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Abstract

Similar to the role of Markov decision processes in reinforcement learning, Markov Games
(also called Stochastic Games)lay down the foundation for the study of multi-agent reinforcement
learning (MARL) and sequential agent interactions. In this paper, we introduce the solution
concept, approximate Markov Perfect Equilibrium (MPE), to finite-state Stochastic Games
repeated in the infinite horizon, and prove its PPAD-completeness in computational complexity.
Technically, we adopt a function with a polynomially bounded description in the strategy space
to convert the MPE computation to a fixed-point problem, even though the stochastic game
may demand an exponential number of pure strategies, in the number of states, for each agent.
The completeness result follows the reduction of the fixed-point problem to End of the Line.

Past works on the stochastic games are mostly zero-sum MARL algorithms. A PPPAD

algorithm for the general sum stochastic games in the finite horizon can be derived to establish an
approximation algorithm for the general-sum stochastic games. That implies an approximate NE
solution to the infinite-horizon setting. Such a possible extension suffers from three weaknesses:
1. the solution is time-dependent and hence not a perfect equilibrium; 2. the time-dependent
solution suffers a weakness of noncredible threats; 3. the time complexity is not tight (lower
bound PPAD and upper bound PPPAD). Our result beats such a solution in all those three
properties.
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1 Introduction

The seminal work of Shapley [42] defines Stochastic Games (SGs) to study the dynamic non-
cooperative multi-player game, where each player simultaneously and independently chooses an
action at each round, and the next state is determined by a probability distribution depending on
the current state and the chosen joint actions. In two-player zero-sum SGs, Shapley [42] proved the
existence of a stationary strategy profile in which no agent has an incentive to deviate; similarly,
the existence of equilibrium in stationary strategies also holds in multi-player nonzero-sum SGs
[16]. Such a solution concept (now also known as Markov perfect equilibrium (MPE) [29]) models
the dynamic nature of multi-player games. As a refinement of Nash equilibrium [31] on SGs, MPE
prevents non-payoff-relevant variables from affecting strategic behaviors, which allows researchers to
identify the impact of state variables on outcomes.

Recently, Solan and Vieille [45] reconfirm the importance of the existence of a stationary strategy
profile as having several implications: First, it is conceptually straightforward; Second, “past play
affects the players’ future behavior only through the current state". Third, subsequently and most
importantly, “equilibrium behavior does not involve noncredible threats, a property that is stronger
than equilibrium property, and viewed as highly desirable [see Selten [4]]."

Due to its generality, the framework of SGs has enlightened a sequence of studies [32] on a wide
range of real-world applications ranging from advertising and pricing [2], fisheries modelling [44],
football player selection [50], travelling inspection [14], and designing modern gaming AIs [34]. As
a result, developing algorithms to compute MPE in SGs has become one of the key subjects in
an extremely rich research domain, including but not limited to applied mathematics, economics,
operations research, computer science and artificial intelligence [15, 40].

SGs underpin many AI/machine learning studies. For example, it is the key framework for study-
ing adversarial training [17, 19] and modelling robustness [38, 1] in zero-sum setting. In reinforcement
learning (RL), SG extends the Markov decision process (MDP) formulation to incorporate strategic
interactions. Similar to the role of MDP in RL [46], SGs build the foundation for multi-agent
reinforcement learning (MARL) techniques to study optimal decision makings in multi-player games
[26]. In last decades, a wide variety of MARL algorithms have been developed to solved SGs [51].

Computing a MPE in (general-sum) SGs requires a perfect knowledge of the transition dynamics
and the payoffs of the game [15], which is often infeasible in practice. To overcome this difficulty,
MARL methods are often applied to learn the MPE of a SG based on the interactions between agents
and the environment. MARL algorithms are generally considered under two settings: online and
offline. In the offline setting (also known as the batch setting [37]), the learning algorithm controls
all players in a centralised way, with the hope that the learning dynamics can eventually lead to a
MPE by using limited number of interaction samples. In the online setting, the learner controls only
one of the players to play with arbitrary opponents in the game, assuming having unlimited access
to the game environment, and the central focus is often about the regret: the difference between a
benchmark measure (often in hindsight) and the learner’s total reward during learning.

In the offline setting, two-player zero-sum (discounted) SGs have been extensively studied.
Since the opponent is purely adversarial in zero-sum SGs, the process of seeking for the worst-case
optimality for each player can be thought of as solving MDPs. As a result, (approximate) dynamic
programming methods [3, 47] such as LSPI [25] and FQI [30] / NFQI [41] can be adopted to solve SGs
[35, 24, 36, 43, 23]. Under this setting, policy-based methods [11, 21] can also be applied. However,
directly applying exiting MDP solvers on general-sum SGs are challenging. Since solving two-player
NE in general-sum normal-form games (i.e., one-shot SGs) is well-known to be PPAD-complete
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[12, 8], the complexity of MPE in general-sum SGs are expected to be at least PPAD. Although
early attempts such as Nash-Q learning [22], Correlated-Q learning [20], Friend-or-Foe Q-Learning
[27] have been made to solve general-sum SGs under strong assumptions, Zinkevich et. al. [52]
demonstrated that the entire class of value iteration methods cannot find stationary NE policies in
general-sum SGs. The difficulties on both the complexity side and the algorithmic side lead to very
few existing MARL solutions to general-sum SGs; successful approaches either assumes knowing the
complete information of the SG and thus solving MPE can be turned into an optimisation problem
[39], or, proves the convergence of batch RL methods to a weaker notion of NE [37].

In the online setting, one of the most well-known algorithm is R-MAX [6], which studied (average-
reward) zero-sum SGs and provided a polynomial (in terms of game size and error parameter) regret
bound when competing with an arbitrary opponent. Under the same regret definition, recently,
UCSG [49] improved R-MAX and achieved a sublinear regret, but still in two-player zero-sum SGs.
When it comes to MARL solutions, Littman [26] proposed a practical solution named Minimax-Q that
replaces the max operator with the minimax value. Asymptotic convergence results of Minimax-Q
in both tabular cases [28] and value function approximations [13] have been shown. Yet, playing the
minimax value could be overly pessimistic. If the adversary plays sub-optimally, the learner could
achieve a higher reward. To account for this, WoLF [5] was proposed; and unlike Minimax-Q, WoLF
is rationale in the sense that it can exploit opponent’s policy. AWESOME [9] further generalised
WoLF and achieve NE convergence in multi-player general-sum repeated games. However, outside
the scope of zero-sum SGs, the question [6] of whether a polynomial time no-regret (near-optimal)
RL/MARL algorithm exists for general-sum SGs is still unanswered.

