coins and the
overall length of Merlin’s messages.

2.2.2 AM Data Streaming

In our work, we consider another model, called the Data Streaming Model. In this model, there
is a limited space algorithm that gets the input as a sequence of bits (stream). The access to
the input is read-once in the sense that after seeing a bit in the sequence, the algorithm no
longer has access to the bits that preceded it (unless these were stored in its memory). The
main complexity measure is the amount of space used by the algorithm.

Previous works already studied the advantage of adding an unbounded (but untrusted)
prover with which the limited-space algorithm (henceforth, the verifier) can interact. Prior
works focused on the following models:

1. Online Schemes [CCGT14, CCMT14, Tha16, CGT20] where the verifier and a (randomized)
prover simultaneously read each bit of the stream. The prover is allowed to send a proof
message after each bit that is read.

2. Prescient Schemes [GR13, CCGT14, CCMT14, Tha16] which are similar to Online Schemes
except that the prover knows all the bits in the stream in advance.

3. AMA Schemes [GR13, CCGT14] where there is a shared public source of randomness to
which both the verifier and the prover have access. In addition, the verifier has its own
private coins which are hidden from the prover. The prover, which knows the input stream
in advance, is allowed to send a single short proof message to the verifier.

4. SIP - Streaming Interactive Proof [CTY11, CCM+13, CCM+15] where the parties are al-
lowed to make multiple rounds of interaction. However, they both must first get and
process the entire input stream and only then conduct the interaction.

In all these models the verifier also has private coins that allow it to keep some random secret
hidden from the prover. We suggest a fully public coin model, which we refer to as the AM[k]-
Data Streaming Model (AM[k]-DS), where all the random coins are known to the prover. In
more details, the parties first exchange k messages via a public coin interaction. Then, given the
interaction’s transcript, the verifier deterministically7 processes the input stream and decides
whether to accept or reject. In this work, we focus on a non-uniform variant of the AM[k]-
Data Streaming model, that we define using a collection of Ordered Binary Decision Diagrams
(OBDD). Loosely speaking, fixing an input length n, each OBDD in the collection corresponds
to a fixed transcript of the interaction and, given the input stream as an input, determines the
output of the protocol. Before giving the formal definition, let us recall the definition of an
OBDD.

Ordered Binary Decision Diagrams. An Ordered Binary Decision Diagram (OBDD) is
similar to a Binary Decision tree with two modifications: redundant nodes are omitted, and
different nodes are allowed to share the same subtree as long as at any route, the order of the
input variables is the same. Also, any input variable appears at each route at most once. See
Fig. 1 for an example.

7We note that the verifier can specify random coins by adding an additional dummy round at the end of the
interaction. However, this increases the number of rounds of interaction by one.

13

Root

x1

x1

x2

x2

x2

x3

x3

x3

x4

x4

x4

x5

x5

0

1

0

1

0

1

0

1

0

1

0

1

0
1

0

1

0

1

0

1

0
1

0

1
0

1

0

1

0

1

Figure 1: An OBDD for the claim
∑5

i=1 xi mod 3 = 0, with the input-order (x1, x2, x3, x4, x5).

Definition 2.4 (Ordered Binary Decision Diagram). An Ordered Binary Decision Diagram (OBDD)
is a directed acyclic graph (DAG) with the following properties:

1. Structure: There are two types of nodes: leaves and testing nodes. Each leaf is associated
with the label 0 or the label 1, and doesn’t have any outgoing edges. Each testing node
is associated with an input variable xi and has two outgoing edges that are labeled with
the constants 0 and 1. In addition, we also have a single testing node that doesn’t have
incoming edges which we refer to as the root.

2. Computation: Given the input x = x1, . . . , xn ∈ {0, 1}n, the output of the OBDD is
defined to be the label of the leaf that is reached by a route that starts from the root, and
at each node labeled with an input variable xi, continues in the direction of the edge that
is labeled with the value of xi.

3. Order: There exists an ordering π of the input variables x1, . . . , xn, such that each variable
appears at most once in the order. At any route from the root to one of the leaves, the
order of the input variables must be equal to π.

Width, layers and space complexity. We say that two nodes are in the same layer if they
test the same input variable. We define the width of a layer to be the number of nodes in the
layer, and the width of an OBDD to be the width of the widest layer. Note that OBDDs capture
read-once bounded space algorithms (i.e. streaming algorithms), where the space complexity is
logarithmic in the width of the corresponding OBDD.

Arthur-Merlin Data Streaming. An Arthur-Merlin Data Streaming protocol consists of an
interactive public-coin protocol, and a collection of OBDDs. Each OBDD is defined with respect
to a fixed transcript of the public-coin interaction (i.e. randomness and prover’s messages). The
protocol starts with multiple rounds of public-coin interaction that generate a fixed transcript
z. Then, the OBDD corresponds to z is executed. The chosen OBDD gets the input stream as
an input and determines the output of the protocol.

Definition 2.5 (AM[k]-Data-Streaming). Fixing an input length n, an AM[2k]-Data Streaming

14

(AM[2k]-DS) protocol for a language8 L ⊆ {0, 1}n, with ρ(n) randomness and `(n) proof length,
consists of a collection of OBDDs

{
fr,π : {0, 1}n → {0, 1}

∣∣∣ r ∈ {0, 1}ρ(n), π ∈ {0, 1}`(n)} such
that first a public-coin interactive proof with 2k exchanged messages is conducted, where the
verifier sends fresh random coins and the (computationally unbounded) prover, which gets the
input x in advance, responds with proof messages. Then, denoting the prover’s messages by
π = (π1, . . . , πk) and the verifier’s random messages by r = (r1, . . . rk), the output of the protocol
is defined to be fr,π(x). The protocol must satisfy the following requirements:

• Completeness: if x ∈ L, then, with probability of at least 2/3, the transcript (r, π)
generated in the interaction with the prover satisfies fr,π(x) = 1.

• Soundness: if x /∈ L, then for every prover strategy P ∗, with probability of at most 1/3,
the transcript (r, π) generated in the interaction with P ∗ satisfies fr,π(x) = 1.

Complexity. We focus on three parameters of interest: `(n), which is the maximal total number
of bits the prover sends during the interaction (proof length); ρ(n), which is the maximal number
of random coins that are used in the protocol (randomness complexity); and the verifier space com-
plexity which is defined as dlog (W)e, whereW is the width of the widest OBDD in the collection.

A note about the input-order. We emphasize the importance of the precise order of the
inputs for the OBDDs. For example, it is easy to compute the inner product of Boolean strings
(x1, . . . , xn), (y1, . . . , yn) by an OBDD that first gets x1, y1, then x2, y2, and so on. But, using
simple counting arguments, it can be shown that an OBDD that first gets all the x′s and then
all the y’s must have an exponential width for computing the inner product function (given
that there wasn’t a prior interaction with Merlin). Furthermore, the order between the prover’s
messages and the input stream is also important. Note that in the SIP model, which is the only
other streaming scheme that allows multiple rounds of interaction, the interaction is conducted
after the verifier processes the input stream, while we define the opposite scenario where first
the transcript of the interaction is received and only then the verifier gets the input stream. The
reason for that is that in the SIP scheme, the verifier also has private coins that allow it to keep
some random secret hidden from the prover, which cannot be done in our model where all the
random coins are public.

2.2.3 Relations Between HIP, Streaming and Communication Complexity

The Data Streaming, Communication Complexity and Holographic Interactive Proof models
are all related in the sense that there are transformations from AM[k]-Holographic Interactive
Proofs to AM[k]-Data Streaming, and from AM[k]-Data Streaming to AM[k]-Communication
Complexity.

Fact 4. (From AM[k]-HIP to AM[k]-DS) Fix an input length n. Let F be some finite field, and let
C : Fn → Fn′ be a linear code over F. Suppose there exists an AM[k]-HIP protocol with respect to
the code C for a language L ⊆ Fn, using q queries, ρ random bits and proof length `. Then, there
exists an AM[k]-DS protocol for L with ` + O (q · log n) proof length, ρ randomness complexity,
and q · dlog |F|e verifier space complexity, for any order of the input in the stream. Moreover, if
the verifier is non-adaptive then the proof length is reduced to `.

Loosely speaking, in order to convert an AM[k]-HIP protocol to an AM[k]-DS protocol, we
only need to compute the queries of the AM[k]-HIP in small space, where the input is read as

8We define the model for languages over the {0, 1} alphabet. However, it can naturally be defined over any
alphabet.

15

AM[k]-HIP

AM[k]-DS

AM[k]-CC

Figure 2: Relationship between the different models.

a stream. That is done by observing that a query to a linear code is a linear combination of
the bits in the stream. Thus, if the verifier knows which queries it would make, it can compute
each query in advance, by summing the bits in the linear combination that form the query using
only dlog |F|e space for each query. Therefore, the AM[k]-DS protocol will be the same as the
AM[k]-HIP protocol except that at its final message, the prover sends also the locations of the
queries that the verifier is going to make in its verification after receiving the last message from
the prover. Then, the OBDD that corresponds to the transcript of the interaction, computes
the values of these queries by reading the input stream, and then output the result according to
the output of the AM[k]-HIP verifier. Note that the output of the AM[k]-HIP protocol depends
only on the queries’ values (that have already been computed) and the interaction’s transcript,
and thus the OBDD, after computing the queries, can output the result without additional
computation. For the formal details, and proof of Fact 4, see Appendix A.

Fact 5. (From AM[k]-DS to AM[k]-CC). Let f : {0, 1}n × {0, 1}n → {0, 1}, and let Lf =
{(x, y) | f(x, y) = 1}. Suppose there exists an AM[k]-Data Streaming protocol for Lf , where x
precedes y in the input stream, with proof length `, randomness complexity ρ and verifier space
complexity s. Then, there exists an AM[k]-CC protocol for f with (` + s + ρ) communication
complexity, where Alice gets x and Bob gets y.

Loosely speaking, the transformation from AM[k]-DS to AM[k]-CC is done by splitting the
input stream into two halves, the first (x) is given to Alice and the second (y) is given to Bob.
The parties simulate the streaming protocol as follows: Alice, which gets the first half of the
stream, simulates the streaming protocol from the beginning and up to the moment half of the
stream is read. Then Bob, which gets the second half of the stream, continues the simulation
by asking the prover to send the state at which Alice stopped. Alice’s goal is to verify that she
indeed stops at the state Merlin claimed, and Bob’s goal is to use that state in order to check
the output of the OBDD. The key observation is that since the streaming protocol uses small
space, the additional message Merlin sends to tell in which state Alice will stop, is also small.
The formal details of the transformation are given in Appendix A.

2.3 Homogeneous Multilinear Mapping

Recall that a linear mapping f is a mapping between two vector spaces with the linear property
that for any vectors x, y and scalar α:

f(x+ α · y) = f(x) + α · f(y)

16

We extend this definition to multivariable functions as follows:

Definition 2.6. (See also [Lan93, Page 511]). Let V1, . . . , Vk, W be vector spaces over some
field F. A map

f : V1 × · · · × Vk →W

is said to be a homogeneous k-linear mapping (or homogeneous multilinear) if it is linear in
each variable, i.e., if for every index i ∈ [k] and for every fixed {xt}t6=i elements, the mapping
g(x)

def
= f(x1, . . . , xi−1, x, xi+1, . . . xk) is linear.

In particular, when k = 1 we get the standard notation of a linear mapping, and when k = 2
we get a bilinear mapping (e.g. the inner product function). We emphasize that the definition
of multilinearity requires the restriction to every axis to be linear rather than just affine (which
is why we refer to it as a homogeneous multilinear map). For example, the Boolean function
f(x1, x2, x3) = x1 · x2 + x2 · x3 + x1 · x3 is an affine function in each variable, but it is not a
homogeneous 3-linear mapping since f(1, 1, 0) + f(1, 1, 1) = 0, while f(1, 1, 0 + 1) = 1.

In our work, we focus on the inner product function (over the field GF(2)), which is a
homogeneous 2-linear mapping.

Fact 6. Tthe inner product function IP2(x, y)
def
= 〈x, y〉 =

⊕
i

(xi · yi) is a homogeneous 2-linear

mapping.

We next show that the self-correction property of linear mappings extends to homogeneous
multilinear mapping.

Claim 2.7 (Self correction of homogeneous multilinear mappings). Let f : V1 × · · · × Vk →
W be a homogeneous k-linear mapping. For any (x(1), . . . , x(k)) ∈ V1 × · · · × Vk and for any
(r(1), . . . , r(k)) ∈ V1 × · · · × Vk:

f
(
x(1), . . . , x(k)

)
=

∑
s1,...,sk∈{0,1}

f
(

(−1)1−s1r(1) + x(1)s1, . . . , (−1)1−skr(k) + x(k)sk

)
.

Thus, the value of f
(
x(1), . . . , x(k)

)
can be computed by choosing r(1), . . . , r(k) at random

and taking the sum of the output of f on 2k different (correlated) random inputs.

Remark 2.8 (Self-correction of polynomials). We remark that in contrast to the self-correction
of polynomials which requires the polynomials to have degree lower than the field size, Claim 2.7
doesn’t have requirements on the degree or on the field size. For example, in the inner product
function over GF(2), the degree is the same as the field size. Yet, we can use Claim 2.7 by
evaluating the function on only 4 random inputs, since its a homogeneous 2-linear mapping.