Although SG has been proposed for more than 60 years and despite its importance, surprisingly,
the complexity of finding a MPE in SG has never been answered. In fact, unlike the fruitful results on
zero-sum SGs, we still know very little about the complexity of solving general-sum SGs. Two relevant
results we know are that determining whether a pure-strategy NE exist in a SG is PSPACE-hard
[10], and it is NP-hard to determine if there exists a memoryless ε-NE in reachability SGs [7]. It is
long projected solving MPE in (infinite-horizon) SGs is at least PPAD-hard, since solving a two-
player NE in one-shot SGs is already PPAD-hard [12, 8]. This suggests that under computational
hardness assumption, it is unlike to have polynomial-time algorithms in even two-player stochastic
games. Yet, the unresolved question is that

The key question that we try to address in this paper:

Can solving MPE in general-sum SGs be anywhere harder in the complexity class?

In this paper, we answer to the above question negatively by proving that computing a MPE
in a finite-state discounted SG is PPAD-complete. Based on our result, we given an affirmative
answer that finding an MPE in SGs is highly unlikely to be NP-hard under the circumstance that
NP6= co-NP. We hope this result could encourage MARL researchers to work more on general-sum
SGs, leading to fruitful MARL solutions as those currently on zero-sum SGs.

1.1 Intuitions and a Sketch of Our Main Ideas

Like the classic complexity class NP, PPAD is a collection of computational problems. As the
definition of NP-completeness, a problem is said to be PPAD-complete if it is in PPAD, and is at
least as hard as every problem in PPAD. When one Stochastic Game has only one state and the
discount factor γ = 0, then finding a Markov perfect equilibrium (MPE) is equivalent to finding a
Nash equilibrium in the corresponding normal-form game, which is known to be PPAD-complete
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[12, 8]. So the PPAD-hardness of finding MPE is relatively direct (Lemma 1).
To obtain the PPAD-complete result (Theorem 1), it is sufficient for us to prove the PPAD

membership of MPE (Lemma 2).
i) The first key observation is that we can construct a function f of the strategy profile space,

such that each strategy profile is a fixed point of f if and only of it is an MPE (Theorem 2). Further,
we prove the function f is continuous (actually λ-Lipschitz by Lemma 3), so that fixed points are
guaranteed to exist by the Brouwer fixed point theorem.

ii) We then prove the function f has some “good” approximation properties. Let |SG| be the
input size of a stochastic game. If we can find a poly(|SG|)ε2-approximate fixed point π of f , i.e.,
‖f(π) − π‖∞ ≤ poly(|SG|)ε2, where π is a strategy profile, then π is an ε-approximate MPE for
the Stochastic Game (combining Lemma 4 and Lemma 5). So our goal converts to finding an
approximate fixed point.

iii) To prove the PPAD membership of finding an MPE, we will reduce it to the problem End
of the Line (whose formal definition is in Section 3), which is the first PPAD-complete problem
introduced by Papadimitriou [33]. We will show, the reduction could be constructed in polynomial
time, and every solution of the problem End of the Line corresponds to a good approximate fixed
point (Lemma 6), thus yields an ε-approximate MPE.

2 Stochastic Games

Definition 1 (Stochastic Game). A Stochastic Game is defined by a tuple of key elements 〈n,S,A, P, r, γ〉,
where

• n is the number of agents.

• S is the set of finite environmental states. Suppose that |S| = S.

• A = A1 × · · · × An is the set of agents’ joint actions. Suppose that |Ai| = Ai and Amax =
maxi∈[n]A

i.

• P : S × A → ∆(S) is the transition probability, that is, at each time step, given the agents’
joint action a ∈ A, then the transition probability from state s to state in the next time step s′

is P (s′|s, a).

• r = r1 × · · · × rn : S× A→ Rn+ is the reward function, that is, when an agents are at state s
and play a joint action a, then the agent i will get reward ri(s, a). We assume that the rewards
are uniformly bounded by Rmax.

• γ ∈ [0, 1) is the discount factor that specifies the degree to which the agent’s rewards are
discounted over time.

Each agent aims to find a behavioral strategy with Markovian property, meaning that each
agent’s strategy can be conditioned only on the current state of the game.

Note that behavioral strategy is different from mixed strategy. To be more clear, we give both
definitions of mixed strategy and behavioral strategy.

The pure strategy space of an agent i is
∏
s∈SAi, meaning that the agent i needs to select an

action at each state. Note that the size of pure strategy space of each agent is |Ai|S , which is
exponential in the number of states.
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Definition 2 (Mixed Strategy). The mixed strategy space is ∆
(∏

s∈SAi
)
, i.e., the probability

distribution on pure strategy space
∏
s∈SAi.

Definition 3 (Behavioral Strategy). A behavioral strategy of an agent i is πi : S → ∆(Ai), i.e.,
∀s ∈ S, πi(s) is a probability distribution on Ai.

In the rest of the paper, we will refer to a behavioral strategy simply as a strategy for convenience.
A strategy profile π is the Cartesian product of all agents’ strategy, i.e., π = π1 × · · · × πn.

We denote the probability of agents using the joint action a on state s by π(s, a), the probability
of agent i using the action ai on state s by πi(s, ai). The strategy profile other than agent i is
denoted by π−i. Given π, the transition probability and the reward function only depend on the
current state s ∈ S. So let ri,π(s) denote Ea∼π(s)[r

i(s, a)] and let P π(s′|s) denote Ea∼π(s)[P (s′|s, a)].
Given π−i, the transition probability and the reward function only depend on the current state s ∈ S
and player i’s action ai. So let ri,π−i(s, ai) denote Ea−i∼π−i(s)[ri(s, (ai, a−i))] and let P π−i(s′|s, a)

denote Ea−i∼π−i(s)[P (s′|s, (ai, a−i))].
For any positive integer m, let ∆m := {x ∈ Rm+ |

∑m
i=1 xi = 1}. Define ∆k

Ai
:= ×kp=1∆Ai . Then

∀s ∈ S, πi(s) ∈ ∆Ai , πi ∈ ∆S
Ai

and π ∈
∏n
i=1 ∆S

Ai
.

Definition 4 (Value Function). A value function for a strategy profile π of an agent i, written
V πi,π−i : S→ R gives the expected sum of discounted rewards of the agent i when the starting state
is s:

V πi,π−i(s) = E

[ ∞∑
t=0

γtri(st, a)
∣∣∣s0 = s, a ∼ π(st), st+1 ∼ P π(st)

]
.

Alternatively, the value function can also be defined recursively via the Bellman equation.

V πi,π−i(s) =
∑
s′∈S

E
a∼π(s)

[
ri(s, a)

]
+ γP π(s′|s)V πi,π−i(s′).

Definition 5 (Markov Perfect Equilibrium (MPE)). A behavioral strategy profile π is called a
Markov Perfect Equilibrium if

∀s ∈ S, i ∈ [n],∀π̃i ∈ ∆S
Ai , V

πi,π−i(s) ≥ V π̃i,π−i(s).

Definition 6 (ε-approximate MPE). Given ε > 0, a behavioral strategy profile π is called an
ε-approximate MPE if

∀s ∈ S, i ∈ [n],∀π̃i ∈ ∆S
Ai , V

πi,π−i(s) ≥ V π̃i,π−i(s)− ε.

The Markov perfect equilibrium is a concept within SGs in which the players’ strategies depend
only on the current state and not the game history. So the state encodes all relevant information for
the player’s strategies.

3 The Class PPAD and Markov-Perfect Equilibrium Problem

The complexity class PPAD is introduced [33] to characterize the mathematical proof structure
required in a class of mathematical problems based on a parity argument for a solution to exist as in
the following problem of End of the Line. It has included Nash equilibrium computation [12, 8],
as well as many other problems.
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The problem is defined on a class of directed graphs consisting of an exponential number of
vertices (numbered from 0n to 2n− 1). Edges of this graph is defined by two polynomial-size circuits
S and P , each with n input bits and n output bits. There is an edge from vertex u to vertex v if
and only if S(u) = v and P (v) = u. Note that each vertex has at most 1 indegree and at most 1
outdegree, which means that the graph only consists of paths, cycles, and isolated vertices.

Definition 7 ((S, P )-Graph [18]). An (S, P )-graph with parameter n is a graph on {0, 1}n specified
by circuits S and P , as described above, subject to the constraint that vertex 0n has no incoming edge
but does have an outgoing edge.

Based on (S, P )-graphs, the problem End of the Line is to find a vertex other that 0n such
that the sum of its indegree and outdegree is one but Other End of this Line is to find the end
of the particular path that starts at 0n [18]. It turns out that the two problems are dramatically
different in terms of their computational complexity. The former is PPAD-complete [33] but the
latter is PSPACE-complete [18].

Here we give the definition of computational problem of finding a Markov Perfect Equilibrium in
Stochastic Games.

Definition 8 (Markov-Perfect Equilibrium). The input instance of problem Markov-Perfect
Equilibrium is a pair (SG, L) where SG is a Stochastic Game and L is a binary integer. The
output of problem Markov-Perfect Equilibrium is a strategy profile π ∈

∏n
i=1 ∆S

Ai
such that π

is a 1/L-approximate MPE.

Theorem 1 (Main Theorem). Markov-Perfect Equilibrium is PPAD-complete.

We note that when |S| = 1 and γ = 0, a Stochastic Game degenerates to an n-player matrix
game. At this time, any Markov Perfect Equilibrium of this Stochastic Game is a Nash Equilibrium
for the corresponding matrix game. So we have the following hardness result immediately:

Lemma 1. Markov-Perfect Equilibrium is PPAD-hard.

In the rest of the paper, we will mainly focus on the proof of PPAD membership of MPE.

Lemma 2. Markov-Perfect Equilibrium is in PPAD.

4 On the Existence of MPE

The original proof of the existence of MPE is from [16], mainly based on the Kakutani fixed point
theorem. Here we give an alternative proof based on the Brouwer fixed point theorem, which also
leads to our proof of PPAD membership of Markov-Perfect Equilibrium.

Inspired by the continuous transformation defined by Nash to prove the existence of equilibrium
point [31], we define a new function f :

∏n
i=1 ∆S

Ai
→
∏n
i=1 ∆S

Ai
for a Stochastic Game to establish

the existence of MPE. Let V πi,π−i

πi(s,ai)=1
(s) denote the value function of agent i if agent i uses pure

action ai at state s, uses mixed actions πi(s′) at state s′ 6= s, and for any other agent j 6= i, agent j
uses the strategy πj .

Let π ∈
∏n
i=1 ∆S

Ai
be a strategy profile. Then for each player i ∈ [n], each state s ∈ S and each

action ai ∈ Ai, the modification of πi(s, ai) is defined as follows:

(f(π))i (s, ai) =
πi(s, ai) + max

(
0, V πi,π−i

πi(s,ai)=1
(s)− V πi,π−i(s)

)
1 +

∑
bi∈Ai max

(
0, V πi,π−i

πi(s,bi)=1
(s)− V πi,π−i(s)

) .
5



We define the distance of two strategy profiles π1 and π2, denoted by ‖π1 − π2‖∞, as follows.
‖π1 − π2‖∞ = maxi∈[n],s∈S,ai∈Ai |πi1(s, ai)− πi2(s, ai)|.

We first prove the function f satisfies a continuity property namely λ-Lipschitz, where λ is defined
as 9nS2A2

maxRmax

(1−γ)2
. The proof of Lemma 3 is challenging, because the value function V πi,π−i is defined

recursively via Bellman equation. It could be written informally like V πi,π−i = (I − γP π)−1ri,π,
which is not linear even for each fixed π−i. We refer the interested reader to Appendix A for a
complete proof, whose techniques might be of independent interest.

Lemma 3. The function f is λ-Lipschitz, i.e., for every π1, π2 ∈
∏n
i=1 ∆S

Ai
such that ‖π1 − π2‖∞ ≤ δ,

we have ∥∥∥f(π1)− f(π2)
∥∥∥
∞
≤ 9nS2A2

maxRmax

(1− γ)2
δ.

Now we could establish the existence of MPE by the Brouwer fixed point theorem.

Theorem 2. For any Stochastic Game 〈n,S,A, P,R, γ〉, a strategy profile π is MPE if and only if it
is a fixed point of the function f , i.e., f(π) = π. Furthermore, the function f has at least one fixed
point.

Proof. We first show the function f has at least one fixed point. Brouwer fixed point theorem
states that for any continuous function mapping a compact convex set to itself, there is a fixed
point. Notice that f is a function mapping a compact convex set to itself. Also, f is continuous by
Lemma 3. So the function f has at least one fixed point.

We then prove a strategy profile π is MPE if and only if it is a fixed point.
The proof of the necessity part is immediate by the definition of MPE (Definition 5). If π

is a MPE, then we have for each player i ∈ [n], each state s ∈ S and each action ai ∈ Ai,
V πi,π−i(s) ≥ V πi,π−i

πi(s,ai)=1
(s), which means max

(
0, V πi,π−i

πi(s,ai)=1
(s)− V πi,π−i(s)

)
= 0. Then for each

player i ∈ [n], each state s ∈ S and each action ai ∈ Ai, (f(π))i (s, ai) = πi(s, ai), which means π is
a fixed point of f .