In particular, in this work we focus on the case the mapping is over GF(2), and thus Claim 2.7
reduces to:

f(x(1), . . . , x(k)) =
⊕

s1,...,sk∈{0,1}

f
(
r(1) ⊕ (x(1) · s1), . . . , r(k) ⊕ (x(k) · sk)

)
. (5)

The proof of Claim 2.7 is deferred to Appendix A.1.

17

2.4 Boolean Circuits

Another complexity model we will consider in this work is that of Boolean Circuits. We give
here the basic notations and definitions.

Definition 2.9. (Boolean Circuit). A Boolean circuit with n inputs and m outputs, is a directed
acyclic graph (DAG) where there are n nodes without incoming edges called “input nodes”, and
m nodes without outgoing edges called “output nodes”. The other nodes are called “gates”. Each
gate v has i ≥ 1 incoming edges and is associated with a Boolean function gv : {0, 1}i → {0, 1}.
The computation of the circuit on a given input x ∈ {0, 1}n is defined recursively:

• Input: The i-th input node is labeled with xi ∈ {0, 1}.

• Gates: Any node u with i incoming edges from nodes with labels l1, ..., li, is labeled with
gu(l1, ..., li).

• Output: The output of the computation is defined as the labels of the output nodes.

Three standard gates are the NOT, AND and OR gates (De-Morgan gates). Another im-
portant gate is the parity (XOR) gate.

Circuit size and depth. Two important parameters of a Boolean circuit are its size and its
depth. Intuitively, the first quantifies how much time a single computation takes, while the
second quantifies the time of parallel computation. Formally, the size of a circuit is defined as
the number of nodes9 (inputs, gates and outputs) in the circuit, and the depth of a circuit is
defined as the length of the longest directed path from an input node to an output node.

Circuit composition. The composition of circuit C1 (having n inputs and k outputs) with
circuit C2 (having k inputs and m outputs), is the circuit C = C2 ◦C1 consisting of all the nodes
of C1 and C2 as well as all their edges, combined with additional edges that connect the output
nodes of C1 with the input nodes of C2. The input nodes of C are defined to be the n input
nodes of C1. As a result, the output nodes of C are defined to be the m output nodes of C2.
Note that if C1 computes a function f1 and C2 computes a function f2, then C2 ◦ C1 computes
the composed function f2 ◦ f1.

DNF ◦ T Circuits. For a linear transformation T, we denote by DNF ◦ T the circuit that is a
composition of some circuit that computes the transformation T, with a DNF circuit (disjunction
of clauses). We note that since T is linear, these circuits are a particular type10 of a DNF of
parties, where the parity gates are only allowed to compute the function T.

Definition 2.10 (DNF ◦ T circuit). Let T be a linear transformation T : {0, 1}n → {0, 1}m. A
circuit C is called a DNF ◦ T circuit if there is a circuit C1 : {0, 1}n → {0, 1}m that computes
the transformation T, and another DNF circuit C2 : {0, 1}m → {0, 1} such that C = C2 ◦ C1.

We define the width of a clause (i.e., a conjunction of literals) as the number of literals in
the clause, and the width of a DNF circuit, as well as the width of a DNF ◦ T circuit, as the
width of the widest clause in the DNF.

AC0(⊕) Circuits. Lastly, we define the class of AC0(⊕) circuits as consisting of all constant
depth circuits with the De-Morgan (AND, OR, NOT) gates, as well as parity gates which can

9Note that under this definition, the circuit size is at least n.
10Namely, DNF circuits with an additional layer of parity (XOR) gates which can be applied only directly on

the input gates.

18

be used anywhere in the circuit. Note that this class is more general than DNF of parities or
DNF ◦ T circuits

2.5 A Concentration Bound

Finally, we recall the (non-Boolean version of the) Chernoff Bound, which is used in our analysis
in Section 3:

Lemma 2.11. (Chernoff Bound for non-Boolean variables. See, e.g., [Goe15, Theorem 4]). Let
X1, X2, . . . , Xn be independent random variables such that a ≤ Xi ≤ b for all i. Let X =

∑n
i=1Xi

and set µ = E[X]. Then, for all δ > 0 :

• Upper Tail: Pr
[
X ≥ (1 + δ)µ

]
≤ e−

2δ2µ2

n(b−a)2 .

• Lower Tail: Pr
[
X ≤ (1− δ)µ

]
≤ e−

δ2µ2

n(b−α)2 .

3 From Circuits to AM[2]-HIP, AM[2]-DS and AM[2]-CC

In this section, we show that the existence of a sufficiently small DNF◦T circuit that approximates
the inner product function, yields an efficient (non-uniform) AM[2]-HIP protocol for checking
inner product claims. Using Facts 4 and 5, we will later use this result to derive AM[2]-DS
protocols (for any order of the input bits in the stream) and an AM[2]-CC protocols from the
same assumption (see Sections 4 and 5).

Definition 3.1. (LIP language). We define the language LIP as

LIP
def
=
{

(x, y, b) ∈ {0, 1}n × {0, 1}n × {0, 1} : IP2(x, y) = b
}
.

The main result that we prove in this section is reducing the construction of an AM[2]-HIP
for LIP, with respect to a linear code T, to constructing a DNF ◦T circuit for approximating the
inner product function.

Lemma 3.2. (AM[2]-HIP for LIP). Fix an integer n, and a parameter ε ∈ (0, 1/6]. Let T :

{0, 1}2n → {0, 1}n
′
be some linear code. Suppose there exists a DNF ◦ T circuit C of size S

that computes IP2(x, y) on at least 5
6 + ε fraction of the inputs. Then, there exists an AM[2]-

HIP protocol for LIP, with proof length log (S) · Õ
(
1
ε3

)
, randomness complexity O(log n) and

log (S) · Õ
(
1
ε3

)
queries to the bits of T(x, y).

Using Facts 4 and 5, we derive similar results also in the AM[2]-DS and AM[2]-CC models:

Corollary 7. (AM[2]-DS and AM[2]-CC for LIP). Let n, n′ ∈ N, and ε ∈ (0, 1/6]. Let T :

{0, 1}2n → {0, 1}n
′
be some linear code. Suppose there exists a DNF ◦ T circuit C of size S that

computes IP2 on at least a 5
6 + ε fraction of the inputs. Then,

1. There exists an AM[2]-DS protocol for LIP, with proof length log (S) · Õ
(
1
ε3

)
, randomness

complexity O(log n) and verifier space complexity log (S) · Õ
(
1
ε3

)
.

2. There exists an AM[2]-CC protocol for the function IP2(x, y) with log (S) · Õ
(
1
ε3

)
commu-

nication complexity.

19

Proof organization and outline (for a more detailed outline see Section 1.2). The
proof of Lemma 3.2 goes through three main steps. In the first step, described in Section 3.1, we
prune all the “wide” clauses in the DNF◦T circuit, and show that this gives a good approximation
of the original circuit. In the second step, described in Section 3.2, we present an extremely
simple holographic NP-proof for verifying whether an input x satisfies a DNF ◦ T circuit, where
the length of the witness is logarithmic in the size of the circuit. The proof-system is holographic
in the sense that the verifier only needs to look at bits in the encoding T(x), and in particular,
the number of queries to the bits of T(x) is equal to the DNF’s width.

Thus, we wish to apply the holographic NP-proof on the circuit of narrow wide from Step
1 to check inner product claims using a small number of queries and a short proof. However,
the narrow circuit only computes the inner product correctly on most inputs. Recall that by
Claim 2.7, which we referred to as the self correction property of homogeneous multilinear
mappings, the inner product of two certain input strings can be expressed as a sum of random
inner products. Hence, in order to construct a randomized protocol that works on all inputs, a
natural idea would be to use Claim 2.7 in order to move from a certain inner product claim to
multiple claims about inner products of random inputs.

Unfortunately, by moving to claims over inner products of random inputs, we may need the
ability to verify also whether an inner product is 0, whereas the holographic NP-proof from our
second step can only verify that an inner product is 1. Therefore, in our third step, described
in Section 3.3, instead of using the straightforward self-correction property, we present a more
general compiler (see Lemma 3.5) that extends the self-correction property also to the case where
there is a protocol that can only verify most of the 1-claims and none of the 0-claims. That is,
given a protocol that verifies whether an inner product is 1 on most inputs, the compiler gives a
probabilistic protocol that can verify any inner product claim, on all inputs (w.h.p over random
coins tosses). We remark that this result generalizes to any homogeneous multilinear mapping
and the inner product result follows as a special case. Combining these results, we conclude
with the proof of Lemma 3.2 in Section 3.4.

3.1 Eliminating Wide Clauses

Our first step is reducing the width of the given circuit (which approximates the inner product
function). In more detail, given a DNF◦T circuit C with respect to a linear transformation T, we
construct a new DNF ◦T circuit that agrees with C on most inputs and consists of only clauses
with a narrow width. The construction is straightforward: first get rid of all linear dependencies
that are internal to a clause, and then remove all the remaining wide clauses.

Proposition 3.3. Let T be a linear transformation. For any DNF ◦ T circuit C of size S, and
a parameter τ ∈ (0, 1), there exists a DNF ◦T circuit C ′τ of size at most S, and clauses of width
w =

⌈
log (Sτ)

⌉
, such that Prx

[
C ′τ (x) = C(x)

]
≥ 1 − τ . Furthermore, for every x such that

C(x) = 0 it holds that C ′τ (x) = 0.

Proof. We construct the new circuit C ′τ by making two modifications on the original circuit C:

1. First, we eliminate linear dependencies within each clause.

2. Then, we remove clauses with width greater than w =
⌈
log (Sτ)

⌉
.

For Step 1, observe that each DNF clause is a conjunction of the form (Ti1(x) = b1) ∧
(Ti2(x) = b2) ∧ · · · ∧ (Tik(x) = bk), where Ti(x) is the i-th bit of T(x). Since T is a linear
transformation, each Ti(x) is a linear combination of the bits of x. Therefore, each DNF clause
can be viewed as a system of linear equations. The clause is satisfied if and only if all the

20

equations are satisfied. As noted above, our first modification is removing the dependencies
between elements in each clause. Formally, for each clause, if there is a solution to the equations
that form the clause, then we select a maximal subset of linearly independent equations for that
clause and discard the rest. If the equation-system is unsatisfiable (and therefore the clause
can never be satisfied), then we can remove the entire clause altogether. This procedure gives
us a new DNF ◦ T circuit, where each clause consists of only satisfiable linearly independent
equations. Note that this procedure does not change the input/output behavior of the circuit,
as we removed only linearly dependent equations, or clauses that were already unsatisfiable.

As our second modification we remove all clauses whose width is greater than w =
⌈
log (Sτ)

⌉
.

By applying these two modifications, we get a new circuit C ′τ of size of at most S, where the
width of each clause is at most w.

Note that C ′τ (x) 6= C(x) only if we removed a clause that x satisfies. For each clause we
removed, the probability (over a random input x) that the clause is satisfied, is equal to the
probability that all the equations that form the clause are satisfied. By the first modification,
all the equations are linearly independent. By the second modification, each clause we removed
is a linear system with rank at least w. Thus, each such system is satisfied with probability at
most 2−w. Thus, by the union bound, the probability that there is a removed clause that is
satisfied can be bounded as:

Pr
x

[
C ′τ (x) 6= C(x)

]
≤ Pr

x
[∃ removed clause that x satisfies] ≤ S · 2−w.

The furthermore part of Proposition 3.3 follows from the fact that the first modification does
not affect the circuit’s output at all, and in the second modification we only remove clauses and
therefore can only change the circuit’s output from 1 to 0, but never from 0 to 1.

�

3.2 Holographic NP proof for DNF ◦ T Circuits

Our second step is constructing for any DNF ◦ T circuit, a holographic NP proof for one-sided
claims, that is, for proving that the circuit outputs 1. The proof-system is holographic in the
sense that the verification of the proof only requires to make queries to the bits of T(x), rather
than having direct access to the input. In particular, we show a straightforward holographic NP
proof with a dlogSe-bit length proof, where the number of queries is equal to the width of the
DNF.

Proposition 3.4. Let T be a linear transformation, and C be a DNF ◦ T circuit of size S and
width w. There exists an NP proof for the language L = {x | C(x) = 1}, where the witness
length is dlogSe. Verification of the proof requires w queries to the bits of T(x) (rather than
reading the input directly).

Proof. The witness is an index of a satisfied clause in C. The verifier reads the w bits of T(x)
that are in the specified clause to verify that the clause is indeed satisfied. Proposition 3.4
follows immediately from the construction and the definition of DNF ◦ T circuits. �

Inability of verifying 0-claims. Note, that while it is easy to have a short proof for checking
whether a DNF◦T circuit is satisfied, it is not clear how to prove that it is not (i.e., that C(x) = 0
for a given input x). Since the narrow circuit that is obtained from Proposition 3.3 computes the
inner product function correctly only on a fraction of the inputs, we would like to use the self-
correction of homogeneous bilinear mappings (see Claim 2.7) to derive an AM[2]-HIP protocol
for inner product claims, that works on all inputs. However, the straightforward self-correction
requires to verify also whether an inner product is 0, which we don’t know how to do efficiently.
We deal with this difficulty next.