For the proof of the sufficiency part, suppose that π is a fixed point of f . Then we have for each
player i ∈ [n], each state s ∈ S and each action ai ∈ Ai

πi(s, ai) =
πi(s, ai) + max

(
0, V πi,π−i

πi(s,ai)=1
(s)− V πi,π−i(s)

)
1 +

∑
bi∈Ai max

(
0, V πi,π−i

πi(s,bi)=1
(s)− V πi,π−i(s)

)
=⇒ πi(s, ai)

∑
bi∈Ai

max
(

0, V πi,π−i

πi(s,bi)=1
(s)− V πi,π−i(s)

)
= max

(
0, V πi,π−i

πi(s,ai)=1
(s)− V πi,π−i(s)

)
.

Pick arbitrarily
ai,∗ ∈ arg min

bi∈Ai,πi(s,bi)>0

V πi,π−i

πi(s,bi)=1
(s).

It is not hard to prove max
(

0, V πi,π−i

πi(s,ai,∗)=1
(s)− V πi,π−i(s)

)
= 0, which means

πi(s, ai,∗)
∑

bi∈Ai\{ai,∗}

max
(

0, V πi,π−i

πi(s,bi)=1
(s)− V πi,π−i(s)

)
= 0

=⇒
∑

bi∈Ai\{ai,∗}

max
(

0, V πi,π−i

πi(s,bi)=1
(s)− V πi,π−i(s)

)
= 0

=⇒ ∀bi ∈ Ai \ {ai,∗},max
(

0, V πi,π−i

πi(s,bi)=1
(s)− V πi,π−i(s)

)
= 0.
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So we have ∀bi ∈ Ai,max
(

0, V πi,π−i

πi(s,bi)=1
(s)− V πi,π−i(s)

)
= 0, i.e., for any state s ∈ S,

πi ∈ arg max
πi,∗∈∆S

A

∀s′ 6=s,πi,∗(s′)=πi(s)

V πi,∗,π−i(s). (1)

Note that if we fix the strategy profile other agent i, then for agent i, it is essentially a Markov
decision process. By Equation (1), we know that πi is an optimal policy of agent i, which means

∀s ∈ S, i ∈ [n], ∀π̃i ∈ ∆S
A, V

πi,π−i(s) ≥ V π̃i,π−i(s),

i.e., π is a MPE of the Stochastic Game.

5 PPAD Membership of Markov-Perfect Equilibrium

In this section, we will prove the PPAD membership of Markov-Perfect Equilibrium, by
reducing it to End of the Line. We highlight our approximation guarantee proof (Section 5.1),
which includes several innovative understanding of Markov Decision Processes and Stochastic Games.
The construction of the graph of End of the Line is relatively standard and is from the simplicial
approximation algorithm of Laan and Talman [48], which will be provided into Section 5.2.

5.1 The Approximation Guarantee

In Section 4, Theorem 2 states that f has a fixed point π if and only if π is an MPE for the Stochastic
Game. Now we will prove f has some good approximation properties beyond that: if we find an
ε-approximate fixed point π of f , then it is also a poly(|SG|)

√
ε-approximate MPE for the Stochastic

Game (combining Lemma 4 and Lemma 5).
Moreover, we also get Corollary 1, which leads to better understanding for Markov Decision

Process and might be of independent interest. The statement of Corollary 1 is as follows. Let ε > 0
and π be a (not necessarily deterministic) policy. If for every starting state s0 ∈ S, the agent only
changes the action of s0 could gain at most ε more value, then the agent could gain at most ε/(1− γ)
more value even if the agent changes its policy to the optimal policy, i.e., π is a good approximation
of MDP.

The formal statements of lemmas and proofs are as follows. Proof of Lemma 4 is in Appendix B.1.

Lemma 4. Let ε > 0 and π be a strategy profile. If ‖f(π)− π‖∞ ≤ ε, then for each player i ∈ [n],
each state s ∈ S and each action ai ∈ Ai, we have

max
(

0, V πi,π−i

πi(s,ai)=1
(s)− V πi,π−i(s)

)
≤ Amax

( √
ε′

1− γ
+Rmax

√
ε′ + ε′

)
,

where ε′ = ε

(
1 +

AmaxRmax

1− γ

)
.

Lemma 5. Let ε > 0 and π be a strategy profile. If for each player i ∈ [n], each state s ∈ S and each
action ai ∈ Ai, max

(
0, V πi,π−i

πi(s,ai)=1
(s)− V πi,π−i(s)

)
≤ ε, then π is an ε/(1− γ)-approximate MPE.
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Proof. Pick any player i ∈ [n], it is sufficient for us to prove ∀s ∈ S, ∀π̃i ∈ ∆S
A, V

πi,π−i(s) ≥
V π̃i,π−i(s)− ε. Suppose that maxai∈Ai

(
0, V πi,π−i

πi(s,ai)=1
(s)− V πi,π−i(s)

)
= ε(s). Consider the following

linear program:

min
∑
s∈S

V (s)

s.t., V (s) ≥ ri,π−i(s, ai) + γ
∑
s′∈S

P π
−i

(s′|s, ai)V (s′) ∀s ∈ S, ai ∈ Ai.
(2)

Let V ∗ be the solution of the linear program (2). It satisfies

V ∗(s) = max
ai∈Ai

(
ri,π

−i
(s, ai) + γ

∑
s′∈S

P π
−i

(s′|s, ai)V ∗(s′)

)
,

which is also the value function of player i when she uses the optimal policy given others’ strategy
profile π−i. (Note that when we are given π−i, it is essentially a Markov Decision Process for player
i. So we are using linear programming to solve this MDP.)

Now look at the other linear program:

min
∑
s∈S

V (s)

s.t., V (s) ≥ ri,π−i(s, ai)− ε(s) + γ
∑
s′∈S

P π
−i

(s′|s, ai)V (s′) ∀s ∈ S, ai ∈ Ai.
(3)

Let V ′ be the solution of the linear program (3). It satisfies

V ′(s) = max
ai∈Ai

(
ri,π

−i
(s, ai) + γ

∑
s′∈S

P π
−i

(s′|s, ai)V ′(s′)

)
− ε(s),

which is also the value function for the strategy profile π for the player i.
Now it is sufficient for us to bound V ∗(s)− V ′(s),∀s ∈ S. Let εmax = maxs∈S ε(s). Construct a

new value vector for the player i: Ṽ (s) = V ′(s) + εmax/(1− γ). Then we have

V (s) ≥ ri,π−i(s, ai)− ε(s) + γ
∑
s′∈S

P π
−i

(s′|s, ai)V (s′)

⇐⇒ V ′(s) +
εmax

1− γ
≥ ri,π−i(s, ai)− ε(s) +

εmax

1− γ
+ γ

∑
s′∈S

P π
−i

(s′|s, ai)V (s′)

⇐⇒ V ′(s) +
εmax

1− γ
≥ ri,π−i(s, ai)− ε(s) + εmax + γ

∑
s′∈S

P π
−i

(s′|s, ai)
(
V (s′) +

εmax

1− γ

)
⇐⇒ Ṽ (s) ≥ ri,π−i(s, ai)− ε(s) + εmax + γ

∑
s′∈S

P π
−i

(s′|s, ai)Ṽ (s)

=⇒ Ṽ (s) ≥ ri,π−i(s, ai) + γ
∑
s′∈S

P π
−i

(s′|s, ai)Ṽ (s).