21

3.3 From One-Sided Average-Case to Two-Sided Worst-Case

Recall that for a proximity parameter ε and a linear code T, our goal is a reduction from an
AM[2]-HIP protocol (w.r.t to T) for LIP, to computing the inner product function on 5

6+ε fraction
of the inputs by a DNF ◦ T circuit. By Proposition 3.3, we have a DNF ◦ T circuit of width at
most w = O

(
logS
τ

)
that agrees with the inner product function on at least 5

6 + ε − τ fraction
of the inputs. By Proposition 3.4, we can exploit the narrow clauses in C ′τ , and verify inner
product claims by verifying the output of C ′τ with only O (logS) proof length and w = O

(
logS
τ

)
queries to the encoding of the input via T. However, that gives us a solution that works for
most inputs, rather than all inputs, and also works only for claims of the form IP2(x, y) = 1
and does not extend also to claims of the form IP2(x, y) = 0. In addition, note that using the
straightforward self-correction property of the inner product function (see Claim 2.7) also raises
a difficulty: the straightforward self-correction reduces an inner product claim to multiple inner
product claims over random strings, which may be equal to 0.

Thus, our next step is presenting a compiler that generalizes the self-correction property also
for the case we have a protocol for verifying only one-sided claims (i.e. only verifies whether an
inner product is 1). The compiler is given an AM[2]-HIP protocol that can only verify claims of
the form IP2(x, y) = 1, and only on most inputs, and outputs an AM[2]-HIP protocol that can
verify any inner product claim, on all inputs. Actually, this follows from a more general result,
established in Lemma 3.5, that gives a compiler for any homogeneous multilinear mapping, of
which the inner product is a special case (see Fact 6).

We remark that the compiler has a O(n
ε2

) overhead to the randomness complexity, whereas we
seek randomness complexity O(log n). We overcome this issue by employing a generic technique,
due to [New91], for reducing randomness complexity using non-uniformity. We observe that this
technique can also be applied on AM[2]-HIP protocols (see Proposition 3.6 below).

Lemma 3.5 (From one-sided avg-case, to two-sided worst-case). Let k ≥ 1 be an integer, let
ε ∈

(
0, 1

2·(2k−1)
]
and let T : ({0, 1}n)k → {0, 1}n′ be a linear map. Also, let g :

(
{0, 1}n

)k →
{0, 1} be a non-zero function that is (1 − 1

2(2k−1) + ε)-close to a homogeneous k-linear map-

ping f . Suppose that there exists an AM[2]-HIP protocol for the language
{

(x(1), . . . , x(k)) :

g
(
x(1), . . . , x(k)

)
= 1
}
with proof length `, randomness complexity r, and q queries to the bits of

T
(
x(1), . . . , x(k)

)
. Then, there exists an AM[2]-HIP protocol for the language

{
(x(1), . . . , x(k), b) :

f
(
x(1), . . . , x(k)

)
= b

}
with queries to the bits of T

(
x(1), . . . , x(k)

)
, and with the following pa-

rameters:

Query Complexity: O

(
q · 2k · (k + log

(
1
ε

)
ε2

)
.

Proof Length: O

(
` · 2k · (k + log

(
1
ε

)
ε2

)
.

Randomness Complexity: O

(
n · k + r · 2k · (k + log

(
1
ε

)
ε2

)
.

Notations. A few notations that will be used throughout the proof. By a “b-claim” we refer
to a claim of the form “g outputs the bit b” on a certain input. Also, recall that by the self-
correction property of homogeneous multilinear mappings (see Claim 2.7), it holds that for any

22

(r(1), . . . , r(k)) ∈ {0, 1}n:

f(x(1), . . . , x(k)) =
⊕

s1,...,sk∈{0,1}

f
(
r(1) ⊕ (x(1) · s1), . . . , r(k) ⊕ (x(k) · sk)

)
. (6)

We refer to the term in the sum in Eq. (6) that corresponds to (s1, . . . , sk) = (0, . . . , 0) as
the first term, and note that it doesn’t depend on the input (x(1), . . . , x(k)).

Proof Outline. The basic idea in the proof of Lemma 3.5 (which is similar to the idea that was
used in the works of Shaltiel and Umans [SU05, SU06]) is observing that all of the inputs to f on
the right-hand side in Eq. (6) are (individually) random. Thus, we can utilize our average-case
HIP in order to prove correctness. The major difficulty is that some of the claimed values may
be 0, and we have an HIP for 1-claims. We cope with the 0-claims by observing that the prover
can only convince the verifier that g outputs 0 when it actually outputs 1, but not the opposite
(that is because the verifier can verify all the 1-claims). Therefore, by having the verifier check
only 1-claims and blindly accept 0-claims, we get that if a malicious prover sends a false claim,
then it must be a 0-claim. A key observation is that this makes the expected value of its claims
lower than the expected value of g on a random input. By repeating the experiment several
times, each time with fresh random strings, we get a significant statistical gap between the case
that the prover lies and the case it is honest. Thus, by adding an accepting criterion on the
average value of the prover’s claims, we can detect when the prover is lying. To sum up, the
new protocol proceeds as follows: the parties repeat the self-correction procedure of Eq. (6) for
a large enough number of times, each time with fresh random vectors. For each iteration, the
prover sends the values of the terms on the right-hand side of Eq. (6), and the verifier checks
only the 1-claims by using the original protocol. Finally, the verifier accepts if all the following
conditions are satisfied:

1. The original protocol accepts all the 1-claims.

2. The average value of all the prover’s claims is close enough to the expectation.

3. The value of f in most of the iterations is b.

Proof. The rest of the proof refers to the formal protocol, which is described in Fig. 3.
First, let us show that all the steps in the protocol are well defined. Note, that using oracle

access to the bits of T
(
x(1), . . . , x(k)

)
, the verifier can compute all the queries that V requires

by computing T
(
r(1,1), . . . , r(1,k), . . . , r(m,k)

)
on its own and using the linearity of T. Therefore,

the execution of V in Step 3(c) is well defined. In addition, since V is an AM[2]-HIP verifier,
the prover can send its claims in Step 3 together with the first message in the simulation11 of
V . Moreover, the parties can run Step 3 on all i ∈ [m] in parallel, resulting in an AM[2]-HIP
protocol as required.

Communication and query complexity. V is obtained from the original protocol by
O(k+logm) parallel repetitions. Thus, V makes O((k+logm) ·q) queries, uses O((k+logm) ·r)
random coins, and has O((k + logm) · `) proof length. Since the protocol consists of running
V at most m · 2k times and sending additional m · 2k bits for the prover’s claims, the query
complexity is O

(
(k + logm) · q · 2k ·m

)
and the proof length is O

(
(k + logm) · ` · 2k ·m

)
. The

randomness complexity consists of the cost of running V at most m ·2k times and the additional
m · k random n-bit length Boolean strings the verifier tosses in Step 2. Therefore, the total

11Formally, since the verifier runs V only for 1-claims, it will send in advance the random coins for V and uses
them only if the prover will indeed send 1-claims.

23

Statement: g
(
x(1), . . . , x(k)

)
= b, for b ∈ {0, 1} and x(1), . . . , x(k) ∈ {0, 1}n

Parameters: Let µ def
= E[g], let δ def

= ε
4·µ , and let m def

= 64
ε2
. Note that since 0 ≤ ε < 1

2k
,

thena 0 ≤ δ < 1, and since g is not identically zero, then µ > 0.

Protocol:

1. Reduce the completeness and the soundness errors of the original AM[2]-HIP protocol
to be at most (1

100·m·(2k−1)) using parallel repetition (see [Gol98, Appendix C.1]).
Denote the new protocol by V .

2. For every i ∈ [m] and j ∈ [k], select a random vector r(i,j) ∈ {0, 1}n and send r(i,j) to
the prover.

3. For every i ∈ [m], define

Ri =
⊕

s1,...,sk∈{0,1}

g
(
r(i,1) ⊕ (x(1) · s1), r(i,2) ⊕ (x(2) · s2), . . . , r(i,k) ⊕ (x(k) · sk)

)
.

The verifier computes the value of each Ri as follows:

(a) Claims: The prover sends the value of all the terms in the sum that forms Ri,
except for the first termb which is computed by the verifier on its own, as it
depends only on the random coins and not also on the inputs x(1), . . . , x(k).

(b) Computing Ri: The verifier computes the sum of all the prover’s claims and
the computed value of the first term, and considers the sum as the value of Ri.

(c) Verifying 1-claims: For each prover’s claim from 3(a), if it is a 0-claim, then
the verifier considers it blindly as 0. Otherwise, the verifier runs V to verify that
the value is indeed 1 and rejects if V rejected.

4. Average criterion: If the average value of all the prover’s claims in the interaction
is less than (1− δ) · µ, then the verifier rejects.

5. Else, the verifier accepts if more than m/2 of the Ri-s were computed as b, and
otherwise it rejects.

aClearly δ ≥ 0. To see that δ < 1, note that otherwise we get that µ ≤ 1
2k+2 , which by Claim 2.7 means

that for any fixed input z, g(z) has probability higher than 0 to be zero, and thus must be identically 0.
bIt is an optimization we used to reduce the number of claims that the verifier has to check, and thus

pushing the limitation on ε to 1
2·(2k−1)

. When k is large, it does not really matter. However, when k = 2 (e.g,
in the inner product function), it is the difference between a 7

8
approximation limit and a 5

6
approximation

limit.

Figure 3: Protocol of Lemma 3.5.

24

randomness complexity is O
(
m · 2k · (k + logm) · r +m · k · n

)
. By setting m = O

(
1
ε2

)
we get

the required proof length, query and randomness complexities.

Soundness and completeness error. Before analyzing the completeness and the soundness
of the protocol, we define two sets of random variables, {Ai}i∈[m] and {Wi}i∈[m], as well as an
indicator I, that will be used in the analysis of the protocol. Consider the 2k-size i-th sum that
the verifier tries to compute in Step 3:

Ri =
⊕

s1,...,sk∈{0,1}

g
(
r(i,1) ⊕ (x(1) · s1), r(i,2) ⊕ (x(2) · s2), . . . , r(i,k) ⊕ (x(k) · sk)

)
.

We define the random variables as follows:

• 0 ≤ Ai ≤ 1 is defined to be the average of the real values of all the terms in the sum that
forms Ri.

• Wi ∈ {0, 1} is defined to be an indicator which equals 1 if and only if g and f disagree on
at least one of the 2k − 1 prover’s claims about terms in the i-th sum.

• I ∈ {0, 1} is defined to be 1 if and only if V failed to verify at least one (true or false)
1-claim during the protocol.

Note, that since the random strings {r(i,j)}(i,j)∈[m]×[k] are independent, then all the Ai are
independent and identically distributed, ans similarly for the Wi-s. Thus, we denote

µw
def
= E[W1] = · · · = E[Wm], and,

µA
def
= E[A1] = · · · = E[Am].

Also, note that for any s1, . . . , sk ∈ {0, 1} and i ∈ [m], the strings
{
r(i,t)⊕ (x(t) · st)

}
t∈[k] are

independent random strings. Therefore, µA = µ, and so

E

[
m∑
i=1

Ai

]
= µA ·m = µ ·m.

In addition, since g is (1− 1
2(2k−1) + ε)-close to the function f , by the union bound f and g

agree on all of the 2k−1 prover’s claims about the i-th sum with all but
(

1
2(2k−1) − ε

)
·(2k−1) =

1
2 − ε · (2

k − 1) probability. Thus, µW ≤ 1
2 − ε · (2

k − 1) < 1
2 . By linearity of expectation, we get

that

E

[
m∑
i=1

Wi

]
= m · µw <

m

2
.

Lastly, regarding I, since the completeness and the soundness errors of V are at most
1

100·m·(2k−1) , by union bounding over all the m · (2k − 1) prover’s claims during the protocol, we
get that

Pr
[
I = 1

]
≤ 1

100
.

With these random variables in hand, we are ready to analyze the completeness and the
soundness of the protocol.

25

Completeness. Let x(1), . . . , x(k) ∈ {0, 1}n such that f
(
x(1), . . . , x(k)

)
= b, we need to show

that the verifier rejects with probability at most 1
3 . The verifier rejects only if one of the following

three events happens: V rejects some 1-claim; the average value of the prover’s claims is lower
than (1− δ) ·µ; or, most of the Ri-s have been computed by the verifier wrongly as 1− b, rather
than as b. The probability that the first event occurs is bounded by the probability that I = 1,
which we already bounded by 1

100 .
For the second event, note that the average value of the prover’s claims when the prover is

honest, is exactly
∑
Ai
m (the average of the real values). Hence, the second event occurs only

if
∑
Ai
m < (1 − δ) · µ. We can bound the probability for this event using the Chernoff Bound

(Lemma 2.11):

Pr

[∑m
i=1Ai
m

< (1− δ) · µ
]
≤ e−δ2µ2m = e−2·

ε2

8
·m < e−2.