So Ṽ is a feasible solution of linear program (2), which means V ∗(s) ≤ Ṽ (s) for any s ∈ S. Then
we have

V ∗(s)− V ′(s) ≤ Ṽ (s)− V ′(s) = εmax/(1− γ),
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i.e., the difference between the optimal value V ∗(s) and V πi,π−i is upper bounded by ε/(1− γ). The
argument above applies to any player. So by the definition of ε-approximate MPE, we know that π
is an ε/(1− γ)-approximate MPE.

Corollary 1. Let ε > 0 and π be a (not necessarily deterministic) policy of the agent. If for each state
s ∈ S and each action a ∈ A (where A is the action space of the agent), max

(
0, V π

π(s,a)=1(s)− V π(s)
)
≤

ε, then π is an ε/(1− γ) approximation of MDP.

5.2 Constructing the End of the Line Graph

In this section, we give an outline of our reduction from Markov-Perfect Equilibrium to End
of the Line, with the help of the simplicial approximation algorithm of Laan and Talman [48]. We
will focus on the correctness of reduction, leaving details about how to construct the vertices to the
appendix.

Recall that the input instance of Markov-Perfect Equilibrium is a pair (SG, L). Let d be
an integer, which will be defined later to make sure we can find an 1/L-approximate MPE.

For each i ∈ [n], define ∆Ai(d) is the set of points of ∆Ai induced by the regular grid of size d,
i.e.,

∆Ai(d) =

x ∈ ∆Ai |xj = yj/d, yj ∈ Z+,

Ai∑
j=1

yj = d

 .

Similarly, define ∆k
Ai

(d) := ×kp=1∆Ai(d).
The Vertices of End of the Line Graph. The set of vertices Σ is a set of simplices defined

on
∏n
i=1 ∆S

Ai
(d), which could be encoded with string {0, 1}N , where N is polynomial in |SG| and

log d. The formal definition of Σ is in Appendix B.2.
Labelling the Grid Points. We will give each point in

∏n
i=1 ∆S

Ai
(d) a label, which will be an

element of the set L :=
⋃
i∈[n],s∈S,ai∈Ai(i, s, a

i).
Without loss of generality, we assign a number to the state set S and action set Ai for each i ∈ [n]

arbitrarily for the purpose of labelling. Suppose that S = {s1, · · · , sS} and Ai = {ai1, · · · , aiAi}.
For each strategy profile π ∈

∏n
i=1 ∆S

Ai
(d), π receives the label (i, sj , a

i
k) if and only if (i, sj , a

i
k)

is the lexicographically least index such that πi(sj , aik) > 0 and

(f(π))i(sj , a
i
k)− πi(sj , aik) ≤ (f(π))i

′
(sj′ , a

i′
k′)− πi

′
(sj′ , a

i′
k′)

for all i′ ∈ [n], sj′ ∈ S and ai′k′ ∈ Ai′ .
Note that each strategy profile π ∈

∏n
i=1 ∆S

Ai
(d) has exactly one label, which could be denoted

by l(π). Since the function f could be computed in time polynomial in N and |SG|, the label could
also computed in time polynomial in |SG| and log d. Also the labelling rule is proper in the sense
that l(π) 6= (i, sj , a

i
k) if πi(sj , aik) = 0.

A simplex σ ∈ Σ will be called complete labelled if all its vertices1 have a different label. A
completely labelled simplex σ is called (i, sj)-stopping if for each aik ∈ Ai, there exists π ∈ σ such
that l(π) = (i, sj , a

i
k). Further, a completely labelled simplex σ is called stopping if there exist i ∈ [n]

and sj ∈ S such that σ is (i, sj)-stopping.
The following lemma asserts that if we can find a stopping simplex, then we can find an

poly(|SG|)/d-approximate fixed point. The proof is in Appendix B.3.
1Please distinguish the vertices of a simplex and vertices of the End of the Line graph.
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Lemma 6. ([48]) Suppose that a simplex σ ∈ Σ is (i, s)-stopping for i ∈ [n] and s ∈ S. Then for
any strategy profile π ∈ σ, we have

‖f(π)− π‖∞ ≤ A2
max(λ+ 1)

1

d
.

The Choice of d. Let

d =
32A5

maxR
3
max(λ+ 1)

(1− γ)5
L2.

It is easy to see d is poly(|SG|, L). The correctness of our choice is in Appendix B.4.
The Edges of End of the Line Graph. In the algorithm of Laan and Talman [48], they

develop a partial one-to-one function g : Σ′ → Σ′ for Σ′ ⊆ Σ as well as a starting simplex σ0 ∈ Σ,
which have the following properties:

• σ0 ∈ Σ′ and there is no σ′ ∈ Σ′ such that g(σ′) = σ0;

• For any σ ∈ Σ′, if σ has no image, then σ is a stopping simplex. For any σ ∈ Σ′ \ {σ0}, if σ
has no pre-image, then σ is a stopping simplex.

• the function g and g−1 could be computed in time polynomial in |SG| and log d.

For the purpose of constructing the End of the Line graph, we complete the function g by
letting g(σ) = σ for any σ ∈ Σ \Σ′. It is easy to verify our operation does not impact the properties
of function g. So for any input instance (|SG|, L), we can reduce it to an instance of End of the
Line, where the two circuits S and P correspond to g and g−1. If we can find a solution of the End
of the Line, by Lemma 6 we know that there is an A2

max(λ+ 1)1
d -approximate fixed point in the

solution simplex, thus an 1/L-approximate MPE by Lemma 4, Lemma 5, and our choice of d.

6 Conclusion

Solving a Markov Perfect Equilibrium (MPE) in general-sum stochastic games (SG) has long expected
to be at least PPAD-hard. In this paper, we prove that computing an MPE in a finite-state infinite
horizon discounted SGs is PPAD-complete. Our proof is novel in the sense that we adopt a function
with a polynomial-bound description in the strategy space that effectively helps convert the MPE
computation problem to a fixed-point problem, which, otherwise, would take a representation that
requires an exponential number of pure strategies with respect to the number of states and the
number of agents. Our completeness result indicates that computing MPE in SGs is highly unlikely
to be NP-hard. We hope our results can encourage MARL researchers to study solving MPE
in general-sum SGs, leading to more prosperous algorithmic developments as those currently on
zero-sum SGs.
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A Detailed Proofs from Section 4

A.1 Proof of Lemma 3

Lemma 3. The function f is λ-Lipschitz, i.e., for every π1, π2 ∈
∏n
i=1 ∆S

Ai
such that ‖π1 − π2‖∞ ≤ δ,

we have ∥∥∥f(π1)− f(π2)
∥∥∥
∞
≤ 9nS2A2

maxRmax

(1− γ)2
δ.