For the third event (“most of the Ri-s were computed wrongly”), observe that by Eq. (6) and
the construction of the protocol, for any i ∈ [m], if f and g agree on all the prover’s claims about
the terms that forms Ri, then the verifier computes Ri correctly as b. Thus, the probability
that most of the Ri-s were computed wrongly is bounded by the probability that on at least
m
2 of them, f and g disagree on at least one of the prover’s claims, namely, the probability
that

∑m
i=1Wi ≥ m

2 . Therefore, to bound the probability that the third event occurs, it suffices
to bound the probability that

∑m
i=1Wi ≥ m

2 . If µW = 0, then the probability is zero, and if
µW > 0, we get that:

Pr

[
m∑
i=1

Wi ≥
m

2

]
= Pr

[
m∑
i=1

Wi ≥
(

1 +
(1

2 · µW
− 1
))
· µW ·m

]

≤ e−
2·
(

1
2·µW

−1

)2
·µW

2·m2

m

= e−2·(
1
2
−µW)

2·m

≤ e−2ε2·(2k−1)2·m

< e−2ε
2·m

< e−2.

The second inequality follows by the Chernoff bound (Lemma 2.11) and that µw < 1
2 . To sum

up, by adding the probabilities of these three events, we get that

Pr
[
V rejects

]
<

1

100
+ 2e−2 <

1

3
.

Soundness. Let x(1), . . . , x(k) ∈ {0, 1}n such that f
(
x(1), . . . , x(k)

)
= 1 − b, we need to show

that for any prover strategy, the verifier accepts with probability at most 1
3 .

Let us fix some prover strategy P ∗. We distinguish between the following two cases:12 the
case the event

(
I = 1

)
∨
(

1
m ·

∑m
i=1Wi ≥

1
2
+µw
2

)
occurs, and the case the complement event

12An intuition for why we compare 1
m

∑
iWi to

1
2
+µW

2
: we want to show that with high probability f and

g completely agree in most of the iterations, and thus the prover must send false claims in order to make the
verifier accept. The “most” requires us to pick a fraction smaller than 1

2
, and the “high probability” requires us

to pick a fraction greater than µw. Thus, we choose the average of these two.

26

(
I = 0

)
∧
(

1
m ·
∑m

i=1Wi <
1
2
+µw
2

)
occurs. By the law of total probability, the probability that

the verifier accepts can be expressed as

Pr
[(
I = 1

)
∨
(1

m
·
m∑
i=1

Wi ≥
1
2 + µw

2

)]
+ Pr

[
V accepts ∧

(
I = 0

)
∧
(1

m
·
m∑
i=1

Wi <
1
2 + µw

2

)]
.

(7)
Let us start by bounding the first expression. We get that

Pr

[(
I = 1

)
∨
(1

m
·
m∑
i=1

Wi ≥
1
2 + µw

2

)]
≤ Pr

[
I = 1

]
+ Pr

[
1

m
·
m∑
i=1

Wi ≥
1
2 + µw

2

]

≤ 1

100
+ Pr

[
m∑
i=1

Wi ≥
m · (12 + µw)

2

]

=
1

100
+ Pr

[
m∑
i=1

Wi ≥
(

1 +
(1

4µw
− 1

2

))
·m · µW

]

≤ 1

100
+ e

−2·(1
4µw

− 1
2)

2
·µW

2·m2

m

=
1

100
+ e−2(

1
4
−µw

2)
2·m

≤ 1

100
+ e−2·

ε2(2k−1)2

4
·m

<
1

100
+ e−2·

ε2

4
·m

<
1

100
+ e−2.

Where the fourth inequality is by the Chernoff bound (Lemma 2.11) and the fact that µW ≤ 1
2 .

For the sake of completeness, also note that by their definition, all the Wi-s are independent
with each other, and with the prover strategy.

For the second expression in Eq. (7), recall that in order to make the verifier accept, the
prover must make the verifier compute more than m

2 of the Ri-s as b. As a result, since the

second expression in Eq. (7) requires that 1
m ·
∑m

i=1Wi <
1
2
+µw
2 , the prover must send at least

m·(1
2
−µw)
2 false claims in order to make the verifier accept. Since I = 0, the prover can only

send false 0-claims without making the verifier reject, and by doing that, the average value of
its claims reduces to

∑m
i=1 Ai
m − 1

m ·
#false 0-claims

2k−1 ≤
∑m
i=1 Ai
m − 1

m ·
m·(1

2
−µw)

2·(2k−1) . Recall, that the
verifier rejects also if the average value of the prover’s claims is less than (1− δ) · µ. Therefore,
in order to bound the second expression of Eq. (7), it suffices to bound the probability that∑m

i=1 Ai
m − 1

m ·
m·(1

2
−µw)

2·(2k−1) ≥ (1 − δ) · µ, as it contains the event that is computed in the second
expression of Eq. (1). We note that by their definition, all the Ai-s are independent with the
prover strategy, and thus we can use the Chernoff bound and get:

27

Pr

[
1

m
·
m∑
i=1

Ai −
1

m
·
m · (12 − µw)

2 · (2k − 1)
≥ (1− δ) · µ

]
= Pr

[
m∑
i=1

Ai ≥
(

1 +
(1

2 − µw
2 · µ · (2k − 1)

− δ
))
·m · µ

]

≤ Pr

[
m∑
i=1

Ai ≥
(

1 +
(ε · (2k − 1)

2 · µ · (2k − 1)
− δ
))
·m · µ

]

= Pr

[
m∑
i=1

Ai ≥
(

1 +
δ

2

)
·m · µ

]

≤ e−2·
δ2

4
·µ2·m

≤ e−2.

To sum up, we get that

Pr
[
V accepts

]
<

1

100
+ 2e−2 <

1

3
.

�

3.4 An AM[2]-HIP for LIP

We complete the proof of Lemma 3.2 by showing that it can be derived directly from the results
established in Sections 3.1 to 3.3. For convenience, we restate Lemma 3.2:

Lemma 3.2. (AM[2]-HIP for LIP). Fix an integer n, and a parameter ε ∈ (0, 1/6]. Let T :

{0, 1}2n → {0, 1}n
′
be some linear code. Suppose there exists a DNF ◦ T circuit C of size S

that computes IP2(x, y) on at least 5
6 + ε fraction of the inputs. Then, there exists an AM[2]-

HIP protocol for LIP, with proof length log (S) · Õ
(
1
ε3

)
, randomness complexity O(log n) and

log (S) · Õ
(
1
ε3

)
queries to the bits of T(x, y).

Proof. First, we observe that it suffices to prove a result similar to Lemma 3.2 but with O(n
ε2

)
randomness complexity, rather than O(log n), by using the following proposition:

Proposition 3.6. (Reducing randomness). Fix an input length n, and let L ⊆ {0, 1}n. For
any AM[2]-HIP protocol for L with proof length c and query complexity q, there exists an AM[2]-
HIP protocol for L with proof length O(c), query complexity O(q), and randomness complexity
O (log n).

The proof of Proposition 3.6 is mainly based on a general technique of [New91] for reducing
the randomness complexity of non-uniform probabilistic proofs. We remark that [New91] shows
his technique in the context of (public-coin) randomized communication complexity protocols,
but it can readily adapt to public-coin interactive proofs, as well as to AM[2]-HIP. The proof of
Proposition 3.6 is deferred to Appendix A.3.

Let C ′τ be the narrow circuit that is obtained from C using Proposition 3.3 and a parameter
τ > 0. Recall that C ′τ has width w = O

(
logS
τ

)
, and it agrees with C on (1− τ) fraction of the

inputs. Since C is
(
5
6 + ε

)
-close to the inner product function, then C ′τ is

(
5
6 + ε− τ

)
-close to

the inner product function. We choose τ to be ε
2 and get that C ′τ is

(
5
6 + ε

2

)
-close to the inner

product function. In addition, since the expectation of the inner product function is 1
2 −

1
2n+1 ,

then C ′τ doesn’t compute the zero function. By Proposition 3.4, there is an AM[2]-HIP protocol
(in particular, a Holographic NP proof) for claims of the form C ′τ (x, y) = 1, with zero random

28

bits, O
(
logS
τ

)
proof length and O

(
logS
τ

)
queries to the bits of T1(x) and T2(y). Hence, by

Lemma 3.5 with the parameters k = 2, f = IP2(x, y), g = C ′τ (x, y), and µ = Ex,y
[
C ′τ (x, y)

]
> 0,

we get an AM[2]-HIP protocol for LIP with O
(
n
ε2

)
randomness complexity, O

(
logS
ε3
· log

(
1
ε

))
proof length and O

(
logS
ε3
· log

(
1
ε

))
queries.

�

4 Verifying Low Degree Polynomials

In this section, we continue to study the ramifications of the existence of (relatively) small
DNF ◦ T circuits for computing the inner product function on most inputs. We show that
such circuits yield an efficient (multiple round) Arthur-Merlin Streaming protocol and a (one
round) Arthur-Merlin Communication Complexity protocol for problems that are decidable by
low degree polynomials (over GF(2)).

While a Communication Complexity result follows from the streaming result (see Fact 5),
we achieve better parameters by showing an explicit Communication Complexity protocol. In
particular, the Communication Complexity protocol has only a one round of interaction, which
lets us extend the protocol for any function that is decidable by an AC0(⊕) circuit (see Section 4.3
for the details). In Table 1 we compare the complexity parameters of the explicit AM[2]-CC
protocol and of the AM[k]-CC protocol that is obtained from the streaming protocol by applying
Fact 5. The table shows the number of rounds and the amount of communication in these two
protocols as a function of the size of the DNF ◦ T circuit for approximating the inner product
function, to a factor of 5

6 + ε (for some ε > 0).
In additoin, we also remark that the AM[2]-CC protocol is simpler than the streaming pro-

tocol, and can be viewed as a warmup for the AM[2]-DS protocol.

Circuit Size Using AM[2d]-DS → AM[k]-CC An explicit AM[2]-CC protocol
transformation.

S(m)
log (S(m)) · Õ

(
d
ε3

)
, log

(
S(2 ·md)

)
· Õ
(

1
ε3

)
,

d rounds. 1 round

2m
δ mδ · Õ

(
d
ε3

)
, md·δ · Õ

(
1
ε3

)
,

d rounds. 1 round

2polylog (m) polylog(m) · Õ
(
d
ε3

)
, poly(d) · polylog (m) · Õ

(
1
ε3

)
,

d rounds. 1 round

poly(m)
log (m) · Õ

(
d
ε3

)
, d · logm · Õ

(
1
ε3

)
,

d rounds. 1 round

Table 1: AM[k]-CC communication and rounds for d degree polynomial, and input size m = 2n.

4.1 An AM[2] Communication Complexity Protocol

Theorem 8. Fix integers n,N and a parameter ε ∈ (0, 1/6]. Let T : {0, 1}2N → {0, 1}n
′
be

some linear code. Suppose there exists a DNF ◦ T circuit C of size S = S(2N) that computes
the function IP2(x, y) on at least a 5

6 + ε of the N -bit length inputs. Then, for any polynomial
P : {0, 1}n → {0, 1} with N monomials, and for any b ∈ {0, 1}, there exists an AM[2]-CC

protocol for the function Pb(x, y)
def
=

{
1 P(x, y) = b
0 o/w

}
with log

(
S
(
2N
))
·Õ
(
1
ε3

)
communication

29

complexity, where Merlin (the prover) gets the inputs x, y ∈ {0, 1}n, Alice gets x and Bob gets
y.

Note that N may be polynomial or even exponential in n. In particular, if P is a d degree
polynomial, then N ≤ (2n)d. By denoting m = 2n, we get log

(
S
(
2 ·md

))
· Õ
(
1
ε3

)
communica-

tion complexity, as in Table 1.

Proof. We aim to use the AM[2]-CC protocol for the inner product function from Corollary 7,
by reducing the task of evaluating P to the task of computing the inner product of the truth
tables of two certain functions. In fact, in order to apply Corollary 7 we need an inner product
between the truth table of a function that depends only on Alice’s inputs and the truth table
of a function that depends only on Bob’s inputs. Observe, that the output of P can be viewed
as a linear combination of its monomials, each of which is a product between a subset of the
input variables and a coefficient (which is also either 0 or 1, since P is defined over GF(2)). For
any monomial α ∈ [N] and inputs x, y ∈ {0, 1}n, we denote by I(α)x and I(α)y the indices sets of
the input variables that appear in the α-th monomial, where I(α)x is the indices of x, and I(α)y is
the indices of y. Therefore, the output of P on a given input z = (x, y) can be written as the
following expression:

P(x, y) =
⊕
α∈[N]

(∏
i∈I(α)x

xi

)
·
(∏
i∈I(α)y

yi

)
· CoefP(α),

where CoefP(α) outputs the coefficient in the α-th monomial, and an empty product is defined
to be 1. Lastly, by defining XP(x, α)

def
=
(∏

i∈I(α)x
xi

)
and YP(y, α)

def
=
(∏

i∈I(α)y
yi

)
, and

noticing that the coefficients are known to all the parties, we get an inner product between a
function that depends only on Alice’s inputs, and a function that depends only on Bob’s inputs

P(x, y) =
⊕
α∈[N]

XP(x, α) · YP(y, α) · CoefP(α). (8)

Using these notations, the AM[2]-CC protocol is described in Fig. 4.
First, we show that the protocol is well defined. Observe, that the computation of each

party during the preprocessing step depends only on the input they get or on the polynomial’s
structure, which is known to all the parties. Hence, the preprocessing step of the protocol is
well defined. Also, note that the domain of A and B is [N], which means that their truth tables
contain exactly N entries, and thus we can apply the AM[2]-CC protocol for the inner product
function in Step 2, which is defined for N -bit length inputs.

Communication complexity. The preprocessing step does not require any communication
since all the computations of the parties are local. Thus, the communication complexity is equal
to the communication complexity of Step 2, which is log

(
S(2N)

)
· Õ
(
1
ε3

)
by Corollary 7.

Completeness and soundness. From Eq. (8) and the definitions of A and B we get that

P(x, y) =
⊕
α∈[N]

A(α) · B(α)

Thus, the completeness and the soundness follow immediately from the completeness and
soundness of the AM[2]-CC protocol in the second step, which follow from Corollary 7. �

30

Inputs:

• Alice’s input: a polynomial P with N monomials, a bit b ∈ {0, 1} and x ∈ {0, 1}n.

• Bob’s input: y ∈ {0, 1}n and the same P and b.

• Merlin’s input: The same P, x, y and b.

Protocol:

1. Preprocessing:

(a) Alice constructs A(α) ∈ {0, 1}N , defined as A(α) = XP(x, α).

(b) Bob constructs B(α) ∈ {0, 1}N , defined as B(α) = YP(y, α) · CoefP(α).

(c) Merlin constructs A and B.

2. The parties run the AM[2]-CC protocol that is obtained from Corollary 7 with respect
to the circuit C, for N -bit length inputs, on the truth tables of A and B.

Figure 4: (AM[2]-CC for P)

4.2 An AM[2d] Streaming Protocol

Theorem 9. Fix an integer n, and let ε ∈ (0, 1/6]. Let T : {0, 1}2n → {0, 1}n
′
be some linear

code. Suppose there exists a DNF ◦ T circuit C of size S that computes the function IP2(x, y)
on at least a 5

6 + ε fraction of the n-bit length inputs. Then, for any d degree polynomial
P : {0, 1}n → {0, 1}, and for any b ∈ {0, 1}, there exists an AM[2d]-DS protocol for the language
L
def
= {x ∈ {0, 1}n | P(x) = b} with log (S)·Õ

(
d
ε3

)
randomness complexity, proof length and space

complexity.

By Fact 4, it suffices to show a non-adaptive AM[2d]-HIP protocol for the language L, with
log (S) · Õ

(
d
ε3

)
randomness, communication and query complexities. Thus, the proof of Theo-

rem 9 follows from the following lemma:

Lemma 4.1. Let T : {0, 1}2n → {0, 1}n
′
be some linear code. Suppose there exists a DNF ◦ T

circuit C of size S that computes the function IP2(x, y) on at least a 5
6 + ε fraction of the n-bit

length inputs. Then, for any d degree polynomial P : {0, 1}n → {0, 1}, and for any b ∈ {0, 1},
there exists a non-adaptive AM[2d]-HIP protocol for the language L def

= {x ∈ {0, 1}n | P(x) = b}
with log (S) · Õ

(
d
ε3

)
randomness, communication and query complexities.

Similar to the proof of Theorem 8, since P is a polynomial (over GF(2)), its output can be
viewed as a linear combination of its monomials. Since P is a degree d polynomial, any monomial
is a product between a subset of d input variables, and a Binary coefficient. Therefore, there
exists a function CoefP : [n]d → {0, 1} that depends only on P, such that:

P(x) =
⊕

j1,...,jd∈[n]

xj1 · xj2 · · · · xjd · CoefP(j1, . . . , jd). (9)

The goal of the protocol is to convert a claim about the right-hand side of Eq. (9), to claims
that don’t depend on the inputs (i.e. depend only on T and P), and thus can be verified without
additional communication or queries. We do so, by showing a d-round AM-HIP protocol that

31

gets a claim on P(x), and by using queries to T(x), converts it to multiple claims that don’t
depend on the input. In particular, the t-th claim will be of the form⊕

j1,...,jd∈[n]

(
β̂t(i1, . . . , id) · CoefP(j1, . . . , jd)

)
= b′t,

where β̂t is a function that depends only on T.
The protocol consists of d rounds, and is loosely inspired by the sumcheck protocol [LFKN92].

At each round, we use the AM[2]-HIP protocol for LIP from Lemma 3.2, to eliminate a single
input variable. That is, after the i-th round, we are left with claims the depend on only d − i
input variables, where the t-th claim is of the form⊕

j1,...,jd∈[n]

β̂
(i)
t (j1, . . . , ji) · xji+1 · · ·xjd · CoefP(j1, . . . , jd) = b

(i)
t

In addition, we will also use the linearity of T to merge claims at the beginning of each round.
It will be important in order to keep the same number of claims at the end of each round, and
in particular, avoiding an exponential blowup.

Proof. Denote d′ = max {100, d}. Let (P ′, V ′) be the AM[2]-HIP protocol for LIP that is obtained
from Lemma 3.2 after reducing the soundness error and the completeness error to d′−2 using
O(log d) parallel repetitions (see [Gol98, Appendix C.1]). Note that by Lemma 3.2, (P ′, V ′)

has r0
def
= O (log n · log d) randomness complexity, c0

def
= log (S) · log (d) · Õ

(
1
ε3

)
communication

complexity and q0
def
= log (S) · log (d) · Õ

(
1
ε3

)
query complexity.

Also, denote `merge
def
= d2 · log d′e, and ` def= q0 · `merge. Throughout the protocol, ` will be

the maximal number of claims at the end and at the beginning of each round, and `merge will be
the number of claims after we merge claims. The i-th round of the protocol proceeds as follows:

Round i: The round starts with at most ` claims of the form ⊕
j1,...,jd∈[n]

(
β̂
(i−1)
t (j1, . . . , ji−1) · xji · xji+1 · · ·xjd · CoefP(j1, . . . , jd)

)
= b

(i−1)
t

t∈[`]

,

where β̂(i−1)t doesn’t depend on the input, for any t ∈ [`]. The round proceeds in three steps:

1. Reducing the number of claims: First, we reduce the number of claims from ` to
`merge. The verifier chooses at random `merge subsets

{
St ⊆ [`]

}
t∈[`merge]

, and for each

St, takes the XOR of the claims that corresponds to the indices of St. Thus, for each
t ∈ [`merge], the verifier gets the following new claim

⊕
k∈St

 ⊕
j1,...,jd∈[n]

(
β̂
(i−1)
k (j1, . . . , ji−1) · xji · xji+1 · · ·xjd · CoefP(j1, . . . , jd)

) =
⊕
k∈St

b
(i−1)
t ,

or equivalently,

⊕
j1,...,jd∈[n]

⊕
k∈St

(
β̂
(i−1)
k (j1, . . . , ji−1)

)
· xji · xji+1 · · ·xjd · CoefP(j1, . . . , jd)

 =
⊕
k∈St

b
(i−1)
t .

32

By defining γ̂(i−1)t (j1, . . . , ji−1)
def
=

⊕
k∈St

(
β̂
(i−1)
k (j1, . . . , ji−1)

)
, and b′t

(i−1) =
⊕
k∈St

b
(i−1)
k , we

get the following `merge claims:

 ⊕
j1,...,jd∈[n]

(
γ̂
(i−1)
t (j1, . . . , ji−1) · xji · xji+1 · · ·xjd · CoefP(j1, . . . , jd)

)
= b
′(i−1)
t

t∈[`merge]

,

where γ̂(i−1)t doesn’t depend on the input variables. Note, that if we start with true claims
then all the new `merge claims that are obtained by selecting the random subsets are true
with probability 1, and if we start with at least one false claim, then the probability that
all the new claims are true is 2−`merge . Thus, we reduce the number of claims to `merge by
adding 2−`merge error. Our next step is to convert these claims to claims that depend on
only d− i input variables.

2. Rephrasing claims as an inner product: By changing the order in the summation,
we can convert our claims into the following form:

⊕
ji∈[n]

xji ·
(⊕
j1,...,ji−1∈[n],
ji+1,...,jd∈[n]

(
γ̂
(i−1)
t (j1, . . . , ji−1) · xji+1 · · ·xjd · CoefP(j1, . . . , jd)

))
= b
′(i−1)
t

t∈[`merge]

.

Observe, that the left-hand side of each claim is actually an inner product over GF(2).
Therefore, for any t ∈ [`merge], the t-th claim can be rephrased as the following claim:〈
x,

⊕
j1,...,ji−1∈[n],
ji+1,...,jd∈[n]

(
γ̂
(i−1)
t (j1, . . . , ji−1) · xji+1 · · ·xjd · CoefP(j1, . . . , ji−1, ∗, ji+1, . . . , jd)

)〉
= b
′(i−1)
t

3. Eliminating one variable using (P′,V′): Next, the parties run (P ′, V ′) on each of the
`merge claims in parallel. However, rather than making the queries, the verifier asks the
prover for their values. Since the prover may be malicious, each query becomes a claim
that should be verified. For each t ∈ [`merge], if V ′ rejects in the t-th interaction, then
the verifier rejects. Otherwise, the verifier gets q0 claims on the encoding of x by T, and
additional q0 claims on the encoding of truth table of the function⊕

j1,...,ji−1∈[n],
ji+1,...,jd∈[n]

(
γ̂
(i−1)
t (j1, . . . , ji−1) · xji+1 · · ·xjd · CoefP(j1, . . . , ji−1, ∗, ji, . . . , jd)

)
.

Note that we have in total `′ = q0 · `merge claims of each type. The claims on the encoding
of x can be verified at the end of the protocol by just querying T(x). For the second type of
the claims, observe that since T is a linear code, the encoding of T is a linear combination
over GF(2). Thus, there are Boolean coefficients

{
γt,z(ji)

}
t∈[`merge],z∈[q0],ji∈[n]

that depend only on

T, such that these q0 · ` claims can be rewritten as:

33

{⊕
ji∈[n]

γt,z(ji)·
⊕

j1,...,ji−1∈[n],
ji+1,...,jd∈[n]

(
γ̂
(i−1)
t (j1, . . . , ji−1) · xji+1 · · ·xjd · CoefP(j1, . . . , jd)

)
= b′′t,z

}
t∈[`merge]
z∈[q0]

.

By changing the order of the summation, we get:

{ ⊕
j1,...jd∈[n]

(
γt,z(ji) · γ̂(i−1)t (j1, . . . , ji−1) · xji+1 · · ·xjd · CoefP(j1, . . . , jd)

)
= b′′t,z

}
t∈[`merge]
z∈[q0]

.

Finally, by defining β̂
(i)
z,t (j1, . . . , ji) = γt,z(ji) · γ̂(i−1)t (j1, . . . , ji−1) we get the following

` = q0 · `merge claims:{ ⊕
j1,...jd∈[n]

(
β̂
(i)
t,z (j1, . . . , ji) · xji+1 · · ·xjd · CoefP(j1, . . . , jd)

)
= b′t,z

}
t∈[`merge]
z∈[q0]

,

where the β̂(i)t,z (j1, . . . , ji) don’t depend on the input variables. Note that we converted at
most ` = q0 · `merge claims that depend on d− (i− 1) input variables, to the same number
of claims, but that depend on only d− i input variables, as required.

At the end of the d-th round: After the final (d-th) round, the verifier is left with two
types of claims. Claims on T(x) from the previous d-round, which can can be verified by simply
making queries to T(x), and the following claims:{ ⊕

j1,...jd∈[n]

β̂
(d)
t (j1, . . . , jd) · CoefP(j1, . . . , jd) = b

(d)
t

}
t∈[`]

.

Each of these claims doesn’t depend on the input, and in particular, depends only on T and the
structure of P. Therefore, the verifier can verify these claims easily on its own, without making
any other queries or communication with the prover.

Completeness. Recall that d′ = max {100, d}, `merge = d2 · log d′e, ` = q0 · `merge and the
completeness and the soundness errors of (P ′, V ′) are at most d′−2. Since the random subsets
technique for reducing the number of claims doesn’t convert true claims into false claims, then,
for each round that starts with true claims, the probability that at the end of the protocol we
get at least one false claim is bounded by the completeness error of (P ′, V ′) multiplied by the
number of claims it verifies in the round. Thus, a round converts true claims into false claims
with probability of at most d′−2 · `merge. By the union bound over the d rounds, we get that the
completeness error is at most

d · d′−2 · `merge =
d

d′2
· d2 · log d′e ≤ d2 · log d′e

d′
<

1

3
.

Soundness. Suppose we start with a false claim. By the construction of the protocol, in order
to make the verifier accept, there should be at least one round which starts with at least one
false claim, but ends with only true claims. Since the soundness error of (P ′, V ′) is at most d′−2,
and the random subsets technique for reducing the number of claims, introduces 2−`merge error,

34

then for each round that starts with at least one false claim, the probability there exists a prover
strategy such that at the end of the round we get only true claims is at most d′−2 · `+ 2−`merge .
Thus, by the union bound over the d rounds, we get that the soundness error is at most

d · (d′−2 · `merge + 2−`merge) =
d

d′−2
· d2 log d′e+ d · 2−d2 log d′e ≤ d2 · log d′e

d′
+

1

d′
<

1

3
.