Proof of Lemma 3. We first give an upper bound of
∣∣ri,π1(s)− ri,π2(s)

∣∣ for any s ∈ S and i ∈ [n].∣∣ri,π1(s)− ri,π2(s)
∣∣

=

∣∣∣∣∣∑
a∈A

ri(s, a)π1(s, a)−
∑
a∈A

ri(s, a)π2(s, a)

∣∣∣∣∣
=

∣∣∣∣∣∣
∑
a∈A

ri(s, a)
∏
i∈[n]

πi1(s, ai)−
∑
a∈A

ri(s, a)
∏
i∈[n]

πi2(s, ai)

∣∣∣∣∣∣
≤

∑
a∈A

∣∣ri(s, a)
∣∣ ∣∣∣∣∣∣
∏
i∈[n]

πi1(s, ai)−
∏
i∈[n]

πi2(s, ai)

∣∣∣∣∣∣
≤ Rmax

∑
a∈A

∣∣∣∣∣∣
∏
i∈[n]

πi1(s, ai)−
∏
i∈[n]

πi2(s, ai)

∣∣∣∣∣∣
≤ nAmaxRmaxδ,

where the last inequality follows

∑
a∈A

∣∣∣∣∣∣
∏
i∈[n]

πi1(s, ai)−
∏
i∈[n]

πi2(s, ai)

∣∣∣∣∣∣
=

∑
a∈A

∣∣∣∣∣
n∑
k=1

k−1∏
i=1

πi1(s, ai)
(
πk1 (s, ak)− πk2 (s, ak)

) n∏
i=k+1

πi2(s, ai)

∣∣∣∣∣
≤ δ

∑
a∈A

∣∣∣∣∣
n∑
k=1

k−1∏
i=1

πi1(s, ai)
n∏

i=k+1

πi2(s, ai)

∣∣∣∣∣
≤ nAmaxδ.

Let V πi,π−i denote the column vector (V πi,π−i(s))s∈S, ri,π denote the column vector (ri,π(s))s∈S,
and P π denote the matrix P π(s, s′)s,s′∈S respectively. By the Bellman equation (Definition 4), we
have

V πi,π−i = ri,π + γP πV πi,π−i ,

which means
V πi,π−i = (I − γP π)−1ri,π.

We will prove that
∣∣(I − γP π1)−1(s′|s)− (I − γP π2)−1(s′|s)

∣∣ ≤ nSAmaxδ
(1−γ)2

for any s, s′ ∈ S in the
following lemma (Lemma 7).
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Now we could give an upper bound of
∣∣∣V πi1,π

−i
1 (s)− V πi2,π

−i
2 (s)

∣∣∣ for any s ∈ S.∣∣∣V πi1,π
−i
1 (s)− V πi2,π

−i
2 (s)

∣∣∣
=

∣∣∣∣∣∑
s′∈S

ri,π1(s′)(I − γP π1)−1(s′|s)−
∑
s′∈S

ri,π2(s′)(I − γP π2)−1(s′|s)

∣∣∣∣∣
=

∣∣∣∣∣∑
s′∈S

ri,π1(s′)
(
(I − γP π1)−1(s′|s)− (I − γP π2)−1(s′|s)

)
+ (I − γP π2)−1(s′|s)

(
ri,π1(s′)− ri,π2(s′)

)∣∣∣∣∣
≤

∑
s′∈S

(
Rmax

nSAmaxδ

(1− γ)2
+

1

1− γ
nAmaxRmaxδ

)
=

nSAmaxRmax

1− γ

(
1 +

S

1− γ

)
δ

≤ 2nS2AmaxRmax

(1− γ)2
δ

where the forth line follows from |(I − γP π2)−1(s′|s)| ≤ 1
1−γ , which will also be proved in Lemma 7.

Let Dπi,π−i

πi(s,ai)=1
(s) = max

(
0, V πi,π−i

πi(s,ai)=1
(s)− V πi,π−i(s)

)
. Then we have the following upper

bounds directly ∣∣∣∣Dπi1,π
−i
1

πi1(s,ai)=1
(s)−Dπi2,π

−i
2

πi2(s,ai)=1
(s)

∣∣∣∣ ≤ 4nS2AmaxRmax

(1− γ)2
δ,∣∣∣∣∣∣

∑
bi∈Ai

(
D
πi1,π

−i
1

πi1(s,bi)=1
(s)−Dπi2,π

−i
2

πi2(s,bi)=1
(s)

)∣∣∣∣∣∣ ≤ 4nS2A2
maxRmax

(1− γ)2
δ.

Finally, we could complete our proof of this lemma. For any player i ∈ [n], any state s ∈ S and
any action ai ∈ Ai, we have∣∣(f(π1))i(s, ai)− (f(π2))i(s, ai)

∣∣
≤

∣∣πi1(s, ai)− πi2(s, ai)
∣∣+

∣∣∣∣Dπi1,π
−i
1

πi1(s,ai)=1
(s)−Dπi2,π

−i
2

πi2(s,ai)=1
(s)

∣∣∣∣+

∣∣∣∣∣∣
∑
bi∈Ai

D
πi1,π

−i
1

πi1(s,bi)=1
(s)−Dπi2,π

−i
2

πi2(s,bi)=1
(s)

∣∣∣∣∣∣
≤ δ +

4nS2AmaxRmax

(1− γ)2
δ +

4nS2A2
maxRmax

(1− γ)2
δ

≤ 9nS2A2
maxRmax

(1− γ)2
δ.

A.2 Proof of Lemma 7

Lemma 7. For every π1, π2 ∈
∏n
i=1 ∆S

Ai
such that ‖π1 − π2‖∞ ≤ δ, we have∣∣(I − γP π1)−1(s′|s)− (I − γP π2)−1(s′|s)

∣∣ ≤ nSAmaxδ

(1− γ)2

for any s, s′ ∈ S.
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Proof. We first give an upper bound of |P π1(s′|s)− P π2(s′|s)| for any s, s′ ∈ S.∣∣P π1(s′|s)− P π2(s′|s)
∣∣

=

∣∣∣∣∣∣
∑
a∈A

P (s′|s, a)
∏
i∈[n]

πi1(s, ai)−
∑
a∈A

P (s′|s, a)
∏
i∈[n]

πi2(s, ai)

∣∣∣∣∣∣
≤

∑
a∈A

P (s′|s, a)

∣∣∣∣∣∣
∏
i∈[n]

πi1(s, ai)−
∏
i∈[n]

πi2(s, ai)