Complexity. At the beginning of each of the d rounds, the verifier sends the description of
`merge subsets of [`], and thus needs to toss and send ` · `merge = q0 · `2merge random coins. In
addition, at each round (P ′, V ′) is run `merge times, and thus requires additional `merge · r0
random coins. To sum up, the total randomness complexity of the entire protocol is

d · (q0 · `2merge + r0 · `merge) = log (S) · Õ
(
d

ε3

)
.

In addition, by the construction of the protocol, each round produces q0 · ` queries to T(x),
and thus the query complexity is

d · q0 · ` = log (S) · Õ
(
d

ε3

)
..

Lastly, regarding the proof length. At each round the protocol (P ′, V ′) is run ` times, and
for each run the prover sends also q Boolean claims. Therefore, the prover sends at each round
c0 + q0 · ` bits, and thus the total proof length is

d · (c0 + q0 · `) = log (S) · Õ
(
d

ε3

)
.

�

4.3 Protocols for AC0(⊕)

In their celebrated works, Razborov and Smolensky [Raz87, Smo87] showed a general technique
to approximate AC0(⊕) circuit, by a distribution of randomized low degree polynomials, in the
sense that for any input, with high probability, a random polynomial agrees with the circuit on
the output.

Lemma 4.2. (Circuit Approximation by polynomials). For any parameter ε > 0, there exists
a probabilistic algorithm that takes as input an AC0(⊕) Boolean circuit C : {0, 1}2n → {0, 1} of
size S and depth d. It uses O

(
log
(
1
ε

)
· log2(S)

)
random bits, and outputs a polynomial P of

total degree O
((

log
(
1
ε

)
+ logS

)d), such that for every x, y ∈ {0, 1}n :

Pr
[
P(x, y) = C(x, y)

]
≥ 1− ε.

For sake of completeness, we give the proof of Lemma 4.2 in Appendix B.
Thus, the result of Theorem 8 can be extended also for every problem that is decidable by

an AC0(⊕) circuit.

Corollary 10. Fix an integer n, and let ε ∈ (0, 1/6]. Suppose that for any k there exists a linear
transformation T : {0, 1}2k → {0, 1}`(k) and a DNF ◦ T circuit C of size S0(2k) that computes
the function IP2(x, y) on at least a 5

6 + ε of the k-bit length inputs. Then, there exists a constant
c such that for any function f : {0, 1}2n → {0, 1} that is computed by an AC0(⊕) circuit of size
S and depth d ≥ 2, there exists an AM[2]-CC protocol for f with log

(
S0(2

(c·logn·logd S))
)
· Õ
(
1
ε3

)
communication complexity.

35

Remark 4.3. We note that we could have use Lemma 4.2 also in order to get a streaming
protocol for AC0(⊕) circuits. However, this yields a protocol with too many rounds, which can
also be derived by the GKR protocol [GKR08].

5 The
⊕

Triangle Problem

In the Triangle-Count problem, a streaming algorithm is required to count (or sometimes just
approximate) the number of triangles (i.e. cliques with three vertices) in an undirected (simple)
graph G = (V,E). We focus on a setting where the stream consists of the edges in the graph,
where each edge appears in the stream exactly once. We consider a variant of the Triangle-Count
problem, where the goal is to compute the parity of the number of triangles.

Definition 5.1. Let G = (V,E) be an undirected simple graph such that V ⊆ [n] and E ⊆
[n] × [n]. In the

⊕
Triangle problem, the edges in E are given as a stream in some arbitrary

order, where each edge appears in the stream exactly once. The goal is to output the parity of
the number of triangles (i.e. cliques of size 3) in G.

We show that the existence of a sufficiently small DNF ◦ T circuit that approximates the
inner product function, yields an efficient AM[2]-DS protocol for

⊕
Triangle.

Theorem 11. Fix an integer n and a parameter ε ∈ (0, 1/6]. Let T : {0, 1}n
3

→ {0, 1}n
′
be

a linear code. Suppose there exists a DNF ◦ T circuit C of size S that computes the function
IP2(x, y) on at least a 5

6 + ε fraction of the n3-bit length inputs. Then, there exists an AM[2]-DS
protocol for

⊕
Triangle with O(log n) randomness, and log3 (S) · Õ

(
1
ε3

)
verifier space complexity

and proof length.

Proof. Consider the following degree 3 polynomial P⊕Tri : {0, 1}n2 → {0, 1}:

P⊕Tri
(
Ie1 , . . . , Ien2

)
=

⊕
v<u<w∈[n]

I(v,u) · I(u,w) · I(w,v), (10)

where Iei is an indicator variable which represents whether the edge ei appears in G. Observe
that by the definition of a clique, any distinct vertices v < u < w ∈ [n] induce a triangle in G if
and only if I(v,u) ·I(u,w) ·I(w,v) = 1. Thus, P⊕Tri(Ie1 , . . . , Ien2) is equal to the parity of the number
of triangles in G. Since P⊕Tri is a 3 degree polynomial, then by Lemma 4.1, there exists an
AM[6]-HIP protocol for computing P⊕Tri with log (S) · Õ

(
1
ε3

)
proof length and communication

complexity. However, this HIP has 3 rounds, while we seek to have a one-round protocol.
To obtain a one-round protocol, we first rely on the classical round collapsing result of Babai

and Moran [BM88] for public-coin interactive proofs. We remark that their result also holds
for public coin holographic interactive proofs, as their transformation preserves the holographic
property of the proof-system (see also [RVW13, Lemma 4.6]).

Claim 5.2. (Round collapsing, see also [RVW13, Lemma 4.6]). Let k > 1 be a constant.
Suppose there exists an AM[2k]-HIP protocol for a language L ⊆ {0, 1}n with proof length `, and
query complexity q. Then, there exists an AM[2]-HIP protocol for L with proof length ` · t and
query complexity q · t, where t = kO(k) · `k−1.

Therefore, by applying Claim 5.2, we derive an AM[2]-HIP protocol for
⊕

Triangle with
log3 (S) · Õ

(
1
ε3

)
query complexity and proof length. By applying Proposition 3.6, we reduce the

randomness complexity to O(log n).
At this point we would like to apply Fact 4 to obtain a streaming protocol. A major issue

that raises is that in Fact 4, the verifier needs to get access to all the indicators, whereas in

36

⊕
Triangle the verifier only gets the edges that appear in G (or equivalently, only the indicators

that are equal to 1). However, also recall that in Fact 4 the verifier actually uses the input only
to compute linear combinations, and thus it can ignore input bits that are equal to 0. Therefore,
the protocol that is obtained from Fact 4 can be easily adapted to support also the case that
only the variables with the value 1 are given, as in

⊕
Triangle. �

Remark 5.3. The reason we start the proof of Theorem 11 with the HIP protocol for inner
product claims, rather than starting directly with the streaming protocol of Theorem 9, is because
we seek a one-round protocol. By starting with an HIP protocol, we can apply the round collapse
theorem of [BM88] to reduce the number of rounds, and just then transform the resulting protocol
into a streaming one.

References

[ABG+14] Adi Akavia, Andrej Bogdanov, Siyao Guo, Akshay Kamath, and Alon Rosen. Can-
didate weak pseudorandom functions in AC0 ◦mod2. In Moni Naor, editor, Inno-
vations in Theoretical Computer Science, ITCS’14, Princeton, NJ, USA, January
12-14, 2014, pages 251–260. ACM, 2014.

[Ajt83] Miklós Ajtai.
∑1

1-formulae on finite structures. Ann. Pure Appl. Log., 24(1):1–48,
1983.

[AMS99] Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating
the frequency moments. J. Comput. Syst. Sci., 58(1):137–147, 1999.

[AW09] Scott Aaronson and Avi Wigderson. Algebrization: A new barrier in complexity
theory. ACM Trans. Comput. Theory, 1(1):2:1–2:54, 2009.

[BC17] Suman K. Bera and Amit Chakrabarti. Towards tighter space bounds for counting
triangles and other substructures in graph streams. In Heribert Vollmer and Brigitte
Vallée, editors, 34th Symposium on Theoretical Aspects of Computer Science, STACS
2017, March 8-11, 2017, Hannover, Germany, volume 66 of LIPIcs, pages 11:1–
11:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017.

[BFL+06] Luciana S. Buriol, Gereon Frahling, Stefano Leonardi, Alberto Marchetti-
Spaccamela, and Christian Sohler. Counting triangles in data streams. In Stijn
Vansummeren, editor, Proceedings of the Twenty-Fifth ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems, June 26-28, 2006, Chicago,
Illinois, USA, pages 253–262. ACM, 2006.

[BFLS91] László Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy. Checking Com-
putations in Polylogarithmic Time. In Cris Koutsougeras and Jeffrey Scott Vitter,
editors, Proceedings of the 23rd Annual ACM Symposium on Theory of Computing,
May 5-8, 1991, New Orleans, Louisiana, USA, pages 21–31. ACM, 1991.

[BFS86] László Babai, Peter Frankl, and Janos Simon. Complexity classes in communication
complexity theory (preliminary version). In 27th Annual Symposium on Foundations
of Computer Science, Toronto, Canada, 27-29 October 1986, pages 337–347. IEEE
Computer Society, 1986.

37

[BKS02] Ziv Bar-Yossef, Ravi Kumar, and D. Sivakumar. Reductions in streaming algorithms,
with an application to counting triangles in graphs. In David Eppstein, editor, Pro-
ceedings of the Thirteenth Annual ACM-SIAM Symposium on Discrete Algorithms,
January 6-8, 2002, San Francisco, CA, USA, pages 623–632. ACM/SIAM, 2002.

[BKT20] Mark Bun, Robin Kothari, and Justin Thaler. Quantum algorithms and approxi-
mating polynomials for composed functions with shared inputs, 2020.

[BM88] László Babai and Shlomo Moran. Arthur-Merlin games: A randomized proof system,
and a hierarchy of complexity classes. J. Comput. Syst. Sci., 36(2):254–276, 1988.

[CCGT14] Amit Chakrabarti, Graham Cormode, Navin Goyal, and Justin Thaler. Annotations
for sparse data streams. In Chandra Chekuri, editor, Proceedings of the Twenty-Fifth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, Portland, Ore-
gon, USA, January 5-7, 2014, pages 687–706. SIAM, 2014.

[CCM+13] Amit Chakrabarti, Graham Cormode, Andrew McGregor, Justin Thaler, and Suresh
Venkatasubramanian. On interactivity in Arthur-Merlin communication and stream
computation. Electron. Colloquium Comput. Complex., 20:180, 2013.

[CCM+15] Amit Chakrabarti, Graham Cormode, Andrew McGregor, Justin Thaler, and Suresh
Venkatasubramanian. Verifiable Stream Computation and Arthur-Merlin communi-
cation. In David Zuckerman, editor, 30th Conference on Computational Complexity,
CCC 2015, June 17-19, 2015, Portland, Oregon, USA, volume 33 of LIPIcs, pages
217–243. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2015.

[CCMT14] Amit Chakrabarti, Graham Cormode, Andrew McGregor, and Justin Thaler. An-
notations in data streams. ACM Trans. Algorithms, 11(1):7:1–7:30, 2014.

[CGJ+18] Mahdi Cheraghchi, Elena Grigorescu, Brendan Juba, Karl Wimmer, and Ning Xie.
AC0 ◦ mod2 lower bounds for the boolean inner product. J. Comput. Syst. Sci.,
97:45–59, 2018.

[CGT20] Amit Chakrabarti, Prantar Ghosh, and Justin Thaler. Streaming verification for
graph problems: Optimal tradeoffs and nonlinear sketches. In Jaroslaw Byrka and
Raghu Meka, editors, Approximation, Randomization, and Combinatorial Optimiza-
tion. Algorithms and Techniques, APPROX/RANDOM 2020, August 17-19, 2020,
Virtual Conference, volume 176 of LIPIcs, pages 22:1–22:23. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2020.

[CLW20] Lijie Chen, Xin Lyu, and R. Ryan Williams. Almost-everywhere circuit lower bounds
from non-trivial derandomization. In 61st IEEE Annual Symposium on Foundations
of Computer Science, FOCS 2020, Durham, NC, USA, November 16-19, 2020, pages
1–12. IEEE, 2020.

[CR20] Lijie Chen and Hanlin Ren. Strong average-case lower bounds from non-trivial de-
randomization. In Konstantin Makarychev, Yury Makarychev, Madhur Tulsiani,
Gautam Kamath, and Julia Chuzhoy, editors, Proccedings of the 52nd Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2020, Chicago, IL, USA, June
22-26, 2020, pages 1327–1334. ACM, 2020.

[CS16] Gil Cohen and Igor Shinkar. The complexity of DNF of parities. In Madhu Su-
dan, editor, Proceedings of the 2016 ACM Conference on Innovations in Theoretical

38

Computer Science, Cambridge, MA, USA, January 14-16, 2016, pages 47–58. ACM,
2016.

[CTY11] Graham Cormode, Justin Thaler, and Ke Yi. Verifying computations with streaming
interactive proofs. Proc. VLDB Endow., 5(1):25–36, 2011.

[CW19] Lijie Chen and R. Ryan Williams. Stronger connections between circuit analysis and
circuit lower bounds, via PCPs of proximity. In Amir Shpilka, editor, 34th Compu-
tational Complexity Conference, CCC 2019, July 18-20, 2019, New Brunswick, NJ,
USA, volume 137 of LIPIcs, pages 19:1–19:43. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2019.

[FIKK20] Yuval Filmus, Yuval Ishai, Avi Kaplan, and Guy Kindler. Limits of Preprocess-
ing. In Shubhangi Saraf, editor, 35th Computational Complexity Conference, CCC
2020, July 28-31, 2020, Saarbrücken, Germany (Virtual Conference), volume 169 of
LIPIcs, pages 17:1–17:22. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

[FSS81] Merrick L. Furst, James B. Saxe, and Michael Sipser. Parity, circuits, and the
polynomial-time hierarchy. In 22nd Annual Symposium on Foundations of Com-
puter Science, Nashville, Tennessee, USA, 28-30 October 1981, pages 260–270. IEEE
Computer Society, 1981.

[GKR08] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating compu-
tation: interactive proofs for muggles. In Cynthia Dwork, editor, Proceedings of the
40th Annual ACM Symposium on Theory of Computing, Victoria, British Columbia,
Canada, May 17-20, 2008, pages 113–122. ACM, 2008.

[GKZ08] Parikshit Gopalan, Adam R. Klivans, and David Zuckerman. List-decoding Reed-
Muller codes over small fields. In Cynthia Dwork, editor, Proceedings of the 40th
Annual ACM Symposium on Theory of Computing, Victoria, British Columbia,
Canada, May 17-20, 2008, pages 265–274. ACM, 2008.

[Goe15] Michel Goemans. Chernoff bounds, and some applications. http://math.mit.edu/
~goemans/18310S15/chernoff-notes.pdf, 2015.

[Gol98] Oded Goldreich. Modern Cryptography, Probabilistic Proofs and Pseudorandomness,
volume 17 of Algorithms and Combinatorics. Springer, 1998.

[GPW16] Mika Göös, Toniann Pitassi, and Thomas Watson. The landscape of communica-
tion complexity classes. In Ioannis Chatzigiannakis, Michael Mitzenmacher, Yuval
Rabani, and Davide Sangiorgi, editors, 43rd International Colloquium on Automata,
Languages, and Programming, ICALP 2016, July 11-15, 2016, Rome, Italy, vol-
ume 55 of LIPIcs, pages 86:1–86:15. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik, 2016.

[GR13] Tom Gur and Ran Raz. Arthur-Merlin streaming complexity. In Fedor V. Fomin,
Rusins Freivalds, Marta Z. Kwiatkowska, and David Peleg, editors, Automata, Lan-
guages, and Programming - 40th International Colloquium, ICALP 2013, Riga,
Latvia, July 8-12, 2013, Proceedings, Part I, volume 7965 of Lecture Notes in Com-
puter Science, pages 528–539. Springer, 2013.

[GR17] Tom Gur and Ron D. Rothblum. A hierarchy theorem for interactive proofs of prox-
imity. In Christos H. Papadimitriou, editor, 8th Innovations in Theoretical Computer

39

http://math.mit.edu/~goemans/18310S15/chernoff-notes.pdf
http://math.mit.edu/~goemans/18310S15/chernoff-notes.pdf

Science Conference, ITCS 2017, January 9-11, 2017, Berkeley, CA, USA, volume 67
of LIPIcs, pages 39:1–39:43. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2017.

[GS10] Dmitry Gavinsky and Alexander A. Sherstov. A separation of NP and conp in
multiparty communication complexity. Theory Comput., 6(1):227–245, 2010.

[Hås86] Johan Håstad. Almost optimal lower bounds for small depth circuits. In Juris
Hartmanis, editor, Proceedings of the 18th Annual ACM Symposium on Theory of
Computing, May 28-30, 1986, Berkeley, California, USA, pages 6–20. ACM, 1986.

[Jac97] Jeffrey C. Jackson. An efficient membership-query algorithm for learning DNF with
respect to the uniform distribution. J. Comput. Syst. Sci., 55(3):414–440, 1997.

[JG05] Hossein Jowhari and Mohammad Ghodsi. New streaming algorithms for counting
triangles in graphs. In Lusheng Wang, editor, Computing and Combinatorics, 11th
Annual International Conference, COCOON 2005, Kunming, China, August 16-29,
2005, Proceedings, volume 3595 of Lecture Notes in Computer Science, pages 710–
716. Springer, 2005.

[JSP13] Madhav Jha, C. Seshadhri, and Ali Pinar. A space efficient streaming algorithm
for triangle counting using the birthday paradox. In Inderjit S. Dhillon, Yehuda
Koren, Rayid Ghani, Ted E. Senator, Paul Bradley, Rajesh Parekh, Jingrui He,
Robert L. Grossman, and Ramasamy Uthurusamy, editors, The 19th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD 2013,
Chicago, IL, USA, August 11-14, 2013, pages 589–597. ACM, 2013.

[Juk06] Stasys Jukna. On graph complexity. Comb. Probab. Comput., 15(6):855–876, 2006.

[Kla03] Hartmut Klauck. Rectangle size bounds and threshold covers in communication com-
plexity. In 18th Annual IEEE Conference on Computational Complexity (Complexity
2003), 7-10 July 2003, Aarhus, Denmark, pages 118–134. IEEE Computer Society,
2003.

[Kla11] Hartmut Klauck. On arthur merlin games in communication complexity. In Pro-
ceedings of the 26th Annual IEEE Conference on Computational Complexity, CCC
2011, San Jose, California, USA, June 8-10, 2011, pages 189–199. IEEE Computer
Society, 2011.

[KMPT12] Mihail N. Kolountzakis, Gary L. Miller, Richard Peng, and Charalampos E.
Tsourakakis. Efficient triangle counting in large graphs via degree-based vertex par-
titioning. Internet Math., 8(1-2):161–185, 2012.

[KMPV19] John Kallaugher, Andrew McGregor, Eric Price, and Sofya Vorotnikova. The com-
plexity of counting cycles in the adjacency list streaming model. In Dan Suciu, Sebas-
tian Skritek, and Christoph Koch, editors, Proceedings of the 38th ACM SIGMOD-
SIGACT-SIGAI Symposium on Principles of Database Systems, PODS 2019, Ams-
terdam, The Netherlands, June 30 - July 5, 2019, pages 119–133. ACM, 2019.

[KMSS12] Daniel M. Kane, Kurt Mehlhorn, Thomas Sauerwald, and He Sun. Counting ar-
bitrary subgraphs in data streams. In Artur Czumaj, Kurt Mehlhorn, Andrew M.
Pitts, and Roger Wattenhofer, editors, Automata, Languages, and Programming -

40

39th International Colloquium, ICALP 2012, Warwick, UK, July 9-13, 2012, Pro-
ceedings, Part II, volume 7392 of Lecture Notes in Computer Science, pages 598–609.
Springer, 2012.

[Lan93] Serge Lang. Algebra (3. ed.). Addison-Wesley, 1993.

[LFKN92] Carsten Lund, Lance Fortnow, Howard J. Karloff, and Noam Nisan. Algebraic meth-
ods for interactive proof systems. J. ACM, 39(4):859–868, 1992.

[MVV16] Andrew McGregor, Sofya Vorotnikova, and Hoa T. Vu. Better algorithms for count-
ing triangles in data streams. In Tova Milo andWang-Chiew Tan, editors, Proceedings
of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database
Systems, PODS 2016, San Francisco, CA, USA, June 26 - July 01, 2016, pages
401–411. ACM, 2016.

[MW20] Cody D. Murray and R. Ryan Williams. Circuit lower bounds for nondeterministic
quasi-polytime from a new easy witness lemma. SIAM J. Comput., 49(5), 2020.

[New91] Ilan Newman. Private vs. common random bits in communication complexity. Inf.
Process. Lett., 39(2):67–71, 1991.

[Raz87] Alexander A Razborov. Lower bounds for the size of circuits of bounded depth with
basis {∧,⊕}. Math. notes of the Academy of Sciences of the USSR, 41(4):333–338,
1987.

[Rot12] Guy N. Rothblum. How to compute under AC0 leakage without secure hardware. In
Reihaneh Safavi-Naini and Ran Canetti, editors, Advances in Cryptology - CRYPTO
2012 - 32nd Annual Cryptology Conference, Santa Barbara, CA, USA, August 19-
23, 2012. Proceedings, volume 7417 of Lecture Notes in Computer Science, pages
552–569. Springer, 2012.

[RVW13] Guy N. Rothblum, Salil P. Vadhan, and Avi Wigderson. Interactive proofs of prox-
imity: delegating computation in sublinear time. In Dan Boneh, Tim Roughgarden,
and Joan Feigenbaum, editors, Symposium on Theory of Computing Conference,
STOC’13, Palo Alto, CA, USA, June 1-4, 2013, pages 793–802. ACM, 2013.

[Smo87] Roman Smolensky. Algebraic methods in the theory of lower bounds for boolean
circuit complexity. In Alfred V. Aho, editor, Proceedings of the 19th Annual ACM
Symposium on Theory of Computing, 1987, New York, New York, USA, pages 77–82.
ACM, 1987.

[SU05] Ronen Shaltiel and Christopher Umans. Simple extractors for all min-entropies and
a new pseudorandom generator. J. ACM, 52(2):172–216, 2005.

[SU06] Ronen Shaltiel and Christopher Umans. Pseudorandomness for approximate count-
ing and sampling. Comput. Complex., 15(4):298–341, 2006.

[SV12] Rocco A. Servedio and Emanuele Viola. On a special case of rigidity. Electron.
Colloquium Comput. Complex., 19:144, 2012.

[Tha16] Justin Thaler. Semi-streaming algorithms for annotated graph streams. In Ioan-
nis Chatzigiannakis, Michael Mitzenmacher, Yuval Rabani, and Davide Sangiorgi,
editors, 43rd International Colloquium on Automata, Languages, and Programming,
ICALP 2016, July 11-15, 2016, Rome, Italy, volume 55 of LIPIcs, pages 59:1–59:14.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016.

41

[VW20] Nikhil Vyas and R. Ryan Williams. Lower bounds against sparse symmetric functions
of ACC circuits: Expanding the reach of #SAT algorithms. In Christophe Paul
and Markus Bläser, editors, 37th International Symposium on Theoretical Aspects of
Computer Science, STACS 2020, March 10-13, 2020, Montpellier, France, volume
154 of LIPIcs, pages 59:1–59:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2020.

[Wil14] Ryan Williams. Nonuniform ACC circuit lower bounds. J. ACM, 61(1):2:1–2:32,
2014.

[Yao79] Andrew Chi-Chih Yao. Some complexity questions related to distributive computing
(preliminary report). In Michael J. Fischer, Richard A. DeMillo, Nancy A. Lynch,
Walter A. Burkhard, and Alfred V. Aho, editors, Proceedings of the 11h Annual ACM
Symposium on Theory of Computing, April 30 - May 2, 1979, Atlanta, Georgia, USA,
pages 209–213. ACM, 1979.

42

A Missing Proofs

A.1 Homogeneous Multilinear Mapping (Proof of Claim 2.7)

We give here the proof of Claim 2.7. Recall that our goal is, for a homogeneous k-linear mapping
f : V1 × · · · × Vk →W and x(1) ∈ V1, . . . , x(k) ∈ Vk, show that for any r(1) ∈ V1, . . . , r(k) ∈ Vk it
holds that:

f(x(1), . . . , x(k)) =
∑

s1,...,sk∈{0,1}

f
(

(−1)1−s1r(1) + x(1)s1, . . . , (−1)1−skr(k) + x(k)sk

)
.

Proof. (By induction on k)
For the base case (k = 1), the claim follows immediately from the definition of linear mapping:

f(x(1)) = f(r(1) + x(1)) + f(−r(1)).

For the inductive step, note that by the definition of homogeneous k-linear:

f(x(1), x(2), . . . , x(k)) = f(r(1) + x(1), x(2), x(3), . . . , x(k)) + f(−r(1), x(2), x(3), . . . , x(k))

By fixing the first variable, each of the two functions on the right-hand side is a homogeneous
k − 1 linear mapping, and thus by the inductive hypothesis we get that:

f(r(1) + x(1), x(2), . . . , x(k)) =∑
s2,...,sk∈{0,1}

f
(
r(1) + x(1), (−1)1−s2r(2) + x(2)s2, . . . , (−1)1−skr(k) + x(k)sk

)
and,

f(−r(1), x(2), . . . , x(k)) =∑
s2,...,sk∈{0,1}

f
(
− r(1), (−1)1−s2r(2) + x(2)s2, . . . , (−1)1−skr(k) + x(k)sk

)
.

As a result, by taking the addition of these two, we get that

f(x(1), . . . , x(k)) =
∑

s1,...,sk∈{0,1}

f
(

(−1)1−s1r(1) + x(1)s1, . . . , (−1)1−skr(k) + x(k)sk

)
.

�

A.2 Relationship Between HIP, DS and CC (Proofs of Facts 4 and 5)

We give here the proof of Facts 4 and 5.