∣∣∣∣∣∣
≤ nAmaxδ

Now we view P π as an S×S matrix. For any two S×S matricesM1,M2, we use ‖M1−M2‖max

to denote maxi,j |M1(i, j)−M2(i, j)|, i.e., the max norm. Then we have ‖P π1 −P π2‖max ≤ nAmaxδ.
Let Q1 = (I − γP π1)−1 and Q2 = (I − γP π2)−1. (Note that the inverse of (I − γP π) must exist

because γ < 1.)
By definition, we have Q1 = I + γP π1Q1 and Q2 = I + γP π2Q2. Then∥∥Q1 −Q2

∥∥
max

= γ
∥∥P π1Q1 − P π2Q2

∥∥
max

= γmax
i,j

∣∣∣∣∣∑
k

P π1(i, k)Q1(k, j)−
∑
k

P π2(i, k)Q2(k, j)

∣∣∣∣∣
≤ γmax

i,j

∑
k

∣∣P π1(i, k)Q1(k, j)− P π2(i, k)Q2(k, j)
∣∣

≤ γmax
i,j

(∑
k

P π1(i, k)
∣∣Q1(k, j)−Q2(k, j)

∣∣+
∑
k

|Q2(k, j)| |P π1(i, k)− P π2(i, k)|

)

≤ γmax
i,j

(
max
k

∣∣Q1(k, j)−Q2(k, j)
∣∣+
∑
k

nAmaxδ

1− γ

)

= γ

(∥∥Q1 −Q2
∥∥

max
+
nSAmaxδ

1− γ

)
where the sixth line follows the following facts:

1.
∑

k P
π1(i, k) = 1.

2.
∣∣Q1(k, j)−Q2(k, j)

∣∣ ≤ maxk
∣∣Q1(k, j)−Q2(k, j)

∣∣.
3. |P π1(i, k)− P π2(i, k)| ≤ nAmaxδ.

4. |Q2(k, j)| ≤ ‖Q2‖1 ≤ 1
1−γ‖Pπ2‖1 ≤

1
1−γ .

Note that Q2 = I + γP π2Q2. Since 1-norm is submultiplicative, so we have

‖Q2‖1 ≤ 1 + γ‖P π2Q2‖1 ≤ 1 + γ‖P π2‖1‖Q2‖1 ≤ 1 + γ‖Q2‖1,

which leads to the fourth fact.
So we have

|Q1 −Q2|max ≤
nSAmaxδ

(1− γ)2
.
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B Detailed Proofs from Section 5

B.1 Proof of Lemma 4

Lemma 4. Let ε > 0 and π be a strategy profile. If ‖f(π)− π‖∞ ≤ ε, then for each player i ∈ [n],
each state s ∈ S and each action ai ∈ Ai, we have

max
(

0, V πi,π−i

πi(s,ai)=1
(s)− V πi,π−i(s)

)
≤ Amax

( √
ε′

1− γ
+Rmax

√
ε′ + ε′

)
,

where ε′ = ε

(
1 +

AmaxRmax

1− γ

)
.

Proof of Lemma 4. Pick any player i ∈ [n] and state s ∈ S in this proof. Suppose that the action
space of player i is Ai = {ai1, · · · , aiAi}. For the simplicity of notations, for any aij ∈ Ai, let

Vaij
(s) := V πi,π−i

πi(s,aij)=1
(s),

and
Daij

(s) := max
(

0, Vaij
(s)− V πi,π−i(s)

)
.

Without loss of generality, assume that

Vai1
(s) ≥ Vai2(s) ≥ · · · ≥ Vaik(s) ≥ V πi,π−i(s) ≥ Vaik+1

(s) ≥ · · · ≥ Vai
Ai

(s).

We first give an upper bound of Daij
(s).

Daij
(s) = max

(
0, Vaij

(s)− V πi,π−i(s)
)
≤ Vaij (s) ≤ Rmax/(1− γ).

For any action aij ∈ Ai, by the condition ‖f(π)− π‖∞ ≤ ε, we know that

πi(s, aij)−
πi(s, aij) +Daij

(s)

1 +
∑

bi∈Ai Dbi(s)
≤ ε

=⇒ πi(s, aij)
∑
bi∈Ai

Dbi(s) ≤ Daij
(s) + ε

1 +
∑
bi∈Ai

Dbi(s)


=⇒ πi(s, aij)

∑
bi∈Ai

Dbi(s) ≤ Daij
(s) + ε

(
1 +

AmaxRmax

1− γ

)
.

Setting ε′ = ε
(

1 + AmaxRmax
1−γ

)
, we have the following crucial inequality:

πi(s, aij)
∑
bi∈Ai

Dbi(s) ≤ Daij
(s) + ε′. (4)

Let t :=
∑Ai

j=k+1 π
i(s, aij).

Case 1: t ≥
√
ε′/Rmax.

18



Note that for k + 1 ≤ j ≤ Ai, Daij
(s) = 0. By the inequality (4), we have

Ai∑
j=k+1

πi(s, aij) ∑
bi∈Ai

Dbi(s)

 ≤ Ai∑
j=k+1

(
Daij

(s) + ε′
)

=⇒ t
∑
bi∈Ai

Dbi(s) ≤ Amaxε
′

=⇒ Dai1
(s) ≤

∑
bi∈Ai

Dbi(s) ≤ AmaxRmax

√
ε′.

Case 2: t ≤
√
ε′/Rmax.

By the inequality (4), we have

πi(s, aij)
∑
bi∈Ai

Dbi(s) ≤ Daij
(s) + ε′

=⇒ πi(s, aij)
2
∑
bi∈Ai

Dbi(s) ≤ πi(s, aij)
(
Daij

(s) + ε′
)

=⇒
Ai∑
j=1

πi(s, aij)2
∑
bi∈Ai

Dbi(s)

 ≤ Ai∑
j=1

(
πi(s, aij)

(
Daij

(s) + ε′
))

=⇒
Ai∑
j=1

πi(s, aij)
2
∑
bi∈Ai

Dbi(s) ≤
k∑
j=1

(
πi(s, aij)Daij

(s)
)

+ ε′

=⇒
Ai∑
j=1

πi(s, aij)
2
∑
bi∈Ai

Dbi(s) ≤
Rmax

1− γ

k∑
j=1

πi(s, aij) + ε′

=⇒
Ai∑
j=1

πi(s, aij)
2
∑
bi∈Ai

Dbi(s) ≤
Rmax

1− γ

√
ε′

Rmax
+ ε′

=⇒ 1

Ai

∑
bi∈Ai

Dbi(s) ≤
√
ε′

1− γ
+ ε′

=⇒ Dai1
(s) ≤

∑
bi∈Ai

Dbi(s) ≤ Amax

( √
ε′

1− γ
+ ε′

)
.