Fact 4. (From AM[k]-HIP to AM[k]-DS) Fix an input length n. Let F be some finite field, and let
C : Fn → Fn′ be a linear code over F. Suppose there exists an AM[k]-HIP protocol with respect to
the code C for a language L ⊆ Fn, using q queries, ρ random bits and proof length `. Then, there
exists an AM[k]-DS protocol for L with ` + O (q · log n) proof length, ρ randomness complexity,
and q · dlog |F|e verifier space complexity, for any order of the input in the stream. Moreover, if
the verifier is non-adaptive then the proof length is reduced to `.

43

Proof. Denote by (P, V) the AM[k]-HIP protocol. Note that when P sends its last message,
it knows to which locations V will make its queries. Thus, a similar AM[k]-HIP protocol can
be established where the prover adds to its last message the locations of the queries that the
verifier will make, and the verifier first makes the queries to these locations, store their values in
its memory, and only then simulates the computation of V . For each query that V makes, the
verifier checks the value that has already been computed, or rejects if V tries to make a query to
a location that didn’t have been specified before by the prover. Note that the new protocol has
the same completeness and soundness errors as the completeness and soundness errors of (P, V).
Also, note the randomness complexity the query complexity didn’t change as well. The only
overhead is on the proof length, which consists of the original proof plus q indices of locations
in the encoding of the input, and thus is increased to ` + O (q · log n). Let us denote this new
protocol by (P, V ′). We will show that (P, V ′) can be converted into an AM[k]-DS protocol.

Let Val(x) be the queries values that were computed by V ′. We define the value of tuple
(r, π,Val(x)) to be the unique output of V ′, when it gets an input x, uses a sequence of random
coins r, and receives a proof π. We will show that for every r and π, there is an OBDD with
|F|q width, such that for every input x, it outputs the value of (r, π,Val(x)). Observe that by
doing so, we will finish the proof of Fact 4.

Let r be a sequence of coins, and π be a proof. Consider the following OBDD fr,π:

• Layers: The OBDD consists of n layers and |F|q leaves. Each leaf is associated with a
single possible distinct value of {Val(x) | x ∈ {0, 1}n}. Note, that since there are q queries,
then there are |F|q distinct values for Val(x). Since V ′ makes queries to a linear code, each
query is a linear combination of the input stream. Thus, the queries can be computed by
maintaining q accumulator variables, each takes |F| values. Or equivalently, |F|q states for
each layer. At the i-th layer, the OBDD reads the i-th token in the stream and updates
the state of the accumulator variables by virtually adding its value to the variables that
the token form their linear combination. Note that it can be done by simply moving to
the corresponding state in the (i+ 1)=layer since the locations of the queries are fixed in
the OBDD.

• Leaves: Finally, for any possible value v ∈ Val(x), we define that label of the leaf which
is associated with v, to be the value of (r, π,Val(x)).

The correctness follows from the construction and from the completeness and soundness
errors of (P ′, V ′).

The moreover part of Fact 4 follows from the fact that if the original AM[k]-HIP verifier is
non-adaptive, then the locations of the queries depend only on the transcript of the original
protocol. Hence, P ′ doesn’t need to attach to the original proof also the indices of the queries,
and thus the proof length reduces to `.

�

Fact 5. (From AM[k]-DS to AM[k]-CC). Let f : {0, 1}n × {0, 1}n → {0, 1}, and let Lf =
{(x, y) | f(x, y) = 1}. Suppose there exists an AM[k]-Data Streaming protocol for Lf , where x
precedes y in the input stream, with proof length `, randomness complexity ρ and verifier space
complexity s. Then, there exists an AM[k]-CC protocol for f with (` + s + ρ) communication
complexity, where Alice gets x and Bob gets y.

Proof. The idea is to have Alice and Bob simulate the streaming protocol. Alice simulates the
first part of the computation of the corresponding OBDD, which depends only on the input x.
Bob continues the simulation from the place Alice has stopped, and he simulates the second
part which depends only on the input y.

44

By the definition of the AM[k]-DS, in each OBDD in the protocol, the nodes in the first n
layers test bits in x, and the nodes in the last n layers test bits in y. Thus, Alice knows the bits
that are tested in the first n layers, and Bob knows the bits that are tested in the rest n layers.
Therefore, Alice and Bob can simulate the AM[k]-DS protocol as follows:

Protocol: Let x, y ∈ {0, 1}n, and let r be a sequence of random coins. Denote by π the proof
of a honest prover in the AM[k]-DS protocol when getting the input (x, y) and tossing the coins
r. Let fr,π be the corresponding OBDD in the AM[k]-DS protocol. The AM[k]-CC protocol
proceeds as follows:

1. Prover: Let S be the state at which fr,π(x, y) reaches at the n + 1 layer. The prover
sends to Alice and Bob the original proof π, and the state S.

2. Alice: Simulates the computation of the OBDD fr,π, from the beginning and until she
reaches to the |n| + 1 layer. If she stopped at the state S, she accepts. Otherwise, she
rejects.

3. Bob: Simulates the computation of the OBDD fr,π, but by starting from the state S at
the |n|+1 layer, and continuing until the end of the computation. Bob accepts if and only
of the OBDD outputs 1.

Completeness, soundness and complexity. Note that the computations of the OBDD in
the first n layers depend only on Alice’s local input, and the computations in the rest n layer
depend only on Bob’s local input. Thus, the protocol is well defined. The completeness and the
soundness of the protocol follows immediately from those of the original streaming protocol.

Regarding the communication complexity, Alice and Bob send ρ random coins to the prover,
which responds with the proof of the original streaming protocol and an OBDD state. From the
proof length and the space complexity of the original streaming protocol, sending the original
proof takes at most l bits, and sending the state takes at most s bits. Therefore, the total
communication complexity is `+ s+ ρ. �

A.3 Reducing Randomness in HIPs (Proof of Proposition 3.6)

In this section we prove Proposition 3.6. The proof is based on the technique due to Newman
[New91], which showed a similar result in the context of (standard) public-coin Communication
Complexity protocols.

Proposition 3.6. (Reducing randomness). Fix an input length n, and let L ⊆ {0, 1}n. For
any AM[2]-HIP protocol for L with proof length c and query complexity q, there exists an AM[2]-
HIP protocol for L with proof length O(c), query complexity O(q), and randomness complexity
O (log n).

Proof. First, using O(1) parallel repetitions, we reduce the completeness and the soundness
errors of the AM[2]-HIP protocol to a sufficiently small constant, say 0.001. Let V be the
resulting protocol, and let D be the multiset from which the verifier tosses uniformly its random
messages. Also, let us denote t def

= O (n), the exact value will be chosen later. For any (multiset)
subset S ⊆ D of size t, we denote by VS the protocol that is obtained by restricting V to choose
messages only from the subset S (uniformly). We will show using the probabilistic method,
that with non-zero probability, there is a subset S of size t, such that the completeness and the
soundness errors of VS are at most 1

3 . Note, that choosing a message at random from S requires
only dlog te = O (log (n)) randomness complexity, and thus it will finish the proof.

45

Let S ⊆ D be a random (multiset) subset of size t. For any i ∈ [t] and x ∈ {0, 1}n, we
define Ii(S, x) to be an indicator that is equal to 1 if and only if VS failed13 to verify whether
x ∈ L, when it selects the i-th message from S. Note that Ii(S, x) is a random variable with
a probability over the choice of S. Also, note that by the definition of VS , for any S, the
completeness and the soundness errors of VS are bounded by the maximal value of 1

t

∑
i∈[t]

Ii(S, x),

where the maximum is taken over all the inputs x ∈ {0, 1}n. By the completeness and the
soundness of V , for any i it holds that E [Ii(S, x)] ≤ 0.001. Therefore, using the Chernoff bound
(see Lemma 2.11), we get that:

Pr
S

[
1

t

∑
i∈S

Ii(S, x) ≥ 1

3

]
≤ e−t.

By union bounding over all the inputs, we get that

Pr
S

[
∃x ∈ {0, 1}n s.t 1

t

∑
i∈S

Ii(S, x) ≥ 1

3

]
≤ 2n−t.

The proof follows by selecting t = O(log n). �

B AC0(⊕) Polynomial Approximation

Lemma 4.2. (Circuit Approximation by polynomials). For any parameter ε > 0, there exists
a probabilistic algorithm that takes as input an AC0(⊕) Boolean circuit C : {0, 1}2n → {0, 1} of
size S and depth d. It uses O

(
log
(
1
ε

)
· log2(S)

)
random bits, and outputs a polynomial P of

total degree O
((

log
(
1
ε

)
+ logS

)d), such that for every x, y ∈ {0, 1}n :

Pr
[
P(x, y) = C(x, y)

]
≥ 1− ε.

Proof. Let C : {0.1}2n → {0, 1} be a depth d Boolean circuit of size S. Denote by w ≤ S the
fan-in of the largest gate in C (i.e. the number of inputs to the gate). Consider the following
algorithm:

1. First, convert C : {0, 1}2n → {0, 1} to an equivalent circuit C1 : {0, 1}2n → {0, 1} such
that C1 has only ∨ and ⊕ gates which all have the same w fan-in, as follows:

(a) Replace any ∧ gate with ∨ and ¬ gates by using De-Morgan’s law.

(b) Replace any ¬b (where b is the gate’s input) by the gate (b⊕ 1).

(c) For any gate (⊕ or ∨) with t inputs, add additional m− t zeros (constants) to fix the
fan-in to w.

Observe that the aforementioned transformations introduce zero error. Moreover, the
depth may increase up to three times. Yet, since we will care only on the number of ∨
gates, we note that any path from an input to an output node still goes through at most
d ∨ gates.

13Since VS is one round protocol, the indicator variable is well defined: for x ∈ L, a failure when choosing the
i-th message from S is defined to be the case where there is not any proof that makes the verifier accept; and
when x 6= L, a failure is defined to be the case where there is at least one proof that makes the verifier accept.

46

2. Next, approximate C1 by a polynomial P : {0, 1}2n → {0, 1}, by converting ⊕ gates and
∨ gates to arithmetic operations over GF(2), as follows:

(a) Replace any
⊕

(b1, . . . , bw) gate by the addition operation (b1 + · · ·+ bw) over GF(2).

(b) For some constant 0 < δ < 1, let E : {0, 1}w → {0, 1}poly(w) be a linear error-
correcting code with 1 − δ relative distance. Let us denote by m the number of ∨
gates in C1 (note that m ≤ S), and define l = O

(
log 1

δ
(1ε) + log 1

δ
(m)

)
to be a fixed

integer such that:
(δ)l ≤ ε

m
.

Then, choose l indices i1, . . . , il in E at random, and replace any
∨

(b1, . . . , bw) gate,
with the following η(b1, . . . , bw) arithmetic operation:

η(b1, . . . , bw) ≡ 1−
l∏

j=1

(
1− E (b1, . . . , bw)ij

)
.

Let us show that P satisfies the requirements of Lemma 4.2:

• Randomness. The only randomized part is the tossing of l indices in the codewords of
E. Thus, the total randomness is:

l · log
(

poly(w)
)

= O

((
log 1

δ

(
1

ε

)
+ log 1

δ
(m)

)
· logw

)
= O

(
log

(
1

ε

)
· log2(S)

)
,

where the last is due to the fact that w,m ≤ S.

• Degree. First, observe that addition operations don’t increase the degree of P. Moreover,
since E is a linear code, it can be computed by a polynomial with total degree 1, and there-
fore the operation η can be computed by a polynomial with total degree l. Furthermore, as
mentioned before, any path from an input to an output node in C1 goes through at most
d ∨ gates, and hence goes through at most d η operations in the corresponding polynomial
P. Therefore, the total degree of the polynomial is ld = O

((
log
(
1
ε

)
+ logS

)d).
• Correctness. Note that C1 is equivalent to C, and that converting⊕ gates by the addition

operations introduces zero error. Hence, the only error can be due to a wrong result in an
η operation. Let ∨1, . . . ,∨m be some topology sorting of ∨ gates14 in C1, and η1, . . . , ηm
be their corresponding η operations in P. For the i-th gate, define Ai to be the event that
∨i and ηi output the same result. Thus,

Pr
[
P(x, y) = C(x, y)

]
≥ Pr

[
A1

]
·Pr
[
A2 | A1

]
·Pr
[
A3 | A1∧A2

]
···Pr

[
Am | A1∧· · ·∧Am−1

]
For an i-th gate, the probability that ηi and ∨i output the same bit, given that the previous
gates in the topology sorting also output the same bit, is at least 1− δl. That is because
if the inputs to the ∨ gate are all zeros (

∨
= 0), then E outputs the zero codeword and

therefore η outputs 0 as required. On the other hand, if there is at least one input bit
that is equal to one (

∨
= 1), then E outputs a codeword with at least 1− δ non-zero bits.

14I.e., for any ∨i and ∨j , if ∨j is a descendant of ∨i then i < j.

47

The probability that η outputs zero (instead of 1) is the probability that the bits in all
the chosen indices are zero, which is equal to δl. As a result we get that:

Pr
[
A1

]
= Pr

[
A2 | A1

]
= · · · = Pr

[
Am | A1 ∧ · · · ∧Am−1

]
≥ 1− (δ)l.

And hence,

Pr
[
P(x, y) = C(x, y)

]
≥
(

1− δl
)m
≥
(

1− ε

m

)m
≥ 1− ε.

�

48
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