Note that the argument above could be applied to any player and any state, so for each player
i ∈ [n], each state s ∈ S and each action ai ∈ Ai, we have

max
(

0, V πi,π−i

πi(s,ai)=1
(s)− V πi,π−i(s)

)
≤ Amax

( √
ε′

1− γ
+Rmax

√
ε′ + ε′

)
.

B.2 Definition of the Set of Vertices Σ

Note that the strategy profile space is
∏n
i=1 ∆S

Ai
, which is a production of unit simplices. We will

adopt the techniques in [48] to triangulate the strategy profile space, where the set of vertices of
End of the Line graph will correspond to a set of simplices after triangulation.
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We use QAi to denote the Ai ×Ai matrix

QAi =



−1 0 . . . 1
1 −1 0 . . 0
. . . .
. . . .
. . . .
0 . . 0 1 −1

 .

For each player i ∈ [n], we use Qi to denote the AiS × AiS matrix, which is a block diagonal
matrix

Qi =


QAi 0 . . . 0

0 QAi . . . 0
...

...
. . .

...
0 0 . . . QAi


S.

Finally, we use Q to denote the block diagonal matrix

Q =


Q1 0 . . . 0
0 Q2 . . . 0
...

...
. . .

...
0 0 . . . Qn

 .
For any agent i ∈ [n], state s ∈ S and action ai ∈ Ai, we use Q(i, s, ai) to denote the corresponding

column. Let v0 be an arbitrary (starting) point in
∏n
i=1 ∆S

Ai
(d).

For each agent i ∈ [n] and s ∈ S, let Ii,s = {(i, s, ai)|ai ∈ Ai}. Let I be a collection of all subsets
T of

⋃
i∈[n],s∈S Ii,s such that for each i and s there is at least one element (i, s, ai) not in T .

For all T ∈ I, we define A(T ), which is a subset of
∏n
i=1 ∆S

Ai
, as follows.

A(T ) =

x ∈
n∏
i=1

∆S
Ai |x = v0 +

∑
(i,s,ai)∈T

λ(i, s, ai)Q(i, s, ai) for λ(i, s, ai) ≥ 0

 .

Let us fix some T ∈ T , φ : [|T |]→ T be a permutation of T , and w0 ∈ A(T ) ∩
∏n
i=1 ∆S

Ai
(d). We

use ∆(w0, φ) to denote the convex hull of |T |+ 1 vertices {w0, w1, · · · , w|T |} (which is a simplex),
where

wi = wi−1 +Q(φ(i)), i ∈ [|T |].

Define

ΣT = {∆(w0, φ)|∆(w0, φ) ∈ A(T ) ∩
n∏
i=1

∆S
Ai(d), φ is a permutation of T}.

Then we have the following lemma.

Lemma 8 ([48]). For each T ∈ I, ΣT triangulates A(T ).

The Vertices of End of the Line Graph are Σ :=
⋃
T∈I ΣT .
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B.3 Proof of Lemma 6

Lemma 6. ([48]) Suppose that a simplex σ ∈ Σ is (i, s)-stopping for i ∈ [n] and s ∈ S. Then for
any strategy profile π ∈ σ, we have

‖f(π)− π‖∞ ≤ A2
max(λ+ 1)

1

d
.

Proof of Lemma 6. Because of the triangulation, we know that for any simplex δ ∈ Σ and two
strategy profiles π, π′ ∈ δ, ‖π − π′‖∞ ≤ 1/d.

Now let the simplex δ ∈ Σ be (i, s)-stopping. By the definition, we know for any ai ∈ Ai, there
is a strategy profile, denoted by πai ∈

∏n
i=1 ∆S

Ai
, whose label is (i, s, ai). Then

(f(πai))
i (s, ai)− πiai(s, a

i) ≤ 0 ∀ai ∈ Ai.

Then for any π ∈ δ, ∀ai ∈ Ai, we have πi
ai

(s, ai) − πi(s, ai) ≤ 1
d and f is λ-Lipschitz, which

means

(f(π))i (s, ai)− πi(s, ai) ≤ (f(πai))
i (s, ai)− πiai(s, a

i) + (λ+ 1)
1

d
≤ (λ+ 1)

1

d
.

Using
∑

bi∈Ai π
i(s, bi) =

∑
bi∈Ai

(
f(πi)

)
(s, bi) = 1, we have

(f(π))i (s, ai)− πi(s, ai)
=

∑
bi∈Ai,bi 6=ai

πi(s, bi)−
∑

bi∈Ai,bi 6=ai

(
f(πi)

)i
(s, bi)

≥ −(Amax − 1)(λ+ 1)
1

d
.

Pick ai ∈ Ai arbitrarily. Combine with the definition of labelling rule, for any π ∈ δ, j ∈ [n],
v ∈ S and bj ∈ Aj , we have

(f(π))j (v, bj)− πj(v, bj)

≥ (f(πai))
j (v, bj)− πj

ai
(v, bj)− (λ+ 1)

1

d

≥ (f(πai))
i (s, ai)− πiai(s, a

i)− (λ+ 1)
1

d

≥ −Amax(λ+ 1)
1

d
,

which finishes the lower bound of this lemma.
Also, by the similar argument

∑
bj∈Aj π

j(v, bj) =
∑

bj∈Aj
(
f(πj)

)j
(v, bj) = 1, we know that

(f(π))j (v, bj)− πj(v, bj)

≤ Amax(Amax − 1)(λ+ 1)
1

d

≤ A2
max(λ+ 1)

1

d
,

which finished the upper bound of this lemma.
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B.4 Correctness of Our Choice of d

By Lemma 6, we will find a π such that

‖f(π)− π‖∞ ≤
(1− γ)5

32A3
maxR

3
max

1

L2
.

In Lemma 4, we will have

ε′ =
(1− γ)5

32A3
maxR

3
max

1

L2

(
1 +

AmaxRmax

1− γ

)
≤ (1− γ)5

32A3
maxR

3
max

1

L2

2AmaxRmax

1− γ
≤ (1− γ)4

16A2
maxR

2
max

1

L2
,

which means

max
(

0, V πi,π−i

πi(s,ai)=1
(s)− V πi,π−i(s)

)
≤ Amax

( √
ε′

1− γ
+Rmax

√
ε′ + ε′

)

≤ Amax

(
2Rmax

1− γ
√
ε′ + ε′

)
≤ Amax

(
2Rmax

1− γ
(1− γ)2

4AmaxRmax

1

L
+

(1− γ)4

16A2
maxR

2
max

1

L2

)
≤ (1− γ)

2

1

L
+

(1− γ)4

16AmaxR2
max

1

L2
.

By Lemma 5, we know π is an 1
2L + (1−γ)3

16AmaxR2
max

1
L2 -approximate MPE, so π is a 1/L-approximate

MPE.
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